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1 Introduction
From an early stage in life, we learn to detect, identify and compare shapes that we find in everyday life.
We learn to identify animals or read handwritten notes, because we learn what to look for and we use past
experiences. Detecting, identifying and comparing shapes is not only useful in everyday life situations, but
plays an important part in science as well. For example in the medical field identifying irregular blood cell
shapes in a blood smear can lead to detecting a certain disease. There are many more applications where
examining the shape of a subject has a certain benefit, such as identifying plant types and face recognition,
and with the rise of the amount of data the question comes to surface if we can let machines learn these
steps i.e. machine learning. Machine learning is the area of computational science that focuses on analyzing
and interpreting patterns and structures in data to enable learning, reasoning, and decision making outside
of human interaction. What makes machine learning so interesting is that it replaces the labor intensive and
expensive tasks done by humans, while also eliminating human error.
Machine learning is a large and complicated field with many applications and options. In this study we
will only see the tip of the iceberg, nonetheless this is a real-life example of a study that can benefit from
machine learning and its applications. One of the primary learning models is unsupervised learning, which
we will consider in this study. In unsupervised learning, the machine is provided with a set of data and is
not provided with any labels for it. Given the huge amount of data, the machine may identify trends of
similarity. The algorithm will then identify clusters or groups with similar properties [26].
In this section a case study will be addressed that can benefit from an implementation of machine learning.
In section 2 the problem description is presented with the research questions and the scope of the study.
Afterwards in section 3, we gather source references from the literature that are closely related to the case
study. This will be followed by a more in-depth explanation and gathering of background information in
section 4, that is needed to set up a method for the case study. Then in section 5 we illustrate chosen
methods based on the background information in section 4 and how they will be applied to the case study
at hand. Results are then visualized and discussed in section 6. Furthermore in section 7 the case study
will be shortly summarized and the most important points will be highlighted. Lastly section 7 will include
some recommendations for further research.

1.1 Case study

1.1.1 About ASML

ASML is an innovation leader in the semiconductor industry. They provide chip manufacturers with every-
thing they need – hardware, software and services – to mass produce patterns on silicon through lithography.
ASML is also the only producer of lithography machines that uses extreme ultraviolet light (EUV), i.e. the
EUV system [1]. The lithography system is a projection system that projects light through a blueprint in
order to print a pattern onto a photosensitive silicon wafer. The wafer is a substrate that is essential to the
chip manufacturing [2].

1.1.2 EUV System Particle Contamination Department

During the process particles can contaminate the wafer, which can result into the damaging of printed chips.
Since the contamination with particles can have a negative impact on product quality, ASML has dedicated
departments to resolve and minimize the particle contamination.
The EUV System Particle Contamination Department focuses on the particle contamination of the EUV
system and there is another department that focuses on the DUV (deep ultraviolet) lithography system.
This case study is limited to the EUV system only. In order to understand the defects found on the wafer,
the properties of particles must be obtained. After the initial wafer is passed through the EUV system
for the chip printing process, the exposed wafer is analysed by a couple of different methods. One of these
methods is the scanning electron microscope (SEM) review, which is a type of electron microscope that scans
the surface of the particle with a focused beam of electrons in order to obtain an image. The SEM review
outputs multiple types of SEM-images of the observed particles on the wafer. This data will be the subject
of the current case study.
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1.1.3 Shape analysis of the particles contaminated on the wafer

Once the SEM-images are obtained from the contaminated particles on the wafer, these images, together
with the results from other methods, can be analyzed in order to find the root cause of contamination. In
this case study we will study the SEM-images of the particles, in order to distinguish different types based on
their morphological features. The data considered in this case study consists of several types of SEM-images
for each of the particles on a wafer from various EUV systems. Only one particle is visualized in each of the
SEM-images and the data does not have any labels for the indicated particle. Additionally the SEM analysis
sometimes (partly) misses the particle such that no particle or only half is visible in the SEM-image. These
images are also included in the data and need to be dealt with. An example of a ’missed’ image is visible in
Figure 2.

Two types of SEM-images for each particle are addressed in this case study as a starting point. For related
studies, other types can be used. The first type is the ’Internal’ image, which depicts a large contrast
between the background and the foreground object shown in Figure 1 a. The other type of images are the
’Topography’ images, which consists of four subcategories: ’Topography 1’, ’Topography 2’, ’Topography
3’and ’Topography 4’. The distinction between the four subcategories of the ’Topography’ images is the
beam position that enlightens the particle. Two subcategories of the ’Topography’ type with various beam
position are visible in Figure 1 b and c. Using all subcategories of the ’Topography’ images a new type is
created, of which an example is visible in Figure 1 d, by calculating the mean value of each pixel of the four
’Topography’ images. What makes this new type notable is that the pixel values within the border of the
particle show little difference and it is also the lightest color in the image, i.e. highest pixel values.

From these images the goal of this study is to observe the particle in the image and group particles that
share a certain similarity, i.e. clustering the images. As there are many clustering methods, we will explore
only two, which will be discussed further in section 2.

Figure 1: a) An ’Internal’ type SEM-image b) An image with the beam positioned in the upper right corner. b) An image

with the beam positioned in the lower left corner. d) obtained image with mean values of all four beam position images

Figure 2: A ’missed’ image
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2 Problem Description

2.1 Main question

The main question that this study aims to answer is:

What are the advantages and disadvantages of two clustering methods with different cost-functions and
how can this be evaluated?

Images in the study do not have a label of which class they should belong to. Thus we will approach the
problem via unsupervised learning. Furthermore the morphological features of the image have yet to be
defined, as well as the preliminary processing of the images before clustering can take place. Preliminary
processing includes, but is not limited to, selecting images of interest and image segmentation within the
selected images to detect the region of interest. This is done because (parts off) the raw data might not
be usable for this study. In order to answer the main question this project has been divided in several
sub-questions.

2.2 Sub-questions

1. Which part of the raw data is usable for this study and how can this be evaluated?

2. What is the best method to segment the particle in the image from the background?

3. What are the most interesting morphological features of the segmented particle?

4. What are the best suited clusterings according to various evaluation methods?

2.3 Scope

The current study is of exploratory nature, which means that it is not build on previous work and might
require further research before concrete implementations can take place. The scope of the current study
is quite extensive as it contains multiple steps that are already very elaborate on their own. Considering
the limited time, each step within the study will consider a limited amount of methods or morphological
features. Based on related works, the most promising methods and morphological features will be considered
and evaluated. However for further research many more fields can be explored for each of the steps, on which
we will elaborate in section 7.
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3 Related research

The case study is inspired by the work of Panuju et al. [30] who applied supervised learning to distinguish
diverse defects, including but not limited to particle contamination, on the wafers of ASML’s deep ultraviolet
(DUV) lithography systems [30]. This research proposed to use machine learning to analyze wafer defects,
since it showed desired results. However, supervised learning was the proposed method in the research by
Panuju et al. [30] since labels were given for the data. This differs from the current case study, consequently
related studies in other fields were explored. No studies were found with identical data and method, so
closely related studies were viewed.

3.1 Tumor spheroids

With rising interest in machine learning over the course of the years, there are many fields in which machine
learning is applied. In order to be able to answer the main question, it is helpful to look for studies that
have a similar data set and goal. An example is provided by [5], in which unsupervised learning is proposed
to classify tumor spheroids (i.e. artificial cancer cells that form multi-cellular structures) based on their
morphology, into ”biologically meaningful” groups. Like in our case study, the data they consider is mostly
that the data considered is mostly spherical and the study aims to detect the irregularities, and cluster them
into different groups.

3.2 Leukemia

As the article mentioned above uses a quite novel way of describing shape, it is important to look at similar
papers that use more common descriptors of shape. Another medical field where the shape and size of
particles in the image data is of vital importance, is the hematology department. Morphological analysis
of the blood cells provide information relevant for blood diseases like leukemia [19]. In the work done by
Mohapatra et al [2015] morphological features are used to describe the shape of the nucleus of lymphocytes
and lymphoblasts in order to distinguish leukemic and healthy cells [23]. Again, with promising results, the
data included in the study is quite similar to the data that is used in the current case study.

3.3 Current image Segmentation method

In order to analyze the shape of a particle detected in SEM-images, it is important to define the area within
the image wherein the particle is contained. This process is called image segmentation. There exists already
an algorithm, provided by ASML, that deals with image segmentation. The algorithm can be found in
appendix B.2.1 and the method is explained in section 4.2.1.
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4 Background Information

4.1 Unsupervised learning

To understand unsupervised learning, it is important to understand what labeled data means. When there
is a correct answer to a question related to the data then that is labelled data. For example, when the data
is images of handwritten digits, the label is the written digit. When there is no right or defined category,
the data is unlabelled [26]. When dealing with unlabelled data, the only type of learning is unsupervised
learning. In unsupervised learning the machine is given a huge amount of data, where the machine may
identify trends or similarity. The algorithm will identify clusters or groups of similar items [26]. The end
result of the clustering is highly dependant on which algorithm is used to identify these similarities. There
are many methods that deal with different types of data and clustering. The bases for constructing these
algorithms is distance and similarities. To recognize relationships among quantitative data, distance is
preferred over similarity [33]. Clustering is by nature exploratory as it is looking for novel patterns. There
is not one correct clustering algorithm as the clustering is in the eye of the beholder [12]. As there are
many clustering methods, we will explore only two clustering methods, with their advantages and their
disadvantages. Furthermore, besides choosing the method of clustering, it is important to explore methods
to evaluate the clustering. Over the years, many methods for cluster evaluation have been proposed, however
only some demonstrate promising and consistent performance [18]. These will be discussed afterwards.

4.1.1 Centroid-based clustering

The first type of clustering we consider here is the centroid-based clustering. In centroid-based clustering,
the clusters are represented by central points. These central points are not necessarily observations in the
dataset. For each of the other data points the assigned centroid is then the centroid that is closest (usually
measured using euclidean distance) to that data point [18]. The most common method of centroid-based
clustering is k-means. Essentially k-means seeks to minimize the total squared euclidean distance between
all data points and their respective centroids [12]. It does this by repeating two steps until convergence [16]:

1. Generate a new partition by assigning each data point to its closest cluster centroid.

2. Compute the new cluster centroid, which is the mean value of the data-points in the cluster.

Advantages of k-means is that the complexity is relatively low and the computing efficiency is generally
high [33]. However, since the algorithm wants to minimize the total squared euclidean distance between all
data points and their assigned cluster center, it is very sensitive to outliers. Therefore the k-means method
only works best for well separated data. Another disadvantage is that the number of clusters has to be
decided upfront [12].

4.1.2 Distribution-based clustering

The second type of clustering considered in this work is the distribution-based clustering. In distribution-
based clustering it is assumed that the data has an underlying probability distribution. Each cluster is
assumed to be sampled by a different component [13]. One common model under this category is the
Gaussian mixture model (GMM). In GMM, the data is assumed to be a sample from several independent
Gaussian distributions and the parameters of the distribution are normally estimated using the Expectation
Maximization (EM) algorithm [33]. Just like in k-means, the amount of clusters has to be decided upfront.
Suppose the data comes from a mixture of K clusters then the EM algorithm maximizes the log-likelihood
by using the posterior probability of cluster K given the data. Each iteration consists of the following three
steps:

1. Estimate the expected value for each latent variable.

2. Optimize the parameters of the distribution using maximum likelihood.

3. Check for convergence of the parameters. If the parameters have converged, terminate the process.
Otherwise, repeat steps 1 and 2.

Progressively the algorithm then maximizes the log-likelihood [18]. One of the advantages of GMM with
respect to k-means is that clusters can overlap each other, therefore it can be seen as an improved version of
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the k-means algorithm. Disadvantages of the method are the relatively high complexity of the EM algorithm
and the high dependency on the initialization of the algorithm and normality assumption of the data [33].

4.1.3 Evaluation of clustering

For both the k-means method and the Gaussian Mixture model, the number of clusters has to be decided
upfront. Thus normally the procedure involves clustering the data with a varying number of clusters, and
then evaluate the clustering with a cost-function. We consider multiple cost-functions.
One type of cost-function considers a variation of the clustering algorithm cost-function, which is the total
squared euclidean distance between all data points and their assigned cluster center for k-means and the
log-likelihood for the GMM. Commonly used is the elbow method for k-means [26]. Furthermore, the I-index
and the Bayes Information Criterion are studied as well since they have shown consistent performance for
k-means and GMM clustering respectively [18] [20]. Other types of cost-function are geometry-based, by
examining the distance between clusters, centroids and/or data points within clusters. Commonly used are
the Silhouette analysis, Calinski-Harabasz Index and Davies-Bouldin Criterion [33]. These methods can be
applied to both k-means and GMM.
For each of the clustering evaluation methods we consider the following:

Suppose X = {x1, x2, ..., xn} is the data set of n observations, K the amount of clusters, Ck the clusters with
centroids zk and k ∈ [1,K] and U(X) the partition matrix with elements ukj , k ∈ [1,K],j ∈ [1, n] and

ukj =

{
1 if xj belongs to cluster k
0 otherwise

Elbow method As seen in section 4.1.1, the k-means method tries to minimize the total squared euclidean
distance. Therefore the total squared euclidean distance can be considered as the cost-function. For each
number of clusters K compute the cost-function J and plot the curve J as a function of K. As K increases, J
decreases and the plot forms an ’elbow’, i.e. the highest decrease in J value between cluster number K and
K+1 [26]. The cost-function J is defined in equation 1.

J =

n∑
j=1

K∑
k=1

ukj ‖xj − zk‖2 (1)

An example of a plot with a clear elbow is visible in Figure 3. However it is possible that the K-J curve does
not show a clear elbow, making it not very useful in determining the number of clusters (see Figure 4).

Figure 3: Cost function of the elbow method for k-means

evaluation derived from the book ’An introduction to machine

learning’ [26] with clear elbow

Figure 4: Cost function of the elbow method for k-means

evaluation derived from the book ’An introduction to machine

learning’ [26] with no clear elbow.
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I-index The I-index is a recently developed cluster validity index that performs very well for k-means [20].
It is a combination of three factors and is formally described in equation 2. The first factor penalizes the
increase of amount of clusters to prevent over-fitting. The second factor is the ratio of total euclidean distance
for 1 cluster and K clusters, which increases as the amount of clusters increases. Lastly, the third factor
measures the maximum separation between two clusters over all possible pairs, which increases when the
number of clusters K increases [20]. Thus the higher the I-index the better the solution.

IK =

(
1

K
× E1

EK
×DK

)2

EK =

K∑
k=1

n∑
j=1

ukj ‖xj − zk‖ (2)

DK =
K

max
i,j=1

‖zi − zj‖

Bayes Information Criterion (BIC) BIC attempts to balance the likelihood criterion of the model with
a term that penalizes increasing complexity [18]. The formal definition of BIC can be found in equation 3:

BIC = K ln(n)− 2 ln(L̂) (3)

Where K is the number of clusters, n the number of observations and L̂ the maximized value of the likelihood
function of the model. The lower the value of BIC, the better the clustering number.

Silhouette analysis Let xi be an arbitrary observation in cluster Ci. Then ai is the average distance
between observation xi and all other observations in Ci, d(xi,Cj) is the average distance of xi to all obser-
vations in cluster Cj and bi is the minimum of all d(xi,Cj) values of all the clusters C1, C2, ..., CK except
Ci. Then the silhouette value si is calculated using equation 4.

si =
bi − ai

max{ai, bi}
(4)

Each si value is in between -1 and 1, where values close to 1 and -1 represent good and bad clustering
respectively. The average silhouette score indicates how good the clustering is [27].

Calinski–Harabasz Index (CH index) The Calinski–Harabasz Index is one of the most succesfull
evaluations of clustering [18]. It looks at the relation between the overall between-cluster variance and the
overall within-cluster variance. In equation 5 SSB is the overall between-cluster distance, SSW is the overall
within-cluster distance, ni is the number of observations in cluster Ci and m the mean of the sample data.

CH =
SSB

SSW
× (n−K)

(K − 1)

SSB =

k∑
i=1

ni ‖zi −m‖2 (5)

SSW =

k∑
i=1

∑
x∈Ci

‖x− zi‖2

Since in the ideal situation SSB is maximized and SSW is minimized, the higher the CH value the better
the clustering.
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Davies-Bouldin Criterion The Davies-Bouldin Criterion is another common method that looks at the
worst relations between different clusters. Again, in equation 6 K is the number of clusters and Di,j represents
the relationship between cluster i and cluster j. d̄i in the nominator of Di,j in equation 6 is the sum of the
average distance between each point in cluster i and its centroid. The denominator is the distance between
the centroid of cluster i and the centroid of cluster j [33].

DB =
1

K

k∑
i=1

max
j 6=i
{Di,j} (6)

Di,j =

(
d̄i + d̄j

)
di,j

Since for each cluster the algorithm takes the max of the Di,j values, it looks at the worst separations
between clusters. Therefore lower DB criterion values are better than higher values.

4.2 Image segmentation

As mentioned in chapter 2 there are some steps that need to be dealt with before performing clustering. One
of them is separating the particle from the background in the given gray-scaled images. We will describe
the method that is currently in use at ASML, as well as two alternative methods, since the current method
does not segment the particle from the background as well as needed in the current study and it does not
deal with the ’missed’ images in the data as mentioned in section 1.1.

4.2.1 Gradient

The algorithm makes use of the gradient of the image. The gradient calculates the central difference for
internal data points. For example, consider a matrix with unit-spaced data, A, that has horizontal gradient
G = gradient(A). The interior gradient values are

Gi,j = 0.5 ∗ (Ai,j+1 −Ai,j−1) (7)

for i, j ∈ (1, N − 1), where N is the horizontal size of the image. For the border points of the image the
gradient values are:

Gi,1 = Ai,2 −Ai,1 (8)

Gi,N = Ai,N −Ai,N−1 (9)

Both the horizontal and the vertical gradients are calculated for each of the image pixels and the new matrix
is composed by the euclidean distances between the obtained vertical and horizontal gradients. Let Gh and
Gv be the horizontal and vertical gradients respectively, then the newly obtained image I is defined as

Ii,j =
√
G2

hi,j
+G2

hi,j
(10)

for i, j ∈ (1, N).
After the new image I is obtained, the best threshold value is determined with an algorithm of ASML. The
threshold splits the image into two parts. The pixels with a grey value below the threshold are replaced
with a black pixel and the pixels with a grey value above the threshold will be replaced by a white pixel.
After the splitting, if all goes well, the white surface should contain the contour of the particle which then
completes the segmentation of the particle from the background.
Unfortunately the current process is not accurate enough for all the particles. The mask obtained covers
the entire particle, but contains redundant pixels that should not be contained within the borders of the
particle. A sample of extracted contours of four particles can be seen in Figure 5. A larger sample can be
found in the appendix A.1
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Figure 5: Gradient segmentation method (currently in use at ASML)

4.2.2 Image histogram analyses

A simple approach to image segmentation consists of disregarding the position of the pixels and focus only
on the grey-values of the image. An image histogram is a gray-scale value distribution showing the frequency
of occurrence of each gray-level value [25]. Even though the original image cannot be retrieved from the
image histogram since it only describes the frequency of the grey-values, many useful image processing
operations can be derived from it [6]. For example, the image histogram is used to find the threshold
to distinguish the background from the desired object in the image. Threshold determination from the
image histogram is probably one of the most widely used applications [22]. The image histogram analysis
is based on the assumptions that the foreground object has a different distribution than the background of
the image. Therefore the background and the foreground object will be two distinguishable peaks in the
image histogram. It is possible that two peaks overlap, however a minimum between the two peaks can be
detected in order to separate the two objects [25]. An example of this process can be found in Figure 6.
Nonetheless, the method sometimes fails to succesfully separate the object from the background when no
minimun can be detected, e.g. when the background is non-uniform. Therefore this method only provides a
rough assessment of the image segmentation.

Figure 6: Removal of background from anatomical structures. (a) Original image; (b) histogram (arrow marks the threshold

value); (c) thresholded image: anatomical structures remaining in the image are marked in white. Image obtained from Ewa

Pietka, in Handbook of Medical Imaging, 2000

4.2.3 Active contours

Unlike the two methods described above, which use a threshold pixel value to form a binary image, called
pixel segmentation, the active contour method uses a curve segmentation. In general this means that it is
looking for a regular parametric curve that defines the image feature of interest by minimizing an energy
function [8]. The energy of the basic snake, E, constitutes of two factors: the internal and external energy.
The internal energy is a combination of the continuity of the contour Econt and the smoothness of the
contour Esmooth. The external energy is the force within the image itself Eimage. In this case it consists
of the gradient of the image, which tends to attract the contour to the border of the image of interest [7].
Suppose the snake C(s) : [0, 1]→ R2 then the snake energy is formulated in equation 11.
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E =

∫ 1

0

(Econt (C(s)) + Esmooth (C(s)) + Eimage (C(s))) ds (11)

The internal energy is described by the first and second term, the third term represents the external energy
and α, β and λ are real positive constants. However, there are still some issues with the original active
contours model. For example the snake is not attracted to the object in the image when the initial contour
is too far from the object edge (thus the gradient is very low at the initial contour) and there are several
parameters that still need to be estimated. This resulted in many reformulations of the initial energy level
and its minimization. One example that has been largely used in medical image processing is the geodesic
active contour method [7]. The paper proposed a new scheme to detect the object boundary by using minimal
path computations. It introduces a new term in the initial energy function that attracts the deforming curve
to the boundary of the foreground object. It also reduces the amount of estimated parameters needed for
the energy function and the solution exists and is unique [7]. It can also detect holes in the object, which
is not possible with the original snake method. This tells us that low contrast within the boundaries of the
particle is important, since the assumption is that the particle does not have any holes.
The geodesic active contour is available from the MATLAB library, which makes it easy to use. However
a contour outside the foreground object is needed [3]. Noise in the image can affect the active contour as
seen in Figure 7. However, the noise can be reduced by an adaptive filter that smooths the image to limit
the effect of noise on the accuracy of the active contour. The adaptive filter used is ’wiener2’ in MATLAB
which estimates the local mean and variance of each pixel and reduces the variance, i.e. smoothing. The
method is selective i.e. higher variances are smoothed less than low variances to preserve edges and other
high-frequency parts of the image.

In Figure 7 an example object is recognized using the method in the absence as well as in the presence of
(smoothed) Gaussian noise.

Figure 7: a) Example of the active contour method; b) Example of the active contour method with noise; c) Example of the

active contour method with the noise smoothed out using the function ’wiener2’ from MATLAB ??

4.3 Feature selection

After the region of interest is segmented, morphological features are extracted and selected. These features
are then used for clustering multiple images. The selection of the features is an iterative process, in which
the chosen features are extracted, the data is clustered and the results are evaluated based on the desired
outcome. A desired outcome can include, but is not limited to, clearly notable clusters when the observation
values are plotted against each other or visible similarity in the images of the same cluster. However, desired
results are dependable of the end user which is ASML in this case study. Since it is assumed that most of
the images are characterized by roundly shaped particles, it is important to describe features that evaluate
the roundness of the particle. Moreover, the roughness (i.e. irregularity) of the particle should be captured
as well in order to establish different levels of irregularity of the particles.

4.3.1 Roundness: Ellipse fit

In order to describe the roundness of the particles, an ellipse can be fitted to it. A simple and accurate method
to fit an ellipse to the contour of the segmented particle is with the use of the least-squares method [14],
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which minimizes the total distance between the points of the contour and their projection on the ellipse.
From the best fitting ellipse, the shape of the ellipse and the error of the fit can be determined [5]. The error
is formulated in equation 13, where A is the area within the contour and B the area within the ellipse [33]
visible in Figure 8. The shape is described by the eccentricity of the ellipse formulated in equation 12, where
’a’ is the length of the semi-major axis and ’b’ is the length of the semi-minor axis.

Eccentricity =

√
1− b2

a2
(12)

Error =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
(13)

Figure 8: Mask of the particle, ellipse fitted to the particle and the overlap of the two

4.3.2 Roughness method 1: Irregular shape descriptors

When describing the roughness of shapes, commonly used irregularity descriptors are: formfacter, compact-
ness and solidity [24]. Nonetheless, these shape features can be closely related to the roundness features
described above 3.1.

Formfactor The formfactor expresses the roughness of a shape by a single number between 0 and 1, where
1 represents a perfect circle and lower numbers represent shapes with increasingly rougher surfaces. Equation
14 shows how the formfactor can be calculated from the area and perimeter of a shape.

Formfactor =
4× pi×Area

Perimeter 2 (14)

Compactness The compactness of a shape is similar to the formfactor. However, it is 4 × p for round
shapes and can increase to infinity for irregular shapes.

Compactness =
Perimeter 2

Area
(15)

Solidity The solidity shape parameter measures the relation between the area of the segmented particle
and the area of the convex hull as shown in equation 16.

Solidity =
Area

ConvexArea
(16)
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4.3.3 Roughness method 2: Fast Fourier Transform

In 3.1 the irregularity of the particle is established by using an estimate of the original contour of the particle
and calculating the distance between the obtained estimate and the original contour [5]. The original contour
is the contour obtained after image segmentation. However, due to lack of information found on the estimate
used in the paper, described in section 3.1, a different contour estimate will be analyzed of which the same
features can be determined.
Since the image is in 2D, we can image the contour of the particle as points in the complex plane. The Fourier
transform can be applied to the points in the complex plane, forming the Fourier series of the contour. The
Fourier series can be visualized as stacked arrows that each have their own scale and speed of rotation, which
together draw the closed contour given as input. This process is visualized by 3blue1brown [29]. The more
rotating arrows that are used, the more precise the contour is approximated [21]. A number of ’rotating
arrows’, i.e. stacked circles, is chosen and the reversed Fourier transform is applied to obtain an estimate
of the original contour. Complex shapes need a higher number of these stacked circles to achieve a closely
related estimated contour, while circles and ellipses only need a few [21].

The roughness features are the described distance vector distribution, which is expressed by the following
factors:

1. The first four moments, i.e. mean, variance, skewness and kurtosis.

2. The quantiles 0, 0.05, 0.10, ..., 0.95, 1.00 of the cumulative probability

4.3.4 Roughness method 3: HU’s moments

Contrary to the common irregularity descriptors, moments can be used to represent and reproduce a shape
at any required degree of precision. With enough moments it is even possible to exactly reconstruct the
particle shape [10]. These moments can also be normalized so that they are invariant under rotation and
change of scale.. These normalized moments are called HU’s moments [15].
Moment approximations take the form of series expansions of the type that is visible in equation 17 for a
picture function f(x,y) [10].

Mpq =
∑
x

∑
y

xpyqf(x, y) (17)

They are widely used in image processing and work best for irregular shapes. This method has greater
difficulty with shapes that have fine-irregularity or serration [28].

4.4 Dimension reduction: principal component analysis

Often in data analysis the data sets are large and the different features may correlate with each other.
Therefore a method is proposed that finds an orthogonal basis of which different individual dimensions in
the features are uncorrelated. The procedure is called principal component analysis, where the basis vectors
are the principal components.
Geometrically we can look at the n observations x1, x2, ..., xn as vectors in theRd space. The first component
is composed as the best fit line through the data points in the Rd space, where the direction is chosen such
that the variance is maximized. The second component is orthogonal to the first and the variance is again
maximized. The process is repeated to compose d components. Even though d amount of components
can be found, it is preferred that most of the variance is explained by m ≤ d components, such that the
dimensionality is reduced [4].
Principal component analysis requires a few variables: loadings, scores and explained variance. Firstly the
explained variance tells us how much of the total variance is explained by each component. Often the number
of components m is chosen such that 95% of the total variance is explained by the d number of components.
The scores are the representations of the data matrix in the principal component space and the loadings
are the coefficients for the features in order to obtain the score values. Suppose 95% of the variance is
explained by m components of the d features, the score value ti,1 of observation i and component 1, data
point xi = (xi,1, xi,2, ..., xi,m) and loadings p1,1, p2,1, ..., pm,1 for component 1. Then the score value ti,1 is
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obtained by applying equation 18 [9].

ti,1 = xi,1p1,1 + xi,2p2,1 + . . .+ xi,mpm,1 (18)

In general, the score matrix T is retrieved by matrix multiplication between the n observation matrix
X = (x1, x2, ..., xn) and the loading matrix P as seen in equation 19.

T = XP (19)

Before PCA can be applied the features need to be normalized, by subtracting the mean value and dividing
over the standard deviation of the feature values. This step is important as it removes any bias from the
data and it does not affect the correlation within the data [4].
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5 Methodology
In this section we describe our approach to clustering the images in our case study. Each of the steps in
the procedure tries to answer one of the sub-questions in section 2. The procedure includes preliminary
steps, such as (1) detecting and excluding unusable images, (2) performing image segmentation to separate
the particle from the background, (3) extracting meaningful morphological features and (4) reducing the
dimension with PCA. The so-obtained features will then be used for clustering. These steps will be largely
discussed in the following sections.

5.1 Detecting usable images

The detection of usable images will make use of the image histogram analysis as specified in section 4.2.2.
Since this method inspects, independently of position, each of the pixel values of the image to detect a
foreground object it is best to have maximum contrast between the foreground object and the background.
This is the case for the ’Internal’ images described in section 1.1.3 (also see Figure 1a). In section 4.2.2 it is
explained that ideally the foreground and background will have distinguishable peaks in the image histogram
of which in this case the second peak is the foreground object as the object consists of higher pixel values.
Therefore the splitting will be done on the prominence of the second peak which is explained in more detail
below.

5.1.1 Assumptions

1. First peak: The first peak is the background, made up mostly of black pixels (i.e. low pixel values).
The first peak starts in the origin and is symmetric, such that its maximum is in the middle of the
peak.

2. End first peak: As point one already implies, the index of the end of the first peak is twice the index
of the maximum value of the first peak. Additionally, it is assumed that the maximum of the second
peak follows the end of the first peak (if there exists a second peak).

3. Unusable images: the image histogram has no two individual peaks for images that either do not
contain a foreground object or contain a foreground object that is too small/unclear to be detected.
These images will be unusable for further analysis.

5.1.2 Parameters

• Second peak prominence: The prominence of the second peak is defined as the height of the peak
minus the minimum value obtained between the first and the second peak. A significant second peak
means thus means a high prominence. A visual example of the peak prominence can be seen in Figure
9

• Image mean: The average value of all the grey-values in an image.

5.1.3 Approach

The images will be split into three groups:

1. Images that contain a single particle with clearly visible contour and texture.

2. Images that contain a single particle with clearly visible outline, but with undetectable texture.

3. Unusable images with either no particles or poor distinction between particles and background.

The distinction between the first and the second/third group is the absence of a prominent second peak in
the image histogram. The prominence of the second peak is described in the parameters, which is and will
be different for each of the images. When the prominence of the second peak is above a certain threshold
the image is labelled as group 1. To differ between group 2 and group 3, we will look at the mean value of
the image. The two groups have no prominent second peak, which means the image histogram is dominated
by the first peak of the background. In the case of group 2, the background is still mostly black, otherwise
the particle would not have a clearly visible outline, while group 3 will contain more noise. The noise consist
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Figure 9: Visual example of peak prominence for arbitrary peaks.

of higher pixel values, which results in a higher mean. Therefore the mean was chosen to split group 2 from
group 3. When the image mean crosses a certain threshold the image is split into group 3.
Combining the two split steps, using the prominence and the image mean thresholds, the images are split
into the three groups described above. A schematic overview of this process is visible in Figure 10.

The issue that is left to be dealt with is the threshold values of the prominence and the image mean. In
order to deal with this matter, 300 images were manually labelled with the preferred group based on the
’Internal’ images. This labelling is very subjective, therefore this method will only give a rough indication
in which group each image should go. By looking at the prominence of the second peak for each label, the
prominence threshold is chosen such that images with label 1 are split into group 1 while also limiting the
amount of images with label 2 or 3 in group 1. The same method is applied to find the image mean threshold.
The previous steps are done for 70% of the labelled data. The last 30% of the data is used to validate the
end-results.

To show the result of the splitting, we use a confusion matrix of the validation data. In the confusion matrix
the row index represents the label and the column index represents the group the image is split into. Each
entry aij is the amount of images that have label i and are split into group j.

Figure 10: Overview step 1 splitting
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5.2 Image segmentation

The set of usable images, group 1, are segmented to obtain the mask of the particle needed for further
analysis. To advance the image segmentation provided by ASML the geodesic active contour method is used
as described in section 4.2.3. Furthermore the MATLAB code of the image segmentation method can be
found in appendix B.2.2 and the previous image segmentation method provided by ASML can be found in
B.2.1.

5.2.1 Assumptions

1. Particle: In each image only one particle is visible, which doesn’t contain any holes. Only fully visible
particles can be used for further analysis. Fully visible means that the particle does not touch the
border of the image, since we cannot know what shape the particle takes outside the image borders.

2. Different image types: The position of the particle in the different types of images does not change.
Types of images are explained in section 1.1.3.

5.2.2 Approach

The preceding image segmentation method used the images of type ’Internal’ as specified in section 1.1.3
and visualized in Figure 1a, as it shows the highest contrast between the background and the foreground
object around the edges. However, for the geodesic active contour it is important that the contrast within
the boundaries of the particle is low such that no ’holes’ are detected, which makes the image type shown
in Figure 1d a better option. Since the particle does not change in position in each type of image, we can
use a different type.

To apply the snake image segmentation method, both an initial contour C and input image I is needed. The
MATLAB adaptive filter ’wiener2’ is used to form the input image I from the image shown in Figure 1d,
since it reduces noise and enhances the snake method (see Figure 7) ??. The input image is then binarized
and holes are filled using the MATLAB function ’imbinarize’ and ’imfill’ respectively to form a mask M1 [31].
As mentioned in section 1.1.3 the pixel-values within the border of the particle are the highest in the input
image, which means that mask M1 should at least contain all the pixels within the border of the particle.
The boundary of the mask formed by the intersection between the mask M2, obtained after the gradient
segmentation method, and mask M1 forms the initial contour C, i.e. C = ∂(M1 ∩M2). The fact that the
chosen snake method is biased to contract inward and both masks M1 and M2 are a coverage of the particle
with some redundant pixels that should be excluded makes C a valuable initial contour.
Images are removed when multiple particles are visible or when the particle is not fully in frame. These type
of images are detected when the mask M1 is not fully connected and when the mask M1 touches the border.
After the snake image segmentation method the mask Msnake is obtained which is used for further analysis.

18



5.3 Morphological features extraction

When the Msnake is obtained, from the image segmentation step, the interesting features can be extracted.
The selected features are described in section 4.3. The MATLAB function ’regionprops’ was used to calculate
the irregular shape descriptors [31]. Furthermore the MATLAB code of the feature extraction can be found
in appendix B.3.

5.3.1 Assumptions

1. Invariant property: all the features are scale and rotation invariant.

5.3.2 Approach

For each of the features it is assumed that it is scale/rotation invariant, therefore this property is evaluated
for confirmation as it is a very important property.

Evaluation scale/rotation invariant property method 1: We define data table D where the rows
represent the observations and the columns the various features. We rotate one particle 360 times 1 degree
each time to obtain rotation data table Dr, where the row index ’ii’ represent the rotation angle ’ii’ and the
columns the various features.
We also scale the same particle by 0.01, 0.02, ..., 2.98, 2.99, 3.00 to obtain scaled data table Ds, where the
rows index ’ii’ represent the scaling factor ’ ii

100 ’ and the columns the various features.
The data tables Ds and Dr contain the features for each scale factor and rotation angle of that specific
particle respectively.
Each column of the data tables D, Ds and Dr are normalized using the mean and standard deviation from the
columns of D, such that the bias in the data is removed and features with different ranges can be compared.
Doing this we obtain the normalized data tables D̃, D̃s and D̃r. We compare the ratio between the range
of the features of the scaled particle D̃s (resp. rotated D̃r) and the features of the original particle D̃, to
detect if a feature range differs significantly with respect to the original range. When the range of a feature
in D̃s (or D̃r) is very large with respect to the range of that similar feature in D̃ then this means that the
feature value changes significantly when a particle is rotated or scaled. This implies that the feature is not
scale/rotation invariant. Here significant means more than 0.05% of the original range.

Evaluation scale/rotation invariant property method 2: A second method to evaluate the scale/ro-
tation invariant property can be applied after the clustering method has been implemented to data table D.
Therefore this will be explained further in section 5.4.
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5.4 Clustering algorithms

After the features are extracted, we can attain for each of the n observations x1, x2, ... xn d features,
accommodated in the data table D. Within this section we look at the steps taken before clustering and the
evaluation of the final clustering. Both are described in more detail below.

5.4.1 Assumptions

1. Existence and uniqueness: There exists a solution to the K-means and Gaussian mixture model
clustering and the solution is unique.

5.4.2 Approach

As explained in section 4.4 the features of the n observations may correlate, therefore principal component
analysis (PCA) is applied before clustering to form an orthogonal basis of the feature vectors. The PCA
method also includes the normalization of the data before forming the orthogonal basis. The amount of
m components remaining from the PCA are chosen such that 95% of the data variance is explained. The
loadings of the m components after PCA are studied to gain knowledge about the features that were most
relevant for this case. Furthermore the score values of the m components and n observations are used as
input for the clustering algorithms. We choose to apply both clustering methods K-means and Gaussian
Mixture model, introduced in Section 4.1.1 and 4.1.2, and implement them in MATLAB using the functions
’cluster’, ’fitgmdist’ and ’kmeans’.
The clustering evaluation methods explained in section 4.1.3 are used, to evaluate the clustering algorithms
and to find an optimal amount of clusters [32]. The function ’evalclusters’ of MATLAB is used to implement
the evaluation methods in MATLAB [32].

Evaluation scale/rotation invariant property method 2: Recall the normalized data table D̃s and
D̃r from section 5.3. We define the score matrices Ss and Sr containing the score values obtained from
applying the PCA to the data tables D̃s and D̃r respectively. Now, for each score in Ss and Sr, we use the
obtained clusters in the previous step to assign it to the corresponding cluster. Then we observe whether
or not this cluster is different from the cluster assigned to the original (not rotated or scaled) observation.
The error, total wrongly clustered observations divided by the total observation in Ss or Sr, indicates the
scale/rotation invariance of the PCA components. Therefore it is hard to find exactly which feature is not
scale/rotation invariant. We can merely take a guess which feature may have caused an error by looking at
the loading values of the components. Thus this evaluation method is a second check to see if the features
we chose in the section 5.3 are indeed rotation/scale invariant.
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6 Results and discussion
The following section illustrates the results of each of the steps taken to answer the main question. Each
step tries to answer one sub-question, in order to give a solution to the main question.

6.1 Detecting usable images

In Figure 11 the prominence of the second peak can be seen for each label of the training images. According

Figure 11: The prominence of the second peak for each of the labels

to Figure 11, when disregarding the outlier values, the prominence threshold can be set to 131 so that the
separation between label 1 and label 2 is accurate. However, when we plot the second peak prominence
values of images of Label 2 from low to high, visible in Figure 12a, we see that 110 of the 128 values is equal
to or lower than 87. That is almost 86% of the total amount of images. Up until that threshold the line in
Figure 12a is almost linear as can be seen in Figure 12b since the difference between the values are between
0 and 3 until the 110th value. A sample of the images that have a larger second peak prominence than
87 are visible in Appendix 32. Images with a second peak prominance higher than 87 show a much wider

Figure 12: a) Sorted second peak prominence Label 2 b) Difference sorted second peak prominence Label 2

distribution than those lower than 87. Therefore the prominence threshold is set at 87. In the discussion we
look at the images with label 1 with a second peak prominance lower than 87 and images with label 2 and
3 with a second peak prominance higher than 87.

After lowering the second peak prominence threshold to 87, we can look at the image mean for each Label
and each Group visible in Figure 13. Since we have not made any distinction between group 2 and group
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3, all the images that were not assigned to group 1 are arbitrarily assigned to group 3 (since the splitting
into groups 2 and 3 happens after this step). In Figure 13 each boxplot represents a label combined with
the group the images are in. The label represents the group the image should be assigned to and the group
number tells us which group it is currently assigned to. The optimal solution should have all images with
label 1 in group 1 etc. The confusion matrix is given in the black lined box in Figure 13.

Figure 13: The image mean for each of the labels and groups combination

As seen in Figure 13, the image mean cut-off can be set to 68 such that all the images with label 2 that are
currently in group 3 are split to group 2.
Nonetheless, when we disregard the outlier values, which are 16 values of the total 116, the threshold can be
set to 44. To examine these outlier values more closely, we look at the sorted image mean values of images
with label 2 and also the differences between adjacent elements (see Figure 14). The difference in image
mean between the 101st and the 9th image is only 7.05. Again, between these values the line in Figure 14a
is almost linear. After the 101st the values have a much wider variation then before, which would mean
39 would be a good cutoff value. Taking into consideration that the other cutoff value options mentioned
above, 44 and 68, would increase the range a lot but not include that many more images, the image mean
threshold is set at 39. In the discussion we look at the wrongly grouped images.

Figure 14: a) Sorted image mean Label 2 b) Difference sorted image mean Label 2

After the image mean cut-off is set to 39, we obtain 2 confusion matrices, i.e. one of the training data set
and one of the validation data set. Both can be seen in Table 1.

Both for the training and validation set, the images in group 1 and 3 are mostly from the designated label.
However, group 2 consists of many images with label 1 and 3. A sample of images of each Label and Group
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Group 1 Group 2 Group 3
Label 1 159 24 34
Label 2 18 94 16
Label 3 6 29 109

Group 1 Group 2 Group 3
Label 1 71 8 15
Label 2 7 42 6
Label 3 5 18 39

Table 1: Left: confusion matrix of the training data. Right: confusion matrix of the validation data

combination is visible in Appendix A.3.
In total 27.779 images were split to group 1.

6.1.1 Discussion

In Figures 30 and 31 in Appendix A.3 we are able to distinct the background from the foreground object
with the naked eye. Nonetheless based on the image histogram these images are not detected as usable
images (since they are split to groups 2 and 3). An explanation could be that the background contains too
much noise and that there is little to no contrast between the pixel values of the foreground object and the
background. Therefore the two peaks that should appear in the image histogram overlap too much, i.e. only
one peak is detected.
Furthermore, in Figures 32 and 35 we see a sample of the images that were split to group 1 but have label
2 or 3. We see in these images that the foreground object should be distinctive from the background as
the contrast within pixel values is quite high. However the particle itself is either blurry (no distinctive
texture) or half visible (unusable for shape analysis). This indicates that the current method is not usable
for predicting a distinct texture within the image.

Based on the results, the assumption that the current method could distinguish in blurry or distinctive
texture is rejected. In this study case only the shape is analyzed, which means that it is not important to
address this problem further in this study case.
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6.2 Image segmentation

Each of the steps taken in the image segmentation process can be seen in image segmentation are visible
in Figures 15 and 16. In ’a’ and ’b’ we can see the image before and after the adaptive filter ’wiener2’
respectively. Image ’c’ is the binarization of image ’b’. In image ’d’ some pixel values are set to 0 using the
previous gradient image segmentation method. Examples of the gradient image segmentation method can be
found in Appendix A.1 Figure 27. Image ’e’ is the final image mask and is formed using the active contour
method with image ’b’and mask ’d’ as input. It takes approximately 6 seconds to segment one image. To

Figure 15: Example of image segmentation: a) Initial image. b) Smoothed initial image. c) Binarized image. d)Binarized

image adapted to previous image segmentation method. e) Final image mask

Figure 16: Example of image segmentation: a) Initial image. b) Smoothed initial image. c) Binarized image. d)Binarized

image adapted to previous image segmentation method. e) Final image mask

reduce computation time, 5000 of the 27.779 usable images (group 1 images from section 6.1) were randomly
selected for image segmentation. A sample of the extracted contours by the active contours method can be
found in Figure 17.
A sample of the images that were removed from the data set are visualized in Figure 28 in Appendix A.2.
In total 40 images were removed from the data set of 5000 images. The removed images (see Figure 28 in
Appendix A.2) contain images that only touch the border of the image for a small amount of pixels of which
the shape is almost fully visible.

6.2.1 Discussion

Image ’d’ of Figures 15 and 16 already represents a good segmentation of the particle, but the active contour
helps to refine the image a bit more. A disadvantage of the smooth factor of the active contour is that small
roughness spikes in the contour of the particle are non-detectable, since these are smoothed out. Therefore
very smooth particles cannot be distinguished from a little rough particles.
Another improvement could be a cut-off value for the amount of pixels that touch the border. This could
limit the amount of removed images. Additionally, in some images, multiple particles were detected whereas
on closer inspection by the naked eye no distinguishable second particles were visible. For most of these
images the outline is too vague or incomplete and the method seems to fail in such cases.
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Figure 17: Sample image segmentation active contour method
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6.3 Morphological features extraction

Sample images of distinctive values of the eccentricity, ellipse error, formfactor, compactness, solidity, first
HU moment, first quantile value of the distance vector and the mean of the distance vector are given in
Appendix A.4.1.

6.3.1 Evaluation scale/rotation invariant property method 1

Table 2 contains the ratio of the ranges in data tables D̃r and D̃s and range in data table D̃ for each feature
respectively. We observe that for many features the ratio is above 5%, which means the change in the range
of features due to rotation and scaling is significant (given the threshold value chosen of 5%). Each of the
observation values of D̃r and D̃s for the obtained features are visualized in Appendix A.4.2. Only the second
distance quantile and the distance mean is visualized, as the largest value ratio values are the highest of
all the quantiles and moments in Table 2. While the ellipse error values for the rotated particle is about
the same, the eccentricity, formfactor, solidity and compactness values are closest to the original particle
feature values (X=360) when the rotation is k ∗ 90 degrees for k = [1, 2, 3, 4]. The values between two k ∗ 90
consecutive points seem to repeat. This indicates that the method used to rotate the image in order to
obtain the features works best for multiples of 90 degrees, since it consistently gives different values for other
rotations. For the scaled particles, the values vary more from the original particle feature value (X=100)
when the scale is below 1 (ii=100).
The HU moment values appear to be constant under different rotations, with the exception of the 3rd and
4th moment. The change in the 3rd moment is insignificant while the ratio of the 4th moment is above 0.05.
Furthermore, the values of the 4th moment in Appendix A.4.2 are at their highest when the rotation is 0,
180 or 360 degrees and lowest when the rotation is 90 or 270. This observation reveals a high dependency
on rotation for the 4th moment of HU.
The HU moments for scaled particles alter more when the scale is below 1 (ii=100), parallel to the eccen-
tricity, formfactor, solidity and compactness values.
All distance quantiles and moments have a significant ratio in Table 2, both for rotation and scaling. Ob-
serving the graphs in Appendix A.4.2, we notice a consistent increase in the feature value for larger scaling
values. This proves that the distance quantiles and moments strongly rely on the size of the particle, which
contradicts the assumed scale-invariance property.

Since many of the features oscillate in feature value when the scale is below 1, we calculate new ratio range
values which only contain scaling values above 1 (see Table 2). The observed oscillation could be due to the
fact that the amount of pixels of the particle is too low to properly determine the feature of the particle.

As shown in Table 2 for most features the ratio range scaling values are insignificant when the scale is below
1, which confirms the scale invariance of these features. Nonetheless the formfactor is still above 0.05, thus
significant, for the scaling feature values.
To summarize, the distance features and formfactor value will be removed as features since both have a
significant ratio between the feature range of data table D̃s and feature range of data table D̃ even after
removing scale factors below 1 (which gave trouble for other features). Furthermore the 4th moment of HU
is removed from the set of features because of the significant ratio between the feature range of data table
D̃r and feature range of data table D̃.

6.3.2 Discussion

As mentioned, some of the features showed different values when the particle was rotated except for when
the rotation was 90 degrees or a multiple thereof. This can be explained by noting that the MATLAB
function ’imrotate’ used for rotating the particle, alters the contour of the particle a bit upon rotation. This
hypothesis is confirmed by looking at a specific particle. This is visualized in Figure 18. Figure 18 the
particle that is rotated 90 degrees shows a smooth edge on the upper side of the image, while for other
rotations the same edge seems jagged. This will have an indisputable effect on the roughness features as well
as the ellipse error feature.
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Formfactor Solidity Compactness Ellipse error Eccentricity
Ratio rotation 0.0987 0.0062 0.011 0.0037 0.0052
Ratio scaling 1.2537 0.0446 0.0617 0.3319 0.1305

Ratio scaling (scale >1) 0.113 0.0024 0.0126 0.004 0.0075
HU 1 HU 2 HU 3 HU 4 HU 5

7.24859E-05 3.17882E-05 0,0014 0,0706 1,57724E-05
0,0596 0,0159 0.1244 0.1224 0.2383
0.0005 0.0001 0.0005 0.001 3.55086E-06

HU 6 HU 7 P(X<a) = 0.0 P(X<a) = 0.05 P(X<a) = 0.1
0.0002 0.0001 0.1643 0.1582 0.1296
0.2233 0.1434 0.5704 0.8926 0.8593
9.86146E-05 8.64905E-06 0.5645 0.6795 0.6154
P(X<a) = 0.15 P(X<a) = 0.2 P(X<a) = 0.25 P(X<a) = 0.3 P(X<a) = 0.35
0.1149 0.1090 0.0932 0.0847 0.0807
0.8320 0.8390 0.8111 0.7709 0.7467
0.5717 0.5777 0.5534 0.5187 0.4999
P(X<a) = 0.4 P(X<a) = 0.45 P(X<a) = 0.5 P(X<a) = 0.55 P(X<a) = 0.6
0.0728 0.0639 0.0536 0.0463 0.0437
0.7535 0.7451 0.7297 0.7169 0.7079
0.5105 0.5087 0.4965 0.4874 0.4784
P(X<a) = 0.65 P(X<a) = 0.7 P(X<a) = 0.75 P(X<a) = 0.8 P(X<a) = 0.85
0.0424 0.0455 0.0490 0.0498 0.0533
0.7012 0.7171 0.7357 0.7659 0.8366
0.4691 0.4869 0.5006 0.5169 0.5703
P(X<a) = 0.9 P(X<a) = 0.95 P(X<a) = 1.0 Mean(X) Variance(X)
0.0601 0.0476 0.0596 0.0490 0.0227
0.8837 0.8742 0.8695 0.7743 0.6058
0.5964 0.5845 0.6004 0.5225 0.5392

Skewness(X) Kurtosis(X)
0.1698 0.1421
0.4364 0.2624
0.1940 0.1788

Table 2: The ratio between feature range of data tables D̃r and D̃s and the feature range of data table D̃. Here X represents

the distance vector of the FFT features as explained in section 4.3.3.
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Figure 18: Particle under different rotations.
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6.4 Clustering algorithms

In section 6.3 the features were extracted such that clustering algorithms can be applied. Appendix ... shows
the score matrices after PCA for the data tables D̃, D̃s and D̃r.
From these score matrices and Table 3 it can be seen that we only need 5 components to explain 95% variance
in data. The loading values per feature are visible in Figure 19 and the score values can be seen in Appendix
A.5.1.

Figure 19: Loading values per feature

Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 Component 8 Component 9 Component 10
Percentage variance 58.7837 16.8911 11.6550 4.4278 3.8874 2.2237 0.8744 0.7309 0.3491 0.1770

Table 3: Percentage of variance explained by each of the components

As illustrated in Table 3 and pointed out in section 4.4 the first component explains most of the variance.
The absolute value of the loadings of the first component are relatively similar for all features, with the
exception of the eccentricity, which means that the contribution to the first component for these features
is high. When looking at the Figures in Appendix A.4.1 we can explain the negative values for the first
component of the Solidity and Ellipse error values, by considering that (in contrary to the other values) the
lower the value the more irregular the particle is. Furthermore, the loading of the second up to the fourth
component for the eccentricity is, in comparison to the other loading values for the second component, very
significant. Therefore all features play a significant role in the explanation of the variance in the data.
When observing the Figures in Appendix A.5.1, no distinguishable clusters are visible yet. However the
scaled and rotated data show to be compact within the range of the first, second and third components, with
some exceptions. This is important for the scale/rotation invariant assumption. However the fourth and
fifth component show some more spread data points. The scale/rotation invariant assumption is discussed
further in section 6.4.2.

6.4.1 Evaluation number of clusters

In order to determine the number of clusters and to investigate whether k-means or Gaussian mixture
models work best for clustering the results, we used both methods to cluster the results (see Figure 20 and
22 respectively).

K-means The ’elbow’ in Figure 20 is around 7 clusters, since the decline in total distance is a lot more
gradual after 7 clusters.
The I-index, CH and DB values are inconclusive as the I-index and CH get gradually better and the DB
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Figure 20: k-means evaluation for various number of clusters

Figure 21: Number of observations within each cluster for various amount of clusters in k-means

values oscillate between 0.7 and 0.8 as the amount of clusters inclines. Considering we suspect the optimal
amount of clusters is 7, given the elbow method, we look at the first local maximum/minimum after 6 clusters
(maximum for I-index and CH values and minimum for DB values). These are indicated in Figure 20.
The average silhouette values indicate that the optimal amount of clusters is 2. In Figure 21 we notice that
the second cluster, when considering 2 clusters, contains little to no observations. Therefore 2 clusters is
not a favorable option, as it does not actually split the data. The next highest silhouette values are for 3
or 4 clusters. However, these options only split the data in two significant clusters (see Figure 21) and the
silhouette value of 3-4 clusters does not differ much with the next highest silhouette value at 10 clusters.
Therefore 10 clusters is chosen as a more favorable option.
To conclude, the most interesting amount of clusters for k-means is 7, 10 and 12. Since 12 clusters gives the
best results in most evaluation methods, samples of the images of each cluster are presented in appendix
A.7.1.
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Figure 22: Gaussian mixture models evaluation for various number of clusters

Figure 23: Number of observations within each cluster for various amount of clusters in GMM

Gaussian mixture models Each evaluation method, with the exception of the silhouette, consequently
gives 16 clusters as the optimal result. The BIC, CH and DB values for 13 clusters are very similar to the
respective values for 16 clusters, which makes 13 clusters an appealing option.
The silhouette values are best for 2-4 clusters. However, these options only split the data in one or two
significant clusters (see Figure 23) and the silhouette value of 3-4 clusters does not differ much with the next
highest silhouette value at 7 clusters. Therefore 7 clusters is chosen as a more favorable option.
To conclude, the most interesting amount of clusters for GMM is 7, 13 and 16. Since 16 clusters gives the
best results in most evaluation methods, samples of the images of each cluster are presented in appendix
A.7.2.

Now that we’ve decided upon some preferred amount of clusters for both the k-means and Gaussian mixture
models clustering method, we assemble the corresponding evaluation values in Table 4 in order for us to
decide which clustering method gives the best results. Further it gives an overview of the best clustering
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results.

Silhouette Calinski-Harabasz Davies-Bouldin Total distance I-index BIC
kmeans, k=7 0.4478 2943.8187 0.7031 10387.4788 112.3290 NaN
kmeans, k=10 0.4794 3234.2605 0.7599 6893.4653 118.7719 NaN
kmeans, k=12 0.4716 3377.0604 0.7550 5575.0433 122.3895 NaN

GMM, k=7 0.3922 1234.8728 1.3588 NaN NaN 8083.6885
GMM, k=13 0.3270 2055.8553 1.0308 NaN NaN 6582.2426
GMM, k=16 0.3407 2068.3875 0.9787 NaN NaN 6377.2913

Table 4: Overview of the leading number of clusters for both kmeans and Gaussian mixture models

Each of the possible amount of clusters for k-means has better evaluation values with respect to the Gaussian
mixture model clusterings (seen in Table 4). This matter is debated further in the discussion of this section.
The favorable clusterings from Table 4 are visible in Appendices A.6.1 and A.6.2, by giving each cluster a
different color in the score data.

6.4.2 Evaluation scale/rotation invariant property method 2

In Figures 24 and 25 the bars at the correct cluster index have a black outline. In Figure 24 only 2 scaled
particles are not in the original cluster for each of the k-means clusterings. The wrongly clustered particles
had a scale of 0.01 and 0.02, which were the two lowest scaling values. Since the lowest gave the most dissimi-
lar feature values (see section 6.3), it is logical that the particle scaled with 0.01 or 0.02 is clustered differently.

In Figure 25 there are some wrongly clustered scaled particles, of which the scale is one of the lowest scaling
values, that are clustered wrongly. However for 16 clusters when the scale is 2, the particle is clustered wrong
as well. Moreover some of the rotated particles are in the wrong cluster.

Figure 24: Cluster index for rotated/scaled data after k-means clustering

Figure 25: Cluster index for rotated/scaled data after GMM clustering

In order to understand what goes wrong here, we want to know which component causes this error such that
we can hopefully link it to a certain feature. Therefore we use the obtained Gaussian models for 16 clusters
and limit it to one component space. Using only one component, we compute the percentage of wrongly
clustered scaled/rotated particles, i.e. the error.
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Component 1 Component 2 Component 3 Component 4 Component 5
Error for rotated particles 0 0 0 0 0.8528

Error for scaled particles (scale >1) 0 0 0 0 0.6965

Table 5: Percentage of wrongly clustered rotated/scaled particles when considering only one component space

From Figure 5 it becomes clear that the error for rotation and scaling is 0 for all components except the 5th.
Therefore the 5th component causes the rotated and scaled particles to be wrongly clustered. Therefore we
take a closer look at the dominant features of the fifth component. Looking at the loading values in Figure
19 the features that have a notable loading value for component 5 are compactness, ellipse error, HU5, HU6

and HU7. For these features we compare the original feature values of the particle without rotation or scaling
to the wrongly clustered particles with a rotation or scaling by calculating the distance between the feature
values obtained from data tables D̃, D̃s and D̃r. Since the data tables D̃, D̃s and D̃r are normalized we can
compare the distance values and see which feature gives the largest distance for the rotated particle.

Compactness Ellipse error HU 5 HU 6 HU 7
33 0.4250 0.0058 1.24E-06 0.0017 0.0003
34 0.3979 0.0269 2.78E-05 0.0012 0.0002
35 0.4272 0.0204 0.0002 0.0044 0.0002
56 0.4051 0.0187 1.24E-05 0.0018 0.0012
58 0.4318 0.0226 1.86E-05 0.0030 0.0011
67 0.4084 0.0066 0.0001 0.0065 0.0007
70 0.4236 0.0023 3.46E-05 0.0019 0.0013
123 0.4250 0.0094 2.35E-06 0.0026 0.0020
124 0.3979 0.0336 8.82E-06 0.0028 0.0020
125 0.4272 0.0240 0.0001 0.0065 0.0014
146 0.4051 0.0258 0.0001 0.0045 0.0004
148 0.4318 0.0332 0.0002 0.0060 0.0004
157 0.4084 0.0127 0.0001 0.0063 0.0004
160 0.4236 0.0123 8.90E-05 0.0032 0.0005
213 0.4250 0.0060 1.64E-05 0.0015 0.0006
214 0.3979 0.0243 4.70E-06 0.0013 0.0006
215 0.4272 0.0156 8.83E-05 0.0044 0.0004
236 0.4051 0.0242 2.57E-05 0.0018 0.0018
238 0.4318 0.0217 0.0001 0.0039 0.0016
247 0.4084 0.0090 4.38E-05 0.0027 0.0011
248 0.3841 0.0158 0.0002 0.0021 0.0012
250 0.4236 0.0079 3.83E-05 0.0014 0.0013
303 0.4250 0.0022 0.0004 0.0057 0.0036
304 0.3979 0.0260 0.0004 0.0055 0.0035
305 0.4272 0.0139 0.0001 0.0004 0.0025
326 0.4051 0.0163 0.0001 0.0037 0.0004
328 0.4318 0.0241 2.02E-05 0.0018 0.0005
337 0.4084 0.0056 1.72E-05 0.0007 0.0003
338 0.3841 0.0131 4.74E-05 0.0032 0.0005
340 0.4236 0.0093 0.0001 0.0047 0.0004

Table 6: Distance in feature values between original particle and particle under various rotation angles. The first column

represents the different rotation angles

Compactness Ellipse error HU 5 HU 6 HU 7
2 0.4654 0.0131 1.1754E-05 0.0009 0.0001

Table 7: Distance in feature values between original particle and particle under scaling. The first column represents the scale

In Tables 6 and 7 the highest distance for all the particles is highlighted which is the compactness feature.
Therefore we suspect that the compactness plays a role in the wrongly clustered particles. To support this
hypothesis, we set the loading value of the compactness feature for the 5th component to 0, then calculate
the new score values of the rotated particles and the original particle, and use the GMM clustering for 16
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clusters to determine the new cluster indexes. As we can see in Figure 26 the new cluster index is again
2, the rotated data is all clustered correctly and the scaled particle with scaling value 2 is also clustered
correctly. This supports the previous hypothesis that the compactness feature may cause the wrongly
clustered rotated/scaled particles.

Figure 26: Cluster index for rotated/scaled data after GMM clustering with the loading value of the compactness feature

set to 0 for the 5th component

6.4.3 Discussion

It is not a big revelation that the compactness feature caused some rotated/scaled particles to be clustered
improperly, since it correlates strongly with the formfactor which was removed as feature because of the same
reasoning. Additionally in Table 2 the compactness scored the highest of the remaining features. Lastly the
compactness value for scaled particles gives a high unexplained value in Appendix A.4.2, which explains the
wrong cluster for the scaled particle with scaling factor 2.
However this doesn’t necessarily imply that the compactness value should be left out. As was seen in section
6.3.2 the values differ for certain rotations because of the way the rotated particle is computed (seen in
Figure 18).

As mentioned before, there is no clear separation within the data and seen in the component values in
Appendix A.5.1. Therefore there is no clear answer to the question ’what is the optimal amount of clusters’
that can be observed with the naked eye. Either all particles are very similar or the feature extraction
method lacks some features that better separates the various particles.
The k-means clustering method scored better than Gaussian mixture models clustering for each of the
common evaluation methods. Nonetheless, there was no optimal amount of clusters within the k-means
method for the evaluation methods I-index and CH since the values kept increasing as the amount of
clustered advances. Using GMM clustering however, we did see an optimal amount of 16. Also when looking
at the definitions of these evaluation methods as spoken about in section 4.1.3 the k-means method might
have an advantage compared to the Gaussian mixture models, since the silhouette analysis, CH index and
DB criterion all consider either the distance between the clusters or the distance within the clusters. In these
evaluations either the distance between the observation and the cluster centroid/other observations should
be minimized within the cluster or the distance between observations or centroids of various clusters should
be maximized. Since the clusters of GMM might overlap and the GMM method considers variance within
the data these evaluation methods might disadvantage the GMM method beforehand. A solution should be
a different evaluation method o at least keeping this in mind when comparing the k-means method and the
GMM method.
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7 Conclusion
In section 2 we defined the following main question:

What are the advantages and disadvantages of two clustering methods with different cost-functions and
how can this be evaluated?

The general advantages of k-means were briefly discussed in section 4.1.1. These were the relatively low
complexity and the generally high computing efficiency. Disadvantages are that the method is sensitive to
outliers and works best for well separated data. There were some outliers in the data and the data was
rather accumulated (see Figures of score values in appendix A.6.1). This disadvantage is retrievable in the
evaluation of k-means in Figure 20, since:

1. The silhouette evaluation is best for low amounts of clusters but these clusterings only separate the
outliers;

2. The I-index, Calinski-Harabasz and Davies-Bouldin evaluation are inconclusive due to the accumulated
data.

Nonetheless the best evaluation values for k-means are higher than the best evaluation values for GMM for
each of the evaluations that were applied to both cluster methods. In section 4.1.2 the advantages of the

Gaussian mixture models were spoken about. In contrast to the k-means method, the GMM is able to find
underlying distribution of accumulated data. This was noticed in the evaluation of the method in Figure
22, where all, except the silhouette evaluation, evaluation methods pointed to the optimum of 16 clusters.
Nonetheless the evaluation values for 16 clusters with the GMM method are still slightly poorer than the
best clustering of the k-means method.
Therefore either the k-means method is a better method to the data or the evaluation methods are better
suited for the k-means method than the GMM method. Discussion on this matter can be found in ??.

Besides the main question, we considered mutliple sub-questions. All of these are answered accordingly:

1. Which part of the raw data is usable for this study and how can this be evaluated?

2. What is the best method to segment the particle in the image from the background?

3. What are the most interesting morphological features of the segmented particle?

4. What is the best suited clustering according to various evaluation methods?

1. Splitting (un)usable images The first step of the process, splitting of (un)usable images, showed
very promising results. Group 1, which was then used in the analysis, contained images that contained a
particle with a clear-cut shape outline. However a few particles within this group were still a bit vague (e.g.
Figure 32) and/or were only partly visible (e.g. Figure 35). Since we only look at the shape of the particle
in this study and we furthermore removed the images with partly visible particles, these particles did not
affect the study. However for further research that considers the texture of the particle, this may become an
issue. Lastly the amount of groups in the first step could be limited to two, considering that extraction of
features is complicated for too small particles as seen in section 6.3.1. Therefore the groups 2 and 3 can be
combined, as the group 2 images may give ambiguous results.

2. Image segmentation The second step, image segmentation, proposed a new and better method to
segment the particle out of the image using geodesic active contours. Visually the particles seemed to be
segmented well, but the method does use a smoothing factor which may effect the roughness of each particle.
This issue should be addressed in future research.

3. Feature extraction In the third step of the process, feature extraction, we noticed that almost all
roughness descriptors had the same rough particle outliers while the other data was a bit cluttered as seen in
appendix A.4.1. This was also visible in the scoring values in appendix A.5.1. Therefore the current features
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may not have been sufficient to split the data. Some features were removed due to suspicion in scaling and
rotation variance. In section 7.1 some new features are proposed.

4. Clustering Most of the evaluation methods in the clustering section, which is the last step of the
process, implied that 12 clusters was the optimal amount of clusters for the k-means method when considering
only 7, 10 and 12 as options. Nonetheless the evaluation values of the I-index, CH and DB improved as
the amount of clusters inclined. The GMM method suggested an optimal solution of 16 clusters, while 13
clusters was a close second as the evaluation values of 13 clusters were close to those of 16 clusters. According
to silhouette evaluation 7 clusters was a better option than 13 and 16.

7.1 Recommendations

Overall recommendation zal zijn om nog meerdere clustering methods te bekijken

Below some recommendations are given for further research. These are split into the four steps of the
case study, each referring back to a sub-questions: splitting (un)usable images, image segmentation, feature
extraction and clustering

1. Splitting (un)usable images As mentioned above, the groups 2 and 3 can be merged. Plus the
splitting method could use an enhancement that determines whether the particle contained in the image has
a clearly visible texture. A proposed method is to segment the image and look at the pixel-values within the
segmentation. Another option is to consider more images of the same particle which may include a better
visible texture.

2. Image segmentation The active contour method can be adapted to exclude the smoothing of the
particles boundary. This will likely result in better distinction in the roughness of each particle. The
segmentation method proposed in this study can be used to detect an initial contour.

3. Feature extraction Since some features that considered the roughness of the particle were dependent
the size and/or orientation of the particle, new roughness descriptors could be examined as advanced features.
Drolon et al. [11] propose the harmonic wavelet transform as a new roughness descriptor for sediment
particles. The data structure that they use is very similar to the structure of our data, which may imply
that the roughness descriptors can be beneficial to our study as well. Moreover there are multiple roughness
descriptors in ”The image processing handbook” that can improve the results [28]. For example, different
definitions of compactness are proposed, and it is possible that some of them are more suitable for the specific
application.

4. Clustering It is recommended to first perform the feature extraction and clustering algorithms on more
images (as we only used 5.000 of 27.779 images now) in order to know whether the results of the clustering are
somewhat similar and whether the k-means method is unambiguous about the optimal amount of clusters.
Furthermore other clustering methods can be considered as there is no determined wrong or right clustering
method. To quote Anil K Jain writer of the paper ”Data clustering: 50 years beyond K-means”: ”The above
discussion underscores one of the important facts about clustering; there is no best clustering algorithm.
Each clustering algorithm imposes a structure on the data either explicitly or implicitly. When there is
a good match between the model and the data, good partitions are obtained. Since the structure of the
data is not known a priori, one needs to try competing and diverse approaches to determine an appropriate
algorithm for the clustering task at hand. This idea of no best clustering algorithm is partially captured by
the impossibility theorem [17], which states that no single clustering algorithm simultaneously satisfies a set
of basic axioms of data clustering.” [16]
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Appendices

A Figures

A.1 Gradient image segmentation method

Figure 27: Sample gradient image segmentation method

A.2 Removed images

Figure 28: Removed images during image segmentation
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A.3 Splitting (un)usable images

Figure 29: Sample images 1.1

Figure 30: Sample images 1.2

Figure 31: Sample images 1.3
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Figure 32: Sample images 2.1

Figure 33: Sample images 2.2

A
Figure 34: Sample images 2.3
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Figure 35: Sample images 3.1

Figure 36: Sample images 3.2

Figure 37: Sample images 3.3
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A.4 Feature extraction

A.4.1 Features sample

Figure 38: Sample images with different Eccentricity values

Figure 39: Sample images with different Ellipse error values

Figure 40: Sample images with different Formfactor values
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Figure 41: Sample images with different Compactness values

Figure 42: Sample images with different Solidity values

Figure 43: Sample images with different first HU moment values
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Figure 44: Sample images with different values of ’a’ where P(X < a) = 0.0 and X is the distance factor between the original

contour and the FFT estimate

Figure 45: Sample images with different mean values of the distance between the original contour and the FFT estimate
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A.4.2 Feature values under rotation and scaling

46



A.5 Principal component analysis

A.5.1 Score values

A.6 Clusters in components

A.6.1 k-means
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A.6.2 Gaussian mixture models
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A.7 Cluster images

A.7.1 k-means 12 clusters
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A.7.2 GMM 16 clusters
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B MATLAB code

B.1 Image histogram analysis

1 f unc t i on [ data tab l e , group 1 , group 2 , group 3 ] = sp l i t s e c ond peak ( imds , indexes , mu upperbound ,
min prominence )

2 %% Explanation
3 % Sp l i t s the images o f the imagedatastore based on the the histogram of the
4 % grey va lues . As the background o f the images i s black , the f i r s t peak o f
5 % the histogram w i l l be the l a r g e s t and he i ghe s t . For the images
6 % conta in ing only noise , the f i r s t peak w i l l be the only peak . The
7 % s p l i t t i n g in to groups w i l l be based on the prominence o f the second peak
8 % and the mean value o f the grey va lues .
9

10 % The algor i thm i s based on a few assumptions . The f i r s t peak i s the
11 % la rg e s t , s t a r t s in po int 0 and i s symmetrical . The index o f the second
12 % peak i s t h e r e f o r e twice the index o f the maximum of the histogram .
13

14 % From the index o f the f i r s t peak un t i l the end o f the histogram , i t
15 % sea r che s f o r a second peak . I t does t h i s by look ing f o r at most 2 peaks
16 % of at l e a s t width 8 . The prominence o f each peak i s then ca l cu l a t ed by
17 % taking the he ight o f the peak and deduct ing the minimum that i s obtained
18 % between the end o f the f i r s t peak and the cur rent peak . In case there are
19 % two peaks , the most prominent one w i l l be seen as the o f f i c i a l second
20 % peak .
21

22 %% Function
23 % I n i t i a l i z e the p r op e r t i e s needed f o r s p l i t t i n g
24 varNames = { ’mu ’ , ’ prominence ’ } ;
25 data = ze ro s ( [ l ength ( indexes ) l ength ( varNames ) ] ) ;
26

27 f o r i i= 1 : l ength ( indexes )
28 f i l ename = ce l l2mat ( imds . F i l e s ( indexes ( i i ) ) ) ;
29 I = imread ( f i l ename ) ;
30

31 % Calcu la te the mean o f a l l the grey−va lues
32 data ( i i , 1 ) = mean2( I ) ;
33

34 % Def ine the counts o f f each grey−value and de f i n e the maximum of the
35 % histogram
36 [ counts , ˜ ] = imhis t ( I ( : ) ) ;
37 [ ˜ , max index ] = max( counts ) ;
38

39 % Based on the assumption that the f i r s t peak s t a r t s in 0 and i s
40 % symmetric , we de f i n e the end o f the peak as twice the max index
41 end peak = 2∗max index ;
42

43 % The end o f the histogram i s at po int 256 , so i f we want at l e a s t the
44 % po s s i b i l i t y f o r 2 peaks o f width 8 , the end o f the f i r s t peak should
45 % be below 240 .
46 i f end peak <= 240
47 % I f the re are 2 peaks we want them to be as f a r apart as p o s s i b l e .
48 % There fore the width o f the peaks i s s e t to ha l f o f the indexes
49 tmp = f l o o r ((255− end peak ) /2) ;
50 [ max height 2 , max index 2 , ˜ , ˜ ] = f indpeaks ( counts ( end peak : end−1) , end peak :255 , ’

WidthReference ’ , ’ h a l f h e i gh t ’ , ’NPeaks ’ ,2 , ’ MinPeakDistance ’ , tmp) ;
51 nmr peaks = length ( max height 2 ) ;
52 e l s e
53 nmr peaks = 0 ;
54 max height 2 = NaN;
55 max index 2 = NaN;
56 end
57

58 % When there i s only 1 peak detected , the prominence i s c a l c u l a t ed l i k e
59 % desc r ibed above .
60 i f nmr peaks == 1
61 max prom 2 = max height 2 − min( counts ( end peak : max index 2 ) ) ;
62

63 % When there are 2 peaks , the prominence i s c a l c u l a t ed l i k e de s c r ibed above
64 % and the he i ghe s t prominence i s de f ined as the second peak .
65 e l s e i f nmr peaks == 2
66 max prom 2 = max( ( max height 2 (1 ) − min( counts ( end peak : max index 2 (1) ) ) ) , . . .
67 ( max height 2 (2 ) − min( counts ( end peak : max index 2 (2) ) ) ) ) ;
68 e l s e
69 max prom 2 = NaN;
70 end
71 data ( i i , 2 ) = max prom 2 ;
72

73 end
74 % Create a tab l e with a l l the v a r i a b l e s

55



75 da ta tab l e = ar ray2 tab l e ( data , ’ VariableNames ’ , varNames ) ;
76 group = ze ro s ( s i z e ( indexes ) ) ;
77 da ta tab l e = [ t ab l e ( indexes ) , data tab l e , t ab l e ( group ) ] ;
78

79 % Sp l i t the group based on the min prominence and mu upperbound
80 da ta tab l e . group ( da ta tab l e . prominence > min prominence ) = 1 ;
81 da ta tab l e . group ( da ta tab l e . group==0 & data tab l e .mu < mu upperbound ) = 2 ;
82 da ta tab l e . group ( da ta tab l e . group==0) = 3 ;
83

84 % Create ar rays o f a l l the indexes per group .
85 group 1 = data tab l e . indexes ( da ta tab l e . group==1) ;
86 group 2 = data tab l e . indexes ( da ta tab l e . group==2) ;
87 group 3 = data tab l e . indexes ( da ta tab l e . group==3) ;
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B.2 Image segmentation

B.2.1 Gradient threshold

1 f unc t i on [ DSize , contX , contY , imOut , mask ] = measureG7subPart ( f i l ename )
2 img = imread ( f i l ename ) ;
3 img = double ( img ) /max( double ( img ( : ) ) ) ;
4 imOut = img ;
5

6 %Using the mean value per p i x e l seems to
7 % work be t t e r than the max
8 %% Use SEM FOV and image s i z e to c a l c u l a t e area p i x e l
9

10 i n f o = imf i n f o ( f i l ename ) ;
11 tmp = in f o .XMP;
12 f = s t r f i n d (tmp , ’<xapGImg : p i x e l s i z e > ’ ) ;
13 g = s t r f i n d (tmp , ’</xapGImg : p i x e l s i z e > ’ ) ;
14 s t r = tmp( f +19:g−1) ;
15

16 % [ images i ze ] = FindSEM FOV( f i l ename ) ;
17 % FOVx = images i ze (1 ) ;
18 % FOVy = images i ze (2 ) ;
19 PixelX = st r2doub l e ( s t r ) /1000;
20 PixelY = st r2doub l e ( s t r ) /1000;
21 PixelArea = PixelX∗ PixelY ; %in um2
22 %% Use a 2D moving average f i l t e r to su rp r e s s no i s e
23 windowSize = 7 ;
24 crop = (windowSize−1) /2 ;
25 ke rne l = ones ( windowSize ) /windowSize ˆ2 ;
26 img = conv2 ( img , kerne l , ’ v a l i d ’ ) ;
27 %% Calcu la te g rad i ent o f the image and normal ize
28 [FX,FY] = grad i ent ( img ) ;
29 tmp = sqr t (FX.ˆ2+FY.ˆ2 ) ;
30 tmp = tmp−min(tmp ( : ) ) ;
31 img = tmp/max(tmp ( : ) ) ;
32 %% Find best th r e sho ld value to de t ec t g rad i ent o f p a r t i c l e , based on algor i thm G4Sizer
33 s t ep s = 0 : . 0 1 2 5 : . 3 ;
34

35 b i gg e s t = NaN( length ( s t ep s ) ,1 ) ;
36 idx = NaN( length ( s t ep s ) ,1 ) ;
37 CC. Connect iv i ty=4; %I n i t i a l i z e the CC s t ru c t in s t ead o f growing i t
38 CC. ImageSize = [ 0 , 0 ] ;
39 CC. NumObjects=0;
40 CC. P ix e l I dxL i s t= c e l l ( 1 , 0 ) ;
41 CC( length ( s t ep s ) ) . Connect iv i ty=4;
42 f o r j = 1 : 1 : l ength ( s t ep s )
43 BW = im2bw( img , s t ep s ( j ) ) ;
44 BW = im f i l l (BW, ’ ho l e s ’ ) ;
45

46 CC( j ) = bwconncomp(BW,4 ) ;
47 numPixels = c e l l f u n (@numel ,CC( j ) . P i x e l I dxL i s t ) ;
48 i f isempty ( numPixels )
49 b i gg e s t ( j ) = NaN;
50 idx ( j ) = 1 ;
51 e l s e
52 [ b i g g e s t ( j ) , idx ( j ) ] = max( numPixels ) ;
53 end
54

55 end
56

57 db = d i f f ( b i g g e s t ) ;
58 l e v e l = f i nd (db==min(db) ) ;
59 stab = f ind (db( l e v e l : end )> nanmean(db) ,1 ) ;
60 l e v e l=stab+l e v e l ;
61 l e v e l = s t ep s ( l e v e l ) ;
62 %% After th r e sho ld has been determined perform f i n a l s i z i n g
63 BW = im2bw( img , l e v e l ) ;
64 BW = im f i l l (BW, ’ ho l e s ’ ) ;
65 BW = imerode (BW, true ( s i z e ( ke rne l ) ) ) ; %Compensate f o r smoothing the data
66

67 CC = bwconncomp(BW,4 ) ;
68 numPixels = c e l l f u n (@numel ,CC. P ix e l I dxL i s t ) ;
69 [ b igges t , idx ] = max( numPixels ) ;
70 i f ˜ isempty ( idx )
71 IND = CC. P ix e l I dxL i s t { idx } ;
72 [ y , x ] = ind2sub ( s i z e (BW) ,IND) ;
73 t ry
74 k=boundary (x , y , 1 ) ; %Calcu la te the t i gh t contour o f the p a r t i c l e
75 DefectArea = b i gg e s t ∗PixelArea ;
76 DSize = sq r t ( DefectArea / pi ( ) ) ∗2 ;
77 DSize=round ( DSize ∗1000) /1000;
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78 contX=x(k )+crop ;
79 contY=y(k )+crop ;
80

81 imOut = imread ( f i l ename ) ;
82 mask=f a l s e ( s i z e ( imOut) ) ;
83

84 temp = f a l s e ( s i z e (BW) ) ;
85 temp(IND) = true ;
86 mask = f a l s e ( s i z e ( temp , 1 )+2∗crop ) ;
87 mask(1+crop : end−crop ,1+ crop : end−crop ) = temp ;
88

89 mask = bwareaopen (mask , 50) ;
90 imOut(˜mask) = 0 ;
91

92 catch except ion
93 disp ( ’ e r r o r ’ )
94 end
95 end
96

97 end
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B.2.2 Activecontour

1 f unc t i on [ mask , edge , contX , contY , imOut ] = remove back ( f i l ename )
2 %% Explanation
3 %Remove back i s a func t i on to determine the contour o f an image . Based on
4 %an C l a s s 1 I n t e r n a l SEM−image o f the pa r t i c l e , i t gather s Topography
5 %images to look at the p a r t i c l e from d i f f e r e n t ang l e s . There fore the
6 %f i l ename should be an C l a s s 1 I n t e r n a l SEM−image or otherwi se the func t i on
7 %give s an e r r o r .
8 % Fi r s t the fucnt i on dec ide s whether the e n t i r e p a r t i c l e i s v i s i b l e in
9 % the image . I t b i n a r i z e s the o r i g i n a l i n t e r n a l image and s e e s whether

10 % there are t rue va lues at the edge o f the image . When t h i s i s the case ,
11 % not the e n t i r e p a r t i c l e i s v i s i b l e and ’ edge ’ w i l l r e turn as t rue .
12 % Secondly a rough i nd i c a t i o n o f the border i s made with the help o f
13 % a gradient , done by measureG7subPart .
14 % Thirdly , the d i f f e r e n t topography images are loaded and the average o f
15 % each p i x e l i s c a l c u l a t ed to even out the no i s e in each d i r e c t i o n and to
16 % obtain a grey area which i s c l o s e to the mask o f the o r i g i n a l p a r t i c l e .
17 % Then the image i s smoothened a b i t to cance l out some no i s e and a
18 % binary image i s c r eated . The binary i s c o r r e c t ed with the rough f i t o f
19 % the contour in the f i r s t s tep .
20 % Then l a s t l y ac t i v e contour i s used to gain a smooth mask o f the o r i g i n a l
21 % image us ing the method ’ edge ’ . This i s the f i n a l mask . Of that mask the
22 % contour i s deducted and imOut i s adjusted so that only the p a r t i c l e i s
23 % v i s i b l e .
24

25 %% Function
26 I = imread ( f i l ename ) ;
27 imOut = I ;
28 tmp = imbinar i z e ( I ) ;
29 tmp = bwa r e a f i l t (tmp , 1) ;
30 tmp ( 2 : end−1 ,2: end−1)= f a l s e ;
31 edge = l o g i c a l (sum(tmp , ’ a l l ’ ) ) ;
32

33 [ ˜ , ˜ , ˜ , ˜ , mask ] = measureG7subPart ( f i l ename ) ;
34

35 I 1 = imread ( s t r r e p ( f i l ename , ” I n t e r na l ” ,”Topography1 ”) ) ;
36 I 2 = imread ( s t r r e p ( f i l ename , ” I n t e r na l ” ,”Topography2 ”) ) ;
37 I 3 = imread ( s t r r e p ( f i l ename , ” I n t e r na l ” ,”Topography3 ”) ) ;
38 I 4 = imread ( s t r r e p ( f i l ename , ” I n t e r na l ” ,”Topography4 ”) ) ;
39 I new = ( I 1+I 2+I 3+I 4 ) /4 ;
40 I new = wiener2 ( I new , [ 5 5 ] ) ;
41 bw = imbinar i z e ( I new ) ;
42

43 bw(˜mask)=0;
44 bw = im f i l l (bw, ’ ho l e s ’ ) ;
45 mask = act ivecontour ( I new ,bw, ’ edge ’ ) ;
46

47 [ y , x ] = f i nd (mask) ;
48 k =boundary (x , y , 1 ) ;
49 contX=x(k ) ;
50 contY=y(k ) ;
51 contX=[contX ; contX (1) ] ;
52 contY=[contY ; contY (1) ] ;
53 imOut(˜mask)=0;
54

55 end
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B.3 Feature Extraction

1 f unc t i on [ data tab l e , removed indexes ] = f e a t u r e e x t r a c t i o n ( imds , indexes , FFT N, q va lues ,
fLocat ion , fP r i n t )

2 %% Explanation
3 %Featu r e ex t r a c t i on ex t r a c t s a l l the f e a t u r e s o f the input images and
4 %( opt i ona l ) outputs them in a f o l d e r with i n d i c a t i o n s o f the f e a t u r e s .
5 % Al l the cur rent f e a t u r e s that the a lgor i thm ext ra c t are named below by
6 % varNames .
7

8 % The f e a t u r e s that are c a l c u l a t ed can be deduced to 4 sub j e c t area ’ s :
9 % 1. Features ’ Perimeter ’ , ’ Area ’ , ’ ConvexArea ’ , ’ Compactness ’ and

10 % ’ So l i d i t y ’ are d e s c r i p t i o n s o f the mask , where the f i r s t three are
11 % var iant to the s i z e o f the p a r t i c l e and ’ Compactness ’ and ’ S o l i d i t y are
12 % not . To read more about these f e a t u r e s v i s i t
13 % ’ http ://www. cyto . purdue . edu/cdroms/micro2/ content / educat ion /wirth10 . pdf ’
14

15 %2. ’ Ef ’ and ’Ec ’ d e s c r i b e the f i t o f the p a r t i c l e to an e l l i p s e . How the
16 % e l l i p s e i s f i t t e d can be read in f i t e l l i p s e . Ef i s the goodness o f the
17 % f i t and Ec i s the e c c e n t r i c i t y i e . how e longated or round the p a r t i c l e i s
18

19 %3. ’HU’ r e f e r s to HU’ s i nva r i an t moments . How the func t i on works i s best
20 % desc r ibed in ’ SI Moment ’ and ’Hu Moments ’ . More in fo rmat ion on the
21 % sub j e c t can be found here :
22 % ’ https :// en . wik iped ia . org /wik i /Image moment#Moment invariants ’
23

24 %4. The l a s t sub j e c t area i s the Fast Four ie r Transform . This i s an
25 % approximation o f the ac tua l contour with a c e r t a i n Amps r e s t r i c t i o n .
26 % ’FFT N’ g i v e s us number o f Amps that can be used , t h e r e f o r e you r e s t r i c t
27 % the goodness o f the f i t i f the number i s somewhat low . Then the f i t w i l l
28 % be l e s s good f o r the p a r t i c l e s that have more ampl itudes than the number
29 % given in ’FFT N. Of t h i s contour we c a l c u l a t e the ac tua l amps and the
30 % di s tance between ac tua l contour and the FFT−contour . The d i s t ance w i l l
31 % give a numerica l exp r e s s i on o f how i r r e g u l a r the p a r t i c l e shape i s . Of
32 % th i s d i s t ance the quan t i l e g iven by ’ q va lues ’ and the f i r s t f our moments
33 % are c a l cu l a t ed .
34

35 %% Function
36 % Set the names o f the v a r i a b l e s and the c e l l ’ data ’ that w i l l c o l l e c t a l l
37 % the f e a t u r e s .
38 varNames = { ’ indexes ’ ; ’ Area ’ ; ’ ConvexArea ’ ; ’ S o l i d i t y ’ ; ’ Per imeter ’ ; ’ Compactness ’ ; . . .
39 ’ Ef ’ ; ’Ec ’ ; ’HU’ ; ’NAmpsFFT ’ ; ’ D i s tQuant i l e s ’ ; ’ DistMoments ’ } ;
40 data = ze ro s ( [ l ength ( indexes ) 4 7 ] ) ;
41 emptyRows = ze ro s ( s i z e ( indexes ) ) ;
42

43 f o r i i =1: l ength ( indexes )
44 f i l ename = ce l l2mat ( imds . F i l e s ( indexes ( i i ) ) ) ;
45 t ry
46 % Extract the contour us ing remove back algor i thm
47 [ mask , edge , contX , contY , imOut ] = remove back ( f i l ename ) ;
48

49 % The l o g i c a l va lue ’ edge ’ i s 1 when the p a r t i c l e i s not f u l l y v i s a b l e
50 % and 0 when i t i s f u l l y v i s a b l e .
51 % When edge i s true , we cont inue and do not c a l c u l a t e the shape f e a t u r e s
52 i f edge
53 % The index w i l l not be used f o r c l u s t e r i n g .
54 emptyRows( i i ) = 1 ;
55 cont inue
56 end
57

58 % Calcu la te s o l i d i t y and compactness based on the area , per imeter and
59 % convexarea . Even though we ( probably ) do not want to c l u s t e r in
60 % area , per imeter and convexarea we do gather the data .
61 measurement = reg ionprops (maskO , ’ Area ’ , ’ ConvexArea ’ , ’ S o l i d i t y ’ , ’ Per imeter ’ ) ;
62

63 % When the mask c o n s i s t s o f mu l t ip l e p a r t i c l e s , the measurement s i z e
64 % w i l l be l a r g e r than 1 . This c o n f l i c t s with the assumption that only
65 % one p a r t i c l e i s v i s i b l e in the image , so the p a r t i c l e w i l l not be
66 % observed f o r c l u s t e r i n g
67 i f l ength (measurement ) > 1
68 % The index w i l l not be used f o r c l u s t e r i n g .
69 emptyRows( i i ) = 1 ;
70 cont inue
71 end
72

73 measurement . Compactness = (measurement . Per imeter ˆ2) /measurement . Area ;
74

75 % Safe the data . Remember that the f e a t u r e s are in a l phabe t i c a l order !
76 data ( i i , 1 : 5 ) = tab l e2a r ray ( s t r u c t 2 t ab l e (measurement ) ) ;
77

78 % Fit an e l l i p s e to the cur rent contour

60



79 [ e l l i p s e t , x , y ] = f i t e l l i p s e ( contX , contY ) ;
80

81 % Create a mask o f the e l l i p s e and an overlap mask that i s t rue f o r a l l
82 % the p i x e l s that are t rue in both the mask o f the e l l i p s e and the mask
83 % of the p a r t i c l e
84 mask e l l i p s e = poly2mask (x , y , s i z e ( imOut , 2 ) , s i z e ( imOut , 1 ) ) ;
85 over lap masks = mask e l l i p s e & mask ;
86

87 m e l l i p s e = reg ionprops ( mask e l l i p s e , ’ Area ’ ) ;
88 m overlap = reg ionprops ( overlap masks , ’ Area ’ ) ;
89

90 % Calcu la te the e r r o r o f the f i t
91 data ( i i , 6 ) = m overlap . Area /( m e l l i p s e . Area + measurement . Area − m overlap . Area ) ;
92

93 % Calcu la te the e c c e n t r i c i t y o f the e l l i p s e
94 data ( i i , 7 ) = sq r t (1−(( e l l i p s e t . s h o r t a x i s ˆ2) /( e l l i p s e t . l o n g ax i s ˆ2) ) ) ;
95

96 %Calcu la te HU’ s moments .
97 eta = SI Moment (mask , mask ) ;
98 inv moments = Hu Moments ( eta ) ;
99 data ( i i , 8 : 1 4 ) = inv moments ;

100

101 % Fit an FFT contour to the ac tua l contour us ing the input ’FFT N’ f o r
102 % the amount o f ampl itudes
103 [ FFTcontX , FFTcontY ,NAmps] = FFTContour ( contX , contY ,FFT N) ;
104 data ( i i , 1 5 : 2 2 ) = NAmps ’ ;
105

106 % We ca l c u l a t e the d i s t ance between the FFTcontour and the ac tua l
107 % contour . Of these d i s t ance we c a l c u l a t e the quan t i l e s o f the input
108 % ’ q va lues ’ and the f i r s t 4 moments o f the d i s t ance va lues
109 d i s t = sq r t ( ( contX−FFTcontX) .ˆ2+( contY−FFTcontY) . ˆ 2 ) ;
110 data ( i i , 2 3 : 4 3 ) = quant i l e ( d i s t , q va lue s ) ;
111 data ( i i , 4 4 : 4 7 ) = [mean( d i s t ) , var ( d i s t ) , skewness ( d i s t ) , k u r t o s i s ( d i s t ) ] ;
112

113 % When there e x i s t s a l o c a t i o n va r i ab l e ’ fLocat ion ’ , we want to p r in t
114 % the images with t h e i r cor responding f e a t u r e s
115 i f e x i s t ( ’ fLocat i on ’ , ’ var ’ )
116 % Replace the f i r e c t o r y o f the image from ASML database to the
117 % d i r e c t i o n ’ fLocat ion ’ that i s g iven in the input . I n s e r t the
118 % index o f the image in the imageDatastore in the name
119 fOut = replaceBetween ( f i l ename , 1 , s t r f i n d ( f i l ename , ’ Defect ’ )−1, fLocat ion ) ;
120 fOut = in s e r tBe f o r e ( fOut , ’ Defect ’ , [ ’Number( ’ , num2str ( indexes ( i i ) ) , ’ ) ’ ] ) ;
121

122 % When the va r i ab l e ’ fPr int ’ i s s e t to mask , we want to p r in t the
123 % mask with the f e a t u r e s added . Any other input g i v e s the o r i g i n a l
124 % in t e r n a l . t i f f image from the imageDatastore
125 i f c onta in s ( fPr int , ’mask ’ )
126 pr in t = mask ;
127 fOut = in s e r tBe f o r e ( fOut , ’Number ’ , ’Mask ’ ) ;
128 e l s e
129 pr in t = f i l ename ;
130 end
131

132 % Extract the va lues from the data that you have gathered .
133 p l o t t e x t = { [ ’ compactness ’ , num2str ( data ( i i , 4 ) ) ] , [ ’ s o l i d i t y ’ , num2str ( data ( i i , 5 ) ) ] , . . .
134 [ ’ e f ’ , num2str ( data ( i i , 6 ) ) ] , [ ’ ec ’ , num2str ( data ( i i , 7 ) ) ] , [ ’ d i s t−m ’ , num2str ( data ( i i , 4 4 ) )

] , . . .
135 [ ’ d i s t−v ’ , num2str ( data ( i i , 4 5 ) ) ] , [ ’ d i s t−s ’ , num2str ( data ( i i , 4 6 ) ) ] , [ ’ d i s t−k ’ , num2str ( data (

i i , 4 7 ) ) ] } ;
136

137 % Star t y s t a t e s where the text beg ins on the y−ax i s and the
138 % s t e p s i z e y i n d i c a t e s how much space there i s between two text
139 % l i n e s on the y−ax i s . The s t a r t o f the text i s always 1 on the
140 % x−ax i s
141 s t a r t y = 6 ;
142 s t e p s i z e y = 16 ;
143 nmr groups = length ( p l o t t e x t ) ;
144 p l o t x = ones (1 , nmr groups ) ;
145 p l o t y = s t a r t y : s t e p s i z e y : s t a r t y−1+s t e p s i z e y ∗nmr groups ;
146

147 % We w i l l p r i n t the image ( v i s i b i l i t y i s o f f ) and c o l l e c t the
148 % framework o f the p r in t . This framework i s the data we a c tua l l y
149 % wri te to the d i r e c t o r y .
150 f i g u r e ( ’ v i s i b l e ’ , ’ o f f ’ )
151 imshow( pr in t )
152 hold on
153 p lo t (FFTcontX , FFTcontY , ’ g− ’ , ’ LineWidth ’ , 0 . 7 5 ) ;
154 p lo t (x , y , ’ r−. ’ , ’ LineWidth ’ , 0 . 7 5 ) ;
155 t ext ( p lot x , p lot y , p l o t t ex t , ’ Hor izontalAl ignment ’ , ’ l e f t ’ , ’ FontSize ’ ,9 , ’ Color ’ , ’b ’ )
156 hold o f f
157 F = getframe ;
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158 imwrite (F . cdata , fOut )
159

160 % Make sure to c l o s e a l l f i g u r e s ! Otherwise the a lgor i thm w i l l s low
161 % down f o r a l o t o f indexes .
162 c l o s e a l l
163 end
164

165 catch
166 % When any o f the prev ious s t ep s f a i l s , the index w i l l be pr inted
167 % fo r debugging . Also the index w i l l not be used f o r c l u s t e r i n g .
168 disp ( [ ’ Fa i l ed at : ’ num2str ( i i ) ] )
169 emptyRows( i i ) = 1 ;
170 end
171 end
172 % We cr ea t e a da ta tab l e conta in ing the f e a tu r e names and va lues o f the
173 % pa r t i c l e s that were f u l l y v i s i b l e .
174 % Fi r s t we check i f the re are any emptyRows
175 i f sum(emptyRows)==0
176

177 % I f no , we removed indexes as an empty array and c r ea t e a da ta tab l e
178 % of a l l the f e a t u r e s and t h e i r cor responding index
179 removed indexes = [ ] ;
180 da ta tab l e = ar ray2 tab l e ( [ indexes , data ] ) ;
181 e l s e
182 % I f yes , we c r ea t e a da ta tab l e o f l l the f e a t u r e s and t h e i r
183 % correspond ing index , without the emptyRows . removed indexes are the
184 % indexes that were not f u l l y v i s i b l e .
185 removed indexes = indexes ( emptyRows) ;
186 da ta tab l e = ar ray2 tab l e ( [ indexes (˜emptyRows) , data (˜emptyRows , : ) ] ) ;
187 end
188 % Some o f the f e a t u r e s have mul t ip l e columns in the tab l e . We merge these
189 % so that i t i s c l e a r these columns are part o f one and the same c l u s t e r .
190

191 % Merge HU’ s moments
192 da ta tab l e = mergevars ( data tab l e , 9 : 1 5 ) ;
193 % Merge NAmps o f the FFT contour
194 da ta tab l e = mergevars ( data tab l e , 1 0 : 1 7 ) ;
195 % Merge the d i s t ance quan t i l e s
196 da ta tab l e = mergevars ( data tab l e , 1 1 : 3 1 ) ;
197 % Merge the d i s t ance moments
198 da ta tab l e = mergevars ( data tab l e , 1 2 : 1 5 ) ;
199

200 % Now we add the variableNames .
201 da ta tab l e . P rope r t i e s . VariableNames = varNames ;
202 end
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B.3.1 FFT contour

1 f unc t i on [ FFTcontX , FFTcontY ,NAmps] = FFTContour ( contX , contY ,N)
2 % Input
3 % contX : x component o f a c l o s ed contour contX (1) = contX ( end )
4 % contY : y component o f a c l o s ed contour contY (1) = contY ( end )
5 % N: Number o f f requency components be s i d e s the DC term (N=10 should be
6 % s u f f i c i e n t )
7 % Output
8 % FFTcontX : x component o f a c l o s ed contour a f t e r FFT f i l t e r i n g
9 % FFTcontY : y component o f a c l o s ed contour a f t e r FFT f i l t e r i n g

10 % NAmps: Normalized ampl itudes o f f i r s t and l a s t N components in the
11 % frequency domain
12 Z = contX+1 i ∗contY ;
13 Z=Z( 1 : end−1) ;
14 FT = f f t (Z) ;
15

16 FT(N+2:end−N) = 0 ;
17

18

19 Z2 = i f f t (FT) ;
20 FFTcontX = r e a l (Z2 ) ;
21 FFTcontY = imag (Z2) ;
22 FFTcontX( end+1) = FFTcontX(1) ;
23 FFTcontY( end+1) = FFTcontY(1) ;
24 NAmps = [ abs (FT( 2 :N+1) ) ; abs (FT( end−N+1:end ) ) ] / abs (FT(2) ) ;
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