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Abstract

This bachelor final project is motivated by a problem of quantum devices. Some elements (qubits
and gates) in the quantum devices are said to be degrading and thus unreliable. Therefore,
experiments are done. After some time t, one observes whether such an element is broken or not.
The probability that the element is broken is denoted by f(t), which is a function that is assumed
to be linear for small values of t. Two problems will be considered. Can we test if the function f
is linear in the range of times we observed? And can we estimate the derivative of f at 0, with
and without making further assumptions on this function? To test if the function f is linear, a
bootstrap method is used. The quality of this bootstrap method is analyzed using simulations.
An estimator of the derivative of f at 0 is determined, under the assumption that f is linear.
Finally, the intervals method is defined. This method gives an estimate of the derivative of f(t) at
0 without making assumptions on f . This method is based upon a sequence of estimates and its
confidence intervals. It selects the estimate which uses as much as possible observations and at the
same time is in all confidence intervals of previous estimates (which use less observations). Overall,
this report gives some insight in how the behavior of the degrading elements can be investigated.
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Chapter 1

Introduction and problem
definition

1.1 Introduction

Quantum computers and related quantum devices are believed to be able to address scientific chal-
lenges that current technology can not tackle at this moment. Some examples of these problems
can be found in the article written by Loeffler [4]. One of the application areas is the financial
services. Due to the computational power of a quantum computer, significantly more variables can
be added to the existing models. This will make these models more precise. Other problems that
will be solved by a quantum device are optimization problems. Solving the optimization problems
will help in many application areas such as supply chain logistics. Furthermore, according to the
report [5] the main motivation behind developing a quantum computer is solving Shor’s algorithm
which gives the prime factors of an integer.

Quantum technology can be categorized into four different application areas. These are
‘quantum computing, quantum simulation, quantum communication and quantum sensing’[1].
A brief explanation of each of the four application areas will be given.

A quantum computer has qubits which essentially play the role of bits in a traditional com-
puter. In a traditional computer bits are stored in a simple transistor-based circuit that is in one
of two states (0 and 1). A qubit is a much more complex object, that can be in a wide range of
possible states. According to Sara Gamble, one of the authors of [5], this will result in a revolution
in computation and the solving of certain types of intractable problems.

A quantum simulator is a small quantum computer which is programmed to simulate one spe-
cific process. Therefore, it will only be able to solve a limited number of problems [1].

A quantum communication device can replace all kinds of communication tools. These are
often secured with RSA, which is an encryption that can easily be cracked by a quantum device.
The only known solution which can make communication safe after a quantum device is introduced
is to send the encryption code via a quantum communication device [1].

Finally, a quantum sensing device could detect and react to much more than existing sensing
devices. The quantum sensing devices will likely lead to more powerful and sensitive measuring
technology[1].

It may be clear that quantum technology will change not only the field of computing as men-
tioned before, but all four application areas.
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CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION

The main motivation behind this bachelor final project is the fact that qubits and gates (which
are any operations that change the state of a qubit) are currently not stable enough to perform
accurately for a substantial amount of time. According to de Graaf et all., ‘a long period of qubit
performance degradation can cause a catastrophic event for quantum computation’[3]. Therefore,
reliability is at stake. It’s argued that the performance of these parts degrades over time up to
some point after which they are completely unpredictable. Our knowledge about the degrading
behavior of these elements is limited. Thus, the goal of this project is to understand and estimate
some properties of this degrading process.

The above realization sets the stage for this project. Namely we consider a setting where
experiments are conducted on a device in order to understand the degradation process. One ex-
periment will result in a failure or a success. This means that the results of the experiments will
be binary (0 if the experiment was a success and 1 if the experiment was a failure). Unfortunately,
these binary observations do not contain much information, causing a limited knowledge about
the failure probability. It is challenging to come up with a simple model of degradation over time,
and therefore a non-parametric stance will be taken. This will be explained in more detail in the
problem definition, section 1.2. At this moment there is no parametric model for the degradation
function.

This report consists of five chapters. In section 1.2 the problem of the degrading elements is
defined in a mathematical setting. Chapter 2 introduces an estimator for a specific case and its
quality is investigated. Chapter 3 focuses on a test which investigates the linearity of the failure
probability. In Chapter 4 an estimator is given for the derivative of the failure probability (b) in
a more general setting. Finally, some conclusions and a discussion will be given in Chapter 5.

1.2 Problem definition and notation

The main interest of this bachelor final project lies with the behaviour of degrading elements of
a quantum device. To investigate the behaviour of these elements, an experiment is constructed.
This experiment starts with an element which is set into a given state. After some time T the
state of this element will be measured again. If the element is still in the same state it will be
considered a success, otherwise, it will be considered a failure. This experiment will be repeated
n times. If the ith experiment, where i ∈ {1, . . . , n}, was successful then this will be denoted
by Yi = 0 and Yi = 1 otherwise, where Ti is defined as the time of measurement of the ith ex-
periment. The values of Ti can be assumed to be random or deterministic. For this report it
was assumed that Ti is deterministic. The results that will be available after the experiment are
given in the form (Yi, Ti) for i = 1, . . . , n. The probability of a failure (probability of Yi = 1) is
believed to increase over time. This implies that for larger values of Ti the probability that the
element is in another state increases as well. This failure probability is denoted by the function
f where the parameter t will be mapped to f(t) and f : [0,∞) → [0, 1]. Around the origin this
function f is assumed to be linear. Formally, we assume that f(t) = a + b · t + o(t) for t → 0.
The values of a and b determine the behaviour of the elements. Notice that f(0) = a. We are
interested in a case where we know that an element can hold a state for at least a small amount of
time. Thus, we consider that a = 0. Therefore, the main quantity of interest of this experiment is b.

Once the experiments are done the values of Y1, . . . , Yn are collected which correspond to the
times T1, . . . , Tn. If the values of T1, . . . , Tn are given the observations Y1, . . . , Yn are assumed to
be independent samples from the model. This model is assumed to be a Bernoulli distribution
with parameter f(t). This results into the first model

Yi|T1, . . . , Tn
independent∼ Bernoulli(f(Ti)). (1.1)
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CHAPTER 1. INTRODUCTION AND PROBLEM DEFINITION

In some settings the Bernoulli model leads to a few complications. Therefore, another model, but
related one, will also be considered. Note that if the parameter of a Bernoulli distribution is small,
this distribution is similar to the Poisson distribution by the Poisson limit theorem[2]. We are
interested in the case of a Bernoulli model with a small parameter. This distribution might be
more insightful. The Poisson model will be defined as

Yi|T1, . . . , Tn
independent∼ Poisson(f(Ti)). (1.2)

With the results from the experiment and the assumed models, the behaviour of the degrading
elements will be investigated.
The goal of this research can be split into two parts. The first is to test if the function f(t), that
indicates the failure probability, is truly linear and the second part is to estimate the quantity of
interest b. These problems will be solved using three sub-questions.

1. If f is actually linear, how can b be estimated effectively?

2. Is it possible to test if f is linear?

3. How can b be estimated in the general setting of f(t) = a+ b · t+ o(t)?

Each sub-question will be addressed in a distinct chapter.

A statistical question motivated by testing of quantum devices 7



Chapter 2

Estimating b when f is linear

One of the main goals of this project is to estimate the derivative of the linear function f(t) at
zero, which is b. In this first chapter some simplifications will be assumed to be able to estimate
this quantity. These are that:

1. the values of T1, . . . , Tn are deterministic, and given by t1, . . . , tn

2. a = 0 so, f(t) = b · t

In section 1.2 two different problem formulations were considered. The first model (1.1) where

Yi|T1, . . . , Tn
independent∼ Bernoulli(f(Ti)) is based on Bernoulli observations. Note, that Ti is

assumed to be deterministic in this case and therefore the random variables Yi are mutually inde-
pendent. Similarly, the second model (1.2) is based on Poisson observations. For both models the
method of moments estimator (MME) and the maximum likelihood estimator (MLE) are determ-
ined. These are classical estimation methods which can be reviewed in the book by Abramovich
[2]. Then the estimator will be assessed with the mean squared error (MSE).

2.1 Estimator of b assuming model 1 (Bernoulli)

The estimators will first be determined for model 1.1. Here

Yi ∼ Bernoulli(f(ti)) for i ∈ {1, . . . , n}.

The method of moments will be applied to determine a first estimator of b. Note that Yi for
ı ∈ {1, . . . , n} is not identically distributed. Therefore, the law of large numbers as stated in
theorem 5.2 in [2] cannot be applied. However, like used in the law of large number the quantity

1
n

n∑
i=1

Yi is investigated. Clearly

E

[
1

n

n∑
i=1

Yi

]
=

1

n

n∑
i=1

E [Yi] =
1

n
· b

n∑
i=1

ti

and

Var

(
1

n

n∑
i=1

Yi

)
=

1

n2

n∑
i=1

f(ti)(1− f(ti)) ≤
1

n2

n∑
i=1

1

4
=

1

4n
.
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CHAPTER 2. ESTIMATING B WHEN F IS LINEAR

So, the variance of 1
n

n∑
i=1

Yi decreases as n increases. Thus, 1
n

n∑
i=1

Yi will concentrate around it’s

expected value which is equal to 1
n · b

n∑
i=1

ti. This motivates that the MME of model 1 is

b̂ =

1
n

n∑
i=1

Yi

1
n

n∑
i=1

ti

=

n∑
i=1

Yi

n∑
i=1

ti

. (2.1)

Next, the maximum likelihood estimator will be investigated. However, first a bit of notation will
be introduced. Note, that Y = (Y1, . . . , Yn) which corresponds to the n random variables and
y = (y1, . . . , yn) which corresponds to the n observations of the experiment. Recall that

b̂MLE.1(y) = argmax
b∈R+

Pb(Y = y)

= argmax
b∈R+

n∏
i=1

(b · ti1{Yi = 1}+ (1− b · ti)1{Yi = 0})

= argmax
b∈R+

b

n∑
i=1

Yi

·
∏
i:Yi=1

ti ·
∏
i:Yi=0

(1− b · ti)

= argmax
b∈R+

n∑
i=1

Yi · log b+
∑
i:Yi=1

log ti +
∑
i:Yi=0

log (1− b · ti).

To find the value of b which maximizes the argument above we investigate the stationary points.
These are the points for which we have that ∂

∂bPb(Y = y) = 0. This gives that

1

b
·
n∑
i=1

Yi −
∑
i:Yi=0

ti
1− b · ti

= 0. (2.2)

Solving equation 2.2 for b is generally not analytically possible. However, note that we are in-
terested in the case that b · ti is very small. In that case equation 2.2 is approximately equal
to

1

b

n∑
i=1

Yi =

n∑
i=1

ti

because if b · ti is very small, the probability that Yi = 0 is very high and 1 − b · ti is close to 1.
This means that if b · ti is very small the MLE is essentially the MME. However, the general MLE
of the Bernoulli model is complicated. This is the motivation behind the Poisson model, which is
discussed in the next section.

2.2 Estimator of b assuming model 2 (Poisson)

Model 1.2 states that the values of Yi are assumed to come from a Poisson distribution with para-
meter b · ti. For small values of b · ti this is an approximation of model 1.1 by the Poisson limit
theorem. This theorem states that n trials of the Bernoulli distribution can be approximated with
the Poisson distribution [2]. The Poisson distribution is also a discrete distribution which takes
values within the positive integers. Thus, the value of Yi could be larger than 1 in the case of the
Poisson distribution. Therefore, the P (Yi ≥ 1) in the case of the Poisson model is compared to
the P (Yi = 1) in the case of the Bernoulli random variable. This can be compared in figure A.1
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in the appendix.

The methods to determine the estimators in the case of model 1.1 will again be used. Observe

that
n∑
i=1

Yi is again a Poisson distribution with mean b
n∑
i=1

ti, since a sum of independent Poisson

random variables is again a Poisson random variable. Therefore, the MME of this model is simply
the same as in the Bernoulli case

b̂ =

n∑
i=1

Yi

n∑
i=1

ti

.

Now, the maximum likelihood estimator will be investigated.

b̂MLE.2(y) = argmax
b∈R+

Pb(Y = y)

= argmax
b∈R+

n∏
i=1

e−b·ti1{Yi = 0}+ b · tie−b·ti1{Yi = 1}

= argmax
b∈R+

e
−b

n∑
i=1

ti
· b

n∑
i=1

Yi

·
∏
i:Yi=1

ti

= argmax
b∈R+

− b
n∑
i=1

ti +

n∑
i=1

Yi log b+
∑
i:Yi=1

log ti.

Again to find the value of b which maximizes the argument above we investigate the stationary
points. These are the points for which we have that ∂

∂bPb(Y = y) = 0. This gives that

−
n∑
i=1

ti +

n∑
i=1

Yi ·
1

b
= 0.

This expression can be simplified for b which gives that the MLE of model 1.2 is

b̂ =

n∑
i=1

Yi

n∑
i=1

ti

.

Thus, the estimator b̂ will be considered as an estimator of b in the case that f is linear.

2.3 Quality of the estimator b̂

The quality of an estimator is often expressed with help of the mean squared error (MSE). The
MSE consists of the variance and the bias squared. Consequently, the MSE takes the variability
of the data and the distance between the estimator and the true value of b into account. From [2]

recall MSE(b̂) = Eb[(b̂− b)2] = (biasb(b̂))
2 +Varb(b̂). Note that the Yi’s are independent as defined

in model 1.2.

The MSE of b̂ =

n∑
i=1

Yi

n∑
i=1

ti

will be determined. First of all, the bias of b̂ is

biasb(b̂) = Eb
[
b̂
]
− b = Eb


n∑
i=1

Yi

n∑
i=1

ti

− b =

n∑
i=1

Eb[Yi]

n∑
i=1

ti

− b =

n∑
i=1

b · ti
n∑
i=1

ti

− b = b− b = 0.
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Thus, the bias of b̂ is 0, which means that the estimator is unbiased. The variance of b̂ is

Varb

(
b̂
)

= Varb


n∑
i=1

Yi

n∑
i=1

ti

 =
1(

n∑
i=1

ti

)2 Varb

(
n∑
i=1

Yi

)
=

1(
n∑
i=1

ti

)2

n∑
i=1

Varb(Yi).

Two cases will need to be distinguished. The first is the case if Yi is a Bernoulli random variable.
Then we find

1(
n∑
i=1

ti

)2

n∑
i=1

Varb(Yi) =
1(

n∑
i=1

ti

)2 ·
n∑
i=1

(bti · (1− bti))

=
b
n∑
i=1

ti

− b2

n∑
i=1

(
t2i
)

(
n∑
i=1

ti

)2

≤ b
n∑
i=1

ti

.

In the second case, the case that Yi is a Poisson random variable, we find that

1(
n∑
i=1

ti

)2

n∑
i=1

Varb(Yi) =
1(

n∑
i=1

ti

)2 ·
n∑
i=1

bti

=
b
n∑
i=1

ti

.

Thus, it follows that in the case of model 1.1 MSE(b̂) ≤ b/
n∑
i=1

ti and in case of model 1.2 MSE(b̂) =

b/
n∑
i=1

ti. Therefore, it can be concluded that the MSE is smaller or equal in the case where Yi

comes from the Bernoulli distribution.
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Chapter 3

Bootstrap-method

The goal of this chapter will be exploring a method that will determine if the function f is linear.
It will be assumed that Yi ∼ Poisson(f(Ti)), where the values of Ti = ti = i

n are given. In this
chapter a test will be introduced that might be able to detect if the function f is linear.

3.1 Hypotheses Tests

To test is if f is linear, a hypothesis test will be used. To start a null hypothesis and an alternative
hypothesis are needed. These are defined as follows:

H0 : f(t) = b · t (3.1)

H1 : ∀b > 0 ∃t > 0 such that f(t) 6= b · t (3.2)

These hypotheses can also be formulated differently. Given model 1.2 one can reformulate the
hypotheses in terms of λi = f(ti).

H0 : ∃b > 0 such that ∀i ∈ {1, . . . , n} λi = b · ti
H1 :6 ∃b > 0 such that ∀i ∈ {1, . . . , n} λi = b · ti

A natural way to consider the hypotheses is the generalized likelihood ratio statistic. This test
statistic looks at which of the hypothesis is more likely. Recall that the GLR statistic is defined
as follows: If X has p.m.f. fθ(x) with θ ∈ Θ and H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 then the generalized
likelihood ratio statistic is defined as

λ(X) =
supθ∈(Θ0∪Θ1) fθ(x)

supθ∈Θ0
fθ(x)

.

See for instance book [2].

This problem is essentially a goodness-of-fit problem. Because we want to know if the pro-
posed model agrees with the data. However, many goodness-of-fit tests assume that the data is
independent and identically distributed. Therefore, it is complicated to apply such goodness-of-fit
tests. One might consider approaches to still be able to use a traditional goodness-of-fit test, for
example, averaging the data. However, the averaging of data might lead to the loss of information.
This part is left for future research. In this report another approach will be investigated, namely
a bootstrap-based method.

12 A statistical question motivated by testing of quantum devices



CHAPTER 3. BOOTSTRAP-METHOD

3.2 Bootstrap method

The bootstrap method is a simulation based approach. The main idea behind the bootstrap
method is to generate surrogate data following the null hypothesis based on the observed data.
This surrogate data is used to determine the behavior of the test statistic under the null hypothesis
[6].

In other words new “data” is created using the null hypothesis and an estimation of the para-
meter from the original data. Then this new created surrogate data will be compared to the
existing data. Finally, a conclusion about the null hypothesis will be made. This is done by
comparing a test statistic of the original data and the same test statistic of the generated data
(which is a surrogate of the test statistic under the null hypothesis).

The GLR will be used as explained above. The generalized likelihood ratio statistic is determ-
ined for the hypotheses 3.1 and 3.2, then we find

λGLR(Y) =
sup(λ1,...,λn)>0

∏n
i=1 e

−λi
λ
Yi
i

Yi!

supb>0

∏n
i=1 e

−b·ti (b·ti)Yi

Yi!

=

∏n
i=1 e

−Yi
Y

Yi
i

Yi!∏n
i=1 e

−b̂·ti (b̂·ti)Yi

Yi!

. (3.3)

Note, that in the case that there are no restrictions on the parameters λi, every observation Yi
will have a corresponding parameter. The parameter corresponding to Yi is λi. The MLE of λi
is precisely Yi because Yi is a Poisson random variable. Furthermore, under the null hypothesis
we simply evaluate the likelihood for b equal to the maximum likelihood estimator, as derived in
section 2.2. This gave rise to the expression 3.3. The convention will be used that 00 = 1.

For the bootstrap method we are interested in the comparison between the two test statistics.
However, rather than working with equation 3.3 we will use a logarithmic transformation. This
will help with numerical stability. The test statistic that is considered is given by

Λ(Y) = 2 log(λGLR(Y)) = 2 log

 ∏n
i=1 e

−Yi
Y

Yi
i

Yi!∏n
i=1 e

−b̂ti (b̂ti)Yi

Yi!


= 2 log

(
n∏
i=1

e−Yi+b̂·ti
(

Yi

b̂ · ti

)Yi
)

=

n∑
i=1

2
(
−Yi + b̂ · ti

)
+ 2 log

((
Yi

b̂ · ti

)Yi
)
. (3.4)

The bootstrap approach with the generalized likelihood ratio statistic was implemented in R and
the code will be included in the appendix A.2. A pseudo code is given in algorithm 1, to make
the approach more clear.

3.3 Quality of bootstrap method

To determine the quality of this bootstrap method two aspects of this procedure will be invest-
igated. Firstly, it will be investigated if the method is well calibrated (or at least conservative).
This means that ideally the p-values should look like samples from a uniform distribution between
0 and 1 under the null hypothesis. Secondly, it will be investigated how powerful this method is.
Namely, how often is the null hypothesis rejected when f(t) is not linear for all t.
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CHAPTER 3. BOOTSTRAP-METHOD

Algorithm 1 Bootstrap method

Input: (yi, ti)
n
i=1 and K: number of bootstrap repetitions

Output: p-value

1: Compute b̂(0) =
n∑
i=1

yi/
n∑
i=1

ti

2: Compute the test statistic as in 3.4 Λ(0) =
n∑
i=1

2
(
−yi + b̂(0) · ti

)
+ 2 log

((
yi

b̂(0)·ti

)yi)
3: for k from 1 until K do
4: Create y

(k)
i = vector of n independent generated samples from the Poisson distribution

with parameter b̂(0) · ti
5: Compute b̂(k) =

n∑
i=1

y
(k)
i /

n∑
i=1

ti

6: Compute Λ(k) =
n∑
i=1

2
(
−y(k)

i + b̂(k) · ti
)

+ 2 log

( y
(k)
i

b̂(k)·ti

)y(k)
i


7: end for

8: p-value = 1
K ·

K∑
k=1

1{Λ(k) > Λ(0)}

b n proportion p-values≤ 0.05
10 100 0.0512
1 100 0.0400
0.5 100 0.0146
10 1000 0.0494
1 1000 0.0408
0.5 1000 0.0116

Table 3.1: Proportion p-values≤ 0.05

3.3.1 Quality of bootstrap under null hypothesis

It was investigated if the bootstrap method is well calibrated. This means that under the null
hypothesis the p-values come from a uniform distribution between (0,1) (proposition 4.1 in [2])
and that with level of rejection α the proportion of rejected trials (type 1 errors) should be equal
to α. If this is not the case one would like the method to be conservative (reject less than a
proportion of α). Thus, one would like to conclude that
∀α > 0 we have that P0(p-value ≤ α) ≤ α.

The bootstrap method is tested in the software R. Data was created under the null hypothesis
where ti = i

n . Different values of b and n are implemented. Then the bootstrap method was
applied with K = 1000 bootstrap samples. This is repeated 5000 times. The results can be
observed in Table 3.1 and Figure 3.1.

In Figure 3.1 we plot the sorted p-values for the 5000 repetitions and each experimental con-
dition. In the appendix the histograms can also be observed in Figure A.2. However, the plots
in Figure 3.1 give a more precise picture since the number of bins in a histogram can change
the picture quite much. If the testing procedure is well calibrated these plots should look like a
straight line ranging from 0 to 1 (in red). Observe that for larger values of b the method seems
to be better calibrated since the sorted p-values seem to follow the uniform distribution between
(0,1). However, for smaller values of b the p-values do not seem uniform anymore. This can be
explained by the fact that the bootstrap method relies on a good estimate of the parameter b.
Since it constructs surrogate data using the null hypothesis and the estimate, the method does not
work very well if the estimate is not very good. This is the case when b is smaller, because the data
carries less information. It carries less information because the probability that your observation
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Figure 3.1: Plots of p-values for multiple values of b and n
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is equal to 0 is very large. This results into data with a lot of zeros and just a few ones. This
results into an estimate of b which is not as good as in the case where b is larger. One can observe
that for a larger value of n and thus more data the distance from the red line gets smaller (less
far from uniform). This is as expected, because if there is more data the estimate of b will most
likely be better. The method seems to be conservative. The p-values namely increase faster than
expected (uniform) this means that there are fewer p-values which are less than 0.05. This implies
that there were rejected fewer cases than the expected proportion of 0.05 which means that for
these values of b, n and K the method is conservative. This is on the one hand good, since the
null hypothesis is not rejected too fast. However, when talking about goodness-of-fit testing this
might also be undesirable. If a goodness-of-fit test is conservative it will be harder to reject the
null hypothesis. When using a goodness-of-fit test one is often looking for evidence against the
null model. If the method is conservative the result of the test might misleadingly lead to the use
of this linear model. The power of this test will be investigated in the next section.

In Table 3.1 one can observe the proportion of repetitions that were rejected with α = 0.05.
Important to note is that these are the results after 5000 repetitions. If the experiment would be
repeated, other (but similar) results might arise. The proportions are close to 0.05 or lower. This
would indicate that the method if is well calibrated (due to enough information from the data and
enough data) then the proportion of rejected repetitions is close to 0.05. However, if the method
does not have a lot of information as in the cases of b = 1 or b = 0.5 then the method seems to be
conservative.

Overall, it can be concluded that the bootstrap method is a well-calibrated test when investig-
ating it under the null hypothesis under the constraint that there is enough information from the
data. This could form a problem in the case of the quantum technology since the value of b will
probably be very small. This implies that a lot of data is needed to be able to apply this method.

3.3.2 Quality of bootstrap under alternative hypothesis

In this section the power of the test will be investigated. This means that data coming from
the alternative hypothesis will be tested with the bootstrap method. One would like that if data
does not come from the null hypothesis the method would reject H0. However, it is very unlikely
that a test would always reject data that comes from an alternative hypothesis. Therefore, the
interest will lie with the power of the method, this is the proportion of p-values< 0.05. Since the
alternative hypothesis is not one specific function f not all possible alternative hypothesis can be
tested. Therefore, three cases are investigated:

1. f(t) = b · t+ c · t2 where c is a constant

2. f(t) =

{
b0t if t < t0
b1(t− t0) + b0t0 if t ≥ t0

.

3. Yi is the absolute value of a sample from the normal distribution with mean b·ti and standard
deviation 1. Note that the method (in some cases) does not work if Yi is negative, since
the parameter of a Poisson distribution has to be positive. Therefore, the absolute value is
considered.

Data will be created following the alternative hypothesis of one of these cases. In case 3 the data
does not come from the Poisson distribution and the data is not discrete. However, the data can
be implemented as input for the bootstrap method. This alternative hypothesis is considered to
investigate what happens if wrong input is used or if the data is not from the Poisson distribution.

First case 1 will be investigated. In this case the function f is not linear as the null hypothesis
states but it contains a quadratic term. This alternative hypothesis was implemented in R with
K = 1000, n = 1000, b = 1 and different values of c these experiments were repeated 5000 times.
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Figure 3.2: Plots of p-values for data with f(t) = t+ ct2

c proportion p-values≤ 0.05
1 0.0048
2 0.0146
3 0.0970
4 0.3558
5 0.7290

Table 3.2: Proportion p-values≤ 0.05 for f(t) = t+ ct2
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Figure 3.3: Comparison f(t) and b̂ · t
red: f(t) and green: b̂ · t

b0 b1 proportion p-values≤ 0.05
1 2 0.006
10 20 0.8928

Table 3.3: Proportion p-values≤ 0.05 for f(t) with a jump

The results can be observed in Figure 3.2 and Table 3.2. In the figures in 3.2 one can observe
the p-values for different functions f(t) = t + c · t2. In Table 3.2 the proportion of rejections of
all repetitions with α = 0.05 can be observed. For the alternative hypothesis it is desirable that
this value is as high as possible. One can observe that for c = {3, 4, 5} the values of the p-values
are relatively smaller than in the case of a uniform distribution and that the proportion of re-
jections is higher than 0.05. However, for c ∈ {1, 2} the results are quite counter intuitive since
the proportion of rejection is very small (even smaller than in the case of the null hypothesis).
This would imply that the case when f(t) = t will be rejected more often than the case when
f(t) = t + t2. This, is a very curious observation. It can partially be explained by the fact that
the test statistic for the null hypothesis is estimated with the bootstrap. In Figure 3.3 the data
points, f(t) = t+ t2 and the estimated b̂ · t will be given. Here it becomes clear that the two func-
tions are very close and that it can indeed be very hard to decide which of the two is more likely.
However, more research should be done into this topic if this method wants to be explored further.

In case 2 f(t) =

{
b0t if t < t0
b1(t− t0) + b0t0 if t ≥ t0

.

This function has one derivative (b0) until some point which is t = t0 and after that another
derivative (b1). This function is thus a continuous function with a discontinuous derivative. A func-
tion like this with t0 = 0.5, b0 = 10 and b1 = 20 can be observed in Figure 3.4. For (b0, b1) = (1, 2)
and (b0, b1) = (10, 20) the function was tested with the bootstrap method. The results can be
observed in Figure 3.5 and Table 3.3.

The same behavior as for the case of f having a quadratic term can be observed. For smaller
values of the parameters (and therefore f(t)) the method has the unexpected behavior of only
rejecting a very small amount of repetitions. In the case of higher parameters the power of the
method seems to be much better. This can be explained by the fact that if the parameters are
higher the data does contain more information (more non-zero data points).
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Figure 3.4: f(t) = 10 · t for t ≤ 0.5 and f(t) = 20 · (t− 0.5) + 10 · 0.5 for t > 0.5

Figure 3.5: Plots of p-values for data from normal distribution
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In case 3 we have that Yi is the absolute value of a normal sample with mean b · ti and standard
deviation 1.

To try what would happen if the data does not come from a Poisson distribution the absolute
value of generated data from the normal distribution was used as input to the bootstrap method.
The normal distribution has mean b · t and variance 1. This means that the data looks like in
Figure 3.6, the red line is b · t.

Figure 3.6: Absolute value of normal data with mean 1 · ti and standard deviation 1

Note that the null hypothesis is that the function f(t) = b · t and that it is assumed that
the data comes from the Poisson distribution. The results from the bootstrap method when this
normal data is applied can be found in Figure 3.7.

Figure 3.7: Plots of p-values for data from normal distribution

In Figure 3.7 one can see that the p-values increase very fast and that they are much higher
than expected when data comes from an alternative hypothesis. This seems quite counter intu-
itive. However, it can be explained by the two following facts. Recall that the method tests if
∃b > 0 such that ∀i ∈ {1, ..., n} λi = b · ti. Observe that under the null hypothesis (and assuming
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the Poisson distribution) E [Yi] = f(ti) = b · ti. The alternative hypothesis has the same expected
value. Furthermore, for the null hypothesis the variance is equal to b · ti and for the alternative
hypothesis the variance is equal to 1. This implies that the data points are centered around the
function f(t) = b · t. This results in high p-values.

Overall, the power of the test is dependent on the underlying model of the data and on how
much information there is in the data. More research should be done into why these p-values
are so high in some cases, and how to prevent these high p-values in case of some alternative
hypotheses.

To test if f is linear a bootstrap method was applied. This method worked well in the cases of
a large value of b and if n was very large. Furthermore, the method seemed to have a good power
in case of a large deviation from the linear case. But, if the function was not far from linear, the
method has some problems. Since we are interested in the case that b is very small and the power
of the test depends on the deviation from a linear f , this method is not recommended in the way
it is stated in this report. Some adjustments might improve this method. This is left for future
research.
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Chapter 4

Intervals-estimator

In this chapter we move away from the assumption that f(t) is linear. Instead we will assume
that f(t) = b · t + o(t) as t → 0. This implies that for small values of t the function is close to
linear, but otherwise the function can be arbitrary. The idea of how to find the estimate came
from the behavior of the estimator derived in Chapter 2. Recall that the estimator of b, as derived

in Chapter 2, is b̂ =

n∑
i=1

Yi

n∑
i=1

ti

.

4.1 Background

In this section the background and basic notation of the method to estimate b will be given. Again
it is assumed that Ti = ti = i

n is given. In this case the values of ti are ordered. However, if one
would chose to select ti in another way, it is important to let t1 ≤ t2 ≤ · · · ≤ tn, such that the
first k datapoints correspond to the smallest k values of (ti)

n
i=1.

4.1.1 Behavior of b̂k

This method arose when thinking about the following question: what happens if you do not take
all data for the estimator but only a part of it? In this chapter it will be investigated what happens
to the estimator b̂ if only the data until some point k ∈ {1, ..., n} will be used for the estimator.
The reasoning behind this idea is that the assumption is that f is only linear for small values of
t. This would imply that only the data for small values of t should be used for the estimate.

Let us define

b̂k =

k∑
n=1

Yi

k∑
n=1

ti

where k ∈ {1, ..., n}.

In Figure 4.1 a sequence of b̂k where k ∈ {1, ..., 10000} can be observed. Note that Yi follows a
Poisson distribution with parameter f(t) which is linear under the null hypothesis. The values
of ti are defined as follows ti = i

n , thus it is a partition of the interval [0, 1]. In Figure 4.1 it is
assumed that Yi ∼ Poisson(ti) or Yi ∼ Poisson(ti + t2i ). In Figure 4.1 it can be observed that in

the case of the linear function f the b̂k’s seem to converge to the right value 1. For small values
of k the b̂k seem to oscillate quite much. However, for k > 2000 the oscillations seem to be much
smaller and b̂k is close to 1. In the case of f(t) = t+ t2 the value converges to approximately 1.6.

For small values of k, approximately for k < 2000 one can observe that the values of b̂k oscillate
quite much. For larger values of k this is no longer the case. In the case of the f having a quadratic
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Figure 4.1: b̂k for Yi under the null and the alternative

term, for k2000 the b̂k already seems much closer to 1. This gave rise to the suspicion that the be-
havior of b̂k contains information up to which point the data should be considered for the estimator.

4.1.2 Confidence interval with normal approximation

The behavior of b̂k contains some information about the value of b and until where the function
might be linear. Therefore, we would like to know how certain we are about the values of b̂k. For
example, for small values of k there is not much data. Therefore, the value of b̂k might not be
very good. To better understand this we proceed by deriving confidence intervals for b based on
the first k datapoints, under the assumptions that f(t) is linear up to that point. The distribution

of the estimator b̂k =

n∑
i=1

Yi

n∑
i=1

ti

can be approximated with the normal distribution due to the central

limit theorem and the fact that Yi is a Poisson random variable. Note that under the assumption
that f is linear we have

E
[
b̂k

]
= b, (4.1)

and

Var
(
b̂k

)
= E




k∑
i=1

Yi

k∑
i=1

ti

− b


2 =

b
k∑
i=1

ti

.

These calculations follow the same steps as in section 2.3. The central limit theorem and the fact

that Yi is a Poisson random variable implies that b̂k is approximately N

b, b
k∑

i=1
ti

, under the

assumption that n is large and that f is linear.

This implies that P

b ∈
b̂k − zα/2√ b̂

k∑
i=1

ti

, b̂k + zα/2

√
b̂

k∑
i=1

ti

 ≈ 1− α.

To get an estimate of b one would like all confidence intervals to be simultaneously valid. Let
us define the confidence intervals of b using the datapoints where i ≤ k as [Lk, Uk] where
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Figure 4.2: bk with confidence intervals

Lk = b̂k − zα/2
√

b̂k
k∑

i=1
ti

and Uk = b̂k + zα/2

√
b̂k
k∑

i=1
ti

. One would like to conclude that

P (∀k : b ∈ [Lk, Uk]) ≥ 1− α.

This can be concluded under the assumption that f is linear and if α is chosen in a particular way .

Let [Lk, Uk] be the confidence interval of b. Then

1− P (∀k : b ∈ [Lk, Uk]) = P (∃k : b 6∈ [Lk, Uk])

= P

(⋃
k

{b 6∈ [Lk, Uk]}

)

≤
n∑
k=1

P (b 6∈ [Lk, Uk]) (by Boole’s law)

now let [Lk, Uk] be the
α

n
confidence interval of b using (yi, ti)

k
i=1, then

=

n∑
k=1

P

b 6∈
b̂k − zα/(2n)

√√√√b̂k/

k∑
i=1

ti, b̂k + zα/(2n)

√√√√b̂k/

k∑
i=1

ti


=

n∑
k=1

α

n
= α.

This implies that if, for example, α = 0.05 and [Lk, Uk] is a α
n confidence intervals of b using the

first k data points then P (∀k : b ∈ [Lk, Uk]) ≥ 0.95 under the assumption that f is linear. Note
that α needs to be chosen.

In Figure 4.2 the exact same bk as in Figure 4.1 can be observed. Here with the confidence
intervals [Lk, Uk]. Note that the it is chosen that α = 0.05. This implies that [Lk, Uk] are the 0.05

n
confidence intervals of b. Here again n = 10000. It can be observed that the confidence intervals
in Figure 4.2 get smaller for larger values of k. This can be explained by the fact that more data

is used and therefore
k∑
i=1

ti increases.

In the case of f(t) = t+ t2 if one would plot a line at b = 1 one would be able to see that for

large values of k, b̂k does not fit in all confidence intervals anymore. This is due to the fact that
the f is not linear, which leads to inconsistent confidence intervals.
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The method that will determine an estimate of b will use two observations. The first is that as
in Figure 4.2 the confidence intervals of the estimator are large in the beginning and get smaller
for larger k. Moreover, for smaller k the confidence intervals should be more reliable, as they are
build upon the assumption that f is linear. How to decide for which k the estimation of b is close
to the true value of b, will be described in the following section.

4.2 Intervals method

The ideas behind the method were explained in section 4.1. One would like to select the b̂k that is
closest to the value of b. On the one hand one would like to select a k which is as large as possible.
If k is large a lot a data is used and the confidence interval is small. On the other hand one would
like to select a k which is fairly small since for small values of k the function f(t) is more likely
to be linear and thus the data is reliable. Therefore, a compromise will be made. Note that all
intervals are simultaneously valid.

Therefore, the estimator that the intervals method will give is b̂intervals = b̂k̂ where k̂ will be

selected in the following way. A set S will be defined as the set of all k ∈ {1, ..., n} such that b̂k is
in all previous confidence intervals. Note that [Lk, Uk] is the α

n confidence interval of b based on
the first k datapoints. So,

S = {k ∈ {1, ..., n} : ∀i ≤ k Li ≤ b̂k ∧ Ui ≥ b̂k}

= {k ∈ {1, ..., n} : max
i≤k

(Li) ≤ b̂k ∧ min
i≤k

(Ui) ≥ b̂k}.

Then k̂ will be defined as the maximum of this set S. Thus

k̂ = max{S} = max
k∈{1,...,n}

{k : max
i≤k

(Li) ≤ b̂k ≤ min
i≤k

(Ui)}.

Finally, the intervals estimator is defined as b̂k̂ where k̂ = max
k∈{1,...,n}

{k : max
i≤k

(Li) ≤ b̂k ≤ min
i≤k

(Ui)}.

Note that k̂ is as large as possible while b̂k̂ is greater than all previous lower bounds and smaller
than all previous upper bounds.

This method is implemented using cumulative functions. In the simulations it will be used that

if
j∑
i=1

Yi < 5 for some j then Uj = 1000 and Lj = 0. This will make sure that the first few confid-

ence intervals do not effect the outcome. This is done as the central limit approximation used for

the construction of the confidence intervals is only valid when
j∑
i=1

Yi is large enough. In this way we

are able to ensure that the interval, where this approximation is not yet valid, has enough coverage.

To implement this method two parameters need to be chosen. The first is α which will determ-

ine the confidence intervals. The second is the value of
k∑
i=1

Yi before which the confidence intervals

will be set to [0, 1000].

4.3 Quality of intervals method

The quality and behavior of the intervals method will also be investigated with some simulations.
All simulations were done in the software R, the code will be included in the appendix A.3. Three
cases will be investigated. The first is what happens if the function f is linear. Then what hap-
pens if f is not linear, the cases discussed will be f with a quadratic term and f with a jump in
derivative. These cases were also discussed in Chapter 3.3.2. The quantities that will be of in-
terest here are b̂intervals, k̂ and the MSE. Note that model 1.2 is assumed and Ti is equal to ti = i

n .
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Figure 4.3: Proportion of k̂ < n

Case 1 f linear
If the function f is linear the estimator is unbiased and the confidence intervals around b̂k get
smaller for larger values of k. In Figure 4.2 one can observe that for the case of a linear f the
smaller confidence intervals are contained in the larger ones. This implies that it is expected that
bn fits in all confidence intervals. Therefore, k̂ will most likely be equal to n. Then the intervals
estimator is the same as the estimator found in Chapter 2. This is preferable, since all data is
used and this improves the estimator in the case of a linear function f .

However, what happens if k̂ < n (which is the same as k̂ 6= n) and how often does this happen?
The method was executed for different values of n the results can be observed in Figure 4.3. n
ranges from 0 to 10000 and these experiments were repeated 10000 times with b = 1 and the
confidence intervals are constructed with α = 0.05

n . For every n the fraction of repetitions where

k̂ < n is determined. It can be observed in Figure 4.3 that the fraction of repetitions where k̂ 6= n
is very small and gets smaller if n grows. This can be explained by the fact that if there is more
data the value of b̂k will be more likely to be close to b. Recall that P (∀k : b ∈ [Lk, Uk]) ≥ 1− α
which means that if b̂k is closer to b the probability that it is in all previous intervals is high.

The next question that might be asked is what k̂ is if it is not equal to n. A histogram is be
given in Figure 4.4 with the values of k̂ < n for n = 1000, b = 1 and 1 million repetitions.

The fraction of experiments where k̂ < 1000 was 0.007928. It can be observed that for values
close to n = 1000 there are respectively more k̂’s selected. This can be explained by the fact
that b̂k is very likely to be very close to b for large k. Furthermore, the confidence intervals get
much smaller which might lead to the last few b̂k not being in all previous confidence intervals.
Moreover, between 0 and 300 less k̂’s are selected. This can be explained by the fact that for
small values of k the confidence intervals are very large. This implies that the probability that b
is contained in such a confidence interval is fairly high. Thus, the probability that there exists a
b̂k such that it is not contained in these intervals is very small.

Recall that b̂k is unbiased for all k under the assumption that f is linear, as derived in equation
4.1. This implies that the MSE under the assumption that f is linear is equal to the variance of
b̂k̂, which depends on the choice of k̂.

An approximation of the MSE was determined.
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Figure 4.4: Distribution of k̂ for k̂ 6= n

f n mean b̂ mean b̂intervals mean k̂ = n MSEb̂ MSEb̂intervals

t+ t2 1000 1.6667 1.4913 0.1268 0.4479 0.2676
t+ t2 10000 1.6668 1.3224 0 0.4449 0.1116
t+ 5t2 1000 4.3330 2.2081 0 11.1179 1.5886
t+ 5t2 10000 4.3335 1.7327 0 11.1128 0.5761

Table 4.1: Results from intervals method for f with a quadratic term

The average over all repetitions of (b̂intervals − b)2 was determined and of (b̂ − b)2. In this case

n = 1000, b = 1 and there were 100,000 repetitions. For b̂intervals the approximation of the MSE
is 0.002072 and for b̂ it is 0.002007. This means that they are very close but the approximation of
b̂ is a bit smaller.

Case 2 f with a quadratic term
The value of k̂ will be around the point where the confidence intervals become inconsistent. In
Figure 4.2 one can observe that the confidence intervals become inconsistent after a while, meaning
the later confidence intervals are not contained in the earlier ones. If the confidence intervals are
inconsistent the method will stop somewhere around there since a b̂k in an inconsistent interval
will very likely not be contained in all previous intervals. This behavior can be observed in Figure
4.5. Note that these confidence intervals were created with α = 0.05

n and with n = 1000 and
n = 10, 000.
In Figure 4.5, one can observe one run of the intervals method. The determined b̂k and [Lk, Uk]

are plotted. The red lines indicate the k̂ and b̂k̂ that the intervals method found. For these runs

it can be observed that k̂ < n and b̂intervals < b̂.

Next, it will be investigated if this is the case for just this run or in general. For this these
experiments were repeated 10,000 times. The results can be observed in table 4.1 and Figure 4.6
From the results in Table 4.1 one can conclude that on average the values of b̂intervals are closer
to b = 1 then the values of b̂. If n increases the estimate gets better and the approximation of the
MSE gets smaller. Also the behavior of k̂ changes, it gets much smaller, which indicates that the
error is noticed sooner. This can be explained by the fact that the values of b̂k are more precise
since they are the result of more data. Moreover, if there is more data the confidence intervals get
smaller and there are more b̂k’s for small values of t (where the quadratic factor does not yet have
a big impact).
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Figure 4.5: Behavior of method for quadratic f
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f(t) = t+ t2, n = 1000 f(t) = t+ t2, n = 10000

f(t) = t+ 5t2, n = 1000 f(t) = t+ 5t2, n = 10000

Figure 4.6: Histograms of k̂
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b0 = 1, b1 = 2, t0 = 0.5 and n = 1000 b0 = 1, b1 = 2, t0 = 0.5 and n = 10000

b0 = 10, b1 = 20, t0 = 0.5 and n = 1000 b0 = 10, b1 = 20, t0 = 0.5 and n = 10000

Figure 4.7: Behavior of method for f with a jump

If c increases and thus the quadratic impact increases b̂intervals is still closer to 1 than b̂.
Moreover, k̂ is smaller on average than when c is smaller. Finally, the approximated MSE in-
creases if c increases since the deviation from the linear function is bigger. Thus, it can be
concluded that the approximated MSE of the intervals method is lower than the approximated
MSE of the b̂ estimate in this case.

Case 3 f with a jump
This sort of function was already used to look at the quality of the bootstrap method in section
3.3.2. The function is defined as follows

f(t) =

{
b0t if t < t0
b1(t− t0) + b0t0 if t ≥ t0

.

In Figure 4.7 one can observe one run of the intervals method. Again the confidence intervals
are constructed with α = 0.05

n and the data comes from the Poisson distribution with parameter

f(ti). It is clear that for these runs k̂ < n and b̂intervals < b̂.

The question arises if this only happened by coincident or if this is always the case. There-
fore, these experiments were repeated 10,000 times. The results can be observed in Table 4.2
and in Figure 4.8. Again it can be observed that the method works better if n is larger, the
average estimate is better and the approximated MSE is smaller. In the case of b0 = 1, b1 = 2
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b0 b1 n mean b̂ mean b̂intervals mean k̂ = n MSEb̂ MSEb̂intervals

1 2 1000 1.2498 1.1837 0.3098 0.06491 0.04208
1 2 10000 1.2498 1.0890 0 0.06264 0.009199
10 20 1000 12.5036 10.6929 0 6.2923 0.6588
10 20 10000 12.5006 10.2967 0 6.2556 0.1124

Table 4.2: Results from the intervals method for f with a jump

b0 = 1, b1 = 2, t0 = 0.5 and n = 1000 b0 = 1, b1 = 2, t0 = 0.5 and n = 10000

b0 = 10, b1 = 20, t0 = 0.5 and n = 1000 b0 = 10, b1 = 20, t0 = 0.5 and n = 10000

Figure 4.8: Histograms of k̂ for f with a jump in the derivative
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b0 = 10, b1 = 20, t0 = 0.5 b0 = 10, b1 = 20, t0 = 0.5

b0 = 1, b1 = 2, t0 = 0.5 b0 = 1, b1 = 2, t0 = 0.5

Figure 4.9: Comparison MSE intervals method and oracle

and n = 1000 in approximately 31% of the cases the method does not detect something strange
(conflicting confidence intervals) and picks the very last b̂k. However, for a larger n this problem
is solved.
In the histograms 4.8 it can be observed that for a larger value of n the value of k̂ is much closer
to 0.5 · n. This is of course desired since up and until this point 0.5 · n the data comes from the
linear function.

How well this intervals method works for this case can also be investigated by comparing it to
b0.5n. Since b0.5n is the estimator using all data where f(t) = b0 ·t. This estimator will be called the
oracle since this estimator knows until which point the function is linear (without a change in de-
rivative). An approximation of the MSE is calculated for both estimators after 1000 repetitions for
multiple values of n. The results are in Figure 4.9. Note that the red points are the mean squared
errors of the oracle and the black ones of the intervals method estimator. It can be observed in
Figure 4.9 that the mean squared errors decrease exponentially. Therefore, also the log-log scale
of the mean squared errors and n are given. In that plot it can be observed that the points form a
straight line with approximately the same derivative. This implies that the data fits a power law
relation such as MSE= a ·nk and thus log(MSE) = k · log(n)+log(a). Thus, the slope of the log-log
plot gives the exponent k in this case. The value of a will be different which can be explained by the
fact that the intervals method is not able to find the exact point where the derivative of f changes.

Overall, the intervals method shows potential. It is able to note if the function f is linear and
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pick mainly the final b̂k. Furthermore, if f is not linear the method is able to notice this. However,
this does not happen immediately. This implies that some data points are still taken into account
while they might not be useful anymore. However, this might also be a good thing since otherwise
the method would stop too fast in the case f is linear. The method could still be improved in
some ways. This, however, falls beyond the scope of this bachelor final project. Some ideas are
for example, looking at the confidence intervals (a tighter bound for the confidence intervals could

make the method more precise) or making the method adaptive (choosing Ti around k̂).
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Chapter 5

Conclusions and discussion

This bachelor final project is motivated by a problem of testing quantum devices. Quantum
devices contain elements which are unreliable. When doing an experiment one observes whether,
after some time t, such an element is broken or not. The probability that it is broken is denoted
by f(t), which is a function that is assumed to be linear for small values of t. Two problems will
be considered. Can we test if the function f is linear in the range of times we observed? And can
we estimate the derivative of f at 0, with and without making further assumptions on this function?

In Chapter 2 an estimator of the derivative of f at 0 was derived under the assumption that
f is linear. In Chapter 1 the quantity a = f(0) = 0 was set to 0. This was done, because this
greatly simplified the estimator of b. The quantity a is approximately equal to 0, because the
probability that an element breaks immediately after it has been installed is assumed to be very
small. Therefore, in this report, a is assumed to be 0. Future research could investigate the case
that a is actually a small positive number. Note that the estimator b̂ will change and that moving
away from this assumption will require some work.

In Chapter 3 the method that was used to test if the function f is linear was introduced. This
consists of a bootstrap procedure. Testing if f is linear is basically testing if the data comes from
a certain distribution (in this case Poisson) with the function f(t) as parameter. This means
that we were actually looking for a goodness-of-fit test. However, since the data is not identically
distributed, the path of the bootstrap method was chosen. Note that the result of the bootstrap
method highly depends on the number of data points (n), the estimation of the data (b̂) and the
number of bootstrap samples (K). Although the test seemed to be well calibrated, it was seen that
empirically that it was not very powerful. Furthermore, and even more troublesome, it seemed
sometimes observations from an alternative model lead to lower rejection rates than under the
null model. We currently do not have a good explanation for this phenomenon, and it remains an
interesting topic for future work.

Some experiments were performed with an estimator depending on the results of the bootstrap
method. One could envision an estimator which makes use of the bootstrap testing procedure.
One could conduct many different tests each using only observations until certain value of t. With
the p-values one could then investigate until approximately which point f(t) is linear. One could
also use the p-values for a weighted estimate, where the values of (yi, ti) are weighted. Both
experiments lead to very poor estimation procedures, which are possibly partly due to the poor
performance of the bootstrap approach.

The intervals method as described in Chapter 4 gives an estimate of b, where no further as-
sumptions on f are necessary. It is built upon the confidence intervals of b. These confidence
intervals were constructed with a normal approximation and assuming f(t) is linear. However,
the central limit theorem states that the sum of n random variables converges in distribution to
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a normal random variable for a large values of n. The problem that for small values of k the
confidence intervals might not be very precise was solved by setting these confidence intervals
automatically to very large intervals.

To assure that the confidence intervals are simultaneously valid, a trade-off was made. By
Boole’s law the P (∀k : b ∈ [Lk, Uk]) ≥ 1− α if [Lk, Uk] is the α/n confidence intervals of b. This
is a quite harsh lowerbound of this probability. It might lead to larger confidence intervals then
necessary. Consequently, conflicting confidence intervals in case of a non-linear f might only be
detected later. Another method to determine a larger lowerbound for P (∀k : b ∈ [Lk, Uk]) might
be considered in future research. One could for example envision creating confidence intervals
using Poisson tail bounds or other confidence intervals like described in, for example, [7].

The intervals method uses two parameters which need to be chosen before the method is used.

These are the value of
j∑
i=1

Yi such that for all i < j the confidence intervals are set to [0, 1000] and

the value of α. In this report the number of failures before the confidence intervals are taken into
account is set to 5. In the experiments done this worked. The value of α was set to 0.05 as is
customary within statistics. In future research the effects of these quantities should be investigated.

The intervals method described in this report was actually not the first idea. Another way
to use these confidence intervals is to count for every b̂k in how many confidence intervals it is
contained. Then the estimate would simply be stated as the b̂k which is in the most intervals.
However, this method was replaced by the method described in Chapter 4. The reason for this was
that the first method did not take into consideration that the confidence intervals in the beginning
might be more reliable than the final ones, since the assumption is that f is approximately linear
for small t. However, this implies that one could envision other methods to select an optimal b̂k.
This could be explored in the future.

These estimators and the test explained in this report give some insight in how the behavior
of the degrading elements can be investigated. This report can be viewed as a starting point of
research into the testing for a certain degrading behavior of the qubits and gates in a quantum
device. The explained methods should be explored further, to be applied to the true experiments.
More knowledge about the failure probability will give more insight into the degrading behavior
of these elements. This is necessary for the development of such an important future device that
will address scientific challenges that current technology can not yet tackle.
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Appendix A

A.1 Extra figures

To compare the Bernoulli and Poisson model the P (Yi ≥ 1) in the case of the Poisson model and
the P (Yi = 1) in the case of the Bernoulli random variable are compared.

Figure A.1: Comparison probability Yi ≥ 1 Bernoulli and Poisson

In figure A.1 it can be observed that for small values of b · ti the lines are very close together.
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Figure A.2: Histograms for multiple values of b and n

A.2 R script Bootstrap method

b<−10
pvalues<−rep (0 ,5000)
n<−1000
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#number o f boots t rap i n t e r a t i o n s
K<− 1000
f o r ( l in 1 :5000) {
#Generate data
#o r i g i n a l b
#b0 <− 1
# t0 <− 0 .5
# b1 <− 2
# f <− f unc t i on ( t , b0 , t0 , b1 ) {b0∗ t ∗ ( t<=t0 )+(b1∗ ( t−t0 )+b0∗ t0 ) ∗ ( t>t0 ) }
T<− seq (1 /n , 1 , by=1/n)
Y o r i g i n a l<− r p o i s (n ,T+Tˆ2)
#Y<−abs ( rnorm (n ,T, 1 ) )
#b hat o f data
#p lo t (T,Y, ylab=’Y i ’ , x lab=’t ’ )
#l i n e s (T, b h∗T, co l =2)

b h <− sum(Y o r i g i n a l ) /sum(T)
#ca l c u l a t e t e s t s t a t i s t i c
TS<− (sum(2 ∗ (b h∗T−Y o r i g i n a l )+2∗Y o r i g i n a l ∗ ( l og (Y o r i g i n a l +10ˆ−323)−l og (b h∗T

+10ˆ−323) ) ) )
# Bootstrap method
#cr ea t e array to s t o r e t e s t s t a t i s t i c s
TSS<−rep (0 ,K)
f o r ( k in 1 : K) {
#crea t e new data
Y <− r p o i s (n , b h∗T)
# Calcu la te new b hat , on new data
b hat <− sum(Y) /sum(T)
#ca l c u l a t e new t e s t s t a t i s t i c
TSS [ k ]<− (sum(2 ∗ (b hat∗T−Y)+2∗Y∗ l og ( (Y/ (b hat∗T) )+10ˆ−120) ) )

}
#ca l c u l a t e p value
pvalues [ l ]<− sum(TSS>TS) /K
}
h i s t ( pvalues , main = ’ histogram of p−va lue s ’ , sub=paste ( ’ f ( t )=’ , b0 , ’ t f o r t< ’ , t0 , ’

e l s e f ( t )=’ , b1 , ’ ( t− ’ , t0 , ’ )+’ , b0∗ t0 , ” , n=” ,n , ’ , K=’ ,K) )
# propor t ion <0.05
mean( pvalues <0.05)
p l o t ( s o r t ( pva lues ) , main=’ so r t ed p−va lue s ’ , y lab=’ so r t ed p−va lue s ’ , sub=paste ( ’ f ( t )

=’ , b0 , ’ t f o r t< ’ , t0 , ’ e l s e f ( t )=’ , b1 , ’ ( t− ’ , t0 , ’ )+’ , b0∗ t0 , ” , n=” ,n , ’ , K=’ ,K) )
segments ( x0=0,x1=5000 ,y0=0,y1=1, c o l =2)
prop [ c ]<−mean( pvalues <0.05)
prop

A.3 R Script Intervals method

f<−f unc t i on (b , t ) {b∗ t }
g<−f unc t i on (b , c , t ) {b∗ t+c∗ t ˆ2}
h<−f unc t i on (b0 , b1 , t0 , t ) {b0∗ t ∗ ( t<=t0 )+(b1∗ ( t−t0 )+b0∗ t0 ) ∗ ( t>t0 ) }

#in t e r v a l s method
n<−1000
b<−1
c<−5

T<− ( 1 : n ) /n
alpha<−0 .05 /n
z<−qnorm(1−( alpha / 2) )
b i n t e r v a l s<−rep (0 ,10000)
b hats<−rep (0 ,10000)
k l i s t<−rep (0 ,10000)

f o r ( i in 1 :10000) {
Y<−r p o i s (n , g (b , c ,T) )
b h<−cumsum(Y) /cumsum(T)
lower<−b h−z ∗ s q r t (b h/cumsum(T) )
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upper<−b h+z ∗ s q r t (b h/cumsum(T) )
lower<−lower ∗ (cumsum(Y)>5)
upper<−upper∗ (cumsum(Y)>5)+1000∗ (cumsum(Y)<=5)
tmp<−( ( ( cummin( upper )−b h)>=0)∗ ( ( b h−cummax( lower ) )>=0))
b i n t e r v a l s [ i ]<−b h [ n+1−which .max(tmp [ n : 1 ] ) ]
k l i s t [ i ]<−n+1−which .max(tmp [ n : 1 ] )
b hats [ i ]<−b h [ n ]
}

mean(b hats )
mean(b i n t e r v a l s )
h i s t ( k l i s t , main=’ Histogram of k hat ’ , x lab=’k hat ’ )
mean(k l i s t==n)
mean ( ( b i n t e r v a l s−b) ˆ2)
mean ( ( b hats−b) ˆ2)
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