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1 Introduction

Let (Xn)n≥0 be a sequence of independent and identically distributed discrete random vari-
ables. We wish to group these random variables in blocks of size m. One method to efficiently
achieve this is the following. First, a random sample X1 is generated which takes values from
the set S = {1, ..., k}, k ∈ N∪{∞} with respective probability P(Xi = j) = pj for j ∈ S.
More random samples X2, X3, ... are added to the sequence till there are exactly m samples
with the same value as X1. After the m’th sample is found these samples are marked as used,
this does not change the position of the other samples in the sequence. We look at the first
following sample which has not been marked as used, which we call free, and again try to
find m samples with equal value. Chances are that some of these samples have already been
generated. Only when there are less then m of these samples in the sequence, more samples
will have to be generated till the required amount is found. This process is repeated a given
number of times.

Let us look at an example where the random samples are represented by a fair die, given
we have an infinite collection of dice and an infinitely long table to place them on. We have
S = {1, ..., 6} with p1 = ... = p6 = 1

6 and take the size of our sorted groups m = 3. Before we
start the process, we are at step 0 and the table is empty. Say the first die is to be the value
2. We now keep throwing new dice from our collection and place them next to our previously
thrown die till we see three dice in our sequence with the value 2. Say our sequence of dice
looks like:

2 1 3 4 2 6 1 2

We now take each die with value 2 and replace it with an asterisk, so after our first step the
sequence looks like

* 1 3 4 * 6 1 *

Notice that the position nor value of the remaining dice has not changed. Now we look at
the first die in our sequence, which has value 1. As we do not have three dice with this value,
we throw some new dice till we do. We end up with the sequence

* 1 3 4 * 6 1 * 5 2 1

Therefore our second step of the process ends with the sequence

* * 3 4 * 6 * * 5 2 *

After this process has been repeated a number of steps we end up with a sequence of used
samples before we see the first free sample. We are interested in the sequence which starts at
the first free sample and ends with the last used sample. We define this sequence as (Qn)n∈N,
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where n is the number of sorting steps of the process, and define the position of the last used
sample as Maxn. As the first free sample can be after Maxn in the case all samples are used,
we define the sample before the first free sample as Minn. Going back to our example, we
have

* 3 4 * 6 * * 5 2 *

Min2 Max2

Q2

In this report we shall focus on the properties of Qn, in particular, we are interested in the
length of the sequence Dn = |Qn| = Maxn −Minn and its distribution. In order to analyze
the behaviour of Dn we study properties of Maxn and Minn, such as the rate of growth and
its fluctuations.
As some steps make use of previously generated samples, we find that the number of samples
that need to be generated is conditionally dependent of the previous states. Because of
these dependencies the state space of the sequence is rather complex, so we define it as
Ω = {(qi)Dni=1 : ∃nP(Qn = (qi)

Dn
i=1) > 0} with qi ∈ {S, ∗}. The sequence Qn starts with the

first free sample and ends with the last used sample such that it is not possible that Dn = 1,
as this would mean that this one element is both used and free which is not possible by
definition. We define the elements of our sequence (Qn(i))Dni=1 as

Qn(i) =

{
XMinn+i if XMinn+i is free,

∗ if XMinn+i is used,
(1.1)

where we start with the empty list Q0, such that D0 = 0. As shown in section three, the
transition probabilities of this sequence are only dependent on its last state which allows us
to make use of Markov properties (3.1). As every step of the process starts with a previously
generated part and a part of samples that still has to be generated we can split our sequence
in two parts Qn = (Kn, Ln).

* 3 4 * 6 * * 5 2 *

Min2 Max2Max1

K2 L2

The sequence Kn starts at the first free sample after the first up to m samples with the same
value as Qn−1(1) are marked as used and ends at the sample at position Maxn−1. So this
sequence has already been determined by the outcome of the previous sequence Qn−1. In the
case that there are m or less free samples in Qn−1 and they all have the same value, we find
that on step n all these free samples are used and therefore Kn = ∅. Define the number of
samples with value Qn−1(1) which we still need to find after grouping the previously generated
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samples with this value as r, such that

r = max{0,m−
Dn−1∑
i=1

1{Qn−1(i)=Qn−1(1)}}. (1.2)

Ln is the random sequence conditioned on r and the respective probability of Qn−1(1). As all
the samples are i.i.d. we find that the number of steps till we generate the next sample with
the right value is Geometrically distributed with success probability pQn−1(1). Given that the
sequence Kn 6= ∅, such that all the generated samples this step are part of the sequence Qn,
it follows that the length of the sequence |Ln| is Negative Binomial distributed with success
probability pQn−1(1) and the number of successful experiments r. Assume that Qn−1(1) = k,
then the p.m.f. of |Ln| is

P(|Ln| = l) =

(
l − 1

r − 1

)
prk(1− pk)l−r. (1.3)

All the samples in Ln with a different value as Qn−1(1) are free. Let Si denote the number
of occurrences of the value i ∈ S in the sequence Ln, given Kn 6= ∅. We can approach the
number of times every value appears in Ln with the Multinomial distribution with l trials,
conditioned on that the value i appears r times. Say for ease of notation that i = k, such
that for l ≥ r

P(S1 = s1, ..., Sk−1 = sk−1, l|Sk = r) =
P(S1 = s1, ..., Sk−1 = sk−1, Sk = r)

P(Sk = r)

=

l!
s1!...sk−1!r!p

s1
1 ...p

sk−1

k−1 p
r
k(

l

r

)
prk(1− pk)l−r

=
(l − r)!
s1!...sk−1!

k−1∏
i=1

(
pi

1− pk

)si
=

(l − r)!
s1!...sk−1!

k−1∏
i=1

πsii ,

(1.4)

which is the Multinomial distribution with l−r trials k−1 values with probabilities πi = pi
1−pk .

Now that we have analysed the structure of our sequence, we will define the first and last
element of our sequence and find the bounds of its position.

As Maxn is the position of the last of the m ·n used samples, we define it as the total number
of samples generated to complete n steps, i.e.,

Maxn = max
i
{i ∈ N : Xi used during the first n sorting steps}

= m · n+

Dn∑
j=1

1{Qn(j)6=∗},
(1.5)

with Max0 = 0. As there are m · n samples sorted after n steps but no limit to how many
samples we need to generate before we find them, we have that

m · n ≤ Maxn <∞. (1.6)
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The same way we can define Minn, as all the samples up to sample Minn are used we know
the remaining m ·n−Minn used samples are elements of Qn. From this we find the expression

Minn = min
i
{i ∈ N : Xi+1 not used the first n sorting steps}

= m · n−
Dn∑
j=1

1{Qn(j)=∗},
(1.7)

with Min0 = 0.

Theorem 1.1: Bounds for Minn

Let Minn be defined as (1.7). Then max{Minn, n ∈ N} = m · n and

min{Minn, n ∈ N} =

{
n, for n < k

m · n− (m− 1)(k − 1), for n ≥ k.
(1.8)

Proof. Upper bound After n sorting steps we know that in total m ·n samples have been used.
If the first m · n samples have all been used, it follows that the first free sample is Xm·n+1

such that Minn = m ·n. If this is not the case it follows that there is some Xi, i ≤ m ·n, that
has not been sorted. Such that Minn = i− 1 ≤ m · n. Therefore, it holds that Minn ≤ m · n.

Lower bound n < k: As every sorting step the first free sample is always used, it follows that
Minn > Minn−1. Therefore, as Min0 = 0 we know that Minn ≥ n. For this to be the maximal
lower bound, we want to show that it is possible that Minn = n. Take the sequence (Xi)

k
i=1,

for which X1 6= X2 6= .... 6= Xk, which is possible as we have k unique values. As every sorting
step only one value is grouped, it follows that it takes k sorting steps till every sample is used,
where for the first k − 1 steps it holds that Minn = n.

Lower bound n ≥ k: To show why this lower bound makes sense, we look at the definition of
Minn in terms of the number of used samples. Namely, we know that the number of used
values which are elements of Qn is m · n−Minn. So for (1.8) to be the lower bound, it needs
to hold that that it is not possible to have more then

m · n−m · n+ (m− 1)(k − 1) = (m− 1)(k − 1) (1.9)

used samples in Qn. Therefore, we need to prove the following proposition:

Proposition 1.1: Upper bound used samples with the same value in Qn

Define Gn,x = #{i : Qn(i) = ∗, XMinn+i = x}.

max{Gn,x} ≤ m− 1, ∀n ∈ N, x ∈ S (1.10)
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Proof. Define the position of the i’th appearance of value x in the sequence as

xi = min{y :

y∑
j=1

1{Xj=x} = i}. (1.11)

As every time a value is grouped the first m free samples with this value are used, it follows
that if we sort value x for the (s+ 1)st time on step n that Minn = xs·m+1. We will proof by
induction by first showing that the upper bound holds for the first time the value is sorted.
Say that we are sorting value x for the first time on step n1 such that Minn1 = x1. As
XMinn1

/∈ Qn1 , it follows that

Gn1,x ≤ |{x2, ..., xm}| = m− 1. (1.12)

Now assume this upper bound also holds after sorting this value s times, such that for n1 < ns

Gns,x ≤ |{x(s−1)m+2, ..., xs·m}| = m− 1. (1.13)

As we know that all samples up to Minns+1 = xm·s+1 are not element of Qns+1 , and x1 <
x2 < ... < xs·m < xs·m+1, it follows that

Gns+1,x ≤ |{xs·m+2, ..., x(s+1)·m}| = m− 1. (1.14)

From this proof we also find that if we are sorting a certain value on step n + 1, then there
are no used values in Qn which held this value. Therefore, up to (k − 1) different values can
have used samples in sequence Qn, such that there can only be up to (m − 1)(k − 1) used
samples in Qn. For this to be the maximum lower bound, Minn needs to be able to hold this
value. To show this, we construct a method to achieve this lower bound for every m and k.
As achieving the lower bound for n < k is trivial, which is always the case for k = ∞, we
construct a method to achieve this lower bound for n ≥ k with k <∞:

1. Let the first k− 1 samples have unique values, so X1 6= X2 6= .. 6= Xk−1, such that after
k − 2 sorting steps we have Mink−2 = k − 2.

2. To achieve the lower bound at step n let the value of Xk−1 and the value that has
been used yet alternately in groups of m for n − (k − 2) − 1 times. So we have for
Xk+m 6= X1, ..., Xk−1 and Xsm+k−1 6= X(s+1)m+k for s = 0, ..., n− k + 1, that

Xsm+k−1 = Xsm+k = ... = X(s+1)m+k−1. (1.15)

It follows that at step n− 1 we have Minn−1 = m · n− (m− 1)(k − 1)− 1.

3. At the end of the previous step the samples with the two values which appeared in
groups of m positioned after Minn−1 are free. So take

Xm·n−(m−1)(k−1) = Xk−1, Xm·n−(m−1)(k−1)+1 = Xk+m. (1.16)

Then on step n sample Xm·n−(m−1)(k−1) is used and sample Xm·n−(m−1)(k−1)+1 is free.
It follows that Minn = m · −(m− 1)(k − 1), which is our lower bound.
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As this can sound quite complicated we can look at table 1 for an example.

Table 1: Sequence to achieve lower bound for k = 5,m = 3 for n = 5 and n = 6

n Sequence Minn n Sequence Minn
0 1,2,3,4,4,4,5,4 0 4 *,*,*,*,*,*,5,5,5,4,5 6
1 *,2,3,4,4,4,5,4 1 5 *,*,*,*,*,*,*,*,*,4,5 9
2 *,*,3,4,4,4,5,4 2 6 *,*,*,*,*,*,*,*,*,*,5 10
3 *,*,*,4,4,4,5,4 3
4 *,*,*,*,*,*,5,4 6
5 *,*,*,*,*,*,*,4 7

Now we have shown that it is possible to reach the lower bound for every value of m and k
and it is not possible to get any lower values we find

m · n− (m− 1)(k − 1) ≤ Minn ≤ m · n, for n ≥ k. (1.17)

Now that the basic properties have been analysed the rest of this thesis is organized as follows.
In the next section we will analyse the properties for Qn as the number of sorting steps grows.
Namely, we will prove that the Minn and Maxn for k < ∞ and Minn for k = ∞ all have
the same rate of growth. In section 3 we will prove that the sequence Qn is a Markov Chain
by looking at the transition probabilities and showing that for every state, the transition
probability is only conditioned on composition of the previous state. The following sections
will then show that Qn only has a stationary distribution if and only if k <∞ by proving the
sequence is irreducible for all k ∈ N∪{∞}, but only positive recurrent for k <∞. We follow
by further analysing the behaviour of Qn for k = ∞ to get a better idea why these results
hold. Finally, we will discuss the results shown in this thesis and suggest problems which will
require further analysis.
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2 Rate of growth

This section we will analyse the rate of growth for Minn for both finite and infinite support
and use this to prove that the distribution of the grouped values converges to the distribution
of the samples. For Maxn we show that it has the same rate of growth as Minn for the finite
support case.

2.1 Finite support

Let us start by looking at the distribution XMinn+1 = Qn(1), the value that is being grouped
on step n. The first intuition could be that this distribution is simply the same as the
distribution for Xi, but by looking at a simple example we can see that this does not hold for
all n. Take m = 2, k = 3 and p = (1

2 ,
1
4 ,

1
4). For step n = 1 the probability that the current

value being sorted is i ∈ S is simply the probability that the first generated sample has value
i, which has probability pi. For n = 2 we see that the distribution is different. As every step
uses two samples, we can already see which value will be sorted for n = 2 after a total of 3
samples are generated. We can simply add up all the sequences for which i will be sorted
second and add up all their respective probabilities.

P(Q2(1) = 1) = p1p1p1 + p2p1p1 + p3p1p1 + p2p1p2 + p3p1p3

+ p2p1p3 + p3p1p2 + p2p2p1 + p3p3p1

=
1

8
+

1

16
+

1

16
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32
+

1

32

=
7

16
,

P(Q2(1) = 2) = p2p2p2 + p1p2p2 + p3p2p2 + p1p2p1 + p3p2p3

+ p1p2p3 + p3p2p1 + p1p1p2 + p3p2p2

=
1

64
+

1

32
+

1

64
+

1

16
+

1

64
+

1

32
+

1

32
+

1

16
+

1

64

=
9

32
= P(Q2(1) = 3).

(2.1)

The distribution for the grouped values is different for low values of n, but in Figure 1 it
seems that the distribution of the grouped values converges to the distribution of the samples
as n→∞.
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Figure 1: Simulation with 106 runs for the probability that the grouped value XMinn+1 = 1
after n steps with p = (1

2 ,
1
4 ,

1
4).

Let us look at the case that k = 2. As seen in the proof for the following proposition, there
are some properties which only hold for k = 2 which enable us to construct an expression for
the probabilities of the grouped values:

Proposition 2.1: Convergence distribution of grouped values for k = 2

Let p̂n,i be the probability that value i ∈ S was sorted on step n. If the number of

values k = 2 it holds that p̂n,i
n→∞−−−→ pi.

Proof. Take P(Xi = 1) = p and P(Xi = 2) = (1 − p). If the value 1 is sorted on step n + 1,
the value has appeared a multiple of m times before we find the first sample for which we
start sorting step n + 1. Say we sorted value 1 l times before step n + 1 and value 2 n − l
times. This means that before we find the (l ·m+ 1)st sample with value 1 we find this value
l ·m times and the value 2 between m(n − 1) − l ·m + 1 and m(n − l) times. For k = 2 we
find the expression

p̂i,n+1 = p

pmn +
m∑
j=1

n−1∑
l=0

(
(n− 1)m+ j

lm

)
(1− p)m(n−1)−lm+jplm


= p

pmn +
m∑
j=1

(1− p)m(n−1)+j
n−1∑
l=0

(
(n− 1)m+ j

lm

)
(

p

1− p
)lm


= p

pmn +

m∑
j=1

An+1,j

 .

(2.2)

To find the limit of this equation we need to simplify An+1,j . One way to do this is to rewrite
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it in the form of the binomial formula an
∑n

l=0

(
n

l

)
xl = an(1 + x)n. One difference is that

the series in An+1,j only sums the multiples of m. This can be rewritten by introducing the

primitive m-root of unity ω = e
2πi
m .

Definition 2.1: Primitive m-root of unity

An mth root of unity, where m is a positive integer, is a number ω satisfying the
equation

ωm = 1 and ωk 6= 1 for k = 1, ...,m− 1. (2.3)

The primitive m root has the property that

1

m

m−1∑
j=0

ωjl =

{
1 if l = 0 mod (m),

0 otherwise.
(2.4)

Proof. Let us start with the case that l is a multiple of m, such that ∃z ∈ N : l = z ·m. From
the property of the primitive m-root of unity it follows that

m−1∑
j=0

ωjl =
m−1∑
j=0

(ωm)zj =
m−1∑
j=0

1zj = m. (2.5)

Now assume l is not a multiple of m. We find that the sum is the same as

1 + (ωl) + (ωl)2 + ...+ (ωl)m−1, (2.6)

which is the Geometric series with common factor (ωl). Therefore, we find that

m−1∑
j=0

ωjl =
1− (ωl)m

1− ωl
=

1− (ωm)l

1− ωl
=

1− 1l

1− ωl
= 0, (2.7)

as ωl 6= 1.

If we sum over the terms l = 0, ...,m(n − 1) + i and multiply by (2.4) we find that all the
extra terms that are not a multiple of m are multiplied by 0. In the case that j = m, the last
term needs to be subtracted as this term is not multiplied by 0. Applying these changes, we
find our equation in the form of the binomial formula. For 1 ≤ j < m we have

An+1,j =
(1− p)m(n−1)+j

m

m(n−1)+j∑
k=0

(
m(n− 1) + j

k

)(
p

1− p

)k m−1∑
l=0

ωlk


=

(1− p)m(n−1)+j

m

(
m−1∑
l=0

(1 +
ωlp

1− p
)m(n−1)+j

)

=
1

m

m−1∑
l=0

(1− p(1− ωl))m(n−1)+j .

(2.8)

10



For j = m we find

An+1,m =
(1− p)mn

m

(
mn∑
k=0

(
mn

k

)(
p

1− p

)k m−1∑
l=0

ωlk −m(
p

1− p
)mn

)

=
(1− p)mn

m

(
m−1∑
l=0

(1 +
ωlp

1− p
)mn −m(

p

1− p
)mn

)

=
1

m

(
m−1∑
l=0

(1− p(1− ωl))mn −mpmn
)
.

(2.9)

Substituting these results in (2.2) holds

lim
n→∞

p̂i,n+1 = lim
n→∞

p(pmn +
m−1∑
j=1

An+1,j +An+1,m)

= lim
n→∞

p

m

m∑
j=1

m−1∑
l=0

(1− p(1− ωl))m(n−1)+j .

(2.10)

As |(1− p(1−ωl))| < 1 for l 6= 0 and is equal to 1 for l = 0, we find that all the terms, except
for l = 0, converge to 0. Therefore,

lim
n→∞

p̂i,n+1 =
p

m

m∑
j=1

1 = p. (2.11)

Constructing a similar proof for k > 3 will be difficult, as we won’t be able to use the same
properties to find an expression for p̂i,n which is solvable. Instead we will use the bounds for
Minn to prove the following theorem.

Theorem 2.1: Convergence of Minn/n for k <∞

Let the size of the the outcome space for Xi be k < ∞ and let p̂n,i be the probability
that value si was sorted on step n. Then

Minn/n
n→∞−−−→ m. (2.12)

Consequently,
p̂n,i

n→∞−−−→ pi (2.13)

Proof. Using the lower and upper bound (1.17) for Minn, it follows that

lim
n→∞

m · n− (m− 1)(k − 1)

n
≤ lim

n→∞

Minn
n
≤ lim

n→∞

m · n
n

⇒ lim
n→∞

m− (m− 1)(k − 1)

n
≤ lim

n→∞

Minn
n
≤ m.

(2.14)
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As the constant on the left side converges to 0 as n→∞ the limit is bounded on both sides
by m. Therefore, as a result of the Sandwich theorem it holds that

lim
n→∞

Minn
n

= m. (2.15)

This proves the first part of the theorem. Now denote the fraction of times value i ∈ S has
been sorted up till step n as

Ni(n) =
1

n
#{1 ≤ t ≤ n : Qt−1(1) = i}, (2.16)

so that
E[Ni(n)] = p̂n,i. (2.17)

Note that the sample Qn−1(1) is the (Minn + 1)st sample in the sequence. So we know that
the position of Qn−1(1) is in [mn− (m− 1)(k − 1) + 1,mn+ 1]. As the samples are i.i.d. it
follows that

E[#{t ≤ mn+ 1 : Xt = i}] = pi(mn+ 1). (2.18)

Say value i appears si times in the first Minn + 1 samples. Every time this value is sorted,
m samples with this value are used. If there are less than m, but more than 0 samples
with this value free after a number of sorting steps, the remaining samples with this value
will be found after sample Minn + 1. This means that the value i has been sorted up to
si
m ≤ d

si
me ≤

si
m + 1 times, before we start sorting value Qn−1(1). We know that Minn + 1 is in

[m ·n− (m− 1)(k− 1) + 1,m ·n+ 1] and for n large it follows from the Law of large numbers
that after m · n samples, we see the value i approximately pi ·m · n times. Therefore, we find
a lower and upper bound that the value i has been sorted is

pi
m · n− (m− 1)(k − 1) + 1

m
≤ #{1 ≤ t ≤ n : Qt−1(1) = i} ≤ pi

m · n+ 1

m
+ 1. (2.19)

Dividing by n to get the ratio of sorting steps with value i and taking the limit of n → ∞
gives

lim
n→∞

pi(m · n− (m− 1)(k − 1) + 1)

mn
≤ lim

n→∞
p̂n,i ≤

pi(m · n+ 1) +m

nm
. (2.20)

As both sides converge to pi we find that by the Sandwich theorem that p̂n,i
n→∞−−−→ pi.

Using this result we can now prove that for finite support Maxn has the same rate of growth
as Minn.

Theorem 2.2: Convergence of Maxn/n for k <∞

Maxn/n
P−→ m. (2.21)

Proof. We want to show that ∀ε > 0, it holds that

P(|Maxn
n
−m| > ε)

n→∞−−−→ 0. (2.22)
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To do this, we will find an upper bound and show that this bound converges to 0.

P(|Maxn
n
−m| > ε) = P(Maxn −m · n > εn) + P(Maxn < m · n− εn)

= P(Maxn > m · n+ εn)

= 1− P(Maxn −m · n ≤ εn)

≤ 1− P(Maxn −Minn ≤ εn),

(2.23)

where the second equality holds as Maxn ≥ m ·n. The inequality holds as Minn ≤ m ·n, such
that

P(Maxn −m · n ≤ εn) ≥ P(Maxn −Minn ≤ εn). (2.24)

As the probability that Maxn −Minn ≤ εn is greater than the probability that this holds for
all i = 1, 2, ..., n it follows that

P(|Maxn
n
−m| > ε) ≤ 1− P(

n⋂
i=1

Maxi −Mini ≤ εn). (2.25)

If it holds that the maximum number of samples between two consequent samples with equal
value is εn

m−1 then it follows that Maxi − Mini ≤ εn, i = 1, ..., n, as starting from any Xi,
the following m − 1 samples with equal values are always found within (m − 1) · εn

m−1 = εn
samples. Define Yj as the event that there does not exist l ∈ [j + 1, ..., j + b εn

m−1c] such that
Xj = Xl, which has probability

p := P(Yj = 1) =

k∑
i=1

pi(1− pi)b
εn
m−1

c, (2.26)

and expected value

E[Yj ] = 0 · (1− p) + 1 · p = p. (2.27)

As Maxn ≤ n(m + ε) if the event holds, we take n̂ = bn(m + ε) − εn
m−1c. Now define

Y =
∑

j Yj , j = 1, ..., n̂, such that if Y ≥ 1 it means that there is a Xj for which the first
following sample with equal value is more than b εn

m−1c samples away. Therefore, it holds that

1− P(
n⋂
i=1

Maxi −Mini ≤ εn) = P(Y ≥ 1). (2.28)

As a result of Markov’s inequality, it holds that

P(Y ≥ 1) ≤ E[Y ] =

n̂∑
j=1

E[Yj ] = n̂p
n→∞−−−→ 0. (2.29)

As this is the upper bound for our probability, it follows that

P(|Maxn
n
−m| > ε) ≤ P(Y ≥ 1)

n→∞−−−→ 0. (2.30)

13



Figure 2: Simulation of Minn/n and Maxn/n for Xi ∼ Unif [1, 500], and for m = 4

Now that we have shown that both Maxn/n and Minn/n converge to the same constant, we
can prove that Dn = o(n) as seen in Figure 2.

Theorem 2.3: Convergence of Maxn/n−Minn/n for k <∞

For k <∞ it holds that
Maxn/n−Minn/n

P−→ 0. (2.31)

Proof. ∀ε > 0 it holds that

P(|Maxn/n−Minn/n| > ε) = P(|Maxn/n−m+m−Minn/n| > ε)

≤ P(|Maxn/n−m|+ |m−Minn/n| > ε),
(2.32)

where the inequality results from the triangle inequality. As |m −Minn/n| = |Minn/n −m|
we find

P(|Maxn/n−Minn/n| > ε) ≤ P(|Maxn/n−m|+ |Minn/n−m| > ε)

≤ P
(

(|Maxn/n−m| >
ε

2
) ∪ (|Minn/n−m| >

ε

2
)
)

≤ P(|Maxn/n−m| >
ε

2
) + P(|Minn/n−m| >

ε

2
),

(2.33)

where the last inequality holds as a result of the Union bound. We have already shown that

as Maxn/n
P−→ m and Minn/n

P−→ m, that both probabilities in the last upper bound converge
to 0. It follows that

P(|Maxn/n−Minn/n| > ε)
n→∞−−−→ 0. (2.34)
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2.2 Infinite support

We want to use similar methods as for k <∞ to show that Minn/n converges for k =∞. To
do this we want to show that the Minn converges to some domain [m ·n−C(n),m ·n], where
C(n) grows slower than n. For k <∞ this is a constant dependent on the number of values.
Denote the number of unique values found in the first n samples as Un. We will show that
for any discrete distribution, Un will grow slower than O(n).

Proposition 2.2: Order of unique values found in a discrete sequence

Let the r.v Xi be discreet. Then Un/n
P−→ 0.

Proof. Take some ε > 0. It follows that

PUn ≥ εn) ≤ P(#{i : Xi ≥
εn

2
} ≥ εn

2
)

≤
nP(Xi ≥ εn

2 )
εn
2

=
2

ε
P(Xi ≥

εn

2
)
n→∞−−−→ 0,

(2.35)

where the second inequality is the result of Markov’s inequality.

We can use this result to prove using the similar methods that the Minn/n
P−→ m for all values

of k.

Theorem 2.4: Convergence of Minn/n

Let k ∈ N∪{∞}, then

Minn/n
P−→ m. (2.36)

Consequently,
p̂n,i

n→∞−−−→ pi. (2.37)

Proof. We have already showed it holds for k < ∞. As we have Umn < ∞ unique values in
the sequence (Xi)

mn
i=1, we find using the same method used to prove the bounds for Minn for

k <∞ that

m · n− (m− 1)(Umn − 1) ≤ Minn ≤ m · n, (2.38)

holds for k =∞. As we have shown that Umn grows slower than n it follows that

lim
n→∞

(m− 1)(Umn − 1)

n
= 0. (2.39)

Therefore, it follows that

m ≤ lim
n→∞

Minn
n
≤ m, (2.40)

15



such that by the Sandwich theorem we find that Minn/n
P−→ m.

For the second part of the theorem we can use the same steps as for k < ∞. By the Law of
large numbers, it follows that for n large the value i appears approximately pi ·m · n times
in the first m · n samples. Therefore, we find a lower and upper bound that the value i has
been sorted is

pi
m · n− (m− 1)(Umn − 1) + 1

m
≤ #{1 ≤ t ≤ n : Qt−1(1) = i} ≤ pi

m · n+ 1

m
+ 1. (2.41)

Dividing by n to get the ratio of sorting steps with value i and taking the limit of n → ∞
gives

lim
n→∞

pi(m · n− (m− 1)(Umn − 1) + 1)

mn
≤ lim

n→∞
p̂n,i ≤

pi(m · n+ 1) +m

nm
. (2.42)

As Umn grows slower than n it follows that both sides converge to pi, such that that by the
Sandwich theorem it results that p̂n,i

n→∞−−−→ pi.

In Figure 3 we see the distribution of Minn/n for n = 104. Notice that Minn/n seems to
converge to m more slowly for the Negative Binomial distribution. The reason for this can
be seen by comparing the probability ratios for both distributions

p(1− p)x

p(1− p)x−1
= (1− p) for Xi ∼ Geo(p)(

x

r − 1

)
pr(1− p)x−r+1(

x− 1

r − 1

)
pr(1− p)x−r

=
x(1− p)
x− r + 1

for Xi ∼ NegBin(p, r).

(2.43)

For the Geometric distribution the respective probability of the values decreases faster as the
value increases. Therefore, Un will increase slower such that the bounds for Minn will also
increase slower.

Figure 3: Plot of the distribution of Minn/n for n = 104 for Xi ∼ Geo(1
2) and Xi ∼

NegBin(1
2 , 5). Number of runs for each distribution is 103.
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3 The Markov Chain and its transition probabilities

In this section we will show that the sequence Qn is a Markov Chain.

Definition 3.1: Markov chain

The process Qn is a Markov chain if it satisfies the Markov condition:

P(Qn = qn|Q1 = q1, ..., Qn−1 = qn−1) = P(Qn = qn|Qn−1 = qn−1), (3.1)

for all n ≥ 1 and all q1, ..., qn ∈ Ω.

This is done by showing that the states the sequence can transition to and its probabilities
only depend on its previous state. We divide the outcome states of Qn−1 in two different
events:

E1 = {There are m or more samples with value Qn−1(1) in sequence Qn−1}
E2 = {There are less than m samples with value Qn−1(1) in sequence Qn−1}.

(3.2)

When the event E1 occurs, there are enough samples in the sequence with equal value to
Qn−1(1) so that no more samples have to be generated. In this case we have Ln = ∅ so the
transition is deterministic.
When the event E2 occurs, there are not enough samples with the correct value in the sequence
so that more have to be generated. In this case we have that Ln 6= ∅ and the transition is
random.

3.1 Deterministic case

We will first analyse the case that E1 occurs. As we base the samples which are sorted on the
value of Qn−1(1) we have that Minn > Minn−1 always holds, but as Ln = ∅, no samples are
added to the sequence so that Maxn = Maxn−1. Therefore, we find that dn = Maxn−Minn <
Maxn−1 −Minn = dn−1. Namely, if we have that

Kn = (XMinn+1, ..., XMaxn−1), (3.3)

where for the first m− (Minn−Minn−1) samples with kn(i) = qn−1(1) we have kn(i) = ∗. As
all the information for the transition is in the sequence Qn−1 and any additional information
about the previous states will not effect which value will be sorted, we find that

P(Kn = kn|Qn−1 = qn−1, ..., Q1 = q1)

=P(Kn = kn|Qn−1 = qn−1) = 1.
(3.4)

So this transition satisfies the conditions for the Markov Chain.

3.2 Random case

We will now analyse the case that event E2 occurs, so new samples have to be generated and
we have that Ln 6= ∅. We will divide this event in two sub events:
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1. All free samples in qn−1 have the same value, but there are less than m.

2. Not all free samples in qn−1 have the same value and there are less then m with the
same value as qn−1(1).

The reason for this division is because the conditions for these two events differ, which will
become clear during the analysis.

Case(1): In this event all the free samples in qn−1 are used on step n, but more need to be
generated to find a total of m with value qn−1(1). Say we have m − r free samples qn−1, so
we have to find r samples with equal value to qn−1(1) . This also means that the number of
used samples in qn has to be equal or less then r. So assume the number of used values in qn
is α ≤ r. This means that the first r − α generated samples have to be equal to qn−1(1), as
they are not part of the new sequence which starts at the first sample with a different value.
We get the following transition probability.

P(Qn = qn|Qn−1 = qn−1) =

{
prqn−1(1) if dn = 0

pr−αqn−1(1) ·
∏dn
i=1 pqn(i) if dn ≥ 2.

(3.5)

Case(2): As Kn 6= ∅ we need that

Kn =
(
XMinn+1, ..., XMaxn−1

)
, (3.6)

where for all the samples with kn(i) = qn−1(1) we have kn(i) = ∗. In this case all the
generated samples are part of the sequence as we find sample Minn in the determined part of
the sequence, so the transition probability is

P(Qn = qn|Qn−1 = qn−1) =

dn∏
i=|kn|+1

pln(i). (3.7)

We find that in either case the possible transitions and its probabilities are completely con-
ditioned on just the previous state and have shown that our sequence Qn is a Markov Chain.

4 Stationary distribution for finite support case

We have shown that for all possible states the conditions for a Markov Chain hold, we want
to show this sequence has a stationary distribution if k is finite. To do this we first introduce
the following definitions:

Definition 4.1: Irreducible

The Markov chain Qn is irreducible if for all states i, j ∈ Ω it holds that i ↔ j in a
finite number of steps.
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Definition 4.2: Positive recurrent

Let Ti = min{n ≥ 1|Qn = i} be the number of steps till the first return to i ∈ Ω. Then
state i is positive recurrent if E[Ti|Q0 = i] <∞.

With these definitions we can use the following theorem:

Theorem 4.1: Stationary distribution [2](227)

The Markov chain Qn has a well-defined stationary distribution if and only if the chain
is irreducible and all the states are positive recurrent.

We will first show that our Markov Chain is irreducible. This means that starting from every
state in Ω we are able to transition to any other state in our state space in a finite number of
steps. As we have defined our state space Ω as all the possible states reachable after a finite
number of steps starting from the empty set, we just need to show it is possible to get from
every state back to the empty set. Denote the number of times some value i ∈ S appears
in the sequence Ql by si. To transition to the empty state, we need that all the generated
samples are used. For this to happen we need to find every value in the sequence Ql at least
ŝi = si mod (m) additional times. There is a great number of ways this can happen, but we
only need to show it is possible. If we look at the possibility it happens in one specific way,
we can see that

P(Qn = ∅|Ql = ql) ≥
k∏
i=1

pŝi > 0, (4.1)

where n − l ≥ 1
m

∑k
i=1 si + ŝi, as every step uses m free samples. Now we have shown that

starting from any state, there is a non-zero possibility to return to the empty state in a finite
number of steps, and so we can conclude that the sequence is irreducible. To show that all
the states in Ω are positive recurrent, we start with the following properties.

1. State j is recurrent if
∑∞

n=1 P(Qn = j|Q0 = j) =∞. [2](221)

2. A recurrent state j is positive if and only if limn→∞ P(Qn = j) > 0. [2](222)

3. If i↔ j, then i is positive recurrent if and only if j is positive recurrent. [2](224)

We have already shown that Qn is irreducible, such that we know that i↔ j for all i, j ∈ Ω.
Therefore, we only need to show for one state that it is positive recurrent. The most obvious
choice will again be the empty state. As we know that if for some sequence an that

lim
n→∞

an > 0⇒
∑
n

an =∞, (4.2)

we only need to show that the following theorem holds:
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Theorem 4.2: Qn positive recurrent for k = 2

Let k = 2, then

lim
n→∞

P(Qn = ∅) =
1

m
. (4.3)

Consequently Qn is positive recurrent.

Proof. If Qn = ∅ then exactly m ·n samples have been generated, which have all been sorted.
It follows that both values have been generated exactly a multiple of m times. We can
approach this probability with the Negative Binomial distribution:

P(Qn = ∅) =
n∑
i=0

(
mn

im

)
pim(1− p)mn−im. (4.4)

By using the primitive m-root (2.3) we can rewrite this in the form of the Binomial formula.

P(Qn = ∅) =
1

m

mn∑
i=0

(
mn

i

)
pi(1− p)mn−i

m−1∑
j=0

ωji


=

(1− p)mn

m

m−1∑
j=0

mn∑
i=0

(
mn

i

)(
pωj

1− p

)i

=
(1− p)mn

m

m−1∑
j=0

(
1 +

pωj

1− p

)mn

=
1

m

m−1∑
j=0

(
1− p(1− ωj)

)mn n→∞−−−→ 1

m
.

(4.5)

where the limit holds as |1− p(1− ωj)| < 1 for j 6= 0 and equal to 1 for j + 0. It follows that

∞∑
n=0

P(Qn = ∅) =∞, (4.6)

such thatQn is recurrent. As limn→∞ P(Qn = ∅) > 0 it follows that it is positive recurrent.

We have now shown that Qn is both irreducible and positive recurrent for k = 2. Therefore,
it follows that Qn has a stationary distribution for k = 2.
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Figure 4: Return time for Uniform distribution with m = 4.

To prove that Qn has a stationary distribution for k < ∞ we will extend the proof used for
k = 2.

Theorem 4.3: Stationary distribution for Qn

The Markov chain Qn has a well-defined stationary distribution if and only if k <∞.

Proof. We have already shown that for k ∈ N∪{∞} the Markov chain is irreducible. We shall
use a proof by induction to show Qn is positive recurrent for all k <∞ and use this result to
show that this is not the case for k =∞.
Let us start by proving it holds for k = 3 by extending the prove used for k = 2. If Qn is the
empty list, it follows that all three values appear exactly a multiple of m times in the first
m · n samples. Take p3 = 1− p1 − p2, such that

P(Qn = ∅) =
n∑
i=0

(
m · n
i ·m

)
pi·m2

n−i∑
j=0

(
m · (n− i)

j ·m

)
pj·m1 (1− p1 − p2)m·(n−i)−j·m

=

n∑
i=0

(
m · n
i ·m

)
pi·m2 A2,n−i.

(4.7)

We can simplify A2,n−i by taking the sum over all m · (n− j) terms, instead of just multiples
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of m, and multiplying with (2.4) such that all the extra terms are multiplied with 0.

A2,n−i =
1

m

m·(n−i)∑
j=0

(
m · (n− i)

j

)
pj1(1− p1 − p2)m·(n−i)−j

(
m−1∑
l=0

ωjl

)

=
(1− p1 − p2)m·(n−i)

m

m−1∑
l=0

m·(n−i)∑
j=0

(
m · (n− i)

j

)(
p1 · ωl

1− p1 − p2

)j

=
(1− p1 − p2)m(n−i)

m

m−1∑
l=0

(
1 +

p1 · ωl

1− p1 − p2

)m(n−i)

=
1

m

m−1∑
l=0

(
1− p1(1− wl)− p2

)m(n−i)

(4.8)

Substituting this in (4.7) we can simplify by using the primitive m-root once more.

n∑
i=0

(
m · n
i ·m

)
pi·m2 A2,n−i =

1

m2

m−1∑
z=0

m−1∑
l=0

m·n∑
i=0

(
m · n
i

)
(p2 · ωz)i

(
1− p1(1− wl)− p2

)mn−i
=

m−1∑
z=0

m−1∑
l=0

(
1− p1(1− wl)− p2

)mn
m2

m·n∑
i=0

(
m · n
i

)(
p2 · ωz

1− p1(1− wl)− p2

)i

=
m−1∑
z=0

m−1∑
l=0

(
1− p1(1− wl)− p2

)mn
m2

(
1 +

p2 · ωz

1− p1(1− wl)− p2

)m·n

=
1

m2

m−1∑
z=0

m−1∑
l=0

(
1− p1(1− ωl)− p2(1− ωz)

)m·n
.

(4.9)

As |1 − p1(1 − ωl) − p2(1 − ωz)| < 1 for all values of z and l, except for z = l = 0 for which
the value is 1. Therefore, it follows that

P(Qn = ∅) n→∞−−−→ 1

m2
, (4.10)

for k = 3. To simplify notation, denote

g(i1, ..., ik−2) =
(
1− p1(1− ωi1)− ...− pk−3(1− ωik−3)− pk−2

)
. (4.11)

Assume that for k − 1 values it holds that

Ak−1,n =
1

mk−2

m−1∑
i1=0

...

m−1∑
ik−2=0

g(i1, ..., ik−2)m·n. (4.12)

We have shown that this holds for k = 3, but now we want to show that it holds for all k ∈ N.
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Using the same method as for k = 3 we find

P(Qn = ∅) =
n∑
j=0

(
m · n
j ·m

)
pj·mk−1Ak−1,n−j

=

m−1∑
i1=0

...

m−1∑
ik−1=0

g(i1, ..., ik−2)m·n

mk−1

m·n∑
j=0

(
m · n
j

)(
pk−1 · ωik−1

g(i1, ..., ik−2)

)j

=

m−1∑
i1=0

...

m−1∑
ik−1=0

g(i1, ..., ik−2)m·n

mk−1

(
1 +

pk−1 · ωik−1

g(i1, ..., ik−2)

)m·n

=
1

mk−1

m−1∑
i1=0

...

m−1∑
ik−1=0

(
1− p1(1− ωi1)− ...− pk−1(1− ωik−1)

)m·n
.

(4.13)

As |1 − p1(1 − ωi1) − ... − pk−1(1 − ωik−1)| < 1 if ∃j : ij 6= 0 and is 1 if ∀j, ij = 0, it follows
that

P(Qn = ∅) n→∞−−−→ 1

mk−1
> 0,∀k ∈ N . (4.14)

We have found that for all k ∈ N the sequence Qn is irreducible and positive recurrent, such
that it has a stationary distribution. Another result we have found is that the probability
P(Qn = ∅) only depends on m and k for large n. We can use this to prove that for k = ∞
the empty state is null recurrent by taking k →∞.

lim
k→∞

lim
n→∞

P(Qn = ∅) = lim
k→∞

1

mk−1
= 0, (4.15)

from which we conclude the empty state is null recurrent. Therefore, as Qn is irreducible it
follows that every state is null recurrent, so there is no stationary distribution for k =∞.

As this proof does not clearly show why there is no stationary distribution for k = ∞, a
different proof is introduced the following section.
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4.1 Simulations

In Figure 5 we see the value of Dn for n = 0, 1, ..., 10000,m = 5 and Xi ∼ Unif [1, 500] for
eight different simulations.

Figure 5: Simulation of Dn for 500 Uniformly distributed values, and for m = 5

In Figure 6 we see the empirical distribution for Dn with m = 4 and Xi ∼ Unif [1, 500] at
n = 104, n = 5 ∗ 104 and n = 105. Number of runs for every n is 103.

Figure 6: Simulation of density for Dn for Xi ∼ Unif [1, 500] and m = 4. Number of runs
103.
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5 Divergence for infinite support case

Last section we have shown that Qn has a stationary distribution if and only if k < ∞.
This section we will analyse the behaviour of Qn for k = ∞ by proving that k = ∞ has
no stationary distribution in another way. In contrary to this case the outcome space S has
no maximum value if k = ∞. This means that as more samples are being generated, the
lowest respective probability that is found in the sequence will eventually decrease. As an
increasingly number of samples will need to be generated to sort these values, the maximum
value for Dn will increase with n. If this happens frequently enough, the length of the sequence
will keep jumping in value before it has a chance to sort the added samples. An example of
this for the Geometric distribution we can see in Figure 7. Although if these jumps happen
infrequently, it could be the case that the process has the time to sort the added samples
before the next jump in sequence length. If we look at some probability which decreases as n
grows p = a

nj
, a > 0 its probability that we find the value with this respective probability in

the first n samples converges to

lim
n→∞

1− (1− a

nj
)n =


0 for j > 1,

1− e−a for j = 1,

1 for 0 < j < 1.

(5.1)

As we want these jumps to happen frequently, we define mn = inf{i ∈ S : P(X > i) ≤ 1
n}

and assume it has probability pmn = a
nj
, j ≤ 1. With these conditions we will prove that Dn

will hold increasingly greater values as n grows and therefore has no stationary distribution
as a consequence.

Proposition 5.1: QN has no limiting distribution for S infinite

If the size of the outcome space k = ∞ and for mn = inf{i ∈ S : P(X > i) ≤ 1
n} with

pmn = a
nj
, j ≤ 1 then ∀ε > 0 then

lim sup
n→∞

P(Maxn −Minn ≥ εn) = cε > 0. (5.2)

Consequently Qn has no stationary distribution.

Proof. 1.) Let the r.v. Gn be the number of samples generated before we find a sample with
value mn. We find that ∀l > 0 that

P(Gn > ln) ≥
(

1− a

nj

)ln
≥
(

1− a

n

)ln n→∞−−−→ e−al > 0. (5.3)

As P(Minn ≤ m · n) = 1 we find a lower bound by taking the probability of just one event
for which Dn ≥ εn, which is the event that there is a sample with value mn in the first n
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generated samples and the next is generated after more than (ε+m)n samples. Therefore,

lim sup
n→∞

P(Maxn −Minn ≥ εn) ≥ lim
n→∞

(
1− (1− a

nj
)n
)(

1− a

nj

)n(ε+m)

≥ lim
n→∞

(
1− (1− a

n
)n
)(

1− a

n

)n(ε+m)

= (1− e−a)e−a(ε+m) > 0.

(5.4)

2.) Now we show shall use a proof by contradiction that Qn has no stationary distribution.

Denote π
(n)
j = P(Qn = j), j ∈ Ω. Say (5.2) holds and Qn has a limiting distribution such that

π(n) n→∞−−−→ π. We have that

P(Maxn −Minn = l) =
∑

j∈Ω:|j|=l

P(Qn = j)
n→∞−−−→

∑
j∈Ω:|j|=l

π(j) = ql, (5.5)

with
∑∞

i=0 qi = 1. It should hold that ∀δ > 0 ∃l(δ) ∈ N : ∀l ≥ l(δ) we have that

∞∑
i=l+1

qi < δ. (5.6)

This would mean that

lim
n→∞

P(Maxn −Minn ≥ l + 1)
l→∞−−−→ 0. (5.7)

This contradicts (5.2) so we can conclude that there is no limiting distribution.

5.1 Geometric distribution

We will show that our theorem holds for the Geometric distribution. In Figure 7 we see
sudden jumps in the value of Dn, which happen if a value with a respective low probability
is sorted.

26



(a) 1000 sorting steps (b) 10.000 sorting steps

(c) 100.000 sorting steps

Figure 7: Value of Dn for n = 1, ..., 100.000 with Xi ∼ Geo(1
2) for eight simulations.

Take the Geometric distributionof the form

P(Xi = x) = p(1− p)x−1, for x = 1, 2, ..., (5.8)

As the probability decreases as the value rises, we would like to find the distribution of the
maximum, and so the least likely, value in the first n samples Mn = max{X1, ..., Xn}.

P(Mn ≤ x) = P(X1 ≤ x, ...,Xn ≤ x)

= P(Xi ≤ x)n

= (1− (1− p)x)n.

(5.9)

We can use this to prove the following theorem:
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Theorem 5.1: Almost sure converge of maximum geometric sequence

Let Mn = max{X1, ..., Xn} with Xi ∼ Geo(p). Then for every ε > 0

P(| Mn

log(n)
− 1

log( 1
1−p)
| > ε)

n→∞−−−→ 0, (5.10)

so that Mn/ log(n)
P−→ 1

log( 1
1−p )

.

Proof. Take q = 1
1−p .

P(| Mn

log(n)
− 1

log(q)
| > ε∗) = P(| Mn

log(n)
− 1

log(q)
| > − ε

log(q)
)

= P(
Mn

log(n)
− 1

log(q)
>

ε

log(q)
) + P(

1

log(q)
− Mn

log(n)
>

ε

log(q)
)

= P(Mn > (1 + ε) logq(n)) + P(Mn < (1− ε) logq(n)).

(5.11)

As Mn only takes integer values, we find that

P(Mn > (1+ε) logq(n)) = P(Mn > b(1+ε) logq(n)c) ≤ 1−(1−(1−p)(1+ε) logq(n)−1)n, (5.12)

and

P(Mn < (1− ε) logq(n)) = P(Mn ≤ b(1− ε) logq(n)c) ≤ (1− (1− p)(1−ε) logq(n))n. (5.13)

We can simplify this upper bound by taking

(1− p)(1−ε) logq(n) = (1− p)
log(n−(1−ε))

log(1−p) = n−(1−ε). (5.14)

If we do this for both upper bounds, it follows that

P(| Mn

log(n)
− 1

log(q)
| > ε∗) ≤ 1− (1− q

n1+ε
)n + (1− 1

n1−ε )n

= 1−
(

(1− q

n1+ε
)n

1+ε
) 1
nε

+

(
(1− 1

n1−ε )n
1−ε
) 1
n−ε

≈ 1−
(

1

eq

) 1
nε

+

(
1

e

)nε
n→∞−−−→ 0.

(5.15)

This theorem shows us that for large values of n, Mn is close to log(n)
log(q) . So assume n has a

large value and take mn = b log(n)
log(q) c and look at the probability pm(n) that we find mn. Take

the random value Gn as the number of steps it takes to find the next sample with value mn.
We want to show that for some l ∈ R, we have that

P(Gn > ln) = (1− pm(n))ln ≥ cl > 0. (5.16)
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We need to compute

pm(n) = P(Xi = b log(n)

log(q)
c) = p(1− p)b

log(n)
log(q)

c−1
, (5.17)

or an acceptable upper bound as the value of (5.16) is lower for higher values of pm(n). As

b log(n)
log(q) c >

log(n/q)
log(q) = log(n)

log(q) − 1 this can be used to find an upper bound,

p(1− p)b
log(n)
log(q)

c−1 ≤ p(1− p)
log(n)
log(q)

−2

= p(1− p)log1−p(n−1)−2

=
p

n(1− p)2
.

(5.18)

Substituting this in (5.16) we find

P(Gn > ln) > (1− p

n(1− p)2
)ln

n→∞−−−→ e
− pl

(1−p)2 > 0. (5.19)

Now as Minn ≤ mn, we can take l = 2m to find

P(Maxn −Minn ≥ mn) > e
− 2mp

1−p > 0. (5.20)

Therefore, by Proposition 5.1, we can conclude that Qn has no stationary distribution if
Xi ∼ Geo(p).
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6 Conclusions and open problems

The main results this thesis is that there only exists a stationary distribution if and only if
the random variables have finite support. In this case the position of the first free sample
and the last used sample have the same rate of growth. An explanation for this behaviour
is that as there are a finite number of values, these will eventually all have been generated.
Therefore, the maximal number of samples needed to complete a sorting step will eventually
stop increasing. For the infinite support case, the number of visits to the empty state, the
state where all the generated samples are sorted, is finite. As the lowest respective proba-
bility that is found in the sequence decreases as the number of generated samples increases.
Therefore, the maximal number of samples needed to be generated to complete a sorting step
keeps increasing, such that the probability that every sample is generated decreases.

Due to time constraint there are still some open problems which require further analysis. For
the finite support case we know there exists a stationary distribution, but we have not found
what this distribution is. The only state for which we found the probability is the empty
state for which the respective probability is 1

mk−1 . Another point of analysis is the rate at
which the probabilities converge to the stationary distribution.
For the infinite support case it only the rate of growth for the position of the first free sample
was proven, namely the same rate as for the finite support case. In Figure 8 we see the results
of simulations for Xi ∼ Geo(1

2) any various sorting steps for the position of the last used
samples divided by the number of sorting steps n. From the simulations it seems that the
position converges in distribution n · Y , where Y is some random variable.

Figure 8: Density of Maxn/n for different values of n, for Xi ∼ Geo(1
2). Number of runs for

every n is 103.
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