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Abstract
In this paper Wythoff’s construction of regular polytopes is investigated and proven. The goal of this
paper is to use Wythoff’s construction to construct and illustrate 4-dimensional polytopes. All work
will be done in the Euclidean space with all its properties. To understand the basics of the construction,
we look at the two and three dimensional polytopes and prove the existence of reflections. Furthermore
the general case of an n-dimensional polytope is also proven to admit reflections. The properties of
these reflections are enlightened, proven and used. We will see that the symmetry group of a regular
polytope is generated by some set of reflections. This knowledge gives rise to Wythoff’s construction.
At last Wythoff’s construction is used to construct the regular heptagon, the icosahedron and some
illustrations that depict regular 4-dimensional polytopes.
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Chapter 1

Introduction
A triangle, a square, a pyramid and a cube are well known concepts. In fact most people know what
they are. These are geometric objects and they are all examples of a polytope. The triangle and
square are objects in the plane and are therefore 2-dimensional polytopes. The pyramid and cube are
defined in space as we know and thus are 3-dimensional polytopes. In two dimensions the polytopes
are called polygons and in three dimensions we talk about polyhedra. These types of geometric objects
have been known for many centuries and the theory behind them extends into many directions.
In the 19th century mathematicians began to realize that there might exist more dimensions than
the three we know and see. They began to consider higher dimensional polytopes. Lüdwig Schläfli
[9] was the first to consider polytopes as analogues of polygons and polyhedra. He described the
six convex regular 4-dimensional polytopes. By 1854, Bernhard Riemann [4] had firmly established
the geometry of higher dimensions which made the idea of higher dimensional polytopes acceptable.
An important milestone was reached in 1948 with H.S.M. Coxeter’s book Regular Polytopes [2], he
summarized the work that had been done and added his own findings.
In this paper we will mainly follow the findings described in Coxeter’s book together with another one
of his books Regular Complex Polytopes [3]. In these books, Wythoff’s construction is discussed and
the different regular polytopes are established. We will see a proof for this construction and which
polytopes actually exist. Our goal is to construct and illustrate 4-dimensional polytopes using this
Wythoff’s construction.

Outline

In chapter 2 we will start by defining the environment and all its properties in which we will be working.
Then the concept of a polytope and the 2-and 3-dimensional examples are explained. We define the
flags of a polytope which will be used a lot in the later chapters together with symmetry operations
such as reflections. The existence of such reflections is proven in chapter 3. Moreover, chapter 3
gives the general definition of a regular polytope and the proof for the existence of reflections that
generate the group of automorphisms. In chapter 4 we will discuss the properties admitted by the
generating reflections of a polytope. We define the fundamental region, discuss the usage of diagrams
and which finite set of options exist for regular n-dimensional polytopes. At the end of chapter 4 we
will give a proof for the specific construction of such regular polytopes, called Wythoff’s construction.
In the 5th chapter Wythoff’s construction is explained with the use of examples of a polygon and a
polyhedron. Two 4-dimensional polytope representations are discussed in detail in chapter 6. After
these examples a table of various diagrams and its corresponding polytope representations is given
and we will discuss some relations between these polytopes. At last a glossary, scripts of code for
Mathematica and POV-Ray are presented in chapter 7.
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Chapter 2

Definitions
We will be working in the n-dimensional Euclidean space. In this chapter we will provide definitions.
The Euclidean space will be defined as well as some of the properties of the Euclidean space. In
paragraph 2.2 some specific features of vectors are explained. Our main subject, a polytope, is
defined together with its two and three dimensional analogues. Some subsets of a polytope are called
flags and have their own significance which we will be using later.

2.1 Euclidean space

Let E be a vector space, we state the following definitions for general sets of vectors in E.

Definition 2.1.1. A set of vectors {~v1, ~v2, . . . , ~vn} is said to be linearly independent if and
only if the vector equation:

λ1~v1 + λ2~v2 + . . . + λn~vn = 0 (2.1)

only has the trivial solution where λi = 0 for all i = 1, 2, . . . , n.

Definition 2.1.2. A set of vectors V = {~v1, . . . , ~vn} is said to span a vector space E if every
vector ~u ∈ E is a linear combination of the vectors from V . i.e., ~u = x1~v1+x2~v2+. . .+xn~vn
for some x1, ..., xn ∈ R.

Definition 2.1.3. A set of vectors V = {~v1, . . . , ~vn} is called a basis of E if V spans E and
its vectors are linearly independent. The vectors ~vi are called basis vectors of E.

The size of a basis V is equal to the number of vectors contained in V .
After choosing the basis V = {~v1, . . . , ~vn} for the vector space E, the typical notation for a vector
~x ∈ E is ~x = (x1, x2, ..., xn)ᵀ where ~x = x1~v1 + x2~v2 + . . . + xn~vn. Here xi ∈ R and are called the
Cartesian coordinates of ~x.
The dimension of a vector space E is fixed and is equal to the size of a basis V of E.

Definition 2.1.4. The real Euclidean n-dimensional space denoted by En is a real vector
space of dimension n with [7] a dot product defined on its elements.
The dot product 〈.|.〉 of two vectors ~x, ~y ∈ En satisfies the following properties [6]:

• 〈~x|~y〉 = 〈~y|~x〉 for all ~x, ~y ∈ En;

• 〈(λ~x+ µ~y)|~z〉 = λ〈~x|~z〉+ µ〈~y|~z〉 for all ~x, ~y, ~z ∈ En and λ, µ ∈ R;

• 〈~x|~x〉 is positive semi-definite, in that 〈~x|~x〉 ≥ 0, with equality if and only if ~x = ~0.

Corollary 2.1.4.1. There exist a norm and a distance defined on En.

• The norm |~x| of a vector ~x ∈ En is defined as
√
〈~x|~x〉.

• For two vectors ~r,~s ∈ En the norm of ~d = ~r − ~s is called the distance from ~r to ~s
(and vice versa).
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Consider a basis for En and the vectors ~x, ~y ∈ En with ~x = (x1, x2, ..., xn)ᵀ, ~y = (y1, y2, ..., yn)ᵀ

and xi, yi ∈ R.
The angle θ between the vectors ~x, ~y is given by θ = cos−1( 〈~x|~y〉|~x||~y| ) with 0 ≤ θ ≤ π.
The vectors ~x, ~y are said to be orthogonal if the angle between the vectors is π2 and thus if 〈~x|~y〉 = 0.
The Euclidean norm |~x| is defined as the length of a vector ~x. We say that ~x ∈ En is a unit vector
if it has length one: |~x|= 1.
We call a set of vectors {~u1, ~u2, ..., ~uk} ⊂ En orthonormal if each ~ui is a unit vector and if ~ui and
~uj are orthogonal for all i 6= j.
If the basis for En is orthonormal then the dot product of the vectors ~x, ~y is evaluated by the formula
〈~x|~y〉 = x1y1 + x2y2 + ...+ xnyn and the length of ~x is given by |~x|=

√
〈~x|~x〉 =

√∑n
i=1 x

2
i .

At last, for the ease of understanding we will be using some fixed notations throughout this pa-
per. We will refer to the line-segment from A to B as AB and to the angle at B formed by the sides
AB and BC as ]ABC. A triangle formed by the points A,B and C will be denoted as 4ABC.
Sometimes it is easier to talk about a point in space instead of a vector. We will consider a point in
En to be the location where the corresponding vector emanating from the origin ends.

2.2 Specifics

Definition 2.2.1. A subset A 6= ∅, A ⊆ En is called a linear subspace of En if A contains
the zero vector ~0 and if ~x+ ~y ∈ A and λ~x ∈ A for all ~x, ~y ∈ A, λ ∈ R. We say, A is closed
under vector addition and scalar multiplication.

Definition 2.2.2. A subset A 6= ∅, A ⊆ En is said to be an affine subspace of En if and
only if there exists a vector ~p ∈ En and a linear subspace V ⊆ En such that
A = {~p+ ~v : ~v ∈ V } = ~p+ V . [5]

The dimension of an affine subspace A = ~p+ V is equal to the size of a basis for V .
The following are fundamental properties of En [6]:

• an orthonormal set is linearly independent;

• each linear subspace of En has an orthonormal basis;

• any orthonormal set in En can be extended to an orthonormal basis of En.

An affine hyperplane is an (n − 1)-dimensional affine subspace of En, for example a line is a 1-
dimensional hyperplane in the 2-dimensional space.
A vector that is perpendicular to a hyperplane is called a normal vector of that hyperplane. If the
normal vector ~n of a hyperplane has length one, so |~n|= 1, then it is called a unitary normal of that
hyperplane.
A dihedral angle is the angle between normal vectors of two hyperplanes. In Cartesian coordinates
we describe an affine hyperplane with an equation of the form a1x1+. . . +anxn = b or 〈~a|~x〉 = b with
~a ∈ En the normal vector of the hyperplane and b ∈ Z. Note, if b = 0 then the hyperplane contains ~0.

An affine mapping is a transformation of En that preserves collinearity (i.e., all points lying on a
line initially still lie on a line after transformation) and ratios of distances (e.g., the midpoint of a line
segment remains the midpoint after transformation).

Definition 2.2.3. An isometry of En is an affine mapping σ : En → En which preserves
distances, i.e. |σ(~x)− σ(~y)|= |~x− ~y| for all ~x, ~y ∈ En.

3



Lemma 2.2.4. An isometry of the space En also preserves angles.

Proof. Let σ : En → En be an isometry of En and let A,B,C ∈ En be points in the space.
Consider the line segments AB,BC and AC and let c, a and b respectively be the lengths of those
line segments.
If α is the angle between AB and AC then the law of cosines states:

α = cos−1(
b2 + c2 − a2

2 · b · c
).

Now consider the points σ(A), σ(B), σ(C) which are the images of A,B,C under σ. Consider
σ(a), σ(b) and σ(c) to be the lengths of the line segments σ(B)σ(C), σ(A)σ(C) and σ(A)σ(B). Let
σ(α) be the angle between σ(A)σ(B) and σ(B)σ(C) then the law of cosines states:

σ(α) = cos−1(
σ(b)2 + σ(c)2 − σ(a)2

2 · σ(b) · σ(c)
).

Since σ preserves distances we have that σ(a) = a, σ(b) = b and σ(c) = c. We therefore find

σ(α) = cos−1(
b2 + c2 − a2

2 · b · c
) = α.

Thus σ also preserves angles.

Two sets of vectors V1, V2 ⊆ En are said to be congruent if there exists an isometry σ of En such
that σ(V1) = V2.
The translation defined by T~v : En → En by a vector ~v is the affine mapping T~v(~w) = ~w + ~v for all
~w ∈ En. For any pair of vectors ~w, ~u ∈ En the difference vector ~d after translation is then defined as

~d = T~v(~w)− T~v(~u) = (~w + ~v)− (~u+ ~v) = ~w − ~u+ ~v − ~v = ~w − ~u. (2.2)

So the difference vector remains unchanged under the translation and thus also the distance between
the vectors ~w and ~u is preserved by the translation. For this reason, a translation is an isometry.

2.3 Polytope

The main focus of this report is on polytopes. To explain the concept of polytopes we first state
some preliminaries.
Let (P,≤) be a poset (partially ordered set), P is a set with a transitive anti-symmetric binary
relation ≤. The word ’partially’ indicates that not every pair of elements of a poset needs to be
comparable using the binary relation. That is, there may be pairs of elements for which neither comes
before the other in the ordering of the poset.
If A,B,C ∈ P with A ≤ B ≤ C then A ≤ C, and if A ≤ B ≤ A then A = B. If A ≤ B or vice
versa then A and B are called incident. A poset is connected if given any A,B ∈ P, there is a
sequence A = C0, C1, . . . , Ck = B in P for some k ∈ N, such that Ci and Ci+1 are incident for
i = 0, . . . , k − 1. We write A < B if A ≤ B but A 6= B. If A < B, but there is no C such that
A < C < B then B is said to cover A.

An i-cell is a finite subset of an (i− 1)-dimensional affine subspace of En, which is not contained in
an (i− 2)-dimensional affine subspace of En.
If an i-cell is a subset of a j-cell then these cells are called incident cells, note that i ≤ j since a
higher dimensional subset cannot be a subspace of a lower dimensional subset.

4



2.3.1 Polygon

A polygon in E2 is a poset of 1-and 2-cells with the binary relation ⊆. Each 1-cell is called a vertex
(plural: Vertices) and each 2-cell is called an edge. Every edge connects two vertices and every
vertex is incident to exactly two different edges. Two vertices that share an edge are called adjacent
vertices. Moreover two adjacent vertices share exactly one edge. By this argument a polygon is not
defined on 2 vertices.
We assume that all vertices are connected to each other through some sequence of consecutive
adjacent vertices. So two vertices A and B are connected vertices if there exists a sequence of
vertices (A = v0, v1, v2, ..., vk = B), for some natural number k, such that the vertices of the pairs
(vi, vi+1) are adjacent vertices.
Then also the edges are connected.

Lemma 2.3.1. A polygon consists of an equal number of edges and vertices.

We denote a polygon consisting of p edges and p vertices, p ≥ 3, as a p-gon.
For example a 4-gon has 4 edges and 4 vertices.
The length of an edge e is the distance between the two vertices incident to e.
If all edges are of the same length, the polygon is called equilateral [3]. For instance, a rhombus is
an equilateral polygon. If all the angles of a polygon are equally valued then the polygon is called
equiangular [3], an example is a rectangle. A square is both equilateral and equiangular.

2.3.2 Polyhedron

A polyhedron in E3 is a poset of 1-,2-and 3-cells with the binary relation ⊆. Each 3-cell of this set
is a polygon, the 2-cells are edges of these polygons and the 1-cells are vertices of the polygons.
The polygons are also called faces of the polyhedron.
Each edge of a polyhedron is incident to exactly two faces and two faces share at most one edge. If
two faces share an edge then they are called adjacent faces.
We assume that all faces are connected to each other through some sequence of consecutive adjacent
faces.
An example of a polyhedron is the well-known cube, which has squares as its faces and three squares
meet at each vertex.

2.3.3 Flags
Definition 2.3.2. A flag in En is a sequence of i-cells that are all mutually incident. It
contains at most one i-cell for every i ∈ {1, 2, ..., n}.

We will call a flag of n elements a maximal flag, whereas a sub-maximal flag is a maximal flag
that does not contain an n-cell.
Two flags are said to be adjacent flags when they have an equal number of elements and differ for
exactly one i-cell.

5



Figure 2.1: A cube with labeled vertices

For the cube in figure 2.1 the vertex A is a 1-cell, the edge AB containing vertex A is a 2-cell and the
face ABCD containing the edge AB is a 3-cell. We denote a flag by the sequence of its elements,
for this instance (A,AB,ABCD) is a flag. More precisely, (A,AB,ABCD) is a maximal flag of
this cube. The sub-maximal flag (A,AB) is incident to the maximal flags (A,AB,ABCD) and
(A,AB,ABFE).
The flags (A,AB,ABCD) and (A,AB,ABFE) are adjacent.

2.3.4 Polytope
We have seen the definitions of a polygon and a polyhedron and will now discuss the following
definition for a general polytope.

Definition 2.3.3. A polytope Π in En is a poset of i-cells with i ∈ {1, ..., n} and containing
the empty set ∅ and the polytope Π itself (which we call the 0- and (n+ 1)-cell respectively)
with the binary relation ⊆. Every sequence of i-cells of Π is contained in a maximal sequence
of length n+ 2 containing one i-cell for each i ∈ {0, 1, ..., n+ 1}.
The elements of Π have to satisfy [11]:

Property 2.3.4. (Diamond property) Given a (k − 1)-cell Ck−1 and a (k + 1)-cell
Ck+1 of a polytope for which Ck−1 ⊆ Ck+1, then there exist exactly two k-cells
Ck, C

′
k such that Ck−1 ⊆ Ck, C ′k ⊆ Ck+1.

For every flag F of Π that does not contain an i-and (i + 1)-cell, the maximal flags of Π
containing F form a polygon and are thus connected. By the diamond property any of these
maximal flags is adjacent to exactly two other maximal flags, which implies:

Property 2.3.5. (Flag connectedness) Let F, F ′ be two flags of a polytope. For
any pair of maximal flags M,M ′ where M contains F and M ′ contains F ′, there
exists a sequence of maximal flags (M = M1,M2, ...,Mk = M ′) such that Mi is
adjacent to Mi+1 for i = 1, ..., k − 1.

An element of Π that is covered by Π is also called a cell.

6



2.4 Symmetry

A symmetry of a polytope Π contained in En is an isometry of En which maps each vertex to a
vertex, edge to an edge, etc and it preserves the incidence between these elements, i.e. σ : Π → Π
which means that σ maps the elements of the polytope to other elements of the polytope such that
the image is again the polytope Π. The simplest symmetry example is the identity I, which leaves
every element invariant. If a symmetry σ is applied after a symmetry τ we will denote this by σ ◦ τ .
It holds that σ ◦ τ is again a symmetry, this is a property of isometries. Namely if τ and σ are both
bijective mappings that preserve distances then σ ◦ τ is also bijective and distance preserving and is
therefore also an isometry. Now if it holds that τ(Π) = Π and σ(Π) = Π then it also holds that
τ ◦ σ(Π) = Π, thus τ ◦ σ is also a symmetry.
The order of a symmetry σ is the smallest k ∈ N>0 such that σk = σ ◦ σ... ◦ σ = I.

Definition 2.4.1. Let G be a set and ∗ a binary operation on G. A tuple
(G, ∗ : G×G→ G, inv : G→ G, e ∈ G) is called a group if:

• It is associative, i.e. for all f, g, h ∈ G it holds (f ∗ g) ∗ h = f ∗ (g ∗ h).

• e is an identity element for ∗.

• For each g ∈ G, g−1 satisfies g ∗ g−1 = e = g−1 ∗ g.

These properties are called the group axioms. By this definition, if Π is a polytope then the set
Sym(Π) of all possible symmetries of Π is a group since we have:

• For all σ, τ, ρ ∈ Sym(Π) it holds (σ ◦ τ) ◦ ρ = σ ◦ (τ ◦ ρ).

• I is an element of ∈ Sym(Π).

• For every σ ∈ Sym(Π) there exists σ−1 ∈ Sym(Π) such that
σ−1 ◦ σ = I = σ ◦ σ−1.

• If σ, τ ∈ Sym(Π) then also σ ◦ τ ∈ Sym(Π).

The set Sym(Π) is called the symmetry group of a polytope Π.

2.4.1 Reflection
The axis of an isometry σ of the space En is

axis(σ) := {~x ∈ En : σ(~x) = ~x};

it is the set of vectors left invariant by the isometry.

Definition 2.4.2. A reflection is a symmetry of the Euclidean space that leaves invariant
every vector on an affine hyperplane. The affine hyperplane is called the reflection axis
or mirror. The reflection interchanges the two half-spaces into which the reflection axis
decomposes the whole space, such that the line-segment between any vector of the space
and its image after reflection is perpendicularly bisected by the reflection axis.

The inverse R−1 of a transformation R reverses the effect of R, such that RR−1 = I = R−1R
where I is the identity.
If R is a reflection then R is its own inverse, R = R−1, and we have: R2 = I. Because of this, we
say that a reflection is of order 2. i.e., reflecting twice in the same reflection axis leaves everything
invariant.

7



Now that we have a clear understanding of what a reflection is, we can ask ourselves the following
question. How does one find or compute the reflection image of a vector? Suppose we have the
reflection R in the hyperplane V , with the unitary normal ~n. To determine the reflection image in V
of a vector ~v we distinguish two cases: either the hyperplane goes through the origin ~0 or it does not
and then there is a vector ~u 6= ~0 such that ~u is contained in the hyperplane.

Lemma 2.4.3. If the hyperplane V contains ~0 then the reflection image of a vector ~v in the
hyperplane V is defined by:

R(~v) = ~v − 2〈~v|~n〉~n. (2.3)

where ~n is a unitary normal of V .

Proof. Let ~x be a vector and let ~n be the unitary normal of the plane V where V goes through the
origin. Then V is defined by 〈~x|~n〉 = 0. To find the reflection image in V of a vector ~v we need
to consider the line through ~v and perpendicular to the plane. Let l be this line. Then l is defined
by ~x = ~v + λ~n. For the intersection of l with V we find: there is a λ̂ such that 〈(~v + λ̂~n)|~n〉 = 0.
Furthermore, 〈~n|~n〉 = |~n|= 1 and thus we have λ̂ = −〈~v|~n〉. Now −〈~v|~n〉~n is the distance vector
from ~v to V and ~u = ~v +−(〈~v|~n〉)~n ∈ V .
Let R be the reflection in V . The reflection image R(~v) of ~v is also on line l, has the same distance
to V as ~v and therefore we find R(~v) = ~v − 2〈~v|~n〉~n.
Note: if ~v is a vector in the plane V then 〈~v|~n〉 = 0 and thus R(~v) = ~v.

However if V does not go through ~0 but through a vector ~u, we can apply the translation by −~u to
the hyperplane and the vector ~v such that the resulting hyperplane V ′ is parallel to V and does go
through the origin. After translation we use the equation 2.3 to reflect in V ′ and after reflection we
translate by the vector +~u.
Let R′ be the reflection in the hyperplane V ′. For the reflection image of the shifted vector ~v − ~u
by R′ equation 2.3 holds. So for the reflection image of ~v in V it holds that we then have R(~v) =
R′(~v − ~u) + ~u = ~v − ~u− 2〈(~v − ~u)|~n〉~n+ ~u. Thus we find:

Lemma 2.4.4. If the hyperplane V does not go through ~0 but through ~u then the reflection
image of a vector ~v in the hyperplane V is defined by:

R(~v) = ~v − 2〈~v|~n〉~n+ 2〈~u|~n〉~n (2.4)

where ~n is a unitary normal of V .
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Chapter 3

Symmetries of polytopes
After discussing the main concepts of this paper and the definitions needed, we can now get more
into the details of polytopes. In this chapter the existence of symmetries, more precisely reflections,
for regular polytopes will be proven. We start with polygons, here the practicalities are easier to
understand. Then we will introduce a new definition and some properties on the polytopes in higher
dimensions and prove that also for arbitrary n there exist reflections that are symmetries of regular
polytopes in n-dimensional space.

3.1 2-dimensional

To understand the various symmetries of polytopes we first take a look at the simplest case, regular
polygons in the Euclidean plane.

Definition 3.1.1. A regular polygon is a polygon that is both equilateral and equiangular.

An example of a regular polygon is a square. Throughout this paper we will mainly consider regular
polygons for as they have some nice properties which will become clear in chapter 4.

Theorem 3.1.2. Every regular polygon on n ≥ 3 vertices admits reflections as symmetries.

More precisely, we will prove that a regular polygon admits reflections in the bisector of any angle
between three consecutively adjacent vertices of the polygon and in the perpendicular bisector of any
two adjacent vertices.
To prove the existence of symmetries for regular polygons we will make use of the following lemma.

Lemma 3.1.3. For every regular polygon there exists a point with an equal distance to all
vertices of the polygon.

Proof. Let there be a regular polygon on n ≥ 3 vertices, with its vertices numbered from 1 to n such
that consecutive adjacent vertices are labeled with consecutive numbers modulo n. Considering the
perpendicular bisectors of vertex pairs (1, 2) and (2, 3) we find one point called M where these lines
intersect. These perpendicular bisectors cannot be parallel to each other since the angle ]123 is not
180 degrees. If ]123 would be 180 degrees then the regular polygon would be a straight line since
it is equiangular, this is in contradiction to a polygon being finite. For M we know that d(1,M) =
d(2,M) = d(3,M). By definition of a regular polygon we also know that d(1, 2) = d(2, 3) = d(3, 4).
Thus the triangles 41M2 and 42M3 are congruent to one another and are isosceles triangles. They
therefore both have two equal base angles. So in total there are four equally valued base angles with
value α.
Again by the definition of a regular polygon we have that ]n12 = ]123 = ]234 . The angle ]123
consists of two equal base angles = 2α = ]234 where ]23M = α and therefore ]M34 = α.
It follows now that 43M4 is also congruent to 42M3 since they have two sides and the angle in
between these sides equal.
From this we can conclude that vertex 4 also has the same distance to the point M . Changing
the triangles and angles in this proof by adding 1 to all used vertex numbers we are now able to
analogously prove that vertex 5 also has the same distance to point M . In this way we prove via
induction that every vertex 1 ≤ i ≤ n has the same distance to point M . We have proven that there
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exists a point with an equal distance to all vertices of a regular polygon and it is called the midpoint
M .

To continue the proof of Theorem 3.1.2: We will discuss two cases. One where we prove proposition
3.1.4 and a second where we prove proposition 3.1.5.

Proposition 3.1.4. The bisector of any angle between three consecutive vertices of the
polygon is the axis of a reflection for a regular polygon.

Proof. Consider a regular polygon on n vertices where n ≥ 3. Without loss of generality we may
assume that we can number the vertices with the numbers 1 to n doing so counter clock-wise modulo
n. Let A be the vertex with number 1, B the vertex with number n and B′ the vertex with number
2. B and B′ are now the neighbors of A. Let line k be the bisector of ]BAB′. By definition
of the polygon we know that BA = AB′ and by lemma 3.1.3 there exists a point M such that
AM = BM = B′M . M is the midpoint of the polygon and lies on line k. Now we know that
4BMA is congruent to 4AMB′ having all three pairs of sides mutually equal.
And therefore B and B′ are each other’s mirror-image in line k.
Using induction we prove that for every subsequent neighbors C and C ′ respectively of the points B
and B′ it holds that C and C ′ are each other’s mirror-image. Figure 3.1 represents such an instance.
Base case: We have that vertices n and 2 are each other’s mirror-image in line k.
Induction hypothesis: Suppose that for a vertex (i) ≥ 1 we have that (n+ 2− i) is its mirror-image
in line k.
Induction step: Consider vertices (i + 1) and (n + 1 − i). Again by definition of the regular
polygon we have (i)(i + 1) = (n + 2 − i)(n + 1 − i) and by definition of the midpoint M we
have (i)M = (i + 1)M = (n + 2 − i)M = (n + 1 − i)M . Thus 4(i)M(i + 1) is congruent to
4(n + 2 − i)M(n + 1 − i). And therefore (i + 1) and (n + 2 − i) are each other’s mirror-image in
line k.
Moreover, there exists a reflection axis for the polygon on the bisector of the angle between any three
consecutive vertices.

Figure 3.1: Representation of case 1

Proposition 3.1.5. The perpendicular bisector of any two adjacent vertices is the axis of a
reflection for a regular polygon.

Proof. Consider a regular polygon on n ≥ 3 vertices. Without loss of generality we may assume that
we can number the vertices with the numbers 1 to n doing so counter clock-wise modulo n. Let
A be the vertex with number n, B the vertex with number 1. Consider the perpendicular bisector
l of the two adjacent vertices A and B. Line l obviously intersects the midpoint M . Let C be
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the second neighbor of A and C ′ the second neighbor of B. We know by definition of the polygon
that AC = BC ′ and by definition of the midpoint that AM = BM = CM = C ′M . Leading
to the conclusion that 4AMC is congruent to 4BMC ′ and therefore C and C ′ are each others
mirror-image in line l. Via induction we will prove that in every subsequent pair of second neighbors
the vertices are also each other’s mirror image in line l. Figure 3.2 represents such an instance.
Base case: We have that vertices n− 1 and 2 are each other’s mirror-image in line l.
Induction hypothesis: Suppose that for a vertex (i) ≥ 1 we have that (n+ 1− i) is its mirror-image
in line l.
Induction step: Consider vertices (i+ 1) and (n− i). By definition of the regular polygon we have
(i)(i + 1) = (n + 1 − i)(n − i) and by definition of the midpoint M we have (i)M = (i + 1)M =
(n+ 1− i)M = (n− i)M . Thus 4(i)M(i+ 1) is congruent to 4(n+ 1− i)M(n− i). And therefore
(i+ 1) and (n− i) are each other’s mirror-image in line l.
Furthermore, there exists an axis of reflection for the polygon on the perpendicular bisector of any
two adjacent vertices.

This concludes the proof of Theorem 3.1.2. Every regular polygon on n ≥ 3 vertices admits reflections.
More specifically, it admits reflection in the bisector of any angle between three consecutive vertices
of the polygon and in the perpendicular bisector of any two adjacent vertices.

Figure 3.2: Representation of case 2

3.2 3-dimensional

A set of symmetries S of a polytope Π is transitive on the maximal flags of Π if for each pair of
maximal flags (F,G) of Π there exists a σ ∈ S such that σ(F ) = G.
We have discussed what it means for a polygon to be regular. From now on we will use the general
definition for a regular polytope, which is as follows.

Definition 3.2.1. A polytope is said to be a regular polytope if and only if its symmetry
group is transitive on its maximal flags.

Lemma 3.2.2. The i-cells of a regular n-dimensional polytope are regular i− 1-dimensional
polytopes.

Proof. If Π is a regular n-dimensional polytope, then its symmetry group Sym(Π) is transitive on its
maximal flags. Let C be an i-cell of Π and let F = (C1, ..., Ci−1, C, Ci+1, ..., Cn) be a maximal flag
of Π. Let F1, F2 be maximal flags of C then their elements are elements of C. They can be extended
by combining both with the sequence of elements Ci+1, ..., Cn, let us denote these combinations as
F ′1 = (F1, Ci+1, ..., Cn) and F ′2 = (F2, Ci+1, ..., Cn).
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F ′1, F
′
2 are maximal flags of Π. The symmetry group of Π is transitive on its maximal flags, so there

exists a symmetry σ ∈ Sym(Π) such that σ(F ′1) = F ′2. Since the last n − i elements of F ′1 and
F ′2 are equal it follows that σ(F1) = F2. Since this holds for arbitrary maximal flags of C we have
that Sym(Π) is also transitive on the maximal flags of C. We find that the symmetry group of C is
transitive on its maximal flags and thus C is an i− 1-dimensional regular polytope.

As we have developed some handles to understand the symmetries in regular polygons we can expand
our knowledge to understand more about symmetry in regular polyhedra.

3.2.1 Midpoint
First we need to establish that for every regular polyhedron there exists a unique midpoint.

Lemma 3.2.3. For each regular polyhedron there exists a unique point with an equal distance
to all vertices of the polyhedron.

Proof. Consider the two vertices A and B of one face of a regular polyhedron. Because all faces
are congruent we can choose any of the faces of the polyhedron, let us use the face F . Let the
perpendicular plane of A and B be the plane that contains all points in En that have an equal
distance to A and B.
Consider the perpendicular plane X of the vertices A and B. F is a polygon and thus contains at
least three vertices. Let C be a vertex of F unequal to A and B. Consider the perpendicular plane
Y of the vertices A and C. The two planes X,Y intersect the face F in the point N . According to
lemma 3.1.3 N is the midpoint of F .
Let D be an adjacent vertex of A that is not a vertex of F . D is a vertex of an adjacent face of F.
Consider the perpendicular plane Z of the vertices A and D. Let M be the point of intersection of
the planes X,Y and Z. Since X and Y are perpendicular to F , their intersection is also perpendicular
to F . From this we know that MN is perpendicular to F .
For all vertices V,W of F consider the triangles 4V NM and 4WNM , it holds that V N = WN ,
]V NM = ]WNM = 90◦ and NM = NM so 4V NM and 4WNM are congruent. Furthermore
it follows that VM = WM , so M has the same distance to all vertices of F .

Claim 3.2.4. This unique point M satisfies lemma 3.2.3.

In order to prove this claim we must show that M is always the same point for any chosen vertices.
This follows since by definition the polyhedron is connected on its faces. Then there exists a sequence
of faces from F to any other face of the polyhedron such that every subsequent pair of faces share
an edge.
F will have an edge in common with the next face, say S where S is the adjacent face of F containing
vertex D, and thus the point M has the same distance to both vertices at this edge and we can then
prove that M is at the same distance from all other vertices of both faces F and S:

Namely, following the aforementioned reasoning: using the perpendicular planes X and Z we find
a point N ′ which is the midpoint of the face S and see that N ′M is perpendicular to the face S
since M is on the intersection of the two perpendicular planes. We can now consider the triangles
4ANM and 4AN ′M . Both triangles contain the side AM . The sides AN and AN ′ are of equal
length since the faces F and S are congruent polygons with midpoints N and N ′ and A is a vertex
of both polygons. Furthermore, both triangles are right-angled with their hypotenuse being AM . So
the two triangles are congruent and thus we know that NM and N ′M are of equal length.
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Thus if two faces F and S are adjacent then the point M with an equal distance to the vertices of F
is also the same distance from the vertices of S. It follows that if there is a sequence of consecutive
adjacent faces between the faces F and G of a regular polyhedron then the unique point M with an
equal distance to the vertices of F has the same distance to the vertices of the face G.
By definition of the polyhedron we know that such a sequence exists.
So we can now conclude that M has an equal distance to the vertices of every face. We call this
point M the midpoint of the polyhedron.

3.2.2 Symmetry of polyhedron
As a regular polygon admits reflections we will now prove that a regular polyhedron admits reflections
as well. We will do so using the elements of a polyhedron and the flags in which they are contained.
We need the following proposition:

Proposition 3.2.5. If for a regular polytope there exists a unique midpoint then this midpoint
can not be contained in the affine span of any of the cells of the polytope.

Proof. Let F = (C1, ..., Cn−1, C) be a maximal flag of a regular polytope Π. We will prove by
induction on the elements of F that the midpoint O of Π can not be contained in the span of any
element of F .
Base case: Suppose O is contained in the affine span of a cell C of Π. Consider the maximal flag
G = (C1, ..., Cn−1, D), G is an adjacent flag of F so there exists a symmetry σ ∈ Sym(Π) such that
σ(F ) = G. Then there must exist a point O′ in the affine span of D with σ(O) = O′. By definition
we have that O is left invariant by every symmetry of the polytope so O′ = O, thus O is contained
in the affine span of Cn−1.
Induction hypothesis: Suppose that O is contained in the affine span of an i-cell Ci of Π where Ci
is an element of F1 = (C1, ..., Ci, Di+1, ..., Dn−1, D) for some i = 2, ..., n− 1.
Induction step: Consider the maximal flag F2 = (C1, ..., Ci−1, Di, ..., Dn−1, D), F2 is an adja-
cent flag of F1 so there exists a symmetry σ ∈ Sym(Π) such that σ(F1) = F2. Then there must
exist a point O′′ in the affine span of Di with σ(O) = O′′. By definition we have that O is left in-
variant by every symmetry of the polytope so O′′ = O, thus O is contained in the affine span of Ci−1.

It now follows that if O is in the affine span of C then O = C1, so O is a vertex of the poly-
tope. However for all vertices it also holds that there exists a symmetry σ ∈ Sym(Π) that map the
vertex onto another vertex, but O is left invariant by every symmetry of Π.
Therefore we know that O can not be contained in the affine span of any of the cells of Π.

With this we will now prove the following theorem.

Theorem 3.2.6. Every regular polyhedron in En admits reflection symmetries.

Proof. Let P be a regular polyhedron. For any maximal flag (C,BC,BCD...), where BCD... depicts
a face of the polyhedron on the vertices B,C,D and some yet to be determined vertex/vertices, we
find some adjacent flags (B,BC,BCD...), (C,CD,BCD...), (C,BC, ...ABC).
The symmetry group of P is transitive on its maximal flags. So these three flags are each the result
of applying some symmetry σi ∈ Sym(P ) to (C,BC,BCD...).
Suppose σ1 is the symmetry such that σ1(C,BC,BCD...) = (B,BC,BCD...), then σ1 leaves the
edge BC and the face BCD. . . invariant. As a result their midpoints, O and N respectively, are
also left invariant by σ1. These two midpoints span a line in the bounding hyperplane containing the
face BCD. . . . The midpoint M of the polyhedron is also left invariant since σ1 is a symmetry of
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the polyhedron.
Because of proposition 3.2.5 we know thatM is not contained in its bounding hyperplane and therefore
we know that the points O,N,M span a hyperplane, these points are all left invariant and thus the
hyperplane is left invariant. For this reason σ1 is the reflection in the hyperplane ρ1 = ONM .
Suppose σ2 is the symmetry such that σ2(C,BC,BCD...) = (C,CD,BCD...), then σ2 leaves the
vertex C and the face BCD. . . invariant. Analogue to the proof for σ1 being a reflection we find
that σ2 leaves the hyperplane spanned by the three points C,N,M invariant and is therefore the
reflection in the hyperplane ρ2 = CNM .
Suppose σ3 is the symmetry such that σ3(C,BC,BCD...) = (C,BC, ...ABC), then σ3 leaves the
vertex C and the edge BC invariant. Again analogue to the proof for σ1 being a reflection we find
that σ3 leaves the hyperplane spanned by the three points C,O,M invariant and is therefore the
reflection in the hyperplane ρ3 = COM .
Thus every symmetry σ ∈ Sym(Π) that transforms a maximal flag into any adjacent maximal flag is
a reflection.

3.3 n-dimensional

We have proven that each regular polygon or polyhedron has a unique point with an equal distance
to every vertex of that polygon or polyhedron. This is the midpoint. To prove the existence of a
midpoint for higher dimensional polytopes we will use the following lemmas.

Lemma 3.3.1. The number of symmetries of a regular polytope Π is finite.

Proof. Consider a set of points P containing the minimal number of points of a polytope Π contained
in En such that P spans the space En. By the definition of regularity, applying the symmetry group
Sym(Π) to the set P results in all points of Π.
Suppose that the number of symmetries in Sym(Π) is infinite, then there always exists some symmetry
σ ∈ Sym(Π) such that σ is a mapping defined on the points of Π. Since we already have all points
of Π we know that σ(P ) can not result in any new points of the polytope and therefore σ leaves Π
invariant. The points of Π span En thus σ leaves the space invariant and is therefore the identity
symmetry.
Thus the number of symmetries in Sym(Π) is finite.

Lemma 3.3.2. Let Π be a regular polytope. For any pair of i-cells A,B of Π there exists a
symmetry τ ∈ Sym(Π) such that τ(A) = B.

Proof. Let Π be a regular polytope and let A,B be two i-cells of Π. Every i-cell is contained in some
maximal flag of Π. So for A and B there exist maximal flags F, F ′ of Π such that A is an element
of F and B is an element of F ′. Since the symmetry group of Π is transitive on its maximal flags,
there exists a symmetry τ ∈ Sym(Π) such that τ(F ) = F ′ and thus we have τ(A) = B.

Using these results we can use the symmetry operations between vertices to prove the following.

Theorem 3.3.3. For every regular polytope there exists a point with an equal distance to
all vertices of the polytope.

Proof. Let Π be a regular polytope with A a random point of Π. Let σ1, σ2, ..., σk be all symmetries
in Sym(Π), by lemma 3.3.1 the number of symmetries is finite. If O = σ1(A) + σ2(A) + ...+ σk(A)
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then O is left invariant by every σ ∈ Sym(Π) since σ ◦ σi is again a symmetry of the polytope and
thus equal to σj for some j ∈ {1, ..., k} uniquely depending on i. We have

σ(O) = σ ◦ σ1(A) + σ ◦ σ2(A) + ...+ σ ◦ σk(A) = σ1(A) + σ2(A) + ...+ σk(A) = O

So indeed O is left invariant. The symmetries preserve incidence and distances. So the distance from
O to a vertex A of the polytope is preserved. Say d(O,A) = a. If we have τ(A) = B for some
τ ∈ Sym(Π) then a = d(τ(O), τ(A)) = d(O,B) since O is left invariant by τ .
Because of lemma 3.3.2 there always exists such a symmetry mapping A to B and therefore O has
an equal distance to all vertices of the polytope and is thus the midpoint of Π.

Recall proposition 3.2.5. The knowledge of the existence of a midpoint in a regular polytope and
whether or not it lies in one of the cells will come in handy for the following. We assume that our
polytopes of interest are regular and thus we already know that there exists a symmetry mapping a
flag to an adjacent flag. However, what type of symmetry is this?

Theorem 3.3.4. Let Π be a regular polytope and let F1, F2 be two adjacent maximal flags
of Π. If σ ∈ Sym(Π) is the symmetry such that σ(F1) = F2 then σ is a reflection.

Proof. Let Π be a regular polytope in En. Let Ci and Ci+1 be mutually incident i−cells of Π for
all i ∈ {1, ..., n − 1}. Then the flag P = (C1, C2, ..., Ci, ..., Cn) is a maximal flag of Π. Since
Π is regular we know that Sym(Π) is transitive on the maximal flags of Π. Therefore if Q =
(C1, C2, ..., C

′
i, ..., Cn) is an adjacent flag of P then there exists a symmetry si ∈ Sym(Π) such that

siP = Q for all i ∈ {1, ..., n}.
For all j 6= i, j ∈ {1, ..., n} we have that Cj is left invariant by si. If Cj is left invariant then
si ∈ Sym(Cj) and then by theorem 3.3.3 also its midpoint mj is left invariant. Here m1 = C1 since
C1 is a vertex and thus only one point.
Let mn+1 be the midpoint of Π, this is also left invariant since si is a symmetry of Π. So si leaves
the n points {m1,m2, ...,mi−1,mi+1, ...,mn,mn+1} unchanged.

Claim 3.3.5. These n points span a hyperplane.

We prove this claim using induction.
Base case: For a regular 2-dimensional polytope, a polygon, we have that a maximal flag consists
of two elements; a vertex and an edge containing this vertex. As discussed, any symmetry that
transforms a maximal flag into an adjacent flag either leaves invariant the vertex or the midpoint
of the edge. In both cases the midpoint of the polygon is left invariant, so two points of interest
are left invariant. Since by proposition 3.2.5 the midpoint of the polygon is not contained in any of
the edges it is also not equal to any vertex. Thus we know that the two points left invariant by the
symmetry span a line which is a hyperplane of the 2 dimensional space. So the points left invariant
by a symmetry that transforms a maximal flag into an adjacent flag span a hyperplane.
Induction hypothesis: Suppose that for any regular (n − 1)-dimensional polytope it holds that: if
{m1,m2, ...,mi−1,mi+1, ...,mn−1,mn} is the set of midpoints left invariant by a symmetry between
two adjacent maximal flags of the polytope, then these points span a hyperplane.
Induction step: Consider a regular n-dimensional polytope G with its midpoint mn.
Let (D1, ..., Di, ..., Dn) be a maximal flag of G and let σi be the symmetry that transforms this flag
into its adjacent flag (D1, ..., D

′
i, ..., Dn). Letmi be the midpoint of the i-cell Di for all i ∈ {1, ..., n}.

Then σi leaves invariant all points m1, ...,mi−1,mi+1...,mn as well as mn+1 since σi is a symmetry
of G.
The sub-maximal flag (D1, ..., Di, ..., Dn−1) of G is a maximal flag of Dn. Using the induction
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hypothesis on Dn we can now conclude that the points m1, ...,mi−1,mi+1...,mn span an (n − 2)-
dimensional plane, say ρ. According to proposition 3.2.5 the midpoint of G is not contained in its
cell Dn and therefore not in ρ. Thus the points m1, ...,mi−1,mi+1...,mn,mn+1 span an affine hy-
perplane of En.

In conclusion, the symmetry si leaves invariant a hyperplane thus by definition 2.4.2 we know that
si is a reflection in this hyperplane.

So the symmetry that transforms a maximal flag of a regular polytope into an adjacent flag is a
reflection.

In the proof of the two following theorems we will see that all other symmetries are in fact a product
of these reflections. For the ease of notation we will refer to the reflections reflecting a maximal flag
F into an adjacent flag as the adjacent reflections of F .
Two symmetries σ1, σ2 ∈ Sym(Π) of a polytope Π are called conjugate if there exists a third
symmetry τ ∈ Sym(Π) such that σ1 = τ ◦ σ2 ◦ τ−1.

Theorem 3.3.6. The adjacent reflections of any maximal flag of a regular polytope are
conjugate to the adjacent reflections Ri of any initially chosen maximal flag of the polytope.

Proof. Consider a maximal flag F of the regular polytope Π. Let G also be a maximal flag of Π.
By regularity of Π we know that Sym(Π) is transitive on the maximal flags of Π. Thus there exists
a symmetry g ∈ Sym(Π) such that G = g(F ). Let R be an adjacent reflection of F , then F ′ = RF
is an adjacent flag of F .
Consider the symmetry gRg−1:

gRg−1(G) = gRg−1g(F ) = gRF = g(F ′).

Then since g is a symmetry and F ′ is adjacent to F we have that g(F ′) is adjacent to g(F ).
Thus gRg−1 is an adjacent reflection of G and is conjugate to R.
The adjacent reflections of a maximal flag G of a regular polytope are conjugate to the adjacent
reflections of any initially chosen maximal flag F the polytope.

It now follows that if Ri for i = 1, ..., n are the adjacent reflections of some maximal flag F of a
regular polytope Π then the set of symmetries 〈R1, . . . , Rn〉 is transitive on the maximal flags of a
regular polytope.
We have that both the symmetry group of a polytope and the group generated by the reflections
R1, . . . , Rn are transitive on the maximal flags of a regular polytope. However, are they the same
set? We will find that there cannot exist a symmetry in the symmetry group which is not an element
of 〈R1, . . . , Rn〉 and thus prove the following theorem.

Theorem 3.3.7. If Ri with i = 1, ..., n are the adjacent reflections of a maximal flag F of
a polytope Π, then the symmetry group Sym(Π) is generated by the reflections R1, ..., Rn.

Proof. Let Π be a regular polytope and let F be a maximal flag of Π. We know there exists some
σ 6= I, σ ∈ Sym(Π) such that it will map a maximal flag G onto F , σ(G) = F . By property 2.3.5
we know that there exists some sequence of flags (F = F1, F2, ..., Fk = G) such that Fi and Fi+1

are adjacent flags for all i ∈ {1, ..., k − 1}. For every pair of Fi and Fi+1 theorem 3.3.4 says that
there exists a reflection, say Hi, such that HiFi = Fi+1.
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So H1F = F2 and H2F2 = F3, those two equalities can be combined to find that H2H1F = F3.
Successively applying this to the sequence (F = F1, F2, ..., Fk = G) we find

Hk−1Hk−2...H1F = G. (3.1)

Moreover, using σ(G) = F we find

Hk−1Hk−2...H1σ(G) = G. (3.2)

From this we know that Hk−1Hk−2...H1σ leaves G invariant and is therefore the identity. Thus the
symmetry σ is the inverse of the product of reflections Hk−1Hk−2...H1, σ = H−11 ...H−1k−2H

−1
k−1. A

reflection is its own inverse, hence σ is a product of the reflections H1, ...,Hk.
We will now prove by induction that the reflections Hi are elements of the group generated by the
reflections R1, ..., Rn.
Base case: F2 is adjacent to F1 = F . Suppose H1 = R1 then F2 = R1F1, then by theorem 3.3.6
the adjacent reflections of F2 are R1RiR1 for i = 1, ..., n. So H2 = R1RiR1 for some i ∈ {1, ..., n}
and thus H2 ∈ 〈R1, ..., Rn〉.
Induction hypothesis: Suppose that for some j ∈ {2, ..., k − 2} the adjacent reflections of Fj are
given by SjRiTj for i = 1, ..., n with Sj = Hj−1...H1 and Tj = H1...Hj−1 and Hi ∈ 〈R1, ..., Rn〉
for i = 1, ..., j.
Induction step: Consider the maximal flag Fj+1. We have Fj+1 = HjFj , then by theorem
3.3.6 the adjacent reflections of Fj+1 are HjSjRiTjHj for i = 1, ..., n. Thus we have Hj+1 =
HjHj−1...H1RiH1...Hj−1Hj for some unique i ∈ {1, ..., n}. Therefore Hj+1 ∈ 〈R1, ..., Rn〉.

In consequence of σ being the product H1H2...Hk we also have that σ is in the group generated by
the reflections R1, ..., Rn, σ ∈ 〈R1, . . . , Rn〉. Hence the entire symmetry group Sym(Π) is generated
by the reflections R1, ..., Rn.

To conclude this paragraph, we have seen that every regular polytope admits n adjacent reflections for
any of its maximal flags. If one of these flags is chosen as a base flag with its adjacent reflections Ri
for i = 1, . . . , n then the adjacent reflections of any other maximal flag of the polytope are generated
by the reflections R1, ..., Rn. Thus the group 〈R1, . . . , Rn〉 is transitive on the maximal flags of
that regular polytope. From this it follows that the symmetry group of the polytope is generated by
R1, ..., Rn.
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Chapter 4

Properties of symmetries
The symmetry group of a regular n-dimensional polytope is generated by the adjacent reflections Ri
for i = 1, ..., n of some maximal flag of the polytope. There are some nice properties based on these
reflections which we will be presenting in this chapter. We will discuss the existence of fundamental
regions and discuss a notation for a regular polytope by a diagram or its Schläfli symbol. We will prove
that up to isomorphisms there exists only a limited number of regular polytopes for any dimension
greater than two. Furthermore, it will be shown that it is possible to construct a regular polytope
given such a diagram.

4.1 Fundamental Region

Let G be a group of isometries of En fixing the origin O. A fundamental region of G is a subset of
a sphere centered in O such that the images of the subset under the symmetry group just cover the
sphere without overlapping except for the points on the boundaries. This means every point on the
sphere is equivalent (under the symmetry group) to some point of the fundamental region, but no
two points of the region are equivalent unless both are on the boundary [2]. Here two points a and
b are said to be equivalent if there exists a symmetry σ in G such that σ(a) = b. As a consequence
we have that every point of the sphere belongs to one unique fundamental region of G, except for
the boundary points of a fundamental region.
Furthermore, a fundamental region is only left invariant by the identity.

Theorem 4.1.1. For every finite group of isometries of En fixing O there exist fundamental
regions.

Proof. Let G be the symmetry group generated by some finite group of isometries of En fixing O.
Let B ∈ En be a sphere centered in O with some radius r, B = {~x ∈ En : |~x− O|= r}. The orbit
T of some point v ∈ B is the set of images g(v) of v for all symmetries g ∈ G, it holds g(v) ∈ B. If
for v1, v2 ∈ B there does not exist a symmetry f ∈ G such that f(v1) = v2 (or vice versa), then the
orbits T1 and T2 of v1 and v2 respectively do not have any points in common. Suppose T1, T2 have
a point u in common. Then there exist symmetries h and k such that h(v1) = u = k(v2), but then
we also have k−1(h(v1)) = k−1(u) = v2, where k−1 is the inverse of k. Which contradicts there
not being a symmetry f such that f(v1) = v2. Thus we know that every point of B is in exactly
one orbit. If we consider the orbit for all points of B then we have all possible orbits. These orbits
exactly cover the full sphere.
Let the set of points S contain exactly one point from every orbit. Then every image of S under
symmetry will contain exactly one point from every orbit as well. All these images will cover the
orbits and therefore cover the sphere without overlap. In other words S is a fundamental region of
the symmetry group G.

The images of a fundamental region cover the sphere and are by definition congruent to the funda-
mental region. What does this tell us about the images?

Lemma 4.1.2. The image of a fundamental region under symmetry is also a fundamental
region of the symmetry group.
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Proof. Let G be the symmetry group generated by some finite group of isometries of En fixing O.
Let B ∈ En be a sphere centered in O with some radius r, B = {~x ∈ En : |~x−O|= r}.
Let F be a fundamental region of G. If p is a point in B, then there exists some symmetry h ∈ G
such that p ∈ h(F ). Consider the image g(F ) of F under the symmetry g ∈ G. Let g−1 be the
inverse of g, then p ∈ h(g−1(g(F ))) where h(g−1(g(F ))) is also an image of g(F ). So p is a point
in the image of g(F ) under the symmetry h(g−1).
In conclusion, for any pair (g(F ), h(F )) of images of F it holds: There exists a symmetry σ ∈ G, such
that σ(g(F )) = h(F ). Thus the symmetry group G acts transitively on the orbit of a fundamental
region.
Note that it now holds that for all symmetries g ∈ G, the images of g(F ) also just cover the sphere
B without overlapping since they are the same images as the ones of F . Therefore for all symmetries
g ∈ G the image g(F ) of F is also a fundamental region of the symmetry group.

Lemma 4.1.3. Let F be a fundamental region of some symmetry group G and let F =
{τ(F ) : τ ∈ G} be the set of images of F under the symmetry group G. If F1 and F2 are
both elements of F , then there exists a unique symmetry σ ∈ G such that σ(F1) = F2.

Proof. Let G be the symmetry group generated by some finite group of isometries of En fixing O.
Let B ∈ En be a sphere centered in O with some radius r, B = {~x ∈ En : |~x−O|= r}.
Let F be as stated. Let F1 and F2 be elements of F . There exist σ1, σ2 ∈ g such that Fi = σi(F )
for i = 1, 2. By lemma 4.1.2 F1 and F2 are also fundamental regions and

σ2(σ−11 (F1)) = σ2(σ−11 (σ1(F ))) = σ2(F ) = F2. (4.1)

Thus there exists a symmetry σ ∈ G such that σ(F1) = F2, namely σ = σ2σ
−1
1 .

Suppose p is a point on the sphere B, by definition of the fundamental region F it holds that there
exists a τ ∈ G with p ∈ τ(F ) ∈ F and B =

⋃
{τ(F ) : τ ∈ Sym(Π)}.

Suppose p ∈ F1 ∩ F2. Then p ∈ σ1(F ), p ∈ σ2(F ). We have

σ1σ
−1
2 (p) ∈ σ1σ−12 (F2) = σ1(F ) = F1. (4.2)

To conclude, σ1σ−12 (p) ∈ F1 and p ∈ F1. But F1 ∩ τ(F1) is either an empty set (∅) or it is simply
F1. Thus we find that σ1σ−12 is the identity symmetry I, since by definition a fundamental region is
only left invariant under the identity. Therefore σ−12 is the inverse of σ1 and σ1 = σ2. Which proves
that p can only be a point in exactly one image of the fundamental region F . Thus the symmetry
σ ∈ G such that σ(F1) = F2 is unique.

We have established the existence of fundamental regions for symmetry groups fixing some point O
with some of its features.
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4.2 Representation by diagrams

In chapter 3.3 we have seen that there is a set of reflections which generates the symmetry group of
a regular polytope Π. Let F = (C1, .., Cn) be a maximal flag of Π, then the adjacent reflections of
F generate the symmetry group of Π. In this chapter we will denote these reflections by R1, . . . , Rn
and the corresponding reflection axes by r1, . . . , rn.
Let Rjri be the hyperplanes representing the images after reflecting ri by Rj for i, j ∈ {1, ..., n}.
Consider the set of hyperplanes S = {σ(ri) : σ ∈ 〈R1, . . . , Rn〉, i = 1, ..., n}. Every hyperplane in
this set is an axis of reflection of the polytope. The midpoint of the polytope is left invariant by all
reflections R1, . . . , Rn and is therefore contained in each of the hyperplanes in S.
A unit sphere is a sphere with a radius of size 1. In the n-dimensional space we consider a unit sphere
U to be the set of vectors ~x ∈ En all emanating from a center vector ~c ∈ En satisfying |~x − ~c|= 1,
U = {~x,~c ∈ En : |~x − ~c|= 1}. If we consider the unit sphere centered in the common point of the
hyperplanes, then these planes cut out a pattern of great circles decomposing the spherical surface
into a number of congruent regions, let Z be the smallest of these regions. For the internal angles of
Z it will be sufficient to consider real divisors of π; for if the angle is jπ

p , where j and p are co-prime,
we can find a multiple of j/p which differs from 1/p by an integer and hence it is equivalent to some
given angle π/p [2].This means we can find a multiple of j/p such that the angle jπ

p yields the same
result as the angle π/p.
Thus the possible angle values are π

2 ,
π
3 , . . . . For each hyperplane separating two congruent regions

on the sphere it holds that the two regions are each others image upon reflecting in this hyperplane.
Because of this, every point on the sphere is equivalent (by the action of the group) to some point
belonging to the region Z. The spherical surface is decomposed into regions congruent to Z, so the
images of Z cover the sphere while only overlapping on their boundaries. Therefore Z is a funda-
mental region for the symmetry group.
The various possible fundamental regions are very conveniently classified by associating them with
certain graphs, called diagrams. The nodes in such diagrams represent the hyperplanes correspond-
ing to the generating reflections. Two nodes are joined by an edge whenever the corresponding
hyperplanes are not perpendicular to each other. We mark the edge connecting nodes i and j for all
i, j ∈ {1, ..., n} with a number αij ≥ 3 to indicate that the product of reflections RiRj has order
αij . Since the order 3 so frequently occurs it is usually omitted. Following this structure, here is how
we denote two hyperplanes with their α values:

αij = 1 αij = 2 αij = 3 αij > 3

When αij = 1 we have one node for two reflection hyperplanes since the hyperplanes are identical if
the product of their reflections has order 1. Moreover, two unconnected nodes denote commutative
reflections or perpendicular mirrors. Two nodes joined by an unmarked edge denote the reflections
Ri and Rj that satisfy

RiRjRi = RjRiRj (4.3)

and two nodes joined by a edge marked α denote the reflections that satisfy

(RiRj)
α = I. (4.4)
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Theorem 4.2.1. If Π is an n-dimensional regular polytope, then there are n reflections
R1, R2, ..., Rn with Sym(Π) = 〈R1, R2, ..., Rn〉 and R1, R2, ..., Rn have diagram:

With αi being the order of the product of the reflections Ri and Ri+1.

Proof. Let Π be a regular polytope contained in En and let F = (C1, .., Cn) be a maximal flag of Π.
If R1, . . . , Rn are the reflections that reflect F into its adjacent flags such that RiF = Fi, then by
theorem 3.3.7 it holds that Sym(Π) = 〈R1, ..., Rn〉.
Let us consider the two reflections Rj and Rk for j 6= k, such that RjF = (C1, . . . , C

′
j , . . . , Cn) and

RkF = (C1, . . . , C
′
k, . . . , Cn). We distinguish the two cases:

{
|j − k|> 1
|j − k|= 1

The numbers j and k are arbitrarily chosen so without loss of generality we may assume that k > j.

If |j − k|> 1, then we know that Rk leaves every element of F invariant except for the k-cell Ck.
More precisely, Rk leaves Cj−1, Cj and Cj+1 invariant and then because of the diamond property
2.3.4 also C ′j is left invariant by the reflection Rk. Now we find:

RkFj = RkRjF = (C1, . . . , C
′
j , . . . , C

′
k, . . . , Cn). (4.5)

Following the same reasoning we find that Rj leaves C ′k invariant since it leaves Ck−1, Ck and Ck+1

invariant, thus:
RjFk = RjRkF = (C1, . . . , C

′
j , . . . , C

′
k, . . . , Cn). (4.6)

From equations 4.5 and 4.6 we conclude that RkRjF = RjRkF ⇒ RkRj = RjRk, therefore

(RkRj)
2 = I. (4.7)

The hyperplanes corresponding to the reflections Rj and Rk are perpendicular to each other and
therefore the pair of nodes in the diagram representing Rj and Rk are not connected by an edge if
|j − k|> 1.

What if |j − k|= 1, then Rk = Rj+1 and we have the flags:

• F = (C1, . . . , Cj , Cj+1, . . . , Cn)

• Fj = (C1, . . . , C
′
j , Cj+1, . . . , Cn)

• Fj+1 = (C1, . . . , Cj , C
′
j+1, . . . , Cn)

So we know Cj ⊆ Cj+1, C ′j ⊆ Cj+1, Cj ⊆ C ′j+1. Now suppose that the hyperplanes corresponding
to the reflections Rj and Rj+1 are perpendicular. Then (RjRj+1)2 = I and

Rj+1RjF = (C1, . . . , C
′
j , C

′
j+1, . . . , Cn) = RjRj+1F. (4.8)

This implies that the flags containing (C1, ..., Cj−1, Cj+2, ..., Cn) form a 2-gon. However by the
definition of a polytope they should form a polygon which by definition is not defined on two vertices.
Thus we have a contradiction.
In the case of |j − k|= 1 the nodes in the diagram representing the reflections Rj and Rk will be
connected by an edge.
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For the ease of notation we will denote such diagrams by its consecutive αi’s: {α1, α2, ..., αn−1}.
This notation is called a Schläfli symbol. If the Schläfli symbol {α1, α2, ..., αn−1} belongs to the
generating reflections of a polytope Π then the polytope with generating reflections belonging to
the Schläfli symbol {αn−1, ..., α2, α1} is called the dual of Π. Moreover, if {α1, α2, ..., αn−1} =
{αn−1, ..., α2, α1} then Π is called self-dual.

4.2.1 Possible diagrams
So we have established that for every regular polytope there exists a Schläfli symbol that represents
the diagram belonging to the generating reflections of that polytope. We will use this knowledge to
establish all possible values for αij . Doing so we will find that there only exist a finite number of
these polytopes in three dimensions and higher.

For a regular polygon the general Schläfli symbol, belonging to the diagram of the generating reflec-
tions of this polygon, is {p}. Here p > 2, for if p = 1 we find the hyperplanes to be equal and if p = 2
then the reflections would commute, this means we will have reflections in two planes perpendicular
to each other. From {p} we can deduce that there are two generating reflections R1, R2 from which
the reflection axes are inclined at an angle of qπp with gcd(p, q) = 1.
The product R1R2 of the reflection in the axes of R2 and R1, in that order, is the rotation over
the angle 2qπ

p . Rotating p times over this angle is equal to the identity, since after p rotations we
made a rotation over 2qπ radians which is q times a full turn. So the product R1R2 is of order p.
We know that one of the two reflections leaves invariant the vertex of a maximal flag. Rotating this
vertex p times over the angle π/p gives us all images of the vertex. So the polygon generated by the
reflections R1, R2 is a polygon with p vertices, it is a p-gon.
For a regular polytope in 2-dimensional space we have found that the possible diagrams are denoted
by the Schläfli symbols {3}, {4}, ..., {p}.

If for the angle qπ
p with gcd(p, q) = 1 between the reflection axes of any pair of generating re-

flections we have q 6= 1 then we say that the polytope constructed from these generating reflections
is a stellated polytope.
A stellated polytope is closely related to some polytope, it exists of the same vertices. However the
edges, faces and cells connect different sets of vertices and therefore the representational polytope
looks very different.
An example of a stellation of a polytope is that of the pentagon. Both the pentagon and its stellation
correspond to the Schläfli symbol {5}. However, the reflection axes of the generating reflections for
the pentagon are inclined at an angle of π5 while for the stellation they are inclined at an angle of 2π

5 .
The stellation of a pentagon is depicted in figure 4.1.
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Figure 4.1: A stellated pentagon

Furthermore, we will take a look into the possible Schläfli symbols for a regular polyhedron.

Theorem 4.2.2. There exist 5 Schläfli symbols for regular polyhedra (up to symmetries):
{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}.

Proof. Consider the symmetry group G generated by three reflections Ri for i = 1, 2, 3 in E3 corre-
sponding to a Schläfli symbol {p, q}. Let O be the intersection of the three reflection axes Vi that
correspond to the reflections Ri for i ∈ {1, 2, 3} and let B ∈ E3 be a sphere centered in O with some
radius r, B = {~x ∈ En : |~x−O|= r}.
The intersections of the hyperplanes in the set S = {σ(ri) : σ ∈ 〈R1, R2, R3〉} with B are circular
arcs.
Consider the smallest triangle on the sphere formed by these arcs. The angles of this triangle are
π
p ,

π
q ,

π
2 . On the sphere we have

π

p
+
π

q
+
π

2
> π.

Where p, q > 2 and p, q ∈ N. Under these conditions there are only 5 cases for which the inequality
is satisfied. Thus we find the five Schläfli symbols for the regular polyhedra [2]:
{3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}.

For the Schläfli symbol of a general n-dimensional regular polytope we state the following theorem:

Theorem 4.2.3. The αi’s in a diagram for the reflectionsR1, ..., Rn of a regular n-dimensional
polytope have limited values for n > 2. The Schläfli symbols for each dimension are:

n value combinations
2 {3}, {4}, ..., {p}
3 {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3}
4 {3, 3, 3}, {3, 3, 4}, {4, 3, 3}, {3, 4, 3}, {3, 3, 5}, {5, 3, 3}
5 {3, 3, 3, 3}, {4, 3, 3, 3}, {3, 3, 3, 4}
...
k {3, 3, ..., 3}, {4, 3, ..., 3}, {3, 3, ..., 3, 4}
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Proof. Consider the symmetry group 〈R1, ..., Rn〉 generated by the reflections R1, ..., Rn in En that
satisfy a diagram corresponding to the Schläfli symbol {α1, ..., αn−1}. Let O ∈ En be the intersection
point of the reflection axes of the reflections R1, ..., Rn, so each reflection Ri leaves O invariant.
Let B = {~x ∈ En : |~x − O|= 1} be the unit sphere centered in O. Let r1, ..., rn be the affine
hyperplanes that enclose the smallest fundamental region for the symmetry group 〈R1, ..., Rn〉 on B.
Let ai be a normal vector of the hyperplane ri for every i ∈ {1, ..., n}. Let Π be a regular n-
dimensional polytope with Sym(Π) = 〈R1, ..., Rn〉.

Lemma 4.2.4. The vectors ~ai are linearly independent.

Proof. By definition we know that Sym(Π) is transitive on the elements of Π. Let v be a vertex
of Π, then applying all possible products of the reflections Ri yields us all vertices of the polytope
because of transitivity. A reflection image of v is given by the formula

R(~v) = ~v − 2〈~v|~n〉~n.

Thus by reflecting our vertex v we only translate v by some linear combinations of the normal vectors
~ai. These vectors ~ai span a space of dimension n since we have all the vertices of an n-dimensional
polytope.
Now suppose the vectors ~ai are not linearly independent, then at most n−1 of the ~ai’s are independent
and thus the set of vectors ~a1, ...,~an span a subspace W such that the dimension of W is at most
n− 1, dim(W ) ≤ n− 1. Which is a contradiction.
Thus the normal vectors ~a1, ...,~an are linearly independent.

Let the lengths of the normal vectors ~ai be
√

2, |~ai|=
√

2.

〈~ai|~ai〉 = |~ai|2= 2 (4.9)

For every pair of vectors ~ai,~aj such that j > i+ 1 or i > j + 1 then the corresponding hyperplanes
ri, rj are perpendicular so

〈~ai|~aj〉 = 0. (4.10)

If j = i+ 1 or i = j + 1 then the corresponding hyperplanes ri, rj are induced at an angle π
αi

and so

〈~ai|~aj〉 = ±2 · cos

(
π

αi

)
. (4.11)

If +~a∗i is a normal vector of ri then so is −~a∗i . Let ~ai = ±~a∗i , then the ± sign in equation 4.11 is
depending on our choices for the vectors ~ai.
Suppose for some j ∈ {1, ..., n − 1} we have ~aj+1 = +~a∗j+1 and 〈~aj |~aj+1〉 = −2 · cos

(
π
αi

)
, if we

were to use ~aj+1 = −~a∗j+1 instead of ~aj+1 = +~a∗j+1 then 〈~aj |~aj+1〉 = 2 · cos
(
π
αi

)
.

Consider ~a1, let us choose ~a2 = ±~a∗2 such that 〈~a1|~a2〉 = 2 · cos
(
π
αi

)
then ~a1 and ~a2 are fixed. Now

we can choose ~a3 = ±~a∗3 such that 〈~a2|~a3〉 = 2 · cos
(
π
αi

)
, and so on. Eventually we have chosen ~an

and now all ~ai are fixed such that

〈~ai|~ai+1〉 = 2 · cos

(
π

αi

)
for all i = 1, ..., n− 1. (4.12)
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Definition 4.2.5. A Gram matrix of a set of vectors is the matrix of inner products whose
entries are given by Gij = 〈~ai|~aj〉 for all i, j ∈ {1, ..., n}.
The gram matrix G of an m× n-matrix A is given by AᵀA [10].

• G is always a square matrix.

• G is always symmetric and positive semi-definite.

• The rank of G is the same as the rank of A.

With the above information and definition we can construct the Gram matrix G corresponding to the
vectors ~ai for i = 1, ..., n.

G =



2 2 · cos
(
π
α1

)
0 . . . 0

2 · cos
(
π
α1

)
2

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . 2 2 · cos

(
π

αn−1

)
0 . . . 0 2 · cos

(
π

αn−1

)
2


(4.13)

The matrix G is positive definite if ~xᵀG~x > 0 for all ~x ∈ En\{0}. The vectors ~ai with i = 1, ..., n
are linearly independent by lemma 4.2.4 and thus form a basis for En. Now for any nonzero vector
~v =

∑n
j=1 vj~aj , we have

~vᵀG~v =

n∑
j=1

(

n∑
i=1

vi ·〈~ai|~aj〉)·vj =

n∑
j=1

〈
n∑
i=1

vi ·~ai|~aj〉·vj =

n∑
j=1

〈~v|~aj〉·vj = 〈~v|
n∑
j=1

~aj ·vj〉 = 〈~v|~v〉 > 0.

Thus G is positive definite. For a positive definite matrix we know from [6] that given a set J ⊆
{1, ..., n}, if GJ := (gij)i,j∈J denotes the submatrix of G restricted to the rows and columns indexed
by J then det(GJ) > 0. Where det(GJ) is the determinant of the matrix GJ .
Such a submatrix GJ for J := {k, ..., l} is given by

GJ =



2 2 · cos
(
π
αk

)
0 . . . 0

2 · cos
(
π
αk

)
2

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . 2 2 · cos

(
π

αl−1

)
0 . . . 0 2 · cos

(
π

αl−1

)
2


(4.14)

and thus has the same structure as the Gram matrix for a Schläfli symbol of length l − k. Thus
the m− 1 alpha values of any connected sub-diagram of length m of the diagram of the reflections
R1, ..., Rn must also occur among the values for the Schläfli symbols for a diagram of length m.
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Moreover, we find a relation between the determinants of a Gram matrix and some of its submatrices.
Namely, let Gk be the Gram matrix of a diagram with k nodes and the edges labeled by α1, ..., αk−1
then we find

det(Gk) = 2 · det(Gk−1)− 4 · cos2(π/α1) · det(Gk−2). (4.15)

In this relation we consider Gk−1 and Gk−2 to be the Gram matrix on the k − 1 and k − 2 nodes
respectively with the edges labeled α2, ..., αk−1 and α3, ..., αk−1.

For n = 2, 3 we have already seen the possible value combinations in the diagram of a regular
polytope. Consider n = 4, we then have a Schläfli symbol {p, q, r} where both {p, q} and {q, r}
must occur among the Schläfli symbols for n = 3.
By this reasoning we find the following possible Schläfli symbols:

{3, 3, 3}, {3, 3, 4}, {4, 3, 3}, {3, 4, 3}, {3, 3, 5}, {5, 3, 3},

{4, 3, 4}, {3, 5, 3}, {5, 3, 4}, {4, 3, 5}, {5, 3, 5}. (4.16)

So the possibilities are already limited. Since the hyperplanes in each of the pairs (r1, r3), (r1, r4), (r2, r4)
are perpendicular to each other we have that 〈~a1|~a3〉 = 〈~a1|~a4〉 = 〈~a2|~a4〉 = 0. The vectors ~ai with
i = 1, ..., 4 have |~ai|=

√
2 so from the Schläfli symbol we get the following relations:

〈~ai|~ai〉 = |~ai|2= 2

〈~a1|~a2〉 = 2 · cos

(
π

p

)
〈~a2|~a3〉 = 2 · cos

(
π

q

)
〈~a3|~a4〉 = 2 · cos

(π
r

)
With this information we can construct the Gram matrix G.

G =


2 2 · cos

(
π
p

)
0 0

2 · cos
(
π
p

)
2 2 · cos

(
π
q

)
0

0 2 · cos
(
π
q

)
2 2 · cos

(
π
r

)
0 0 2 · cos

(
π
r

)
2


According to relation 4.15 the determinant of G is

det(G) = 2 · (8− 8 cos2(
π

q
)− 8 cos2(

π

r
))− 4 cos2(

π

p
)(4− 4 cos2(

π

r
)).

We have the possibilities given in equation 4.16 and for the determinant of the Gram matrix we have
det(G) > 0 since the submatrix GJ = G if J = {1, ..., 4}. So we check if the possibilities from 4.16
satisfy the inequality det(G) > 0.
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Schläfli symbol det(G)
{3, 3, 3} 5
{3, 3, 4} 2
{4, 3, 3} 2
{3, 4, 3} 1

{3, 3, 5} 1
2 (7− 3

√
5) ≈ 0.145

{5, 3, 3} 1
2 (7− 3

√
5) ≈ 0.145

{4, 3, 4} 0

{3, 5, 3} 3− 2
√

5 ≈ −1.472

{5, 3, 4} 1−
√

5 ≈ −1.236

{4, 3, 5} 1−
√

5 ≈ −1.236

{5, 3, 5} 7
2 −

5
√
5

2 ≈ −2.090

For the values of the last five Schläfli symbols we see that the determinant of G is not greater than
zero. So for these possibilities G is not positive definite as it should be and thus these possibilities do
not satisfy the requirements. As a result we find that the Schläfli symbols for a 4-dimensional regular
polytope are

{3, 3, 3}, {3, 3, 4}, {4, 3, 3}, {3, 4, 3}, {3, 3, 5}, {5, 3, 3}.

Here {3, 3, 4} and {4, 3, 3} are closely related to each other since if we have the hyperplanes r1, ..., r4
satisfying one of these symbols then the order of the hyperplanes can be reversed to satisfy the
reversed symbol. This also holds for {3, 3, 5} and {5, 3, 3}. In chapter 4.2.2 it will become clear that
the ordering of the hyperplanes is of importance and thus we already mention both possibilities.
We will take a look at the case n = 5. If we consider the Schläfli symbol {p, q, r, s} then {p, q, r}
and {q, r, s} need to occur among the Schläfli symbols for n = 4, we find the following possibilities
for n = 5

{3, 3, 3, 3}, {3, 3, 3, 4}, {4, 3, 3, 3}, {3, 3, 4, 3}, {3, 4, 3, 3}, {4, 3, 3, 4},

{3, 3, 3, 5}, {5, 3, 3, 3}, {5, 3, 3, 4}, {4, 3, 3, 5}, {5, 3, 3, 5}. (4.17)

Furthermore let H be the Gram matrix for n = 5, we have

H =



2 2 · cos
(
π
p

)
0 0 0

2 · cos
(
π
p

)
2 2 · cos

(
π
q

)
0 0

0 2 · cos
(
π
q

)
2 2 · cos

(
π
r

)
0

0 0 2 · cos
(
π
r

)
2 2 · cos

(
π
s

)
0 0 0 2 · cos

(
π
s

)
2


Using relation 4.15 we have that

det(H) = 2·(2·(8−8 cos2(
π

r
)−8 cos2(

π

s
))−4 cos2(

π

q
)(4−4 cos2(

π

s
)))−4·cos2(pi/p)·(8−8 cos2(

π

r
)−8 cos2(

π

s
))

Again we want det(H) > 0 and thus check the values of det(H) for each possibility:
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Schläfli symbol det(G)
{3, 3, 3, 3} 6
{3, 3, 3, 4} 2
{4, 3, 3, 3} 2
{3, 4, 3, 3} 0
{3, 3, 4, 3} 0
{4, 3, 3, 4} 0

{3, 3, 3, 5} 4− 2
√

5 ≈ −0.472

{5, 3, 3, 3} 4− 2
√

5 ≈ −0.472

{5, 3, 3, 4} 1−
√

5 ≈ −1.236

{4, 3, 3, 5} 1−
√

5 ≈ −1.236

{5, 3, 3, 5} 5− 3
√

5 ≈ −2.090

For the values of the last eight Schläfli symbols we see that the determinant of H is not greater than
zero, so for these possibilities H is not positive definite as it should be and thus these possibilities are
not allowed. As a result we find that the Schläfli symbols for a 5-dimensional regular polytope are

{3, 3, 3, 3}, {4, 3, 3, 3}, {3, 3, 3, 4}

Extending these values even further, for k > 5 dimensions we find the only possibilities to be

{3, 3, ..., 3, 3}, {4, 3, ..., 3, 3}, {3, 3, ..., 3, 4}, {4, 3, ..., 3, 4}. (4.18)

Using the following example we will see that {4, 3, ..., 3, 4} is not an allowed possibility for any k.
Take the basis {~e1, ..., ~ek} for Ek with ei = (ei1 , ..., eik)ᵀ and

eij =

{
1, if i = j

0, if i 6= j .

Clearly 〈~ei|~ej〉 = 0 if i 6= j. Consider the vectors ~a1 =
√

2 · ~e1, ~ai = ~ei−1 + ~ei and ~ak+1 =
√

2 · ~ek.
For all i = 1, ..., k + 1 the vector ~ai has length

√
2, we have

〈~ai|~ai〉 = |~ai|2= 2.

If |i− j|> 1 then
〈~ai|~aj〉 = 0.

Furthermore

〈~a1|~a2〉 =
√

2

〈~ai|~ai+1〉 = 1 for i=2,...,k-1

〈~ak|~ak+1〉 =
√

2

then for the angle θi formed by ~ai,~ai+1 we find

θi = cos−1(
〈~ai|~ai+1〉
|~ai|·|~ai+1|

) =



π

4
if i = 1

π

3
if i = 2, ..., k − 1

π

4
if i = k .
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We now have enough information to create the following Gram matrix of the vectors ~ai, i = 1, ..., k+1.

G =



2 2 · cos
(
π
4

)
0 . . . . . . 0

2 · cos
(
π
4

)
2 2 · cos

(
π
3

) . . .
...

0 2 · cos
(
π
3

) . . . . . . . . .
...

...
. . . . . . . . . 2 · cos

(
π
3

)
0

...
. . . 2 · cos

(
π
3

)
2 2 · cos

(
π
4

)
0 . . . . . . 0 2 · cos

(
π
4

)
2



(4.19)

As one can see, this is a Gram matrix corresponding to the Schläfli symbol {4, 3, ..., 3, 4} of length k.
The vectors ~ai for i = 1, ..., k+1 are k+1 vectors in the k-dimensional space Ek and thus are linearly
dependent. Therefore the rank of the matrix A with row vectors ~ai is at most k, rank(A) ≥ k. For
the Gram matrix it holds rank(G) = rank(A) ≥ k. So G does not have full rank. If a matrix is
not of full rank then it does not have an inverse and is therefore singular. So G is singular, it then
follows det(G) = 0.

To conclude, for every k the Gram matrix G corresponding to the Schläfli symbol {4, 3, ..., 3, 4}
of length k has det(G) = 0. As we have already discussed the determinant of a Gram matrix cor-
responding to the normal vectors of the hyperplanes with a diagram from theorem 4.2.1 should be
greater than zero. So {4, 3, ..., 3, 4} does not meet the requirements.
Thus for n > 5 there exist only the Schläfli symbols

{3, 3, ..., 3, 3}, {4, 3, ..., 3, 3}, {3, 3, ..., 3, 4}

for an n-dimensional polytope.

4.2.2 Wythoff’s construction
We have determined the Schläfli symbols in different dimensions. The following theorem will prove
that all these Schläfli symbols actually define regular polytopes up to a regular dual polytope.

Theorem 4.2.6. (Wythoff construction) If there exist reflections R1, ..., Rn with a diagram
mentioned by theorem 4.2.3, then there exists an n-dimensional regular polytope, up to
isomorphisms, with the symmetry group 〈R1, ..., Rn〉.

Proof. Suppose there exist reflections R1, ..., Rn with diagram:

and where the αi’s have the values of a Schläfli symbol mentioned in theorem 4.2.3.
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We will first construct a flag from these reflections. Let G be the group of symmetries generated by
the reflections R1, ..., Rn, G = 〈R1, ..., Rn〉. Let ri denote the hyperplane left invariant by the reflec-
tion Ri for all i ∈ {1, ..., n}, i.e. ri is the reflection axis of Ri. Choose a point p ∈ r2 ∩ r3 ∩ ...∩ rn,
this is our initial vertex. Let V be a vertex set, it is the set of points v = σ(p) where σ ∈ G.

We set C1 = {p} and for j ∈ {2, . . . , n} we recursively define [8]

Cj := Cj := {〈R1, ..., Rj−1〉v : v ∈ Cj−1} (4.20)

This means Cj is the set of images under the symmetry group generated by the reflectionsR1, . . . , Rj−1
of Cj−1. So C1 = {p}, C2 = {p,R1p}, etc.

This results in the maximal base flag F := (C1, . . . , Cn). Let the polytope F be the set of all
flags σ(F ) with σ ∈ G, F := {σ(F ) : σ ∈ G}. This by definition is the orbit of F and is therefore a
transitive action.
Secondly we need to prove the following two lemmas.

Lemma 4.2.7. The maximal flag F := (C1, . . . , Cn) has a unique adjacent flag Fi for every
i ∈ {1, ..., n} such that F and Fi only differ by their i-cells and the reflection Ri reflects F
into Fi.

Proof. Let F := (C1, . . . , Cn) be the maximal base flag, by the diamond property 2.3.4 it holds that
for every i ∈ {1, ..., n} there exist exactly two i-cells Ci, C ′i such that Ci−1 ⊆ Ci, C

′
i ⊆ Ci+1. Thus

for every i the elements of the sequence of j-cells (C1, ..., Ci−1, C
′
i, Ci+1, ..., Cn) are also mutually

incident and thus Fi = (C1, ..., Ci−1, C
′
i, Ci+1, ..., Cn) is a unique maximal flag that differs from F

only by its i-cell, Fi is a unique adjacent flag of F .

By transitivity of G on the maximal flags of Π it does not matter which starting flag we take.

Lemma 4.2.8. If F := {σ(F ) : σ ∈ G} then F is connected on its flags. i.e., given two
flags F, g(F ) ∈ F , there exists a sequence of flags (F = F1, F2, ..., Fk = g(F )) having Fi
adjacent to Fi+1 for all i.

Proof. Consider our base flag F and let g ∈ G = 〈R1, . . . , Rn〉 then g(F ) ∈ F is an image of our
base flag. Suppose the length of g is the minimal number of reflections Ri needed to construct the
symmetry g.
Base case: If the length of g is 0 then F = g(F ). If the length of g is 1 then g = Rj for some
j ∈ {1, ..., n} which means F and g(F ) are adjacent flags. In this case there exists a sequence
of flags (F = F1, F2, ..., Fk = g(F ) having Fi adjacent to Fi+1 for all i, namely the sequence
(F = F1, F2 = g(F ).
Induction hypothesis: Let g = Ri1 · · ·Rik of length k > 1 and suppose there exists a sequence of
consecutively adjacent flags from F to F ′ = Ri2 · · ·RikF , namely (F,RikF,Rik−1

RikF, ..., F
′).

Induction step: We know that R1F is an adjacent flag of F so there exists the sequence of
consecutively adjacent flags (R1F, F ). Then by our induction hypothesis we know that there exists a
sequence of consecutively adjacent flags from R1F to F ′, namely (R1F, F,RikF,Rik−1

RikF, ..., F
′).

But then there also exists a sequence of consecutively adjacent flags from R1R1F to R1F
′, we have

(R1RFF = F, F,RikF,Rik−1
RikF, ..., R1F

′ = g(F )).
Thus our base flag F and its image g(F ) are connected through some sequence of flags (F =
F1, F2, ..., Fk = g(F ) having Fi adjacent to Fi+1 for all i.
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In conclusion, we have established that a base flag can be constructed from the given reflections
R1, ..., Rn, that each flag has n unique adjacent flags, that F is connected on its flags and also
that G = 〈R1, ..., Rn〉 is transitive on the maximal flags of F . Therefore, if there exist reflections
R1, ..., Rn with a diagram from theorem 4.2.1 then F is an n-dimensional regular polytope with its
symmetry group 〈R1, ..., Rn〉.

We now know that the symmetry group of a polytope is uniquely defined by a diagram. Such diagrams
can be described by a Schläfli symbol and we have found that there is a limited number of Schläfli
symbols corresponding to such diagrams. We have also proved that there exists a way to construct
a regular polytope from a set of reflections that correspond to some Schläfli symbol. Thus we have
found the number of regular polytopes existing in n dimensions for each n ≥ 2. We will be using this
knowledge in chapter 5 to construct and create drawings for some examples of regular polytopes.

31



Chapter 5

Constructing regular polytopes
In this chapter we will first see two examples of how to use Wythoff’s construction to actually construct
regular polygons. Then we will discuss the algorithm used to find construct higher dimensional
polytopes.

5.1 Polygon

To construct a polygon using Wythoff’s construction we start with two reflections belonging to the
diagram:

Let us use the instance where α = 7 as an example. We will do two separate constructions. We
will use the two lines (hyperplanes) r1, r2, in the first case they are inclined at an angle π

7 and in
the second case at an angle 3π

7 . R1, R2 are the reflections in the hyperplanes r1, r2 respectively. Let
r1 in both cases be the vertical line. Figures 5.1a, 5.2a show a chosen starting vertex v on r2. We
reflect v by R1 to get R1(v) and find the edge e = (v,R1(v)). (v, e) is a maximal flag of a polygon.
The edge is depicted in the figures 5.1b, 5.2b.

(a) (b)

Figure 5.1: Constructing a regular 7-gon, case 1; part 1/3
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(a) (b)

Figure 5.2: Constructing a regular 7-gon, case 2; part 1/3

As we now have a maximal flag of the polygon, we can find all maximal flags by successively applying
the two reflections R1, R2. We first reflect e with R2 to get R2(e), then we reflect this result with
R1 to get R1R2(e) etc.
This process of alternately applying R1 and R2 to the former reflection image is depicted in the
figures 5.3a, 5.3b, 5.3c for the first case and in 5.4a, 5.4b, 5.4c for the second.

(a) (b) (c)

Figure 5.3: Constructing a regular 7-gon, case 1; part 2/3

(a) (b) (c)

Figure 5.4: Constructing a regular 7-gon, case 2; part 2/3
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Once this process does not find any new edges then we stop and have found the full polygon. In this
example we have found the heptagon and a stellated regular 7-gon, the results are depicted in the
figures 5.5a, 5.5b.

(a) Constructing a regular 7-gon, case 1; part 3/3 (b) Constructing a regular 7-gon, case 2; part 3/3

Figure 5.5

5.2 Higher dimensional polytopes

Let n > 2. We describe an algorithm to construct n-dimensional polytopes using Wythoff’s construc-
tion.
We will discuss the algorithm using pseudo-code and use the example of the dodecahedron to have
a better understanding of what the algorithm does.

5.2.1 Initialisation
Input: A Schläfli symbol {p1, p2, ..., pn−1} and a node j of the diagram corresponding to this Schläfli
symbol.
Determine n affine hyperplanes ri for i = 1, ..., n with corresponding unitary normal vectors ~ai
satisfying:

〈~ai|~aj〉 = 0 for i > j + 1 or j > i+ 1 (5.1)

〈~ai|~ai+1〉 = cos

(
kπ

pi

)
for i = 1, ..., n− 1 and k = 1, 2, ... (5.2)

Define Ri(~v) = ~v − 2〈~v|~ai〉~ai to be the reflection in ri for i = 1, ..., n.
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5.2.2 Flag construction
After the initialisation we apply the following algorithm to find a maximal flag of the polytope.

Algorithm 1: Flag construction
Result: Maximal flag F = (C1, C2, ..., Cn) or flags

F1 = (C1, C2, ..., Cj), F2 = (D1, D2, ..., Dn−j+1)
...
initialisation:
Determine: a vertex C1 = v1 ∈

⋂
i∈{1,...,n:i 6=j} ri and v1 6= 0.

if j = 1 or j = n ; /* node j is at one of the ends of a diagram */
then
F = (C1)

else
F1 = F2 = (C1) ; /* node j is not an end-node and we can go left or right
through the diagram */

end
...
construction:
if j = 1 then

i = 2 ; /* We are on the most left node of the diagram */
while F contains less than n elements do

Ci := {〈R1, R2, ..., Ri−1〉v : v ∈ Ci−1}
F ←Append(Ci, F ) such that Ci is the last element of F .
i← i+ 1

end
else if j = n then

i = 2 ; /* We are on the most right node of the diagram */
while F contains less than n elements do

Ci := {〈Rn, Rn−1, ..., Rn−i+1〉v : v ∈ Ci−1}
F ←Append(Ci, F ) such that Ci is the last element of F .
i← i+ 1

end
else

i = 2 ; /* We are not on an end-node of the diagram */
k = 2
while j − i ≥ 0 do

Ci := {〈Rj , Rj−1, ..., Rj−i+1〉v : v ∈ Ci−1} ; /* We go to the left in the
diagram */
F1 ←Append(Ci, F ) such that Ci is the last element of F1.
i← i+ 1

end
while j + k ≤ n do

Dk := {〈Rj , Rj+1, ..., Rj+k−1〉v : v ∈ Dk−1} ; /* We go to the right in the
diagram */
F2 ←Append(Dk, F ) such that Dk is the last element of F2.
k ← k + 1

end
end
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5.2.3 Building the polytope
Once we have our initial maximal flag(s) we can apply the symmetry group of the polytope to this
flag to find all maximal flags of the polytope, the union of these flags is the polytope. This is done
using the following algorithm.

Algorithm 2: Building the polytope
Result: Polytope Π
...
initialisation:
if j = 1 or j = n then

Π = {F}
else

Π = {F1, F2}
end
...
construction:
i = 1
N = 1
while i ≤ N do

Fi = Π[i] ; /* Π[i] is the ith element of the set Π */
for j = 1 to n do

if RjFi 6∈ Π then
Π← Π ∪RjFi

end
end
i← i+ 1
N = Length(Π) ; /* Length(Π) is the current number of elements in Π */

end

5.2.4 Constructing the Dodecahedron
In this section we see an example of the application of the algorithm discussed in this chapter.

Initialisation

We use the input: {5, 3}, j = 1.
And from this we compute the following normal vectors:

~a1 = (1, 0, 0)ᵀ

~a2 = (
1

4
(1 +

√
5),

1

2

√
1

2
(5−

√
5)), 0)ᵀ

~a3 = (0,

√
1

10
(5 +

√
5),

√
1

10
(5−

√
5))ᵀ
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With reflections:

R1(~v) = ~v − 2〈~v|~a1〉~a1
R2(~v) = ~v − 2〈~v|~a2〉~a2
R3(~v) = ~v − 2〈~v|~a3〉~a3

Flag construction

We determine the vertex v1 that is contained in the intersection of the affine hyperplanes r2, r3:

v1 = (1,−

√
1 +

2√
5
,

√
5

2
+

11

2
√

5
)ᵀ.

In figure 5.6 the first element C1 = v1 of a maximal flag F is shown.

Figure 5.6

We find the vertex v2 by applying the reflection R1 to v1, we get:

v2 = (−1,−

√
1 +

2√
5
,

√
5

2
+

11

2
√

5
)ᵀ

and thus find a second element C2 = {v1, v2} of F .
This is depicted in figure 5.7.

Figure 5.7

Then by applying symmetries from the symmetry group generated by the reflections R1, R2 we
construct the third element C3 of the polyhedron. An interim result and end result of the construction
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of C3 are shown in figure 5.8a and 5.8b.
The figure shown in figure 5.8b is a maximal flag of the polyhedron.

(a) (b)

Figure 5.8

Building the polytope

After constructing a maximal flag of the polyhedron we will build the full polyhedron by computing
all images of the constructed maximal flag under symmetries from the group 〈R1, R2, R3〉. Figures
5.9a and 5.9b give intermediate results of this construction and figure 5.9c provides an image of the
full Dodecahedron.

(a) (b) (c)

Figure 5.9
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Chapter 6

4D polytopes
We have implemented the algorithm of chapter 5.2.1 in Mathematica [12]. The resulting polytope
is used as input in POV-Ray [1]. POV-Ray stands for Persistence of Vision Raytracer and is a
high-quality software tool for creating stunning three-dimensional graphics.
In this chapter we will depict the illustrations of the 3-and 4-dimensional regular polytopes. In section
6.2 and 6.3 we discuss two polytopes corresponding to the Schläfli symbols {4, 3, 3}, {3, 3, 3} in detail
with multiple figures that correspond to some of the details known for these polytopes. In section
6.4 a table containing all 3- and 4-dimensional diagrams and corresponding polytope representations
is given.

6.1 Realisation of the figures

We use Mathematica with the algorithm discussed in chapter 5.2.1 to find the coordinates of the
vertices and to find the compositions of the edges, faces and cells of a 4-dimensional polytope.
However before we can realise a representation of a 4-dimensional polytope with the use of POV-Ray
we need to translate the 4-dimensional coordinates into 3-dimensional ones that can serve as input
for POV-Ray.
This is done via an orthogonal projection of the coordinates onto an affine hyperplane of the 4-
dimensional space. Let ~u be a unitary normal vector of the hyperplane and let {~w1, ~w2, ~w3} be an
orthonormal basis of the hyperplane. Furthermore let ~t be the translation vector of the hyperplane in
case the origin is not contained in the hyperplane.
We project the vertices of the polytope using the following function for the projection image P (~v) of
a vector ~v:

P (~v) = ~v − 〈~v|~u〉 · ~u+ 〈~t|~u〉 · ~u. (6.1)

Let ~x be the solution to W~x = P (~v) where W is the 3× 4-matrix with row vectors w1, w2, w3. We
consider the coordinates of the vector ~x to be the 3-dimensional coordinates of the vector ~v.

Now that we have established 3-dimensional coordinates for the vertices we are able to use the
program POV-Ray for making a representation of the polytope.

6.2 {4,3,3}

In figure 6.1 a representation of a polytope corresponding to the Schlafli symbol {4, 3, 3} and starting
on the first node of the diagram is shown. Such a polytope is also called a tesseract.
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Figure 6.1: 3-dimensional representation of the tesseract

Figure 6.2 shows two maximal flags of the polytope:

• a vertex colored yellow;

• an edge colored orange;

• a face colored green;

• and two cells (blue and red) incident to the green face.

Figure 6.2: 3-dimensional representation of the tesseract

The cells of the tesseract are cubes. One of such cells is depicted in figure 6.3.
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Figure 6.3

For the tesseract we have the following table of details:

Number of vertices in the polytope 16
Number of edges in the polytope 32
Number of vertices in a face 4
Number of faces in the polytope 24
Number of vertices in a cell 8
Number of cells in the polytope 8
Number of edges incident to each vertex 4
Number of faces incident to each vertex 6
Number of cells incident to each vertex 4
Number of faces incident to each edge 3
Number of cells incident to each face 2

In figure 6.4 the 4 cells incident to one vertex are shown and figure 6.5 shows the 6 faces incident to
one vertex.
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Figure 6.4: The 4 cells incident to one vertex.
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Figure 6.5: The 4 cells incident to one vertex.

6.3 {3,3,3}

In figure 6.6 a representation of a polytope corresponding to the Schlafli symbol {3, 3, 3} and starting
on the first node of the diagram is shown. Such a polytope is also called a tesseract.
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Figure 6.6: 3-dimensional representation of a polytope corresponding to {3, 3, 3}

Figure 6.7 shows two maximal flags of the polytope:

• a vertex colored yellow;

• an edge colored orange;

• a face colored green;

• and a cell colored blue.

Figure 6.7: 3-dimensional representation of a polytope corresponding to {3, 3, 3}

The cells of this polytope are tetrahedra. One of such cells is depicted in figure 6.8.
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Figure 6.8

For the polytope we have the following table of details:

Number of vertices in the polytope 5
Number of edges in the polytope 10
Number of vertices in a face 3
Number of faces in the polytope 10
Number of vertices in a cell 4
Number of cells in the polytope 5
Number of edges incident to each vertex 4
Number of faces incident to each vertex 6
Number of cells incident to each vertex 4
Number of faces incident to each edge 3
Number of cells incident to each face 2

In figure 6.9 the 4 cells incident to one vertex are shown and figure 6.10 shows the 6 faces incident
to one vertex.
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Figure 6.9: The 4 cells incident to one vertex.
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Figure 6.10: The 4 cells incident to one vertex.
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6.4 More polytopes

Recall: in the diagrams that correspond to Schläfli symbols, the value 3 occurs frequently and is
therefore omitted.
In the table below all diagrams of the 3- and 4-dimensional regular polytopes are given with their cor-
responding 3-dimensional representation. The numbers in the first column of the table are reference
numbers and refer to the diagram and polytope on that row. After the table we will discuss some
relations that exist between the polytope representations.
We also have representations of stellated polytopes in 3- and 4-dimensional space. For these poly-
topes the corresponding diagrams in the table are adjusted to indicate the correct angle between
the reflection axes of the generating reflections. So instead of the order 5 of two reflections, these
diagrams will mention 5/2 to refer to the angle 2π

5 .

Nr. Diagram Corresponding representation
3D diagrams:

1 or

2

3 or
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4 or

5 or

6 or

7 or
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8 or

Stellated 3D polytopes

9 or

10 or

11 or
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12 or

13 or

14 or

4D diagrams:

15 or
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16 or

17 or

18 or

19 or
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20 or

21 or

22 or

23 or
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24 or

25 or

26 or

Stellated 4D polytopes

27
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28

29

30
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31

32

56



33

34

57



35

36
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6.4.1 Relations
The 3-dimensional polytope 1 corresponding to the diagram

or
occurs as a cell in the 4-dimensional polytopes 15, 16, 18, 20, 24, 26 and 35. The diagram of polytope
1 occurs in the diagrams of these polytopes. For instance it occurs in this diagram for polytope 15:

.
We see the same type of relation for the following polytopes:

• Polytope 2 and 5 occur as cells in the polytopes 19 and 21.

• Polytope 3 occurs as cells in the polytopes 17, 22 and 35.

• Polytope 6 occurs as cells in the polytopes 23 and 30.

• Polytope 8 occurs as cells in the polytopes 25, 27, 29 and 33.

Furthermore, we can see in polytope 4 that it contains 2 different types of faces. In its diagram

or
we see on one side of the encircled node an edge marked by 4 and on the other side an unmarked
edge. These are equivalent to the diagram of a polygon on respectively 4 or 3 vertices.
We see that the two types of faces are a square and a regular triangle, which are indeed representative
polygons for such diagrams.
For polytope 7 this is also clear to see, here we see that the faces are a regular pentagon and a regular
triangle. Which correspond to the edges next to the encircled node of its diagram being labeled 5
and unlabeled:

or
For the polytopes 10, 13, 16, 18, 19, 22, 24 and 25 it is harder to see in the figures, however if we
consider their diagrams we can expect the same type of relation.
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Index
i-Cell, 4
p-Gon, 5

Adjacent faces, 5
Adjacent flags, 5
Adjacent reflections, 16
Adjacent vertices, 5
Affine mapping, 3
Affine subspace, 3
Angle, 3

Basis, 2
Basis vectors, 2

Cartesian coordinates, 2
Cell, 6
Congruent, 4
Conjugate, 16
Connected, 4
Connected vertices, 5
Cover, 4

Diagram, 20
Dihedral angle, 3
Dimension, 2
Distance, 2
Dot product, 2
Dual, 22

Edge, 5
Equiangular, 5
Equilateral, 5
Equivalent, 18
Euclidean norm, 3
Euclidean space, 2

Faces, 5
Flag, 5
Fundamental region, 18

Gram matrix, 25
Group, 7
Group axioms, 7

Hyperplane, 3

Identity (I), 7
Incident, 4
Incident cells, 4
Inverse, 7
Isometry, 3
Isometry axis, 7

Length, 3, 5
Linear independence, 2
Linear subspace, 3

Maximal flag, 5
Midpoint, 10

Norm, 2
Normal vector, 3

Orbit, 18
Orthogonal, 3
Orthonormal, 3

Perpendicular plane, 12
Polygon, 5
Polyhedron, 5
Polytope, 6
Poset, 4
Positive definite, 25
Positive semi-definite, 2

Reflection, 7
Regular polygon, 9
Regular polytope, 11

Schläfli symbol, 22
Self-dual, 22
Size, 2
Spanning set, 2
Stellated, 22
Sub-maximal flag, 5
Symmetry, 7
Symmetry group, 7

Transitive, 11
Translation, 4

Unit sphere, 20
Unit vector, 3
Unitary normal, 3

Vertex, 5
Vertices, 5
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Chapter 7

Appendix
7.1 POV-Ray code

7.1.1 Code for plotting a polytope

1 #i n c l u d e " c o l o r s . i n c "
2 #i n c l u d e " t r a n s f o rms . i n c "
3

4 // change the f o l l o w i n g f i l e names i f you want to
use my precomputed f i l e s

5 #de c l a r e FLOATS = " F l o a t s . pov"
6 #de c l a r e VERTICES = "Vectoren . pov"
7 #de c l a r e EDGES = "VTXT. pov"
8 #de c l a r e FACES = "ETXT. pov"
9 #de c l a r e CELLS = "FTXT. pov"

10

11

12

13 // camera s e tup
14 camera {
15 l o c a t i o n <18,10,1> // some examples : f o r {5 ,3 ,3} use

<60 ,30 ,5> , f o r {3 ,3 ,5} use <25 ,15 ,15> , f o r {5/2 ,3 ,3} use
<120,30 ,5>

16 look_at <0,0,0>
17 ang l e 15
18 }
19

20

21

22 // the f o l l o w i n g makes s u r e tha t t h e r e i s a l i g h t s ou r c e and tha t the
background o f the p i c t u r e s have a c o l o r

23 l i g h t_ s ou r c e {
24 <4, 6 , 10 > , White
25 shadow l e s s
26 }
27 sky_sphere {
28 pigment {
29 g r a d i e n t y
30 color_map{
31 [ 0 c o l o r White ]
32 [ 1 c o l o r Blue ]
33 }
34 s c a l e 2
35 }
36 }
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37

38

39

40

41

42 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the v a r i a b l e s t ha t we
need to know ∗/

43

44 #fopen F l o a t s FLOATS read // read and rename the f i l e FLOATS,
which i s d e c l a r e d at the b eg i nn i n g o f the s c r i p t

45

46 #de c l a r e f l o a t = a r r a y [ 9 ] ; // i n i t i a l y z e the v a r i a b l e v e c t o r :
f l o a t

47 #de c l a r e f l o a t [ 0 ] = 0 ;
48

49

50 #de c l a r e i = 0 ;
51 #wh i l e ( d e f i n e d ( F l o a t s )&i <9) // wh i l e the read f i l e has i n pu t we

do :
52 #read ( F l oa t s , f l o a t [ i ] ) // read the i ’ th e n t r y s e p e r a t e d

by comma ’ s from the f i l e named F l o a t s
53 #de c l a r e i=i +1;
54 #end
55

56 #f c l o s e F l o a t s // s top r e a d i n g the f i l e F l o a t s
57

58 // Set v a r i a b l e s w i th the r e s u l t s from the f l o a t f i l e
59

60 #i f ( f l o a t [ 0 ] = 0) // i f t h e r e i s on l y one type o f f a c e s
then the f o l l o w i n g a r e our v a r i a b l e s

61

62 #de c l a r e nrEdgesFace = f l o a t [ 1 ] ; // nr o f edges used f o r each
Face

63 #de c l a r e n r F a c e sC e l l = f l o a t [ 2 ] ; // nr o f f a c e s used f o r each
C e l l

64 #de c l a r e n rVe r tTo t a l = f l o a t [ 3 ] ; // t o t a l nr o f v e r t i c e s i n the
po l y t op e

65 #de c l a r e n rEdgesTota l = f l o a t [ 4 ] ; // t o t a l nr o f edges i n the
po l y t op e

66 #de c l a r e n rFace sTo ta l = f l o a t [ 5 ] ; // t o t a l nr o f f a c e s i n the
po l y t op e

67 #de c l a r e n r C e l l s T o t a l = f l o a t [ 6 ] ; // t o t a l nr o f c e l l s i n the
po l y t op e

68

69 #e l s e // i f t h e r e a r e two t ype s o f f a c e s
then the f o l l o w i n g a r e our v a r i a b l e s

70

71 #de c l a r e nrEdgesFace = f l o a t [ 1 ] ; // nr o f edges used f o r each
Face tha t i s an image o f F1
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72 #de c l a r e nrEdgesFace_2 = f l o a t [ 2 ] ; // nr o f edges used f o r each
Face tha t i s an image o f F2

73 #de c l a r e n r F a c e sC e l l = f l o a t [ 3 ] ; // nr o f f a c e s used f o r each
C e l l

74 #de c l a r e n rVe r tTo t a l = f l o a t [ 4 ] ; // t o t a l nr o f v e r t i c e s i n
the po l y t op e

75 #de c l a r e n rEdgesTota l = f l o a t [ 5 ] ; // t o t a l nr o f edges i n the
po l y t op e

76 #de c l a r e n rFace sTo ta l = f l o a t [ 6 ] ; // t o t a l nr o f f a c e s i n the
po l y t op e tha t a r e an image o f F1

77 #de c l a r e nrFacesTota l_2 = f l o a t [ 7 ] ; // t o t a l nr o f f a c e s i n the
po l y t op e tha t a r e an image o f F2

78 #de c l a r e n r C e l l s T o t a l = f l o a t [ 8 ] ; // t o t a l nr o f c e l l s i n the
po l y t op e

79

80 #end
81

82

83

84

85

86

87

88 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the c o o r d i n a t e s o f a l l
the v e r t i c e s ∗/

89

90

91 #fopen Coo rd i n a t e s VERTICES read // read and rename
the f i l e VERTICES , which i s d e c l a r e d at the b eg i nn i n g o f the

s c r i p t
92

93 #de c l a r e coord = a r r a y [ n rVe r tTo t a l ] ; // i n i t i a l y z e the
v a r i a b l e v e c t o r : coord

94 #de c l a r e coord [ 0 ] = <0 ,0 ,0>;
95 #de c l a r e i = 0 ;
96 #wh i l e ( d e f i n e d ( Coo rd i n a t e s ) & i < n rVe r tTo t a l ) // wh i l e the f i l e

Coo rd i n a t e s i s d e f i n e d and ( as doub l e check ) wh i l e i i s l e s s than
the t o t a l number o f v e r t i c e s we do :

97 #read ( Coo rd ina t e s , coord [ i ] ) // read the i ’
th e n t r y s e p e r a t e d by comma ’ s from the f i l e named Coo rd i n a t e s

98 #de c l a r e i = i +1;
99 #end

100

101 #f c l o s e Coo rd i n a t e s // s top r e ad i n g the
f i l e Coo rd i n a t e s

102

103

104

105
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106

107

108

109

110

111

112 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the v e r t i c e s ∗/
113

114 #de c l a r e V e r t i c e s = a r r a y [ n rVe r tTo t a l ] ; // we d e f i n e the l i s t s
o f v e r t i c e s f i v e t imes , w i th d i f f e r e n t sphe r e s i z e s to make s u r e

each p l o t t e d v e r t e x sphe r e shows on l y one c o l o r
115 #de c l a r e V e r t i c e s v 2 = a r r a y [ n rVe r tTo t a l ] ; // l i s t 2 i s used

f o r the f a c e s
116 #de c l a r e V e r t i c e s v 3 = a r r a y [ n rVe r tTo t a l ] ; // l i s t 3 i s used

f o r the c e l l s
117 #de c l a r e V e r t i c e s v 4 = a r r a y [ n rVe r tTo t a l ] ; // l i s t 4 i s used

f o r c o l o r i n g a s i n g l e edge wi th i t s v e r t i c e s
118 #de c l a r e V e r t i c e s v 5 = a r r a y [ n rVe r tTo t a l ] ; // l i s t 5 i s used

f o r c o l o r i n g a s i n g l e v e r t e x
119 #de c l a r e V e r t i c e s [ 0 ] = sphe r e { <0 ,0 ,0>, .098 } ;
120 #de c l a r e V e r t i c e s v 2 [ 0 ] = sphe r e { <0 ,0 ,0>, . 1 } ;
121 #de c l a r e V e r t i c e s v 3 [ 0 ] = sphe r e { <0 ,0 ,0>, .099 } ;
122 #de c l a r e V e r t i c e s v 4 [ 0 ] = sphe r e { <0 ,0 ,0>, .101 } ;
123 #de c l a r e V e r t i c e s v 5 [ 0 ] = sphe r e { <0 ,0 ,0>, .102 } ;
124 #de c l a r e i = 0 ;
125 #wh i l e ( i < n rVe r tTo t a l )

// wh i l e i i s
l e s s than the t o t a l number o f v e r t i c e s do :

126 #de c l a r e V e r t i c e s [ i ] = sphe r e { coord [ i ] , . 098 pigment { Red }
} ; // the i ’ th e l ement o f the a r r a y V e r t i c e s i s s e t to be
a sphe r e at the i ’ th e n t r y o f the a r r a y wi th c oo r d i n a t e s ,

127 //

the

sphe r e

has

r a d i u s

0 .098

and

i s

c o l o r e d
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r ed

128 #de c l a r e V e r t i c e s v 2 [ i ] = sphe r e { coord [ i ] , . 1 } ;
// the e x t r a l i s t s don ’ t ge t a pre s e t

pigment so tha t we can s e t a s p e c i f i c c o l o r l a t e r on
129 #de c l a r e V e r t i c e s v 3 [ i ] = sphe r e { coord [ i ] , . 099 } ;
130 #de c l a r e V e r t i c e s v 4 [ i ] = sphe r e { coord [ i ] , . 101 } ;
131 #de c l a r e V e r t i c e s v 5 [ i ] = sphe r e { coord [ i ] , . 102 } ;
132 #de c l a r e i = i +1;
133 #end
134

135

136

137

138

139

140

141

142

143

144

145

146

147

148 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the edges ∗/
149

150

151 #fopen Edgeset EDGES read // read and rename the
f i l e EDGES, which i s d e c l a r e d at the b eg i nn i n g o f the s c r i p t

152

153 // Read data
154 #de c l a r e Edges = a r r a y [ n rEdgesTota l ] ; // we d e f i n e the l i s t s o f

edges t h r e e t imes , w i th the d i f f e r e n t sphe r e s i z e s ( o f the
v e r t i c e s ) and c y l i n d e r s i z e s to make su r e each p l o t t e d v e r t e x and
edge shows on l y one c o l o r

155 #de c l a r e Edgesv2 = a r r a y [ n rEdgesTota l ] ; // l i s t 2 i s used f o r
the f a c e s

156 #de c l a r e Edgesv3 = a r r a y [ n rEdgesTota l ] ; // l i s t 3 i s used f o r
the c e l l s

157 #de c l a r e Edgesv4 = a r r a y [ n rEdgesTota l ] ; // l i s t 4 i s used f o r
c o l o r i n g a s i n g l e edge wi th i t s v e r t i c e s

158 #de c l a r e Edges [ 0 ] = un ion {} ;
159 #de c l a r e Edgesv2 [ 0 ] = un ion {} ;
160 #de c l a r e Edgesv3 [ 0 ] = un ion {} ;
161 #de c l a r e Edgesv4 [ 0 ] = un ion {} ;
162

163 #de c l a r e i = 0 ;
164

165 #wh i l e ( d e f i n e d ( Edgeset ) & i < nrEdgesTota l ) // wh i l e the f i l e
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Edgeset i s d e f i n e d and ( as e x t r a check ) wh i l e i i s sm a l l e r than
the t o t a l number o f edges do :

166 #read ( Edgeset , v e r t1 , v e r t 2 ) // read the next p a i r
o f e n t r i e s from the f i l e Edgeset

167

168 #de c l a r e Edges [ i ] = un ion { o b j e c t { V e r t i c e s [ v e r t1 1 ] } //
d e f i n e the i ’ th e n t r y o f the a r r a y Edges to be the p a i r o f
e n t r i e s from the a r r a y V e r t i c e s t ha t have j u s t been read from
Edgeset

169 ob j e c t { V e r t i c e s [ v e r t2 1 ] } //
we take the e n t r y ve r t2 1 because
Mathematica ’ s numbers f o r the
e n t r i e s s t a r t from 1 , . . . but POV
Ray us e s 0 , 1 . . .

170 c y l i n d e r { coord [ ve r t1 1 ] , coord [ ve r t2
1 ] , .0498 pigment { Grey } }
// and the i ’ th e n t r y a l s o c o n s i s t
o f a c y l i n d e r i n between th e s e

v e r t e x c oo r d i n a t e s , the c y l i n d e r
171 } ;

// has r a d i u s 0 .0498 and i s c o l o r e d
g r ey

172 #de c l a r e Edgesv2 [ i ] = un ion { o b j e c t { V e r t i c e s v 2 [ ve r t1 1 ] }
173 ob j e c t { V e r t i c e s v 2 [ ve r t2 1 ] }
174 c y l i n d e r { coord [ ve r t1 1 ] , coord [ ve r t2

1 ] , . 05 } // the e x t r a l i s t s
don ’ t ge t a pre s e t pigment so
tha t we can s e t a s p e c i f i c c o l o r
f o r a f a c e or c e l l

175 } ;
176 #de c l a r e Edgesv3 [ i ] = un ion { o b j e c t { V e r t i c e s v 3 [ ve r t1 1 ] }
177 ob j e c t { V e r t i c e s v 3 [ ve r t2 1 ] }
178 c y l i n d e r { coord [ ve r t1 1 ] , coord [ ve r t2

1 ] , .0499 }
179 } ;
180 #de c l a r e Edgesv4 [ i ] = un ion { o b j e c t { V e r t i c e s v 4 [ ve r t1 1 ] }
181 ob j e c t { V e r t i c e s v 4 [ ve r t2 1 ] }
182 c y l i n d e r { coord [ ve r t1 1 ] , coord [ ve r t2

1 ] , .0501 }
183 } ;
184 #de c l a r e i = i +1;
185 #end
186

187

188 #f c l o s e Edgeset // s top r e ad i n g the f i l e Edgese t
189

190

191
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192

193

194

195

196

197

198

199

200

201 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the f a c e s ∗/
202

203

204 #fopen Face s e t FACES read // read and rename the f i l e FACES ,
which i s d e c l a r e d at the b eg i nn i n g o f the s c r i p t

205

206 /∗ Below we d e f i n e a l i s t o f edges i n the
r i g h t o r d e r to c o n s t r u c t a l l f a c e s w i th
them ∗/

207 #i f ( f l o a t [ 0 ] = 0)
208 #de c l a r e f a ceend = nrEdgesFace ∗ n rFace sTo ta l ;
209 #e l s e
210 #de c l a r e f a ceend = ( nrEdgesFace ∗ n rFace sTo ta l )+(nrEdgesFace_2∗

nrFacesTota l_2 ) ; // the l i s t o f edges has a d i f f e r e n t
l e n g t h i f we have two t ype s o f f a c e s

211 #end
212

213 #de c l a r e f a c e e dg e s = a r r a y [ f a c eend ] ; // we d e f i n e the l i s t s o f
f a c e e dg e s two t imes to make s u r e each p l o t t e d v e r t e x and edge
shows on l y one c o l o r

214 #de c l a r e f a c e edge s 2 = a r r a y [ f a c eend ] ; // l i s t 2 i s used f o r
the c e l l s

215 #de c l a r e f a c e e dg e s [ 0 ] = un ion {} ;
216 #de c l a r e f a c e edge s 2 [ 0 ] = un ion {} ;
217 #de c l a r e i = 0 ;
218

219 #wh i l e ( d e f i n e d ( Face s e t ) & i < faceend ) // wh i l e the f i l e
Face s e t i s d e f i n e d and ( as a x t r a check ) wh i l e i i s sm a l l e r than
the l e n g t h o f the a r r a y f a c e e dg e s do :

220 #read ( Facese t , edge ) // read the next
e n t r y from the f i l e Facese t , each en t r y i s an edge number

221 #de c l a r e f a c e e dg e s [ i ]= Edgesv2 [ edge 1 ] ; // each en t r y o f
the a r r a y f a c e e dg e s c o n t a i n s an e lement o f edgesv2 , aga in u s i n g
edge 1 because o f the d i f f e r e n c e i n a r r a y number ing between

Mathematica and POV Ray
222 #de c l a r e f a c e edge s 2 [ i ]= Edgesv3 [ edge 1 ] ;
223 #de c l a r e i = i +1;
224 #end
225

226 #f c l o s e Face s e t // s top r e ad i n g the f i l e
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Face s e t
227

228 /∗ Below we c o n s t r u c t the f a c e s from the
edges tha t r e p r e s e n t them ∗/

229

230 #i f ( f l o a t [ 0 ] = 0) // i f t h e r e i s
on l y one type o f f a c e s

231 #de c l a r e Faces = a r r a y [ n rFace sTo ta l ] ; // Thi s i s the
l i s t o f f a c e s , we aga in d e f i n e the l i s t tw i c e f o r l a t e r
pu rpo s e s

232 #de c l a r e Faces2 = a r r a y [ n rFace sTo ta l ] ; // l i s t 2 i s
aga in used f o r the c e l l s

233 #de c l a r e Faces [ 0 ] = un ion {} ;
234 #de c l a r e Faces2 [ 0 ] = un ion {} ;
235 #de c l a r e j =0;
236 #wh i l e ( j<n rFace sTo ta l )

// wh i l e j i s l e s s than the t o t a l number o f f a c e s do :
237 #de c l a r e Faces [ j ] = un ion { #d e c l a r e k=j ∗ nrEdgesFace ;

// the j ’ th e n t r y o f Faces i s the un ion o f the
edges i n the e n t r i e s k , . . . , k+(number o f edges pe r f a c e )

238 #wh i l e ( k<( j +1)∗ nrEdgesFace )
239 ob j e c t { f a c e e dg e s [ k ] }

// each o b j e c t
i n f a c e e dg e s i s an edge (
two v e r t i c e s ( s p h e r e s ) and
a c y l i n d e r i n between )

240 #de c l a r e k=k+1;
241 #end
242 } ;
243 #de c l a r e Faces2 [ j ] = un ion { #d e c l a r e k=j ∗ nrEdgesFace ;
244 #wh i l e ( k<( j +1)∗ nrEdgesFace )
245 ob j e c t { f a c e edge s 2 [ k ] }
246 #de c l a r e k=k+1;
247 #end
248 } ;
249 #de c l a r e j=j +1;
250 #end
251

252 #e l s e // i f t h e r e a r e
two t ype s o f f a c e s

253 #de c l a r e Faces = a r r a y [ n rFace sTo ta l+nrFacesTota l_2 ] ;
// Thi s i s the l i s t o f f a c e s , we aga in d e f i n e the l i s t tw i c e
f o r l a t e r pu rpo s e s

254 #de c l a r e Faces2 = a r r a y [ n rFace sTo ta l+nrFacesTota l_2 ] ;
// l i s t 2 i s aga i n used f o r the c e l l s

255 #de c l a r e Faces [ 0 ] = un ion {} ;
256 #de c l a r e Faces2 [ 0 ] = un ion {} ;
257 #de c l a r e j =0;
258 #wh i l e ( j<n rFace sTo ta l )
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// wh i l e j i s l e s s
than the t o t a l number o f f a c e s do :

259 #de c l a r e Faces [ j ] = un ion { #d e c l a r e k=j ∗ nrEdgesFace ;
// the j ’ th e n t r y o f Faces i s the un ion o f the

edges i n the e n t r i e s k , . . . , k+(number o f edges pe r f a c e )
260 #wh i l e ( k<( j +1)∗ nrEdgesFace )
261 ob j e c t { f a c e e dg e s [ k ] }

// each o b j e c t
i n f a c e e dg e s i s an edge (

two v e r t i c e s ( s p h e r e s ) and
a c y l i n d e r i n between )

262 #de c l a r e k=k+1;
263 #end
264 } ;
265 #de c l a r e Faces2 [ j ] = un ion { #d e c l a r e k=j ∗ nrEdgesFace ;
266 #wh i l e ( k<( j +1)∗ nrEdgesFace )
267 ob j e c t { f a c e edge s 2 [ k ] }
268 #de c l a r e k=k+1;
269 #end
270 } ;
271 #de c l a r e j=j +1;
272 #end
273

274 #de c l a r e n = nrFace sTo ta l ∗ nrEdgesFace ; //
s i n c e t h e r e a r e two t ype s o f f a c e s , they might c on t a i n a
d i f f e r e n t number o f edges pe r f a c e

275 #de c l a r e l = 0 ; // we
s t a r t to count aga in from the t o t a l number o f f a c e s o f type 1
mu l t i p l i e d by how many edges a r e i n t h i s type o f f a c e s

276 #wh i l e ( l<nrFacesTota l_2 )
// wh i l e l i s l e s s

than the t o t a l number o f f a c e s do :
277 #de c l a r e Faces [ n rFace sTo ta l+l ] = un ion { #d e c l a r e k=n+l ∗

nrEdgesFace_2 ; // the ( t o t a l number o f f a c e s o f
type 1 + l ) ’ th e n t r y o f Faces i s the un ion o f the edges i n
the e n t r i e s k , . . . , k+(number o f edges pe r f a c e )

278 #wh i l e ( k<n+( l +1)∗
nrEdgesFace_2 )

279 ob j e c t { f a c e e dg e s [
k ] }

// each o b j e c t
i n f a c e e dg e s

i s an edge (
two v e r t i c e s (
s p h e r e s ) and a
c y l i n d e r i n

between )
280 #de c l a r e k=k+1;
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281 #end
282 } ;
283 #de c l a r e Faces2 [ n rFace sTo ta l+l ] = un ion { #d e c l a r e k=n+l ∗

nrEdgesFace_2 ;
284 #wh i l e ( k<n+( l +1)∗

nrEdgesFace_2 )
285 ob j e c t {

f a c e edge s 2 [ k
] }

286 #de c l a r e k=k+1;
287 #end
288 } ;
289 #de c l a r e l=l +1;
290 #end
291 #end
292

293

294

295

296

297

298

299

300

301

302

303 /∗ I n the f o l l o w i n g p i e c e o f code we d e f i n e the c e l l s ∗/
304

305

306 #fopen C e l l s e t CELLS read // read and rename the f i l e CELLS ,
which i s d e c l a r e d at the b eg i nn i n g o f the s c r i p t

307

308 /∗ Below we d e f i n e a l i s t o f f a c e s i n the
r i g h t o r d e r f o r a l l c e l l s ∗/

309

310 #de c l a r e c e l l f a c e s = a r r a y [ n r F a c e sC e l l ∗ n r C e l l s T o t a l ] ; //
i n i t i a l i z e the l i s t c e l l f a c e s , i n t h i s l i s t we w i l l s t o r e a l l f a c e
numbers i n the r i g h t o r d e r to d e f i n e the c e l l s

311 #de c l a r e c e l l f a c e s [ 0 ] = un ion {} ; // t h e r e
i s no need anymore to d e f i n e the l i s t mu l t i p l e t imes

312

313 #de c l a r e i = 0 ;
314

315 #wh i l e ( d e f i n e d ( C e l l s e t ) & i < n r F a c e sC e l l ∗ n r C e l l s T o t a l ) // wh i l e
the f i l e C e l l s e t i s d e f i n e d and ( as e x t r a check ) wh i l e i i s l e s s

than ( the t o t a l number o f c e l l s ) ∗( number o f f a c e s pe r c e l l ) do :
316 #read ( C e l l s e t , f a c e ) //

read the next e n t r y from the f i l e C e l l s e t , each en t r y i s a f a c e
number
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317 #de c l a r e c e l l f a c e s [ i ]= Faces2 [ face 1 ] ; //
the i ’ th e n t r y o f c e l l f a c e s c o n s i s t s o f a face , aga i n u s i n g
face 1 as i ndex to make up f o r the d i f f e r e n c e between
Mathematica and POV Ray

318 #de c l a r e i = i +1;
319 #end
320

321 #f c l o s e C e l l s e t // s top r e ad i n g the f i l e C e l l s e t
322

323 /∗ Below we c o n s t r u c t the c e l l s from the
f a c e s t ha t r e p r e s e n t them ∗/

324

325 #de c l a r e C e l l s = a r r a y [ n r C e l l s T o t a l ] ; // Crea te and i n i t i a l i z e the
a r r a y C e l l s

326 #de c l a r e C e l l s [ 0 ] = un ion {} ;
327

328 #de c l a r e j = 0 ;
329

330 #wh i l e ( j < n r C e l l s T o t a l )
// wh i l e j i s l e s s than the t o t a l number o f c e l l s do :

331 #de c l a r e C e l l s [ j ] = un ion { #d e c l a r e k=j ∗ n r F a c e sC e l l ;
// the j ’ th e n t r y the a r r a y C e l l s c o n s i s t s o f the

c e l l f a c e s k , . . . , ( j +1)∗( number o f f a c e s pe r c e l l ) 1
332 #wh i l e ( k<( j +1)∗ n r F a c e sC e l l )
333 ob j e c t { c e l l f a c e s [ k ] }

// each en t r y o f
c e l l f a c e s i s a f a c e ( mu l t i p l e
edges )

334 #de c l a r e k=k+1;
335 #end
336 } ;
337 #de c l a r e j = j +1;
338 #end
339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354
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355

356

357

358

359

360

361

362 /∗ Now tha t e v e r y t h i n g i s d e f i n ed , be low we can d e f i n e
e v e r y t h i n g tha t we want to be shown i n the f i g u r e s and what
c o l o r s shou ld be used ∗/

363

364

365

366

367 /∗ f i r s t make a d e c i s i o n i n the f o l l o w i n g : ∗/
368 #de c l a r e show_polytope = on ; // s e t to o f f i f you do not want to

show the b a s i c s t r u c t u r e ( v e r t i c e s and edges ) o f the po l y t op e
369 #de c l a r e s h ow_ i n i t i a l_ f l a g = o f f ; // s e t to o f f i f you do not want

to show an i n i t i a l maximal f l a g o f the po l y t op e
370

371

372

373

374

375

376 // Eve r y t h i n g tha t you want to have shown , put i t i n s i d e o f the un ion
{ . . . }

377 un ion
378 {
379

380 // This makes s u r e t ha t a l l v e r t i c e s and edges a r e
shown

381 #i f ( show_polytope ) // i f
show_polytope i s s e t to ’ on ’ , then show a l l
v e r t i c e s and edges

382 #de c l a r e k = 0 ;
383 #wh i l e ( k < n rVe r tTo t a l )
384 ob j e c t { V e r t i c e s [ k ] }
385 #de c l a r e k = k+1;
386 #end
387 #de c l a r e k = 0 ;
388 #wh i l e ( k < nrEdgesTota l )
389 ob j e c t {Edges [ k ] }
390 #de c l a r e k = k+1;
391 #end
392 #end
393

394 // Thi s makes s u r e tha t a maximal f l a g i s shown
395 #i f ( s h ow_ i n i t i a l_ f l a g ) // i f
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s h ow_ i n i t i a l_ f l a g i s s e t to ’ on ’ , then g i v e the
e l ement s o f the i n i t i a l f l a g d i f f e r e n t c o l o r s

396 ob j e c t { V e r t i c e s v 5 [ 0 ] p igment { Ye l low } }
397 ob j e c t { Edgesv4 [ 0 ] p igment { Orange } }
398 ob j e c t { Faces [ 0 ] p igment { Green } }
399 ob j e c t { C e l l s [ 0 ] p igment { Blue } }
400 #end
401

402

403

404 // With the f o l l o w i n g examples you can choose which
f a c e s or c e l l s you want to g i v e a d i f f e r e n t c o l o r

405 // ob j e c t { V e r t i c e s v 5 [ nr ] p igment { Co lo r } }
406 // ob j e c t {Edgev4 [ nr ] p igment { Co lo r } }
407 // ob j e c t { Faces [ nr ] p igment { Co lo r } }
408 // ob j e c t { C e l l s [ n r ] p igment { Co lo r } }
409

410 // copy any o f the 4 examples above and pa s t e them
below t h i s l i n e

411

412

413

414

415

416

417 // wi th the f o l l o w i n g we can r o t a t e our f i g u r e such
tha t we get a n i c e v iew

418

419 r o t a t e <0+360∗( c l o c k ) ,0 ,0>
420

421 }
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7.1.2 Code for spinning polytopes

1 ; POV Ray an imat i on i n i f i l e
2 A n t i a l i a s=Off
3 An t i a l i a s_Th r e s ho l d =0.1
4 Ant i a l i a s_Depth=2
5

6 Input_File_Name="4DFigures . pov"
7

8 I n i t i a l_F r ame=1
9 Final_Frame=100

10 I n i t i a l _C l o c k=0
11 F ina l_Clock=1
12 Cyc l i c_Animat ion=on
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7.2 Mathematica code

See from the next page and onwards
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(* First make a screen where the user can give a desired Schlafli Symbol

together with a reflection hyperplane they want to start reflecting in *)

Style["Give the values of p,q,r for a Schlafli symbol of the form {p,q,r}",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Style["p" InputField[Dynamic[pp]], 14, Italic,

FontFamily → "Courier", LineSpacing → {1, 0}]

Style["q" InputField[Dynamic[qq]], 14, Italic,

FontFamily → "Courier", LineSpacing → {1, 0}]

Style["r" InputField[Dynamic[rr]], 14, Italic,

FontFamily → "Courier", LineSpacing → {1, 0}]

Style["Choose a node of the diagram to start with the corresponding reflection",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Style["Type 1,2,3 or 4: " InputField[Dynamic[k]], 14,

Italic, FontFamily → "Courier", LineSpacing → {1, 0}]

Style["Give the directory where you want to write all files to", 16,

Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Style["Give the directory: " InputField[Dynamic[directory], FieldSize → 50],

14, Italic, FontFamily → "Courier", LineSpacing → {1, 0}]

Out[ ]= Give the values of p,q,r

for a Schlafli symbol of the form {p,q,r}

Out[ ]= p pp

Out[ ]= q qq

Out[ ]= r rr

Out[ ]= Choose a node of the diagram

to start with the corresponding reflection

Out[ ]= Type 1,2,3 or 4: k

Out[ ]= Give the directory where you want to write all files to

Out[ ]= Give the directory:

directory

Style["Are these the values you wanted?", 16, Italic,

Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Schl = {pp, qq, rr} (* This section is just to double

check the values that have been given as input *)

k

Out[ ]= Are this the values you wanted?

Out[ ]= {3, 3, 3}

Out[ ]= 1

Printed by Wolfram Mathematica Student Edition



(* With the choosen input we can determine the

normal vectors a_i of the reflection hyperplanes r_i *)

a = CosPi  Schl[[1]]; (* define the angles between

the hyperplanes with the given Schläfli symbol *)

b = CosPi  Schl[[2]];

c = CosPi  Schl[[3]];

a1 = {1, 0, 0, 0}; (* We choose the first vector *)

a2 = {a, n1, 0, 0};

(* For the other vectors we make sure that the angle relations are met *)

s3 = FindInstance[Norm[a2] ⩵ 1, {n1}, Reals]; (* and then determine

the value for the variable n_ such that the vectors have length 1 *)

a2 = Replace[a2 /. s3, {x_List} ⧴ x, {0, -3}];

a3 = 0, b  a2[[2]], n2, 0;

s1 = FindInstance[Norm[a3] ⩵ 1, {n2}, Reals];

a3 = Replace[a3 /. s1, {x_List} ⧴ x, {0, -3}];

a4 = 0, 0, c  a3[[3]], n3;

s2 = FindInstance[Norm[a4] ⩵ 1, {n3}, Reals];

a4 = Replace[a4 /. s2, {x_List} ⧴ x, {0, -3}];

Style["The following are the normal vectors a_i that we will use in our calculation",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

a1

a2 = Simplify[a2] (* this is to show the computed vectors *)

a3 = Simplify[a3]

a4 = Simplify[a4]

Style[

"The following must be True in order for us to know if all restrictions are met",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Simplify[a1.a2] ⩵ a && Simplify[a1.a3] ⩵ 0 && Simplify[a1.a4] ⩵ 0 &&

Simplify[a2.a3] ⩵ b && Simplify[a2.a4] ⩵ 0 && Simplify[a3.a4] ⩵ c &&

Simplify[Norm[a1]] ⩵ 1 && Simplify[Norm[a2]] ⩵ 1 && Simplify[Norm[a3]] ⩵ 1 &&

Simplify[Norm[a4]] ⩵ 1 (* this is a check for all relations that should

hold: the angles between each pair of normal vectors and their unit length*)

Out[ ]= The following are the normal

vectors a_i that we will use in our calculation

Out[ ]= {1, 0, 0, 0}

Out[ ]= 
1

2
,

3

2
, 0, 0

Out[ ]= 0,
1

3
,

2

3
, 0

Out[ ]= 0, 0,

3

2

2
,

5

2

2


Out[ ]= The following must be True in order

for us to know if all restrictions are met

Out[ ]= True
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A = Join[{a1}, {a2}, {a3}, {a4}]; (* For the ease of computations

we will use the normal vectors as rowvectors of a matrix A *)

p = {p1, p2, p3, p4};

s2 = FindInstance[If[k ≠ 1, p.A[[1]] ⩵ 0, p ≠ {0, 0, 0, 0}] &&

If[k ≠ 2, p.A[[2]] ⩵ 0, p ≠ {0, 0, 0, 0}] && If[k ≠ 3, p.A[[3]] ⩵ 0, p ≠ {0, 0, 0, 0}] &&

If[k ≠ 4, p.A[[4]] ⩵ 0, p ≠ {0, 0, 0, 0}], {p1, p2, p3, p4}];

(* This finds a vector p contained in the three hyperplanes other

than the desired starting reflection hyperplane*)

ps = p /. s2; (* This applies the result

found for p to define v_1 as our first vertex *)

Style["The following vector is our first vertex of the polytope, v_1",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

v1 = FullSimplify[ps[[1]]] (* This shows the vertex v_1 to the user *)

Out[ ]= The following vector is our first vertex of the polytope, v_1

Out[ ]= 1, -
1

3
,

1

6
, -

1

10


(* Let us define the reflection transformation functions rt_i

that represent reflecting in the hyperplanes perpendicular to a_i *)

rt1 = ReflectionTransform[A[[1]]];

rt2 = ReflectionTransform[A[[2]]];

rt3 = ReflectionTransform[A[[3]]];

rt4 = ReflectionTransform[A[[4]]];

(* For the ease of coding we define the

reflection transformations as elements of a list RT *)

RT = {rt1, rt2, rt3, rt4};

(* We use the normal vector of the desired starting reflection

hyperplane to reflect v1 and in this way we find an edge *)

Style["The following vector is our second vertex of the polytope, v_2",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

v2 = RT[[k]][v1] (* This computes v_2 and shows the vertex v_2 to the user *)

Out[ ]= The following vector is our second vertex of the polytope, v_2

Out[ ]= -1, -
1

3
,

1

6
, -

1

10

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ClearAll[Vertices]

(* Define the list Vertices to keep track

of all the vertices that we find by reflecting v_1 *)

Vertices = {v1, v2};

vi = 1; (* initialize a counter *)

(* Define the function that we will use to check

whether a vertex is already a member of our list *)

notmember[list_, x_] := For[i = 1, i ≤ Length[list], i++,

If[Norm[list[[i]] - x] < 0.1, output = False; Break[], output = True;]]

(* This function checks if a vector is not an element of a vector list,

if it is not a member this function returns True *)

(* This function is later also used for finding an initial face and cell *)

(* In the while loop we reflect the vertex v_1 in

4 reflection axes until we do not find any new vertices *)

While[vi <= Length[Vertices],

nv = N[Vertices];

(* This is a numerical representation of all vertices that we have found so far *)

mapv1 = FullSimplify[RT[[1]][Vertices[[vi]]]]; (* This computes an image

after reflecting a vertex of the polytope in the first hyperplane *)

notmember[nv, N[mapv1]]; (* This checks whether this

image is already contained in our list of vertices using the function notmember *)

If[output,

Vertices = Join[Vertices, {mapv1}] (* If the function notmember

returns the output True then the computed image is added to the vertices list *)

];

mapv2 = FullSimplify[RT[[2]][Vertices[[vi]]]]; (* From here we do

the same as before but for the other three hyperplane reflections *)

notmember[nv, N[mapv2]];

If[output,

Vertices = Join[Vertices, {mapv2}]

];

mapv3 = FullSimplify[RT[[3]][Vertices[[vi]]]];

notmember[nv, N[mapv3]];

If[output,

Vertices = Join[Vertices, {mapv3}]

];

mapv4 = FullSimplify[RT[[4]][Vertices[[vi]]]];

notmember[nv, N[mapv4]];

If[output,

Vertices = Join[Vertices, {mapv4}]

];

vi++ (* increase the counter *)

]

Style["The following is the number of vertices contained in our polytope",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[Vertices] (* This counts the number of vertices in our polytope *)

Vertices;

Out[ ]= The following is the number

of vertices contained in our polytope
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Out[ ]= 5

ClearAll[Edges]

Style["The following is our first edge of the polytope, e_1 connecting v_1 and v_2",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

E1 = SortBy[FullSimplify[{v1, v2}], Less]

(* The first edge we find is an edge connecting the vertices v1 and v2,

we show it to the user *)

(* Define the list Edges to keep track of the edges that

we find by reflecting e_1 that are contained in our polytope *)

Edges = {E1};

(* Define the function that will be used to check whether a list of elements already

contains the element in question used for either edges, faces or cells *)

notmember2[list_, list2_] := For[i = 1, i ≤ Length[list], i++,

count = 0;

For[j = 1, j ≤ Length[list[[1]]], j++,

If[Norm[list[[i, j]] - list2[[j]]] < 0.1,

count = count + 1;

];

If[count == Length[list[[1]]], output = False;

Break[], output = True]

];

If[output ⩵ False, Break[]]

(* If the output is True then the element is not a member of the list *)

]

(* In the while loop we reflect the edge e_1

in 2 reflection axes until we do not find a new edge *)

ei = 1; (* Initialize a counter *)

While[ei ≤ Length[Edges],

ne = N[Edges];

(* This is a numerical representation of all edges that we have found so far *)

mape1 = SortBy[RootReduce[FullSimplify[Map[RT[[1]], Edges[[ei]]]]], Less];

(* This computes an image after reflecting

an edge of the polytope in the first hyperplane *)

notmember2[ne, N[mape1]]; (* This checks whether this image is

already contained in our list of vertices using the function notmember2 *)

If[output,

Edges = Join[Edges, {mape1}] (* If the function notmember2 returns

the output True then the computed image is added to the edges list *)

];

mape2 = SortBy[RootReduce[FullSimplify[Map[RT[[2]], Edges[[ei]]]]], Less];

(* From here we do the same as before but

for the other three hyperplane reflections *)

notmember2[ne, N[mape2]];

If[output,

Edges = Join[Edges, {mape2}]

];

mape3 = SortBy[RootReduce[FullSimplify[Map[RT[[3]], Edges[[ei]]]]], Less];

notmember2[ne, N[mape3]];

If[output,

Edges = Join[Edges, {mape3}]

];
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mape4 = SortBy[RootReduce[FullSimplify[Map[RT[[4]], Edges[[ei]]]]], Less];

notmember2[ne, N[mape4]];

If[output,

Edges = Join[Edges, {mape4}]

];

ei++ (* increase the counter *)

]

Style["The following is the number of edges contained in our polytope",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[Edges](* This counts the number of edges

in our first face of the polytope *)

Edges;

Out[ ]= The following is our first edge

of the polytope, e_1 connecting v_1 and v_2

Out[ ]= -1, -
1

3
,

1

6
, -

1

10
, 1, -

1

3
,

1

6
, -

1

10


Out[ ]= The following is the number of edges contained in our polytope

Out[ ]= 10

ClearAll[F1, F2, fi, Faces, Faces1, Faces2]

(* the first Face F_1 we find is found by

using two reflections and applying these to v1 *)

n = 1;

F1 = {v1, v2};

F2 = {v1, v2}; (* In the case that k=

2 or 3 we might find 2 different types of faces and thus we will initialize both *)

(* We need to check the value of k on which node the user wanted to encircle *)

If[k ⩵ 1,

While[n ≤ Length[F1], (* In the while loop we reflect our first vertices v1 and

v2 with a selection of the reflection functions to determine an initial face *)

mapf1 = FullSimplify[RT[[1]][F1[[n]]]];

notmember[N[F1], N[mapf1]];

(* Recall that we use the predefined function notmember,

if output is true than the element is not a member of the list*)

If[output,

F1 = Join[F1, {mapf1}]

];

mapf2 = FullSimplify[RT[[2]][F1[[n]]]];

notmember[N[F1], N[mapf2]];

If[output,

F1 = Join[F1, {mapf2}]

];

n++

],

If[k ⩵ 2,

While[n ≤ Length[F2],

mapf1 = FullSimplify[RT[[1]][F2[[n]]]];

(* Note that for k=2 we define F2 first to make sure that F1 is the

type of faces that is associated with the cells of the polytope*)

notmember[N[F2], N[mapf1]];

If[output,
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F2 = Join[F2, {mapf1}]

];

mapf2 = FullSimplify[RT[[2]][F2[[n]]]];

notmember[N[F2], N[mapf2]];

If[output,

F2 = Join[F2, {mapf2}]

];

n++

];

n = 1;

While[n ≤ Length[F1],

mapf1 = FullSimplify[RT[[2]][F1[[n]]]];

notmember[N[F1], N[mapf1]];

If[output,

F1 = Join[F1, {mapf1}]

];

mapf2 = FullSimplify[RT[[3]][F1[[n]]]];

notmember[N[F1], N[mapf2]];

If[output,

F1 = Join[F1, {mapf2}]

];

n++

],

If[k ⩵ 3,

(* Note that for k=3 we define F1 first to make sure that F1 is the

type of faces that is associated with the cells of the polytope*)

While[n ≤ Length[F1],

mapf1 = FullSimplify[RT[[2]][F1[[n]]]];

notmember[N[F1], N[mapf1]];

If[output,

F1 = Join[F1, {mapf1}]

];

mapf2 = FullSimplify[RT[[3]][F1[[n]]]];

notmember[N[F1], N[mapf2]];

If[output,

F1 = Join[F1, {mapf2}]

];

n++

];

n = 1;

While[n ≤ Length[F2],

mapf1 = FullSimplify[RT[[3]][F2[[n]]]];

notmember[N[F2], N[mapf1]];

If[output,

F2 = Join[F2, {mapf1}]

];

mapf2 = FullSimplify[RT[[4]][F2[[n]]]];

notmember[N[F2], N[mapf2]];

If[output,

F2 = Join[F2, {mapf2}]

];

n++

],

If[k ⩵ 4,

While[n ≤ Length[F1],
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mapf1 = FullSimplify[RT[[3]][F1[[n]]]];

notmember[N[F1], N[mapf1]];

If[output,

F1 = Join[F1, {mapf1}]

];

mapf2 = FullSimplify[RT[[4]][F1[[n]]]];

notmember[N[F1], N[mapf2]];

If[output,

F1 = Join[F1, {mapf2}]

];

n++

]]]]]

If[k ⩵ 1 || k ⩵ 4, Style[

"The following is the number of vertices/edges contained in our first face, F_1",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}],

Style["The following are the numbers of vertices/edges

contained in the first two different faces, F_1 and F_2 ",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]]

If[k ⩵ 1 || k ⩵ 4, facelength = Length[F1], facelength = {Length[F1], Length[F2]}]

(* Define the number of edges in the initial face(s) and show it to the user *)

F1 = SortBy[F1, Less];

F2 = SortBy[F2, Less];

(* Reflecting the first face so that we can find all faces of the polytope *)

fi = 1; (* initialize a counter *)

If[k ⩵ 1 || k ⩵ 4, (* check the k value *)

Faces = {F1};

While[fi ≤ Length[Faces], (* in this while loop we reflect the

initial face with all reflection functions to find all the images *)

nf = N[Faces];

mapf1 = SortBy[RootReduce[FullSimplify[Map[RT[[1]], Faces[[fi]]]]], Less];

notmember2[nf, N[mapf1]];

(* Recall that we use the predefined function notmember2,

if output is true than the element is not a member of the list*)

If[output,

Faces = Join[Faces, {mapf1}]

];

mapf2 = SortBy[RootReduce[FullSimplify[Map[RT[[2]], Faces[[fi]]]]], Less];

notmember2[nf, N[mapf2]];

If[output,

Faces = Join[Faces, {mapf2}]

];

mapf3 = SortBy[RootReduce[FullSimplify[Map[RT[[3]], Faces[[fi]]]]], Less];

notmember2[nf, N[mapf3]];

If[output,

Faces = Join[Faces, {mapf3}]

];

mapf4 = SortBy[RootReduce[FullSimplify[Map[RT[[4]], Faces[[fi]]]]], Less];

notmember2[nf, N[mapf4]];

If[output,

Faces = Join[Faces, {mapf4}]

];

fi++ (* increase the counter *)

],
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If[k ⩵ 2 || k ⩵ 3,

Faces1 = {F1};

While[fi ≤ Length[Faces1],

(* in this while loop we reflect the initial face F1 with all

reflection functions to find all the images of the type of faces F1 *)

nf1 = N[Faces1];

mapf1 = SortBy[RootReduce[FullSimplify[Map[RT[[1]], Faces1[[fi]]]]], Less];

notmember2[nf1, N[mapf1]];

If[output,

Faces1 = Join[Faces1, {mapf1}]

];

mapf2 = SortBy[RootReduce[FullSimplify[Map[RT[[2]], Faces1[[fi]]]]], Less];

notmember2[nf1, N[mapf2]];

If[output,

Faces1 = Join[Faces1, {mapf2}]

];

mapf3 = SortBy[RootReduce[FullSimplify[Map[RT[[3]], Faces1[[fi]]]]], Less];

notmember2[nf1, N[mapf3]];

If[output,

Faces1 = Join[Faces1, {mapf3}]

];

mapf4 = SortBy[RootReduce[FullSimplify[Map[RT[[4]], Faces1[[fi]]]]], Less];

notmember2[nf1, N[mapf4]];

If[output,

Faces1 = Join[Faces1, {mapf4}]

];

fi++ (* increase the counter *)

];

fi = 1; (* restart the counter *)

Faces2 = {F2};

While[fi ≤ Length[Faces2],

(* in this while loop we reflect the initial face F2 with all

reflection functions to find all the images of the type of faces F2 *)

nf2 = N[Faces2];

mapf1 = SortBy[RootReduce[FullSimplify[Map[RT[[1]], Faces2[[fi]]]]], Less];

notmember2[nf2, N[mapf1]];

If[output,

Faces2 = Join[Faces2, {mapf1}]

];

mapf2 = SortBy[RootReduce[FullSimplify[Map[RT[[2]], Faces2[[fi]]]]], Less];

notmember2[nf2, N[mapf2]];

If[output,

Faces2 = Join[Faces2, {mapf2}]

];

mapf3 = SortBy[RootReduce[FullSimplify[Map[RT[[3]], Faces2[[fi]]]]], Less];

notmember2[nf2, N[mapf3]];

If[output,

Faces2 = Join[Faces2, {mapf3}]

];

mapf4 = SortBy[RootReduce[FullSimplify[Map[RT[[4]], Faces2[[fi]]]]], Less];

notmember2[nf2, N[mapf4]];

If[output,

Faces2 = Join[Faces2, {mapf4}]

];

fi++ (* increase the counter *)
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]

]]

If[k ⩵ 2 || k ⩵ 3, Faces = Join[Faces1, Faces2]];

(* Define the set of faces as the combined

set of images of F1 and F2 if k=2 or k=3 *)

Faces;

If[k ⩵ 2 || k ⩵ 3,

Style["The following are the number of images of F_1 and the number of

images of F_2 contained in our polytope", 16,

Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]]

If[k ⩵ 2 || k ⩵ 3, {Length[Faces1], Length[Faces2]}]

(* if k=2 or k=3 it might be nice to know

how many of each type of faces there are in the polytope *)

Faces1;

Faces2;

Style["The following is the number of faces contained in our polytope",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[Faces] (* This counts the number of edges in our first cell of the polytope *)

Out[ ]= The following is the number of

vertices/edges contained in our first face, F_1

Out[ ]= 3

Out[ ]= The following is the number of faces contained in our polytope

Out[ ]= 10

ClearAll[C1, ci, Cels]

(* The initial Cell C1 is found by using three

reflections and applying these our initial vertex v1 *)

C1 = {v1};

m = 1;

If[k ⩵ 1 || k ⩵ 2,

While[m ≤ Length[C1],

mapc1 = FullSimplify[RT[[k]][C1[[m]]]];

notmember[N[C1], N[mapc1]]; (* We again use our predefined function

notmember to check whether the image of a vertex was already in our list *)

If[output,

C1 = Join[C1, {mapc1}]

];

mapc2 = FullSimplify[RT[[k + 1]][C1[[m]]]];

notmember[N[C1], N[mapc2]];

If[output,

C1 = Join[C1, {mapc2}]

];

mapc3 = FullSimplify[RT[[k + 2]][C1[[m]]]];

notmember[N[C1], N[mapc3]];

If[output,

C1 = Join[C1, {mapc3}]

];

m++

],

If[k ⩵ 3 || k == 4,

While[m ≤ Length[C1],
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mapc1 = FullSimplify[RT[[k]][C1[[m]]]];

notmember[N[C1], N[mapc1]];

If[output,

C1 = Join[C1, {mapc1}]

];

mapc2 = FullSimplify[RT[[k - 1]][C1[[m]]]];

notmember[N[C1], N[mapc2]];

If[output,

C1 = Join[C1, {mapc2}]

];

mapc3 = FullSimplify[RT[[k - 2]][C1[[m]]]];

notmember[N[C1], N[mapc3]];

If[output,

C1 = Join[C1, {mapc3}]

];

m++

]

]]

Style["The following is the number of vertices contained in our first cell C_1",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[C1] (* This counts the number of vertices in C1 *)

(* Now that we have the first Cell we

can determine all other cells of the polytope*)

Cels = {SortBy[RootReduce[FullSimplify[C1]], Less]};

ci = 1;

While[ci ≤ Length[Cels],

(* In this while loop we reflect the initial cell C1 in all hyperplanes,

then reflect all its images, etcetera to find all cells of the polytope *)

nc = N[Cels];

mapc1 = SortBy[RootReduce[FullSimplify[RT[[1]][Cels[[ci]]]]], Less];

(* reflect a cell in the first hyperplane *)

notmember2[nc, N[mapc1]];

(* Check whether we already had this image in our list of cells *)

If[output,

Cels = Join[Cels, {mapc1}]

(* If this was not the case then add the new cell to the list*)

];

mapc2 = SortBy[RootReduce[FullSimplify[RT[[2]][Cels[[ci]]]]], Less];

notmember2[nc, N[mapc2]];

If[output,

Cels = Join[Cels, {mapc2}]

];

mapc3 = SortBy[RootReduce[FullSimplify[RT[[3]][Cels[[ci]]]]], Less];

notmember2[nc, N[mapc3]];

If[output,

Cels = Join[Cels, {mapc3}]

];

mapc4 = SortBy[RootReduce[FullSimplify[RT[[4]][Cels[[ci]]]]], Less];

notmember2[nc, N[mapc4]];

If[output,

Cels = Join[Cels, {mapc4}]

];

ci++

]
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Style["The following is the number of Cells contained in our polytope",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[Cels] (* This counts the number of Cells in our polytope *)

Cels;

Out[ ]= The following is the number of

vertices contained in our first cell C_1

Out[ ]= 4

Out[ ]= The following is the number of Cells contained in our polytope

Out[ ]= 5

(* We have determined the sets of sets of points that define edges,

faces or cells *)

(* We will now determine the incidence lists for these different sets,

so that we know which edges belong to which faces, etc. *)

Clear[ListVertexInEdge, ListEdgeInFace, ListFaceInCel]

ListVertexInEdge = {}; (* initialize the incidence sets*)

ListVertexInFace = {};

ListVertexInCell = {};

ListEdgeInFace = {};

ListFaceInCel = {};

NVertices = N[Vertices];

NEdges = N[Edges];

NFaces = N[Faces];

NCels = N[Cels];

For[i = 1, i ≤ Length[Edges], i++,

(* In this for-loop we determine which vertices are in each edge,

the vertices are identified by numbers *)

Local = {};

For[j = 1, j ≤ Length[Vertices], j++,

For[l = 1, l ≤ Length[Edges[[1]]], l++,

If[Norm[NEdges[[i, l]] - NVertices[[j]]] < 0.01,

AppendTo[Local, j]

];

]

];

AppendTo[ListVertexInEdge, Local];

]

For[i = 1, i ≤ Length[Faces], i++,

(* In this for-loop we determine which vertices are in each face,

the vertices are identified by numbers *)

Local = {};

For[j = 1, j ≤ Length[Vertices], j++,

For[l = 1, l ≤ Length[Faces[[i]]], l++,

If[Norm[NFaces[[i, l]] - NVertices[[j]]] < 0.01,

AppendTo[Local, j]

];

]

];
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AppendTo[ListVertexInFace, Local];

]

For[i = 1, i ≤ Length[Cels], i++,

(* In this for-loop we determine which vertices are in each cell,

the vertices are identified by numbers *)

Local = {};

For[j = 1, j ≤ Length[Vertices], j++,

For[l = 1, l ≤ Length[Cels[[1]]], l++,

If[Norm[NCels[[i, l]] - NVertices[[j]]] < 0.01,

AppendTo[Local, j]

];

]

];

AppendTo[ListVertexInCell, Local];

]

Fori = 1, i ≤ Length[Faces],

(* In this for-loop we determine which edges are in each face,

the vertices are identified by numbers *)

Local = {};

Forj = 1, j ≤ Length[Edges],

IfSubsetQ[ListVertexInFace[[i]], ListVertexInEdge[[j]]],

(* This checks whether some edge set of vertices

is a subset of a face bigger set of vertices *)

AppendTo[Local, j] (* If the

edge is a subset of the face then we add the edgenumber to the local list *)

;

j++

;

AppendTo[ListEdgeInFace, Local];

(* The local set represents a face, it is a set of edgenumbers*)

i++



Fori = 1, i ≤ Length[Cels],

(* In this for-loop we determine which edges are in each face,

the vertices are identified by numbers *)

Local = {};

Forj = 1, j ≤ Length[Faces],

IfSubsetQ[ListVertexInCell[[i]], ListVertexInFace[[j]]],

(* This checks whether some face set of vertices

is a subset of a cell bigger set of vertices *)

AppendTo[Local, j] (* If the

face is a subset of the cell then we add the facenumber to the local list *)

;

j++

;

AppendTo[ListFaceInCel, Local];

(* The local set represents a cell, it is a set of facenumbers*)

i++



maxVert = Count[ListVertexInEdge, 1, {2}];
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minVert = Count[ListVertexInEdge, 1, {2}];

(* In this for-loop we count the number of times every vertex occurs in an edge and

check if this number is equal for every vertex, it should be the same *)

For[i = 2, i < Length[Vertices], local = Count[ListVertexInEdge, i, {2}];

If[maxVert < local, maxVert = local, If[minVert > local, minVert = local]], i++]

If[maxVert == minVert, countVert = maxVert,

countVert = "not an equal number for every vertex"];

Style["The following is the number of edges adjacent to each vertex",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

countVert

maxVert = Count[ListVertexInFace, 1, {2}];

minVert = Count[ListVertexInFace, 1, {2}];

(* In this for-loop we count the number of times every vertex occurs in a face and

check if this number is equal for every vertex, it should be the same *)

For[i = 2, i < Length[Vertices], local = Count[ListVertexInFace, i, {2}];

If[maxVert < local, maxVert = local, If[minVert > local, minVert = local]], i++]

If[maxVert == minVert, countVert = maxVert,

countVert = "not an equal number for every vertex"];

Style["The following is the number of faces incident to each vertex",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

countVert

maxVert = Count[ListVertexInCell, 1, {2}];

minVert = Count[ListVertexInCell, 1, {2}];

(* In this for-loop we count the number of times every vertex occurs in a cell and

check if this number is equal for every vertex, it should be the same *)

For[i = 2, i < Length[Vertices], local = Count[ListVertexInCell, i, {2}];

If[maxVert < local, maxVert = local, If[minVert > local, minVert = local]], i++]

If[maxVert == minVert, countVert = maxVert,

countVert = "not an equal number for every vertex"];

Style["The following is the number of cells incident to each vertex",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

countVert

maxEdge = Count[ListEdgeInFace, 1, {2}];

minEdge = Count[ListEdgeInFace, 1, {2}];

(* In this for-loop we count the number of times every edge occurs in

a face and check if this number is equal for every edge, it should be the same *)

For[i = 2, i < Length[Edges], local = Count[ListEdgeInFace, i, {2}];

If[maxEdge < local, maxEdge = local, If[minEdge > local, minEdge = local]], i++]

If[maxEdge == minEdge, countEdge = maxEdge,

countEdge = "not an equal number for every edge"];

Style["The following is the number of faces incident to each edge",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

countEdge

maxFace = Count[ListFaceInCel, 1, {2}];

minFace = Count[ListFaceInCel, 1, {2}];

(* In this for-loop we count the number of times every face occurs in

a cell and check if this number is equal for every face, it should be the same *)

If[k ⩵ 1 || k ⩵ 4,
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For[i = 2, i < Length[Faces], local = Count[ListFaceInCel, i, {2}];

If[maxFace < local, maxFace = local, If[minFace > local, minFace = local]], i++],

If[k ⩵ 3 || k ⩵ 2,

For[i = 2, i < Length[Faces1], local = Count[ListFaceInCel, i, {2}];

If[maxFace < local, maxFace = local, If[minFace > local, minFace = local]], i++]

]

]

If[maxFace == minFace, countFace = maxFace,

countFace = "not an equal number for every face"];

Style["The following is the number of cells incident to each face",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

countFace

ListVertexInEdge; (* To check any of the lists,

remove the ';' at the end and evaluate this mathematica-cell again *)

ListVertexInFace;

ListVertexInCell;

ListEdgeInFace;

ListFaceInCel;

Out[ ]= The following is the number of edges adjacent to each vertex

Out[ ]= 4

Out[ ]= The following is the number of faces incident to each vertex

Out[ ]= 6

Out[ ]= The following is the number of cells incident to each vertex

Out[ ]= 4

Out[ ]= The following is the number of faces incident to each edge

Out[ ]= 3

Out[ ]= The following is the number of cells incident to each face

Out[ ]= 2
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(* Now that we have found all the coordinates of

the polytope project these coordinates onto a hyperplane,

we have choosen the hyperplane perpendicular to "normal" *)

normal = {-1, -2, -2, -1};

(* The hyperplane has basis vectors w_1,w_2,w_3 which will now be determined *)

w1 = {1, aa, bb, cc};

w2 = {dd, 1, ee, ff};

w3 = {gg, hh, 1, ii};

(* The following finds values for the variables aa,

bb,...,ii such that the vectors w1,w2,

w3 are orthogonal to each other and to the normal vector *)

s3 = FindInstance[w1.normal ⩵ 0 && w2.normal ⩵ 0 && w3.normal ⩵ 0 &&

w1.w2 ⩵ 0 && w1.w3 ⩵ 0 && w2.w3 ⩵ 0, {aa, bb, cc, dd, ee, ff, gg, hh, ii}];

Ws = Join[{w1}, {w2}, {w3}] /. s3;

Style[

"The following is the matrix W with row vectors that span the projection hyperplane",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

W = Replace[Ws, {x_List} ⧴ x, {0, -3}] (* For the ease of coding

we use the vectors w_1,w_2,w_3 as row vectors of a matrix W *)

Out[ ]= The following is the matrix W with

row vectors that span the projection hyperplane

Out[ ]= 1, -
2

9
, -

2

9
, -

1

9
, 0, 1, -

4

5
, -

2

5
, {0, 0, 1, -2}

(* Using the normal vector of the projection hyperplane

we can compute the projection of all coordinates *)

ClearAll[P]

normal = Normalize[normal];

tr = {1, 2, 2, 1}; (* This is the translation vector *)

Project[v_] := v - Dot[v, normal] * normal + Dot[tr, normal] * normal;

P = FullSimplify[Map[Project, {Vertices[[1]]}]];

(* In the for loop we project each vertex of the polytope onto the hyperplane *)

For[i = 2, i ≤ Length[Vertices], i++,

P = Join[P, FullSimplify[Map[Project, {Vertices[[i]]}]]]

];

Style[

"The following is the number of vertices projected on the projection hyperplane",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[P]

P;

Out[ ]= The following is the number of

vertices projected on the projection hyperplane

Out[ ]= 5
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In[ ]:= (* All the projected vertices lie in the chosen hyperplane,

thus they can be written as a linear combination of w_1,

w_2,w_3 using three coefficients *)

(* These three coefficients for each vertex

will become the 3D coordinates of that vertex *)

ClearAll[H]

H = FullSimplifyP[[1]].W[[1]]  Norm[W[[1]]],

P[[1]].W[[2]]  Norm[W[[2]]], P[[1]].W[[3]]  Norm[W[[3]]]

(* In the for loop we rewrite the coordinates for every projected vertex *)

Fori = 2, i ≤ Length[P], i++,

H = JoinH, FullSimplifyP[[i]].W[[1]]  Norm[W[[1]]],

P[[i]].W[[2]]  Norm[W[[2]]], P[[i]].W[[3]]  Norm[W[[3]]]

;

Style[

"The following is the number of vertices in the hyperplane in rewritten coordinates",

16, Italic, Bold, Blue, FontFamily → "Courier", LineSpacing → {1, 0}]

Length[H]

H ;

Out[ ]= 
1

90
3 + 27 10 - 2 15 + 2 30 ,

1

45
3 2 - 5 15 - 2 30 ,

2

5
+

1

30


Out[ ]= The following is the number of vertices

in the hyperplane in rewritten coordinates

Out[ ]= 5

In[ ]:= (* In the following lines of code we prepare some

numbers and the rewritten coordinates of our projected vertices

to correctly export them into a by POVray readable file *)

whetherF2exists = 0;

lengthfaces = Length[Faces];

If[k == 2 || k ⩵ 3, whetherF2exists = 1;

lengthfaces = {Length[Faces1], Length[Faces2]}];

floats = Flatten[{whetherF2exists, facelength, Length[ListFaceInCel[[1]]],

Length[Vertices], Length[Edges], lengthfaces, Length[Cels]}]

floattxt = ExportString[floats, "Table", "FieldSeparators" -> ","];

floatTXT = StringReplace[floattxt, {EndOfLine → ","}];

Export[FileNameJoin[{directory, "Floats.pov"}], floatTXT, "Text"];

txt = ExportString[N[H], "Table", "FieldSeparators" -> ","];

pov = StringReplace[txt, {StartOfLine → "<", EndOfLine → ">,"}];

Export[FileNameJoin[{directory, "Vectoren.pov"}], pov, "Text"];

Vtxt = ExportString[ListVertexInEdge, "Table", "FieldSeparators" -> ","];

VTXT = StringReplace[Vtxt, {EndOfLine → ","}];

Export[FileNameJoin[{directory, "VTXT.pov"}], VTXT, "Text"];

Etxt = ExportString[ListEdgeInFace, "Table", "FieldSeparators" -> ","];

ETXT = StringReplace[Etxt, {EndOfLine → ","}];

Export[FileNameJoin[{directory, "ETXT.pov"}], ETXT, "Text"];

Ftxt = ExportString[ListFaceInCel, "Table", "FieldSeparators" -> ","];

FTXT = StringReplace[Ftxt, {EndOfLine → ","}];

Export[FileNameJoin[{directory, "FTXT.pov"}], FTXT, "Text"];

Out[ ]= {0, 3, 4, 5, 10, 10, 5}
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