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Needle Detection in Three-Dimensional
Ultrasound Imaging

Arash Pourtaherian
Video Coding and Architectures Research Group, Signal Processing Systems
Department of Electrical Engineering, Eindhoven University of Technology

Abstract—During medical interventions with needles, it is
important to visualize the needle position and its tip with
respect to important structures in the patient’s body. Ultra-
sound (US) is one of the most popular imaging modalities for
such interventions. However, capturing the full-length needle
during the intervention procedure is challenging with a two-
dimensional (2D) ultrasound imaging modality. For this reason, a
highly-skilled physician is needed to perform needle interventions
efficiently under US guidance to optimize intervention success.
In this work, we propose a novel image-based needle detection
technique using a three-dimensional (3D) imaging modality. We
extract 2D cross-sections from a 3D volume in order to visualize
the full-length needle and its tip. The needle detection algorithm is
based on supervised model-based learning, which exploits needle-
like structures in the volume. Evaluation of our system shows
a high detection score of finding appropriate 2D cross-sections
that contain the needle and its tip. This application can support
physicians during medical interventions with needles and be an
aid in minimizing complications.

Index Terms—needle detection, three-dimensional ultrasound
imaging, interventional guidance, 3D Gabor transformation

I. INTRODUCTION

MEDICAL interventions with needles have a wide variety
of applications in medical diagnostics and treatments.

For example, in breast biopsy, prostate brachytherapy, radio
frequency ablation and epidural anesthesia, a needle is used to
access remote targets in the patient’s body to take tissue sam-
ples and to deliver medicine or electric energy. Visualization of
the needle and its tip is helpful and in many cases vital. This
can help physicians to minimize risks during various inter-
ventions, lower the amount of medicine and shorten patient’s
recovery time. Therefore, in most cases, medical imaging
technologies are utilized to locate and guide the needle inside
the patient’s body [1]–[3]. Ultrasound (US) is one of the most
popular imaging modalities for such interventions because it
uses non-ionizing radiations and provides real-time images at
affordable costs.

Under Two-Dimensional (2D) US guidance, capturing the
needle and its tip during the intervention is challenging. Any
hand motion may cause parts of the needle to be excluded from
the image and lead to errors in locating the tip of the needle.
As an alternative, Three-Dimensional (3D) US, can overcome
2D US limitations in image-guided interventions [4]. However,
3D US imaging requires computer-aided techniques for appro-
priate analysis and visualization of 3D volumes. Detecting the
needle and enhancing its visibility will allow needle opera-
tors to perform interventions more accurately. Furthermore,

assuring that the needle is fully visible for the physician will
minimize the risk and duration of an intervention.

Needle detection approaches in US images can be divided
into image-based detection algorithms [5] and external track-
ing systems. Examples of the external tracking are mechan-
ical [6], electromagnetic (EM) [7] and optical tracking [8]
systems. In mechanical systems, a robotic arm is used to per-
form the intervention, which provides initial knowledge of the
exact needle position. In electromagnetic and optical tracking,
a tracking device (position sensor) is attached to the US probe
and its location is registered to the US image coordinates.
Because of the limitations of the external tracking systems,
such as large setup, limited accuracy and the increased costs,
they are not commonly used. Therefore, image-based detection
algorithms are more attractive for such applications. In order to
improve the needle visibility and support image-based detec-
tion techniques, modifying the signal generation by adaptive
beam steering [9] has been proposed. Moreover, mechanical
scoring and chemical coating of the needle increases its
brightness in US images [10]. Nevertheless, because of the
limitations of the US imaging, such as the intrinsic low signal-
to-noise ratio, presence of imaging artifacts, anisotropic nature
of the images, etc., most of the image-based needle detection
studies fail to propose a generic solution for detection in
diverse environments (Section II).

In this work, we propose an efficient image processing
concept for needle detection in 3D US without employing any
supporting external systems. Our needle detection algorithm
enhances and normalizes the images and exploits the needle-
like structures in the 3D US volume. We present the following
contributions: (1) normalization of the needle visibility by
applying adaptive histogram equalization; (2) novel needle de-
tection technique using a supervised model-based approach;
(3) 3D Gabor transformation as feature extraction to exploit
needle-like structures; (4) visualization of the needle and its
tip with 2D cross-sections of the volume.

II. RELATED WORK

Needle detection techniques mainly consist of the following
stages. First, US images are pre-processed to remove noise
and maintain the desired quality for applying detection algo-
rithms (Section II-A). Second, the image-based needle detec-
tion concentrates on extracting relevant information required
for deriving the needle position and its orientation (Sec-
tion II-B). Third, needle orientation and position is computed
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Table I: Overview of image-based needle detection techniques

Algorithmic Step Technique Methodology Remarks

Image restoration
and enhancement

Deconvolution
(restoration) Counteracts PSF ⊕ Improves resolution

	 Complex to estimate PSF

Filtering
(enhancement)

First order statistics Mean and/or median filtering ⊕ Computationally efficient
Adaptive Smooth only the noisy regions ⊕ Unaltered non-noisy regions
Aniosotropic diffusion Based on heat distribution ⊕ Edge enhancement
Wavelet transform Reduce wavelet coefficients of noise 	 Poor speckle reduction
Second-order derivative of Gaussian ⊕ Preserving the needle

Relevant
information
extraction

Using a priori
knowledge

EM tracking sensor Approximate position is known ⊕ Increase the efficiency
	 External tracking needed

Coarse-fine search Search at two resolution stages ⊕ Increase the efficiency

Manually annotations ⊕ Limit false detections
	 Requires human interaction

Projection of 3D
on 2D planes

Ray-casting Based on a volume rendering 	 Details can be lost
Averaging 	 Details can be lost

Thresholding Transform to a binary image ⊕ Complexity reduction
Edge detection Detecting the edges in the image ⊕ Candidate points reduction
Line filtering Detecting lines in the image ⊕ Candidate points reduction
Background subtraction Integral difference of frames ⊕ Similar regions elimination

Comparing with the needle movement 	 Not applicable to still images
Modeling US background Select frames with stationary needle ⊕ Complexity reduction

Needle orientation
and position
detection

2D detection

Model fitting Fit a line or tube using PCA 	 Poor performance on US
Active contours Deforming by forces of features 	 Noise sensitive
Hough transform map points to a parameter space 	 Computationally complex
Randomized Hough Select random points to map ⊕ Can be real-time
Gabor transform Searches in different orientations ⊕ Searches for a fixed width

Parallel Integral Projection (PIP) Localize tool’s axis by observing the
projection along multiple axis

⊕ No need for line detection
	 Computationally complex

RANSAC Estimate tool’s axis ⊕ Computationally fast
	 Large random errors

Needle tracking Correlate detections over subsequent frames ⊕ Eliminate false detections

in a 3D volume or a 2D plane (Section II-C). Image-based
needle detection techniques are summarized in Table I.

A. Image Restoration and Enhancement

The quality of US images is degraded due to many types
of artifacts. Although techniques are developed to enhance
the US image and reduce the noise, they are limited by the
intrinsic quality of the acquired data and related conditions.
For example, a shadowed region cannot be restored since the
data is not present, or the PSF and reverberation artifacts
may obscure image details. The Point Spread Function (PSF),
also known as the resolution cell of the system, is caused by
diffraction of the US signals and convolves with the reflected
wave, thereby resulting in blurred images [11]. Speckle noise
is a result of scattered signals reflected from targets below the
pulse resolution and appears as intensity fluctuations in the
image [11].

Generally, two main techniques, i.e. filtering and deconvo-
lution, exist to improve the quality of US images after they
have been generated and digitized. Filtering aims at increasing
the SNR of the image, while deconvolution improves image
resolution [12]. Deconvolution techniques estimate the PSF to
counteract the diffraction degradation [13]. For filtering, sev-
eral techniques for speckle reduction in US images have been
proposed and applied. Adaptive filtering [14] and anisotropic
diffusion filters [15], have shown to be suitable for smoothing
homogenous regions while retaining edges [16]. A bank of
modified Gabor filters is applied to the 2D radio-frequency

data [17], to reduce the speckle and enhance structure infor-
mation. The wavelet transform filter is applied to US images,
followed by the speckle noise wavelet shrinkage [18]. This
has proven to give a poor performance [16] and the best
choice is claimed to be the first-order statistics filter. In a
speckle reduction comparison study [19], an oriented speckle
anisotropic diffusion filter [20] has given optimal filtering
for speckle suppression, edge preservation and computational
efficiency.

In a needle detection study, a median filter is used for
speckle removal [21], which was causing the needle to appear
broken into a series of many disconnected parts and not
suitable for further processing. In its follow-up study [22],
a mean filtering is used yielding more robustness. A more
advanced method is based on an anisotropic diffusion [23]
to filter homogenous regions and still preserve the needle.
The resulting image is passed through a contrast enhancing
spatial-domain filter, and a non-binary morphological opening
operation. A more recent study [24], applies rotated versions
of the second-order derivative of a Gaussian filter to keep
the tubular shape of the needle in different directions, while
smoothing other structures in the image.

B. Relevant Information Extraction

A popular approach to limit the computational complexity
is to use a-priori knowledge of the approximate orientation,
position or thickness of the needle, to limit the false detec-
tions [22], [24], [25] or to crop the informative volume [26]–
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[30]. The approximate position of a needle can be also derived
from an EM tracking sensor integrated in the needle [24],
[25], from the coarse-fine search strategy [26]–[28], [30], or by
manually annotating the needle’s region [22], [29]. The coarse-
fine search strategy is first introduced for 2D US [30] and later
applied to the 3D US [27], [28]. This technique searches for
the needle in two stages: a coarse stage in a low-resolution
image to obtain the approximate position, and a fine stage to
obtain a high spatial accuracy.

Different techniques for 2D US images have been developed
for more than a decade and have shown promising results. As
3D US systems have become more available, 2D detection
techniques have been adapted for implementation in 3D US
images. First attempts are based on projecting the 3D volume
onto two orthogonal planes and identifying the needle on
the two 2D images. Projection of the 3D volume is mostly
done by averaging and ray-casting, which is traditionally
used in volume rendering. Later studies have modified the
projection technique to increase the speed and accuracy of
the detection [23], [26].

A popular method of candidate pixel (voxel) extraction is
thresholding, which is also effective in reducing the compu-
tational complexity [5], [6], [27]–[36]. Edge detection [21],
[22], line filtering [37] and background subtraction [24], are
used to limit the candidate needle points. In a more advanced
technique, the needle region is identified with an “integral
difference of frames”, assuming that the movement pattern of
a needle is different from other regions [38]. A similar concept
of modeling the US video background is used in addition to
selecting the frames with a stationary needle only [24].

C. Needle Orientation and Position Detection
In early needle detection studies, flood-filling [30] and

Hough transformation [39] are used to detect the needle in
the 2D US image. Later, the thresholded image is used to
detect the needle by fitting a line [31] or a tubular model using
Principle Component Analysis (PCA) [5]. However, PCA-
based methods fail when the needle appears discontinuous,
which happens regularly in US images. A level-set shape-
based segmentation, also known as snake model, is used to
model the shape of the needles in 2D [38] and later in 3D
Transrectal US [29]. Shape-based segmentation consists of
active contours that deform based on a partial differential
equation caused by the forces of image features. An appealing
technique to localize the needle in 2D US images is the Hough
transform, which detects lines by mapping all points in the
image to a parameter space. Modified versions of the Hough
transform are proposed to detect other objects and curved
needles [22].

In more recent approaches of needle detection in 3D US
images, the representation of a straight line in 3D proposed
by Roberts [40] is adapted to directly apply the Hough
transform in 3D US images [27], [28], [32]. Randomized
Hough Transform (RHT) is used [28] to decrease the com-
putational complexity of the needle detection. The Parallel
Integral Projection (PIP), that is a generalized form of the
3D Radon transform [41], is used to localize the instru-
ment’s axis by maximizing the projection of the image along

multiple lines [42], or along a curve [25]. Since PIP-based
techniques are computationally complex, a fast implementa-
tion on a Graphics Processing Unit (GPU) is proposed [42]
to achieve real-time performance. A hierarchical mesh-grid
search algorithm is applied to decrease the complexity of
the technique [43]. However, in its follow-up study [34], it
is claimed that in addition to the computational complexity
of PIP, it is not robust for localizing very thin objects in a
cluttered background. Therefore, the authors propose to utilize
a model-fitting approach, based on RANdom SAmple Consec-
sus (RANSAC) [44]. RANSAC has been used earlier followed
by least square curve fitting for localizing the curvilinear
object in 3D US images [33]. In the succeeding studies [34],
[35], surgical tool localization is studied by estimating its axis
with a RANSAC search algorithm, and locally optimized for a
more accurate detection. Although RANSAC-based localiza-
tion methods are claimed to be fast and accurate compared
to the RHT-based and PIP-based methods, depending on the
experimental settings they can introduce large random errors
in the result. A Kalman filter is added to avoid such errors
by estimating the tool’s position [36], which is claimed to
add more stability to the detection algorithm. Prior to this
study [45], a Gabor filter that was traditionally used for image
enhancement is utilized as line detector with a fixed thickness
to reveal the needle structures in the US images.

After the needle axis is identified in 3D, the tip of the needle
can be recognized, which is commonly done by finding the
farthest pixel along the needle’s axis with an intensity above
a threshold [31], [34], [43]. Recently, it is proposed to track
the needle over subsequent frames (US images) to eliminate
the false detections of the regions with similar appearance to
the needle [38]. A more advanced approach uses a Kalman
filter to estimate and track the tip of the needle [36], in order
to avoid random errors of RANSAC.

III. METHODOLOGY

The work in this thesis is divided into two different needle-
detection approaches, as depicted in Figure 1. In both ap-
proaches, the 3D US volume is acquired from a needle-
insertion procedure and then, the volume is pre-processed
for enhancement and normalization. Next, needle detection
algorithms are performed for projection-based and the pro-
posed Gabor-based techniques. Finally, 2D cross-sections of
the volume containing the needle and its tip, are visualized to
the operator.

A. Ultrasound Volume Acquisition
A 2D US image is acquired by transmitting an array of pres-

sure (acoustic) waves through the patient’s body and convert-
ing the reflected waves into electrical signals. Pressure waves
are created by exciting a large number of piezoelectric crystals
placed on a line (linear transducer) or a convex curve (sector
transducer). Regions with higher acoustic impedance appear
as high intensity pixels in the US image.

In order to acquire 3D volumes of US data, two types of
transducers can be used: steered transducers and matrix trans-
ducers. In steered transducers, a linear or sector transducer is



4

Needle Axis Approximation 
3D US  

Volume 

Needle Plane and 

Tip Visualization 

Image 

Enhancement 

(Pre-processing) 
Projection and Projected Needle Detection 

C1 C2 

(a) Projection-based needle detection

Needle Orientation and Position Detection 

 

 

 

 

 

Candidate Voxel Extraction 

 

 

 

 

 

 
Needle Axis 

Approximation 

 
Needle 

Tracking 

3D US  

Volume 

Needle Plane and 

Tip Visualization 

Image 

Enhancement 

(Pre-processing) 

 
Feature 

Extraction 
Classification 

 
Gabor 

Transformation 

D1 D2 D3 D4 D5 

(b) Proposed Gabor-based needle detection

Figure 1: Block diagrams of the implemented needle detection techniques

tilted or shifted to acquire a series of 2D images, forming a
3D volume. Steering is done using a motor to provide quan-
tifiable volumetric data. In matrix transducers, piezoelectric
crystals are arranged in a rectangular grid, which allows for
2D beam steering and results in a 3D volumetric dataset.

In this work, several sets of 3D US volumes were acquired
with an iU22 xMATRIX Ultrasound system1 using a VL13-5
motorized 3D broadband linear array transducer applied to
chicken breast phantoms.

The coordinate system of the acquired volume is defined
relative to the transducer position, as shown in Figure 2. The
direction of orientation pointer corresponds with the negative
y direction of the coordinate system. A line in 3D can be
described with a point and a direction vector [40]. Therefore,
we define the needle axis in the 3D volume to be represented
by four parameters (θ, φ, x0, z0) and describe it in the Field
of View (FOV) by: x

y
z

 =

 sin θ cosφ
cos θ cosφ

sinφ

 t+
 x0

0
z0

 , (1)

where θ and φ are the azimuth and elevation angles of the
needle, respectively, and x0 and z0 are the coordinates of the
needle in the XOZ plane (at y = 0).

B. Image Enhancement (Pre-processing)

In general, raw acquired US images need to be pre-
processed prior to any automated analysis. Since the US
images are formed from the interpretation of the reflected
acoustic waves and modulated by user-controlled depth gain
settings, they represent a highly anisotropic and position-
dependent information. As reported also in needle-insertion
procedures, the visibility of the needle is decreasing linearly
with steeper insertion angles [46]. Therefore, at the pre-
processing stage, in addition to the speckle reduction, needle
visibility should be improved as much as possible.

The 3D US volume can be decomposed into a series of
parallel 2D images (frames). In this stage, image enhancement
techniques are applied to each individual frame, ignoring their
temporal relation for simplicity. In order to minimize the
brightness variations, a temporal median filter calculates a
background model of the volume and it is subtracted from

1Commercially available from Philips Electronics.

each frame. Then, successive iterations of a spatial median
filter are applied to each frame to reduce the speckle noise.
The last step is to normalize the visibility of structures (in-
cluding the needle), based on the Contrast Limited Adaptive
Histogram Equalization technique (CLAHE) [47]. We have
used a block-based version of this algorithm in MATLAB,
which performs a local histogram equalization with a preset
maximum contrast β. For the grayscale mapping function, we
have chosen a uniform histogram distribution. The final value
of each pixel is obtained by performing bilinear interpolation
between mapping functions of neighboring blocks.

C. Projection-Based Needle Detection

Among the approaches for detecting the needle axis in 3D,
projecting the volume to 2D planes is well investigated, which
has been shown to reduce the computational complexity and
to be relatively accurate. In this approach, the 3D volume is
projected on at least two planes and the needle is detected
in each 2D projection image. The 3D volume is projected
along the viewing direction first and the second projection is
determined after detecting the needle in the first projection
image.

Z

X

Y

z0

Needle

Tissue

FOV

ϕ

O

Orientation
Pointer

x0

θ

3D)US)Probe)(VL13-5)

Figure 2: Coordinate system of the acquired volume, where
the origin is at the top of the tissue (assume US transducer to
be transparent)
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1) Projection and Projected Needle Detection: Projecting
the 3D volume by averaging the voxel values along parallel
lines may suppress the needle or parts of it. Ray-casting is
another popular choice, in which the voxels that are closer to
the projection plane have greater influence in the resulting
image. In this study, voxels with the maximum intensity
are projected to preserve the voxel values corresponding to
the needle. In the projected image, we detect large intensity
changes using the Prewitt operator, and apply the Hough
transform to detect the linear structures.

2) Needle Axis Approximation: A line can be described in
the 3D volume with a cross-section of two planes. We define
the first plane from the detected needle in the previous step.
Then, the second plane can be defined by a second projection
of the 3D volume, which is not parallel to the first. However,
the second plane can also be described as the planar section of
the volume along the first detected plane. Figure 3 illustrates a
planar section of the 3D volume achieved by interpolating the
volume along the first detected plane. As the needle should
be the only bright linear object in the cross-sectional image,
it is clearly visible and its axis can be detected with simple
image-processing techniques, such as thresholding. In order to
omit the false detections, we compare the properties of each
region to the physical properties of the needle, which is long
and narrow. For this reason, we fit ellipsoid blobs on each
region and compare the length of the major axis to the minor
axis. The needle axis can be described as the cross-section of
the two detected planes in 3D (see Figure 3).

D. Gabor-Based Needle Detection

Candidate Voxel Extraction: In the majority of 3D US
volumes acquired from a human body, multiple regions can
exist with similar brightness and comparable structure of
the needle, caused by e.g. veins, nerves, or mass. These
regions can cause ambiguity in detecting the needle for
common segmentation techniques. Therefore, we propose to
employ a discriminative model of the needle using Gabor
transformations. Gabor functions, which are shown to be
good models of the object recognition path in the primate
visual cortex [48] are used to extract visual features of each
voxel in the 3D US volume. Voxels or groups of voxels are
classified into needle/non-needle classes with a discriminative
classification of the corresponding extracted features to form

Figure 3: Projection-based needle detection: cross-section of
the two planes containing the needle and the first projection

a set of candidate voxels. We provide detailed descriptions in
Sections III-D1, III-D2 and III-D3.

1) Gabor Transformation: A signal or an image is some-
times more conveniently described in the frequency domain,
instead of time or spatial domain, which can be particularly
beneficial for further processing. As a first benefit, describing
the volume in the frequency domain reveals dimensions of
objects in different orientations, which is convenient in distin-
guishing the needle from other regions in the 3D US volume.
The Gabor transform can represent signals simultaneously in
time and frequency using elementary functions. Unlike the
Fourier transform that represents a global frequency spectrum,
the Gabor transform represents local distribution of the energy
as a function of frequency. The 2D and 3D generalizations of
Gabor elementary functions have been widely applied in image
processing as filters in order to obtain the Gabor transform of
the image or volume. The popularity of the Gabor transform
in computer vision is illustrated by its applications in edge
and line detection, texture classification, motion analysis and
object recognition. A 3D Gabor filter is a complex sinusoidal
plane wave modulated by a Gaussian envelope and can be
defined as in Equation (2a), where λ is the wavelength of the
plane wave, θ and φ are the clockwise azimuth and elevation
rotation of the Gabor filter, respectively, ψ is the phase offset
of the sinusoidal plane wave, γx and γy are the spatial aspect
ratio of the envelope, σ is the standard deviation of the
Gaussian envelope and b is the half-response spatial-frequency

g (x, y, z;σ, γx, γy, θ, φ, ψ) = exp

(
−
γ2xx

2
r + γ2yy

2
r + z2r

2σ2

)
︸ ︷︷ ︸ exp

(
j2π

xr
λ

+ ψx

)
exp

(
j2π

zr
λ

+ ψz

)
︸ ︷︷ ︸

Gaussian Envelope Sinusoids

, (2a)

xryr
zr

 =

 cos θ cosφ sin θ sinφ sin θ
− sin θ cosφ cos θ sinφ cos θ

0 − sinφ cosφ

xy
z

 , (2b)

σ

λ
=

1

π

√
ln 2

2

2b + 1

2b − 1
, (2c)
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bandwidth of the Gabor filter in octaves. The value of σ can
be specified through the bandwidth b using Equation (2c).
The normalized response of a Gabor filter with a particular
position, size, orientation and symmetry can be calculated for
a 3D volume ξ using the convolution in Equation (3) based
on the 2D response presented in [49], which is specified by:

rξ (x, y, z) =
γxγy(
σ
√
2π
)3 |g (x, y, z) ∗ ξ (x, y, z)| . (3)

For simplicity, we use g (x, y, z) instead of the
term g (x, y, z;σ, γx, γy, θ, φ, ψ). The complexity of Gabor
filters is discussed in Appendix A.

2) Feature Extraction: Gabor filters are known to be good
models of cortical simple cells [48] and can be used as feature
extractors at each location, orientation and frequency with a
controllable effective spatial area for object recognition [50].
Serre et al. [51] have investigated the correspondence of the
Gabor transformation with complex cells along the ventral
stream of visual cortex. Responses of Gabor filters are sub-
sampled spatially in the volume by means of a maximum
operation (max function) to obtain responses corresponding
to the complex cells:

rC (x, y, z) = max
x′∈[x−ws;x+ws]

y′∈[y−ws;y+ws]

z′∈[z−ws;z+ws]

[rξ (x
′, y′, z′)] , (4)

where rC represents Gabor response corresponding to the
complex cortex cells and ws is the sub-sampling window
size. Normalized responses for different θ and φ form an
information diagram, which represents the dimensions of the
object in different orientations. If a response diagram shows
all values of rC from Equation (4), then R (a, b) will be the
response at position a, b in the diagram. In order to form
rotational invariant features, we propose shifting and flipping
the response diagram horizontally and vertically, such that
the maximum response is always located at the center of the
diagram. We require that the following inequalities hold:

R
(⌈
NH

2

⌉
− 1,

⌈
NV

2

⌉)
< R

(⌈
NH

2

⌉
+ 1,

⌈
NV

2

⌉)
, (5a)

R
(⌈
NH

2

⌉
,
⌈
NV

2

⌉
− 1
)
< R

(⌈
NH

2

⌉
,
⌈
NV

2

⌉
+ 1
)
. (5b)

Here, NH and NV are number of horizontal and vertical
elements of response diagram R. The response diagram of
each voxel forms a feature vector X1×F , where F is the
total number of azimuth and elevation angles of the Ga-
bor filter bank. Gabor filters are designed to be sensitive
to needle structures with different orientations. The needle
appears as a long straight bright high-frequency change in
the volume. Therefore, we set γx = 1, γy = 1

40 , λ = 0.8,
θ = {−30,−15, 0, 15, 30} and φ = {−30,−15, 0, 15, 30}.

3) Classification: A classifier is trained to model the dis-
criminative information between the voxels belonging to the
needle and other regions. We use a basic Linear Discriminant
Analysis (LDA), also known as Fisher LDA, and show that
it is computationally efficient and sufficiently accurate for
extracting candidate needle voxels. In the Fisher LDA, data
is assumed to have a Gaussian mixture distribution with the

same covariance matrix for each class. Given an observation x
and a number of classes K, the predicted classification ŷ is
derived by minimizing the expected classification cost, giving

ŷ = argmin

K∑
k=1

P̂ (k|x)C (y|k) , (6)

where C (y|k) is the cost of miss-classification and P̂ (k|x) is
the posterior probability, which is a product of prior probability
and the multivariate normal density. Assuming class mean µk
and covariance matrix Σ, the posterior probability at x is:

P̂ (k|x) = P (x|k)P (k)

P (x)
, (7a)

P (x|k) = 1√
2π |Σ|

exp

(
−1

2
(x− µk)T Σ−1 (x− µk)

)
,

(7b)
where P (k) is the prior probability of class k, and P (x) is
the normalization constant. This classifier can be constructed
using labeled observations x1, . . . ,xN and a binary class
membership matrix MN×K , where Mnk = 1 if and only if
the observation n is from class k. The estimate of class mean
and covariance matrix of classifier (6) is calculated from:

µ̂k =

∑N
n=1Mnkxn∑N
n=1Mnk

, (8a)

Σ̂ =

∑N
n=1

∑K
k=1Mnk (xn − µ̂k) (xn − µ̂k)T

N −K
, (8b)

where N is the total number of training observations.
Needle Orientation and Position Detection: A model of the

needle should fit with the candidate voxels. In needle insertion
procedures, a popular technique is to avoid the needle to bend.
As a result, the needle appears as a straight line with a fixed
width in the 3D US volume. Fitting a line in a 3D point cloud
is a relatively easy task. However, presence of the outliers
among the needle candidate voxels decreases the accuracy and
reliability of the line fitting. We propose a robust linear model-
fitting approach, which first detects a set of inlier voxels and
then fits a linear model with the inlier voxels (Section III-D4).
Furthermore, we propose a local needle tracking stage, which
can be applied individually for tracking the needle in the
subsequent acquisitions. This stage can be also employed to
increase the accuracy of the approximation (Section III-D5).

4) Needle Axis Approximation: Misclassified voxels can be
divided into three categories: (1) voxels in the vicinity of
the volume borders detected due to the sudden change of the
intensity, (2) scattered voxels in the volume that do not belong
to any structures and (3) voxels belonging to structures that
resemble the needle appearance in a small region. We propose
to omit each category of the outliers based on their properties.

Since positioning the needle to be reasonably distant from
the volume borders is an easy task and a usual practice for
operators, we assume the voxels at the distance db or closer to
the borders to be ignored. Needle appearance in the volume
is constructed from a series of voxels. Therefore, scattered
voxels in the volume can be omitted by examining the size
and shape of the blobs fitted on the detected voxels. Some
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1

2

3

Figure 4: Example of gradient descent search pattern for three
iterations, black dots indicate the locations with minimal error,
gray dots indicate the search points

structures inside the body may resemble parts of the needle in
a small neighborhood. We propose to detect the region, which
resembles the longest straight needle as the set of inlier voxels.
This is done by means of RANSAC, which detects the model
with the maximum fitted voxels. If the Euclidean distance of
a voxel to a model is less than ε, the voxel is considered to
be fitting with the model.

A linear model is fitted through the set of inlier voxels using
a linear least squares minimization method. Given two points
on the needle in the 3D volume, the needle parameters are
approximated from Equation (1).

5) Needle Tracking: Over subsequent US acquisitions, the
needle movement is limited and it can be tracked from its
approximate position in the previous acquisition. We propose
a tracking algorithm, which locally searches for the axis with
the brightest voxels. Therefore, we apply a gradient descent
search algorithm for needle tracking. The introduced technique
searches for the axis that locally minimizes the detection error
function, specified by:

E (`) = 255− 1

L

∑
x,y,z∈`

ξ (x, y, z) , (9)

where 0 ≤ ξ ≤ 255 and L is the length of the line ` in voxels.
At each iteration, the average intensity values on the axis are
calculated for alternative positions of axis ends. Then, one of
the ends is displaced by one voxel towards the lowest detection
error until it converges. Here, gradient descent search is carried
out with a small diamond pattern of one voxel side. Figure 4
shows an example of three gradient descent iterations to find
the axis with the highest intensity values.

Moreover, the tracking stage can be applied to decrease the
error of the axis approximation stage, which is limited due to
the spatial blurring and sub-sampling of Gabor transformation.

E. Needle Plane and Tip Visualization

The usual practice of US-guided needle-insertion is to
employ 2D US to visualize the needle from its long axis to
grasp the global position of the needle and visualize the tip
from the needle’s short axis to target accurate positions. In
order to visualize the relevant cross-section of the volume on
the long needle axis, coordinates of the plane containing the
needle and perpendicular to the ground plane are calculated.
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(a) Interpolated intensity of the volume over needle’s axis
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(b) Outcome of moving average on the interpolated signal

Figure 5: Example of needle tip approximation technique

For the short axis, the position of the tip of the needle is
approximated to calculate the relevant plane visualization.

The Needle tip is approximated using the hill-climbing
technique in the interpolated intensities of the voxels over
needle axis. Interpolation is performed by first averaging the
intensities in ncs × ncs pixel cross-sections of the volume
at each voxel belonging to the needle axis. Next, a moving
average of window size wf smooths the interpolated signal.
The needle tip is then detected when the difference of a
local maximum and its corresponding minimum is larger
than dh (see Figure 5).

While the needle orientation and position inside the 3D US
volume is known, the coordinates of the planes to best visu-
alize the needle and its tip are calculated as:

Long Axis : (x− x0) cos θ + y sin θ = 0,

Short Axis : (x− (x0 + lx)) sin θ − (y − ly) cos θ = 0,
(10)

where lx = −(L + n × dl) sin θ, ly = (L + n × dl) cos θ,
L is the approximate length of the needle, dl is the distance
between the two subsequent cross-sections and n is the number
of required cross sections in the short axis.

IV. EXPERIMENTAL RESULTS

The proposed needle detection algorithm is evaluated on 32
Three-Dimensional Ultrasound (3D US) volumes. Our dataset
is created by flipping 8 different 3D US volumes in x and y
directions, which were acquired from a chicken breast phan-
tom in 3D with two types of needles and different insertion
angles. Spatial resolution of each volume is 160× 188× 116
voxels where each voxel is representing 0.17mm3. Evaluation
is performed for the two developed techniques. The ground-
truth Groups of Voxels (GV) are annotated manually for each
volume. This is done by finding the two ends of the needle
and fitting a needle model in the volume, which is a line
with specified length, width and orientation. For the Gabor-
based needle detection, voxel-wise detection is evaluated based
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Table II: Recall-precision results for voxel-wise detection (%)

GV Needle Type ws = 1 ws = 3 ws = 5 ws = 7 ws = 9
Size Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision

4 Low-reflective 24.13* 86.78* 47.51* 83.90* 67.11 72.46 54.68 59.00 61.69 56.86
High-reflective 25.15* 41.58* 46.33 58.78 65.36 61.71 65.59 51.16 51.00 37.34

6 Low-reflective 21.61* 89.49* 36.21 92.01 53.24 86.15 57.06 79.30 51.17 70.18
High-reflective 30.66* 75.00* 31.01 73.61 48.27 71.90 55.01 70.14 51.13 62.60

8 Low-reflective 8.04* 75.97* 23.21 83.60 31.47 77.12 42.22 79.96 38.93 70.95
High-reflective 30.38* 88.89* 33.41* 90.92* 36.51 77.06 48.67 80.62 47.39 72.09

* Unable to detect the needle in one or more volumes
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Figure 6: Voxel detection recall-precision performance

on leave-one-out cross-validation. Accuracy of detecting the
needle position and its 3D orientation is evaluated for both
detection techniques. Performance of the needle tracking al-
gorithm is evaluated assuming a position of the needle in the
previous moment of time. Furthermore, the performance of the
proposed algorithm to detect and visualize the needle and its
tip with 2D cross-sections of the volume is assessed visually.

In our implementation, we use the following parameters:
two successions of spatial median filter of 3×3 pixels, db = 4,
ε = 2.5 and ncs = 4.

A. Voxel-wise Detection Evaluation

As the aim of this study is to find 2D cross-sections
of 3D volumes that need to be visualized to the operator,
evaluation at the voxel level cannot completely reflect the
performance of the algorithm. However, in order to obtain an
objective measure of how adjusting detection parameters can
influence accuracy and reliability of the algorithm, we employ
recall and precision metrics and proceed as follows. A True
Positive (TP ) is counted when a detected GV is found on the
ground-truth. A detected GV that has no match in ground truth,
counts as a False Positive (FP ). Finally, a ground-truth GV
that is not detected counts as a False Negative (FN ). These
metrics are measured for all 3D US volumes to calculate recall
and precision as follows:

Recall = TP/ (TP + FN) , (11a)
Precision = TP/ (TP + FP ) . (11b)

Table II shows the recall-precision performances for the
voxel-wise detection stage for different GV sizes and Gabor
complex-cell sub-sampling size ws. Some parameter choices

Table III: Evaluation of needle detection algorithms*

Method Needle Type Fails εp εθ εφ

Projection based Low-reflective 75% 1.86 mm 1.79° 1.59°
High-reflective 75% 0.41 mm 1.03° 0.69°

Gabor based Low-reflective 0% 1.18 mm 2.97° 1.06°
High-reflective 0% 2.40 mm 6.67° 1.41°

Gabor based Low-reflective 0% 0.76 mm 2.13° 0.56°
+ Gradient Descent High-reflective 0% 1.20 mm 3.27° 1.22°

* Length of the needle in the volume is at least 1 cm

cause the detection algorithm to fail in one or more of the
volumes, which are indicated with a (*) appended to the per-
formance score. Since high Gabor responses belonging to the
needle are dominant, increasing the spatial sub-sampling size
increases the number of adjacent voxels that are represented
by needle’s responses. Therefore, as shown in Table II, with
increasing ws, TP and FP are increased, which causes a
lower precision and higher recall.

Figure 6 shows the recall-precision performance for dif-
ferent detection parameters. Harmonic mean of recall and
precision, also known as the F-measure, is used to find the best
performance. The red dot represents the highest F-measure,
which is for ws = 5 and a GV size of 4 voxels. Moreover,
it can be derived that the best performance for each ws
corresponds to the closest GV size. The poor performance for
the high-reflective needle can be explained by the increased
illumination variations for different insertion angles.

B. Needle Detection Evaluation

The overall performance of the needle detection algorithm
is evaluated by introducing position and orientation errors.
The needle position error (εp) is calculated as the average
of the Euclidean distances between each point of the detected
needle and the ground-truth. Also the errors εθ and εφ in the
detected azimuth and elevation angles of needle, respectively,
are calculated as the orientation errors. Table III shows the
performance evaluation of the projection-based and Gabor-
based needle detection algorithms. Detection parameters are
chosen for the best recall-precision performance.

The results from Table III show that, although the
projection-based technique detects the needle with the lowest
errors, it fails in 75% of the dataset. Depending on nee-
dle orientation and visibility in the volume, projection may
obscure parts or the whole needle, which makes detection
difficult or even impossible. However, with the Gabor-based
technique, the local structure of the needle in 3D is employed,
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Figure 7: Gabor-based needle detection error as function of needle azimuth and elevation angles
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Figure 8: Needle tracking error for different needle movements

which clearly improves the success rate. However, due to the
spatial sub-sampling of Gabor transformation, the accuracy of
detection is penalized. Utilizing the gradient descent search of
the tracking stage to locally adjust the position and orientation,
decreases the errors nearly by a factor of two and preserves
the success rate at 100%.

Figure 7 shows the Gabor-based position and orientation
errors. In order to examine the relation of errors with needle
azimuth and elevation angles, second-order curves are fitted
on the data. As shown, the needle position and azimuth errors
increase for steeper needles. However, variations of the needle
azimuth angle does not have large influence on the error. The
four large azimuth errors are introduced by flipped versions of
one volume, in which the RANSAC algorithm is misled by a
miss-classified region. On the other hand, the elevation angle
error is very small compared to the other two errors and varies
slowly for different needle insertion angles.

C. Needle Tracking Evaluation

The performance of the needle-tracking stage is evaluated
on pseudo sequences of 3D US data, which is constructed by
assuming a position of the needle in the previous moment of
time. The ability of the algorithm to track the needle is shown
in Figure 8. The average of the position error (εp) is calculated
on the whole dataset for different movements of the needle
in position, azimuth angle and elevation angle. As shown, the
tracking algorithm is able to accurately find back the needle for
small movements and the error grows as the needle movement

increases. However, it should be noted that needle movements
of more than 4mm in position and 20 degrees in angle are
not realistic in US-guided needle interventions.

The computational complexity of the tracking stage de-
pends on the needle movement and increases with larger
movements. The average processing time of tracking varies
between 383ms to 1163ms for the MATLAB implementation
on a 2.4-GHz Core i5-520M laptop computer.

D. Visual Evaluation

The objective of the proposed algorithm is to visualize the
cross-section of the volume, which contains the full-length
needle. Figure 9 shows examples of planes detected and
visualized by the algorithm in comparison with the ground-
truth needle planes. The first two columns at the left are from
low-reflective needles and the second two columns are cross-
sections from high-reflective needles. The most-right cross-
section shows the largest detection error, which is caused by
the needle-like bright region under the tip of the needle.

Moreover, cross-sections of the volume from the needle’s
short-axis are visualized to the operator. Examples of the
short-axis visualization are shown in Figure 10. As shown,
the fifth cross-section perpendicular to needle’s axis contains
the approximate position of tip of the needle in its center.
Preceding and succeeding cross-sections with relation to cross-
section 5 visualize approaching and approached structures (or
vice versa) to the operator, which assists for detecting the
target and navigating the needle.
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(a) Ground-truth needle planes

(b) Detected needle planes

Figure 9: Comparison of the detected and the ground-truth needle planes
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Figure 10: Example of short-axis visualization: left – arrangements of the needle axis, long-axis visualization and short axis
visualization planes in 3D, right – short-axis visualization planes, tip of the needle is visible from 5-9 as a bright spot in the
middle of the image, images 2-4 do not contain the needle

V. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed a novel needle detection
algorithm for three-dimensional Ultrasound (3D US) imaging,
which visualizes 2D cross-sections of the needle and its tip
with respect to the local structures. The proposed method
is based on an efficient image processing concept without
employing any external tracking devices, modifications of the
acquisition system or the needle itself. The proposed technique
involves a normalization method to minimize the variations of
needle visibility caused by anisotropic US image formation.
Needle detection is performed based on supervised model-
based detection, employing a 3D Gabor transformation as a
feature extractor, which exploits needle-like structures in the
volume. A linear model is fitted to the detected voxels robustly
using RANdom SAmple Consecsus (RANSAC) [44]. We have
shown the application of our algorithm by visualizing the
most relevant 2D cross-sections of the 3D US, which aids the
operator to see the needle and its tip with respect to important
structures with minimum effort.

We have investigated two different approaches to detect
the needle in 3D US volume. First, we have implemented
the projection-based detection technique, which has been

investigated earlier, easy to implement and is shown to be
relatively accurate. However, the earlier studies mainly address
non-realistic situations, where the needle is the only bright
object in the volume. We have shown that in ex-vivo situations,
projection-based needle detection fails in about 75% of the
trials. The other proposed approach is based on the 3D Gabor
transformation, in which we employ a discriminative model of
the needle to be verified inside the 3D US volume. We have
evaluated our proposed technique on 32 volumes and have
shown the high success rate of detecting the needle and high
accuracy of visualizing the needle and its tip.

Future work should focus on detecting shorter needles to
increase the reliability of the algorithm. More extensive eval-
uation enables the best choice of Gabor transformation param-
eters. Work should also be done on acquiring 3D US volumes
of needle intervention on patients and clinically evaluating the
algorithms. Furthermore, the real-time implementation of the
algorithm will enable the proposed technique to be set up in
parallel to the acquisition system for live intervention support.
Our study has proved the feasibility of image-analysis-based
needle detection for 3D US.
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APPENDIX

A. Gabor Transformation Complexity
In order to extract features with Gabor transformation,

a bank of Gabor filters should be implemented containing
different orientation sensitive filters to be applied to the
3D volume. Performing multiple time the three-dimensional
filtering requires a high amount of computing resources and
memory. It is worth noting that in a sequence of 3D US
volumes, Gabor-transformation-based needle detection can
provide the approximate position and orientation of the needle,
and therefore sufficient to be performed at selected frames
only. However, in order to decrease the computational com-
plexity of the transformation, approaches are proposed in the
literature summarized in Table IV.

1) Filtering in the Fourier Domain: Filtering which is a
2D or 3D convolution in the spatial domain is transformed to
inner product in the Fourier domain:

rξ (x, y, z) = F−1
[
ĝ (u, v, w) .ξ̂ (u, v, w)

]
. (12)

For this purpose, Fast Fourier Transforms (FFT) of the filter
bank and of the volume to be analyzed, followed by the Inverse
FFT (IFFT) of the response of each filter. Constructing the
filter bank in the Fourier domain can be done offline. However,
IFFT of each filter’s response in the Fourier domain needs to
be calculated, which limits the filtering speed.

2) Recursive Filtering: A fast implementation of convolu-
tion of a signal with discrete Gaussian is proposed through
concatenation of two recursive filters [52], which consists
of 7 real multiplication and 6 real additions per pixel per
dimension. A recursive 1D Gabor filter proposed in the follow-
up study [53], multiplies the Gaussian weights with complex
exponential and therefore consists of 7 complex multiplication
and 6 complex additions. Gabor filtering decomposition to
recursive Gaussian filtering following by a multiplication with
a complex exponential is proposed for isotropic 2D implemen-
tations [54], showing about 30% savings in computation.

3) Separability of Gabor Filters: A filter g can be con-
structed from a sequence of one dimensional convolutions, if
and only if its Fourier transform factorizes [55]:

g (x, y, z) = gx (x) ∗ gy (y) ∗ gz (z)⇔
ĝ (u, v, w) = ĝu (u) ĝv (v) ĝw (w) . (13)

The Fourier transform of the 3D Gabor filter factorizes
in ur, vr and wr directions. As the separation along the
original coordinate system directions is more interesting from
a computational prospective, the filter can be separated into
two 1D convolutions along the u, v and a third 1D convolution
along direction t. The latter convolution implies an interpola-
tion step, which can be integrated in the convolution [56].

Table IV: Complexity per pixel of 3D Gabor filters algorithms
Algorithm Separability Complexity

Multiplications Additions
3D convolution - NMP NMP − 1
FFT convolution - logWHL logWHL

Separated 1D
convolutions

xyz* bN/2c+ bM/2c+ bP/2c+ 3 N +M + P − 3
xryrzr 3 (N +M + P − 1) 3 (N +M + P − 3)
xyt bN/2c+ bM/2c+M + 1 N +M + 2P − 4

Separated
recursive

xyz* 78 23
xryrzr 123 53
xyt 87 33

Filter size is denoted by N ×M × P

Volume size is denoted by W ×H × L

* Restricted to filters with θ = k π
2

and φ = k′ π
2
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