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Finite volume integration of the shallow water equations

This report contains a study on the shallow water equations. In particular, this study implements the
one-dimensional shallow water equations on a body of water on which a deformation in the bottom is

incurred, instantaneous or over time. The implementation is done in MATLAB. The numerical
integration method used for the shallow water equations is the finite volume integration method. This

method consists of 3 main elements. Firstly, it includes cell face approximation schemes: second order
central, first order upwind, unlimited second order upwind, limited second order upwind. Limited
second order upwind is implemented with 3 different limiter functions: Minmod, Superbee, BK.

Secondly, it includes flux approximation methods: direct flux evaluation and flux difference splitting.
Lastly, it includes time integration: the RK1 and RK3b schemes. The proposed methods are tested and
compared using the test case. This is a 100 metres wide tank filled with 50 metres of water, for which it
is assumed its bottom can deform in any form at any time. The best results for the water surface in this

problem are obtained by using second order upwind with flux difference splitting and RK3b, either
limited or unlimited.
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Finite volume integration of the shallow water equations

1 Introduction

Fluid mechanics is a field of study in physics concerning the mechanical behavior of gases, liquids and
plasmas, collectively called fluids. In fluid mechanics, it is of great interest to describe this behavior
mathematically, as this gives rise to the possibility to model and simulate this particular behavior. As a
result, fluid mechanics plays an essential role in various branches in science and engineering. As fluids
are ubiquitous, one can already sense that a quantitatively large report can be written on just how big a
footprint fluid mechanics sets on various science and engineering disciplines. As one (of many) exam-
ples, think of meteorology, the field of study concerning the weather and, ultimately a more relevant field
of interest greatly affecting our day-to-day lives, weather predictions. Namely, with help of the laws of
fluid mechanics, meteorologists can predict the state of our atmosphere in the near future in terms of
pressure, humidity, temperature etc. As a consequence, we now have many online tools helping us in
deciding whether to bring an umbrella when travelling outdoors.

One subdiscipline of fluid mechanics is fluid dynamics. In fluid dynamics, the behavior of fluid flow is
studied, i.e. liquids and gases in motion, as opposed to the other subdiscipline of fluid mechanics, fluid
statics. As the name might already suggest, fluid statics concerns the behavior of fluids at rest. In this
paper, we will mostly be considering the discipline of fluid dynamics. In fact, this paper will concern
specific situations with fluid dynamics. The situations we will deal with are bodies of water with the
important characteristic that the horizontal length scales are significantly larger than the vertical length
scale. A simple example would be a river, which is much longer and wider than it is deep. What this
paper will derive in upcoming chapters, is that this basically means that the horizontal velocity of the
water in these situations such as the river is independent of the depth of the water. With this result, the
main subject of this paper is born: the shallow water equations (SWE).

The shallow water equations are a set of equations derived from the famous Navier-Stokes equations
by the well known mathematician Saint-Venant in 1871 [1]. Famous, as in finding a general analytical
solution for the Navier-Stokes equations is one of the Millennium Problems [2] which still has not been
solved yet. An analytical solution to the Navier-Stokes equations is only known for a few specific cases.
The same situation applies for the shallow water equations.

This paper explores the possibility to use the shallow water equations on a body of water for which
it is assumed that the bottom incurs a deformation which occurs either instantaneous or over time. We
start with a derivation of both the one-dimensional and two-dimensional form of the shallow water
equations. This is followed by presenting and motivating the choice of numerical integration method;
finite volume integration. Various numerical schemes are presented for finite volume integration. These
include cell face solution approximation methods, together with finding the corresponding flux across
each cell face. Above that, two suitable time integration methods are presented. These methods are
subsequently applied on the one-dimensional shallow water equations and implemented in MATLAB to
simulate the water surface on a tank of water from the side undergoing bottom deformation. Using this
test problem, the methods are compared.
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2 Theoretical background

In this chapter the relevant mathematical theory concerning the SWE will be discussed. The SWE are
a set of partial differential equations which originates from two fundamental laws in physics: the mass
conservation law and the momentum conservation law. The aforementioned laws will be discussed
firstly, followed by a section presenting the derivation of the SWE from the laws of fluid dynamics.

2.1 The laws of conservation of mass and momentum

For the remainder of this report, we assume that we are dealing with fluids for which we can neglect
the effects of viscosity and compressibility. As a consequence of this neglecting of shear stresses on
the fluid, each fluid particle experiences pressure forces only. We denote the pressure by p. We can
use Newton’s law of conservation of momentum to describe the motion of each fluid parcel in our fluid.
To properly understand the use of Newton’s law, consider the following simplified visualization of an
element of the fluid:

Figure 2.1: Pressure components on a rectangular fluid element as described by Stoker [3], where p
represents the pressure

Newton’s second law of motion defines an equation between the net force applied on a body and the
change in momentum. In the case of our rectangular fluid element in figure 2.1, the equation for the x-
direction becomes:

F(x) = ma(x), (2.1)

[−(p+ pxδx) + p]δyδz +Xρδxδyδz = ρδxδyδza(x). (2.2)

Here, X represents the x directed component of the gravitational acceleration, ρ represents the density
of the fluid, which is constant as, by assumption, the fluid is incompressible. And lastly, a(x) is the
x directed component of the acceleration of the fluid element. Important to note is that here, p is a
field variable, i.e. p = p(x, y, z, t). Hence, in figure 2.1, the pressure on the faces of the fluid element
which are perpendicular to the x axis will generally not be the same. To account for this, the pressure
working in the negative x direction is represented as a first order Taylor polynomial. In this report, we
will use letter subscripts to represent differentiation with respect to the letter used in the subscript, unless
explicitly stated elsewhere. Dividing both sides of equation (2.2) by δxδyδz and subsequently taking
the limit where δx, δy and δz all approach 0 yields the equation of motion for the x-direction:

−1

ρ
px +X = a(x). (2.3)

The equations of motion for the y and z direction can be found analogously. This yields a set of equations
of motion which can be represented in vector form:
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Finite volume integration of the shallow water equations

−1

ρ
grad p+ F = a, (2.4)

where a = (a(x), a(y), a(z)) and the body force F = (X,Y, Z) = (0,−g, 0), where g is the acceleration
of gravity, as we set the positive y-axis to be vertically upward.

The form of the differential equations for motion as given in (2.4) is the so-called Lagrangian form.
The Lagrangian form focuses on the motion of each individual fluid parcel in the fluid volume over
time. For the sake of deriving the SWE, it is more useful to consider a different form of the equations
of motion, which is referred to as the Eulerian form. The Eulerian form is focused on determining the
velocity distribution over time at fixed points in a spatial domain which is occupied by the fluid.

In the system as depicted in figure 2.1 we introduce the velocity field, with components u, v and w,
in terms of the space variables and time. To obtain the three equations of motion when expressing (2.4)
componentwise in the Eulerian variables u, v and w, we have to calculate the time derivatives of func-
tions describing the motion of a given fluid particle. In order to determine the vector components of a in
(2.4), we start by introducing an arbitrary function G(x, y, z, t) for a certain particle in the fluid which
follows the path given by

x = (x(t), y(t), z(t)). (2.5)

Using (2.5), we can obtain the velocity vector v:

v = (ẋ(t), ẏ(t), ż(t)) = (u, v, w). (2.6)

Then the particle/material derivative becomes:

DG
Dt

= Gt + vgrad G, (2.7)

DG
Dt

= Gt + uGx + vGy + wGz. (2.8)

Note that Gt = ∂G
∂t 6=

DG
Dt . The acceleration vector a as seen in (2.4) consequently becomes a =

(Du
Dt ,

Dv
Dt ,

Dw
Dt ). Starting with the x-direction and following an analogous computation as seen above, we

know for a(x) = Du
Dt :

a(x) = ut + uux + vuy + wuz. (2.9)

Performing analogous computations for y and z, the equations of motion (2.4) in the desired Eulerian
form become:

ut + uux + vuy + wuz = −1

ρ
px, (2.10)

vt + uvx + vvy + wvz = −1

ρ
py − g, (2.11)

wt + uwx + vwy + wwz = −1

ρ
pz. (2.12)

As the fluid is incompressible by assumption, ρ is a given constant. Hence, the set of the three partial
differential equations above are expressed in four unknown quantities. Using the incompressibility of
the fluid, the necessary fourth equation for the system, which implements the law of conservation of
mass, can be added relatively easily. In order to derive the mass conservation law, consider an arbitrary
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region R in R3 in which no liquid is destroyed or created and is enclosed by a fixed closed surface S.
The derivation starts using the relation ∫∫

S
ρv(n)dS = 0. (2.13)

Here, v(n) represents the positive velocity component directed in the direction of the outward normal
vector of S. The above relation indicates that the mass flux travelling outward through our surface S is
equal to 0. Applying the divergence theorem of Gauss, we can express our surface integral as∫∫

S
ρv(n) dS =

∫∫∫
R

div (ρv)dτ. (2.14)

This leads to ∫∫∫
R

div (ρv)dτ = 0, (2.15)

where ρ is assumed to be constant. This implies that

div v = ux + vy + wz = 0. (2.16)

Equation (2.16) is also known as the continuity equation. As soon as appropriate initial and bound-
ary conditions are introduced, equations (2.10)-(2.12) and (2.16) form a system in which the velocity
components u, v, w and the pressure p can be determined. The introduction of the initial and boundary
conditions will be presented below.

2.2 Initial and boundary conditions

Consider the following visual representation of flow in a channel:

Figure 2.2: Flow in a channel with a free surface under gravity as described by Toro [4]. Note that the
bottom in this scenario is considered to be fixed in time, i.e. h does not depend on t.

In figure 2.2, there are two important boundaries to be considered in the domain. Firstly, we consider
the free surface elevation, which is denoted by y = η(x, z, t). Secondly, the bottom of the channel is
to be considered, denoted by y = −h(x, z, t). It is assumed that the bottom is not necessarily fixed in
time. Ergo, h is a function of t too. For a good reason to consider a bottom which is time dependent,
one could think of seaquakes. It is also possible to work with a time-independent bottom, which is
merely a simplified scenario of considering a time-dependent bottom. Having introduced these notions,
the following boundary conditions are imposed:

ηt + uηx − v + wηz = 0 at y = η, (2.17)

p = 0 at y = η, (2.18)

ht + uhx + v + whz = 0 at y = −h. (2.19)
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For a justification of the aforementioned boundary conditions, see section 1.4 in the book on water
waves by Stoker [3]. Next to these boundary conditions, h(x, z, t) and η(x, z, 0) are given. All together,
the system formed by equations (2.10)-(2.12) and (2.16) is now consequently a well-defined problem,
referred to as the free-surface gravity problem, which should be solvable. However, difficulties have
shown to arise trying to solve this problem numerically. Above that, solving this problem analytically is
merely possible in specific simple cases of the free surface gravity problem [4].

2.3 The two-dimensional shallow water equations for a time-dependent
bottom

Consider again the flow of water in a channel with a free surface, i.e. the free-surface gravity problem.
The shallow water equations are actually an approximation to this problem, and arise when making the
assumption that the vertical component of the acceleration is negligible. Water is considered shallow
when the water height is much smaller than the wavelength. Mathematically, we can set Dv

Dt = 0 now.
Note that in the case of a time-dependent bottom, the validity of this equation holds if the bottom
amplitude and the rate of change in vertical velocity are not too big. Substituting this into equations
(2.11) yields

−1

ρ
py − g = 0, (2.20)

p = −ρgy + C, (2.21)

where C is the constant of integration. By our boundary condition (2.18), we know that at y = η:

p = ρg(η − y). (2.22)

Equation (2.22) is commonly referred to as the hydrostatic pressure relation. If (2.22) is differentiated
with respect to x and z, we obtain

px = ρgηx, (2.23)

pz = ρgηz. (2.24)

Important to note is that, next to u, both px and pz are independent of y and therefore equations (2.10)
and (2.12) are independent of y. For the sake of convenience, the resulting equations of the free-surface
gravity problem are written below:

ut + uux + wuz = −gηx, (2.25)

0 = −1

ρ
py − g, (2.26)

wt + uwx + wwz = −gηz, (2.27)

ux + vy + wz = 0. (2.28)

Next, the continuity equation (2.28) will be integrated with respect to y, which yields∫ η

−h
uxdy +

∫ η

−h
wzdy + v|η−h = 0. (2.29)

Then, using boundary conditions (2.17) and (2.19) by summing them together with (2.29), we obtain
after simplifications:

(η + h)t +
∂

∂x

∫ η

−h
udy +

∂

∂z

∫ η

−h
wdy = 0. (2.30)
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Notice that u and w are independent of y, which means that (2.30) can be simplified to

(η + h)t + (u(η + h))x + (w(η + h))z = 0. (2.31)

Next, to bring the equations more in divergence form, multiply (2.25) by (η + h) and (2.31) by u and
add the two results, which yields

(u(η + h))t + (u2(η + h))x + (uw(η + h))z = −g(η + h)ηx. (2.32)

Analogous to above but using (2.27) and (2.31) respectively, we obtain

(w(η + h))t + (uw(η + h))x + (w2(η + h))z = −g(η + h)ηz. (2.33)

The right hand side of equation (2.32) can be expressed as

−g(η + h)ηx = g(η + h)hx −
1

2
g((η + h)2)x. (2.34)

For notation’s sake, denote with H = η(x, z, t) + h(x, z, t), i.e. the total water height. Then, by using
(2.34) and our notation, (2.32) can be rewritten as

(Hu)t + (Hu2 +
1

2
gH2)x + (Huw)z = gHhx. (2.35)

Analogous to the computation for (2.35), we arrive at the following for (2.33):

(Hw)t + (Huw)x + (Hw2 +
1

2
gH2)z = gHhz. (2.36)

The final step is to properly write down the shallow water equations in the two-dimensional case. In
order to express equations (2.31), (2.35) and (2.36), we introduce the following vectors:

u =

 H
Hu
Hw

 , (2.37)

f =

 Hu
Hu2 + 1

2gH
2

Huw

 , (2.38)

g =

 Hw
Huw

Hw2 + 1
2gH

2

 , (2.39)

s =

 0
gHhx
gHhz

 . (2.40)

Then the conservative form of the two-dimensional shallow water equations is

ut + fx + gz = s. (2.41)

2.4 The two dimensional shallow water equations for a stationary bottom

In this section we consider again the free-surface gravity problem as described in section 2.2, but with
one alteration. We now assume that the bottom is time-independent, i.e. the bottom of the channel is
merely given by y = −h(x, z). The time-independency of the bottom results in a subtle simplification
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in the boundary condition concerning the bottom of the channel due to the fact that now ht = 0. The full
slip boundary condition concerning the bottom of the channel is equation (2.19), which now becomes:

uhx + v + whz = 0 at y = −h. (2.42)

Following an mostly analogous path as for the derivation of the two-dimensional SWE for a time-
dependent bottom, one will find the same system of equations as seen in (2.41) with the same vectors
(2.37)-(2.40). The sole difference lies in deriving equation (2.31) from (2.30). In the time-independent
bottom case, the first term of (2.30) would be ηt. By observing that in this case ht = 0, we can again
obtain (2.31) by simply adding ht to (2.30). It is important to note that in the derivative of quantity H
with respect to time, Ht, in the case of a time-dependent bottom, the term ht is not necessarily equal to
0, as opposed to the case of a time-independent bottom.

2.5 One dimensional shallow water equations for a time-dependent bot-
tom

Before continuing to presenting several numerical methods for the SWE, it is essential to present the one-
dimensional SWE beforehand, as the numerical methods to be discussed concern the one-dimensional
SWE. Consider now, instead of the three dimensional situation of the free surface gravity problem, a
two-situation. Here, the z coordinate is omitted, which means only the x and y coordinates are to be
considered. Following analogous computations as for the derivation of the two-dimensional SWE, we
arrive at the one-dimensional version in conservative form:

Ht + (Hu)x = 0, (2.43)

(Hu)t + (Hu2 +
1

2
gH2)x = gHhx, (2.44)

where H = H(x, t) = h(x, t) + η(x, t), u = u(x, t) and h = h(x, t). Setting

q =

(
q1

q2

)
=

(
gH
gHu

)
, (2.45)

f(q) =

(
q2

q22
q1

+ 1
2q

2
1

)
, (2.46)

s =

(
0

gq1hx

)
. (2.47)

yields the vector equation for equations (2.43) and (2.44):

qt + (f(q))x = s. (2.48)

Important to note is that the subscripts in q1, q2 in this case do not represent partial derivatives, but are
the components in vector q.
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3 Numerical integration for one-dimensional SWE

This chapter is devoted to presenting an approach to numerically integrate the one-dimensional shallow
water equations, which is called finite volume integration (FVI). Finite volume integration is a method
to represent and evaluate partial differential equations, and hence applicable to the SWE. The motivation
for implementing FVI on the SWE will become clear later on in this chapter. The necessary steps to be
taken in preparation of using FVI on the one-dimensional SWE are discussed here.

3.1 Dealing with discontinuities

Finite difference methods for solving differential equations rely on the approximation of derivatives with
finite differences. In the previous section, we derived the one-dimensional shallow water equations in
conservative form ((2.48)). Equation (2.48) can be rewritten in quasilinear form as follows:

qt +Aqx =

(
0

gq1hx

)
, A =

(
0 1

− q22
q21

+ q1
2q2
q1

)
. (3.1)

Note that A is the Jacobian matrix of F in (2.48). This matrix can be diagonalized as A = RΛR−1, with

Λ =

(
u−
√
gH 0

0 u+
√
gH

)
, R =

(
1

u−
√
gH

1
u+
√
gH

1 1

)
, R−1 =

(−gH+u2

2
√
gH

1
2 −

u
2
√
gH

gH−u2
2
√
gH

1
2 + u

2
√
gH

)
. (3.2)

The matrix Λ contains the eigenvalues of matrix A on its diagonal entries. R is the matrix with the
eigenvectors of A as columns, R−1 represents the inverse of R. The eigenvalues of A represent the
wave speed. If no background flow is present, the wave speed equals

√
gH . This means that for the

shallow water case, the wave speed is dependent on the total height of the wave, resulting in a higher
propagation speed in the top of a wave compared to its front. Therefore, the top catches up with its front,
which results in a scenario as below:

Figure 3.1: The top of a wave catches up with its bottom in shallow water, creating a steeper wave

The process of becoming a steeper wave eventually tends to a wave with a breaking front. Since the
finite difference methods rely on the local derivatives in the problem, they are not the optimal candidates
for numerically solving our problem in question.

3.2 Finite volume integration

Instead, we turn to the finite volume integration method. This section will shed some light on the reason
why the FVI method handles discontinuities in the problem better than finite difference methods.
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3.2.1 Finite volume equation

Firstly, we need the one-dimensional integral form of the one-dimensional SWE, which can be derived
easily from its conservative form (2.48). Integrating (2.48) over an arbitrary, finite interval [a, b] yields∫ b

a
(qt + f(q)x − s)dx = 0, (3.3)

which can be simplified to ∫ b

a
qtdx+ [f(q)]ba −

∫ b

a
sdx = 0. (3.4)

The computational domain is partitioned into N cells of equal distances with N+1 cell faces. We denote
the i-th cell by Ωi. Above that, we assume that the solution q is uniformly constant per cell in both its
components q1, q2. We will denote the value of q in cell Ωi by qi, and its corresponding component
values by q1,i, q2,i. Furthermore, the value of q at the right face of cell Ωi will be denoted by qi+ 1

2
. The

fluxes F are consequently given by

f(qi+ 1
2
) =

 q2,i+ 1
2

q2
2,i+1

2
q
1,i+1

2

+ 1
2q

2
1,i+ 1

2

 . (3.5)

Although the subscripts contain the letter i, it is important to note that the subscript in this case is an
index, and therefore does not represent partial differentiation. Using the introduced notation together
with equations (3.4), we obtain for cell Ωi∫

Ωi

qtdx+ (f(qi+ 1
2
)− f(qi− 1

2
))−

∫
Ωi

sdx = 0. (3.6)

3.2.2 Approximation of the solution at the cell faces

The next step concerns the determination of the values of qi+ 1
2
, as determining them results in the

possibility to compute the fluxes across the cell faces. The methods that will be implemented for the
research in this report will be listed and explained below.

Second order central scheme

The simplest way to compute the value qi+ 1
2

is by taking the average of the values of q in the two

neighboring cells of cell face i+ 1
2 . I.e.:

qi+ 1
2

=
qi + qi+1

2
. (3.7)

Left and right cell face states

We now take a more general approach to determine the flux across the cell faces. For every cell face in
the computational domain, we introduce two quantities for the solution q; a left state and a right state.
We denote the left state of cell face i + 1

2 ’s solution by ql
i+ 1

2

and its corresponding right state by qr
i+ 1

2

.
Both quantities are to be determined by inter- or extrapolation from the neighboring cell solutions, for
which we consider three different methods, distinguishable in their order of accuracy.
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Figure 3.2: Computing the flux through a cell face by using its corresponding left and right state

a) First order upwind scheme: The easiest way to approximate ql
i+ 1

2

and qr
i+ 1

2

is by the first order
upwind scheme, which sets the left and right cell face state equal to the direct left and right value of q.
In other words:

ql
i+ 1

2

= qi, qr
i+ 1

2

= qi+1. (3.8)

b) Second order upwind scheme unlimited For the second order upwind scheme, the left and right
cell face states are computed in a more complex way compared to the first order upwind scheme by
interpolating:

ql
i+ 1

2

= qi +
1 + κ

4
(qi+1 − qi) +

1− κ
4

(qi − qi−1), (3.9)

qr
i+ 1

2

= qi+1 +
1 + κ

4
(qi − qi+1) +

1− κ
4

(qi+1 − qi+2), (3.10)

with κ ∈ [−1, 1]. For κ = −1, we have fully one-sided extrapolation. For κ = 1, we have second
order central interpolation. Lastly, for κ = 1

3 the approximation is third order accurate. Even though
this method has a higher order of accuracy than scheme a), equations (3.9) and (3.10) are non-positive
discretizations due to their extrapolation term. The next method we propose deals with this issue.

c) Second order upwind scheme limited: To prevent non-positive discretization, we can implement
a limiter function φ in scheme b) as follows:

ql
i+ 1

2

= qi +
1

2
φ(rl

i+ 1
2

)(qi − qi−1), (3.11)

qr
i+ 1

2

= qi+1 +
1

2
φ(rr

i+ 1
2

)(qi+1 − qi+2). (3.12)
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The quantities rl
i+ 1

2

and rr
i+ 1

2

are dependent on the solution q in neighboring cell faces, which means
that they are vector functions. Therefore, they are component wise given by:

rl
i+ 1

2

=
qi+1 − qi + ε

qi − qi−1 + ε
, (3.13)

rr
i+ 1

2

=
qi − qi+1 + ε

qi+1 − qi+2 + ε
, (3.14)

with ε a parameter to be chosen small to prevent division by zero. In this report we take ε = 10−6. For
the limiter function φ, we use the Minmod (M ), Superbee (S) and BK limiter [5], defined as follows:

φM (r) =


0, if r < 0

r, if 0 ≤ r < 1

1, if r ≥ 1

, (3.15)

φS(r) =



0, if r < 0

2r, if 0 ≤ r < 1
2

1, if 1
2 ≤ r < 1

r, if 1 ≤ r < 2

2, if r ≥ 2

, (3.16)

φBK(r) =


0, if r < 0

2r, if 0 ≤ r < 1
4

1
3 + 2

3r, if 1
4 ≤ r <

5
2

2, if r ≥ 5
2

. (3.17)

Again, important to note is that φ: R → R (all three versions). Since q is a vector function, the
above expressions are evaluated component wise for q1 and q2. I.e., the limiter function is used twice;
once for each component of q.

3.2.3 Computing the flux across the cell face

Now that we have presented the methods to approximate the solution at the cell faces, we can compute
the terms outside of the integrals in equation (3.6). The method to do so depends on the method used to
compute q at the cell face.

Direct evaluation for second order central

For the second order central scheme, the obtained values for qi+ 1
2

will be directly substituted into equa-
tion (3.5) to obtain the flux through that cell face.

Flux difference splitting

The upwind schemes require a more complex method of evaluating the flux across the cell faces, as the
solution in the cell face is extended to a left and right state instead of using just one quantity for the
solution through the cell face as seen in the second order central scheme. The proposed method for
the upwind schemes is the flux difference splitting method. Consider again the quasilinear form of the
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conservative form of the one-dimensional SWE, as seen in equation (3.1). Recall that the diagonalized
form of A is given by

A = RΛR−1, with Λ =

(
u−
√
gH 0

0 u+
√
gH

)
. (3.18)

Now we define the matrices A+ and A− by

A+ = RΛ+R−1, A− = RΛ−R−1, (3.19)

where Λ+ and Λ− are the positive and negative eigenvalue part of Λ, respectively. I.e.:

Λ+ =

(
max(u−

√
gH, 0) 0

0 max(u+
√
gH, 0)

)
, (3.20)

Λ− =

(
min(u−

√
gH, 0) 0

0 min(u+
√
gH, 0)

)
. (3.21)

To compute the flux at the cell face i+ 1
2of the i-th cell, we use the following formula:

F(ql
i+ 1

2

,qr
i+ 1

2

) = f(ql
i+ 1

2

) +A−(qr
i+ 1

2

)(qr
i+ 1

2

− ql
i+ 1

2

). (3.22)

In (3.22), f is given by equation (3.5). Since A− represents the propagation velocity of information from
right to left, we can therefore set

A−(ql
i+ 1

2

,qr
i+ 1

2

) = A−(qr
i+ 1

2

). (3.23)

3.2.4 Time integration

The spatial domain has been discretized, and the solution q at the cell faces can be computed together
with their corresponding fluxes. The next step is to decide on a proper time integration method. We
require that the solutions remain positive during the time integration. This means for the time integration
method qn+1

i = w(qni ) for a small enough time step:

qni ≥ 0 =⇒ qn+1
i ≥ 0. (3.24)

This is to prevent unrealistic phenomena to occur in q. As an example, q1 = gH should never become
negative in the simulation, as this is physically speaking incorrect. Among the available time integration
methods, the RK1 (Forward Euler) and the RK3b schemes are examples satisfying property (3.24) [6].
These schemes will therefore be used in this report. We introduce the discrete time

t(n) = n∆t, n = 0, 1, 2... (3.25)

Then, the RK1 time integration method for this problem is given by

qn+1
i = qni −

∆t

∆x

(
F(qn

i+ 1
2

)− F(qn
i− 1

2

)
)

+ ∆tsni , (3.26)

where si is the approximation of the source term in the i-th cell component wise given by

sn1,i = 0, sn2,i = gqn1,i
hni+1 − hni−1

2∆x
∆x, (3.27)

where g = 9.8 N/kg. Since we will for a large part of the report be dealing with the limited second
order upwind scheme for the space discretization, we include another time integration method. This is
the explicit RK3b scheme [6], and it is given by

qn+1
i = qni +

1

6
(k1 + k2 + 4k3). (3.28)

13
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If we introduce a vector function G defined by

G(qn)i =
∆t

∆x
(F(qn

i− 1
2

)− F(qn
i+ 1

2

)) + ∆tsni , (3.29)

hen the vectors k1, k2 and k3 are given by

k1 = G(qn) (3.30)

k2 = G(qn + k1) (3.31)

k3 = G(qn +
1

4
(k1 + k2)). (3.32)

3.2.5 Time step size

Time integration methods come with criteria on the step size ∆t to guarantee (absolute) stability of the
method. For the RK1 method, we require that for each cell face the time step ∆t:

∆t <
∆x

max(
∣∣u±√gH∣∣) . (3.33)

Note that the denominator of the RHS of inequality (3.33) contains the eigenvalues of matrixA, as given
in (3.1). The flux difference splitting scheme also has a step size criterion for stability. This criterion is
more restrictive than (3.33). For each cell face we need

∆t <
∆x

2 ·max(|u±
√
gH|)

. (3.34)

Then combining (3.33) and (3.34) gives the following requirement for the time step ∆t for using RK1
on the spatially discretized one dimensional SWE:

∆t <
∆x

2 ·maxi(|uni+ 1
2

±
√
gHn

i+ 1
2

|)
= tmax,1, i ∈ {0, 1, 2, ...,N}. (3.35)

The RK3 method also has a restriction on the step size ∆t to guarantee (absolute) stability of the method.
We can perform a similar linear stability analysis on RK3 as seen in [7] on RK4. We introduce the
following equation, known as the test equation, which plays an important role in the stability analysis of
time integration methods: {

y′ = λy, t > t0

y(t0) = y0

, (3.36)

where λ ∈ R. The RK3b method has the following Butcher tableau [6], which is a systematic way to
write down the relevant coefficients in the time integration methods of the Runge-Kutta family.

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

Therefore, if we want to time integrate the test equation (3.36) using RK3b, the solution at tn+1 is
approximated by:

wn+1 = wn +
1

6
(k1 + k2 + 4k3), (3.37)
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with

k1 = ∆tf(tn, wn) = λ∆twn, (3.38)

k2 = ∆tf(tn + ∆t, wn + k1) = λ∆t(wn + λ∆twn), (3.39)

k3 = ∆tf(tn +
1

2
∆t, wn +

1

4
(k1 + k2) = λ∆t(wn +

1

2
λ∆twn +

1

4
(λ∆t)2). (3.40)

It can then be verified that

wn+1 =

(
1 + λ∆t+

1

2
(λ∆t)2 +

1

6
(λ∆t)3

)
wn. (3.41)

For stability, we require for the expression which acts as the multiplicative factor for wn in (4.37) that

−1 < 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 < 1. (3.42)

Since ∆t > 0, we observe that for λ > 0, (3.42) can never be satisfied. Therefore, we consider the case
λ < 0. Let x = λ∆t, then (3.42) can be split into 2 separate inequalities:{

1 + 1
2x+ 1

6x
2 > 0,

2 + x+ 1
2x

2 + 1
6x

3 > 0.
(3.43)

The first inequality in (3.43) is satisfied for all x. For the second inequality in (3.43), it can be shown
that this holds for

x > −1− 1
3
√√

17− 4
+

3

√√
17− 4 ≈ −2.513. (3.44)

Hence, one will find the following stability requirement for RK3b:

∆t <
5

2
· 1

|λ|
. (3.45)

Note that the quantity found in (3.44) has been replaced in (3.45) by 5
2 . This is done for simplicity

reasons. Transitioning back to the SWE, λ represents the eigenvalues of matrix A given in (3.1). I.e.
λ = u±

√
gH . A combination of (3.34) and (3.45) yields the following time step criterion for RK3b:

∆t <
min(5,∆x)

2 ·maxi(|uni+ 1
2

±
√
gHn

i+ 1
2

|)
= ∆tmax,2, i ∈ {0, 1, 2, ...,N}. (3.46)
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4 Test case: Tank of water with moving bottom

This report focuses on testing the shallow water equations on scenarios with moving bottoms. The test
case is a scenario on which the one-dimensional SWE will be tested using the numerical solvers as
described above. We consider a large, rectangular tank filled with water from the side. The tank has a
length of 100 metres and is filled with water until the total water height is 50 metres. The tank and the
numerical solvers have been implemented in MATLAB. The initial situation looks the following:

Figure 4.1: Initial situation of the rectangular tank filled with water. The orange line represents the
bottom, the blue line is the water height level.

In other words, for the initial situation we have h(x, 0) = 0, η(x, 0) = 50 m for x ∈ [−50, 50]. We set
the initial velocity equal to 0 (u = 0). Hence, there is no background flow. The computational domain
is partitioned into 400 cells, resulting in ∆x = 0.25 m. At x = −50 m and x = 50 m, we have the
homogeneous Neumann boundary condition

qx = 0. (4.1)

This means we have open boundaries, and that the derivative of the height of the water and the velocity
are equal to 0. We discuss two types of deformations of the bottom in the simulation: Instantaneous
deformation, and deformation over time. We assume that we can reshape the bottom of the tank in any
form at any time during the simulation. Both time integration methods will be tested. For RK1, we
use ∆t = 0.0005 s for the second order central scheme since this method does not use flux difference
splitting. Similarly, for RK3b, we test the case ∆t = 0.001 s to see whether the time step can be
increased. If not, ∆t = 0.0005 s will be shown too. For the upwind schemes, which do use flux
difference splitting, we use a time step size depending on the time integration method. RK1 uses a time
step of ∆t = 0.9∆tmax,1, RK3b uses a time step of ∆t = 0.9∆tmax,2. Both types of deformation
will be handled using both proposed time integration methods. For the second order upwind unlimited
scheme, we set κ = 1

3 to achieve the highest order of accuracy.

4.1 Instantaneous deformation

This type of deformation occurs as soon as the simulation starts. The deformation that has occurred then
remains fixed for the duration of the simulation. Firstly, we consider an instantaneous deformation of
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the bottom of the tank. This is in the form of a rectangular bump given by

h(x, t) =

{
−10, if x ∈ [−10, 10]

0, else
, for t ∈ [0, 1]. (4.2)

4.1.1 The RK1 method (Forward Euler)

The RK1 method is considered to be a less accurate method compared to a higher order method such
as the RK3b method. For O(∆x2) or O∆(x3) space discretization methods, i.e. second order upwind
(un)limited, it makes more sense to use the RK3b method. We can expect that RK1 does not handle
these methods well.

Second order central scheme

Figure 4.2: Instantaneous deformation with second order central and RK1.

With a time step of ∆t = 0.0005, figure 4.2 shows that the second order central scheme here produces
spurious oscillations, which increase over time in the simulation. Above that, it shows behavior which
is typical for this scheme; the water surface seems to be ’nervous’. The surface contains sharp angles,
giving it a non-smooth look.
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First order upwind scheme

Figure 4.3: Instantaneous deformation with first order upwind and RK1.

This scheme overall provides a more smooth representation of the water surface compared to the second
order central scheme. This is explainable by the facts that the upwind schemes use the flux difference
splitting scheme to compute the flux across the cell faces and upwind schemes take into account the
direction of flow of the water. A few interesting observations can be made. The method characterizes
itself with an odd shape of the water surface for the x-values where the deformation of the bottom both
starts and ends, where, for both sides, a noticeable, fixed oscillation is created. The relatively large jumps
and drops in the water level are explained by the sudden change in bottom height. The implementation
of this method in MATLAB does not account for this.
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Second order upwind schemes

Figure 4.4: Instantaneous deformation with unlimited second order upwind and RK1.

As mentioned in the introduction of this section, we already expected that RK1 combined with the
second order upwind unlimited scheme should not go together well due to the higher order of accuracy of
the upwind scheme. Figure 4.4 justifies this hypothesis. Spurious oscillations already present themselves
relatively early on in the simulation at t = 0.5. By the end of the simulation (t = 1), the largest
oscillation seen in t = 0.5 is enhanced to the point where its peak is not even visible anymore in the
plot. We therefore consider the combination of RK1 and second order upwind unlimited not a reliable
method to simulate the test case. This should already give a hint for the results for the limited scheme.
We have introduced three different limiter functions to prevent non-positive discretized which might
occur in the the unlimited second order upwind scheme. The performances of these limiter functions are
seen below.

Figure 4.5: Instantaneous deformation with limited second order upwind and RK1 (t = 1).
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What is immediately visible from figure 4.5, is the performance of the Superbee limiter function. It
is able to contain the oscillations to some extent, however they are still very visible throughout the
simulation. The next noticeable line is the purple graph. This is the performance of the BK limiter. It
suppresses oscillations well, but minor oscillations are still visible, especially near the boundaries of the
bump. The Minmod limiter seems to perform best in this situation. The blue graph is not as visible as the
other graphs when moving away from the bump, indicating good performance. The enhancement clearly
shows that Minmod ensures that the water surface at the top of the wave remains straight, giving it a
somewhat similar look to figure 4.3. Minmod and BK show minor differences near the wave front. The
difference between the second order upwind limited with Minmod and the first order upwind scheme
shows itself on the wave fronts travelling to the boundaries of the water tank. The limited second order
upwind scheme produces much steeper wave fronts compared to the first order upwind scheme.

4.1.2 The RK3b method

Second order central scheme

Figure 4.6: Instantaneous deformation with second order central and RK3b.

As a reminder, note that the all lines except for the line for the bottom of the tank in figure 4.6 represent
the water surface at different times. The purple line represents the water surface at t = 0, and is
identically shaped to the bottom deformation. The water surface at t = 0.5 and t = 1 approximated by
this scheme has physically speaking unnatural shapes. The water surface contains sharp angles in itself
at these time steps, giving it a non-smooth look. This is not uncommon for the second order central
scheme. Above that, the scheme creates oscillations which increase in size when shifting away from the
middle of the tank.
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First order upwind scheme

Figure 4.7: Instantaneous deformation with first order upwind and RK3b.

The image in figure 4.7 shows a very similar, if not identical, image compared to figure 5.3. This implies
that the first order upwind scheme works well together with both the RK1 and the RK3b time integration
methods. Since the first order upwind scheme, as the name says, is aO(∆x) space discretization method,
Forward Euler can be used as an accurate time integration method, with appropriate time step choice.
Notice again the less steep wave fronts the first order upwind schemes create.

Second order upwind schemes

Figure 4.8: Instantaneous deformation with unlimited second order upwind and RK3b.
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The hypothesis mentioned in the beginning of this section on the RK1 method is again justified by
figure 4.8. Compare this figure with figure 4.4. The RK3b method works together with unlimited
second order upwind a lot better than the RK1 method does. Figure 4.8 shows a smooth, moreover
realistic, development of the water surface over time as a result of the incurred deformation. It has
minor differences compared to figure 4.7, i.e. first order upwind. This is noticeable at the top of the
wave front. Here, small peaks are observable in figure 4.8, whereas in figure 4.7, such an image is
not present. The limited version of this scheme should therefore only have minor impact on the water
surface.

Figure 4.9: Instantaneous deformation with limited second order upwind and RK3b (t = 1).

As expected, the limiter functions do not have a major influence on the water surface. All limiter
functions perform practically the same, where they smooth out the small peaks at the top of the wave
front from figure 4.8, creating a similar image as seen in figure 4.7 for t = 1, only with significantly
steeper wave fronts.

4.1.3 Comparison

From the results of an instantaneous deformation, we see that, out of all the options, the second order
central scheme for both time integration methods seem to provide the worst solution. The methods are
characterized by their small, if not increasing, sharp-angled oscillations which provide a non-smooth
look to the water surface. Extending the time limit of the simulation would lead to heavily increasing
oscillations for the chosen time step. The results for the first order upwind schemes show minor to no
differences regarding the shape of the water surface throughout the simulation when comparing between
RK1 and RK3b. RK1 is computationally less expensive, however for this test case the computational
time is practically the same for both time integration methods. For the second order upwind schemes, be
it unlimited or limited, we definitely prefer the use of RK3b as a suitable time integration method, due
to the fact that we are using higher order space discretization methods in this case. This is justified by
figures 4.8 and 4.9, as they both produce smooth, realistic results. Should one choose to implement RK1
for the limited second order upwind schemes, choosing the Minmod limiter function produces relatively
the best results. For RK3b, the choice of limiter function is in this case insignificant, as all produce
practically the same result.
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4.2 Deformation over time

As the name suggests, we also consider the case that the bottom may deform during the simulation.
Now, the same deformation of the bottom as seen in the section on the instantaneous bottom will occur,
but will develop over time. The plots that are presented in this section are results of simulating 2 seconds
of the water tank that incurs a deformation in its bottom. The deformation occurs in stages depending on
the value of t. By stages, it is meant that the velocity of deforming vertically upwards differs, depending
on the stage. The total deformed bottom over time can be described as follows.

h(x, t) =



−2.5 · 3t if x ∈ [−10, 10], t ∈
[
0, 1

3

]
,

−2.5− 5 · 3(t− 1
3) if x ∈ [−10, 10], t ∈

(
1
3 ,

2
3

]
,

−7.5− 2.5 · 3(t− 2
3) if x ∈ [−10, 10], t ∈

(
2
3 , 1
]
,

−10 if x ∈ [−10, 10], t ∈ (1, 2],

0 else

. (4.3)

Again, the results will be categorized according to the used time integration method.

4.2.1 The RK1 method (Forward Euler)

Second order central scheme

Figure 4.10: Deformation over time with second order central (∆t = 0.001) and RK1.

From figure 4.10, we see that for the first second in the simulation, the second order central scheme is
able to simulate the water surface rather well. However, advancing to the next second, small oscillations
start to occur at the water surface away from the deformation, which are heavily increased in size until
finally put to a hard stop by reaching the time limit. We suspect that the time step ∆t = 0.001 is too
large a step for a stable RK1 time integration method. Therefore, we try the same simulation, now with
a time step of ∆t = 0.0005.

23



Finite volume integration of the shallow water equations

Figure 4.11: Deformation over time with second order central (∆t = 0.0005) and RK1.

The result is shown in figure 4.11. This image indicates the implemented RK1 time integration method
is a stable one during this simulation. Overall, it shows a nice representation of the development of the
water surface as a result of this deformation. The only detail that is visible throughout the entire water
surface, is the typical appearance of using the second order central scheme, which are the tiny, contained
oscillations which give a non-smooth look to the surface. The downside of using this time step is that
significant increase in computational time.

First order upwind scheme

Figure 4.12: Deformation over time with first order upwind and RK1.

The image produced in figure 4.12 might be characterized by calling it a smooth representation of what
is seen in figure 4.11. First order upwind here shows a good, realistic representation of the water surface.
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The only downside of the implementation in MATLAB is the visible distortions at the boundaries of the
rectangular bump.

Second order upwind schemes

Figure 4.13: Deformation over time with unlimited second order upwind and RK1.

Again, we see similar results in figure 4.13 when comparing it to figure 4.4, which shows the perfor-
mance of the unlimited second order upwind scheme using RK1. Already early on in the simulation,
when the bump is still developing, large oscillations present themselves in the water surface, which
increase in size when continuing the simulation. For the same reason as given in the section of the in-
stantaneous deformation, this combination of space discretization scheme and time integration method
do not work well together, and already provide insight on the results for limited second order upwind.

Figure 4.14: Deformation over time with limited second order upwind and RK1 (t = 2).
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Figure 4.14 provides somewhat similar results to figure 4.5, which also shows the performance of the
limiter functions for limited second order upwind using RK1. Again, the use of the Superbee limiter
function is an immediate eyecatcher in figure 4.14. It shows many oscillations throughout the water
surface, but is able to create a somewhat accurate, overall image of the trend of the water surface, with
help of the graphs of the other limiter functions. The use of the BK limiter function shows somewhat
worse results if comparing its performance in figure 4.5, with larger oscillations. Again, Minmod seems
to come out on top in terms of performance, showing a smooth water surface.

4.2.2 The RK3b method

Second order central scheme

Figure 4.15: Deformation over time with second order central and RK3b.

Note that the time step size used here is ∆t = 0.001. The result is shown in figure 4.15, which shows
that RK3b behaves stable throughout the simulation. It produces an overall realistic representation of
the water surface over time, with only the typical aspect of the second order central scheme showing
throughout the water surface.
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First order upwind scheme

Figure 4.16: Deformation over time with first order upwind and RK3b.

Again, it a similar result when comparing the time integration methods for instantaneous deformation
using first order upwind. The results in figure 4.16 are similar, if not identical, to the results in figure
4.12, showing a good, realistic representation of the water surface apart from the small distortions near
the boundaries of the bump. The small to no differences in the results indicate that RK1 is a suitable
for the first order upwind scheme, for the same reason as given in the previous section on instantaneous
deformation.

Second order upwind schemes

Figure 4.17: Deformation over time with unlimited second order upwind and RK3b.
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The unlimited second order upwind scheme performs much better with RK3b as seen in figure 4.17, if
we compare this with the use of RK1 in figure 4.13. The figure shows a smooth water surface apart from
the small distortions, and looks similar to figure 4.16, which shows the results for the first order upwind.
Therefore, the limiter functions in the limited version of this scheme will not play an impactful role for
the results.

Figure 4.18: Deformation over time with limited second order upwind and RK3b (t = 2).

What we expected is indeed the case, as seen in figure 4.18. The performance of the limiter functions are
non-distinguishable, as the water surface graphs all seem to overlap. I.e., the choice of limiter function
in limited second order upwind does not influence the results we will obtain for the water surface.

4.2.3 Comparison

The use of the second order central scheme is for both time integration methods is again not a reliable
choice to obtain accurate results due to its typical appearance. Above that, the computational time for
second order central is significantly longer compared to the upwind schemes, due to the fact that the
upwind schemes have a variable, but larger time step size. Again, for the first order upwind schemes, we
overall find for both RK1 and RK3b a good, realistic representation of the water surface. The unlimited
second order upwind scheme does not perform well with RK1, as expected, but produces a similar result
compared to the first order upwind scheme with RK3b. The choice of limiter function does not matter
for RK3b, but again Minmod seems to be the best option if RK1 with limited second order upwind is
desired. In all cases, the impact of adding a higher velocity of deformation stage on the bump provides
most change to the initial deformation of the water surface, and when the deformation decelerates to its
last stage, the bump of the deformation of the water surface drops.
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5 Conclusion & further research

The purpose of this paper was exploring the possibility of using the shallow water equations on a body of
water for which the bottom incurs a deformation which occurs either instantaneously or over time. The
chosen route became the implementation of finite volume integration, as we found that waves in shallow
water are apt to becoming steeper, possibly creating breaking wave fronts. Finite volume integration
handles the discontinuities better than standard finite difference methods.

The implementation of the problem in MATLAB came with proposing several numerical schemes for
both flux approximation and time integration. To approximate the fluxes, the solutions at the cell faces
need to be computed first. We proposed 4 different schemes for this. These were the second order central
scheme, first order upwind scheme, unlimited second order upwind scheme and limited second order up-
wind scheme, together with the three different limiter functions Minmod, Superbee and BK. Secondly,
the flux across the cell faces need to be calculated. We proposed 2 different ways to do so. For the second
order central scheme, the flux is directly evaluated using the found flux function in the derivation of the
one-dimensional shallow water equations. For the other cell face approximation schemes, we turned to
flux difference splitting. Lastly, time integration is needed. The time integration methods proposed were
the RK1, or Forward Euler, and the RK3b schemes. The numerical schemes were tested and compared
in a test case. The test case was a 100 metres wide tank of water, of which the bottom incurred either an
instantaneous deformation or a deformation over time, eventually resulting in the same deformation; a
rectangular bump of 20 metres wide and 10 metres high.

The results between both types of deformation show similar results. The second order central scheme
does not perform well for either deformation and either time integration method. Although in some
cases providing an overall nice solution for the water surface, the scheme characterized itself by its
nervous appearance. Thus, this scheme together with a direct flux evaluation is not a suitable option
for the problem. Turning towards the schemes using flux difference splitting, we found interesting re-
sults. The first order upwind scheme is suitable for both RK1 and RK3b, as this scheme is an O(∆x)
space discretization method. This scheme provided smooth, realistic results for the water surface in
both deformation cases. The unlimited second order upwind scheme does not perform well with RK1
for both deformation cases, as this was a third order accurate method in our case. The limited version
of this scheme with RK1 only seemed to work properly with the use of the Minmod limiter function.
The second order upwind schemes performed better using RK3b as the time integration method for both
deformation cases, providing good, realistic representations of the water surface given the deformation.
The use of a limiter function in this case has little to no impact on the water surface.

As a continuation on this research project, one could extend this project by considering a similar prob-
lem for the two-dimensional shallow water equations. This report has only considered a problem on
which the one-dimensional shallow water equations are applicable. For example, the 2D water tank
could firstly be extended to a 3D water tank, on which one could implement tons of different interesting
bottom deformation to simulate the behavior of the water surface using the two-dimensional shallow wa-
ter equations, for which a challenge would be to find a suitable bottom function h(x, z, t). Above that,
the only proper flux approximation method that has been proposed here is the flux difference splitting
scheme. This scheme is based on the linearized shallow water equations, making it less accurate. For
another good flux approximation method, one could read about the Godunov scheme, for which a well
explained version is available in a report by a fellow student [8].

29



Finite volume integration of the shallow water equations

Bibliography

[1] A.J. de Saint-Venant et al. Théorie du mouvement non permanent des eaux avec applications aux
crues des rivières et à l’introduction des marées dans leur lit. Comptes Rendus de l’Académie des
Sciences de Paris vol. 73, 1871.

[2] C. L. Fefferman. Existence and smoothness of the Navier-Stokes equation. The millennium prize
problems 57:67, 2006.

[3] J.J. Stoker. Water Waves: The Mathematical Theory with Applications. Interscience Publishers,
1957.

[4] E.F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin, Third
edition, 2009.

[5] B. Koren. A robust upwind discretization method for advection, diffusion and source terms. Centrum
voor Wiskunde en Informatica Amsterdam, 1993.

[6] W. Hundsdorfer, B. Koren, J. Verwer, et al. A positive finite-difference advection scheme. Journal
of Computational Physics, 117(1):35-46, 1995.

[7] C. Vuik, F. Vermolen, M. van Gijzen., M. Vuik. Numerical Methods for Ordinary Differential Equa-
tions. Delft Academic Press, Delft, Second edition, 2018.

[8] R. Hoekstra, Finite Volume Integration of the shallow water equations, applied to the wave behind
a submarine. Eindhoven University of Technology Department of Mathematics, 2020.

30


	Introduction
	Theoretical background
	The laws of conservation of mass and momentum
	Initial and boundary conditions
	The two-dimensional shallow water equations for a time-dependent bottom
	The two dimensional shallow water equations for a stationary bottom
	One dimensional shallow water equations for a time-dependent bottom

	Numerical integration for one-dimensional SWE
	Dealing with discontinuities
	Finite volume integration
	Finite volume equation
	Approximation of the solution at the cell faces
	Computing the flux across the cell face
	Time integration
	Time step size


	Test case: Tank of water with moving bottom
	Instantaneous deformation
	The RK1 method (Forward Euler)
	The RK3b method
	Comparison

	Deformation over time
	The RK1 method (Forward Euler)
	The RK3b method
	Comparison


	Conclusion & further research

