
 Eindhoven University of Technology

BACHELOR

The Running Dinner Problem

de Jongh, Nienke J.

Award date:
2019

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/95fbe7c7-8364-42fe-9802-9940fde1ef1c

Eindhoven University of Technology

2WH40: Bachelor Final Project

Department of mathematics and computer science

The Running Dinner Problem

Nienke de Jongh - 0999285
Supervisor: dr.ir. C.A.J. Hurkens

Combinatorial Optimization
August 21, 2019

Abstract

A running dinner is a dinner where (almost) none of the participants know each other and every
course is eaten at a different house of one of the participants. This participant is called the host
of that round. The participants are divided into equally sized groups that are different for every
round. The Running Dinner Problem deals with constructing the maximal number of rounds for
a given number of participants and a given table size, such that participants see each other once

at most. It also deals with choosing a host for each round, such that the task of being host is
distributed evenly among all participants. A perfect solution is one where every participant sees
every other participant exactly once. There is a perfect solution is the following two instances:

there is an even number of participants with table size 2 or the number of tables is pe with table
size p, where p is a prime number and e a positive integer. There is also a perfect solution for

some pre-built cases with table size 3, 4 and 6. There are strategies for dealing with other
instances in which the socialization is optimized. A multi-start randomized greedy algorithm can

be used to select the hosts in each round of the running dinner, such that this role is divided
fairly. The Socialization Problem is an expansion of the Running Dinner Problem that deals

with choosing a predetermined number of rounds from the maximal number constructed in the
Running Dinner Problem. The aim here is to select these rounds so that the socialization is
maximal. This is generally a NP-complete or NP-hard problem, depending on whether the

input is a number of participants or a list of names of all the participants. However, this problem
can be solved using a brute-force method that checks all orders of rounds and gives back the

optimal order of the rounds, i.e. the order that yields the maximal socialization.

Contents

1 Introduction 2

2 Problem Description 3

3 The Running Dinner Problem 4
3.1 Definitions, Theorems and Propositions . 4

3.1.1 Block Designs and Resolvable Designs . 4
3.1.2 Steiner and Kirkman Triple Systems . 5
3.1.3 Mutually Orthogonal Latin Squares and Rectangles 5

3.2 The Running Dinner Problem Program . 6
3.2.1 Examples . 7

4 The Socialization Problem 9
4.1 The Gossip Problem . 10

4.1.1 The Problem . 10
4.1.2 The Solution . 10

4.2 The Socialization Problem with 27 Participants and Tables of Size 3 11
4.3 Seating Arrangements . 12

4.3.1 The Problem . 12
4.3.2 Complexity of the Problem . 13
4.3.3 k-colorability and NP-completeness . 14
4.3.4 Similarities to the Socialization Problem . 16

4.4 The Socialization Problem Program . 16
4.4.1 Brute-forcing . 16
4.4.2 Functions of the Program . 17
4.4.3 Examples . 18

5 Summary 25

6 Discussion and Future Work 26

A Socialization Problem Program (Java) 27

B Data Analysis Code (R) 32

1

Chapter 1

Introduction

In 1850, the reverend Thomas Penyngton Kirkman proposed the following problem as Query VI
in The Lady’s and Gentleman’s Diary (pg.48):

”Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required
to arrange them daily so that no two shall walk twice abreast” (Graham, Grötschel, & Lovász,
1995).

This problem is nowadays known as Kirkman’s schoolgirls problem and, in simpler words, it
asks to arrange fifteen schoolgirls in five rows of three girls for seven days such that no two girls
walk in the same row more than once. The solution for the problem was published in the same
year, but more questions arose from this problem. For instance, the general problem of arranging
n ≡ 3 mod 6 girls into groups of three over a series of n−1

2 days and questions about tournament
scheduling, such as the social golfer problem. This problem is derived from a question posted on
sci.op-research in May 1998 (Triska, & Musliu, 2011). In the social golfer problem, a coordinator
of a golfing club asks you to divide a number of social golfers who play golf once a week in groups
of equal size, such that these golfers can play for as many weeks as possible without encountering
another golfer more than once. A relatively new problem that is related to Kirkman’s schoolgirls
problem and the social golfer problem is the Running Dinner Problem (RDP).
The concept of a running dinner is quite simple: a dinner is organised for a group of people. These
people are the participants of the running dinner. For each round, the participants are divided
into smaller groups of equal size that eat together at the home of someone in this group. This
person is the host for this round and will cook the dish for this group. After a round, all the
participants are shuffled again and new groups are formed for the next dish. A new host is chosen
in each group as well, preferably one who was not a host in the previous round. Because of this
rotation system, it is possible to get to know a lot of new people in one evening, which is why
running dinners are popular in, for example, neighbourhoods.
The Running Dinner Problem aims to arrange the participants of a running dinner into fixed-size
groups for as many rounds as possible, such that every participant meets as many new people as
possible without meeting the same people twice. It also aims to divide the task of being host as
equally as possible and to minimize the number of times someone is host twice in a row.

2

Chapter 2

Problem Description

Formally, the RDP is described as the union of two tasks:

1. Find a seating arrangement for n participants over tables of size t for as many rounds as
possible, such that no two participants meet more than once.

2. Select a host for each round, such that the role of host is distributed uniformly among all
participants.

An instance of the RDP is denoted as n− t− rmax with n the number of participants, t the table
size and rmax the maximal number of rounds for that instance. We define a perfect solution as
one where every participant sees every other participant exactly once. Of course, our aim is to
find such a perfect solution, if it exists, since this solution will provide the maximal socialization.
A necessary condition for an RDP having a perfect solution is that n − 1 should be a multiple
of t − 1 and, if this perfect solution exists, the number of rounds is rmax = n−1

t−1 . Furthermore,

the maximal number of rounds is rmax = 1 if n is less than t2, since a second encounter between
participants is inevitable otherwise (Hurkens, n.d.). In addition, when we do not have a perfect
solution, we would like to find a strategy that ensures as much socialization as possible.
Besides being interesting for running dinners, the solution to the RDP can be useful in other
instances as well. For example, when we see the tables as groups and the rounds as weeks, it
provides a solution to the social golfer problem. When the tables are of size three and the number
of participants is n ≡ 3 mod 6, it is equal to the generalization of Kirkman’s schoolgirls problem.

In this report we will mostly focus on the first task of the RDP and only shortly mention a
way to solve the second task. As we will see later, the solution to the RDP usually consists of
a considerable list of rounds. When we realize that every round comes with a dish, it may be
desirable for the organizer and the participants to limit the amount of rounds, to prevent the
running dinner from taking too long. Only a set number of rounds may be chosen from the initial
list, in such a way that the socialization is still optimal for these rounds. This is the second
problem that will be discussed in this report and it is defined as the Socialization Problem.

3

Chapter 3

The Running Dinner Problem

It is clear that there is not always a perfect solution to the running dinner problem. This already
becomes apparent if the number of participants is not divisible by the table size. Now, the question
is whether we can somehow construct perfect solutions and if not, how we can ensure that the
solution is as close to optimal as possible. We will particularly base this on a program that was
written by Siervo (2017). In the paper she wrote about it, she explains the combinatorial theory
behind the problem and how this can be used to construct perfect solutions. She also explains
what the program does when it cannot find a perfect solution.

Firstly, we will introduce a few definitions, theorems and propositions that are used by Siervo
to construct her program. We will cover block designs, resolvable designs, Steiner triple systems,
Kirkman triple systems, mutually orthogonal latin squares and mutually orthogonal latin rectangles.
The definitions, theorems and propositions that are presented here are only a small selection of
those introduced in Siervo’s paper. The reader is encouraged to read this paper, which elaborates
on these concepts in more detail and provides proofs for some of the theorems and propositions.

3.1 Definitions, Theorems and Propositions

3.1.1 Block Designs and Resolvable Designs

Definition 3.1: A design is a collection B of b subsets (called blocks) on a finite set V of v
objects called varieties. So

B = {B1, B2, ..., Bb} with Bi ⊂ V for all i = 1, ..., b.

Definition 3.2: A design is complete of if each block consists of all of V . If at least one block
is not all of V , the design is incomplete.

Definition 3.3: A design is called k-uniform if each block has the same size k.

Definition 3.4: A design is called a balanced design of index λ if each pair of distinct varieties
appears together in exactly λ blocks.

Definition 3.5: A design is said to be r-regular if each variety appears in the same number
r of blocks. The number of blocks a variety appears in is called the replication number.

Definition 3.6: A design is called a block design if it is both uniform and regular.

4

Definition 3.7: A k-uniform r-regular block design with v varieties arranged into b blocks that
is also balanced of index λ is called a (v, b, r, k, λ) design. If k < v, then the (v, b, r, k, λ) design
is called a balanced incomplete block design (BIBD).

Proposition 3.8: Necessary conditions for a (v, b, r, k, λ) design are:

r(k − 1) = λ(v − 1)

vr = bk.

These justify why (v, b, r, k, λ) designs are often referred to as (v, k, λ) designs.

Theorem 3.9 (Fisher’s inquality): A necessary condition for a (v, b, r, k, λ) BIBD is b ≥ v.

Definition 3.10: A (v, b, r, k, λ) design is resolvable of its blocks can be partitioned into
sets of blocks, each of which is a partition of V . Each of these sets of blocks is called a parallel
class. The partition of blocks into classes is called a resolution.

Theorem 3.11: For each prime p and each positive integer e ≥ 1 there exists a resolvable
(pe, p, 1) design.

Theorem 3.12: If B is a resolvable (v, b, r, k, λ) design, then a resolution of B into r parallel
classes is a solution for the running dinner problem instance v − k − r.

3.1.2 Steiner and Kirkman Triple Systems

Definition 3.14: A Steiner triple system STS(v) of order v is a (v, 3, 1) design.

Theorem 3.15: A STS(v) with v ≥ 3 exists if and only if v ≡ 1 mod 6 or v ≡ 3 mod 6.

Definition 3.16: A resolvable STS(v) is called a Kirkman triple system KTS(v) of order
v.

Theorem 3.17: A KTS(v) exists if and only if v ≡ 3 mod 6.

3.1.3 Mutually Orthogonal Latin Squares and Rectangles

Definition 3.18: A latin square of order n is an n×n array in which n distinct symbols from a
symbol set S are arranged, such that each symbol occurs exactly once in each row and each column.

Definition 3.19: A k × n latin rectangle (where k ≤ n) is a k × n array in which n distinct
symbols from a symbol set S are arranged, such that each symbol occurs exactly once in each row
and at most once in each column.

Definition 3.20: Two latin squares A = (aij) on a symbol set SA and B = (bij) on a symbol
set SB of order n are orthogonal if every element in SA × SB occurs exactly once among the n2

pairs (aij , bij), 1 ≤ i, j ≤ n.

Definition 3.21: A set of latin squares {L1, ..., Lm} is a set of mutually orthogonal latin
squares (MOLS) if Li and Lj are orthogonal for all i, j ∈ {1, ...,m}(i 6= j). The maximal number
of MOLS of order n is denoted by N(n).

5

Definition 3.22: A set of k × n latin rectangles {R1, ..., Rm} is a set of mutually orthogonal
latin rectangles (MOLR) if Ri and Rj are orthogonal for all i, j ∈ {1, ...,m}(i 6= j). The maximal
number of MOLR(k, n) is denoted by N(k, n).

Proposition 3.23: If a set of m MOLS of order n exists, then it gives a solution for the running
dinner problem instance n2 − n− (m+ 2).

Proposition 3.24: If a set of m MOLR of size k × n exists, then it gives a solution for the
running dinner problem instance kn− k − r with at least r = m+ 1.

Definition 3.25: A set of n− 1 MOLS of order n is a complete set of MOLS.

Theorem 3.26: If q = pe is a prime power then there exists a complete set of MOLS of order q,
that is N(q) = q − 1.

Theorem 3.27: The running dinner problem with pe participants and tables of size p, where
p is a prime number and e is a positive integer, has a perfect solution.

3.2 The Running Dinner Problem Program

Now, we will go over how Siervo uses these theoretical constructs in her program. Especially
Theorems 3.26 and 3.27, together with propositions 3.23 and 3.24, explain how to construct the
seating arrangements when the number of tables is a prime or prime power. Siervo also argues
that there is a perfect solution for n participants and table size 2, where n is an even positive
integer. This solution is based on tournament scheduling. Unfortunately, we often do not have
these perfect conditions. In these cases, it is necessary to adopt different strategies such that the
solution to the RDP is as close to perfect as possible.
In fact, the program adopts four different strategies when the number of tables is not a prime
power and thus does not follow the theoretical constructs for a perfect solution. These strategies
all divide the problem into smaller problems that do contain primes en prime powers.

1. When NumberOfTables = pe · TableSize with pe a prime power and pe ≥ TableSize, then
the participants are split into TableSize groups of pe ·Tablesize people. Now, the number of
tables in each group is a prime power, so we can apply the theoretical constructs obtained.
This means that, if the participants were arranged in a TableSize×NumberOfTables array,
in the end every participants meets the people in their row and their column at most once,
while they never meet the remaining participants.

2. When the number of tables is not divisible by TableSize, but it can be written as
NumberOfTables = pe ·m with m < TableSize and pe a prime power with pe ≥ TableSize,
then we can apply a strategy similar to the first one. The difference is that we arrange the
participants in an m × (pe · TableSize) array, where those in the same row are added to
the same group. Again, the construction of the rounds is known for each group because
the number of tables is a prime power. In the end, every participant has met every other
participant in their row, but has met none of the remaining participants. Here, m is defined
inversely proportional to the socialization, meaning that the smaller m is, the bigger the
socialization will be in this strategy. This makes sense, since the smaller m is, the closer
NumberOfTables is to a prime power and, thus, to a perfect solution.

3. When NumberOfTables = q1 + q2, where q1 and q2 are prime powers with q1 and q2 close
to each other and q1, q2 ≥ TableSize, the participants can be divided into two groups of
qi ·TableSize each (i = 1, 2). The rounds are then constructed for each of these groups. We
require the distance between q1 and q2 to be small, since the groups will be more equally

6

sized then. This gives better socialization for all participants in contrast to the larger group
having much better socialization than the smaller group.

4. When none of these strategies can be applied, a number of dummy variables is added such
that the number of participants eventually falls into the solvable cases. A dummy variable is
a ”person” that is added to the list of guests to make the number of participants better for
theoretical results. After the program has implemented the solution with this new number
of participants, it removes the dummy variable and classifies the place where the dummy
variable is seated in a round as an empty seat. This is not the most elegant solution, but it
is necessary in some cases.

The program prioritizes the first strategy and determines whether to use the second or third
strategy based on which provides the better socialization. The fourth strategy is only used when
no other strategy is possible. These strategies do not provide perfect solutions, since they are
based on splitting the participants in groups, but they do give some good results when there is no
perfect solution possible due to the number of participants and the table size.
The program also has a few pre-built cases, especially for the tables of size 3,4 or 6. It uses, among
others, Kirkman triple systems to construct these pre-built cases.
Siervo also introduces a multi-start randomized greedy algorithm for the choice of hosts. This part
of the program selects a host for each round and rearranges the rounds such that the distribution
of the choice of host is uniform among all participants (for more details, see Siervo, 2017)

3.2.1 Examples

We will now provide some examples to illustrate how the program works. To this end, we first
take Kirkman’s schoolgirls problem. Recall that this problem was introduced by Kirkman in 1850
and can be translated to a running dinner problem with 15 participants and tables of size 3. The
output is shown in table 3.1.

Round Table 1 Table 2 Table 3 Table 4 Table 5
1 1, 5, 14 2, 4, 15 3, 8, 12 6, 9, 11 7, 10, 13
2 11, 1, 15 8, 6, 2 14, 7, 3 4, 9, 10 5, 12, 13
3 10, 8, 1 13, 11, 2 9, 5, 3 12, 4, 14 15, 7, 6
4 1, 9, 13 2, 7, 12 3, 4, 11 5, 8, 15 6, 10, 14
5 7, 4, 1 10, 5, 2 13, 6, 3 8, 11, 14 9, 12, 15
6 12, 6, 1 14, 9, 2 15, 10, 3 4, 8, 13 11, 7, 5
7 1, 2, 3 5, 4, 6 7, 8, 9 10, 11, 12 13, 14, 15

Table 3.1: RDP solution with 15 participants and tables of size 3.

Each of the numbers 1 to 15 in the table corresponds to one of the participants. The numbers are
ordered in such a way that the first person at each table is the host for that round. We do not
use this information in the rest of the report, but it is important to note Siervo’s program has
the possibility of generating a host for each round. For Kirkman’s schoolgirls problem, the rounds
refer to days and the tables to groups of girls.

7

Secondly, we will look at an example that uses dummy variables. To this end, we take 33
participants with table size 5. The output of the program is shown in table 3.2.

Round Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7
1 1, 8, 15, 2, 9, 16, 3, 10, 17, 4, 11, 18, 5, 12, 19, 6, 13, 20, 7, 14, 21,

22, 29 23, 30 24, 31 25, 32 26, 33 27, − 28, −
2 14, 1, 20, 8, 2, 21, 9, 3, 15, 10, 4, 16, 11, 5, 17, 12, 6, 18, 13, 7, 19,

26, 32 27, 33 28, − 22, − 23, 29 24, 30 25, 21
3 16, 12, 1, 17, 13, 2, 18, 14, 3, 19, 8, 4, 20, 9, 5, 21, 10, 6, 15, 11, 7,

27, 31 28, 32 22, 33 23, − 24, − 25, 29 26, 30
4 24, 11, 21, 25, 12, 15, 26, 13, 16, 27, 14, 17, 28, 8, 18, 22, 9, 19, 23, 10, 20,

1, − 2, − 3, 29 4, 30 5, 31 6, 32 7, 33
5 33, 9, 17, 2, 10, 18, 3, 11, 19, 29, 12, 20, 30, 13, 21, 31, 14, 15, 32, 8, 16,

25, 1 26, − 27, − 28, 4 22, 5 23, 6 24, 7
6 1, 13, 18, 14, 2, 19, 8, 3, 20, 4, 9, 21, 5, 10, 15, 6, 11, 16, 7, 12, 17,

23, − 24, 29 25, 30 26, 31 27, 32 28, 33 22, −
7 10, 1, 19, 11, 2, 20, 12, 3, 21, 13, 4, 15, 16, 14, 5, 17, 8, 6, 9, 7, 18,

28, 30 22, 31 23, 32 24, 33 25, − 26, − 27, 29

Table 3.2: RDP solution with 33 participants and tables of size 5.

Here, each of the numbers 1 to 33 in the table corresponds to one of the participants. Again, the
first person at each table is the host of the round. The ′−′ symbol refers to a dummy variable, i.e.
an empty seat. We can see the program added two dummy variables so there is a total number of
35 participants, which can be divided by the table size 5. However, even with 35 participants and
a table size of 5, we do not have the perfect solution, since 35 is not a prime power of 5. That is
why the program chooses the appropriate strategy to split the problem into sub-problems.

8

Chapter 4

The Socialization Problem

We have now found the seating arrangements for all numbers of participants and table sizes.
However, as illustrated by the examples mentioned in the previous chapter, the maximal number
of rounds is often not feasible for a running dinner setting in real life. Unless the courses are really
small and every round takes roughly less than 45 minutes, seven rounds is a bit optimistic for only
one evening. This is why the organiser of the event may want to select a smaller number of rounds
from this maximal number or construct some rounds himself, so the set-up is more achievable.
Some sets of rounds might be better than other sets in terms of socialization of participants.
This gives rise to the question how the rounds can be chosen or constructed in such a way that,
in the end, the optimal socialisation is achieved. In this case, optimal socialization means that
participants have as much information about other participants as possible.
We will call this problem the ”Socialization Problem”. We assume the acquaintance between two
participants can be characterised by a value. This value will be in N. It will be very large when
two participants do not know each other at all and smaller if the participants have any kind of
connection. When we talk about the acquaintance of a participant with himself, we assume that
the value is 0. We also assume that a participant talks about all other people they know, either
directly or indirectly (heard of from other people in previous rounds), to all other participants
at their table in a new round. We define A(r, i, j) as the acquaintance of participant i regarding
participant j, so the extent to which i knows of j after round r. Note that this is different than
A(r, j, i), since i may have heard of j from other participants, but j may not have heard of i.
When participant i sits at a table with participant k in round r, we get the following recursion

A(r, i, j) =

{
1 if i and j sit at the same table in round r

min{A(r − 1, i, j),min
k
{A(r − 1, k, j) + 1}} else.

(4.1)

We can define the score for a predetermined number of rounds r̂ with this definition. After r̂
rounds, we can make a tree for every participant j. The participants are the vertices in this tree
and there is an edge from one participant to the other if they know each other directly, i.e. with
acquaintance 1. If there is a path from participant j to participant i, then A(r̂, i, j) is the number
of edges of the path. If there is no path from participant j to participant i, then i has not heard
of j at all. In this case, A(r̂, i, j) = M , where M is a large number that can be chosen depending
on the number of participants and table size of the running dinner. We define the score as follows:

S(r̂) =

n∑
i=1

n∑
j=1

A(r̂, i, j) = l ·M + s. (4.2)

We define l as all i.j: @pathi→ j. We define s as
∑

i,j:∃pathi→j A(r̂, i, j).

9

We want to minimize S(r̂) in the Socialization Problem, since this will yield the optimal socializa-
tion. To do this, we first want l to be as small as possible, since M will be a big contributor to a
higher score. In particular, when we choose M to be very large. Furthermore, it is also important
for s to be small, since shorter paths make the score lower. However, the emphasis lies on a small
l.
When the table size is 2, the Socialization Problem has some similarities with the famous gossip
problem.

4.1 The Gossip Problem

4.1.1 The Problem

In the literature, the gossip problem is usually introduced as follows:

”There are n agents each of which knows some secret not known to anybody else. Two agents can
make a telephone call and exchange all secrets they know. How many calls does it take to share
all secrets, i.e., how many calls have to take place until everybody knows all secrets?” (Herzig, &
Maffre, 2017).

In our case, the secret is the information about a participant. The participants start off with
only their own information and gain more information as the rounds progress. As mentioned
before, the gossip problem provides insights about the Socialization Problem with table size 2,
where two agents sit at the same table when they call each other. However, the gossip problem
is not exactly like the Socialization Problem. First of all, in the Socialization Problem, we do not
want to know how many rounds it will take before all participants know each other. Rather, we
require that the socialisation is biggest. Translated to the gossip problem, this means that in a
predetermined number of calls, the agents all learn as many secrets as possible. Furthermore, in
the gossip problem, there are no real ”values”. An agent either knows a secret or not. The chain
of agents from which the secret was eventually acquired does not matter. Nonetheless, we gain
some insights from the solution to the gossip problem.

4.1.2 The Solution

Let f(n) denote the minimal number of calls needed if there are n agents. It is immediately clear
that f(1) = 0, since an agent does not need to call anyone if he is the only one that knows gossip,
and f(2) = 1, since it will only require one phone call from two agents to learn each others secrets.
In addition, f(3) = 3. We can see this as follows: let gi denote agent i’s secret. It is easy to
see that f(3) 6= 1, since there is always one agent that does not know any secrets after one call.
Furthermore, the two agents that called each other do not know the secret of the agent that did
not make a phone call yet. Now suppose that f(3) = 2. Without loss of generality, we assume
that agent 1 calls agent 2 in the first phone call and agent 1 calls agent 3 in the second phone call.
We get:

1. 1 calls 2: 1 tells g1, and 2 tells g2.

2. 1 calls 3: 1 tells g1 and g2, and 3 tells g3.

After these calls, agent 1 and agent 3 both know all secrets, but agent 2 does not know s3 yet.
Thus, a third call is needed to ensure agent 2 knows every secret. This holds for all possible
combinations of the first two calls, so f(3) = 3. The base cases n = 2 and n = 3 are illustrated in
figure 4.1, where the numbers correspond to the agents and the lines indicate a phone call between

10

two agents. The phone calls are shown in order from left to right (so the first phone call is the
most left and the last the most right).

Figure 4.1: The gossip problem for n = 2 (l) and n = 3 (r).

It has been proven many times over that f(n) = 2(n − 2) for n ≥ 4 (Hurkens, 2000; Baker, &
Shostak, 1971; Tijdeman, 1971). Thus, shared knowledge can be achieved in 2(n− 2) phone calls
and it is impossible to do better.
We can define a round to be a set of simultaneous phone calls. It can be proved that at least
dlog2 ne rounds are needed for an even number of agents and at least dlog2 ne + 1 for an odd
number of agents (Knödel, 1975). However, note that this is a lower bound. It is not necessarily
true that all agents know each others secrets in dlog2 ne or dlog2 ne+ 1 rounds.
Nothing can be said yet about the values these participants have in relation to each other as well.
Nonetheless, we have gained a little information about the Socialization Problem with table size
2. To find a more concrete result, we will look at an example with 27 participants and table size
3 in the next section.

4.2 The Socialization Problem with 27 Participants and
Tables of Size 3

Assume we have an RDP with 27 participants and table size 3. We can subdivide these participants
into 3 groups of 9 as illustrated in table 4.1.

1 2 3
4 5 6
7 8 9

10 11 12
13 14 15
16 17 18

19 20 21
22 23 24
25 26 27

Table 4.1: Subdivision of 27 participants into 3 groups of 9.

Now, suppose we want to know how many rounds it will take before every participant knows every
other participant. It is easy to see that everyone knows everyone when we first choose the rows of
the groups as tables, then the columns, and then we let every participant of a group sit with two
participants from the other two groups. This is illustrated in table 4.2.

11

Round Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9
1 1,2,3 4,5,6 7,8,9 10,11,12 13,14,15 16,17,18 19,20,21 22,23,24 25,26,27
2 1,4,7 2,5,8 3,6,9 10,13,16 11,14,17 12,15,18 19,22,25 20,23,26 21,24,27
3 1,10,19 2,11,20 3,12,21 4,13,22 5,14,23 6,15,24 7,16,25 8,17,26 9,18,27

Table 4.2: Solution to Socialization Problem with 27 participants and table size 3, where three
rounds are constructed.

We can see that after two rounds, everyone knows everyone in their group with maximal distance
2 and after three rounds, everyone knows everyone with maximal distance 3.
After this introduction to the problem, the question arises whether we can say something about
the general problem for all numbers of participants and table sizes.

4.3 Seating Arrangements

4.3.1 The Problem

Lewis and Carroll (2016) are faced with a similar problem to the Socialization Problem. They want
to organize a wedding with different groups of guests. Each group likes the other groups a certain
amount. They either should either be seated ’definitely apart’, ’rather apart’ or ’rather together’.
All these options have different values and thus all the groups have different values relative to the
other groups. The option ’rather together’ has the lowest value, which is -1, while the options
’rather apart’ and ’definitely apart’ have the values 1 and ∞ respectively. The organizers of the
wedding can indicate this using a cross for ’definitely apart’, a minus for ’rather apart’ and a check
for ’rather together’. This is illustrated in figure 4.2. The empty cells indicate that no preference
was specified.

Figure 4.2: Example with specification of guest groups (left) and seating preferences (right).
Retrieved from Lewis and Carroll (2016).

The goal of their program is to create an optimal seating arrangement, where people are seated
optimally according to their preferences.

12

4.3.2 Complexity of the Problem

First, the simplest form of the problem is considered. This is an n × n binary matrix W is
constructed where

Wij =

{
1 if guests i and j are required to be sat at different tables

0 otherwise.

However, in practical situations it can be desirable that users can place importance on their seating
preferences. For instance, they could indicate that they prefer to sit with guest A over guest B
while they might actually like both guests. To this end, it can be useful to adapt W to be an
integer or real-valued matrix instead of binary. In this case, lower values of Wij signify an increased
preference for i and j to be sat together.
Furthermore, Lewis and Carroll assume that Wij = Wji. Given this input matrix, the task is then
to partition the n guests into k subsets S = {S1, ..., Sk} such that the objective function f(S),
given by

f(S) =

k∑
t=1

∑
∀i.j∈St:i<j

Wij , (4.3)

is minimised. Even for the binary matrix, the problem of confirming the existence of a zero cost
solution to this problem is equivalent the NP-complete graph k-colorability problem, in which
each guest corresponds to a vertex and two vertices vi and vj are considered adjacent if and only
if Wij = 1. The k-colorability problem and the NP-completeness of it are explained in more
detail in the section below. For the integer or real-valued matrix, the problem of partitioning
the guests over k tables becomes equivalent to the edge-weighted graph coloring problem. This
is NP-complete as well, as it generalizes the graph k-colorability problem. This will also be
explained later.

In the second approach, a graph G = (V,E) is constructed. Each vertex v ∈ V represents a
guest group with size sv. This means that the total number of guests is n =

∑
v∈V sv. Each edge

{u, v} ∈ E in the graph defines the relationship between the guest groups u and v according to
a weigthing wuv (in this case wuv = wvu), where smaller weightings indicate that u and v would
like to be assigned to the same table.
A solution to the problem is then defined as a partition of the vertices into k subsets
S = {S1, ..., Sk} such that

k⋃
i=1

Si = V, and (4.4)

Si ∩ Sj = ∅ ∀i, j ∈ {1, ..., k}, i 6= j. (4.5)

The number k denotes the number of tables and Si defines the guests assigned to table i. They
now construct an objective function similar to equation 4.3:

f1 =

k∑
i=1

∑
∀u,v∈Si:{u,v}∈E

(sv + su)wuv. (4.6)

This function reflects the extent to which the rules that state who sits with whom are obeyed. The
weighting wuv is multiplied by the total size of the two guest groups sv and su involved. This is
done so violations with larger numbers of people contribute more to the cost. Note that the group
size sv is equal to one for the RDP and Socialization Problem, since the participants do not travel
in groups. Lewis and Carroll go on to state that when this is the case (sv = 1 ∀v ∈ V), then the
number of guests assigned to each table i will equal the number of vertices in the group Si. Hence,
the problem will now be equivalent to the NP-hard equitable weighted k-coloring problem, which
is in itself already a generalization of the NP-hard equitable graph k-coloring problem (Garey, &
Johnson, 1979).

13

4.3.3 k-colorability and NP-completeness

There are two types k-colorability (Schrijver, 2000).
Definition 4.1: a k-(vertex) coloring of a graph G = (V,E) is a function

f : V → {1, 2, ..., k}

with the property that for every edge {u, v} ∈ E it holds that

f(u) 6= f(v).

In other words, all vertices that share an edge should be colored differently.

Definition 4.2: the chromatic number χ(G) is the smallest k ∈ N for which G has a k-coloring.
If G has a k-coloring, then G is called k-colorable.

Definition 4.3: a k-edge coloring of a graph G = (V,E) is a function

f : E → {1, 2, ..., k}

such that for every two edges e, e′ with e 6= e′ and e ∩ e′ 6= ∅ (i.e., for distinct edges sharing a
vertex) it holds that

f(e) 6= f(e′).

In other words, all edges that share a vertex should be colored differently.

Definition 4.4: the edge chromatic number χ′(G) is the smallest k ∈ N for which G has
a k-edge coloring. If G has a k-edge coloring, then G is called k-edge colorable.

To illustrate this, figure 4.3 shows a vertex coloring and an edge coloring of G = K3,3 (the
complete bipartite graph with V = V1 ∪ V2, where |V1| = 3 and |V2| = 3).

(a) 2-vertex coloring of K3,3. (b) 3-edge coloring of K3,3.

Figure 4.3: Colorings of K3,3.

It can actually be proven that χ(K3,3) = 2 and χ′(K3,3,) = 3, but this proof is left to the reader.
The k-coloring problem as mentioned in the section above refers to finding a k-coloring of a graph.
Finding a k-coloring for both the vertices and the edges of a graph is a NP-complete problem
(Schrijver, 2000; Holyer, 1981).

14

To understand what a NP-complete problem is, it is important to understand the classes P
and NP first (Cormen, Leiserson, Rivest, & Stein, 2009). The problems that are contained in the
class P are solvable in polynomial time. This means that they can be solved in time O(nk) for
some constant k, where n is the size of the input of the problem. These problems are generally
regarded as tractable for three reasons.

1. Although we may argue that the problem is actually intractable if k is a very large number,
this occurs in very few practical problems. In general, when the first polynomial-time algo-
rithm for a problem is discovered, more efficient algorithms will soon follow.

2. For many reasonable problems of computation, a problem that can be solved in polynomial
time in one model can be solved in polynomial time in another.

3. The class of problems in P has nice closure properties, since polynomials are closed under
addition, multiplication and composition.

Most of the problems of the class NP, on the other hand, are generally regarded as much harder.
NP stands for non-deterministic polynomial. This means that the solutions in this class can
be verified by a polynomial-time algorithm. However, most problems in this class cannot be
solved in polynomial time. For example, a k-vertex coloring of a graph cannot be found with a
polynomial-time algorithm, but there is a polynomial-time algorithm that can check if a given
k-vertex coloring of a graph is correct. Although it is known that P ⊂ NP, it is unknown whether
P = NP. However, most researchers believe this is not the case. A lot of them believe this
due to a class that is called NP-complete (NPC) problems. The difference of this class with
the class NP is the property that if any NP-complete problem can be solved in polynomial
time, then every other NP-complete problem can be solved in polynomial time as well. In other
words, if any NP-complete problem has a polynomial-time solution, then NPC ⊂ P. Now, it
might seem easy to find a polynomial-time solution of just one NP-complete problem, but despite
years of study, no such solution has ever been found. Figure 4.4 shows how researchers generally
believe the classes P, NP and NP-complete to be related. Problems that are even harder than
NP-complete problems are generally referred to as NP-hard problems. As mentioned before, the
weighted k-coloring problem which deals with coloring weighted graphs, is an NP-hard problem.

Figure 4.4: How the relation between the classes P, NP and NP-complete is generally viewed.

15

4.3.4 Similarities to the Socialization Problem

It is clear that finding seating arrangements is quite a complex problem. The question arises
how this problem is related to the Socialization Problem. First of all, the Seating Arrangements
Problem provides insights about the construction of one ’round’ (the wedding) with distances
between guests that indicate their preferences regarding other guests. The distances in the
Socialization Problem are the closeness of participants and these change every round. Hence,
in the same way as the Seating Arrangements Problem, a new round could be constructed that
has maximal socialization based on a previous round. This would mean that the preferences of the
Seating Arrangements Problem are actually the distances between participants from the previous
round. After a new round is constructed, this becomes the new previous round and another
round after that can be constructed until the number of rounds constructed is as desired. The
complication was of course that this was an NP-complete problem. Although Lewis and Carroll
provide a tool to make a wedding seat planning based on preferences of guests, they admit that it
is not optimal and more focused on providing users with a feasible planning in a short amount of
time.
Secondly, the Socialization Problem is a bit more difficult. Recall that Lewis and Carroll assumed
that two guests had the same distance to each other, so the distance from guest A to guest B is
the same as distance from guest B to guest A. However, this is not the case in the Socialization
Problem. Participant i can know participant j via participant k, so i has distance 2 with respect
to j, but, although j may know k, j may have never even heard of i. In other words, the Seating
Arrangements Problem deals with undirected graphs, where every vertex represents a guest and
every weighted edge a connection between two guests. In contrast, the Socialization Problem
deals with directed graphs, where every vertex represents a participant, every weighted arc from
vertex u to v represents the closeness of u with respect to v and every weighted arc from vertex
v to u represents the closeness of v with respect to u. This aspect makes the problem even more
complicated.
We conclude that the problem is actually already an NP-complete problem when the input of
the program is a list of names (each name is then linked to a vertex) of all the participants, a
table size and a desired number of rounds. If the input only contains the number of participants,
the table size and a desired number of rounds, it becomes even more complicated and thus an
NP-hard problem.
This is why we choose to use a method called brute-forcing in favor of any heuristic algorithm.
To this end, we use the rounds generated by the program of Siervo.

4.4 The Socialization Problem Program

4.4.1 Brute-forcing

The brute-force method is often used for optimization programs that require a solution of min-
imal cost among all valid solutions of the problem. The cost is actually the score S(r̂) for the
Socialization problem. The brute-force method is also often used in NP-complete problems. In
this case, the algorithm simply considers every possible sequence of rounds and selects the order
of the rounds that is optimal. This works well, but it can be quite time consuming.
Let rmax be the number of rounds generated by Siervo’s program and r̂ be the number of desired
rounds. We have to choose r̂ rounds from rmax rounds, where the order in which the rounds are
chosen matters. To check which combination of rounds is optimal, we have to check rmax!

(rmax−r̂)!
options. Hence, we have to assume that this number is not too large, to ensure the program gives
the desired output fast enough.
The program works by selecting the first round, then the second and so on until the number of
rounds desired is reached. Then it considers all possible rounds for the last round that are not any
of the rounds chosen before. When it is finished doing this, the program continues to the first to

16

last round and chooses a new round for this. Then all possible rounds are checked for last round
again and so on. To illustrate this, figure 4.5 shows how the program does this when we want to
choose three rounds out of five.

Figure 4.5: The first few orders of rounds chosen by the program when it selects three rounds out
of five.

After each combination, the program determines the score of this combination of rounds and
compares it to the previous minimal score. If it is less, it replaces the previous minimal score with
the score for this combination and the previous combination with this new combination.
The program will now be explained in more detail and some examples will be given as well.

4.4.2 Functions of the Program

The program makes use of a number of different functions. Below is an overview and short
explanation presented to better understand how the program works. The input of the program
are the rounds generated by Siervo’s program and the output is a display of the optimal order
of rounds to ensure maximal socialization and the minimal score that belongs to this order. It
also makes use of a distance matrix that keeps track of the distance between participant i and
participant j for all participants.

17

• makeMatrix : this function makes the initial matrix with the distance A(0, i, j) between
participant i and participant j for all participants, where

A(0, i, j) =

{
0 if i = j

M if i 6= j,

and M is the large number that ensures two people not knowing each other in any way is
not beneficial to finding the minimal score solution.

• createAdjacencyMatrix : this function creates a binary matrix for all rounds that has a zero
entry if two participants do not sit at the same table in that round and a one entry if two
participants do sit at the same table.

• computeNewDistanceMatrix : this function computes the next iteration of A(r, i, j) as seen
in equation 4.1 using the adjacency matrix created in the function createAdjacencyMatrix.

• computeScore: this function computes the score S(r̂) of the distance matrix. We want to
minimize the score and give back the optimal rounds that were used to create this distance
matrix. If there are dummy variables present in the matrix, then the distances of these
dummy variables to the real participants do not count for the score.

• checkRounds: this is the main function of the program. It uses recursion to check the score
for all combinations of rounds and returns the order of the rounds that have the minimal
score and the minimal score itself. If there are multiple orders of rounds that produce the
same score, the program picks the first order of rounds with this score it encounters.

The complete code for the RDP program can be found in Siervo’s paper. The complete code for
the Socialization Program can be found in appendix A.

4.4.3 Examples

Before we give some examples, it is important to note that Siervo used a method to find the optimal
rounds for a given number of people and table size and a method that rearranged these rounds
such that hosts were distributed uniformly. However, the second method can yield a different
order of the rounds each time it is applied. This would mean that the optimal order of the rounds
is different for some instances. To prevent this, we use the first method in the program. This
method gives the same order of the rounds for every instance and this implies that we will always
get the same optimal order of the rounds.

We will first look at Kirkman’s schoolgirls problem again. The examples given in chapter 3
are generated with the method that distributes the hosts uniformly, so in table 4.3 we will provide
the rounds without the distribution of hosts taken into account.

Round Table 1 Table 2 Table 3 Table 4 Table 5
1 1, 2, 3 4, 5, 6 7, 8, 9 10, 11, 12 13, 14, 15
2 1, 4, 7 2, 5, 10 3, 6, 13 8, 11, 14 9, 12, 15
3 1, 5, 14 2, 4, 15 3, 8, 12 6, 9, 11 7, 10, 13
4 1, 9, 13 2, 7, 12 3, 4, 11 5, 8, 15 6, 10, 14
5 1, 8, 10 2, 11, 13 3, 5, 9 4, 12, 14 6, 7, 15
6 1, 6, 12 2, 9, 14 3, 10, 15 4, 8, 13 5, 7, 11
7 1, 11, 15 2, 6, 8 3, 7, 14 4, 9, 10 5, 12, 13

Table 4.3: RDP solution with 15 participants and tables of size 3.

18

It is immediately clear that the minimal score we can obtain is 14 · 15 = 210, since all participants
know each other directly then, i.e. have distance 1 to each other, and every participant has distance
0 to themselves. This result will be obtained when we choose all seven rounds. The maximal score
we can obtain is 14 ·M , where M is a large number. In this example we have chosen M = 50. This
maximal score will never occur in practice, since it is obtained from choosing zero rounds. It is also
clear that, when one round is chosen, it does not matter which round this will be. It will always
yield the same score, since every participant knows only two other participants after each round.
Perhaps a little harder to see is that choosing two rounds will always yield the same score as well.
We can see this as follows: after one round every participant knows two other participants, so two
participants have information about them. In the second round, these two participants are both
at different tables and they tell the two participants at these tables about the original participant.
Thus, every participant knows four participants directly (two from the first round and two from
the second) and knows of four other participants indirectly (heard of in the second round). After
adding a third round, the scores begin to differ and the result becomes interesting.

When we use the rounds from table 4.3 as input for the Socialization Problem program and
request that the program chooses three rounds that ensure optimal socialization we obtain:

The optimal order of the rounds is [1, 4, 7] with score 338.

Figure 4.6 shows the histogram of all scores for all combinations of rounds to gain some insight in
how the scores are distributed.

Figure 4.6: Histogram of scores for all combinations of three rounds in an RDP instance with 15
participants and table size 3.

From the summary of the data we get that the minimal score is 338 and the maximal score is 351.
By selecting two orders of rounds that correspond to these scores, we will dive deeper into the
cause of this difference. We take [1,4,7], the first order of rounds that has score 338, and we take
[1,2,4], the first order of rounds that has score 351. For simplicity, we consider one participant
and examine how the information of this participant is spread throughout the chosen rounds.
We choose participant 1. Figure 4.7 shows the trees corresponding to the information flow of
participant 1 for both orders of rounds selected.

19

(a) Order of rounds [1,4,7]. (b) Order of rounds [1,2,4].

Figure 4.7: The trees that correspond to the information spread of participant 1.

Figure 4.7 provides us with some insights about both order of rounds. In figure 4.7a we can see
that the information is more evenly spread out and at the end of the three rounds, every other
participant either knows participant 1 personally or knows of participant 1 only via one other
participant. In figure 4.7b, on the other hand, the information is not evenly spread out and at
the end of the three rounds, there are participants that have distance 3 regarding participant 1.
These trees are just examples, but this is likely the case for some other participants as well in
both instances and this explains the score difference between the two orders.
When we add another round, so we choose four rounds instead of three, the output of the program
is as follows:

The optimal order of the rounds is [1, 2, 3, 4] with score 300.

As expected, one round extra makes for better socialization and so the scores are closer together
as can be seen in figure 4.8.

Figure 4.8: Histogram of scores for all combinations of four rounds in an RDP instance with 15
participants and table size 3.

20

We also see that the number of orders that have an optimal score becomes larger. Furthermore, it
is interesting to mention that the three rounds from the optimal order of rounds of the previous
example (1, 4 and 7) combined with any other round (2, 3, 5 or 6) also yields an order of rounds
with minimal score.
When we choose five rounds we get the result:

The optimal order of the rounds is [1, 2, 3, 4, 5] with score 270.

However, upon further inspection, we see that all orders have the same score. This is shown in
figure 4.9.

Figure 4.9: Plot of scores for all combinations of five rounds in an RDP instance with 15
participants and table size 3.

The index in figure 4.9 refers to the order in which the combination of rounds are chosen by the
program. Thus, index one stands for [1, 2, 3, 4, 5]. All scores being equal means that apparently it
does not matter anymore which rounds are chosen if the desired number of rounds is five or more.
Considering it also does not matter which rounds are chosen if the desired number of rounds is
two or less, there is only an optimal order of rounds if three or four rounds are chosen.

The second example is a much smaller example. We have 5 participants and table size 2, meaning
we have one dummy variable. We choose three rounds out of five. We will use the example to
dive deeper into the characteristics of a ’good’ round, meaning a round that is a good fit given
the previous rounds. Here, this means a good third round given the first two rounds. Table 4.5
shows the rounds generated by Siervo’s program.

Round Table 1 Table 2 Table 3
1 1, − 2, 5 3, 4
2 2, − 1, 3 4, 5
3 3, − 2, 4 1, 5
4 4, − 3, 5 1, 2
5 5, − 1, 4 2, 3

Table 4.4: RDP solution with 5 participants and tables of size 2.

21

Recall that the ’−’ notation refers to an empty seat. The minimal score is 4 · 5 = 20, when all
rounds are chosen, and the maximal score is 4 · 50 = 200, when no rounds are chosen. Note that
we have chosen M = 50 again. Furthermore, choosing one or two rounds yields the same score for
all orders of rounds, as we have seen before. When we let the Socialization Problem program pick
three rounds, we obtain:

The optimal order of the rounds is [1, 2, 4] with score 77.

Upon further inspection, it becomes apparent that the score is either 77 or 220 for all orders of
three rounds. This is shown in figure 4.10.

Figure 4.10: Histogram of scores for all combinations of three rounds in an RDP instance with 5
participants and table size 2.

We investigate the order [1,2,3], with score 220, and order [1,2,4], with score 77, to see what makes
round 4 a better fit following round 1 and 2. In table 4.5 we can see the distances between all
participants after the three rounds. The table consists of the values A(r, i, j) for i, j = 1, ...5,.

i ↓, j → 1 2 3 4 5
1 0 2 1 2 1
2 50 0 2 1 1
3 1 50 0 1 50
4 50 1 1 0 1
5 1 1 2 1 0

i ↓, j → 1 2 3 4 5
1 0 1 1 2 2
2 1 0 2 3 1
3 1 2 0 1 1
4 50 2 1 0 1
5 2 1 1 1 0

Table 4.5: Distance tables for all participants after rounds [1,2,3] (l) and [1,2,4] (r).

In table 4.5 we see a clear difference between the number of people that do not each other after
rounds [1,2,3] and after rounds [1,2,4]. This difference is caused by the dummy variable. In the
same situation with 6 participants, the score would have been the same for all orders of rounds as
can be seen in figure 4.11.

22

Figure 4.11: Plot of scores for all combinations of three rounds in an RDP instance with 6
participants and table size 2.

Table 4.6 shows the distances between de participants after round 1 and round 2.

i ↓, j → 1 2 3 4 5
1 0 50 1 2 50
2 50 0 50 50 1
3 1 50 0 1 50
4 50 2 1 0 1
5 50 1 2 1 0

Table 4.6: Distance matrix after round 1 and 2.

Table 4.6 shows that, after two rounds, participant 4 already has a lot of information about the
other participants, while participant 3 has less information. This explains why it is better to
choose round 4, where participant 4 sits alone instead of round 3, where participant 3 sits alone.
Furthermore, participant 2 has very little information after round 1 and 2. Round 4 yields more
information for participant 2 than round 3. In particular about participant 1.
In this example, the dummy variable influences the outcome and the difference between a ’good’
and a ’bad’ round. The outcome is also influenced by how evenly the information is distributed.
The distribution of information is often the difference between a ’good’ and a ’bad’ round as we
saw before in figure 4.7. A ’good’ round is one where the information is more evenly distributed.

In the third example, we explore how the solution changes if the initial matrix changes. There may
be running dinners in real life where some of the participants already know each other beforehand
or have heard of each other from family or friends. In this case, the organizer may want to include
this information in the input of the program. We illustrate this using the previous example. We
say participant 1 and participant 3 already know each other, so A(0, 1, 3) = A(0, 3, 1) = 1. In
addition, participant 1 and participant 4 have a common friend and we assume this friend only
told participant 4 about participant 1 , so A(0, 4, 1) = 2 and A(0, 1, 4) = M . Table 4.7 shows the
initial matrix with M = 50.

23

i ↓, j → 1 2 3 4 5
1 0 50 1 50 50
2 50 0 50 50 50
3 1 50 0 50 50
4 2 50 50 0 50
5 50 50 50 50 0

Table 4.7: Initial matrix with M = 50.

We can already predict that it is not beneficial to choose round 2 anymore, since participant 1
and 3 sit at a table together in this round. This means that these participants do not gain any
new information.
When we choose three rounds, we get:

The optimal order of the rounds is [1, 3, 4] with score 26.

Indeed, we see that round 2 is skipped in favor of round 3 with this new initial matrix. Furthermore,
round 5 is not chosen as well. This was already the case in the previous example, but now it may
also have something to do with the fact that participant 1 and 4 sit together in this round and
participant 4 already has information about participant 1.

The last example is to illustrate that the program can also handle larger numbers of participants.
We have chosen M = 50 again. Let the number of participants be 100 and the table size 5. This
results in a maximum of nine rounds. Suppose we want to choose five of these. We have to check

9!
(9−5)! = 15120 options. The program takes 42 seconds to obtain:

The optimal order of the rounds is [1, 5, 7, 8, 9] with score 350688.

For choosing five rounds out of sixteen with 200 participants and table size 5, we have to check
16!

(16−5)! = 524160 options. The program takes 1 hour and 21 minutes to obtain:

The optimal order of the rounds is [1, 2, 3, 9, 13] with score 87416.

Thus, the program can also handle larger cases in limited time.

24

Chapter 5

Summary

In chapter 3, we went over the basic constructs from combinatorial design that are used to find a
solution to the Running Dinner Problem. We saw that these constructs ensured a perfect solution
for two instances: when we have an even number of participants and table size 2 and when the
number of tables is pe and the table size is p with p a prime number and e a positive integer.
The program also used some pre-built cases for perfect solutions. In particular, when the ta-
ble size was 3,4 or 6. We also saw four strategies for cases where these instances do not apply.
These strategies do not result in a perfect solution, but they ensure optimal socialization for these
cases. We also briefly went over how the RDP program distributes the task of being host. In the
end, a suitable seating arrangement was found for all instances with n participants and table size t.

In chapter 4, the Socialization Problem was defined. In this problem, we had to choose or
construct a predetermined number of rounds that would lead to optimal socialization. It became
clear that this was an NP-complete or even NP-hard problem, depending on the input of the
program. Hence, a brute-forcing approach was used to solve this problem. The program takes
the maximal number of rounds from the RDP and it checks every combination of rounds to see
which combination is optimal. We looked at some examples to see the underlying logic of the
choice of rounds. In the end, instances of the Socialization Problem where rmax!

(rmax−r̂)! is not too

large can be solved by this program in a limited amount of time. This is usually the case for situa-
tions that we could encounter in real life. We will shortly analyze the other cases in the discussion.

In conclusion, the organizer of a running dinner can use the program to make an optimal seating
arrangement for his particular number of participants and table size. He can also choose the num-
ber of rounds that he wants. The program can also be used for some other purposes mentioned
throughout this report, like the social golfer problem and spreading gossip, although it may need
some adaptations for the last one.

25

Chapter 6

Discussion and Future Work

Although the program provides a solution to almost all cases of the Socialization Problem, it is not
perfect. If rmax!

(rmax−r̂)! becomes very large, it will take too much time for the program to generate

a solution. Furthermore, even for smaller instances, the program sometimes takes a long time to
find a solution. We saw this in the last example where we had to wait 1 hour and 21 minutes
for a solution. An organizer of a running dinner may not want to wait that long for a reasonable
planning of his running dinner. It could be interesting to look into ways to make the running time
of the program shorter, therefore providing a more user-friendly waiting time.

Moreover, the program is now made in Java. This is an environment that most people are not
familiar with. It may be desirable to transfer the program to an environment that is better
understandable for people that do not have a background in programming. This becomes most
apparent in the input of a different initial matrix, i.e. when the organizer has to indicate whether
participants already know each other before coming to the running dinner. A good way to do this
may be the wedding seat planner as provided by Lewis and Carroll (see www.weddingseatplanner.com).

In addition, Lewis and Carroll take different group sizes into account in their wedding seat planner.
Of course, different group sizes may also occur in running dinners, e.g. if couples want to be
seated together throughout the evening. This makes the problem more difficult, since we cannot
simply regard the couple as one person and thus, we have to find a new mechanism to make
the arrangements. Perhaps less plausible, but still possible, are different table sizes. Maybe some
people can host eight people in their houses, while others can only host three. These concepts may
be interesting for future research, though Lewis and Carroll admit adding these features makes
the RDP NP-hard.

Lastly, we have not focused on the role of host in this report. Worse still, this role is completely
omitted in the Socialization Problem program, since the Socialization Problem only examines the
relations between participants. For future work, a mechanism could be added to the program that
takes into account how many times a participant has already been host and makes rounds that
feature this participant as host again less desirable to choose. This is a difficult task, because the
output of Siervo’s program differs each time due to the algorithm she uses to distribute the task
of being host fairly. This influences the output of the Socialization Problem program as well, such
that it differs each time, and this may be confusing for organizers. More research about algorithms
for the choice of host could be conducted to gain more insights.

26

Appendix A

Socialization Problem Program
(Java)

package nl . tue . rd inner . c a l c u l a t o r ;

public class Result { // Puts the order and score t o g e t h e r

public f ina l int [] o rder ;
public f ina l int s co r e ;

public Result (int [] order , int s co r e){
this . o rder = order . c l one () ;
this . s c o r e = sco r e ;

}

public boolean i sBetterThan (Result x){
return this . s c o r e < x . s co r e ;

}
}

package nl . tue . rd inner . c a l c u l a t o r ;

import nl . tue . rd inner . model . RDinnerModel ;

import java . u t i l . ∗ ;
public class Calcu la to r {

stat ic Scanner sc = new Scanner (System . in) ;
private stat ic int nrGuests ;
private stat ic int t a b l e S i z e ;
private stat ic int nrRounds ;
private stat ic boolean alreadyKnows ;

public stat ic void main (St r ing [] a rgs){
Calcu la to r c a l c = new Calcu la to r () ;
RDinnerModel r = new RDinnerModel () ; // C a l l s S iervo ’ s program

// Let ’ s the o r g a n i z e r choose the v a l u e s f o r t h e i r p a r t i c u l a r i n s t a n c e :

27

System . out . p r i n t l n (”How many people are p a r t i c i p a t i n g ?”) ;
nrGuests = sc . next Int () ;
System . out . p r i n t l n (”What i s the t a b l e s i z e ?”) ;
t a b l e S i z e = sc . next Int () ;
System . out . p r i n t l n (”How many rounds would you l i k e ?”) ;
nrRounds = sc . next Int () ;
System . out . p r i n t l n (”Do any p a r t i c i p a n t s know each other ? Type true f o r
yes and f a l s e f o r no”) ;
alreadyKnows = sc . nextBoolean () ;

int [] [] [] rounds = r . f indArrangements (t ab l eS i z e , nrGuests) ;
// Constructs rounds based on Siervo ’ s program

int [] [] [] arrangements = r . arrangeHeaders (rounds , nrGuests) ;
// Rearranges the rounds such t h a t the d i s t r i b u t i o n o f the h o s t s i s uniform

// Pr in t s the rounds generated by S iervo ’ s program :
for (int k = 0 ; k < rounds . l ength ; k++){

System . out . p r i n t (”============= round ”) ;
System . out . p r i n t (k+1);
System . out . p r i n t (” =============”) ;
System . out . p r i n t l n (””) ;
for (int i = 0 ; i < rounds [k] . l ength ; i ++){

System . out . p r i n t (”Table ”) ;
System . out . p r i n t (i +1);
System . out . p r i n t (” : ”) ;
for (int j = 0 ; j < rounds [k] [i] . l ength ; j ++){

System . out . p r i n t (rounds [k] [i] [j]+1) ;
System . out . p r i n t (” , ”) ;

}
System . out . p r i n t l n (””) ;

}
}
int [] o rder = new int [nrRounds] ;
i f (alreadyKnows == fa l se){ // Case 1 : no one knows each o the r at
the beg inning o f the running dinner

Result be s tResu l t = checkRounds (rounds , createAdjacencyMatr ix (rounds) ,
makeMatrix (rounds , 50) , rounds . length , nrGuests , order , 0) ;

int [] optimalOrder = bes tResu l t . order ;
int opt imalScore = bes tResu l t . s c o r e ;
System . out . p r i n t l n (””) ;
System . out . p r i n t l n (”The optimal order o f the rounds i s ”
+Arrays . t oS t r i ng (optimalOrder)+ ” with s co r e ” +opt imalScore) ;
} else { // Case 2 : some p a r t i c i p a n t s a l r e a d y know each o t her

int nrPeople = arrangements [0] . l ength ∗ arrangements [0] [0] . l ength ;
// Accounts f o r dummies
int [] [] matrix = new int [nrPeople] [nrPeople] ;
// Let ’ s the o r g a n i z e r d ec i de the i n i t i a l d i s t a n c e between p a r t i c i p a n t s :
System . out . p r i n t l n (”The value between two p a r t i c i p a n t s i s 1 i f
they know each other , ”

+ ”2 i f they know the same person , e t c . Typ 50 i f they do
not know each other . ”) ;

28

for (int i = 0 ; i < matrix . l ength ; i ++){
for (int j = 0 ; j < matrix [i] . l ength ; j ++){

i f ((i >= nrGuests | | j >= nrGuests) && i != j){
matrix [i] [j] = 50 ;

} else i f (i == j){
matrix [i] [j] = 0 ;

} else {
System . out . p r i n t (”Type the value between p a r t i c i p a n t ”) ;
System . out . p r i n t (i +1);
System . out . p r i n t (” and ”) ;
System . out . p r i n t (j +1);
System . out . p r i n t l n (””) ;
matrix [i] [j] = sc . next Int () ;
}

}
}
Result be s tResu l t = checkRounds (rounds , createAdjacencyMatr ix (rounds) ,

matrix , rounds . length , nrGuests , order , 0) ;
System . out . p r i n t l n (”The given d i s t anc e matrix i s : ”) ;
pr intMatr ix (matrix) ;
int [] optimalOrder = bes tResu l t . order ;
int opt imalScore = bes tResu l t . s c o r e ;
System . out . p r i n t l n (””) ;
System . out . p r i n t l n (”The optimal order o f the rounds i s ”
+Arrays . t oS t r i ng (optimalOrder)+ ” with s co r e ” +opt imalScore) ;
}

}

stat ic Result checkRounds (int [] [] [] arrangements , int [] [] [] adjacencyMatrix ,
int [] [] matrix , int nrRounds , int nrPeople , int [] order , int orderIndex){
// Uses r e c u r s i o n to check a l l rounds

int max = nrPeople ;
Result be s tResu l t = new Result (order , I n t e g e r .MAX VALUE) ;
i f (orderIndex >= order . l ength){ // Case 1 : the d e s i r e d number o f rounds
i s reached , the s co r e i s computed and compared to prev ious s c o r e s

int S = computeScore (matrix , max) ;
System . out . p r i n t l n (”The s co r e f o r ” +Arrays . t oS t r i ng (order)+ ” i s ” +S) ;
i f (S <= bestResu l t . s c o r e){

bes tResu l t = new Result (order , S) ;
}

} else { //Case 2 : a new round i s added to the l i s t a f t e r check ing
i f this round i s not a l r eady pre sent in the l i s t

for (int round = 0 ; round < nrRounds ; round++){
boolean a l r eadyPresent = fa l se ;
for (int j = 0 ; j < orderIndex ; j++){

i f (order [j] == round){
a l r eadyPresent = true ;
break ;

}
}
i f (! a l r eadyPresent){

order [orderIndex] = round ;
// The new d i s t a n c e between p a r t i c i p a n t s i s computed a f t e r
the new round i s added :

29

int [] [] x = computeNewDistanceMatrix (arrangements , matrix ,
adjacencyMatrix [round]) ;
// The method c a l l s i t s e l f u n t i l the l i s t i s f i l l e d :
Result newResult = checkRounds (arrangements , adjacencyMatrix , x ,
nrRounds , nrPeople , order , orderIndex + 1) ;
// I f a new score i s b e t t e r than the p r e v i o u s score ,
the prev ious order and s co r e are r ep laced :
i f (newResult . i sBetterThan (bes tResu l t)){

bes tResu l t = newResult ;
}

}
}

}
return bes tResu l t ;

}

stat ic int [] [] makeMatrix (int [] [] [] arrangements , int largeNumber){
// Makes the i n i t i a l matrix
int nrPeople = arrangements [0] . l ength ∗ arrangements [0] [0] . l ength ;
// Accounts f o r dummies
int [] [] matrix = new int [nrPeople] [nrPeople] ;
for (int i = 0 ; i < matrix . l ength ; i ++){

for (int j = 0 ; j < matrix [i] . l ength ; j ++){
i f (i == j){

matrix [i] [j] = 0 ;
}
else {

matrix [i] [j] = largeNumber ;
}

}
}
return matrix ;
}

stat ic int [] [] [] createAdjacencyMatr ix (int [] [] [] rounds){
// Creates an adjacency matrix f o r a l l rounds

int nrPeople = rounds [0] . l ength ∗ rounds [0] [0] . l ength ; // Accounts f o r dummies
int [] [] [] matrix = new int [rounds . l ength] [nrPeople] [nrPeople] ;
for (int i = 0 ; i < rounds . l ength ; i ++){

for (int t ab l e index = 0 ; tab l e index < rounds [i] . l ength ; t ab l e index++){
for (int indexOne = 0 ; indexOne < rounds [i] [t ab l e index] . l ength ; indexOne++){

for (int indexTwo = 0 ; indexTwo < rounds [i] [t ab l e index] . l ength ;
indexTwo++){

int personOne = rounds [i] [t ab l e index] [indexOne] ;
int personTwo = rounds [i] [t ab l e index] [indexTwo] ;
matrix [i] [personOne] [personTwo] = 1 ;

}
}

}
}
return matrix ;

}

public stat ic void pr intMatr ix (int [] [] matrix){ // Pr in t s a matrix

30

System . out . p r i n t l n (”========== BEGINS HERE =============”) ;
for (int i = 0 ; i < matrix . l ength ; i ++){

for (int j = 0 ; j < matrix [i] . l ength ; j ++){
System . out . p r i n t (matrix [i] [j] + ” ”) ;

}
System . out . p r i n t l n (””) ;

}
System . out . p r i n t l n (”========== ENDS HERE =============”) ;

}

stat ic int [] [] computeNewDistanceMatrix (int [] [] [] arrangements ,
int [] [] o ldDistanceMatr ix , int [] [] adjacencyMatrix , int nrGuests){
// Computes the new d i s t a n c e a f t e r a round

int nrPeople = arrangements [0] . l ength ∗ arrangements [0] [0] . l ength ;
// Accounts f o r dummies
int [] [] newDistanceMatrix = new int [nrPeople] [nrPeople] ;
for (int i = 0 ; i < nrGuests ; i ++){

for (int j = 0 ; j < oldDistanceMatr ix [i] . l ength ; j++){
newDistanceMatrix [i] [j] = oldDistanceMatr ix [i] [j] ;
for (int k = 0 ; k < nrGuests ; k++){

i f (adjacencyMatrix [i] [k] == 1){
newDistanceMatrix [i] [j] = Math . min (newDistanceMatrix [i] [j] ,
o ldDistanceMatr ix [k] [j] + 1) ; // I t e r a t i o n o f S(r , i , j)

}
}

}
}
for (int i = nrGuests ; i < oldDistanceMatr ix . l ength ; i ++){

for (int j = 0 ; j < oldDistanceMatr ix [i] . l ength ; j++){
newDistanceMatrix [i] [j] = oldDistanceMatr ix [i] [j] ;

}
}
return newDistanceMatrix ;

}

stat ic int computeScore (int [] [] d i s tanceMatr ix , int max){ // Adds a l l
e n t r i e s o f the l a s t d i s t anc e matrix , i g n o r e s the e n t r i e s o f dummy v a r i a b l e s

int s co r e = 0 ;
for (int i = 0 ; i < max ; i ++){

for (int j = 0 ; j < max ; j++){
s co r e = sco r e + dis tanceMatr ix [i] [j] ;

}
}
return s co r e ;

}
}

31

Appendix B

Data Analysis Code (R)

#Histogram and summary o f s c o r e s wi th 15 p a r t i c i p a n t s ,
table s i z e 3 and three rounds chosen
Data .RD.15 p <− read . csv (”˜/Jaar 3/Q3/BEP/Data RD 15p . txt ” , header=FALSE)
summary(Data .RD.15 p$V1)
hist (Data .RD.15 p$V1 , main = ”Histogram of s c o r e s f o r a l l rounds ” , xlab = ” Scores ”)

#Histogram of s c o r e s wi th 15 p a r t i c i p a n t s , t a b l e s i z e 3 and four rounds chosen
Data .RD.15 p4r <− read . table (”˜/Jaar 3/Q3/BEP/Data RD 15 p4r . txt ” ,
quote=”\”” , comment . char=””)
h i s t (Data .RD.15 p4r$V1 , main = ”Histogram of s c o r e s for a l l rounds ” , xlab = ” Scores ”)

#Plot o f s c o r e s with 15 p a r t i c i p a n t s , t a b l e s i z e 3 and f i v e rounds chosen
Data .RD.15 p5r <− read . t a b l e (”˜/Jaar 3/Q3/BEP/Data RD 15 p5r . txt ” ,
quote=”\”” , comment . char=””)
plot (Data .RD.15 p5r$V1 , ylab = ” Scores ” , type = ” l ”)

#Histogram of s c o r e s wi th 5 p a r t i c i p a n t s , t a b l e s i z e 2 and t h r e e rounds chosen
Data .RD. 5 p3r <− read . table (”˜/Jaar 3/Q3/BEP/Data RD 5p3r . txt ” ,
quote=”\”” , comment . char=””)
h i s t (Data .RD. 5 p3r$V1 , main = ”Histogram of s c o r e s for a l l rounds ” , xlab = ” Scores ”)

#Plot o f s c o r e s with 6 p a r t i c i p a n t s , t a b l e s i z e 2 and three rounds chosen
Data .RD. 6 p3r <− read . t a b l e (”˜/Jaar 3/Q3/BEP/Data RD 6p3r . txt ” ,
quote=”\”” , comment . char=””)
plot (Data .RD. 6 p3r$V1 , ylab = ” Scores ” , type = ” l ”)

32

Bibliography

[1] Graham, R. L., Grötschel, M., & Lovász, L. (1995). Handbook of combinatorics, Volume 2.
Amsterdam: Elsevier.

[2] Triska, M., & Musliu, N. (2011). An effective greedy heuristic for the Social Golfer Problem.
Annals of Operations Research, 194(1), 413-425. doi:10.1007/s10479-011-0866-7.

[3] Hurkens, C.A.J. (n.d.). Vind een tafelschikking voor uw Running Dinner.
http://www.win.tue.nl/ wscor/RunningDinner.html.

[4] Siervo, R. M. (2017). The Running Dinner Problem (Rep.).

[5] Herzig, A., & Maffre, F. (2017). How to share knowledge by gossiping. AI Communications,
30(1), 1-17. doi:10.3233/aic-170723.

[6] Hurkens, C.A.J. (2000). Spreading gossip efficiently. Faculteit Wiskunde en Informatica, Tech-
nische Universiteit Eindhoven.

[7] Baker, B., & Shostak, R. (1972). Gossips and telephones. Discrete Mathematics, 2(3), 191-193.
doi:10.1016/0012-365x(72)90001-5

[8] Tijdeman, R. (1971). On a telephone problem. Nieuw Archief voor Wiskunde 19(3), 188–192.

[9] Knödel, W. (1975). New gossips and telephones. Discrete Mathematics, 13(1), 95.
doi:10.1016/0012-365x(75)90090-4

[10] Lewis, R., & Carroll, F. (2016). Creating seating plans: A practical application. Journal of
the Operational Research Society, 67(11), 1353-1362. doi:10.1057/jors.2016.34

[11] Garey, M. R., & Johnson, D. S. (2009). Computers and intractability: A guide to the theory
of NP-completeness. New York: Freeman.

[12] Schrijver, A. (2000). A course in combinatorial optimization. Delft: TU Delft.

[13] Holyer, I. (1981). The NP-Completeness of Edge-Coloring. SIAM Journal on Computing,
10(4), 718-720. doi:10.1137/0210055

[14] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms
(3rd ed.). Massachusetts: MIT.

33

