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Abstract

Circulating tumor cells (CTCs) are a subset of cells found in the blood of patients with solid
tumors. Once in the blood, these cells can initiate new metastases (spreading) in other organs,
which is the main reason for cancer-related death. Detection of CTCs is a crucial tool in the
early diagnosis of cancer. Despite efforts to detect and classify CTCs, no single method seems
to be able to handle the detection of CTCs accurately and rapidly.

This project is part of a greater program that exploits the strength of machine learning to
efficiently classify CTCs. It sets out to combine a hardware-based neural network with a
modular microfluidic chip, where input is generated by a range of integrated sensors optimized
for characterizing various cell properties.

To tackle the development of one of these sensors, this work develops an impedance sensor
featuring a microfluidic channel with integrated electrodes combined with an experimental
measurement setup. By filling the channel with a conductive solution and applying an AC
voltage to the electrodes, the impedance is measured as individual cells pass through, revealing
the cell’s dielectric characteristics.

Polystyrene beads, MCF-7- and MDA-M23- breast cancer cells were passed through the sensor
and measured individually. The sensor effectively differentiated polystyrene beads with varying
size. By probing the impedance simultaneously at low (200-500kHz) and intermediate(1-5 MHz)
frequency, dielectric information regarding the cell membrane capacitance was obtained. This
was demonstrated by differentiating between polystyrene beads and cells, as well as between live
cancer cells and those with compromised membranes.

The capability of the sensor to offer multiparametric information conveying cell velocity, cell
size and dielectric properties, while keeping data processing relatively simple, makes it ideal for
neural network implementation. Relevant information was extracted from the raw sensor signal
and used to train a simple software-based perceptron neural network, paving the way for future
application of hardware-based neural networks.
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1 Introduction

Circulating tumor cells (CTCs) are a subset of cells found in the blood of patients with solid
tumors. [1] Once in the blood, these cells can initiate new metastases (spreading) in other organs
[2] which is the main reason for cancer-related death [3]. CTCs are particularly useful as a
biomarker (medical indicator) for the metastatic state of cancerous tumours within the human
body[4]. Detection of CTCs can be used for early diagnosis of cancers, earlier evaluation of
cancer recurrence and chemotherapeutic efficacy, and choice of individual sensitive anti-cancer
drugs. Therefore, CTC detection is a crucial tool in the fight against cancer.

Figure 1.1: Illustration of circulating tumor cells (CTC) forming metastasis. Tumor cells escape from the primary
tumor site into the circulation where they can be detected as CTC. Some cells will eventually infiltrate into the

surrounding tissue and form a metastic site in other organs. [5]

In contrast to conventional invasive biopsies where tissue is taken from the body, so-called “liquid
biopsies”, i.e. sampling of blood, can be fast and non-invasive. However, the CTC count in
blood is generally very low ( 1 CTC per mL can be physiologically relevant[6],[7]) which makes
these liquid biopsy techniques extremely challenging. Apart from their low prevalence, CTCs
exhibit a large morphological and molecular variation adding to the complexity of detection [8].
State-of-the-art techniques, such as fluorescent-based flow cytometry, rely on specific fluorescent
or magnetic markers on the cell surface. This additional labeling step is complex, expensive,
time-consuming and could lead to sample deterioration [9]. This major weakness emphasizes the
urgency for label-free detection methods that are based on inherent cell properties.

An interesting solution to this problem can be found through the electrical properties of CTCs.
For example, the dielectric properties of tumour cells differ from normal blood cells [10]. CTCs
generally have a larger membrane surface area that features characteristics such as folds and
microvilli (portrusions), which create a larger membrane capacitance compared to normal smooth
membraned cells. Investigating the dielectric properties could provide other useful information
regarding geometry, physiological state, viability and growth while evading labeling [11].

The dielectric properties of cells can be analyzed by applying an excitation voltage (AC)
and measuring the resulting current. Impedance, the ratio of the voltage to current signal,
expresses opposition to electric current. An effective technique is dielectric bulk spectroscopy,
a label-free method, where the impedance of a cell suspension is measured over a range of
frequencies, providing information regarding the bulk behaviour of a cell populations. Bulk
measurements on a mixture of cells provide averaged information, yet individual cells, which
might be indistinguishable in appearance, generally have heterogeneous behaviour [12, 13, 14].
Because of the heterogeneity of individual cells within a population, it is essential to investigate
individual cells instead.
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To meet this demand, a giant amount of innovations have supported advances in single-cell
analysis. Advances in micro-fabrication methods have lead to the manipulation of ever smaller
sample volumes (10–9 − 10–18 litres), allowing researchers to screen single particles at high
throughput [15]. Innovations in this field have also been driven by the progress in measurement
equipment performance with respect to signal processing, accuracy and versatility.

To achieve accurate, high throughput (103–104 cells per second) and label-free detection of CTCs,
impedance measurements and microfluidics are united in microfluidic impedance cytometry. In
a microfluidic impedance chip, cells in a conductive buffer are individually passed through a
microfluidic-channel equipped with electrodes that generate an electric field. As a cell disturbs the
electric field, the changes in impedance reveal information regarding its dielectric properties[16,
17].

Promising as the results may be, despite various efforts[18, 19, 20, 21] to detect and classify CTCs,
no method alone seems to be able to handle the detection of heterogneous CTCs accurately and
rapidly. Hybrid systems, where detection methods based on different physical properties are
combined to obtain multi-dimensional data, could be beneficial. Combining sensor data with
different physical fingerprints will create very large and ambiguous data sets that often require a
human check. Recently, various notable research studies have suggested that software based AI
can perform better than humans at vital healthcare tasks. Today, algorithms already surpass
radiologists at spotting malignant tumours [22, 23], and help researchers improve costly clinical
trials[24]. The benefits of machine learning and AI lie in the processing of large datasets and
implementation of reliable analysis into clinical insights, improving healthcare and ultimately
improving results, reducing costs and saving lives. The detection and analysis of CTCs could
benefit significantly from the adaptation of machine learning.

Figure 1.2: Combination of inputs from sensors of different physical nature with a neural network to classify
CTC’s in a liquid biopsy

Software-based neural networks use conventional von Neuman computing, based on energy
intensive and inefficient sequential processing where data is transferred back and forth between
the processing and memory units [25]. To execute neural network algorithms at an energy
efficiency and interconnectivity comparable to that of the brain, it would be desirable to mimic
the brain’s synaptic functionality in hardware. Researchers recently introduced an artificial
synapse in Nature [26], able to take on and retain a high number of analogue states, ideal for
pattern recognition and classification of unstructured (big) data.
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The use of different physical sensing techniques combined with the strength of neural networks
in hardware can be revolutionary in the classification and sorting of CTCs (Fig. 1.2). The
aim of this research is to develop a microfluidic impedance sensor capable of detecting and
differentiating cancer cells to train a neural network. As the development of the hardware based
neural network is still in progress and out of the scope of this research, it is mimicked by a
simple interim software based neural network.

This research will tackle the sensory side by exploring the possibilities of impedance cytometry. It
commences with the development of a microfluidic chip capable of manipulating small controlled
fluid volumes. This is followed up with the development and integration of an impedance sensor
which monitors the impedance of the fluid. Parallel to this, an experimental measurement
setup will be established, which controls the fluid flow, generates the electric field and measures
the resulting impedance. The dielectric fingerprint of particles and cells, hidden in the raw
signal is revealed through signal conditioning and software post-processing. Focus will be on
the utility of certain parameters from the impedance signal and its relevance for neural network
applications. The multi-parametric impedance data will be used to train a simple neural network
in recognizing patterns and distinguishing particles and cells. Starting with differently sized
polystyrene beads, it works towards the detection and classification of cancer cells with a simple
neural network algorithm. This technology will be developed for future use in a setup where
multiple physical sensors will be combined with a hardware based neural network, integrated on
a lab-on-a-chip application.

The overall structure of this report is as follows: section 2 focuses on the theoretical fundamentals
of impedance, dielectric properties of cells provided with a short introduction on neural networks.
Section 3 bridges the gap between theory and practise through modelling. Section 4 provides a
description of the device design, fabrication methods, the experimental setup and data analysis.
Experimental results are investigated and compared with the simulations in section 5. Finally,
section 6 recaps the most important conclusions and provides an outlook for future work.

Figure 1.3: The outline of the project.
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2 Theory

This project creates a sensor that essentially monitors the dielectric properties of a cell-suspension.
This section provides a theoretical foundation on impedance and dielectrics. These subjects are
then linked with the dielectric properties of particles and cells. This is followed up with two
ways of describing the dielectric behaviour of the system with theoretical models. This section is
finalized with a short introduction on neural networks.

2.1 Electrical Impedance

Electrical impedance is defined as the ratio of the voltage to an alternating current (AC) passing
through a system, i.e. obstruction of an AC flow [27]. Impedance takes the concept of a
resistance, which is independent of frequency, and extends it with ”reactance”. Reactance is the
opposition to current due to the concepts of capacitance and conductance, which depend on
frequency. Impedance, Z, is a general term for the contribution of the resistance and reactance:

Z = R+ jX︸ ︷︷ ︸
Cartesian form

= |Z|ejΦ︸ ︷︷ ︸
polar form

(2.1)

Where the real part, R, represents the resistance and the imaginary part, X, the reactance. j is
the imaginary unit. |Z| is the magnitude of the impedance. The phase angle Φ is the difference
between the phase of the voltage and the phase of the current. A visual representation is given
in figure 2.1A.

Figure 2.1: (A) A graphical representation of the electrical impedance. (B) Graphic of the structure of a
”typical”cell describing the outer membrane, the inner fluid between the membrane and the nucleus. (C) A

graphical representation of the dipole moments in a polarizable material.

2.2 Dielectric properties of particles and cells

A dielectric is an electric insulator, meaning non-conductive under the influence of an electric
field, but polarizable by that same electric field [28]. A polarizable material contains random
oriented molecules, which have an non-homogenous distribution of electrons, where one end of
the molecule is slightly positive, while the other end is slightly negative. When an electric field is
applied, the dipole moments of these molecules are shifted from their original position, see figure
2.1C. They are aligned in such a way that an internal electric field is formed, which reduces the
overall electric field within the dielectric itself. This will increase the energy storing capacity.
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This process is called dielectric polarization and the polarizabillity of a dielectric material is
termed permittivity.

Polarization is not an instantaneous process. A lag between changes in polarization and the
electric field, termed dielectric relaxation, is present. This creates a dependence on the frequency
of the applied electric field. The dielectric relaxation response of a population of dipoles in a
medium, i.e. its frequency dependence, is expressed in the complex permittivity η:

ε̃(ω) = ε∞ +
∆ε

1 + iωτ
(2.2)

where ε∞ defines the permittivity at very high frequencies, ∆ε = εs − ε∞ with εs being the low
frequency permittivitty and τ the characteristic relaxation time of the medium. If the frequency
of the electric field increases to such a degree that the dipole moments in the material can no
longer follow the oscillations, the process loses its response, the energy storing capacity and the
permittivity both decrease. The dependence of the permittivity on frequency is described by
dielectric dispersion.

Biological cells are not homogeneous, but consists of a complex composite material with varying
electrical properties, see figure 2.1B. To describe the underlying dielectric mechanisms, Pauly
[29] developed a simplified ’single shell’ model, consisting of a plasma membrane surrounding
a cytoplasm. The membrane is a lipid layer consisting of proteins. Because of its low ionic
permeability it is considered a low conductive thin shell. Schwan [30] defined three discrete
dispersion regions for cells in suspension:

• α- dispersion (10 Hz - 10kHz) attributing to the polarization of the electric double layer
around the cell. The α- dispersion is hard to investigate due to the electric double layer at
the electrode interface dominating the impedance at low frequency.

• β- dispersion (1kHz - 1Mhz) associated with the interfacial polarization of the capacitive
cell membrane. If the frequency reaches a certain value and the cell membrane capacitance
is electrically ”short-circuited”, current can penetrate into the cytoplasm which would
result in a drop in overall impedance.

• γ- dispersion ( > 1Mhz) occurs due to the dipolar relaxation of water molecules

Figure 2.2: (A) As the frequency is increased, different cell components dominate the impedance of current. (B)
The approximate variation in magnitude and phase of the impedance spectra of a cell. Based on a model of Sun

et. al[12]
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Revealing the dielectric characteristics of a cell by shifting the frequency over the different
dispersion regions and probing the resulting impedance is a very powerful and non intrusive way
of cell analysis.

To conclude, at low frequency, the cell membrane acts as a barrier to current flow and measuring
the impedance gives an indication of volume or size[31], see figure 2.3A. Particles of the same
volume but different dielectric properties would not be differentiated with measurements at
low frequencies. Increasing the frequency gives the dipoles less time to attain full polarization.
Impedance measurements at intermediate frequencies, provide information on the membrane
characteristics. At relatively high frequency, the dipole moments in the membrane have insufficient
time to align and current effectively passes the membrane. Impedance measurement at these
frequencies reveal information about the heterogeneous structure and intracellular dielectric
properties. Figure 2.3B gives an approximation of the variation in magnitude and phase of the
impedance with frequency for a cell, based equivalent circuit modelling [12].

This project focuses on cancer cell characteristics and their corresponding dielectric properties.
These have been subjected to extensive research in the past [32, 33]. The dielectric properties
of cancer cells are different compared to normal mono-nuclear blood cells [34, 10]. The main
discrepancy can be found in the membrane. Cancer cells have a rough and large membrane
surface area with folds and small microvilli, which are small microscopic protrusions. This
translates into an increased membrane capacitance in comparison with an equally sized cell with
a smoother membrane. Another characteristic of a cancer cell is a slightly higher nucleus-to-
cytoplasm ratio [11, 35] and cell cycle turnover[11, 36], both of which influence the cytoplasm
conductivity.

2.3 Maxwell Mixture theory & the equivalent circuit model

The sample flowing through the microfluidic channel is a mixture of medium and particles. The
electrical behavior of this mixture under the influence of an electric field can be described with
Maxwell’s mixture theory[37, 38, 17, 39]. This theory relates the complex permittivity of the
mixture to that of the cell, the suspending medium and the volume fraction.

As shown in figure 2.3A, Maxwells’s theory shows a direct relation between the mixture impedance,
Zmix, the geometric properties Gf , and dielectric properties of the system, ε̃mix. The complex
permittivity of the mixture is directly related to the volume fraction, medium permittivity
and the Clausius-Mossotti factor. The Clausius-Mossoti factor f̃CM describes the frequency-
dependent effective dipole moment that gives rise to the dielectric behaviour. This factor is
based on the complex permittivity of the cell and is computed with appropriate single- or multi-
shell models [40, 39]. Box C in figure 2.3 relates the cell permittivity to the individual membrane
and cytoplasm properties.

An assumption is that the volume ratio between the cell and the suspending system, is small
(φ < 1) and that the cell membrane thickness, d, is much smaller than the cell diameter, r.
Gf is the ratio of electrode area to electrode gap for an ideal parallel electrode plates with a
homogeneous electric field. Applying this model for a co-planar sensor, where the electrodes
are next to each other in a channel, this factor compensates for non-homogeneous electric field
distribution and fringing effects [16]. A more extensive derivation of Maxwell’s mixture theory,
can be found in the appendix A.
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Figure 2.3: (A) Maxwell’s mixture theory (B) Extension of Maxwell’s equations with a single shell model. (C)
Equivalent circuit formula’s for each component and the circuit as a whole

Maxwell’s mixture theory forms the foundation for equivalent circuit modelling. The dielectric
properties of biological materials incorporated into an equivalent circuit model was first developed
by Foster and Schwan [41]. It explains the behaviour of each components within the system
and the system behaviour as a whole. Figure 2.3D and E describe the simplified electrical
circuit of a sensor with a cell present in the electric field between two electrodes. The open
connections to the system are indicated with lines ending with open rounds located at the top
and bottom side. The CEDL represents the electrical double layer at the electrodes. Cmedium and
Rmedium describe the capacitance and resistance of the medium in the detection area between
the electrodes. To approximate the general behaviour of a cell in an electric field, it can be
modeled simply as a resistor that describes the cytoplasm, Rcyto, in series with a capacitor for
the membrane, Cmem, as shown in figure 2.3E [16]. The cell membrane resistance is generally
much greater than the capacitance of the membrane and can therefore be ignored[17, 39]. The
cytoplasm capacitance is generally much smaller than the resistance and can therefore also be
ignored. Cparasitic represents a constant parasitic (stray) capacitance, which is unavoidable and
related to the proximity of measurement equipment and cabling. σmed is the conductivity of
the medium, Φ is the volume fraction of the cell to the detection volume and Gf is the ratio of
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electrode area to electrode distance. Cmem,0 is the specific membrane capacitance. The limiting
high-frequency permittivity of the suspension, ε̃∞, is related to the suspending medium- and
cytoplasm permittivity.

2.4 Neural network classification theory

The information that is acquired from the impedance sensor will be labeled and used to train
a simple neural network algorithm that classifies particles. The network is trained through
classifiers, which are functions that decide whether an input belongs to a certain class. The
algorithm, also called a perceptron, is a feed-forward network that starts with multiplying the
input values with their randomly assigned weights. A weight, is a parameter that scales the
values of the inputs. The values of these multiplications are then summed up in the weighted
sum. The weighted sum is applied to a hard-limit activation function that maps an input to
an output value and returns an output of a 0 or 1. The hard-limit transfer function gives the
perceptron the ability to classify input vectors by dividing the input space into two regions.
The algorithm finds a line that correctly separates the two classes by tweaking the weights and
biases after each loop. The procedure of adjusting the weights after each loop is governed by
the ”learning rule”. In the case of supervised learning, the learning rule is given a training
set where the inputs are given a corresponding target output. As the inputs are inserted into
the network, the output is compared to the target. The learning rule then adjusts the weights
and biases of the network based on the difference between the target and output, which is the
error. This way the network brings the outputs closer to the target. The limitation of this
perceptron algorithm is that it can only separate input vectors that can be separated by a
linear boundary. Additional theory and a full explanation of perceptrons with an extension to
multi-layer perceptron networks can be found in appendix B.

Figure 2.4: Perceptron neural network with three input vectors, their assigned weights, the weighted sum, the
hard-limit activation function, the error from the target that adjusts the weights after each loop, and finally one
binary output. On the right side, the algorithm starts out with an line constructed with random weights and bias.
After each loop the weights and biases are adjusted to minimize the error and readjust the line until convergence

8



3 Modelling

In reality, the impedance sensor is a complex system where different physical phenomena take
place. This section aims to make particular physical mechanisms of the whole system easier to
understand and visualize. A simplified numerical COMSOL model provides a basic understanding
of the underlying physics and illustrates how design choices like the channel geometry, electrode
designs, and experimental conditions affect the performance of the sensor. Another tool to
better understand the system is the modelling of an electrical circuit which is analogue to the
electrical behaviour of a particle-suspension under the influence of an electric field. This section
will give a short overview of the most interesting results, a complete description of the models
and elaboration on all other results can be found in the appendix C

3.1 COMSOL model

This simple model illustrates how the channel geometry, electrode designs, and experimental
conditions affect the sensitivity of the sensor. The COMSOL model simulates a particle travelling
through a microfluidic channel, disturbing the electric field between two co-planar electrodes,
thus creating a change in impedance. An overview is depicted in figure 3.1a. The influence
of the following parameters are investigated: the inter-electrode distance del, the width of the
electrodes wel, the particle material properties, geometry and vertical trajectory position, the
medium properties properties and the channel geometry.

(a)

(b)

Figure 3.1: (a) 3D model including the normalized electric field intensity of the detection volume with the design
parameters. (b) Simulation of the voltage variation as the particle vertical position is changed

3.1.1 Positional dependence

Figure 3.1b shows the voltage variation as a particle passes through the electric field. The
simulation reveals the influence of the vertical particle position within the channel. A particle
just barely passing over the electrodes, where the current density is higher, results in a larger
signal variation. It causes two distinct peaks, compared to the single peak when the beads pass
at a higher position in the channel.
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3.1.2 Electrode geometry

Figure 3.2 simultaneously shows the effects of the electrode distance del, vertical particle position,
and particle size on the voltage variation. Noteworthy is the increased signal variation that
scales with the sphere volume and the significantly higher signal variation for a del of 50 µm
compared to a del of 150 µm. The fact that besides the width of the peak being much wider
for a larger del, a larger del decreases the sensitivity to vertical particle position. The signal
variation in the central zone (x=0 µm) varies little and hence will depend mostly on the size
of the particle. To a degree, by increasing the electrode width, the sensitivity is decreased but
positional dependence on the signal could be neutralized.

Figure 3.2: The impact of electrode distance on impedance variation

3.2 Equivalent circuit simulations: device characterization

The theoretical equivalent circuit model in section 2.3(box D) and other models[42] form the
basis for this section. When considering the simplified electrical circuit of the device without a
cell in figure 3.3a, the total impedance roughly depends on 3 components: the medium resistance,
the capacitive electric double layer at the electrode surface and the medium capacitance:

Zcircuit ≈
x

jωCmedx+ 1
, x = Rsol +

2

jωCDL
(3.1)

For simplicity the parasitic capacitance present in the cabling and equipment is ignored. To
investigate the influence of these 3 components on the impedance of the system, a model was
created in LTSPICE, which is an analog electronic circuit simulator software program. The
goal of the model is to create an understanding on the interaction between the components.
It provides a guideline for device design and helps with the interpretation of experimental
results.
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(a)
(b)

(c) (d)

Figure 3.3: The influence of a changing. (b) double layer capacitance. (c) medium resistance. (d) medium
capacitance

The circuit in figure 3.3a was modelled in LT spice and the values of each component were changed
to see the influence on the spectrum. The impedance of the system has three important frequency
regions. Each frequency region corresponds to one or more components in the equivalent circuit
model. The low frequency region is dominated by the double layer capacitance at the electrodes,
being the main contributor to the impedance. It acts as an open circuit and no current flows.
When the frequency increases, the impedance due to the electric double layer decreases. If the
point is reached where the impedance of the electric double layer equals the impedance of the
medium resistance a transition into the second region occurs:

flow ≈
1

RmedCDL
(3.2)

When the frequency reaches flow the double layer capacitors are ”short-circuited” and the
medium resistance becomes dominant. The medium acts as a resistor, which is independent of
frequency and results in a resistive plateau. This resistive plateau is the region where unbiased
impedance measurements are possible. If the frequency increases further, the impedance of the
medium capacitance drops below the impedance of to the medium resistance and the last region
occurs. The transition is approximated by:

fhigh ≈
1

RmedCpara
(3.3)

When the frequency reaches fhigh, the impedance drops further because the medium capacitor
short-circuits, see figure 3.3d. The impedance then becomes inversely proportional to the
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frequency. In experiments, the first region, dominated by the electric double layer capacitance
correlates with electrode area and electrode surface roughness. Increasing the capacitance of
the double layer, for example through larger electrodes, could extend the resistive plateau, as
seen in figure 3.3b. When the medium resistance is varied, only the location of the plateau will
shift according to figure 3.3c. The resistive plateau is also extended by decreasing the medium
capacitance, see figure 3.3d.

3.3 Equivalent circuit simulations: the cell model

To approximate the general behaviour of a cell in an electric field, it can be modeled simply as a
resistor that describes the cytoplasm in series with a capacitor for the membrane [16]. The cell
membrane resistance is generally much smaller than the capacitance of the membrane and can
therefore be ignored. The cytoplasm capacitance is generally much smaller than the resistance
and can therefore also be ignored. Figure3.4a, shows the electrical circuit as modelled in LTspice.
A differential configuration is simulated to highlight the effect of the cell in the electric field and
remove the impact of the medium properties on the electric field. The left electrode pair depicts
the equivalent circuit for the detection region without a cell compared to the right electrode pair
which has a cell in the between. The difference between these two circuits reveals the behaviour
of the cell. The impedance magnitude of an insulated polystyrene bead with a high resistance
and capacitance is compared to a similarly sized cell with lower resistance and capacitance.
The values from literature [43, 44] are tweaked to more resemble the device in this work. The
medium resistance and capacitance are 35.38 e-15 F and 14.30 e3 Ω. The electric double layer is
modelled as a relatively high capacitance of 200 e-12 F . The bead capacitance and resistance are
e-16 F and 120 e5 Ω respectively. The cell capacitance and resistance are 6 e-16 F and 90 e5 Ω
respectively. Figure 3.4b shows the differential impedance magnitude between the two electrode
pairs. At low frequency, the difference between bead and cell is negligible. The differential signal
for the cell drops off at a lower frequency compared to the bead. This is related to the larger
impedance (reactance) decrease of the cell capacitance in comparison with the bead capacitance.
In cell experiments, this steeper decrease in impedance would correlate with the β− dispersion,
i.e. the dielectric relaxation of the membrane. The figure includes a rough graphical indication
of the frequency regions where each cell structural component would affect the impedance signal
according to literature [12, 43].

(a)

(b)

Figure 3.4: (a) The circuit as modelled in LTSpice, the amplification components are ignored for this simulation.
(b) The impedance magnitude frequency spectrum of a cell compared to a particle
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4 Materials and methods

4.1 Device design

In an impedance based microfluidic chip, cells in a conductive buffer are transported through a
micro-channel equipped with electrodes. The two most prevalent electrode configurations are
co-planar and parallel facing electrodes(REF). In this project a co-planar electrode configuration
was chosen for its simple fabrication process, as the bottom glass plate with electrodes and a top
layer of PDMS containing the microfluidic channel features requires only one single alignment
step. In a design with facing electrodes the PDMS (or similar material) is sandwiched by two
glass electrode plates, requiring two alignment steps.

The main disadvantage of the co-planar design is the non-homogeneous electric field distribution
within the channel that creates a dependence on particle trajectory position. Solutions to this
problem are (hydrodynamic) particle focusing or channel dimensions down-scaling. By decreasing
the channel dimensions the ratio between cell and detection volume is increased as well as the
resulting impedance change. Naturally, clogging becomes more prevalent and the possible range
in cell/particle size is limited.

Figure 4.1: (A) 3D render of the device, (B) Detail of the constriction channel, (C) dimensions of the
microfluidic channel.

To achieve better results, multiple parameters of the co-planar microfluidic impedance cytometer
were altered and investigated. In terms of of channel geometry, the width was varied between
30 and 50 micrometer, while keeping the height constant at 20 micrometer. The length of the
small constriction channel is 500 micrometer. The distance between the electrodes was varied
between 15,20,30,40,50 and 100 micrometer and the electrode width was varied between 15, 20,
30 and 50 micrometer. The electrode thickness was kept constant at 55nm. Practical issues, like
clogging and electrode degradation during testing lead to the multi-channels design in figure 4.1.
It depicts a microfluidic chip with 24 channels and 15 electrodes, effectively producing 24 sensors
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on one chip. Next to simple two-electrode measurements, this multi-electrode design allows
for differential measurements where the difference between two electrode pairs is measured. A
differential measurement removes the impact of the environmental properties and measures the
cell properties directly against the surrounding media.

4.2 Device fabrication

Creating an impedance sensor that is sensitive enough to distinguish cell characteristics stands
or falls with the quality of the fabrication process. In pursuit of the smallest electrode features
possible, a glass wafer is rigorously cleaned and irradiated with UV-ozone before a thin layer of
negative photoresist (AZ-Nlof 2035) is spun on. After a soft bake the photoresist is exposed by
115 mW/cm2 with UV-light, followed by a post-bake and development step. Subsequently, a
thin 5nm layer of Chromium and a 100nm layer of gold is deposited by sputtering. The resulting
electrode features are revealed by lift-off in acetone.

The microfluidic channels are obtained by pouring an elastomer(PDMS, Sylgard 184, Dow
Corning, Base to Curing Agent weight ratio 10:1) over a master mould structure, which is then
cured in an oven, released from the mould and provided with holes for tubing. The master
mold is made by spin-coating a thin layer of SU-8 photoresist on top of a silicon wafer and
subsequently baking and exposing it to UV-light before post-baking and development. The
device is finalized by alignment under a stereo microscope and bonding of the PDMS channel
layer and electrodes with a plasma treatment.

4.3 Experimental setup

In conjunction with the microfluidic impedance chip, the development of the measurement setup
build around the device is equally important. A schematic of the experimental setup is shown in
figure 4.2. To establish a sample flow, the computer controls the buffer is pumped by means of a
pressure driven pump (Fluigent MFCS-EX) or a syringe pump. The microscope gives visual
feedback on the proceedings in the chip, which is used to correlate the visual to the electrical
events. The lock-in amplifier is used to generate the electric field measure the impedance signal.
All these devices are connected to the PC.

Figure 4.2: Overview of the setup.
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4.4 Lock-in amplifier impedance measurement

The cornerstone of the setup is the lock-in amplifier. It is very effective at extracting weak
signals from a noisy environments. Figure 4.3 shows the core principle that revolves around
demodulation, which is the multiplication of an input with a reference signal followed with a
low-pass filter. This multiplication isolates the signal at the frequency of interest, while blocking
all other frequencies. The outputs X and Y represent the (real) in-phase and (imaginary)
out-of-phase component of the signal. These can be converted into the magnitude and phase
of the signal. To establish multi-frequency electric field in the channel, AC excitation signals
(1V) of different frequencies are generated and mixed by the internal oscillator of the lock-in
amplifier and applied to the electrode. When a particle disturbs the electric field, a change in
current is measured. The outgoing current is then amplified with a factor of 1000 and converted
to a voltage by the trans-impedance amplifier(HF2TA). The lock-in amplifier simultaneously
generates, conditions and demodulates the signals of 6 different frequencies and provides the
in-phase and out-of-phase components with a sampling rate of 28750 sa/s.

Figure 4.3: Overview of the lock-in detection in during an experiment

4.5 Medium preparation

PBS (Phosphate buffered saline, Sigma-Aldrich) [45]is a water based electrolyte which is similar
with respect to osmolarity and ion concentration to body fluids of mammals. PBS has a density
of 1.00-1.01 g/ccm and conductivity of 1.6 S/m. Plain spherical polystyrene beads [46], beads
with COOH-coating and magnetic polystyrene matrix beads were used in experiments. The
plain and COOH-coated beads have a density of 1.03 g/ccm and the magnetic beads have a
significantly higher density of 1.1 g/ccm. The amount of beads ranges from 110000 beads per
ml for 15 µm beads to 500000 beads per ml for 5 µm beads. Bead diameters are 5, 8, 10, 12 and
15 µm.

MDA-MB231 and MCF-7 epithelial cancer cells were grown in RPMI, a growth medium for
mammalian cells. During weekly passage, cells for experiments were extracted by adding
Trypsin, detaching them from the petriflask surface. Subsequently the cells are centrifuged and
re-suspended in PBS before pumped through the impedance sensor.

4.6 Data Analytics

The lock-in amplifier is connected to the PC using a USB-connection. Figure 4.4 shows a visual
representation of the data analysis process from raw impedance data to clean metrics, ready to
use for machine learning applications. In MATLAB, the impedance data, either in R and θ or X
and Y , is compensated for drift and normalized through a moving average-filter. Subsequently,
events in the form of local maxima, above a certain threshold and prominence, are extracted
with with a peak finding algorithm. The threshold is chosen manually after each experiment

15



to separate relevant events from artefacts, noise and debris. Timestamps, peak amplitude and
peak widths from data streams with different frequency and microscope videos are synchronized
and then further investigated through plots or used to train a neural network. The script and
an in-depth analysis exploring the trade-off between different conditioning methods regarding
optimal feature extraction and minimizing the loss of information can be found in the appendix
E.

Figure 4.4: A schematic showing examples of the data analysis process from raw data from the lock-in amplifier
to clean metrics, ready to use for machine learning
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5 Results

Henceforth, all experiments are done with the following microfluidic impedance sensor design
until stated otherwise: a 30 µm channel width, 20 µm channel height, electrode width of 20 µm
and electrode spacing of 40 µm.

5.1 Impedance measurement & event detection

As the mixture is pumped through the microfluidic channel and a voltage is applied to the single
pair electrodes, current flows and an electric field is generated. Passage of a particle over the
electrodes and through the electric field, results in an impedance change in the detection area.
Figure 5.1 shows the raw magnitude of the signal measured with the Lock-in amplifier of an
experiment where a PBS solution with 15 µm beads is pumped through the sensor with a low
bead velocity of 200 µm/s.

Describing the signal in the polar form, the detail of figure 5.1 shows the change in signal
magnitude as a 15 micrometer particle disturbs the electric field with a signal to noise ratio,
(|Z|peak/|Z|baseline)−1, of around 1.06. Baseline drift in the signal complicates signal analysis and
is removed by means of passing the raw signal through a moving average filter and subtracting
it. The result is a stable normalized baseline, details are further explained in section 5.2.4. The
two extracted features of the inverse peak are its depth and its width. The depth is a measure
of change in signal magnitude and the width the duration of the event, i.e. the transit time of a
particle. Additional to a change in magnitude, an event may cause a change in phase, see figure
5.2b. Likewise, this change in phase takes the shape of a peak or depression. Figure 5.2a gives a
visual representation of the event in figure 5.2b. Z0 indicates the baseline impedance and Ze
indicates the impedance at the time of an event. Depending on the dielectric characteristics of
the particle, Ze could be positioned anywhere on the plane. If instead of extracting data from
the signal in its polar form, occasionally features are brought to light by examining the in-phase
(real) and out-of-phase (imaginary) components separately.

Figure 5.1: Raw impedance magnitude signal of an experiment with 15 micrometer beads with a detail of an
event in the shape of an inverse peak
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(a)

(b)

Figure 5.2: (a) Visualization of an event. The change of the dot represents a change of the impedance Z (b)
Event with normalized base signal

5.1.1 Influence of bead size

The primary ability of the impedance sensor should be the detection and classifications of
differently sized particles. At low frequencies (<1MHz), cells and particles can be treated as
non-conductive spheres as described in section 2.2. The impedance data at low frequencies is
expected to provide the volume of a particle or cell. Figure 5.3a shows the a short segment of
the baseline-compensated signal from an experiment where a mixture of 5,8 and 15 micrometer
beads were combined in PBS and the impedance was measured with a frequency of 200kHz.
All the peak magnitudes and transit times are combined in the scatter plot in figure 5.3b. A
clear distinction between beads of different size can be made with solely the peak magnitude.
Significant scattering in horizontal direction indicates a large range of transit times. The
influence of bead velocity on the peak magnitude will be discussed later on. The variance in
peak magnitude for each bead size corresponds with a positional dependence.

Figure 5.3c depicts the results of five experiments with different bead sized combined in a scatter
plot. Although there is substantial scattering of events, the ”cloud” of each bead size is relatively
separated. Figure 5.3d shows how the events are distributed for each bead size.

To investigate the influence of bead material properties, polystyrene beads containing magnetite,
and beads coated with COOH groups were measured in contrast with plain beads. No significant
differences in the results were found, except that the COOH-coated beads were less prone to
clogging. The reason why the magnetic beads behave similarly to normal beads may be due to
the composition. A magnetite coating is located underneath an outer coating of polystyrene,
which acts as an insulation layer.
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(c) (d)

Figure 5.3: (a) Magnitude change as differently sized polystyrene beads flow through the electric field with a
frequency of 200KHz and 1V. (b) shows the scatter plot of the diffently sized beads in a mixture. (c) Scatter

plot of differently sized beads in separated experiments, but with the same device and conditions (d) Histogram
showing the distribution of of peak magnitude for each particle size.

5.1.2 Influence of bead velocity

Besides affecting the width of the peak, the speed at which the particle passes the electrodes
also shows a relationship with peak magnitude. Investigating figure 5.3b and figure 5.3c, the
broad horizontal distribution of the scatter plot shape indicates a high variance in transit time.
At short transit times, a significant drop in peak magnitude occurs. Accurate size detection at
low transit times becomes inconspicuous. The overlap in data points reveal a bead velocity limit
at which the sensor, with current parameters, has difficulty in detecting the size accurately. This
could be ascribed to the choice of a lock-in sampling rate that is insufficient. This choice was
made to reduce the size of data files. With an eye on future work focused on higher throughput,
increasing the sampling rate of the lock-in amplifier is expected to solve this. Figure 5.4a
and 5.4b show the correlation between the peak width and bead velocity verified with optical
imaging.
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(a) (b)

Figure 5.4: (a) Electrical transit time correlated with the optical transit time. (b) Relation peak width with
bead velocity

5.1.3 Influence of particle position

The electric field in coplanar configuration is not homogeneous, its stronger closer to the
electrodes. The peak magnitude is dependent on the vertical particle position throughout the
channel. To reduce the variance in particle position, the channel height is reduced as much as
possible without obstructing flow of particles and causing channel clogging. Considering the
scatter plot 5.3c, the variance in magnitude, i.e. the vertical scatter distribution at a given
transit time correlates to the varying vertical position throughout the channel. Clearly, beads
of 15 micrometer have a much lower vertical distribution compared to the smaller bead sizes,
illustrating the interaction between particle diameter and channel height. A large bead has less
space to move within the channel. The influence of bead velocity and position cannot be seen
completely separate from each other. At lower flowrates, particles which have a slightly higher
density than the medium, will sink to a lower positions in the channel and thus result in a higher
impedance signal.

5.2 Device characterisation

The previous section the interaction between bead size, bead position and bead speed was
investigated. This section will explore how the design parameters, such as channel geometry,
electrode geometry and experimental conditions affect the sensitivity of the device.

5.2.1 Channel geometry

The sensitivity of the device is heavily dependent on the dimensions of the detection volume
compared to the target particles. The simplest way to improve sensitivity is to decrease the
detection volume. If the channel dimensions approach the diameter of the particles, the sensitivity
is maximized but practical issues like clogging and dealing with tight fabrication tolerances arise.
On the other hand, a larger channel cross section leads to a lower sensitivity and a higher chance
of coincident particles in the detection area, increasing the amount of artefacts. The electric
field is not homogeneous. Hence next to the volume fraction, the shape of the channel affects
the sensitivity significantly. Figure 5.5a shows the correlation between sensitivity and channel
width. It illustrates the increase in sensitivity through the impedance magnitude averaged over
approximately 100 events as the channel width is decreased.
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(a) (b)

Figure 5.5: (a) Increased sensitivity with channel width down-scaling. (b) The average magnitude versus
frequency. Experiment with 15 micrometer beads in differential electrode configuration in a gradually increasing

medium conductivity by changing the PBS/MilliQ ratio in 3 steps.

5.2.2 Medium properties

As expected, increasing the relative medium to bead conductivity would increase the sensitivity.
Figure 5.5b shows the impact of a gradual conductivity increase on the average peak magnitude
by a stewpise increase of the ratio PBS to purified water measured at different frequencies.
When the medium conductivity was increased further by adding Sodium Chloride, electrode
degradation due to chemical interaction at the electrode surface between the medium and the
Chromium was brought about. Next to the conductivity, the medium density and osmolarity
can be tuned with the addition of Sodium Chloride or sucrose [47] in order to match the density
of particles or change cell properties with an osmotic shock.

5.2.3 Electrode geometry

The sensitivity is significantly impacted by the electrode spacing del, width wel and thickness.
The first parameter that is examined is the distance between the electrodes. The simulation in
section 3.1 showed that with an increased electrode distance, the total signal variation would
decrease, the width of the peak would increase and the signal would be less dependent on the
vertical particle position.

Three devices were tested, where the del is varied from 20, 30 to 40 micrometer while the other
design variables are constant. A mixture of PBS and 5,8, and 15 micrometer polystyrene beads
were separately pumped through the devices. Figure 5.6a presents the experimental results of 15
micrometer beads passing the sensor in a peak magnitude versus peak width plot. In agreement
with the simulations, the overall magnitude of the peak decreases with a larger del. The shape
and density of the scatter clouds correlate to a varying flowrate and vertical particle position
respectively. Interestingly, the scatter cloud of the smaller del show a steeper increase with bead
velocity. This hints on a lower dependence of the peak magnitude on particle position and bead
velocity for devices with a bigger gap between the electrodes, which would be in agreement
with the simulations. The same trend is found in experiments with smaller beads, see figure
5.6b. As discussed before in section 3.2, the surface area of the electrodes interacts with the
electric double layer at low frequencies. However, in practise there was no significant change
when the electrode surface area was gradually increased with an increased wel of 15, 20,25,30 to
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50 µm.

(a) (b)

Figure 5.6: (a) 15 µm beads in devices with varying electrode distances of 20, 30, 40 µm (b) 5 µm beads in
devices with varying electrode distances of 20, 30 µm

In general there is a significant device-to-device performance variation. Underlying factors
influencing the performance, could be the electrode surface roughness, small local differences in
electrode thickness and local differences in channel geometry.

5.2.4 Absolute vs Differential electrode configuration

This section will reveal the trade-offs between the absolute and differential measurement configu-
rations. Figure 5.7a compares the raw signal of the single electrode pair with the differential
configuration.

Probing the impedance in single configuration brings about a volatile situation where fluctuations
in baseline are caused by small changes in the device or by environmental electromagnetic
pickup from other equipment. This complicates feature extraction and increases the chance of
artifacts as a result of contaminated data. The advantage of the differential configuration is
the measurement of cell properties directly against the surrounding media. By subtracting the
signal of the reference pair from the pair in which the particles is located, baseline fluctuations
caused by the environment are removed and the background and noise is reduced. This provides
an improved sensitivity reflected by an increased signal to noise ratio. These improvements come
with their own issues. Using three electrodes leads to a longer detection volume, which gives rise
to a higher chance of coincident events, particularly at high flow speeds. Additionally, With
differential measurements there are essentially two events per particle, making the post-processing
procedure somewhat more complex.

For both methods, some drift of the signal is present. It occurs randomly and the reason is not
completely understood. Compensation for this drift is necessary for extraction of relevant data
as the fluctuations in baseline are significant compared to change in signal as a result of an
event. By means of passing the raw signal through a moving average filter and subtracting it,
the drift is removed. The result is a stable normalized baseline, from which event parameters
can easily be extracted, see figure 5.7a. Applying the moving average filter results in some loss
of information. An in depth signal conditioning analysis and an exploration of different methods
for signal conditioning can be found in appendix E.
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Figure 5.7b and 5.7c show scatter plots of experiments where beads of 5-,8 and 15 micrometer
beads are measured in absolute and differential configuration. As expected, with the differential
configuration the overall performance is improved. Less scattering in 5.7c, which is explained by
a measurement that is more independent from environmental changes and thus more precise
and accurate measurement of beads compared to 5.7b.

(a)

(b) (c)

Figure 5.7: a comparison between (left) single electrode pair measurements (two electrodes) and
(right)measurements in differential configuration (three electrodes) (b) Comparing scatter plots of single

electrode pair and (c) differential configuration measurements
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5.3 Spectral analysis

An essential step in device characterisation is the measurement of its behaviour as a function of
frequency. Besides finding the optimal frequency for certain measurements, it exposes regions
where noise and artefacts from the environment occur. The impedance spectrum can reveal
underlying processes, for example the frequency regions where the electric double layer and
parasitic capacitance dominate. Figure 5.8 displays the impedance spectrum of a single electrode
pair device filled with only PBS, created by a EIS measurement with a potentiostat (Biologic
SP-150). It shows the magnitude and phase of the impedance over frequency. Additional
information regarding EIS experiments can be found in the appendix D.

Figure 5.8: Electrochemical impedance spectrum measured with a Biologic SP-150 Potentiostat. 10 mV potential
is applied as the frequency is step-wise increased up until 1MHz and the current response is measured. The

resistive plateau

Figure 5.8 shows the three regions described in section 3.2 At low frequency, the impedance is
high revealing the effect of the capacitive double layer at the electrodes. Around 200 kHz, the
impedance of the double layer capacitance becomes lower than the impedance of the medium
resistance. The magnitude stabilizes and transitions into a resistive plateau that continues to
around 400 kHz. The resistive plateau indicates a frequency independent region, where the
impedance correlates with the medium conductivity, and therefore permits unbiased impedance
measurements. When increasing the frequency further, the impedance magnitude drops and
the region where parasitic capacitive effects of the medium and electrical components dominate,
is reached. The phase curve in figure 5.8 is not completely understood. It’s expected that the
maximum phase angle and the resistive plateau appear at around the same frequency. The phase
angle is negative at low frequencies and becomes positive at the frequency of the plateau. A
negative phase angle would indicate that the voltage lags the current, typical for capacitive effects.
A positive phase means that the voltage leads the current, which is inductive behaviour.

The setup allows for simultaneous generation and measurement of six different frequencies, which
makes it possible to extract an instantaneous spectral fingerprint of a single cell or particle that
passes the electrodes. Figure 5.9a shows an event in differential mode measured at six different
frequencies. This makes it possible to extract information regarding the spectral behaviour of a
particle. Figure 5.9b depicts the spectrum of differently sized polystyrene beads by virtue of the
magnitude signal averaged over 200 events over 6 different frequencies. It shows that particle size
is dominant over the whole spectrum for polystyrene beads with a 5-, 8-, 10-, 12-, and 15 −µm
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diameter. With this information a frequency can be chosen that exposes the size of a particle
correctly, while also having a high SNR. Considering the plateau in figure 5.8 and the spectrum
of figure 5.9b, 200 kHz and 500kHz are both suitable frequencies for size measurements.

(a) (b)

Figure 5.9: (a) an event in differential configuration with six simultaneous frequencies. (b) the impedance
magnitude mean of 200 particle events for each bead size and frequency measured with a single pair electrode.

5.4 Charactersing the dielectric properties of cancer cells

When instead of solely PBS, a particle suspended in PBS is positioned in the middle of the
electric field and a frequency sweep is executed, it is possible to see the frequency dependent
fingerprint of that particle. Placing a particle in the middle of two electrodes and keeping it
there however is no easy feat, as the pressure at which it moves is very low. Figure 5.10a shows
the percentage of change in magnitude that a particle causes which is located in the middle of 2
electrodes compared to the situation without a particle. The values of the magnitude heavily
depend on the position of that particle in the channel. For that reason only the shape of the
curve is relevant.

At low frequency, both the cell membrane and bead act as an insulator, where the magnitude
change is mostly related to the volume. When studying the higher frequencies around 1 MHz, the
difference between cells and beads can be revealed. The steeper drop in impedance magnitude for
cells compared to polystyrene beads at around 1 MHz, which is the β− dispersion region, suggests
the effect of the effective short-circuiting of the membrane capacitance. When examining the
averaged peak magnitudes over multiple frequencies of around 200 cancer cells and comparing
them with polystyrene beads, depicted in figure 5.10b, a similar trend is revealed. These
observations signify that in this frequency region the electric dipoles in the membrane can no
longer follow the oscillations and current can start to pass trough, as discussed in section 2.2.
This also resembles the trend of the cell simulation in section 3.3.

When investigating a further frequency increase, the impedance magnitude for particles and
cells both drop at 5 MHz and rises again at 10 MHz. The drop at 5 MHz coincides with unusual
peaks in the frequency sweeps, which could be device related, electromagnetic pickup from the
equipment or noise from other sources. This can be seen in appendix F.2. This gives reason to
believe that the impedance magnitude at 5MHz is artificially low.
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(a) (b)

Figure 5.10: (a) Frequency sweep where a cell or bead is located in the electric field. (b) Average impedance
magnitude over different frequencies for each bead size compared to MCF-7 cells

Exploiting this difference in magnitude between low (<500 kHz) and intermediate (2-6 MHz)
frequencies between cells and beads is a good strategy for cell discrimination. The ratio between
intermediate and low frequency, the magnitude opacity [48, 31], is a very useful metric that
carries information regarding cell membrane characteristics. Figures 5.11a and 5.11b adopt the
opacity metric to differentiate between a mixture of differently sized polystyrene beads and
a separate experiment with MCF-7 cancer cells. Figure 5.11a plots the low versus medium
frequency impedance magnitude. The location of the cell cloud underneath the bead cloud
indicates a lower opacity. The large spread of cell events with similar opacity indicate the
large variation of cell sizes within the population. Figure 5.11b essentially contains the same
information.

Figure 5.11c plots a mixture of 5 and 15 µm beads combined with MD cancer cells. Next to the
peak width, peak magnitude and the opacity, the phase change is another property through which
particles and cells can be discriminated. Particularly at high frequencies (10MHz), the distinction
between particles and cells is apparent. Figure 5.11d plots the the impedance magnitude versus
the phase. At this particular frequency, particles have a negative phase compared to a positive
phase of the cells. Interestingly, there is a linear trend between the phase and magnitude
for polystyrene beads. Comparing the phase and magnitude of a single particle facilitates
differentiation. The phase, although harder to interpret, also contains useful information. Very
recently, a study [33] introduced a phase-opacity metric (φ50MHz/φ500kHz) that correlates with
the cell permittivity to conductivity ratio, revealing the dielectric behaviour of the cell interior.
It showed that this phase metric scales inversely with interior cell conductivity.

To verify the results in the scatter plots, a part of the impedance data was labeled through
optical imaging, see figure 5.12a. Additional cell experiments, where data was optically labeled
and the reflection of light on the cell might indicate the vertical position in the channel can be
found in the appendix F.3.
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Figure 5.11: (a) Single pair electrode experiment. It plots of impedance magnitude at low versus intermediate
frequency (b) Same experiment as on the right. It plots the low frequency impedance, indicating the cell size

versus the opacity metric (|Z|1.5M/|Z|0.2M . (c) Experiment with a mixture of MDA-23 cancer cells and 5 and 15
µm beads in differential configuration. It plots the low frequency impedance on the x-axis, indicating the cell size
versus the opacity metric (|Z|6M/|Z|0.5M . (d)Same experiment as on the left side. It plots the high frequency

(10MHz) impedance versus magnitude versus the phase

5.4.1 MCF-7 versus MDA cancer cells

Discriminating cells from polystyrene beads is a fundamental first step. Characterizing dielectric
properties of single cells within a population to distinguish healthy cells from cancer cells is less
straight forward. In an attempt to differentiate between MDA-MD23 and MCF-7, these two cell
populations were examined and compared. The physical differences between MDA-M23 and
MCF-7 cancer cells are expected to be very small as they both are epithelial cancer cells. Using
any of the aforementioned metrics was insufficiently sensitive for discrimination of these two
cell populations. The scatter plots for both populations overlap with each other. However, by
exclusively studying the in-phase component of the impedance, a slight distinction could be
made. The in-phase component represents the real part of the impedance, i.e. correlating to
the resistance. Figure 5.12b shows a plot where the amplitude of the in-phase components at
500 kHz and 6 MHz are compared. Because both cell population were measured in separate
suspensions, to ensure comparability, 5 micrometer beads were added as reference. The high
amount of scattering between both cell populations makes it hard to draw any conclusions. The
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scattering is related to a heterogeneity in cell size and the fact that the cells when transferred
from the growth medium to PBS, are accompanied with a substantial amount of undesirable
debris. Solution can be found improving the centrifuge protocols to separate cells from debris in
a better way.

(a) (b)

(c) (d)

Figure 5.12: (a) verification of impedance data on a mixture of MDA-M23 cells and beads with a diameter of 5
and 15 µm.(b) comparison of MDA-23 and MCF-7 cancer cells (c) Experiment where fresh cells are compared

versus cells which have been exposed to ethanol (d) Same as on the left side, but the opacity versus low
impedance magnitude

5.4.2 Live versus necrotic cancer cells

To substantiate the influence of the membrane capacitance on the impedance data at intermediate
frequencies, an experiment was conducted where the cell membranes were modified. This was
achieved by necrosis, the injuring of cells with death as a result. This process is often accompanied
with swelling and increased permeability with break-down of the plasma membrane integrity [49].
A population of MD cancer cells was separated into two batches. One of the batches was exposed
to a solution with 40% ethanol for a few minutes, while the other was fresh. Subsequently
both fresh and ethanol-exposed cells were measured with the impedance sensor in separate
experiments. Figure 5.12c and 5.12d shows that with a combination of the in-phase amplitudes
at 500 kHz and 6MHz a distinction between fresh and ethanol-exposed cells can be made. The
ethanol-exposed cells shows a lower opacity, while having similar size indicated by the amplitude
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at 500 kHz. This suggests that the ethanol-exposed cells exhibit a lower membrane capacitance
compared to healthy fresh cells. However, to verify the results, the same experiment should be
repeated with the addition of reference beads to calibrate both experiments.

5.5 Neural network classification

The amount of data extracted from the raw signals of 6 different frequencies is substantial.
Upon cell passage, for each separate frequency a certain change in magnitude and phase occurs,
both producing a peak magnitude and peak width. This condensates down to the extraction
of 4 parameters per event per frequency, with a total of 24 parameters. These parameters can
also be used to calculate magnitude opacity metrics, a combination of the peak magnitude at
different frequencies, producing an additional 15 metrics. In total this adds up to 39 parameters.
Doing the same with the separate in- and out-of phase signals, produces an additional 39
parameters. Parameters extracted from the in- and out-of-phase components contain information
identical to the parameters from the magnitude and phase. However, certain characteristics
may only be exposed through either the Cartesian or polar signal format. Any combinations
of the total of 78 parameters can be plotted in 2D or 3D, revealing certain characteristic of a
sub-population. The plots carry information regarding the properties of cells and particles and
can be useful for population differentiation. However, investigating all possible combinations is
time-consuming and the exact meaning of this information is hard to pin down. In the previous
sections, it is shown that low frequency measurements exhibit information regarding the cell size
and the ratio of low to intermediate frequency discloses information on the dielectric properties
of the cell membrane. Figure 5.13 shows a selection of possible plots of an experiment with a
mixture of beads (5 and 15 micrometer) and MD cancer cells to exemplify the many ways of
differentiation.

Figure 5.13: a selection of plots with different variables extracted from an experiment with a mixture of beads (5
and 15 micrometer) and MD cancer cells. Note that the amount of 15 micrometer beads in the mixture was much

smaller than the amount of 5 micrometer beads and cancer cells.

Previously, a multitude of properties measured with the microfluidic impedance chip to distinguish
cells were introduced. The raw signals were converted into relevant data. The many variables
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form a large data set that contains a high degree of ambiguity. This section will discuss the
classification of this impedance data with the application of machine learning techniques. Theory,
background and the full scripts of the algorithms can be found in the appendix.

The final application, out of the scope of this particular work, will be in hardware based neural
networks. Obstacles arise with the transition from digital software neural networks to analogue
hardware- based neural networks, where the weights and biases are programmed in an analogue
fashion. To ease the transition, the software neural network algorithm should be as simple as
possible. For this reason a simple and elegant perceptron algorithm will be trained to classify
three sizes of polystyrene beads. This network uses two inputs, the transit time and peak
magnitude at 200KHz and will create two output boundaries to separate the three categories.
The weights are changed in order to translate and rotate the boundary line. The training data
set consists of a total of 1151 labelled events. Figure 5.14 shows the two output boundaries
after training. Due to the scatter clouds being almost fully separated, classification of the size
categories is straightforward. The only error is a result of data points located in the incorrect
region.

Showcasing the capability of software neural networks, a more ambiguous data set with significant
overlap in combination with a more elaborate neural network is used to distinguish between
healthy and necrotic cancer cells. A two-layer feed-forward network with a hidden layer, consisting
of 10 neurons with a Sigmoid transfer functions. The two output neurons consist of a softmax
transfer function. The algorithm will be trained with scaled conjugate gradient back-propagation
using the MATLAB neural network pattern recognition application. The complete data-set,
consisting of the peak magnitudes, peak widths and opacity at frequencies at 500 kHz and 6
MHz was randomly divided into three groups. The largest part, 70%, for training and the rest
assigned for validation data (15%) and testing data (15%). The result was a combined success
rate of 88.9 %. Additional information regarding the results, like the ROC curve ?? illustrating
the quality of the classifiers can be found in the appendix B.1.

Figure 5.14: a selection of plots with different variables extracted from an experiment with a mixture of beads (5
and 15 micrometer) and MD cancer cells. Note that the amount of 15 micrometer beads in the mixture was much

smaller than the amount of 5 micrometer beads and cancer cells.
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6 Conclusion & outlook

6.1 Conclusion

The objective of this thesis was to develop a simple microfluidic impedance sensor capable of
detecting and distinguishing label-free cancer cells to provide a neural network with useful data
on dielectric cell characteristics. To achieve this, an impedance sensor in the form of a microfluidic
channel with coplanar integrated electrodes was designed and fabricated. It simultaneously
measures the impedance for each particle at six frequencies from which the magnitude, phase
and opacity data can be used to distinguish beads and cells, effectively characterizing the size,
transit time and dielectric properties.

The impedance measurements at low frequency successfully probe the particle size, as demon-
strated with the differentiation of polystyrene beads with varying size. Although there still is
a dependence on particle position responsible for some variance, by downscaling the channel
and increasing the electrode distance, this dependence was reduced. By directly measuring the
cell properties against the surrounding media in differential mode, environmental influences and
noise were reduced, which ultimately improved the sensitivity.

The sensor was used to examine the dielectric properties of cancer cells. Investigating the spectral
behaviour of cells, a larger decrease in impedance magnitude was found for cells compared to beads
at intermediate (1MHz) frequency levels. This correlates with the decrease in polarization of the
cell membrane capacitance. By probing simultaneously the low (200-500kHz) and intermediate
(1-5 MHz) frequency impedance magnitude, i.e. the opacity, dielectric information regarding the
membrane capacitance was obtained. This was demonstrated by differentiating between live
cancer cells and those with compromised membranes.

The capability of the sensor to offer multiparametric information that conveys cell velocity, cell
size and its dielectric properties makes it ideal for neural network implementation. The data
extracted from the sensor was used to train a simple software-based perceptron neural network
to classify differently sized beads, paving the way for future application of hardware-based neural
networks.

6.2 Outlook

Various aspects of the impedance sensor can be improved upon. Nevertheless, this work is a
good starting point for future work.

As this project was the first exploration of impedance cytometry, there was no particular focus
on high throughput. With current measurement parameters, high bead velocity reduces the
ability of the sensor to accurately measure the size and dielectric properties. This is most likely
caused by the low sampling rate of the lock-in amplifier and can easily be tested by increasing
the sampling rate in future experiments.

Regarding the setup, there is much room for improvement. The current noise and drift in the
signal are partly a result of electromagnetic pickup from the environment. By creating a robust
chip-holder, improving the connection between cabling and device, or electrically shielding the
device, environmental influences could be reduced leading to a higher sensitivity.

This work centered around lower and intermediate frequency regions. The current setup allows for
the measurement of much higher frequency regions up to 50MHz, which could provide other cell
characteristics such as the dielectric properties of the cytoplasm and nucleus. Additionally, the
change in phase could be further exploited, as it contains useful dielectric cell information.
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Although the sensor produces plenty of data, extracting relevant information and coupling it to
specific cell components is difficult. To create a better understanding of what the experimental
impedance data means, additional modelling would be beneficial. Specifically, the further use of
the Maxwell’s mixture theory, equivalent circuits and multi-shell models to compute cell dielectric
properties by fitting experimental data to simulated models would provide new insights.

Future work revolves around the combination of impedance sensing with other physical sensors
to provide input for a hardware-based neural network. Each physical sensor in the chip should
target other cell characteristics in a label-free way. Impedance cytometry, next to providing
metrics regarding dielectric properties, can also provide information regarding morphology[50].
A logical next step would be the integration of a constriction channel into the impedance sensor.
This is an elegant way of combining electrical- with mechanical- sensing [51, 52, 53] in a single
channel providing a unique set of intrinsic cell characteristics. Combining impedance cytometry
with electrical impedance spectroscopy (EIS) could provide useful information [54] as well. A
suitable first candidate based on a completely different method would be optical sensing. The
integration of a laser and a photo-detector in a channel, next to the impedance sensor, could
prove to be very effective [55].

The translation of analogue output signals to useful data needs to be integrated into the chip.
For this reason, the threshold-based data extraction method in this project was kept simple. This
eases the transition from software data extraction to the extraction of relevant data by hardware
components. Future work includes the investigation of possible hardware-based components that
extract the peaks from the analogue signal.

Considering lab-on-a-chip applicability, i.e. integration of all components of the setup into a
modular platform, the main predicament is created by the lock-in amplifier. It may be a powerful
and versatile part of measuring equipment, but at the same time it’s bulky and expensive.
Shrinking this component could be achieved with custom-designed electronics. To scale down the
footprint of Lock-in amplification equipment, Talukder et al.[56] developed a wireless handheld
lock-in amplifier capable of single low-frequency impedance measurements. Additionally, it could
perform baseline drift substractions to improve the SNR. Dekker et. al [57] developed a modular
microfluidic chip where detection was done with a direct digital synthesis (DDS) integrated circuit
that generates the signal. The lock-in process and detection of signal changes are performed by
an analog to digital converter (ADC) in combination with a digital signal processor. To reduce
cost, simple impedance cytometers can be integrated into custom printed circuit boards (PCB)
[58]. Other solutions to get around the powerful yet bulky lock-in amplifiers, might be found in
CMOS based impedance sensing [59]. Carminati et. al [60] developed an impedance cytometer
with a CMOS lock-in demodulator and a delta-sigma analogue to digital converter.
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A The maxwell mixture theory

The electrical behaviour of a mixture of particles and electrolyte solution in a homogeneous
electric field can be approached with Maxwell’s mixture theory. [37, 38] This theory links the
complex permittivity of the bulk suspension to that of the particle and suspending medium:

ε̃mix = ε̃med
1 + 2Φf̃CM

1− Φf̃CM
(A.1)

Here ε̃mix and ε̃med denote the complex permittivity of the mixture and medium, φ represents
the volume fraction of the particles compared to the medium in the detection volume and f̃CM
stands for the Claussius-Mossiti factor:

f̃CM =
ε̃p − ε̃m
ε̃p + 2ε̃m

(A.2)

ε̃p = ε0εp −
jσp
ω

(A.3)

ε̃m = ε0εm −
jσm
ω

(A.4)

Where εi and σi are the relative permittivity and conductivity of the particle and medium.
j2 = −1 and ω denotes frequency. The subscripts “p” and “m” refer to particle and medium,
respectively. The clausius-Mossoti factor f̃CM describes the frequency-dependent effective dipole
moment.

Zmix =
1

jwε̃mixG
(A.5)

ε̃mix = ε̃med
1 + 2φ

ε̃p−ε̃m
ε̃p+2ε̃m

1− φ ε̃p−ε̃m
ε̃p+2ε̃m

(A.6)

After substitution of ε̃mix in equation A.5 and a few derivative steps and manipulations the
following expression for the impedance of the mixture is formed:

Zmix =
g

A

1

jωε∞ + σ0 + jωδε
1+jωτ

(A.7)

Interestingly this equation shows resemblance with the equations that describe the behaviour of
a parallel circuit of a capacitor, resistor and another contribution in parallel:

Zcircuit =
1

jωC1 + 1
R1

+ jωC2

1+jωC2R2

(A.8)
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B Neural network classification theory

All the processed data that is acquired from each particle or cell is labeled and used to train a
simple neural network algorithm. The network is trained through classifiers, which are functions
that decide whether an input belongs to a certain class.

The algorithm, also called a perceptron, is a feed-forward network that starts with multiplying
the input values with their (random) assigned weights. A weight, is a parameter that scales the
values of the inputs. The values of these multiplications are then summed up in the weighted
sum. The weighted sum is applied to an activiation function with the form of a hard limit
function that returns an output of a 0 or 1.

Figure B.1: Perceptron neural network with three input vectors, their assigned weights, the weighted sum, the
hard-limit activation function, the error from the target that adjusts the weights after each loop, and finally one

binary output

The algorithm uses an hard-limit threshold activation function that maps an input x to an
output value y

y =

{
1, if w · x + b > 0,

0, if otherwise,
(B.1)

Where w is a vector of weigths, w · x is the dot product
∑n

i=1wixi, with n being the number of
inputs and b is the bias. The bias is a constant that allows the classification boundary to shift
away from the origin and is independent from the input.

The hard-limit transfer function gives the perceptron the ability to classify input vectors by
dividing the input space into two regions. Figure B.3 shows a problem with two classes with two
inputs (x1,x2. The perceptron algorithm finds a line that correctly separates the two classes by
tweaking the weights and biases after each loop. The procedure of adjusting the weights after
each loop is governed by the ”learning rule”. In the case of supervised learning, the learning
rule is given a training set where the inputs are given a corresponding target output:

{x1, t1}, {x2, t2}, {x3, t3} (B.2)

As the inputs are inserted into the network, the output is compared to the target. The learning
rule then adjusts the weights and biases of the network based on the difference between the
target and output, which is the error. This way the network brings the outputs closer to the
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target. The limitation of this perceptron algorithm is that it can only separate input vectors
that can be separated by a linear boundary.

Figure B.2: The algorithm starts out with an line constructed with random weights and bias. After each loop the
weights and biases are adjusted to minimize the error and readjust the line until convergence

If the output of a perceptron applied as the input for another perceptron, a multilayer perceptron
is created. Unlike the single-layer, a multilayer network with non-linear transfer functions can
solve arbitrary classification problems and not just classifying linearly separable patterns. This
network consists of 3 or more layers, an input layer, a hidden layer and an output layer. Each
node in the hidden layers represents an activation function.

Similar to a normal perceptron, in a multilayer perceptron, the learning process is carried out
through backwards propagating of errors. In a multilayer network the backpropagation step
takes the derivatives of the squared error with respect to the weights and biases in the hidden
layers [61]. These derivatives are computed at the last layer of the network, and then propagated
backward through the network, using the chain rule, to compute the derivatives in the hidden
layers.

Figure B.3: The algorithm starts out with an line constructed with random weights and bias. After each loop the
weights and biases are adjusted to minimize the error and readjust the line until convergence
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B.1 Results of neural network with healthy and nectrotic cells

Figure B.4 shows the ROC curve. This is a graphical plot showing the diagnostic quality of
the classifiers. The closer it gets to the top-left corner, the better the performance. There
are several parameters describing the quality of the network. For example the true positive
rate(TPR):

TPR =
TP

P
=

TP

TP + FN
= 1− FNR (B.3)

Where TP is the true positive, TP is true positive and FNR is the false positive rate.

Figure B.4
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C The COMSOL multiphysics model

Here we will discuss the model parameters and the results. The model was solely created with
the AC/DC module. This model does not account for any influences of fluid flow dynamics,
capacitive double layers around the electrode or particles. An auto generated in-depth COMSOL
report of the model, where all conditions and governing equations are given, can be found here:
link

It is important to know that the values of the simulation differ from the actual experimental values.
As such the simulation results should be used solely for the purpose of finding trends.

C.1 Geometry

2D and 3D models were created, where geometry was changed depending on the investigated
parameters. The channel lenght is between 0.25mm and 1 mm. The channel height and depth (for
3D) were 50 micrometer. The electrodes are modelled as a very thin, 1 micrometer thick, strip
of gold. The Particle was modelled as a sphere with a radius of 5 micrometer. Additionally, a
model for a differential setup was analyzed, where an additional third electrode was added.

Figure C.1: 2-electrode model geometry

C.2 Materials

For the simulations, the permittivity and electrical conductivity are the most important properties.
The electrodes were modelled as gold, the medium properties correspond with PBS and the
sphere corresponds with polystyrene.

C.3 Physics

The electric currents module in the AC/DC module was used to insert all the boundary
conditions. The study revolves around low frequency impedance analysis, 10KHz. First of all,
current conservation was applied to all domains. Next, electric insulation was applied to all the
edges of the channel and the electrodes. Initial values of 0 V were applied to all domains before
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Component Property Unit

Electrode Electrical conductivity 45.6e6[S/m]
Relative permittivity 6.9

Medium Electrical conductivity 1.6 [S/m]
Relative permittivity 80

Bead Electrical conductivity 5e-6 [S/m]
Relative permittivity 2.55

assigning the ground and terminal conditions. The left electrode was assigned as the terminal
electrode where a current of 1 Ampere was applied over the top side of the electrode surface
boundary. The right electrode top surface acts as the ground electrode.

C.4 Mesh

A physics-controlled mesh was applied to the model consisting of medium sized triangular
elements. The coarseness was automatically changed to fine around the electrodes, and rougher
at the left and right edges of the channel.

Figure C.2: Triangular mesh of the model

C.5 Study

Parametric sweeps are used to over the course of several steps translate the particle through
the channel and recalculating the resulting electrical properties. Parametric sweeps are also
applied to change parameters such as electrode width, electrode distance, particle sizes, particle
properties and medium properties in incremental steps.

C.6 Results

A 3 model depicting the electric potential in the channel for 2-electrode and the differential
model is given in figure C.3. Figure C.5 shows the current lines.
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Figure C.3: Electric potential for the 2-electrode and differential setup

Figure C.4: Streamlines for both the 2-electrode and differential setup

C.6.1 size dependence

The next part shows the resulting change in signal measured at the second electrode, when a
parametric sweep is used to translate the particle in steps of 10 micrometer through the channel
and over the electrodes. Figure ?? shows the difference in signal change for differently sized
beads.

C.6.2 particle trajectory height

Figure 3.1b shows the effect of particle trajectory height on the measured signal at the ground
electrode.

C.6.3 electrode distance

When investigating the distance of the electrodes, it becomes very interesting. Figure ??
simultaneously shows the effects of the electrode distance del, particle height trajectory, and
particle size on the voltage variation. Noteworthy is the increased signal variation that scales
with the sphere volume and the significantly higher signal variation for a del of 50 µm compared
to a del of 150 µm. The fact that besides the width of the peak being much wider for a larger
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Figure C.5: (a) shows the difference electric field density and current lines as the particle size is increased. (b)
shows the change in signal measured at the ground electrode

del, a larger del decreases the sensitivity to particle trajectory height. The signal variation in the
central zone (x=0 µm) varies little and hence will be depend mostly on the size of the particle.
To a degree, by increasing the electrode width, the positional dependence on the signal could be
neutralized.

C.6.4 Particle properties

Next, we investigate the resulting changes in measured signal at the electrode as the particle
properties are changed. Here the electrical conductivity is step-wise increased, see figure C.7
and figure C.6.

Figure C.6: Shows the change as the conductivity of the particle is changed. As the conductivity increases and
averages the medium conductivity, the current lines pass through the bead instead of the medium

Figure C.7: Shows the change as the conductivity of the particle is changed. As the conductivity increases and
averages the medium conductivity, the current lines pass through the bead instead of the medium

C.6.5 Channel height

The biggest influence on the sensitivity is expected to be the ratio of the particle volume to the
detection volume. To simulate this, the height of the channel is decreased incrementally. There
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we show the increae in signal as the channel height is reduces in steps. This is shown in figure
C.8, where the resulting signal change is decreased as the channel height is increased.

Figure C.8: On the x-axis the channel height increase vs the impedance change as the particle passes the channel

C.7 Double particles

When 2 particles pass through the channel, a coincident event occurs, mostly reulting in an
a-symetrical peak. Figure C.9 shows the a-symetrical peaks when two particles (not exactly
above each other, pass the electrodes at the same time. This double peak can be used in the
future as a sign of coincident particles.

Figure C.9: A-symmetric peaks for double coincident particles passing the electrodes
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D Electro-chemical Impedance Spectroscopy

Impedance spectra of the devices were created with an EIS measurement using a potentiostat
(BiologicSP-150). The principle of Electrochemical Impedance Spectroscopy (EIS) is to apply a
small alternating potential to the system, and to measure how the systems responds to these
small signals at the steady state. The amplitude is very small (10mV) in order to assume the
linear behaviour of the system.

The experiments were done in 3 electrode configuration. One of the elctrodes of the device is
chosen as a working electrode. The neighbouring electrode is connected as a counter electrode.
An independent reference electrode of Silver/Silver Chloride (Ag/AgCl) is inserted in one of
the channel entrances. Because the reference electrode is relatively far away from the working-
and counter-electrode, the measurements are not perfectly comparable with the impedance
measurements with the lock-in amplifier, though still useful to detect trends. Experiments where
the channel was filled with tapwater, purified water, PBS, NaCl enriched tapwater and PBS-bead
mixtures were tested.
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E Data analytics

E.0.1 signal conditioning

In order to analyze the raw data generated by the lock-in amplifier, signal conditioning is a
crucial step in order to make it decipherable. In this case conditioning of the signal encompasses
amplification, filtering and denoising.

When a large particles passes the electrodes, naturally the signal change is large, simplifying
distinction. However, with smaller particles, the resulting signal changes are small and therefore
makes it essential that the baseline be smooth and free of noise and drift. Recorded data streams
always exhibit some noise and baseline drift which is caused by all kinds of factors. In order to
improve the signal quality, denoising and detrending is applied.

Baseline noise is the short time variation of the baseline from a straight line. From an electrical
point of view, a major part of the noise contribution in the frequency range of interest is due
to the thermal noise in the channel and the noise generated by the equipment and cabling.
[72]

Figure E.1

To compensate for signal drifting and at the same time implement normalization, two methods
are explored. The first being a baseline fit that is interpolated from selected points and then
applied to the data. The second is a method where a series of averages of segments is created
and is subsequently subtracted from the original signal (moving average). These methods are
obviously not perfect and result in some loss of peak information. Especially the areas in the
signal where the throughput is high.

To compare, figure E.3a and figure E.3b show a raw magnitude signal with a fitted baseline based
on interpolation and the moving average method respectively. This particular temporal area in
the measurement shows a relatively high density of peaks, meaning a high particle throughput
and relatively more artefacts due to coincident particles, which results in lower fitting quality.
For both methods a certain segmentation length has to be chosen over which there will be
interpolated/averaged. The segmentation length has a big impact on the fit quality and should
be chosen strategically. Short segmentation length can incorporate abrupt baseline changes,
but increases the chance of an end point landing exactly on a peak/valley. Whereas larger
segments lose information of abrupt baseline changes but decreases the chance of an end point
landing exactly on a peak/valley. It is concluded that generally short segmentation lengths are
suitable for eventful high throughput measurements, and larger segmentation lengths improve
the baseline fit of uneventful portions. 10.2 shows a comparison between the interpolation and
moving average method by means of standard deviation in average peak heights. Extensive
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visual inspection of baseline fit quality and a lower deviation in peaks show that the moving
average method is the most suitable method for analysis of raw signals.

Figure E.2: plots of the raw magnitude signal with substantial change in noisefloor with a fitted baseline. (a)
baseline fit using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method. (b) uses a moving

average baseline fit

Figure E.3: My figure with side subcaptions

By using the two-electrode setup A differential configuration with three coplanar electrodes
makes it possible to measure the difference in signal between the two outer electrodes. As a cell
passes through the electrode gap, one pair is used for sensing the current change, whilst the
other pair provides a reference. With this configuration the background noise is significantly
reduced and therefore an improved signal to noise ratio and sensitivity is achieved.

Another advantage derives from the fact that the measurement and reference electrodes are
inherently switched; any uneven drift of the electrode properties can be sensed and corrected, as
both signal maxima should be of the same amplitude. The signal from a differential setup.

E.1 feature extraction

Once the raw signals have been properly preprocessed, it is ready for peak finding i.e. extraction
of significant changes in the raw signal. There are a variety of strategies to extract relevant
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information, for example peak finding through thresholding, derivative-based approaches and
template fitting [74]. However, there is always a compromise between computational cost and
accuracy.

The most straight forward, time efficient and cost-effective way of extracting data is threshold
based peak finding. This means that if a peak in the baselined signal reaches a certain threshold
it is classified as an particle event, i.e. the passage of a cell or particle. Here the signal could be
the real (in-phase) component, imaginary (out of phase) component, their combined magnitude,
or the change in phase angle at a certain frequency.

However, threshold peak finding has some problems of its own. When synchronizing the signals of
different frequency a problem arises: for an event at low frequency there is a peak in magnitude.
At higher frequencies this might be a inverse peak. By using just a simple threshold for each
frequency, this would lead to a peak at low frequency being coupled with a peak at another
(wrong) location at higher frequencies. Especially with differential measurements there is a high
chance of erroros, see figure... To visualize, using the complex plane of the impedance, if the
baseline signal is close to the origin and an event would make the signal cross the origin. The
phase would abruptly change with 180 degrees. The magnitude would change to another value
as well. This would lead to artefacts and corrupted data. Therefore it is important to choose
the a frequency where this phenomena does not occur.

For higher frequency the baseline signal is also higher. This is due to the electromagnetic pickup
scaling with frequency and becoming more dominant for higher frequency. This means that for
increased frequencies it is more important to use improved shielding for the device from the
environment.

Figure E.4: Occurance a ”Double peak”
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F Additional experiments

F.1 Device characterisation

Figure F.1 shows additional experiments where differently sized polystyrene beads were measured
at different frequencies with single electrode pairs and in differential configuration. As expected,
with the differential configuration the overall performance is improved. The reduces scattering is
explained by a measurement that is more independent from environmental changes and thus
more precise and accurate measurement. figure F.1 and F.2 shows the opacity. It is noteworthy
that the opacity of the differently sized beads differ from each other, as the material is simillar.
These beads were measured in separate experiments, which could account for the difference in
opacity. If beads are mixed in one mixture, the beads show the same opacity.

Figure F.1: Comparison between differential and single electrode pair configuration

Figure F.2: Comparison between differential and single electrode pair configuration
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F.2 spectrum analysis

Additional sweeps where the particle was located in the middle between two electrodes were
performed. Here different cells and particles were measured. Notice the difference in slope for
the polystyrene beads and the cells in figure F.3

Figure F.3: Sweeps with differently sized beads in detection area.(a)Magnitude vs frequency (b) Phase vs
frequency.

Figure F.4 shows the impact of the differential configuration compared to the single electrode
pair measurements. It shows the sweep with solely PBS, corresponding with the background
signal. With differential mode the background is significantly reduced.

Figure F.4: Sweep with with 1-electrode pair and in differential configuration( 3-electrodes)
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F.3 additional cell experiments

Many experiments featuring MCF-7 and MDA-cells were conducted. In figure F.5 an experiment
with MCF-7 cells and polystyrene beads is depicted. The data was labeled with optical imaging.
Interesting is that certain cells light up, or reflect the light in a different way. This might indicate
the vertical position of the particle.

Figure F.5: Experiment with MCF-7 cells and polystyrene beads labeled with optical imaging

Figure F.6 shows a simple impedance magnitude versus transit time plot, where MCF-7 cells
and differently sized beads are combined.

Figure F.6: impedance magnitude versus transit time plot, where MCF-7 cells and differently sized beads are
combined.
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G Images & Video’s

Figure G.1 is a QR code for a short video showing a mixture of MDA-M23 breastcancer cells
and 5 µm polystyrene beads.

Figure G.1: QR code of a short video

Figure G.2 displays the renders compared with the actual device.

Figure G.2: Comparison of the device renders and the actual device
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H Additional information on the setup

Table H.1

Component Type Manufacterer
Microscope inverted microscope Olympus
Camera DFK 23UP031 Imagingsource
Chip holder Clamp with soldered cabling Unknown
Lock-in amplifier HF2LI 50 MHz Lock-in amplifier Zurich Instruments
Syringe pump Nexus 3000 Chemyx
Pressure driven pump Fluigent

I Declaration TU/e Code of Scientific Conduct for the Master
thesis
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