
 Eindhoven University of Technology

MASTER

Binary Quantization for Semantic Segmentation

Geraerds, M.F.A.M.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/899f3430-39a6-442f-88d7-f85eb147bfbf

Report of the Graduation Project

Project phase

Binary Quantization for Semantic Segmentation

Master: Automotive Technology
Department: Mechanical Engineering
Research group: Signal Processing Systems

Student: M.F.A.M. Geraerds
Identity number : 0715419
Thesis supervisor: P. Jancura & F. de Putter
Date: 03-06-2021

February 21, 2020

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
The Netherlands Code of Conduct for Scientific Integrity, endorsed by 6 umbrella organizations, including the VSNU, can be found
here also. More information about scientific integrity is published on the websites of TU/e and VSNU

03/06/2021

M.F.A.M. Geraerds

0715419

Binary Quantization for Semantic Segmentation
Graduation project paper [DRAFT]

M.F.A.M. Geraerds
Department of Mechanical Engineering

Eindhoven University of Technology
Eindhoven, Netherlands

m.f.a.m.geraerds@student.tue.nl

Abstract—Semantic segmentation is a vital task for self-driving
vehicles. Current state-of-the-art neural networks are able to
attain sufficient accuracy, but are computationally expensive in
terms of required energy and memory storage for real-time
inference on embedded devices. To allow these networks to be
used on hardware that can be placed in vehicles, the networks will
have to be compressed. Binary quantization is one of the avenues
that has been researched to obtain this compression. The majority
of contemporary state-of-the-art methods for quantization of
neural networks have been focused on classification tasks. The
research described in this paper shows how the methodology used
in ReActNet can be extended to perform a semantic segmentation
task. This is achieved by quantizing the DeepLabv3 neural
network architecture, as well as FCN32 and FCN8 decoder
structures. The resulting performance on cityscapes is shown
to be on par with Group-Net, without the need to parallelize
the network into multiple branches. As a result the network
has roughly a quarter of the parameters of Group-Net, while
achieving comparable performance.

I. INTRODUCTION

Semantic segmentation is among the most vital challenges
in the development of autonomously driving vehicles. By
enabling a vehicle to obtain a complete understanding of
its surroundings at a pixel level, the vehicles computer
can accurately identify lanes, determine which way to go,
when to brake, and perform various other tasks required for
autonomous driving.
In order for a neural network to run in real time, significant
computing power is required. Current state of the art
networks require a Graphics Processing Unit (GPU) to run
and a significant amount of memory to store the network
parameters. To be able to use these networks without
excessive hardware requirements for energy-constrained
applications, such as self-driving vehicles, quantization is
used to reduce the size of the weights and activations by
converting them from 32-bit floating point values to e.g. 8- or
5-bit integer values. This conversion decreases the memory
required to load the network, as well as the computational
complexity, as it replaces the computationally heavy 32-bit
multiply-accumulate (MAC) operations with less complex
integer MAC operations.
Binary quantization takes the quantization process a step
further and replaces the 32-bit floating point values with
binary values set to either -1 or +1. One of the major
challenges in quantization is the trade off between accuracy

and computational efficiency. Binary arithmetic is less
complex, and thus faster, but 1-bit values only indicate
whether a weight is larger than or smaller than a given base
value. To resolve this issue, several techniques have been
proposed that aim to reduce the quantization error while
maintaining the high speed of a binary network.
While binary quantization has been applied to several
classification networks, not many papers have been published
that research the application of binary quantization on
networks for semantic segmentation.

A. Problem Definition

The purpose of this paper was to investigate the viability
of binarized neural networks for semantic segmentation tasks.
Two implementations of binarized neural networks have been
made that are able to perform semantic segmentation tasks
on the cityscapes dataset. The classification backbone of both
networks is based on the ReActNet paper [1]. The baseline is
given by the Group-Net semantic segmentation network [2].
To adapt the existing classification networks for semantic
segmentation, the ReActNet architectures can be extended to
the decoder and atrous spatial pyramid pooling (ASPP) of
DeepLabV3 [3]. This architecture is chosen to enable a fair
comparison between the new implementation based on the Re-
ActNet methodology, and the existing semantic segmentation
version of Group-Net. To implement the ReActNet method
on the DeepLab network, the network has to be modified to
run with a MobileNet V1 backbone. Then the parallel tracks
that constitute ASPP are binarized according to the ReActNet
methodology.
The accuracy of all networks is tested on cityscapes. The
cityscapes dataset is a benchmark for semantic segmentation in
an automotive context, and allows for a comparison to be made
to current state-of-the-art networks. Furthermore, the number
of trainable parameters of the saved networks as well as the
number of operations required will be taken into consideration.
The contributions of this research are as follows:

1) Presenting binary quantized versions of DeepLabV3
with 2 different backbones, using the ReActNet method-
ology.

2) Comparing these networks against the current state of
the art Group-Net network on the cityscapes dataset

3) Demonstration that the methods from ReActNet can also
be applied to other structures by binarizing FCN8s and
FCN32 decoders.

II. RELATED WORK

A. Semantic Segmentation

The first steps in using convolutional neural networks for
semantic segmentation were made in the research presented
in the paper on fully convolutional networks [4]. By replacing
the final (fully connected) layers of a classification network
with 1x1 convolutions, the network produces a heat map that
shows where in the image a certain class is located. Although
the use of fully convolutional networks significantly improved
state of the art performance, the observed output was not as
accurate as one would hope. The lowered accuracy was due to
the down- and upsampling by a factor 32 over the course of the
network. The factor 32 between the output of the ”encoder”
and the output of the decoder meant that fine details were lost.
To improve on this FCN-32 architecture, FCN-16 and FCN-
8 were proposed, which include information from previous
pooling layers, meaning the network upsamples 16 and 8 times
respectively, rather than 32 times.
To improve the accuracy, U-Net [5], which was developed to
detect and locate tumours in the lungs or brain from scans,
adds connections between the encoder (downsampling) and
decoder (upsampling). This aids in providing context during
the upsampling stage, allowing for more accurate segmenta-
tion.
Google’s DeepLab architecture [6] added several more im-
provements to the network architecture: Atrous convolutions,
Atrous spatial pyramid pooling (ASPP) and the use of condi-
tional random fields to post-process the output.
Atrous convolution increases the size of a filter by adding
dilation. Dilation consists of spacing out the filter parameters
and filling the ”holes” with zeroes. A 3x3 filter for example,
is expanded to a 5x5 filter by adding rows and columns of
zeroes between the 3x3 filter values. This allows the network
to get the context of the larger filter size, while having the
number of parameters of the smaller filter.
ASPP is an extension of spatial pyramid pooling, presented
in the paper on SPPNet [7]. It combines the information from
different dilation rates to get more information on the original
image. As conditional random fields are a post-processing step
they will not be expanded upon in this paper.
DeepLabV3 [3] added batch normalization and suggested
new dilation rates for each layer in a ResNet block [8].
Additionally, image-level features were added to the ASPP
module. The image-level features offer the network the context
of the full image by pooling, as opposed to the detail-level fea-
tures from the convolution filters. DeepLabV3+ [9] suggested
using a decoder structure instead of plain bilinear upsampling.
This added the connections between encoder and decoder as
presented in U-Net, which further improved accuracy. Fig.
1 shows the DeepLabV3 architecture, when using a ResNet
backbone. In the figure, blocks 1-3 are the first three basic

blocks of ResNet. Block 4 is based on the fourth basic block,
but uses dilated convolution in stead of downsampling.

B. Quantization

As performance on neural network tasks increased, so did
the requirements for hardware, both computation power and
memory. Since it is not feasible to use powerful GPU’s and
large data storage devices for low-energy applications, such
as driver-assistance functions, steps were taken to reduce
these requirements, while trying to maintain accuracy and
throughput. There are several techniques that can be used
for compression of deep neural networks [10], but this paper
focuses on quantization.
Quantization is the process of reducing the number of bits
used to represent a number. The idea of using quantization for
neural networks is not new, in the early 90’s quantization was
proposed as a way to make neural network implementation
feasible on the hardware available at the time [11] [12]. The
predominant format to store weights, biases and activation
functions used in neural networks is the 32-bit floating point.
This means that every value takes up 4 bytes of memory.
To put this into perspective, ResNet-50 has over 23 million
trainable parameters, meaning it takes over 736 million bits
(circa 91.5 MB) to store these values alone. As all this data
gets moved around during computation, reducing the number
of bits per parameter can significantly reduce the amount of
memory required to load the network, as well as the energy
consumption. In addition, the multiplications required for
convolution when using 32-bit floating point weights require
a 32-bit multiplier. These multipliers are complex structures,
which use a significant amount of energy to perform the mul-
tiplications (roughly 4 pJ for a single 32-bit FP multiplication
[13]). When using a neural network on a battery-powered
device such as a mobile phone, this will have a significant
impact on battery life.
Various techniques have been suggested to quantize neural
networks, and while they all reduce the number of bits used
for weights and activations in the network, the methods used
to limit the quantization error vary.
One of the early modern papers on Quantization for neural
networks was the one that presented DoReFa-Net [14]. The
DoReFa-Net paper aimed to only quantize the gradients used
in the backwards pass. The research showed that, while
weights and activations can be quantized deterministically,
the gradients had to be stochastically quantized. DoReFa-Net
achieved comparable results to full-precision networks, while
reducing the memory and computational power required for
backpropagation.
A year after the publication of DoReFa-Net, the paper on
weighted-entropy based quantization [15] was based on the
premise that most weights in convolutional or fully connected
layers are concentrated near zero, implying the distribution of
the weights is a bell-shape. The authors suggest using more
quantization levels around the area where the concentration of
weights is highest, or weighted quantization. This means that,
rather than a linear quantization, where quantization levels are

Fig. 1: DeepLabV3, figure from [3]

equidistant, or a log quantization, where the levels are highly
concentrated around 0, the quantization levels are determined
based on the original weight distribution, and the influence of
the weights. Weights near 0 are numerous, but have relatively
little impact on the quality of the output. Large weights are
few, but have a relatively high impact. By concentrating the
quantization levels between these two groups of weights, the
weights that are relatively common, and have a reasonable
impact on the outcome, have a smaller quantization error than
the weights that are either infrequent or low-impact. This
approach outperformed several state-of-the-art networks when
applied to AlexNet.
Incremental Network Quantization [16] aimed to reduce the
quantization error by introducing two innovations and applying
these to a pretrained full-precision network.
Firstly, three operations are introduced that are interdependent.
By partitioning the weights, quantizing in groups, and re-
training the network, the weights of each layer are split into
two groups: a low-precision base and a group to be re-trained
to compensate for quantization loss.
Secondly, by repeating this process until all weights are con-
verted to low-precision, the incremental network quantization
enhances the accuracy of the network as a whole.
The main goal of INQ is to convert all 32-bit floating point
weights to either a power of two or zero, while minimizing loss
of accuracy. The resulting performance when using a bit-width
of 5 is a decrease of 1.59% in top-1 accuracy and a 1.21%
decrease in top-5 accuracy when INQ is applied to ResNet-50
and a 0.15% and 0.23% decrease respectively when applied
to AlexNet.

C. Binary Quantization

When quantization is set to only use 1 bit per value,
we speak of binary quantization. In order to maintain the
possibility of positive and negative values, the binary value
is interpreted as either +1 or -1.
XNOR-Net [17] was one of the first binarized networks to
achieve state-of-the-art performance, using single bit values for
both the weights and activations of convolutional layers. This
resulted in 32x savings in memory and 58x faster convolutional
operations on a CPU compared to the full-precision network.

To approximate the values of the full-precision weights with
binary values, a scaling factor was used. The scaling factor is
a positive real scalar that was set at the average of the absolute
weight values. During training, the forward pass used binarized
weights, while the parameter update was done using the full-
precision weights. Convolutions, when binary values are used,
consist of a shift operation followed by a dot product. For
binary values, this dot product can be replaced with an XNOR-
gate followed by a bitcount. This allows for inference to be
done in real-time on a CPU and uses less memory than a full-
precision network. As experiments showed that the increase
in speed was not very large on small channel and filter sizes,
the authors decided to not binarize the first and last layers.
Around the same time as XNOR-Net, a paper on quantized
neural networks (QNN) [18] was presented, that used a
similar approach to binarization, but did include the first and
last layers in the binarization process. In addition, stochastic
binarization was considered, which, rather than taking the sign
of the value to be binarized, takes the sign of the value minus a
uniform random variable z. The performance of this network,
when using 2-bits to represent the activations, is better than
that of XNOR-Net. While XNOR-Net achieves 44.2% and
69.2% top-1 and top-5 accuracy respectively on ImageNet,
QNN reaches 51.03% and 73.67%.

D. Group-Net

The paper on Group-Net [2] presents a different approach
and aims to find a middle ground between binary and high
bit-width quantization. Rather than the value approximation
used by other methods, Group-Net aims to approximate the
structure of the network. To that end, the full-precision net-
work is divided into groups. By using a set of binary bases,
the floating-point structure is approximated. Fig. 2 shows
this process: Fig. 2a shows the full-precision residual blocks,
where each convolution block is replaced with a binarized
version (value approximation). Fig. 2b shows a basic group-
wise decomposition where each full-precision residual block
is approximated by several binary blocks in a similar structure.
Finally, Fig. 2c shows the Group-Net approach, where the
whole group is approximated by multiple identical parallel
binary network branches. Group-wise decomposition considers

Fig. 2: Example of group-wise binary decomposition from
group-net. From [2]

each convolution as a linear combination of binary groups.
By combining these groups across layers, the structure of
the original network can be approximated, while avoiding the
error accumulation that occurs when decomposing the network
layer by layer. While value approximation approaches show
promising performance on classification tasks, the authors
of Group-net [2] claim that performance degrades on more
challenging tasks like semantic segmentation.
For the semantic segmentation task, the authors absorb ASPP
into the feature extraction stage, rather than run it on top of the
extracted features. When absorbing the ASPP into the network
each branch gets its own dilation rate, essentially making
ASPP a by-product of the network branch decomposition. The
authors named this structure binary parallel atrous convolution
(BPAC) and it is one of the innovations that came with this
paper.
While most of the papers on quantization mentioned above
only address classification tasks, Group-Net also includes
an implementation for a semantic segmentation network. By
applying Group-Net on DeepLabV3 and testing on the PAS-
CAL VOC 2012 validation set, the Group-Net version of
DeepLabV3 with a ResNet-34 backbone achieved a mIoU
of 73.6% when only the backbone was modified, and 70.2%
when both the backbone and ASPP were modified. The full-
precision baseline was 76.9%, meaning that the binarized
versions scored 3.3% and 6.7% lower respectively.

E. ReActNet

While Group-Net achieves higher accuracy through extend-
ing the network into multiple parallel paths, the authors of the
paper on ReActNet [1] go back to value approximation. This
means that the network can be a factor K smaller than that of
Group-Net, where K is the number of bases used.
The goal behind the development of ReActNet was to close
the gap between binary neural networks and real-valued neural
networks. The network uses a MobileNet V1 [19] backbone,

as the authors believe binarizing a compact model is of
more practical use. The main contributions introduced in
the paper are the RSign and RPReLU functions, as well as
using a knowledge distillation learning method for a quantized
network.
The ReAct-Sign (RSign) and ReAct-PReLU (RPReLU) func-
tions are new generalizations of the Sign and PReLU functions
respectively. While the classical sign function is a step function
that has value -1 for values up to and including zero and +1 for
values above 0, the RSign function adds a learnable parameter
α that shifts the function over the x-axis. The parameter
can have different values for diffent channels, which allows
for further optimization. The resulting formula is shown in
Equation 1.

xbi = h(xri) =

{
+1, if xri > αi

−1, if xri ≤ αi
(1)

The RPReLU function similarly shifts the PReLU function
by 2 learnable parameters γ and ζ, along the x- and y-axis
respectively. The formula for the RPReLU function is shown
in equation 2.

f(xi) =

{
xi − γi + ζi, if xi > γ

βi(xi − γi) + ζi, if xi ≤ γ
(2)

To demonstrate the effect of these parameters on the behaviour
of the function outputs, Fig. 3 shows the graphs of Sign,
RSign, PReLU and RPReLU.
The training method of ReActNet is a two-stage process. The
network uses a full-precision teacher network and trains a
student network with binary activations only during the first
stage. During the second stage the teacher network remains the
same, but the student network is replaced by a fully binarized
network that uses the (quantized) values of the first stage as a
starting point. Both stages use the same custom loss function
that takes the cross-entropy loss of the teacher network and
student network. This means that, rather than using the ground
truth of the dataset, the student network is trained to approach
the outputs of the teacher network.
ReActnet achieves 69.4% top-1 accuracy on ImageNet, sur-
passing the ResNet-18 benchmark, while achieving more than
22x computational complexity reduction.

III. DATASET

To train and test the extended ReActNet networks, the
Cityscapes dataset [20] is used. This dataset is widely
used as a benchmark for semantic segmentation which
allows for comparison of results to current state of the art
(non-quantized) networks. Cityscapes consists of 5000 finely
annotated images of daytime driving scenery, divided between
2975 images for training, 500 for validation, and 1525 for
testing. The latter does not contain any ground truths and
can thus not be used to determine metrics. The images in the
dataset are video stills from 50 cities in Germany, spread out
over several months, in good to medium weather conditions.
The images have been selected to ensure a large number of

Fig. 3: Comparison of RSign and RPReLU and traditional Sign and PReLU functions, figure from: [1]

dynamic objects, varying scene layouts, and backgrounds are
present in the data.

IV. METHODOLOGY

For both ReActNet and Group-Net, github repositories
are available [21] [22]. As mentioned in the related work
section, Group-net is already implemented on a DeepLabV3
framework. To enable a fair comparison, the ReActNet imple-
mentation is extended from the MobileNet V1 backbone to
include the decoder structure of DeepLab.
Training and inference of both networks is primarily done
on an Nvidia GTX 1070 ti. In addition the MPS research
group made a server available that offers an Nvidia RTX
2080 ti. The latter card offers 12 GB of VRAM compared
to the 8 GB of the 1070 ti, which allowed training with
slightly increased batch sizes. As neither setup allows for
training with large batch sizes, a learning rate that maximizes
the network performance will have to be determined. To that
end, a ReActNet-DeepLabV3 network, using the ResNet-based
version of ReActNet is implemented and run for 25 epochs at
varying learning rates.

A. Extending ReActNet for semantic segmentation

The first step of extending ReActNet to a network for
semantic segmentation was to find a teacher network that
was pretrained on the Cityscapes dataset. While the training
methodology from ReActNet does not require any similarity in
network architecture between the teacher and student network,
the choice was made to use a DeepLabV3+ network with
a MobileNetV2 backbone [23] as the teacher. As both the
backbone and decoder of the teacher are newer versions of
the binarized student network, the basic architecture is similar.
In addition to the pretrained network, the repository also
contained scripts from the cityscapes github repository to
handle the void class. By combining the training script from
ReActNet with the dataloaders from the other repository, the
train script allowed the network to be trained according to
the ReActNet methodology on the Cityscapes dataset. The
mIoU and class IoU metrics were determined by finding the
intersection and union of the ground truth and student network

output.
ReActNet uses a custom loss function that compares the
outputs of the student and teacher networks. The function takes
the Kullback-Leibler (KL) divergence between the softmax
outputs pc of the binary network Bθ and real-valued network
Rθ. Subscripts c and n denote the classes and batch size
respectively.

LDist = −
1

n

∑
c

n∑
i=1

pRθ
c (Xi)log

pBθ
c (Xi)

pRθ
c (Xi)

(3)

However, this loss function was designed for a classification
task, and therefore only accepts inputs of n × c. To allow
for evaluation on a semantic segmentation task, which has
n × h × w × c inputs, the loss function had to be modified.
This was done by taking the knowledge distillation (KD) loss
function from ReActNet and treating each pixel as a separate
classification task. The resulting loss function then becomes
the following:

LDist = −
1

nhw

∑
c

h∑
i=1

w∑
j=1

n∑
k=1

pRθ
c (Xi,j,k)log

pBθ
c (Xi,j,k)

pRθ
c (Xi,j,k)

(4)
After setting up the training environment, the ReActNet
network was extended with various decoder structures to
allow for semantic segmentation testing.

B. Binarization of the DeepLab decoder

To extend the ResNet and MobileNet backbones to a
DeepLabV3 network, two major steps are required. The
decoder structure itself needs to be added, which consists
of the ASPP structure, a 1x1 convolution to reduce the
dimensionality of the ASPP output, and a bilinear upsampling
to get the output back to the same size as the network
input. Additionally, the backbone needs to be modified so
that atrous convolutions are used instead of the downscaling
of the original network. The architecture of the network is
comparable to that shown in Fig. 1, albeit with all but the first
layer binarized, every block starting with an RSign activation,
and the (P)ReLU activations in the original network having

been replaced with RPReLU activations.

1) ASPP: To binarize ASPP, each separate path is imple-
mented using the ReActNet binarization. In the ASPP block,
the input is run through five paths in parallel:

• a 1x1 convolution
• a 3x3 dilated convolution with rate 6
• a 3x3 dilated convolution with rate 12
• a 3x3 dilated convolution with rate 18
• a pooling block

The 5 resulting outputs are then concatenated and, through the
use of a 1x1 convolution, projected back down to the same
dimensions as the input of the ASPP block.
The 1x1 convolution path (the block marked 1x1 conv in
Fig. 1) consists of a sequence of a binarized 1x1 convolution,
batch norm, and RPReLU operation. The RPReLU operation
is implemented by putting learnable bias functions before
and after the PReLU operation. This approach is the same
as the one used in the original ReActNet paper [1] and
shows how the two parameters act as a shift on the in- and
output. The three dilated convolutions are implemented as
a separate module, consisting of a 3x3 dilated convolution,
batch norm and RPReLU layer, the latter of which is again
implemented using two learnable biases around a PReLU
layer. The (Binary)ASPPConv module takes the number of
input channels, number of output channels, and dilation rate as
inputs during network initialization, which allows for a single
module to describe various dilation rates. The pooling path
is also implemented as a module, and consists of an adaptive
average pool layer with a 1x1 output, a 1x1 convolution layer,
batch norm, and RPReLU, implemented in the same way as the
other RPReLU layers in the network. To ensure the output has
the same size as that of the other paths, bilinear interpolation
is applied to ensure the height and width of the data are back
to the same size as before the adaptive average. The outputs
of the five paths are then concatenated and fed through a
projection module that reduces the number of layers in the
data by a factor five. This module consists of a sequence of
a 1x1 convolution, batch norm, RPReLU and dropout layers,
as in the DeepLabV3 architecture.
Fig. 4 shows the top-level view of the DeepLabV3 architecture
as implemented.

2) Atrous Convolution: For the Atrous Convolution to
replace the downsampling in both ResNet and MobileNetV1,
the Basic block modules need to be modified. The Basic
block modules contain the repeating elements of each layer
of the network. In the ResNet architecture this consists of
the binary activation function (RSign), a convolution, batch
normalisation, and RPReLU function. The MobileNetV1 Ba-
sic block module contains some additional functions to fit
the MobileNetV1 architecture, but operates along the same
principle. To extend the functionality, dilation is added as an
additional input argument to the Basic block module, with a
default value of 1. This allows the code to remain functional
for architectures that do not include the dilation. When the
value is larger than 1, the 3x3 convolution in the block is

Fig. 4: Architecture of the ResNet-18 backbone and
DeepLabV3 decoder

replaced by a dilated version. In addition, the function that
creates the layers when the network is built is changed. This
change ensures that when a layer needs to apply dilation
instead of the regular downsampling, three steps are taken.
Firstly the dilation rate of the previous block is stored in a
variable. Then the new dilation rate is set to the product of
the previous dilation rate and the stride input. Finally the stride
value is set to 1. The previous dilation rate is then used for
the first block in each layer, and the new dilation rate for the
remaining ones.
For ResNet-18 each layer of the network consists of 4 blocks,
where the last 2 layers are replaced with dilated versions.
For MobileNetV1, the general approach is the same, but
where ResNet has two layers of 4 blocks with the same data
dimensions, MobileNetV1 has a layer of 6 blocks and a layer
of 2 blocks with the same data dimensions. The result is that
while the last 8 blocks are replaced with dilated versions, the
number of blocks with each dilation rate is different.

C. Binarization of FCN 32/8s decoders

To investigate whether the ReActNet methodology can also
be used for other decoder structures, a FCN8s decoder was
implemented. Where DeepLabV3 requires modification of the
backbone, the FCN decoders use the output of the backbone
before the final softmax layer, and, depending on the version
of the decoder, intermediate outputs of the backbone. The least
complicated version of the FCN decoder is FCN32, which only
uses the final output and upscales it. Rather than a single 32x
upscaling, the choice was made to upscale the output in 3
steps. The first two steps consist of a transpose convolution

Fig. 5: Architecture of the ResNet-18 backbone and FCN8s
decoder. The FCN32 decoder does not have the connections
with the 1x1 convolutions between the outputs of layers 2 and
3 and the decoder.

with a 4x4 kernel and stride 2. The last step is a transpose
convolution with a 16x16 kernel and stride 8. By using these
layers, the influence of the cross-connections between the
encoder and decoder becomes more clear, as it is the only
distinction between the FCN32 and FCN8s networks.
In order to ensure that the transpose convolutions are binarized
the same way as the convolutions in ReActNet, the HardBi-
naryConvolution module was modified to create a transpose
convolution with binarized weights and biases.
Fig. 5 shows the architecture used for the FCN8s decoder
when paired with the ResNet-18 based backbone. As with the
DeepLabV3 architecture, the network is in essence the same
as the full-precision network, with the addition of RSign and
RPReLU functions, and binary convolutions throughout.

D. Group-Net

To run the Group-Net network, the code from the authors of
the paper was integrated into the framework used to train the
ReActNet networks, while taking into account the change in
training methodology. Group-Net uses a single ”step” to train
the network, and trains directly off the ground truth. As such,
the regular cross-entropy loss can be used. As the backbone
architecture is not directly specified in the code, but extracted
from a pretrained version, a pretrained version of the backbone
is used. The network is then set to train for a maximum of

Learning rate train loss after 25 epochs
0.00001 0.7906
0.00005 0.5960
0.0005 0.5704
0.0002 0.5283
0.0001 0.5394

TABLE I: Train loss after 25 epochs for various learning rates

400 epochs, which was interrupted as soon as the validation
loss curve plateaued.

E. Evaluation

To determine the accuracy of the networks on the cityscapes
images the mean intersection-over-union (mIoU) metric will
be used. To determine the mIoU, the class IoU’s are calculated
during validation and then averaged. The performance of the
binarized models will be compared to that of the teacher
network and Group-Net. In addition, a computational cost
analysis is done on the networks, where the number of
trainable parameters, as well as the number of operations. To
determine the number of operations required, similar method-
ology as in the ReActNet paper [1] is used. As the majority
of operations comes from the convolutional layers, these are
the only ones taken into account. Binary operations (BOPs)
and floating point operations (FLOPs) are counted separately.
The total number of operations (OPs) is determined through
equation 5.

OPs = BOPs/64 + FLOPs (5)

.

V. RESULTS

A. Learning Rate

To find the ideal learning rate for the training setup, several
learning rates were tested for the DeepLabV3 network with
ResNet-18 based backbone and binary activations as in step
1 of the training process. The network was trained for 25
epochs per learning rate. The resulting graph in Fig. 6 and
the values of the train loss after 25 epochs in Table I show
that a learning rate of 0.0002 gives the best results for a batch
size of 2. As learning rate seems directly related to the batch
size, the networks that are trained with batch size 8 on the
server use a learning rate of 0.0008. As the learning rate in
the ReActNet methodology is the same in both steps of the
process, the assumption was made that the found optimum
training rate from step 1 also approximated the optimum rate
in step 2.

B. Influence of binarization

To determine the influence of binarizing each part of the
network, partially binarized versions of the ResNet-based
ReActNet-FCN8s network were trained. Four versions of the
network were defined, to cover all possible combinations of
binary and full-precision encoder and decoder.

1) No Binarization: Both encoder and decoder are full-
precision

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 6: Training loss as a function of the number of epochs
trained for the DeepLabV3 network with ResNet-18 backbone
at various learning rates.

Binarization mIoU
No Binarization 56.07%

Encoder 54.86%
Decoder 49.14%

Encoder and Decoder 47.59%

TABLE II: Mean Intersection-over-Union for partially bina-
rized networks as well as full precision and fully binarized

2) Encoder: The encoder uses binarized weights and acti-
vations, the decoder is full-precision.

3) Decoder: The encoder is full-precision, the decoder uses
binarized weights and activations.

4) Encoder and Decoder: Both encoder and decoder use
binarized weights and activations.

By comparing performance of these four combinations, the
influence of binarizing the encoder and decoder can be shown.
Table II shows the mIoU for each of the networks after train-
ing. Each network was trained in 2 steps, with 200 epochs per
step. While the network without binarization did not require
a two-step process to handle binarization, the same approach
was used, which meant the learning rate had the same sawtooth
shape over the course of the training as the other networks.
As expected, the network with no binarization has the highest
mIoU, and the network with binary encoder and decoder has
the lowest. Table II also shows that the combination of a
binarized encoder and full-precision decoder outperforms the
network with a binarized decoder and full-precision encoder.
This implies that, in the context of semantic segmentation, the
relative importance of the data in the decoder is higher than
that in the encoder.

C. Performance of binarized networks

Table III shows the mIoU for each of the networks. As ex-
pected, the FCN8s and FCN32s networks were outperformed
by the DeepLabV3 networks. This is due to the difference in
decoder structure. The DeepLabV3 decoder is able to get a
better fit on the data due to the combination of the number
of parameters and architectural choices that were made. Table

Backbone Network (epochs) mIoU
Group-Net DeepLabV3 (313) 66.76%

ReActNet (ResNet-18) FCN32 (2× 200) 48.11%
ReActNet (ResNet-18) FCN8s (2× 200) 48.96%
ReActNet (ResNet-18) DeepLabV3 (2× 200) 61.15%

ReActNet (MobileNetV1) FCN32 (2× 200) 43.15%
ReActNet (MobileNetV1) FCN8s (2× 200) 45.63%
ReActNet (MobileNetV1) DeepLabV3 (2× 200) 57.38%

Teacher Network (MobilenetV2) DeepLabV3 (pretrained) 72.10%

TABLE III: Achieved mean Intersection-over-Union on the
cityscapes dataset

Network (backbone) epochs mIoU
ReActNet-DeepLabV3 (ResNet-18) 2× 200 61.15%
ReActNet-DeepLabV3 (ResNet-18) 2× 400 64.15%
ReActNet-DeepLabV3 (ResNet-18) 2× 600 65.03%
ReActNet-DeepLabV3 (ResNet-18) 2× 1000 (batchsize 8) 65.76%

TABLE IV: ReActNet mIoU increasing as the network is
trained longer

III also shows that the DeepLabV3-based networks achieve
comparable performance to Group-Net, despite the small batch
size and limited training duration. In addition, examples from
the dataset and the predictions for each image are shown in
Fig. 8 and Fig. 9. It is immediately clear that the networks
with FCN32 and FCN8s decoders are unable to distinguish
between multiple smaller objects in close proximity such as
the traffic signs in the middle of Fig. 8. Group-Net and the
two versions of ReActNet with a DeepLabV3 decoder perform
comparably on both examples. It is however noticeable that
Group-Net fills the ego-vehicle with various other class labels,
while the DeepLabV3 networks simply classify it as being part
of the road. This may stem from having a backbone that was
pretrained on ImageNet.
While the training and validation loss of Group-Net were

plateauing after 313 epochs, the ReActNet-DeepLabV3 net-
works still had a significant slope. Hence, additional training
runs with 400 and 600 epochs per step were done. The results
of these runs are shown in table IV. As these runs still showed
a declining slope on the validation loss at the end of training,
a final experiment was run with 1000 epochs per step. The
hardware for the last run allowed larger batch sizes, so the
batch size was increased to 8 and the learning rate accordingly
to 0.0008. Although this long run still did not reach a plateau
in the validation loss, as can be seen in Fig. 7 the network
accuracy is only 1% under the result from Group-Net.

D. Model Size

Since the models are stored as though they were full-
precision networks, and thus each parameter is stored as a
32-bit float, the size of the saved checkpoints does not give
a complete picture of the reduction in network size that the
quantization achieves. To resolve this, the number of trainable
parameters in each network architecture has been determined.
As can be seen in table V, the networks that have been bi-
narized based on the ReActNet architecture have significantly
less trainable parameters than the Group-Net network. The

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Fig. 7: Train loss (left) and validation loss (right) of the DeepLabV3 network with ResNet-18 backbone over the second set
of 1000 epochs

networks with a MobileNetV1 backbone have significantly
more parameters than those with a ResNet backbone. This
stems from the fact that the MobileNetV1 backbone has
more layers than the ResNet-18 backbone, and thus more
trainable parameters. While none of the models have solely
binary trainable parameters, as they all use a full-precision
first convolution, the percentage of full-precision and binary
parameters is assumed to be roughly equal. The result is thus
that the ReActNet-based implementations take up roughly a
quarter of the space, when using a ResNet-18 based backbone,
and half of the space, when using a MobileNetV1-based
backbone, when compared to Group-Net.

E. Number of Operations

To further determine the efficiency of the ReActNet-based
networks compared to the Group-Net baseline, the number of
floating point and binary operations is determined. Since the
convolution layers are the biggest contributor to the number
of operations in the network, and to simplify the calculations,
only the convolution layers are taken into account. Since
all networks use a full-precision first layer, and only binary
convolutions after that, the number of floating-point operations
(FLOPs) is only determined by the first layer. The remaining
convolution layers in the network determine the number of
binary operations (BOPs), and the total number of operations
(OPs) is determined through the equation 5.
The number of operations for each convolution is determined
by taking the kernel size and multiplying it with the output
size. This means that for e.g. a 3x3 kernel with 3-dimensional
input that has a 256x256x32 output, the number of operations
is (3 ∗ 3 ∗ 3) ∗ (256 ∗ 256 ∗ 32) = 56, 623, 104.
Table VI shows the number of FLOPs, BOPs and OPs for
each network. While both Group-Net and the new networks
with a ResNet-18 backbone have a 7x7 kernel on the first
layer, Mobilenet only uses a 3x3 kernel. It is noticeable that
the number of operations is significantly higher than the values
mentioned in the ReActNet paper [1]. This is due to the change
in size of the input image, The ImageNet images were cropped

to 224x224, while the cityscapes images were cropped to
512x512. This means that the image size is a factor 5.2 larger,
and the number of operations per convolution is increased
by this factor. Additionally, extending the network with the
decoder structures also increased the number of operations.
While Group-Net uses more operations in the network, the
decrease by switching to ReActNet is not the factor 4 one
would expect from going from Group-Nets 4 branches to the
single branch in ReActNet. This is due to the BPAC structure
mentioned in section II-D. The number of binary operations in
the network is dominated by the convolutions in the decoder.
By absorbing the ASPP paths into the branches of the encoder,
rather than running them 4 times in parallel, the number of
operations is reduced significantly.

VI. DISCUSSION

While the results support the viability of using ReActNet for
semantic segmentation, hardware and time-restrictions on the
research made that some avenues have gone unexplored. Al-
though the performance of the binarized DeepLabV3 networks
reaches comparable results to Group-Net after 400 epochs,
the validation loss had not yet stabilized, which is shown by
the increase in performance after 600 and 1000 epochs. In
addition, larger batch sizes are shown to improve performance,
but the upper limit of what was possible on the hardware
available to the author was at 8 images per batch, while
e.g. the used teacher network was trained at 16 images per
batch. The teacher network itself also poses options for further
research, as the upper limit of the network performance will
be at the performance of the teacher network. Since the KD-
loss function used does not require the student and teacher
network to have the same architecture, any network trained
on cityscapes can be used. As such, using networks higher
on the cityscapes leaderboards could also potentially improve
performance. Each of these options could further improve
the network performance, without requiring additional calcu-
lations at runtime, and would therefore be worth investigating
in future research.

Decoder \Backbone ReActNet (ResNet-18) ReActNet (MobileNetV1) Group-Net
DeepLabV3 15,923,840 36,852,096 60,473,002

FCN8s 11,312,416 28,456,608 N/A
FCN32s 11,305,120 26,442,016 N/A

TABLE V: number of trainable parameters

Network BOPs FLOPs OPs
Group-Net 5.74× 1010 6.17× 108 1.51× 109

FCN32 (ResNet-18) 3.37× 1010 6.17× 108 1.14× 109

FCN8 (ResNet-18) 3.38× 1010 6.17× 108 1.14× 109

DeepLabV3 (ResNet-18) 2.90× 1010 6.17× 108 1.07× 109

FCN32 (MobileNetV1) 4.99× 1010 0.57× 108 0.84× 109

FCN8 (MobileNetV1) 5.00× 1010 0.57× 108 0.84× 109

DeepLabV3 (MobileNetV1) 6.00× 1010 0.57× 108 0.99× 109

TABLE VI: Number of operations per network

VII. CONCLUSIONS

In this paper, I have shown that the ReActNet approach
can be successfully extended to and applied on semantic seg-
mentation tasks, as shown in the results section. The network
achieves comparable performance to Group-Net, and the loss
graphs show there is still room for improvement, despite the
reduced number of trainable parameters. The loss graphs show
the validation loss is not yet plateaued, and thus the network
performance could likely be improved when trained for more
epochs, or with a larger batch size. The ReActNet approach
also works when used with the FCN decoder structure. These
architectures were used as a proof-of-concept to demonstrate
how other architectures can be quantized with relatively small
losses in accuracy.

ACKNOWLEDGMENT

I would like to thank dr. Pavol Jancura, for the aid in
finding a topic and supervising the project, and Floran de
Putter MSc. for his expertise on binarized networks and his
insightful feedback.
I would like to acknowledge the MPS group and Anweshan
Das MSc. in particular, for setting up the server and making
it available to me so the networks could be trained with an
increased batch size.

REFERENCES

[1] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng.
Reactnet: Towards precise binary neural network with generalized acti-
vation functions, 2020.

[2] Bohan Zhuang, Chunhua Shen, Mingkui Tan, Peng Chen, Lingqiao Liu,
and Ian Reid. Structured binary neural networks for image recognition,
2020.

[3] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmentation.
CoRR, abs/1706.05587, 2017.

[4] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. CoRR, abs/1411.4038, 2014.

[5] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. CoRR,
abs/1505.04597, 2015.

[6] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834–848, 2018.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial
pyramid pooling in deep convolutional networks for visual recognition.
CoRR, abs/1406.4729, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. CoRR, abs/1512.03385, 2015.

[9] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff,
and Hartwig Adam. Encoder-decoder with atrous separable convolution
for semantic image segmentation. CoRR, abs/1802.02611, 2018.

[10] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jag Saranga-
pani. A comprehensive survey on model compression and acceleration.
Artificial Intelligence Review, 02 2020.

[11] Fiesler Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield. A weight
discretization paradigm for optical neural networks. In in Proceedings of
the International Congress on Optical Science and Engineering, pages
164–173. SPIE, 1990.

[12] Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and Kazuo Kyuma.
Weight quantization in boltzmann machines. Neural Networks, 4:405–
409, January 1991.

[13] Mark Horowitz. 1.1 computing’s energy problem (and what we can do
about it). In 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), pages 10–14, 2014.

[14] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin Wu, and
Yuheng Zou. Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients. CoRR, abs/1606.06160, 2016.

[15] Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo. Weighted-entropy-
based quantization for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[16] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen.
Incremental network quantization: Towards lossless cnns with low-
precision weights. CoRR, abs/1702.03044, 2017.

[17] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi. Xnor-net: Imagenet classification using binary convolutional
neural networks. CoRR, abs/1603.05279, 2016.

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations. J. Mach. Learn. Res.,
18(1):6869–6898, January 2017.

[19] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications, 2017.

[20] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. CoRR, abs/1604.01685, 2016.

[21] Zechun Liu. Reactnet. https://github.com/liuzechun/ReActNet, 2020.
[22] Bohan Zhuang. Group-net-image-classficiation.

https://github.com/bohanzhuang/Group-Net-image-classification, 2020.
[23] Gongfan Fang. Deeplabv3plus-pytorch.

https://github.com/VainF/DeepLabV3Plus-Pytorch, 2020.

(a) input image (b) ground truth (c) Group-Net prediction

(d) ReActNet-FCN32 (ResNet-18) prediction (e) ReActNet-FCN8s (ResNet-18) prediction (f) ReActNet-DeepLabV3 (ResNet-18) prediction

(g) ReActNet-FCN32 (MobileNetV1) prediction (h) ReActNet-FCN8s (MobileNetV1) prediction (i) ReActNet-DeepLabV3 (MobileNetV1) predic-
tion

Fig. 8: Example from the cityscapes dataset

(a) input image (b) ground truth (c) Group-Net prediction

(d) ReActNet-FCN32 (ResNet-18) prediction (e) ReActNet-FCN8s (ResNet-18) prediction (f) ReActNet-DeepLabV3 (ResNet-18) prediction

(g) ReActNet-FCN32 (MobileNetV1) prediction (h) ReActNet-FCN8s (MobileNetV1) prediction (i) ReActNet-DeepLabV3 (MobileNetV1) predic-
tion

Fig. 9: Example from the cityscapes dataset

