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by RALPH VAN IERLAND

In this report we study a queueing / inventory model, based on both an M/M/1
queue and an M/G/1 queue. The server works on a constant rate, building up
an inventory once it has become idle. According to a Poisson process with a rate
depending on the inventory level, the inventory is completely depleted. Based on
research in Albrecher et al., 2016 and Boxma, Essifi, and Janssen, 2016, we will de-
termine the stationary densities of the workload and inventory level according to
different functions for the depletion rate for the M/M/1 queue. We will mainly
discuss the model where the inventory is split at a certain threshold level, with a
different, constant depletion rate above this level and below this level. Some numer-
ical results of this model will be discussed and compared to the model with constant
depletion rate without threshold level. Furthermore, a simulation is considered to
analyze the model with general service distribution. Finally, this simulation is used
to analyze an optimization problem for a certain profit model.
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Chapter 1

Introduction

In industry, a lot of queueing processes take place and analyzing these can be very
useful in order to optimize them. This can be done in terms of money, time or any
other quantity that one wants to be improved. In this report, we will discuss such
a queueing system, but this time combined with inventory theory. This means we
do not look at a model where the server is getting idle once all service requirements
are resolved, but at a model where the server starts building up an inventory. These
kind of processes can be found a lot in for example the commercial market, where
customers do not want to wait for their orders too long. Having an inventory built
up then is a great advantage, but how large should this inventory be? A process
where the inventory builds up infinitely large if there are no arriving orders would
be quite unrealistic and mathematically rather trivial, as this system would not give
us a stable process at all.

More interesting are for example processes that have a limited storage available or
processes where the inventory may lose its value. Think about the manufacturing
of certain electronics. At some moment in time, the software or hardware might be-
come obsolete due to a new model or update, causing the built up inventory to be
(almost) worthless.

Therefore we will consider the following queueing / inventory model where the
base of the model is an M/G/1 queue where the server starts building up inventory
once he has become idle, but with the small addition that if the server is building up
inventory, on certain random moments the whole inventory is depleted. This hap-
pens with a certain rate ω(x) which might depend on the size of the inventory x.

Certain variations of this model have already been analyzed in Albrecher et al., 2016
and Boxma, Essifi, and Janssen, 2016. Here several different functions for ω(·) are
given, such as a constant and linear growth. In Albrecher et al., 2016 this is based
on an M/M/1 queueing system, while in Boxma, Essifi, and Janssen, 2016 also some
results with these functions are obtained based on an M/G/1 queueing system.

In this report, we will go further on this, but with some differentiation in the func-
tion for ω(·). We will consider the process where there is a certain threshold level
from which onward the depletion rate ω is changed. In other words, the depletion
rate for the inventory is given by ω1 as long as the inventory is below a fixed level
x1, but once the inventory exceeds this level x1, the inventory is depleted with a dif-
ferent (often larger) rate ω2.

Think about a scenario where competing companies are more likely to invest in in-
novating the product when they notice to be already behind in manufacturing this
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product. Another example could be as follows. A manufacturer is building prod-
ucts with a large profit margin in a competitive field. The manufacturer has limited
own (free) storage, but (almost) infinitely available external (paid) storage. As the
products have a large profit margin, the manufacturer wants to process as much as
possible. However, at certain moments, competitors decide to sell similar products
in one moment all for stunt prices. At these moments the manufacturer has to de-
cide whether to go along with them, to sell his complete stock at once, but for a less
attractive profit margin. One could imagine that the manufacturer is more willing to
do so, when it has a lot of inventory which is partly stocked externally, than when it
has only a bit of inventory which perfectly fits in his own (free) storage.

The organization of this report is as follows. First we will describe the base model -
so without specifying the function of ω(·) - in a more mathematical way. In Chapter 3
we will then analyze the variants of the model described in the articles of Albrecher
et al., 2016 and Boxma, Essifi, and Janssen, 2016. In Chapter 4 we will then discuss
our own model with the certain threshold, based on an M/M/1 queue. Here, we
will try to derive some interesting mathematical results about this variant by using
techniques used in article Albrecher et al., 2016. Furthermore we will take a quick
look at some other related variations also based on the M/M/1 queue.
In the last chapter (Chapter 5) we will then discuss variations like in Chapter 4,
but now based on an M/G/1 queue. This part will be done based on a simulation,
where we will also consider an example of an optimization program, based on the
discussed model.
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Chapter 2

Mathematical Model

In this chapter, we will discuss a model which combines queueing and inventory
theory. In the next section, we describe the general model we use, which is obtained
from the underlying model of Albrecher et al., 2016. In Chapter 3 we will analyze
how this model is applied in their article, and we will discuss the corresponding
results. In the chapters following, we will eventually use techniques from this article
to analyze slightly different specific applications of the model, corresponding with
the problem described in Chapter 1.

2.1 Description of General Model

Consider the following queueing/inventory model. Jobs arrive according to a Pois-
son process with rate λ. The corresponding services are independently and identi-
cally distributed according to a certain distribution B(·). The server is processing
continuously with a fixed speed which we normalize to 1. If there are no service
requirements anymore, the server keeps processing and therefore builds up an in-
ventory, which can be interpreted as a negative workload. When the inventory is
at level x > 0, the inventory is depleted according to a Poisson process with rate
ω(x), so depending on the level of the inventory. At these times, the inventory is set
back to zero again and the process continues. We denote the load of the system by
ρ := λE[B] and assume ρ < 1. This way we ensure the steady state distribution of
the workload exists.
We write V+(x), x ≥ 0 as the steady state distribution of the workload, with density
v+(x). When the inventory level is positive, there is an increasing inventory drift
of 1 − ρ. However, assuming ∃ x̂ > 0 such that ∀x > x̂ : ω(x) > 0, we know the
inventory level will always return to zero at a certain moment, so the steady state
distribution of the inventory exists. We will write V−(x), x ≥ 0 for this distribution
with density v−(x).
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FIGURE 2.1: Work and Inventory Process

In Figure 2.1 an example of the process is given. We see a constant drift downward
which are the diagonal lines, and the arriving jobs, visualized by the vertical lines.
The thick vertical line is an inventory depletion which causes the inventory level to
return to zero.

Remark. Please note that we are considering the workload and the inventory separately, so
for both we consider the levels to be positive (x > 0). i.e. when in positive workload, we
define the inventory to be zero and vice versa.

2.1.1 Base Equations of the Model

We want to describe the model in two base equations, namely expressions for den-
sities v+(x) and v−(x). To determine these, we will use a level crossing technique
which is also used in Albrecher et al., 2016.

Constructing Equation for v+(x)

We know V+ is a continuous steady state distribution. Therefore, each level x > 0 the
workload reaches, in the limit, is crossed as often from above, as from below. Hence,
for the limiting distribution, it is enough to determine the density of how often each
level is crossed from either below or above. This is what is called the level crossing
technique. We will construct the equation by considering the crossing of levels from
below as this is in the limit equal to the crossings from above. These down crossings
can only happen in case of a job arrival. As jobs arrive with intensity λ we get:

v+(x) = λ · P(the job creates a jump from below x to above x) (2.1)

which can be split up in:

v+(x) = λ · P(job initiates a jump from work level x̂ ∈ (0, x) to above x)
+ λ · P(job initiates a jump from an Inventory level to above x)

(2.2)

Constructing Equation for v−(x)

Also for V− we know it is a continuous steady state distribution and therefore we
can again use the same level crossing technique. Just as for V+, we will consider
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the crossings from each level from below to above with respect to the orientation of
Figure 2.1. i.e. a jump upward means a jump from an inventory level x1 > 0 to a
level x2 for which 0 < x2 < x1. For the inventory level, there are two ways a level
x > 0 can be crossed from below: either a job arrives which creates a jump from
x1 > x to a level x2 < x or an inventory depletion occurs from a level x3 > x. Jobs
still arrive with rate λ and an inventory depletion occurs with rate ω(y) depending
on the inventory level y > x at that moment. Then this gives:

v−(x) = λ · P(job initiates a jump from Inventory level x̂ ∈ (x,∞) to above x)

+

∫ ∞
x

ω(x̂) · P(the system is at inventory level x̂ > x)dx
(2.3)

Mathematical Expression for Equations

Now by rewriting respectively equations (2.2) and (2.3), we obtain:

v+(x) = λ

∫ x

0
P(B > x− y)v+(y)dy + λ

∫ ∞
0

P(B > x+ y)v−(y)dy, x ≥ 0, (2.4)

and
v−(x) = λ

∫ ∞
x

P(B > y − x)v−(y)dy +
∫ ∞
x

ω(y)v−(y)dy, x ≥ 0 (2.5)

This gives us the base equations for our model, where B is still some general distri-
bution for the jobs arriving in the system. In articles in Chapter 3, some assumptions
are made about both this distribution B and the function ω(·). In Chapter 4 and
Chapter 5 we will then discuss the model with the slightly different functions for
ω(·) for specified distribution B and general distributions.
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Chapter 3

Analysis of Literature

3.1 A Queueing Model with Randomized Depletion of In-
ventory

In this section we will discuss the article of Albrecher et al., 2016.
The model is the same as discussed in the previous chapter, but in this model the
service times are exponentially distributed as well. Therefore the system looks a lot
like an M/M/1 queue, but, just as in the other model, with a negative half space
(inventory) which always returns to zero for a sufficiently large enough inventory
with a certain rate ω(x).
The main equations here are like in chapter 2 given by

v+(x) = λ

∫ x

0
P(B > x− y)v+(y)dy + λ

∫ ∞
0

P(B > x+ y)v−(y)dy, x ≥ 0, (3.1)

and
v−(x) = λ

∫ ∞
x

P(B > y − x)v−(y)dy +
∫ ∞
x

ω(y)v−(y)dy, x ≥ 0. (3.2)

3.1.1 Exponential Services

In the model description above, we did not use the fact that the services are expo-
nentially distributed at all, this will be done in this subsection. Since B ∼ Exp(µ),
we know P(B > x) = e−µx. This gives us for (3.1) and (3.2) the expression

v+(x) = λe−µx
∫ x

0
eµyv+(y)dy + λe−µx

∫ ∞
0

e−µyv−(y)dy (3.3)

and
v−(x) = λeµx

∫ ∞
x

e−µyv−(y)dy +
∫ ∞
x

ω(y)v−(y)dy. (3.4)

Now we are going to use the transformations z+(x) = eµxv+(x), x ≥ 0 and z−(x) =
e−µxv−(x), x ≥ 0 to eventually make life easier. We now get

z+(x) = λ

∫ x

0
z+(y)dy + λ

∫ ∞
0

z−(y)dy (3.5)

and
z−(x) = λ

∫ ∞
x

z−(y)dy + e−µx
∫ ∞
x

ω(y)eµyz−(y)dy. (3.6)

Now we take a closer look at (3.5) to get a nice expression for z+(x). We differentiate
both sides with respect to x, which makes the right part of the expression vanish.
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Therefore we get
z′+(x) = λz+(x). (3.7)

From theory of differential equations, we know the solution of this equation is of the
form

z+(x) = C̃eλx,

where C̃ is a constant. For convenience of the following steps, we use C = C̃
λ to get

z+(x) = Cλeλx, (3.8)

with C still a constant.
To obtain constant C, we will substitute (3.8) in (3.5) to get

Cλeλx = λ

∫ x

0
Cλeλydy + λ

∫ ∞
0

z−(y)dy. (3.9)

Dividing the left hand side and the right hand side of this equation by λ, and inte-
grating the first integral on the right hand side, gives

Ceλx = C
[
eλy
]x
0
+

∫ ∞
0

z−(y)dy

= C(eλx − 1) +

∫ ∞
0

z−(y)dy.
(3.10)

Simplifying this gives

C =

∫ ∞
0

z−(y)dy. (3.11)

Therefore we get for v+(x),

v+(x) = e−µxz+(x) = Cλe−(µ−λ)x, x > 0. (3.12)

Integrating this gives ∫ ∞
0

v+(x)dx = Cλ

∫ ∞
0

e−(µ−λ)xdx

= Cλ

[
e−(µ−λ)x

−(µ− λ)

]∞
0

= C

λ
µ

1− λ
µ

.

(3.13)

Using that ρ = λE[B] = λ
µ , we get∫ ∞

0
v+(x)dx = C

ρ

1− ρ
. (3.14)

Now we have an expression for v+(x), from (3.14) we see the expression is, up to a
constant equal to the density of an exponential distribution if µ > λ. This constraint
is also the constraint for V+ to have a steady state distribution, so this is satisfied.
In (3.14) we get the fraction of time the system has a positive workload. This is still
depending on the distribution of V−. We will now consider this distribution.
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Determining v−(x)

Theorem (Leibniz Integral Rule).

d

dx

(∫ b(x)

a(x)
f(x, t)dt

)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt

We are going to use Leibniz Integral Rule to determine the derivative (with respect
to x) of

z−(x) = λ

∫ ∞
x

z−(y)dy + e−µx
∫ ∞
x

ω(y)eµyz−(y)dy. (3.15)

Using Leibniz Integral Rule gives us for the first term on the right hand side, we get

d

dx

[
λ

∫ ∞
x

z−(y)dy

]
= −λz−(x), (3.16)

and for the second term,

d

dx

[
e−µx

∫ ∞
x

ω(y)eµyz−(y)dy

]
=

d

dx

[∫ ∞
x

e−µxω(y)eµyz−(y)dy

]

= −e−µxω(x)eµxz−(x) +
∫ ∞
x

∂

∂x
e−µxω(y)eµyz−(y)dy

= −ω(x)z−(x) +
∫ ∞
x

∂

∂x
e−µxω(y)eµyz−(y)dy

= −ω(x)z−(x) +
∫ ∞
x
−µe−µxω(y)eµyz−(y)dy

= −ω(x)z−(x)− µ
∫ ∞
x

e−µxω(y)eµyz−(y)dy.

(3.17)

Now we substitute (3.15) in (3.17) and combine this with (3.16) to get

z′−(x) = −λz−(x)− ω(x)z−(x)− µ

[
z−(x)− λ

∫ ∞
x

z−(y)dy

]
. (3.18)

To make the integral on the right side vanish, we will differentiate once more, which
gives us

z′′−(x) =
[
−λz−(x)

]′
+
[
−ω(x)z−(x)

]′
− µ

[
z−(x)− λ

∫ ∞
x

z−(y)dy

]′
=
[
−λz′−(x)

]
+
[
−ω(x)z′−(x)− ω′(x)z−(x)

]
− µ

[
z′−(x)− λ · −z−(x)

]
.

(3.19)

Now in the specific case where ω(x) = ω is a constant we can simplify this to

z′′−(x) + (λ+ ω + µ)z′−(x) + µλz−(x) = 0. (3.20)
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We are now left with a homogeneous second order differential equation. For these
type of differential equations we know the solutions for this equation are of the form

z−(x) = C1e
r1x + C2e

r2x, (3.21)

where r1,2 are given by the roots of the characteristic polynomial

r2 + (λ+ ω + µ)r + µλ = 0,

which are

r1 =
−(λ+ ω + µ)−

√
(λ+ ω + µ)2 − 4λµ

2
,

r2 =
−(λ+ ω + µ) +

√
(λ+ ω + µ)2 − 4λµ

2
.

(3.22)

Since v−(x) = eµxz−(x) we define

si := ri + µ =
−(λ+ ω − µ)∓

√
(λ+ ω + µ)2 − 4λµ

2
. (3.23)

So
v−(x) = C1e

s1x + C2e
s2x. (3.24)

Now we wonder whether the sis are negative for all possible parameters 0 < λ < µ
and ω > 0. We notice that

(λ+ µ+ ω)2 − 4λµ = λ2 + µ2 + ω2 + 2(λµ+ λω + µω)− 4λµ

= λ2 + µ2 + ω2 + 2(−λµ+ λω + µω)

> λ2 + µ2 + ω2 + 2(−λµ+ λω − µω)
= (λ− µ+ ω)2.

(3.25)

So if (λ− µ+ ω) ≤ 0, we get

s1 <
−(λ− µ+ ω)− |λ− µ+ ω|

2
= 0, (3.26)

and for (λ− µ+ ω) > 0,

s1 <
−2(λ− µ+ ω)

2
< 0. (3.27)

However, for s2 we find for (λ− µ+ ω) ≤ 0 that

s2 >
−(λ− µ+ ω) + |λ− µ+ ω|

2
=
|λ− µ+ ω|+ |λ− µ+ ω|

2
≥ 0. (3.28)

Hence, s1 is negative everywhere, but s2 is not necessarily. As C2 is just a constant,
and limx→∞ v−(x) = 0, we conclude that C2 = 0. This gives us that

z−(x) = C1e
r1x. (3.29)

Combining (3.29) with (3.11) we get

C
(3.11)
=

∫ ∞
0

z−(x)
(3.29)
=

∫ ∞
0

C1e
r1xdx =

C1

−r1
. (3.30)
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Moreover we will use that ∫ ∞
0

v+(x) +

∫ ∞
0

v−(x) = 1. (3.31)

So ∫ ∞
0

v+(x) +

∫ ∞
0

v−(x) = C
ρ

1− ρ
+

∫ ∞
0

C1e
s1xdx

=
C1ρ

−r1(1− ρ)
+

C1

−s1

=
C1λ

(µ− s1)(µ− λ)
+

C1

−s1

=
−s1C1λ

−s1(µ− s1)(µ− λ)
+

C1(µ− s1)(µ− λ)
−s1(µ− s1)(µ− λ)

=
−s1C1λ+ C1(µ− s1)(µ− λ)

−s1(µ− s1)(µ− λ)
= 1,

(3.32)

and therefore

C1 =
−s1(µ− s1)(µ− λ)
−s1λ+ (µ− s1)(µ− λ)

=
−s1(µ− s1)(µ− λ)

−s1λ+ µ2 − λµ− s1µ+ s1λ

=
s1(µ− s1)(µ− λ)
µ(s1 − µ+ λ)

.

(3.33)

Numerical Results
In the article, also several numerical results are given. We will discuss these in Sec-
tion 4.3, in comparison to our own variation of the model.

3.2 A Queueing/Inventory and an Insurance Risk Model

In this article of Albrecher et al., 2016, the same model as described in Chapter 2
is discussed, but this time based on an M/G/1 queueing system. As this implies
that the theoretical parts are getting quite complex, we will discuss this article quite
briefly. Moreover, in this article it is tried to combine the queueing/inventory model
with a bankruptcy problem as these models look quite similar. However, we will
not discuss the latter case any further.

The goal of this section is to give an idea of what is needed to obtain theoretical
results if the service distribution is general. In Chapter 5 we will again take a look
at the M/G/1 queueing system, but there it will only be discussed in terms of a
simulation.

Analysis ω(·) Constant

At first, the model is discussed for ω(·) constant. Just as in the previous paper, we
want to gain more insight in what V+ and V− look like. This is done by considering
the Laplace transforms of V+ and V−, which are respectively φ+(s) and φ−(s). As
also in the structure of the previous paper, we notice that V+ depends on V−, but not
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vice versa. To ensure a good analysis of the model, we therefore first take a look at
the distribution of V−.

V− Analyzing the transforms further gives an expression for φ−(s) in which the
Laplace Stieltjes Transform of an exponential distribution is recognized. This means
that for constant ω(x) = ω the steady-state distribution for the inventory V−(x) is
exponentially distributed.
As it is quite remarkable that V−(x) turns out to be exponentially distributed - it is
quite a nice result for a M/G/1 queue - Also a more heuristic argument is given:

As also illustrated in Figure 3.1, the M/G/1 queue is first rewritten as a G/M/1
queue, by considering service distribution as the arrival distribution and vice versa.
The original M/G/1 (upper graph) is now rewritten as the middle G/M/1 queue.
For the upper graph, we want to show the distribution of the xis are exponential,
because this would imply V−(x) is exponentially distributed, as follows from PASTA
(Poisson Arrival See Time Average). As the work rate is assumed to be 1, it results
the diagonal lines in the figure to be at 45◦.
In the lower graph, we can find the number of orders in the system for the G/M/1
queue. Since the diagonal lines in the middle figure are at 45◦, we can conclude the
red painted lines in the lower graph represent the xis of the middle and upper graph.
Moreover we know these red lines to be the waiting times of the G/M/1 queue.
Now the key is that we know for G/M/1 queues that - given the waiting time is
greater than zero - these waiting times are exponentially distributed. As these times
correspond with the xis, we know those to be exponentially distributed as well. As
we have noted before, this eventually means V−(x) is exponentially distributed.

V+ So a nice result for V− is obtained, however, V+ turns out to be not that simple.
First we define the busy period of this system by the period the workload is positive.
This means the system is called “empty” if the workload x ≤ 0.
Since we know the jobs arrive according to a Poisson process with rate λ and have
i.i.d. service times B1, B2, . . ., we can consider it as an adapted M/G/1 queue with
a different distribution for the first service of a busy period.
As the busy period starts with an arrival that cannot be fully served from the inven-
tory, it starts with a “residual” service - with a different distribution of course. This
immediately makes it quite complex to determine V+. In the article, an expression is
found for the residual service, after which also an expression for V+ is found.

Other Functions for ω(·)

More details about this and other functions of ω(·) can be found in the article Boxma,
Essifi, and Janssen, 2016 and will not be discussed here, as they are less relevant for
the results obtained in this report.
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x1 x2

Waiting Times
Number of orders

in system
3

2

1

0

FIGURE 3.1: The workload and inventory process as described in
Boxma, Essifi, and Janssen, 2016. Above the standard process. In the
middle the process rewritten to a G/M/1 queue. Below the number

of jobs in the system with the corresponding waiting time.
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Chapter 4

Model with Threshold

4.1 Model Description

FIGURE 4.1: Work and Inventory Process with Threshold

Now assume there is a certain threshold, where the rate of clearing the inventory
changes. This point we call x1, and we can write ω(x) as:

ω(x) = 1{0<x<x1}ω1 + 1{x≥x1}ω2 (4.1)

For this model, we will get the same kind of main equations as in Section 3.1, but
now we will have, next to the v+ a v−1 and a v−2. To make the notation in some
places a bit easier, we define

v−(x) = 1{0≤x<x1}v−1(x) + 1{x≥x1}v−2(x), (4.2)

where the main equations will then be:

v+(x) = λ

∫ x

0
P(B > x− y)v+(y)dy + λ

∫ ∞
0

P(B > x+ y)v−(y)dy, x > 0, (4.3)

v−1(x) = λ

∫ ∞
x

P(B > y − x)v−(y)dy +
∫ ∞
x

ω(y)v−(y)dy, 0 ≤ x ≤ x1, (4.4)
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v−2(x) = λ

∫ ∞
x

P(B > y − x)v−2(y)dy +
∫ ∞
x

ω2v−2(y)dy, x ≥ x1. (4.5)

We see eq. (4.3) is exactly the same as eq. (3.1), only the v−(·) has become a bit
harder. For eq. (4.5) we see this is of exactly the same form as eq. (3.2). The strategy
to determine the three distributions, will be to first determine v−2, which is only
depending on itself. Then we will determine v−1, which depends on only v−2 and
at last we can find a closed expression for v+, by using v−1 and v−2.

4.2 Main Equations

For v−2

Since our services are again exponentially distributed, we get:

v−2(x) = λeµx
∫ ∞
x

e−µyv−2(y)dy +
∫ ∞
x

ω(y)v−2(y)dy, x > x1 (4.6)

We again use the translation z−2(x) = e−µxv−2(x) for x > x1. This gives us:

z−2(x) = λ

∫ ∞
x

z−2(y)dy + e−µx
∫ ∞
x

ω(y)eµyz−2(y)dy, x > x1 (4.7)

We will now use the same technique as in Chapter 3, as this equation looks almost
the same as eq. (3.15). Moreover we use that ω(·) is a constant and equal to ω1. This
means we will differentiate two times which gives us, completely analogue to eq.
(3.20),

z′′−2(x) + (λ+ ω2 + µ)z′−2(x) + µλz−2(x) = 0. (4.8)

We again conclude that

z−2(x) = C2,1e
r2,1·x + C2,2e

r2,2·x, (4.9)

where this time

r2,1 =
−(λ+ ω2 + µ)−

√
(λ+ ω2 + µ)2 − 4λµ

2
,

r2,2 =
−(λ+ ω2 + µ) +

√
(λ+ ω2 + µ)2 − 4λµ

2
.

(4.10)

We again define
si,j := ri,j + µ, j ∈ {1, 2}, (4.11)

to write
v−2(x) = C2,1e

s2,1·x + C2,2e
s2,2·x. (4.12)

With the same arguments as in Chapter 3 , we conclude C2,2 = 0 what gives us

v−2(x) = C2,1e
s2,1·x, x > x1, (4.13)

and
z−2(x) = C2,1e

r2,1·x, x > x1, (4.14)
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and therefore, ∫ ∞
x1

v−2(x) =

∫ ∞
x1

C2,1e
s2,1·x

=

[
C2,1

s2,1
es2,1·x

]∞
x1

= −C2,1

s2,1
es2,1·x1 .

(4.15)

For v−1

We first rewrite eq. (4.4) to

v−1(x) = λeµx

(∫ x1

x
e−µyv−1(y)dy +

∫ ∞
x1

e−µyv−2(y)dy

)

+

∫ x1

x
ω(y)v−1(y)dy +

∫ ∞
x1

ω(y)v−2(y)dy, 0 ≤ x ≤ x1.
(4.16)

Now using the translation z−2(x) = e−µxv−2(x) for x ≥ x1 and z−1(x) = e−µxv−1(x)
for 0 < x < x1 gives

z−1(x) = λ

(∫ x1

x
z−1(y)dy +

∫ ∞
x1

z−2(y)dy

)

+ e−µx

(∫ x1

x
ω1e

µyz−1(y)dy +
∫ ∞
x1

ω2e
µyz−2(y)dy

)
, 0 ≤ x ≤ x1.

(4.17)

Again, we will differentiate and use Leibniz Integral Rule to get

z′−1(x) = −λz−1(x)− e−µxω1e
µxz−1(x)

− µe−µx
∫ x1

x
ω1e

µyz−1(y)dy − µe−µx
∫ ∞
x1

ω2e
µyz−2(y)dy.

(4.18)

So

z′−1(x) = −λz−1(x)− ω1z−1(x)

− µ

[
e−µx

(∫ x1

x
ω1e

µyz−1(y)dy +
∫ ∞
x1

ω2e
µyz−2(y)dy

)]
.

(4.19)

Now substituting eq. (4.17) gives

z′−1(x) = −λz−1(x)− ω1z−1(x)

− µ

[
z−1(x)− λ

(∫ x1

x
z−1(y)dy +

∫ ∞
x1

z−2(y)dy

)]
.

(4.20)

Differentiating once more gives us

z′′−1(x) = −λz′−1(x)− ω1z
′
−1(x)− µ

[
z′−1(x) + λz−1(x)

]
. (4.21)
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So

z′′−1(x) + (λ+ ω1 + µ)z′−1(x) + µλz−1(x) = 0. (4.22)

So we have a homogeneous differential equation which looks identical to eq. (4.8),
except for a different ω. therefore the solution for the differential equation is

z−1(x) = C1,1e
r1,1x + C1,2e

r1,2x, (4.23)

where this time

r1,1 =
−(λ+ ω0 + µ)−

√
(λ+ ω0 + µ)2 − 4λµ

2
,

r1,2 =
−(λ+ ω0 + µ) +

√
(λ+ ω0 + µ)2 − 4λµ

2
.

(4.24)

Furthermore, to get a relation between C1,1, C1,2 and C2,1, we will substitute eq.
(4.14) and eq. (4.23) in eq. (4.17).
This gives us

C1,1e
r1,1x + C1,2e

r1,2x = λ

∫ x1

x
C1,1e

r1,1y + C1,2e
r1,2ydy

+ e−µx
∫ x1

x
ω1e

µy(C1,1e
r1,1y + C1,2e

r1,2y)dy

− λC2,1

r2,1
er2,1x1 − ω2

C2,1

s2,1
es2,1·x1 · e−µx.

(4.25)

To determine two relations between the constants, we fill in two different values for
x.
First we take the easy x→ x1, so then

C1,1e
r1,1x1 + C1,2e

r1,2x1 = −λC2,1

r2,1
er2,1x1 − ω2

C2,1

s2,1
er2,1x1 . (4.26)

To get another equation, we substitute another value for x, this time x→ 0. So then

C1,1 + C1,2 = λ

∫ x1

0
C1,1e

r1,1y + C1,2e
r1,2ydy

+

∫ x1

0
ω1e

µy(C1,1e
r1,1y + C1,2e

r1,2y)dy

− λC2,1

r2,1
er2,1x1 − ω2

C2,1

s2,1
es2,1x1 .

(4.27)

So

C1,1 + C1,2 = λ

(
C1,1

r1,1
er1,1x1 +

C1,2

r1,2
er1,2x1 − C1,1

r1,1
− C1,2

r1,2

)

+ ω1

(
C1,1

s1,1
es1,1x1 +

C1,2

s1,2
es1,2x1 − C1,1

s1,1
− C1,2

s1,2

)

− λC2,1

r2,1
er2,1x1 − ω2

C2,1

s2,1
es2,1x1 .

(4.28)
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For v+

Since the service times are exponentially distributed, we get the exact same expres-
sion for v+(·) as in previous chapter, namely eq. (3.12), where z−(·) is defined as

z−(x) = e−µx
(
1{0<x<x1}v−1 + 1{x≥x1}v−2

)
. (4.29)

This gives us, like in the article of Albrecher et al., 2016

C =

∫ ∞
0

z−(x)dx =

∫ x1

0
z−1(x)dx+

∫ ∞
x1

z−2(x)dx

=

∫ x1

0
C1,1e

r1,1·x + C1,2e
r1,2·xdx+

∫ ∞
x1

C2,1e
r2,1·xdx

=
C2,1

r2,1
er1,1·x1 +

C1,2

r1,2
er1,2·x1 − C1,1

r1,1
− C1,2

r1,2
− C2,1

r2,1
er2,1·x1 .

(4.30)

At last, we use the fact that∫ ∞
0

v+(x)dx+

∫ x1

0
v−1(x)dx+

∫ ∞
x1

v−2(x)dx = 1, (4.31)

so[
C

ρ

1− ρ

]
+

[
C1,1

s1,1
es1,1x1 +

C1,2

s1,2
es1,2x1 − C1,1

s1,1
− C1,2

s1,2

]
+

[
−C2,1

s2,1
es2,1x1

]
= 1. (4.32)

Now with the system of equations (4.26), (4.28) and (4.32) (where we also substitute
(4.30) in (4.32)), we can find the values for C1,1, C1,2 and C2,1. Therefore we now also
know the value of C, which makes it possible to find the value of the mean of work
as we have seen in (3.14) where∫ ∞

0
v+(x)dx = C

ρ

1− ρ
gives the fraction of time the system has a positive workload.
As we can solve the system and find values for the different constants, we can also
determine other quantities like:

• The mean work level:

E[X] =

∫ ∞
0

xv+(x)dx =

∫ ∞
0

x · (Cλe−(µ−λ)x)dx. (4.33)

• The mean inventory level:

E[I] =
∫ ∞
0

xv−(x)dx =

∫ x1

0
xv−1(x)dx+

∫ ∞
x1

xv−2(x)dx

=

∫ x1

0
xC1,1e

s1,1x + xC1,2e
s1,2xdx+

∫ ∞
x1

xC2,1e
s2,1xdx.

(4.34)
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• The probability a job arriving in the system can be fully served, directly from
the inventory:∫ ∞

0
v−(x)P(B < x)dx =

∫ x1

0
v−1(x)(1− e−µx)dx+

∫ ∞
x1

v−2(x)(1− e−µx)dx

=

∫ x1

0
(1− e−µx)(C1,1e

s1,1x + C1,2e
s1,2x)dx

+

∫ ∞
x1

(1− e−µx)C2,1e
s2,1xdx.

(4.35)

4.3 Numerical Results

So we have derived a system of equations from which we can determine exact re-
sults for, for example, the mean work level, mean inventory level and the probability
a job can be served completely from the inventory. In Chapter 3 we saw how this
was done for the model without a threshold and for ω(x) = ax and in the previous
section we saw the results of our new model with a threshold.
The goal of this section is to learn something from this new model and to gain insight
in the behaviour of it. Moreover, we will try to find out whether this revised model
is an improvement, relative to the model without threshold, in certain scenarios.
We will do this by considering some numerical results by solving the system of equa-
tions (4.26), (4.28) and (4.32) using Mathematica’s solving algorithms. In order to
do so, we will first explain the experiment we set up.

4.3.1 Experiment

As we want to compare the two models that were just mentioned, we first have to
conclude which of all parameters are variable and which of those are fixed by the
system. As the difference in the models only lies in the chosen function for ω(·), it
is reasonable to assume the λ and µ to be fixed by the system and the function for
ω(·) to be changeable. In our case, this means we are going to look at the impact of
changing the values of ω1, ω2 and x1 for specific λ and µ.
Now the remaining question is which quantities we should consider to be able to
conclude whether the revised model is actually better. This brings us back to the
scenarios described in Chapter 1. In most supply chain models, waiting time for a
product to be delivered is a very important quantity. In familiar queueing terminol-
ogy this would be called the ’sojourn time’: the time from placing the order until
actual delivery. This means it could be interesting to reduce the mean waiting time
(and therefore the sojourn time), but probably even more interesting is to increase
the probability of delivering straight from inventory. i.e. the probability that the so-
journ time is zero. From now on we will denote this probability with PI .
So in the experiment, we will try to find out whether changing the threshold and ω1

and ω2 increases the probability of leaving the system immediately.
But just increasing this PI is not challenging at all. Simply let ω go to zero and this
probability will get to one if λ < µ. However, doing so also implies the mean inven-
tory level to go towards infinity, which is actually something we do not want. In the
described scenarios namely, it was discussed that a very large inventory probably
causes problems with either storage room or storage costs.
This brings us to the formulation of the experiment we would like to test:
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“Can we increase PI by varying the values of the parameters ω1, ω2 and x1 without
increasing the mean inventory level, compared to a standard case where ω is a fixed

constant?”

4.3.2 Behaviour of System

To get a better feeling of the behaviour of both models, we will first discuss Figure
4.2 and Figure 4.3 . We fix µ = 4 and take a look at the behaviour of the model as λ
increases - and therefore ρ→ 1. For ω(·) we consider:

• The standard model without threshold with ω = 3 constant

• The model with threshold with ω1 = 0.0001, ω2 = 8 and x1 = 1. These val-
ues are a bit arbitrarily chosen, but the main remark is that in this case the
value for ω1 is significantly lower than the standard ω, while the value of ω2 is
significantly higher.

• The model with threshold with ω1 = 8 ω2 = 0.01 and x1 = 1. Also these
values are a bit arbitrarily chosen, but the main remark is that in this case the
value for ω1 is significantly higher than the standard ω, while the value of ω2

is significantly lower.

Then we get the following figures:

FIGURE 4.2: PI for model, µ = 4 fixed, without threshold (ω = 3)
and models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 1 and ω1 = 8,

ω2 = 0.01, x1 = 1 )



22 Chapter 4. Model with Threshold

FIGURE 4.3: Mean Inventory for model, µ = 4 fixed, without thresh-
old (ω = 3) and models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 1

and ω1 = 8, ω2 = 0.01, x1 = 1 )

Remark. Although Figure 4.3 might suggest the green model is unstable for small values
of λ, this is not the case. the value of E[I] increases very much as λ gets smaller, but it has a
finite value for E[I] for all λ ∈ [0, 4].

At first, we see the green model does not improve the system at all. If we consider
this system in a heuristic way, we also quickly conclude why this model is not an
improvement.
In this system, we namely chose ω1 to be quite large and we chose ω2 to be smaller
than the regular ω. In practise, this means that when we only have a small inventory,
we are very willing to deplete it all, while when having a very large inventory, we
are a lot less willing to do so. As this does not make a lot of sense, we will more
consider the system with the values for ω1 and ω2 the other way around. This means
a less likely depletion of the inventory when there is little in stock, and a more likely
depletion when there is a lot in stock.
To answer the question of our experiment which we stated in the previous section,
we want to find out whether there are values for ω1 < ω < ω2 and x1 such that the
red line in Figure 4.2 stays above the blue line, while the red line in Figure 4.3 gets
below or on the blue line.

4.3.3 Find Improving Model

In order to find such values, we first try to simplify the problem. This means we will
just take values ω1 = 0.0001 and ω2 = 8 and let x1 vary. This is not necessarily the
optimal solution, but if we can show that

∀0<λ<µ ∃x1(λ)>0 such that P(2)
I > P(1)

I and E[I](2) < E[I](1),

- where (2) denotes the quantity of the model with threshold (red) and (1) denotes the
one of the model without threshold (blue) - then there for sure is an improvement of
the model.
To conclude whether this is true, we made a 3D plot (Figure 4.4) using Mathematica,
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where we plot the functions

f(λ, x1) = P(2)
I − P(1)

I

and

g(λ, x1) = E[I](1) − E[I](2).

(4.36)

Then the set of (λ, x1) for which f(λ, x1) > 0 and g(λ, x1) > 0 shows us which x1 is
suitable at a certain arrival rate λ.

FIGURE 4.4: Functions f(λ, x1) and g(λ, x1)

FIGURE 4.5: In gray the plane of (λ, x1) for which
f(λ, x1), g(λ, x1) > 0

In Figure 4.4 we see a plot of both functions f(λ, x1) and g(λ, x1). In this figure we
see for which values of (λ, x1) both functions are positive. in the most ideal case,
this stroke of values would be perpendicular on the x1-axis, as this would mean



24 Chapter 4. Model with Threshold

choosing the value of x1 is independent from λ. However, this is not the case. This
means, for different values of λ, an other value of x1 should be chosen. Nevertheless,
considering the value x1 = 0.41 is almost a suitable value. Using this for plotting
figures like in Figure 4.2 and Figure 4.3, we get a good sense of the improvement of
the model. The figures with this value for x1 then become:

FIGURE 4.6: PI for model, µ = 4 fixed, without threshold (ω = 3) and
models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 0.41)

FIGURE 4.7: Mean Inventory for model, µ = 4 fixed, without thresh-
old (ω = 3) and models with threshold (ω1 = 0.0001, ω2 = 8,

x1 = 0.41)

So we see the new model gives a small, but noticeable and still significant improve-
ment of the system. However, one might wonder whether the system can also be
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improved with different values of the constant ω, as we only showed there is an im-
provement compared to the standard case where ω = 3.
To show this is the case, we will now consider the 3D plot where we fix λ = 2 and
let the parameter ω vary (the values for ω1, ω2 and µ stay the same). We then get the
following plot (Figure 4.8):

FIGURE 4.8: Functions f(ω, x1) and g(ω, x1) for λ = 2, µ = 4, ω1 =
0.0001 and ω2 = 9.

In Figure 4.8 we see that for each value of ω, there is a value for x1 such that both
planes are greater than zero in that coordinate. This means it is very reasonable the
improvement will work for all different kind of values for ω and λ.

Conclusion
So the conclusion and therefore answer to the question in the experiment is as fol-
lows. Yes, it is possible to vary the values of the parameters of ω1, ω2 and x1, without
increasing the mean inventory level, in order to increase PI compared to a standard
case where ω is a fixed constant.
Furthermore we gained insight in the behaviour of the new model, and learned how
a good guesstimation can be made for the different values of the parameters in order
to improve the system.
In the next paragraph, we will consider two again slightly different models related
to our threshold model.
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4.4 Different Models

4.4.1 Depletion Back to Threshold Level

FIGURE 4.9: Work and Inventory Process with return to threshold
level x1

We have now considered a model with a threshold at which the depletion rate in-
creased (or decreased). However, it might also be interesting to consider a model
where above a certain inventory level x1, the inventory is set back to level x1 again
(instead of zero) with rate ω2. This scenario could be interesting for models with
only a limited amount of stock capacity S. Then we could consider this new model
with for example x1 = S and ω2 =∞.
The main equations of this model are the same as of the model in section 4.1, namely
equations (4.3), (4.4) and (4.5). Only for eq. (4.4), we get a different integration
domain in the last term on the right hand side, so the equation becomes

v−1(x) = λ

∫ ∞
x

P(B > y − x)v−(y)dy +
∫ x1

x
ω(y)v−(y)dy, 0 < x < x1. (4.37)

Now in a same way as in the previous section we get

v−1(x) = λeµx

(∫ x1

x
e−µyv−1(y)dy +

∫ ∞
x1

e−µyv−2(y)dy

)

+

∫ x1

x
ω(y)v−1(y)dy, 0 < x < x1,

(4.38)

so

z−1(x) = λ

(∫ x1

x
z−1(y)dy +

∫ ∞
x1

z−2(y)dy

)

+ e−µx
∫ x1

x
ω1e

µyz−1(y)dy, 0 < x < x1.

(4.39)
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Now differentiating with respect to x gives us:

z′−1(x) = −λz−1(x)− e−µxω1e
µxz−1(x)

− µe−µx
∫ x1

x
ω1e

µyz−1(y)dy
(4.40)

where we can substitute eq. (4.39) which gives us exactly the same equation as in eq.
(4.20), which gives the same solution as in eq (4.23).
Following the same steps as in Section 4.2 we then get a system of equations consist-
ing of

C1,1e
r1,1x1 + C1,2e

r1,2x1 = −λC2,1

r2,1
er2,1x1 , (4.41)

C1,1 + C1,2 = λ

(
C1,1

r1,1
er1,1x1 +

C1,2

r1,2
er1,2x1 − C1,1

r1,1
− C1,2

r1,2

)

+ ω1

(
C1,1

s1,1
es1,1x1 +

C1,2

s1,2
es1,2x1 − C1,1

s1,1
− C1,2

s1,2

)

− λC2,1

r2,1
er2,1x1 ,

(4.42)

and equation (4.32) with (4.30) substituted in it.

4.4.2 Numerical Results

Now we want to compare this model to the model we described in section 4.2. For
our numerical results, we will again fix ω1 = 0.0001 and ω2 = 8. However, taking
the same value for x1 would not make sense. As in this model the dumps above the
threshold level get back to the threshold level itself, instead of going all the way back
to zero, we would expect the proper x1 for this value to be lower than in the model
of section 4.2. To determine a good value, we will again take a look at the functions
defined in (4.36), where (2) again denotes the model with threshold, however this
time with the jumps back to the threshold level instead of zero. We then get the
following figures:
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FIGURE 4.10: Functions f(λ, x1) and g(λ, x1)

FIGURE 4.11: In gray the plane of (λ, x1) for which
f(λ, x1), g(λ, x1) > 0

From figure 4.11 we see a proper value for x1 is around 0.18. Again, there is not one
x1 which suits for all λ, but fixing x1 = 0.18, we get:
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FIGURE 4.12: Mean Inventory of fig. 4.2 compared to with return to
threshold level x1 with (µ = 4, ω1 = 0.0001, ω2 = 8, x1 = 0.18)

FIGURE 4.13: Probability of serving completely from inventory for
model of fig. 4.3 compared to with return to threshold level x1 with

(µ = 4, ω1 = 0.0001, ω2 = 8, x1 = 0.18)

We see the mean inventory is almost the same as the other models, while the prob-
ability a job could be served directly from the inventory is a lot higher, mainly for
small λ.
It is not surprising that for the determined objectives, this model works best of all.
As the inventory depletion below x1 does not go back all the way to zero, but just a
bit higher, an arriving job is almost never larger than the present inventory. At the
same time, the intensity of depleting the inventory is quite high above x1 = 0.25.
Therefore the inventory also almost never gets too large.
Of course one is not always free to choose their own model and one should take a
look at the possibilities within the boundaries of their system. However, if someone
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is free to choose their model, the model described in this section will probably be the
best of the models we considered.

4.4.3 More Threshold levels

FIGURE 4.14: Work and Inventory Process with several Threshold
levels

In Section 4.1 and 4.2 we considered our model with a certain threshold level. This
level divides the inventory space in two areas with a different depletion rate. Of
course it could also be interesting to consider a model with multiple threshold levels,
which divides the inventory space in multiple areas with different depletion rate. In
figure 4.14 a graphic example is given for two different threshold levels. In this
subsection, we will show how to derive the system of equations from which one
can determine quantities like the mean inventory, mean work, et cetera, like in the
previous sections.

Model Description

First, we assume there are n threshold levels xj (where x1 < x2 < · · · < xn) and
therefore depletion rates ωi for i ∈ {1, . . . , n + 1}. The same way as in previous
sections we can write down the main equations, using the definitions

ω(x) := 1{0≤x<x1}ω1 + 1{x1≤x<x2}ω2 + · · ·+ 1{x≥xn}ωn+1 (4.43)

and

v−(x) := 1{0≤x<x1}v−1(x) + 1{x1≤x<x2}v−2(x) + · · ·+ 1{x≥xn}v−n−1(x). (4.44)

Moreover we define x0 := 0 and xn+1 :=∞, then we get our main equations

v+(x) = λ

∫ x

0
P(B > x− y)v+(y)dy + λ

∫ ∞
0

P(B > x+ y)v−(y)dy, x > 0, (4.45)
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and

v−i(x) = λ

∫ ∞
x

P(B > y − x)v−(y)dy +
∫ ∞
x

ω(y)v−(y)dy, xi−1 < x < xi,

for i ∈ {1, . . . , n+ 1}.
(4.46)

As we assumed the services to be exponentially distributed and using the same defi-
nition as in previous sections for z+(x) = eµxv+(x) and z−i(x) = e−µxv−i(x) where i ∈
{1, . . . , n+ 1}, we can write

z+(x) = λ

∫ x

0
z+(y)dy + λ

∫ ∞
0

z−(y)dy, x > 0, (4.47)

and

z−i(x) = λ

(∫ xi

x
z−i(y)dy +

n∑
j=i

∫ xj+1

xj

z−j−1(y)dy

)

+ e−µx

(∫ xi

x
ωie

µyz−i(y)dy +
n∑
j=i

∫ xj+1

xj

ωj+1e
µyz−j−1(y)dy

)
for xi−1 ≤ x ≤ xi i ∈ {1, . . . , n+ 1}.

(4.48)

v+(x)
Now as this z+(x) is exactly the same as in equation (3.5), we also get for v+(x) the
same expression as in equation (3.12).

v−i(x)
Now by differentiating equation (4.48) two times and solving the differential equa-
tion, we get - in an analogue way as from equations (4.17) till (4.23) -

z−i(x) = Ci,1e
ri,1x + Ci,2e

ri,2x, i ∈ {1, . . . , n+ 1}, (4.49)

where, following the same arguments as in equation (3.29), we know Cn+1,2 = 0 and
where

ri,1 :=
−(λ+ ωi + µ)−

√
(λ+ ωi + µ)2 − 4λµ

2
,

ri,2 :=
−(λ+ ωi + µ) +

√
(λ+ ωi + µ)2 − 4λµ

2
,

for i ∈ {1, . . . , n+ 1}.

(4.50)

Now to create the system of equations like before, we will substitute (4.49) in (4.48)
and, like we did in equations (4.26) and (4.27), we will let x → xi and x → xi−1 for
all i ∈ {1, . . . , n} (so not for z−(i+1)). We then get equations

Ci,1e
ri,1·xi + Ci,2e

ri,2·xi = λ
n∑
j=i

∫ xj+1

xj

Cj+1,1e
rj+1,1·y + Cj+1,2e

rj+1,2·ydy

+ e−µxi
n∑
j=i

ωj+1

∫ xj+1

xj

Cj+1,1e
sj+1,1·y + Cj+1,2e

sj+1,2·ydy,

(4.51)
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and

Ci,1e
ri,1·xi−1 + Ci,2e

ri,2·xi−1 = λ

∫ xi

xi−1

Ci,1e
ri,1·y + Ci,2e

ri,2·ydy

+ e−µxi−1

∫ xi

xi−1

ωiCi,1e
si,1·y + Ci,2e

si,2·ydy

+ λ
n∑
j=i

∫ xj+1

xj

Cj+1,1e
rj+1,1·y + Cj+1,2e

rj+1,2·ydy

+ e−µxi−1

n∑
j=i

ωj+1

∫ xj+1

xj

Cj+1,1e
sj+1,1·y + Cj+1,2e

sj+1,2·ydy,

(4.52)

where we define si,j as we did in (4.11).

This now gives us 2n independent equations. Furthermore we use the fact that

C =

∫ ∞
0

z−(x)dx =

n∑
j=0

∫ xj+1

xj

z−j−1(y)dy

=
n∑
j=0

∫ xj+1

xj

Cj+1,1e
rj+1,1·y + Cj+1,2e

rj+1,2·ydy,

(4.53)

and the normalization ∫ ∞
0

v+(x)dx+

n∑
j=0

∫ xj+1

xj

v−j−1(y)dy = 1 , so

C
ρ

1− ρ
+

n∑
j=0

∫ xj+1

xj

Cj+1,1e
sj+1,1·y + Cj+1,2e

sj+1,2·y(y)dy = 1.

(4.54)

This gives in total a system of 2n+2 equations and as we also have 2n+2 unknown
parameters, {C, Cn+1,1, Ci,j | i ∈ {1, . . . , n}, j ∈ {1, 2}}, this means we can solve
the system for all parameters. In a same way as in previous sections, one can then
use the values of these parameters to determine the values of certain quantities like
the mean inventory, mean work, probability of leaving the system without having
to wait et cetera.
In this report, we will not discuss these any further, as we are not quite interested in
the results for specific cases, but more in the behaviour of the model in general. For
specific cases, one can simply follow the steps we used in Section 4.2 and Section 4.3.
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Chapter 5

Simulation

In the previous chapter we obtained results from our model with one threshold
value based on an M/M/1 system (with exponentially distributed service times).
In article Boxma, Essifi, and Janssen, 2016 we see the model with a general distri-
bution for the service times becomes mathematically very complex, even for ω(·)
constant. To make it easier analyzing our model with threshold for different service
distributions, we therefore create a simulation which will give us a good impression
of the behaviour of the model. This simulation can operate as a tool to create a good
insight in your current process and can be used to optimize a certain profit. In this
chapter, we will first explain the set up of the simulation and the way it calculates
the values of the desired quantities. Then, in section 5.3 we will discuss some results
of our simulation for different service distributions. In section 5.4 we will explain
how a model with a linear growth of the depletion rate can be analyzed using the
simulation. Finally, in Section 5.5, we will give an example of how the simulation
can be used to tweak free parameters to improve a certain profit.

5.1 Simulation Setup

At first, we will categorize the events that can happen during the simulation. In
Figure 5.1, a schematic version of the process is given. Here also all different events
are indicated, which are important in our simulation.

FIGURE 5.1
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Corresponding Letter in Figure

a An arrival in the work phase.

b The system proceeds from the work phase to the inventory phase.

c An arrival in inventory phase which cannot be completely delivered from the
inventory and therefore the process enters the work phase.

d The system proceeds from above the threshold level (where ω = ω1) to below
the threshold level (where ω = ω2).

e The system proceeds from below the threshold level (where ω = ω2) to above
the threshold level (where ω = ω1).

f An inventory dump takes place.

5.1.1 Algorithm of Simulation

Now, we will describe how we simulate using a pseudo-code. The algorithm of this
simulation is based on the algorithms used in Van Ierland and Pastoor, 2017 and in
Chu and Van Ierland, 2017.

Algorithm 1 Simulation

1: procedure SIMULATIONPROCEDURE

2: work← 0
3: x1← −(threshold level) . Threshold level is positive, so x1 is negative
4: T ← length of Simulation
5: ServDist← Distribution of the Service heights
6: ArrDist← Distribution of the inter-arrival times of customers
7: DumpDist1← Distribution of inter-arrival times of Inventory Dumps above Threshold
. Where ω(x) = ω1

8: DumpDist2← Distribution of inter-arrival times of Inventory Dumps below Threshold
. Where ω(x) = ω2

9: Construct Event set . consisting of: Arrival: new customer in system,
Inventory: crossing the zero line from work to inventory, Thershold: crossing
the threshold level from above (where ω(x) = ω1) to below (where ω(x) = ω2)
Empty: inventory dump

10:
11: top:
12: d = ArrDist.next.Random
13: new.Event.Arrival(d)
14: d = DumpDist1.next.Random
15: new.Event.Empty(d)
16: new.Event.Threshold(x1)
17: t = 0
18: told = 0
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19:
20: loop: WHILE(t < T ):
21: Get next.Event
22: t = time of Event
23:
24: if next.Event.type == ARRIVAL then
25: Event.remove(Type == Inventory||Type == Threshold) . Remove all

entries of type ‘Inventory’ and ‘Threshold’
26: add = ServDist.next.Random
27: work = work − (t− told) + add
28: d = ArrDist.next.Random
29: new.Event.Arrival(d+ t)
30: if 0 < work < d then
31: new.Event.Inventory(work + t)

32: if x1 < work < d+ x1 then
33: new.Event.Threshold(work − x1 + t)

34: if (work + (t− told)− add < x1) AND (x1 < work < 0) then . Jump
from below threshold level to above in inventory

35: Event.remove(Type == Empty) . Remove all entries of type ‘Empty’
36: d = DumpDist1.next.Random
37: new.Event.Empty(d+ t)
38: else if (work + (t− told)− add < 0) AND (work > 0) then . Jump from

Inventory to Work
39: Event.remove(Type == Empty) . Remove all entries of type ‘Empty’
40: told = t
41:
42: else if next.Event.type == INVENTORY then
43: Event.remove(Type == Empty) . Remove all entries of type ‘Empty’
44: d = DumpDist1.next.Random
45: new.Event.Empty(d+ t)
46:
47: else if next.Event.type == THRESHOLD then
48: Event.remove(Type == Empty) . Remove all entries of type ‘Empty’
49: d = DumpDist2.next.Random
50: new.Event.Empty(d+ t)
51:
52: else if next.Event.type = EMPTY then
53: Event.remove(Type == Inventory||Type == Threshold) . Remove all

entries of type ‘Inventory’ and ‘Threshold’
54: work = 0
55: told = t
56: d = DumpDist1.next.Random
57: new.Event.Empty(d+ t)
58: new.Event.Threshold(t− x1)
59:
60: goto loop.
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5.2 Calculating Results from Simulation

We are interested in the same kind of results as obtained before. We will discuss the
way of calculating these result by result.

5.2.1 Mean of Work Level

The way of calculating the mean of the work level (E(X)) is done by summing the
mean of the work at all diagonal edges above zero. So given the diagonal edge
(above zero) is from (xi, yi) to (xi+pi, yi−pi), then we add pi·2yi−pi2 to the summation.
At the end, we divide this sum over the total time. So, let there be n diagonal edges,
then

E[X] =

∑n
i=1(pi ·

2yi−pi
2 |y > 0)

T
, where T is the total running time. (5.1)

5.2.2 Mean of Inventory

This is calculated with the same technique as we calculated the Mean of work level.
We again sum over the means of the inventory at all diagonal edges, but now the
parts that are completely negative. Then we take the absolute value of it, and divide
the sum over the total time. So

E[I] =
∑n

i=1(pi ·
pi−2yi

2 |y < 0)

T
, where T is the total running time. (5.2)

5.2.3 Part of the Time the Inventory Is Empty (pempty)

For this we keep track of occasions c and e. We count the moments between getting
above the zero axis and getting below. We sum over this time and eventually divide
it over the total running time. So

pempty =

∫ T
0 1y>0dy

T
, where T is the total running time. (5.3)

5.2.4 Part of the Customers That Can Leave the System Without Having
to Wait( pleave)

Here we need occasion a. We keep track of the amount of times an order can be
delivered from the inventory completely and divide it over the total amount of times
of arrivals. So let there be a total of n orders of size Si, 1 < i < n. And let a job
service start at times xi + pi with their corresponding work / inventory level yi − pi
(as described in 5.2.1), then

pleave =

∑n
i=0 1Si+yi−pi<0

n
. (5.4)

Remark. Note that to obtain correct results of the quantities, the system should be stable.
Therefore, ρ = λE[B] < 1 - where 1

λ is the mean of the arrival distribution and B is the
random variable for the job sizes - and ω(x) > 0 for all x > x̂, where 0 < x̂ <∞ is a certain
inventory level.

Remark. Note that in both the simulation and the calculations of the quantities, nowhere an
assumption is made about the distribution of the interarrival times. Therefore - as long as the
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system is stable - one can also use the simulation to analyze the G/G/1 queueing inventory
system.

Remark. To ensure the results from the simulation are a good representation of the true
value, it is important to have a proper length of the simulation, or to do multiple shorter
simulations and take the average of these values. In Boon et al., 2017 this is eleborated in
detail. For our simulations, we used a simulation length of 106, which is good as long as the
parameters for the dump distribution and arrival distribution are not chosen too small. i.e.
not smaller than 0.1.

5.3 Results with Different Service Distributions

So now we have a simulation which we can use to analyze our model with different
service distributions. In this section we will shortly present results obtained with
two of these different service distributions and compare these to the results of Fig-
ure 4.6.
To ensure the models are comparable, we consider two distributions of the services
(B) for which E[B] = E[B̂] = 1

4 where B̂ ∼ Exp(4) as used in the previous Chap-
ter. From these distributions, one will have a relatively small variation coefficient -
compared to B̂ - and one a relatively large variation coefficient. Therefore we will
analyze the model with an Erlang distribution and a hyperexponential distribution.
Suitable parameters for the latter one we determined using theory from Adan and
Resing, 2015.The two service distributions will therefore:

B1 ∼ E4(16), (Erlang distribution with shape 4 and rate 16)
B2 ∼ H2[p1, (1− p1); 8p1, 8(1− p1)], (Hyperexponential distribution Hk(p1, . . . , pk;µ1, . . . , µk))

where we use p1 = 1
2 + 1

2

√
5
13 .

We then calculate the values of the mean inventory E[I] and the probability that a
job can be fully served from the inventory PI with the same settings as in Figure 4.6,
varying λ from 0 to 4 with step size 0.1. This results in the following figure.
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FIGURE 5.2: E[I] for model, µ = 4 fixed, without threshold (ω =
3) and models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 0.41) for

services B:Exp(4),H2[p1, (1−p1); 8p1, 8(1−p1)], with p1 = 1
2 +

1
2

√
5
13 ,

and E4(16) (dashed).

FIGURE 5.3: PI for model, µ = 4 fixed, without threshold (ω = 3) and
models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 0.41) for services

B: Exp(4), H2[p1, (1 − p1); 8p1, 8(1 − p1)], with p1 = 1
2 + 1

2

√
5
13 , and

E4(16) (dashed).

First, we take a look at Figure 5.2 which shows the mean inventory for varying λ. It
seems remarkable that the lines of all three threshold models (Exponential, hyperex-
ponential and Erlang) are (almost) coincident. A logical explanation for this could
be the fact that the means of the services are all the same results in an equal mean
inventory for all distributions.
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Now we consider Figure 5.3. Here, it is remarkable that the PI for the Erlang dis-
tributed service times is significantly lower than the PI of the Exponentially and hy-
perexponentially distributed service times, of which the latter two almost coincide.
An explanation for this could be the fact that the cumulative distribution function
of an exponentially distributed random variable climbs way faster in the beginning.
i.e. the probability an hyperexponetial or exponentially distributed random variable
is ‘very small’ is way higher than for the Erlang distribution.
Consider the CDFs of the exponential, Erlang and hyperexponential distribution

FB̂(x) = P(B̂ ≤ x) = 1− e−4x,

FB1(x) = P(B1 ≤ x) =
γ(4, 16x)

6
, where γ(·, ·) is the incomplete gamma function,

FB2(x) = P(B2 ≤ x) = p1 · (1− e−8p1·x) + (1− p1) · (1− e−8x(1−p1)).

Now let the inventory level be 0.2, then the probability the size of a job is below this
level for all three distributions:

FB̂(0.2) ≈ 0.551

FB1(0.2) ≈ 0.397

FB2(0.2) ≈ 0.638

Now, from Figure 5.2 with the mean inventory we can conclude the inventory level
is usually quite small, which might explain why the PI of the Erlang services are
lower than the one of the Exponential services. Considering the value of FB2(0.2),
we would then also expect the PI of the hyperexponentially distributed service times
to be larger than the one of the exponentially distributed services. However, this is
not the case. We could not find an explanation for this, so this might be an interesting
topic for further research.

5.4 ω(x) = ax

In this section, we consider the case where ω(x) = ax. Our objective is to find a
distribution for the time until the inventory dump takes place, given a certain value
of the amount of inventory.
We want to determine this distribution by constructing a differential equation to
eventually solve it.
First we write Ty as a random variable for the time until the next inventory dump
will come, starting from inventory level y. Now we write

P(Ty > x+ δ) = P(Ty > x) · P(Ty 6∈ (x, x+ δ)|Ty > x), (5.5)

where we know for δ arbitrarily small,

P(Ty 6∈ (x, x+ δ)) ≈ 1− a(y + x)δ (5.6)

since for a random variable X ∼ Exp(λ), the probability that X is in a small interval
of length λ is equal to λ · δ. Rewriting (5.5) then gives

P(Ty > x+ δ)− P(Ty > x) ≈ P(Ty > x) · a(y + x)δ. (5.7)
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Dividing by δ then gives

P(Ty > x+ δ)− P(Ty > x)

δ
≈ P(Ty > x) · a(y + x). (5.8)

For δ → 0, this shows on the left side the derivative with respect to x of P(Ty > x).
So we will write

f(x, y) := P(Ty > x), (5.9)

and get
∂

∂x
f(x, y) = −a(y + x)f(x, y). (5.10)

Now we know from analysis of differential equations that our solution is of the form

f(x, y) = e
∫
−a(y+x)dx = c · e−ayx−

a
2
x2 , (5.11)

where c is a constant. So we find

P(Ty > x) = c · e−ayx−
a
2
x2 . (5.12)

As we know P(Ty > 0) = 1, we find

c · e0−0 = 1,

so we see c = 1 and therefore

P(Ty > x) = e−ayx−
a
2
x2 . (5.13)

So we found a cumulative distribution function for Ty, but to generate a realization
of this random variable, we first have to find its inverse.
First we show this CDF has an inverse with respect to x for all x > 0 and all y > 0
by showing the function is bijective.
For convenience we take the logarithmic function, which is allowed since this is a
monotonic increasing function. So

log(P(Ty > x)) = −ayx− a

2
x2, (5.14)

where we see a second order polynomial on the right hand side. We know the top
of this function is at

xtop =
−(−ay)
2 · −a2

= −y. (5.15)

So the top of the parabola is on the negative half plane for y > 0, so the function is a
smooth an bijective one and therefore invertible.
Now we want to find the inverse. We write

p = e−ayx−
a
2
x2 , (5.16)

so
log(p) = −ayx− a

2
x2, (5.17)

then
a

2
x2 + ayx+ log(p) = 0, (5.18)
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so

x1,2 =
−ay ±

√
(ay)2 − 4 · a2 · log(p)

a
, (5.19)

where x2 < 0. Furthermore we know, as p = P(Ty > x), that 0 ≤ p ≤ 1. So our
inverse is given by

x1 = −y +
√
y2 − 2

a
· log(p) ,where 0 ≤ p ≤ 1. (5.20)

Now we use our known random number generator - for the uniform distribution
- to generate a p between zero and one, substitute this p in (5.20) and then find x
which is a realization of our random variable.

Remark. Note that we have to change the simulation algorithm a bit to use this distribution
for the interarrival times of inventory dumps. In this case, we have to reschedule the event of
depleting at every job arrival.

5.4.1 Results

Now using the theory from the previous section, we can use this in our simulation
to analyze the behaviour of the model where ω(x) = ax. For several values of a, we
simulated the value of E[I] and PI for variable λ. In Figure 5.4 and Figure 5.5 we
find a plot for a = 6 and a = 7, as these turn out to be comparable with the outcomes
in Figure 4.3 and Figure 4.4. i.e. an E[I](2) that is not significantly larger than the
E[I](1) of the model(1) with constant ω and without threshold, and a P(2)

I which is
larger than the P(1)

I of that model(1). To see the change in behaviour of the model as
a changes, we also included the lines for a = 3 and a = 12 in Figure 5.4 and Figure
5.5.

FIGURE 5.4: E[I] for model, µ = 4 fixed, without threshold (ω = 3)
and models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 0.41), com-
pared to models with ω = ax where: a = 6 (dashed) and a = 7

(dashed). a = 3 and a = 12 included for reference.
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FIGURE 5.5: PI for model, µ = 4 fixed, without threshold (ω = 3) and
models with threshold (ω1 = 0.0001, ω2 = 8, x1 = 0.41), compared to

models with ω = ax where: a = 6 (dashed) and a = 7 (dashed).
a = 3 and a = 12 included for reference

Now we consider Figure 5.4 and Figure 5.5. First we notice that the model with
a = 6 gets almost the same result for PI as the model with threshold, but the mean
inventory is larger than both the model with threshold and the model(1) with con-
stant ω (and no threshold). For the model with a = 7, we see the mean inventory
is for small λ a little bit larger than the model with threshold and for larger λ just a
little bit smaller than the model with threshold. However, the PI remains for all λ
just a bit smaller than the threshold model.
We can conclude that the model where ω(x) = ax works better - in terms of our ex-
periment in 4.3.1 - than the model(1), but not just as good as the model with thresh-
old.

It is not quite surprising that this model works better than model(1). In section 4.3
we learned that depleting the inventory with a relatively small rate for a small in-
ventory level and a relatively large rate for a large inventory level works well. Just
as the threshold model, also the model with ω(x) = ax increases its rate when the
inventory level increases.

Using the simulation we made, one can also investigate the behaviour of a model
with threshold and ω(x) = ax, where the value of a changes at a certain threshold
level. Unfortunately there was not enough time in this project to analyze these mod-
els in depth, but we have taken a look at a combination of the threshold parameters
and the ω(x) = ax model. We then guesstimated the parameters for this model at:
a1 = 2, a2 = 15 and we took x1 = 0.41 like we did in Figure 4.3 and Figure 4.4. We
then get:
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FIGURE 5.6: E[I] of figure 5.4, compared to model with ω(x) = ax
and threshold for which a changes with a1 = 2, a2 = 15, x1 = 0.41.

FIGURE 5.7: PI of figure 5.5, compared to model with ω(x) = ax and
threshold for which a changes with a1 = 2, a2 = 15, x1 = 0.41.

We see in these figures that it improves relative to the model with a constant a. The
PI in this model is almost the same as the PI of a = 7, while the E[I] is almost the
same as the E[I] of a = 6.

Hypothesis for Further Research

Now it might be interesting to have some more research to this model, however our
hypothesis is that the optimal model for this threshold for a will not be better than
the optimal model for the threshold for ω. It would be reasonable that in our exper-
iment, there is an optimum where one should deplete its inventory. Heuristically, it
would not make sense to choose the level at which one depletes random, instead of
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deterministic on such an optimum. Therefore we think that in this experiment, the
optimum is obtained at a certain x̂1 and ω1 = 0, ω2 =∞. Hence, for the model with
threshold for a, we would get this same x̂1, and a1 = 0, a2 =∞.

5.5 Optimization Problem

In this section, we will discuss an optimization problem which can be solved using
the simulation described in Section 5.1.
Let us assume the model of Paragraph 4.1, so the model with one threshold level.
We are allowed to choose values for x1, ω1 and ω2, and we know λ = 2 and µ = 4
are fixed. Now our goal is to gain the highest profit. We have three types of income:

I1 The income per product unit obtained by selling a job completely from the
inventory,

I2 The income per product unit obtained when a job can not (fully) be served
from the inventory (so there is a waiting time for the customer),

I3 The income per product unit obtained by selling via an inventory dump.

Furthermore we have the costs for the storage which is K per unit per time unit.

5.5.1 Setup of Optimization

So we have our simulation as described before. To solve the optimization problem,
we will calculate the following quantities:

D1 The mean amount of product for jobs that are delivered completely from in-
ventory, per time unit,

D2 The mean amount of product for jobs which cannot completely be delivered
form the inventory, per time unit,

D3 The mean amount of product that is dumped, per time unit.

E(I) The mean inventory level

Now given certain values for x1, ω1 and ω2, we can then easily determine the profit

Profit = −K · E(I) +
3∑
i=1

Ii ·Di. (5.21)

Now iterating over several values for these parameters x1, ω1 and ω2, calculating
the profit, gives us a 4D matrix from which one can easily find the maximum Profit
and their corresponding parameters.
These parameters then give you the best set up for you inventory depletion function
ω(y), within the single threshold model.
In Table 5.1 we find the optimal values for our parameters x1, ω1 and ω2 for the
model with exponentially distributed job sizes, λ = 2 and µ = 4 and initial values
for the incomes (I1, I2, I3) = 1

6(3, 2, 1), where K is varying.
For obvious reasons, the obtained profit decreases as the costs increase. Now we
take a look at the behaviour of our parameters. We first see that x1 is, generally,
decreasing, and ω1 and ω2 are increasing all the way from their minimum till their
maximum value in the simulation. This behaviour is quite reasonable. As the costs
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Exponentially distributed job sizes

K x1 ω1 ω2 x̃1top 10 ω̃1top 10 ω̃2top 10 Profit
0 5.6 0 0.5 5.75 0 0.5 0.324

0.02 2.4 0 12 2.4 0 12.75 0.288
0.04 1.6 0 16 1.6 0 14.5 0.272
0.06 1.1 0 16.5 1.1 0 11.5 0.261
0.08 0.8 0 15.5 0.8 0 14.75 0.253
0.1 5.2 6 2 0.8 3.5 11 0.248
0.12 0.1 6.5 15 0.1 6 16.25 0.247
0.14 0.1 6.5 17.5 0.1 6 17 0.247
0.16 0.1 6.5 17.5 0.1 6 17 0.246
0.18 0.1 6.5 17.5 0.1 6.25 17 0.245
0.2 0.1 6.5 17.5 0.1 6.25 17 0.244

TABLE 5.1: Profit for the best values of parameters (where 0 < x1 < 6;
0 < ω1 < 6.5 and 0.5 < ω2 < 17.5) with certain value of k and fixed:
I1 = 1

2 , I2 = 1
3 and I3 = 1

6 for model with one threshold level x1 and
exponential services: λ = 2, µ = 4.

increase, one wants to deplete more. However, as most profit is obtained from types
D1, first ω2 is increased and x1 decreased and only at last ω1 is changed completely
to its maximum.
Now we notice a strange row at K = 0.1. Here both x1 and ω2 do not follow the
trend. To investigate what happens here, we have printed the columns ·̃top 10. These
denote the medians of x1, ω1 and ω2 from the top 10 highest profits (so the profits
that are almost the same as the best profit). If we consider these columns, we see it
is quite reasonable and no real outliers appear. The optimal set of parameters which
is given for this K = 0.1 therefore very likely has an outlieing value of the profit.
This is due to the fact that some parameters correspond with values for the expected
profit that are very close to each other. In fact, the set of parameters (x1, ω1, ω2) =
(5.2, 6, 2) is not that odd to have a good profit, as in practice this is almost a system
with a constant depletion rate ω = 6 (as the system will almost never cross the
threshold level x1). However, to obtain a set of parameters for a good profit value, it
is recommended to take the median over the top parameter settings and to use these
for your system.
So in Table 5.1 we considered the model based on the M/M/1 queueing model, but
using the simulation one can obtain similar results for other job size distributions.
In Table 5.2 we find the results when assuming B ∼ U [0, 0.5]. In the table we see the
profit for this uniform distribution is lower than for the exponentially distributed
services. It is reasonable that we again notice the same trend for x1, ω1 and ω2.
However, this model seems to be less susceptible for outliers.
As the simulation and optimization setup will not change significantly with other
distributions of the job sizes, we will not discuss the outcomes of other distributions
in this report.
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Uniformly distributed job sizes

K x1 ω1 ω2 x̃1top 10 ω̃1top 10 ω̃2top 10 Profit
0 6 0 0.5 5.65 0 0.5 0.249

0.02 0.8 0 10.5 0.85 0 13.75 0.233
0.04 0.6 0 15 0.6 0 14.75 0.225
0.06 0.5 0 17.5 0.5 0 15.25 0.22
0.08 0.4 0 16 0.4 0 15.25 0.216
0.1 0.3 0 16.5 0.3 0 15.75 0.212
0.12 0.3 0 17.5 0.3 0 16.25 0.209
0.14 0.3 0 17.5 0.3 0.5 17 0.205
0.16 0.1 6.5 17 0.1 6 16.75 0.203
0.18 0.1 6.5 17 0.1 6 17 0.202
0.2 0.1 6.5 17.5 0.1 6 17 0.201

TABLE 5.2: Profit for the best values of parameters (where 0 < x1 < 6;
0 < ω1 < 6.5 and 0.5 < ω2 < 17.5) with certain value of k and fixed:
I1 = 1

2 , I2 = 1
3 and I3 = 1

6 for model with one threshold level x1,
λ = 2 and uniformly distributed services [0, 0.5].
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Chapter 6

Conclusion

In this paper, we further analyzed the models given in the articles Albrecher et al.,
2016 and Boxma, Essifi, and Janssen, 2016. We mathematically analyzed the M/M/1
queueing inventory model with a depletion rate which is changed at a certain thresh-
old level. We compared this model to a model without threshold and showed how
one can use the derived equations to find parameters that will increase the probabil-
ity that a job can be fully served straight from the inventory and, at the same time,
will decrease the mean inventory. In an analogue way, one can of course use the
equations to improve the model considering any of the discussed quantities, like the
ones just mentioned or e.g. the mean workload and the probability for an arriving
job to find no remaining work (but not necessarily enough inventory such that the
job can be delivered straight out of it). Furthermore, we considered some slightly
different models such as a model with a depletion from above the threshold level
back to the threshold level itself instead of zero, and a model with more than one
threshold level.
As it is a rather strong assumption that the job sizes are exponentially distributed,
we then also looked at the model for general job size distributions, using a simula-
tion. This simulation forms a tool to analyze behaviour of the model with different
values for parameters and different distributions.

6.1 Further Research

Based on the research we discussed in this paper, some topics for future research
arose. In the last section of Chapter 5 we discussed an optimization problem with
constant values of the income and costs. For example, it might be interesting to in-
vestigate the behaviour of the model when the income of customers that have to
wait depends on their waiting time. Another example could be a model where the
costs per unit of the inventory are depending on the level of the inventory, like when
the manufacturer has to buy external storage.
At second, the model with a threshold and ω(x) = ax could be analyzed, for dif-
ferent values of a below and above the threshold. More research on this could then
eventually test the hypothesis we stated in Section 5.4.1.
Finally, it might be interesting to investigate where in industry similar models occur
and how one can analyze these using the methods we used in this paper.
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