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Improving Performance of Position-Dependent
Mechatronic Systems Using Gaussian Processes

Max (M.J.) van Haren

Abstract—Due to ever increasing performance requirements
for motion control, position-dependent dynamics cannot be ne-
glected anymore and should be accounted for in feedforward con-
trol. The aim of this work is to create a framework which models
position-dependent feedforward parameters using a Gaussian
process. Mutual information is employed to optimize the training
positions of the Gaussian process. The feedforward parameters
are learned in a trial-to-trial fashion, which is either iterative
learning control with basis functions or instrumental variable
based feedforward control. The framework is both validated in
a computer simulation and experimental setting on a commercial
wirebonder, showing the advantage of the framework.

I. INTRODUCTION

Motion controller performance demands are constantly in-
creasing and therefore advanced FeedForward (FF) controllers
are necessary. Positioning accuracy, throughput and reliability
should be constantly increased and therefore many factors
which were previously not taken into account, for instance
position-dependency, are getting more relevant.

The motion control demands are especially apparent in
the semiconductor back-end industry1. Firstly, semiconductor
manufacturing equipment needs to have micrometer position-
ing accuracy due to the decreasing size of semiconductor
devices. Secondly, high throughput is demanded such that as
many devices can be handled in as little as time as possible.
This results in high requirements for both the velocity and
acceleration of the machine. Lastly, reliability is expected in
all machines. In other words, the positioning performance of
semiconductor back-end machines need to perform uniformly,
regardless of industrial environment or machine-to-machine
differences.

Learning control is a suitable choice to achieve high ac-
curacy and throughput. Furthermore, it performs uniformly
regardless of industrial environment or machine-to-machine
differences and can keep costs down by eliminating manual
tuning and complex system identification [1].

Iterative Learning Control (ILC) can significantly increase
the control performance in a trial-to-trial fashion by learning.
ILC utilizes the measured error and command signal from
the previous trial to decrease the tracking error up to the
reproducible part. ILC uses a constant reference trajectory [2].
Possible applications of ILC can range from printing systems
[3] to semiconductor back-end machines [4]. Although ILC is
proven to have excellent tracking performance, the FF signal
is only suitable for one specific reference, hence extrapolation

1This research has been conducted in partnership with ASM PT, Center of
Competency in Beuningen, the Netherlands.

to other references deteriorates tracking performance. Basis
Functions (BF) are adopted to the ILC scheme (ILCBF) in
order to improve extrapolation capabilities to other references
[5, 6]. Here, the FF signal is parameterized using BF, which
are a function of the reference signal. Many BFs are possible,
whereas two examples are polynomial [5–7] or rational [8–10].
However, in [11] there is shown that the FF parameter estimate
from ILCBF can have a bias error.

Instrumental Variable (IV) based FF control [11, 12] learns
the FF parameters in a trial-to-trial fashion and results in an
unbiased FF parameter estimate. Moreover, it utilizes a similar
FF parameterization as ILCBF and therefore has extrapolation
capabilities. Both ILCBF and IV FF control however, do not
take into account that the dynamics of the machine can be
position-dependent.

Several options for handling systems with position-
dependent dynamics are possible. First, the position-dependent
dynamics can be ignored, by determining FF parameters in
only one position. This set of FF parameters is then used
throughout the entire operating range of the machine. This can
show performance degradation when the machine moves away
from the position where the parameters are determined [13].
Second, the FF parameters can be determined in a grid cover-
ing the operating range of the machine. The FF parameters can
then be estimated using a nearest-neighbour search [14, 15]
or interpolation [16, 17]. An accurate representation of the FF
parameters can be achieved by choosing a fine grid, however,
this would require many training positions and is therefore
time consuming. A coarse grid would reduce the amount
of training positions, but it is challenging to pick a coarse
grid such that the position-dependency is captured accurately.
Furthermore, the nearest-neighbour search will result in a
piecewise constant representation of the FF parameters, which
is unlikely to be the true set of FF parameters. Moreover,
the interpolation requires a predetermined relation between
the FF parameters and the position, which might be incorrect
or unknown. Third, Linear Parameter Varying (LPV) ILC
[18] can be applied to position-dependent systems, improving
performance compared with Linear Time Invariant (LTI) ILC
applied to position-dependent systems. On the other hand,
LPV ILC requires modelling or identification of the LPV
system, which is often not desirable.

The proposed approach of this work is to use Gaussian
Processes (GPs) [19] to model position-dependent FF param-
eters. This both eliminates the need of a complex model of
the system and does not assume a predetermined relation
between the FF parameters and position. Note that a GP is
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non-parametric and therefore capable of modelling black box
or (highly) non-linear functions. Furthermore, it opens up to
many optimization techniques such as Bayesian optimization
[20], Mutual Information (MI) optimization [21] and active
learning [22] to determine the training positions based on data.
This removes the necessity to choose a grid for the training
positions such that the position-dependency is modelled ac-
curately. In summary, the main contributions of this work are
formulated as:

C1: A framework to model position-dependent FF param-
eters as a GP,

C2: MI optimal training positions for the GP,
C3: A combined framework of C1 and C2,
C4: Validation of C1, C2 and C3 in a computer simula-

tion and experiments on a commercial wirebonder.
The structure of this work is as follows. In Section II, the

problem is defined. Next, GPs are introduced in Section III. In
Section IV, MI optimization is introduced to determine near-
optimal training positions for the GP. Both ILCBF and IV
based FF control to determine the FF parameters are explained
in respectively Section V and Section VI. In Section VII,
a complete framework is presented combining ILCBF, GPs
and MI optimization to identify and model the FF parameters
as a function of position. In Section VIII and Section IX
the framework applied to a computer simulation and an
experimental setup of an ASM PT machine are presented and
validated. The work is ended with some concluding remarks
in Section X.

A. Preliminaries

The amount of samples in one trial is equal to N ∈ N+.
For a vector x, the W norm, ‖x‖W , is equal to

√
xTWx. Let

A be a matrix, σ̄(A) is the highest singular value of matrix
A. R is used to denote all real numbers and R(q) expresses
all real polynomials in q. The symbol q is used as the shift
operator, i.e. qu(t) = u(t + 1). A ⊆ B expresses that A is a
subset of B, which means that all elements of A are inside B.
A \ B is used to represent the set difference between A and
B, meaning the elements in A, but not in B. The operator ∪
is used as set union, where A ∪ B means all elements in A
and B. The length of a set A is denoted as |A|.

II. PROBLEM FORMULATION

This section will formulate the addressed problem. In Sec-
tion II-A the problem setup is discussed, in Section II-B
a parametrized FF signal is introduced and in Section II-C
several options for handling position-dependent FF parameters
are considered. Finally, in Section II-D, the problem is defined.

A. Problem Setup

The closed-loop control structure considered can be seen
in Fig. 1. A trial, iteration or task, is denoted with index j.
The plant G is position-dependent and can be Multiple-Input
Multiple-Output (MIMO), having ni inputs and no outputs.
The plant is controlled using a stabilizing feedback controller
C and FF controller F . The reference, error and output are

+

++

-

Fig. 1: Control structure with trial index j, for position-dependent
plant Gx, including the position-dependent motor force constant
km(x) and position-dependent system Gpx.

respectively defined as r, ej , yj ∈ RN×no . The input to the
plant is given by uj ∈ RN×ni .

The position-dependent plant G is zero-order hold dis-
cretized and characterized as:

yj(t) =
(
Gpx(z)km(x)

)
uj(t) := Gx(z)uj(t), (II.1)

with z a complex indeterminate and t ∈ Z. The frozen (i.e.
the LTI) dynamics [23] of position-dependent plant G at initial
position x ∈ Rno , e.g. for an XY motion stage x =

[
x0 y0

]
,

is denoted as Gx. The following assumption ensures that the
system Gx is LTI.

Assumption 1. The position-dependency due to the
reference r is assumed to be negligible compared with the
position-dependency due to the initial position x, i.e. r(t) ≈ x.
�

Furthermore, (II.1) shows the plant is separated in a motor
force constant km(x) ∈ Rni×ni and a system Gpx ∈ Rno×ni .
This shows the position-dependency consists of both the
physical properties of Gpx and motor force constant km(x),
due to force ripple and changing magnetic flux densities [24],
as illustrated in Example 1.

Example 1. Consider a mass-spring-damper system Gx

with position-dependent flexible dynamics, e.g. due to flexible
modes [13], and position-dependent motor force constant. The
magnitude Frequency Response Function (FRF) of system Gpx
can be seen in the left of Fig. 2. The rigid-body and position-
dependent flexible dynamics can be separated, resulting in the
middle of Fig. 2. The combined effect of position-dependent
flexible modes and motor force constant can be seen in the
right of Fig. 2. This shows the position-dependent effects of
the dynamics and the motor force constant are hard to isolate.

�

The error in trial j can be derived from Fig. 1 and is equal
to:

ej(t) =
(
I +Gx(z)C(z)

)−1

r(t)

−
(
I +Gx(z)C(z)

)−1

Gx(z)fj(t),

:=So(z)r(t)− So(z)Gx(z)fj(t),

(II.2)

where So(z) is the output sensitivity of the frozen plant Gx

and feedback controller C. The objective in learning control is
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Fig. 2: Left: systems Gpx1
( ), Gpx2

( ), Gpx3
( ) and Gpx4

( ).
Middle: separation of rigid-body ( ) and position-dependent flexible
dynamics of Gpx1

( ), Gpx2
( ), Gpx3

( ) and Gpx4
( ). Right:

combined position-dependent dynamics and motor force constant, i.e.
Gx = Gpxkm(x), using Gx1 with km = 1 ( ), Gx2 with km = 3
( ), Gx3 with km = 6 ( ) and Gx4 with km = 0.2 ( ).

to learn the FF force fj+1 in a trial-to-trial fashion to reduce
the error ej+1:

ej+1(t) = So(z)r(t)− So(z)Gx(z)fj+1(t)

= ej(t)− So(z)Gx(z)
(
fj+1(t)− fj(t)

)
.

(II.3)

This shows the FF force that minimizes ej+1 becomes invari-
ant under changes of the reference. As a result, extrapolation
to other references deteriorates performance. The following
section will introduce a FF parametrization in order to achieve
extrapolation capabilities.

B. Parameterized FF signal

In [5–7] BF are added to learning control such that ex-
trapolation to other references is achieved. The FF force fj
is parametrized using the BF Ψ, which is a function of the
reference r, and the FF parameters ~θj :

fj(t) = Ψ
(
r(t)

)
~θj . (II.4)

This is visually supported by Fig. 3.

+

+

+

-

Fig. 3: FF force parametrization in the closed loop control structure
seen in Fig. 1, using the BF Ψ and FF parameters ~θj .

The selection of Ψ is important to achieve good tracking
performance. Zero reference induced error can be achieved by
designing:

Ψ
(
r(t)

)
~θj ≈ G−1

x (z)r(t). (II.5)

This can be seen by substituting (II.4) and (II.5) into (II.2):

ej(t) = So(z)
(
r(t)−Gx(z)Ψ

(
r(t)

)
~θj

)
,

→ Ψ
(
r(t)

)
~θj = G−1

x (z)r(t)→ ej(t) = 0.
(II.6)

The matrix Ψ can be either a full or block diagonal matrix:

Ψ
(
r(t)

)
=

Ψ1,1

(
r(t)

)
· · · Ψ1,nθ

(
r(t)

)
...

. . .
...

Ψni,1

(
r(t)

)
· · · Ψni,nθ

(
r(t)

)
 (II.7)

Typically, the BF Ψk,l are chosen to be differentiators or
polynomials of the reference [6, 9, 10]. Note that selecting Ψ
as a function of r, the FF force fj becomes a function of the
reference as well, thus achieving extrapolation capabilities. In
addition, the FF parameters ~θ should be modelled as a function
of position, in order to fulfill the condition seen in (II.5) for any
x. Next, an example position-dependent system is analyzed
and the corresponding FF parametrization is determined such
that (II.5) holds.

Example 2. Suppose a SISO mass-damper system G is
discretized using a backward Euler method and has transfer
function:

Gx

G
p
x = 1

m(x)
(

1−z−1

Ts

)2
+c(x)

(
1−z−1

Ts

) ,
km = 1,

(II.8)

where Ts is the sampling time, m is the mass and c a
damping coefficient. To satisfy (II.5), the FF force fj could
be parametrized as:

fj(t) = θj,1r̈(t) + θj,2ṙ(t), (II.9)

which shows that the FF force is linear in the acceleration
and velocity of the reference. The values of the FF parameters
which achieve minimal tracking error can directly be seen by
evaluating G−1

x (z)r(t), which is equal to m(x)r̈(t)+c(x)ṙ(t).
Specifically, θj,1 and θj,2 should be equal to the mass m(x)
and damping coefficient c(x), showing the necessity to model
the FF parameters as a function of position.

Moreover, suppose the motor force constant is position-
dependent, i.e.:

km := km(x). (II.10)

The plant Gx is then described as:

Gx =
km(x)

m(x)
(

1−z−1

Ts

)2
+ c(x)

(
1−z−1

Ts

) . (II.11)

Without knowledge of km(x), both m(x) and c(x) cannot
be identified. However, the parameters θj,1 := km(x)/m(x)
and θj,2 := km(x)/c(x) can still be identified and are able to
achieve zero reference induced tracking error. The parameters
θj,1 and θj,2 combine the position-dependent effect of both the
physical properties and the motor force constant. This shows
the necessity to model the FF parameters as a function of
position, without limiting to the position-dependency of either
Gpx or km(x). �
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C. Methods for Position-Dependent FF Parameters
Several options for handling position-dependent FF param-

eters are possible. For example, three methods which are
typically applied to position-dependent systems are:
• ignore the position-dependent characteristics of Gx and

therefore using constant FF parameters,
• nearest-neighbour search on finite set of FF parameters

at different training positions [14, 15] and
• interpolation on finite set of FF parameters at different

training positions [16, 17].
Apart from being simple to implement, these three meth-
ods all have their disadvantages. First, when the position-
dependency of the FF parameters is ignored, the position-
dependent dynamics are not taken into account, hence the
FF controller cannot be equal to the inverse plant. Secondly,
the nearest-neighbour method is limited to a piecewise con-
stant dependency on position, whereas the plant can have
any position-dependency. Thirdly, the interpolation requires
a predetermined relation between the FF parameters and the
position, which might be unknown and is therefore likely to be
incorrect. As a result, the three methods do not achieve min-
imal reference induced tracking error. Additionally, for both
the nearest-neighbour and interpolation methods, it is unclear
how the training positions for the FF parameters should be
chosen. The training positions could be picked based on prior
knowledge of the position-dependent FF parameters, which
is often not available. The positions can also be determined
arbitrarily, such as a grid or randomly. However this results
in sub-optimal accuracy for the estimation of FF parameters
in the operating range of the machine [25]. Due to the
disadvantages of the state-of-the-art approaches, an improved
method is required.

D. Problem Definition
The three identified problems that are considered in this

work are:
P1: How to model position-dependent FF parameters

accurately?
P2: How to learn FF parameters on a single position,

which can be used to model position-dependent FF
parameters?

P3: How to pick the training positions when identifying
the FF parameters, such that the position-dependent
FF parameters are modelled as accurately as possi-
ble?

The following sections describe that a GP, ILCBF or IV FF
control and MI optimization can solve these problems.

III. GAUSSIAN PROCESS REGRESSION

This section presents GPs, which are used to model the
position-dependent FF parameters accurately and thus tackles
P1 of the problem formulation. First, some general definitions
of a GP are given. Second, covariance functions, the prior and
the posterior are discussed. Finally, some practical aspects in
terms of the hyperparameter optimization and mean functions
are presented.

A. Gaussian Processes

A GP is defined as a collection of random variables f(x),
indexed by x ∈ RD, such that the joint distribution of any
finite subset of random variables is multivariate Gaussian. The
GP is then written as

f(x) ∼ GP (m(x), k(x,x′)) . (III.1)

This shows a GP is fully defined by its covariance function
(or kernel) k(x,x′) and the mean function m(x):

k(x,x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
,

m(x) = E [f(x)] .
(III.2)

The mean function m can be interpreted as the mean at any
input point and the covariance function k as the similarity
between values of f(x) trained on different positions. The
mean function m is often taken equal to zero, but can also be
non-zero, as will be seen in Section III-F. The training data
is defined by sampling the function on inputs and measuring
the output y:

y = f(x) + ε,

where : ε ∼ N (0, σ2
ε I),

(III.3)

where σ2
ε is the variance of the noise acting on output. This

shows direct access to the function is not available, but a noisy
measurement thereof.

Definition 1. Each FF parameter is modelled using a
separate GP, i.e.:

~θ(x) := ~f(x), (III.4)

as a result, the FF parameters are modelled as a function of
position, e.g. x =

[
x0 y0 z0

]
, using a GP. The training

data, seen in (III.3), for FF parameters is defined as:

y =
[
θ1 · · · θk

]> ∈ Rl×1, (III.5)

where k is the amount of unique training positions and θ is:

θi =
[
θi,1 · · · θi,p

]> ∈ Rp×1, (III.6)

where p is the amount of FF parameters per training position
and i ∈ {1, . . . , k}. �

B. Covariance Function

The covariance function or kernel k(x,x′) specifies the
covariance between the inputs x and x′. Covariance functions
are often stationary, meaning it only depends on the difference
between the inputs. An example of a stationary covariance
function is the squared exponential or Radial Basis Function
(RBF) covariance function, which is used throughout this
work:

kRBF (x,x′) = σ2
fe
− 1

2 (x−x′)>L(x−x′), (III.7)

which shows that the entries for the covariance function are
low when the inputs are far away from each other and close to
σ2
f when they are close to each other. In addition, the σ2

f and
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the L are the so-called hyperparameters of respectively size 1
and D ×D. The hyperparameters are tuned in Section III-E.
Typically, the matrix L is chosen as:

L = diag
(
~̀
)−2

, (III.8)

where ~̀ is a vector of positive length scales of size D. The
use of multiple length scales enables the user to specify how
relevant each input in x is. Another example of a stationary
kernel is the periodic kernel, that models functions which
repeat themselves:

kper(x,x
′) = σ2

fe
−2 sin2

(
π
|x−x′|
p

)
`2 , (III.9)

where now p is equal to the period of the kernel, which
determines the distance between repetitions of the function.
Note that this kernel only uses one length scale and period,
but can be extended to contain multiple length scales and
periods [19, Section 5.1]. Many other (stationary) covariance
functions are possible, such as the Matérn covariance function
[26, Chapter 2].

Interpretation 1. Both the RBF and periodic kernel have
an easily interpretable application for FF parameters. Firstly,
when using an RBF kernel, the similarity of the FF parameters
will only depend on the distance between the positions of the
FF parameters. Secondly, a periodic kernel models the spatial-
periodic effects of the FF parameters, for instance due to force
ripple. �

C. Gaussian Process Prior

The definition of a covariance function seen in (III.2)
suggests there exists a distribution over functions. This is
illustrated by using the covariance function from (III.7) in a
random number generator, assuming zero mean function and
drawing any (finite) amount of samples. Specifically, samples
are drawn at indices X∗ called test inputs, which can be any
single input or vector of inputs, e.g.:

X∗ =
[
X∗,1 X∗,2 · · · X∗,l∗

]> ∈ Rl∗×D, (III.10)

where l∗ is the amount of test inputs and D the input
dimension. A random Gaussian vector, assuming the prior
mean function m(x) to be zero, can be calculated using the
covariance function and the distribution:

f(X∗) ∼ N (0,K(X∗, X∗)). (III.11)

This is the so-called prior distribution. The matrix
K(X∗, X∗) ∈ Rl∗×l∗ is equal to the covariance function
k(x,x′), evaluated at the test inputs X∗. Some examples of
samples drawn from the prior distribution can be seen in Fig. 4.

Interpretation 2. The prior is as a collection of information
that is known about the function before sampling the function.
This can therefore be used to supply the GP with prior
knowledge about the FF parameters. �

D. Gaussian Process Posterior

Usually, generating random Gaussian vectors using the prior
is not helpful, but knowledge of the function provided by
the training data can be integrated in this distribution. This
means that function samples can be incorporated into the prior
distribution, resulting in a new distribution which can be used
to make estimations, called regression.

The observations are done at inputs X , called the training
inputs, which in this work are equal to the training positions:

X =
[
X1 X2 · · · Xl

]> ∈ Rl×D, (III.12)

where l is the amount of training inputs. Recall from (III.3)
that the observations of the functions or training outputs are
defined as:

y = f(X) + ε,

where : ε ∼ N (0, σ2
ε I).

(III.13)

The parameter σ2
ε is approximated using the parameter σ2

n.
The σ2

n is considered an additional hyperparameter, called the
noise variance hyperparameter and is tuned in Section III-E.

Estimations of the unknown function f(X∗) have to be
made, called the test outputs. The joint distribution in a
GP between the training and test outputs, again assuming
m(x) = 0, is described as [19]:[

y
f(X∗)

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
,

(III.14)
where the kernels Ky := K(X,X)+σ2

nI, K∗ := K(X,X∗) =
K>(X∗, X) and K∗∗ := K(X∗, X∗) are respectively of size
l×l, l×l∗ and l∗×l∗. The joint Gaussian distribution in (III.14),
the posterior, can be conditioned on the function observations
y using Bayesian inference [19]:

f(X∗)
∣∣∣[X∗, X,y] ∼ N(f̄(X∗),V

[
f(X∗)

])
, (III.15)

where:

f̄(X∗) := E
[
f(X∗)

]
= K>∗ K

−1
y y, (III.16)

V
[
f(X∗)

]
= K∗∗ −K>∗ K−1

y K∗. (III.17)

This is called the posterior distribution. This shows that the
posterior mean, f̄(X∗), is unequal to zero, regardless of the
prior mean function m(x).

The prior and posterior create a framework to train a
GP with function observations, enabling the user to estimate
function values. The training of a GP is visually supported,
with input dimension one, in Fig. 4 and Fig. 5.

Interpretation 3. This framework can be used to train
a GP based on finite measurements of FF parameters. The
assumption of noisy readings also holds true for measurements
of FF parameters, e.g. FF parameters determined with ILCBF,
show variations due to measurement noise [5]. As a result,
the framework is robust to FF parameters determined with
variance. �
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Fig. 4: Two samples drawn from
the prior, the prior mean and
an example unknown function to
regress.

Fig. 5: Two samples drawn from
the posterior, the posterior mean,
the unknown function to regress
and the training data.

E. Hyperparameter Optimization

The hyperparameters seen in the previous sections still need
to be chosen. These can be arbitrarily picked or manually
tuned. However, this is not desirable since there are often
many hyperparameters, making arbitrary picking or manual
tuning inaccurate and tedious. An automatic way of tuning the
hyperparameters is therefore preferred. Typically, the marginal
likelihood optimization is used to automatically tune the
hyperparameters.

The log marginal likelihood, can be described as [19]:

log
(
p
(
y | X, ~β

))
= −1

2
y>K−1

y y − 1

2
log |Ky| − c1. (III.18)

This shows the log marginal likelihood needs to invert matrix
Ky and therefore has computational complexity of O

(
l3
)

per
evaluation. The log marginal likelihood has three readily inter-
pretable terms. The last term, c1 = l

2 ln 2π, is a normalization
constant. The second term is the complexity penalty term. The
first term is the data fit term, the only term containing the
observed function values. A good data fit might be achieved
by giving the matrix Ky very high values, making the term
− 1

2y
>K−1

y y very small. This translates into a model which
assumes there is so much noise, that all data fits within the
model. However, the second term, the complexity penalty
− 1

2 log |Ky|, prevents this. This shows that maximizing the
marginal likelihood automatically makes a trade-off between
model complexity and data fit (regularization) through its
foundation in Bayesian probability theory [27].

F. Mean Functions

A mean function, which was previously taken equal to zero,
can also be implemented in the GP. Taking a zero mean
function implies there is no prior knowledge of the mean.
This is often sufficient since the posterior mean is unequal to
zero, regardless of the mean function. However, when using
stationary covariance functions, the posterior mean in (III.16)
will be close to zero when evaluated (far) outside the training
inputs, i.e. extrapolating. A mean function can prevent this.
Many functions often have an average value of higher than
zero and therefore it might be useful to use a mean function,
such that the posterior mean is not necessarily close to zero
when extrapolating.

A common method of applying a mean function in a GP
is to use explicit basis functions, the mean function is then
defined as:

m(x) = h(x)>~γ, (III.19)

where h ∈ Rl×nγ is a matrix containing explicit basis func-
tions and ~γ ∈ Rnγ×1 a vector containing the parameters of the
explicit basis functions. An example of an explicit basis func-
tion could be polynomial , e.g. h(x) =

[
1 x x2 · · ·

]>
.

Tuning the parameters in ~γ can be done using a regression
method, such as least squares. A different method is described
in [19, Section 2.7], using a prior on ~γ and optimizing
the hyperparameters in parallel with the covariance function
hyperparameter optimization.

The posterior mean, using (III.19) as mean function,
changes to:

E [f(X∗)] = h(X∗)
>~γ +K>∗ K

−1
y

(
y − h(X)>~γ

)
, (III.20)

where h(X) and h(X∗) are respectively equal to the explicit
basis function evaluated at the training and test inputs. The
posterior variance in (III.17), changes to:

V [f(X∗)] =K∗∗ −K>∗ K−1
y K∗

+R>
(
h(X)K−1

y h(X)>
)
R,

(III.21)

where R = h(X∗) − h(X) K−1
y K∗. Note that when using a

constant mean function, i.e. h(x) = 1, the posterior variance
from (III.17) remains unchanged.

Interpretation 4. The mean function enables the user to
supply additional prior information of the underlying function
or FF parameters and will simultaneously result in better
extrapolation on the data. For the FF parameters a constant
mean function implies the prior information of the mean is
a constant value, that is assuming no position-dependency on
the FF parameters as a base value. �

Using a GP, the FF parameters can now be modelled as a
function of position using training data. Next, several options
to determine the training positions are discussed.

IV. MUTUAL INFORMATION OPTIMIZATION

This section will present MI optimization for choosing the
near-optimal training positions for a GP, hence tackles P3 of
the problem formulation.

The positions where the FF parameters are measured is
an essential factor for the quality of a regression. This is
considered a sensor placement problem, see e.g. [21]. For a GP,
consider again the situation where estimations of the unknown
function f(x) have to be made at certain test positions. The
test positions can be located anywhere, covering the operating
range of the machine. The training positions X have to be
determined and should be such that the FF parameters are
modelled as accurately as possible.

Firstly, the MI optimization method is reviewed. Finally, a
greedy approximation for the MI, such that the computations
are feasible, is presented.
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A. Mutual Information

MI optimization tries to find training positions for the GP
which are most informative about the positions where no
training positions are located. The possible training and test
positions are considered as a set of discrete locations X ,
generally a fine grid covering the domain.

The goal of MI is defined as the set of k training positions
that give good predictions in the uninstrumented positions
[28]:

XMI = arg max
X⊆X,|X|=k

MI[X], (IV.1)

where XMI is the set of MI optimal training positions and of
size k ×D. The MI is defined as:

MI[X] = H
[
f(X \X)

]
−H

[
f(X \X) | y

]
, (IV.2)

where H is the entropy function. Combining (IV.1) and (IV.2)
shows that MI maximizes the difference of the entropy for
the unobserved space using no observations, compared with
the entropy where observations are used. The optimization of
the MI in (IV.1) is an NP-complete problem, due to the many
decisions possible when choosing a set of k training positions.
Therefore, a greedy approximation is applied, which is seen
in the following section.

B. Greedy Mutual Information Approximation

The greedy algorithm [29, 30] consecutively adds a single
training position x to the greedy MI set XG, until k training
positions have been chosen, introducing subscript i:

XG
i+1 = XG

i ∪ arg max
x⊆
(
X\XGi

) [δx], (IV.3)

where:

δx : = MI[XG
i ∪ x]−MI[XG

i ]

= H
[
f(x) | y

]
−H

[
f(x) | f(X̂)

]
,

(IV.4)

and y are the function observations at XG
i and X̂ is X \(XG

i ∪
x). An example of the term δx as a function of position, using
the fine grid X , can be seen in Fig. 20. In [21] the entropy
functions H conditioned on the sets of variables are written
as a function of their variances:

H
[
f(x) | y

]
=

1

2
ln
(
σ2
f(x)|y

)
+ c2,

H
[
f(x) | f(X̂)

]
=

1

2
ln
(
σ2
f(x)|f(X̂)

)
+ c2,

(IV.5)

where c2 is equal to 1
2

(
ln(2π) + 1

)
. For a GP, assuming zero

mean function, the posterior variance is given by:

σ2
f(x)|y = k(x, x) −K(x,X)

(
K(XG

i , X
G
i ) + σ2

nI
)−1

K(X,x),

σ2
f(x)|f(X̂)

= k(x, x) −K(x, X̂)
(
K(X̂, X̂) + σ2

nI
)−1

K(X̂, x).

(IV.6)

By substitution of (IV.6) in (IV.5) and using (IV.4), the term
δx is expressed as:

δx =
k(x, x)−K(x,XG

i )
(
K(XG

i , X
G
i ) + σ2

nI
)−1

K(x,XG
i )>

k(x, x)−K(x, X̂)
(
K(X̂, X̂) + σ2

nI
)−1

K(x, X̂)>

(IV.7)
Using (IV.3) and (IV.7), the MI optimal training positions are
computed in a greedy manner. The MI optimal training posi-
tions can both be computed using an a priori or a sequential
optimization. The a priori method optimizes the MI before
sampling the function, whereas the sequential method selects
new positions based on previous observations [25]. Specifi-
cally, the sequential method iteratively samples the function,
optimizes the hyperparameters of the GP based on the new
observations and follows with a (greedy) maximization of the
MI. The a priori and sequential method are discussed below.

1) A Priori greedy MI optimization: Since the greedy op-
timization of the MI requires only the kernel hyperparameters
to be known and not the training outputs y, the algorithm
can be executed a priori. Specifically, the MI optimal training
positions XG are chosen before any training outputs y are
generated. However, since the hyperparameters used in the
kernels seen in (IV.7) are often not (exactly) known and no
data is available such that the marginal likelihood can be
optimized, the a priori training positions will be sub-optimal.
In Algorithm 1, an a priori greedy MI optimization algorithm
can be seen.

Algorithm 1: Greedy MI algorithm to determine op-
timal training positions using an a priori manner.
Input: Hyperparameters for kernels, see e.g. (IV.7),

discretized space X
Output: Near-optimal greedy training positions XG

k

1 XG
0 ← ∅;

2 for i = 1 to k do
3 for x ∈ X \XG

i do
4 X̂ ← X \

(
XG
i ∪ j

)
;

5 Calculate k(x, x), K(XG
i , X

G
i ), K(x,XG

i ),
K(x, X̂) & K(X̂, X̂);

6 Calculate δx ;

7 XG
i ← XG

i−1 ∪ arg maxx δx

8 return XG
k ;

2) Sequential greedy MI optimization: A different approach
is to tackle the problem in a sequential manner. In contrast to
the a priori approach, the kernel hyperparameters do not need
to be known beforehand, since they will be optimized using the
training data. The hyperparameters are optimized according
to Section III-E. Algorithm 3 in Appendix A describes the
sequence which is performed, such that the MI near-optimal
training positions are determined in a sequential manner.

In conclusion, using either an a priori or sequential MI opti-
mization results in near-optimal training positions to determine
the FF parameters for the GP. The advantage of this method
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compared with choosing an arbitrary grid is seen by comparing
the posterior variances of Fig. 11 and Fig. 12.

V. ILC WITH BASIS FUNCTIONS

The FF parameters which are used as training data for
the GP, still need to be determined. This section presents
ILCBF to determine the FF parameters on different positions,
therefore solves P2 of the problem formulation. Firstly, ILCBF
is introduced and is followed by the convergence analysis.

A. ILC with Basis Functions

ILCBF parametrizes the FF signal and learns the FF pa-
rameters in a trial-to-trial fashion. The optimization criterion
in ILCBF is specified as [6, 10, 31]:

V
(
~θj+1

)
:= ‖ej+1‖2We + ‖fj+1‖2Wf + ‖fj+1 − fj‖2W∆f

, (V.1)

with We,Wf ,W∆f positive (semi-)definite weighting matrices
and f is parametrized using the BF Ψ as seen in (II.4). Recall
from Section II that the error in trial j + 1 can be written as:

ej+1(t) = So(z)r(t)− So(z)Gx(z)fj+1(t)

= ej(t)− So(z)Gx(z)
(
fj+1(t)− fj(t)

)
.

(V.2)

When the FF force is parametrized using the BF, as seen in
(II.4), the error in trial j + 1 can be expressed as:

ej+1(t) = ej(t)− So(z)Gx(z) Ψ
(
r(t)

)(
~θj+1 − ~θj

)
(V.3)

The optimal solution of (V.1), obtained by solving ∂V (~θj+1)
∂~θj+1

=

0 for (V.1), results in:

~θj+1 = Q~θj + Lej(t), (V.4)

where:

Q =
(

Ψ>
(
J>WeJ +Wf +W∆f

)
Ψ
)−1

Ψ>
(
J>WeJ +W∆f

)
Ψ,

L =
(

Ψ>
(
J>WeJ +Wf +W∆f

)
Ψ
)−1

Ψ>J>We,

(V.5)

and J is the impulse response matrix of So(z)Gx(z). The
values for Q and L in combination with (V.4) can be used to
learn the FF parameters in a trial-to-trial fashion.

B. Convergence Analysis

The ILCBF algorithm can be analyzed to assess the conver-
gent properties of the scheme. fj+1 can be rewritten in terms
of fj by rewriting (V.4):

fj+1(t) = (Q− LJ)fj(t) + LSo(z)r(t). (V.6)

Monotonic convergence, with respect to fj+1, can be achieved
by [17]:

σ̄(Q− LJ) < 1, (V.7)

and is guaranteed if:

ΨT
(
JTWeJ +Wf +W∆f

)
Ψ � 0. (V.8)

The matrices We, Wf and W∆f can be chosen such that (V.8)
is satisfied.

1) Convergence Analysis for Position-Dependent Systems:
The convergence criteria specified in (V.7) and (V.8) should
also hold true for position-dependent systems to achieve
monotonic convergence. Since there is often no model of the
position-dependency, it is more difficult to explicitly check
(V.7). However, (V.8) shows when Wf or W∆f are sufficiently
high, monotonic convergence is guaranteed. Here, Wf is used
to create robustness for model uncertainties and W∆f for
trial variant disturbances [6]. Robustness can be improved by
increasing Wf or W∆f , respectively at the cost of maximum
attainable performance and convergence speed. Therefore, to
satisfy (V.8), Wf can be increased to cope with robustness
with respect to model mismatch because of position-dependent
dynamics.

VI. INSTRUMENTAL VARIABLE FF CONTROL

The FF parameters determined with ILCBF can be biased
due to measurement noise [11]. This section shows a different
procedure for determining the FF parameters, being an alter-
native solution to P2, that results in unbiased FF parameter
estimates. This is done with the use of IVs in combination
with iterative FF parameter learning. Additionally, IV based
FF control can learn the FF parameters without the use of a
model.

First, the setup for IV based FF control is described,
followed by the addition of IVs to the control problem. Af-
terwards, computation and accuracy of the estimated optimal
IVs are presented. Finally, an extension to MIMO systems for
IV FF control is proposed.

A. Setup for IV FF Control

Consider the SISO controller structure seen in Fig. 6, where
Cfb(q) ∈ R(q)1×1 is the feedback controller, Gx ∈ R(q)1×1

the plant, r(t) ∈ RN×1 the reference, ej(t) ∈ RN×1 the
error, fj(t) ∈ RN×1 the FF force, uj(t) ∈ RN×1 the input,
ymj (t) ∈ RN×1 the measured output, Cffj (q) ∈ R(q)1×1 the
FF controller and Cff∆ (q) ∈ R(q)1×1 the update of the FF
controller in each trial.

+

+

+

-

+

+

+

+

Fig. 6: SISO FB and FF control structure for IV based FF control.

This figure shows the iterative update scheme of the FF
controller using Cff∆ . The update law is defined as follows:

Cffj+1(q) = Cffj (q) + Cff∆ (q) = Ψ(q)~θj + Ψ(q)~θ∆ (VI.1)
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where Ψ(q) ∈ R(q)1×nθ is the BF matrix, i.e.:

Ψ(q) =
[
ψ1(q−1) · · · ψnθ (q

−1)
]
. (VI.2)

The FF parameter vectors ~θj and ~θ∆ are gathered in a similar
manner:

~θj =

 θj,1...
θj,nθ

 , ~θ∆ =

 θ∆,1

...
θ∆,nθ

 . (VI.3)

The predicted error, for now assuming zero measurement
noise, of the system in trial j + 1 based on measurements
of trial j can be expressed as:

ε̂j+1(t, ~θ∆) = emj (t)− So(q)Gx(q)Cff∆ (q, ~θ∆)r(t), (VI.4)

where emj is the measured error in trial j. Since the plant is
considered to be unknown, the predicted error is estimated as:

êj+1(t, ~θ∆) = emj (t)− Cff∆ (q, ~θ∆)
(
Cfb(q) + Cffj (q)

)−1

ymj (t),

(VI.5)
where now ymj is the measured output of the plant. The result
of (VI.5) can be obtained by defining:

ŷmj (t) = So(q)G(q)
(
Cffj (q) + Cfb(q)

)
r(t), (VI.6)

and substituting it in (VI.5), resulting in (VI.4). The estimated
error in trial j + 1 can now be written as

êj+1(t, ~θ∆) = emj (t)− (ϕj(t))
>~θ∆, (VI.7)

where:

ϕj(t) = Ψ(q)
(
Cfb(q) + Cffj (q)

)−1

ymj (t). (VI.8)

The equations presented above will be used to learn the FF
parameters in a trial-to-trial fashion using IVs without the use
of a model.

B. Iterative FF control with Instrumental Variables

Iterative FF control based on IVs is proposed in [11], which
in contrast to ILCBF results in unbiased estimates of the FF
parameters without the need of a model for the measurement
noise. Now, the measurement noise wj is not assumed to be
zero anymore. Herein, a performance criterion for iterative
learning is defined as:

V
(
~θ∆

)
=

∥∥∥∥∥ 1

N

N∑
t=1

z(t)L(q)êj+1

(
t, ~θ∆

)∥∥∥∥∥
2

W

, (VI.9)

where z(t) ∈ RN×nz are the IVs that should be uncorrelated
with the measurement noise wj . W is a positive definite
weighting matrix, L(q) a prefilter and êj+1 as in (VI.7).
Minimum variance is obtained when nz is equal to nθ and
W and L(q) are taken as unity matrix [12]. Therefore, from
now on:

nz = nθ, L(q) = I, W = I. (VI.10)

The optimal solution to the performance criterion in (VI.9) is
equal to:

~θIV∆ =

(
1

N
z(t)>ϕj(t)

)−1
1

N
z(t)>emj

: =
(
Rzϕj

)−1
Rzemj .

(VI.11)

This makes it possible to learn ~θj in a trial-to-trial fashion
using the measured error, measured output and the IVs.

C. Estimation of Optimal IVs

The optimal IVs, zopt, are defined as the IVs which result
in minimal variance of the FF parameters. The optimal IVs
are equal to ϕrj , which is equal to the reference induced part
of ϕj [12]. ϕrj can be calculated as:

zopt := ϕrj(t) = Ψ(q)
(
Cfb(q) + Cffj (q)

)−1

yrj (t), (VI.12)

where now, yrj is the reference induced output of the system.
Since there is no direct access to yrj and therefore ϕrj , an
estimate has to be made. An iterative scheme, introducing
superscript < i >, has been created to compute an estimate
of ϕrj :

z<i>(t) = ϕ̂rj (t)

:= Ψ(q)
(
Cfb(q) + Cff,<i>(q, θ̂<i−1>

∆ )
)−1

r(t).
(VI.13)

Herein, the θ̂<i−1>
∆ is updated as follows:

θ̂<i>∆ =

(
1

N
z<i>(t)>ϕj(t)

)−1
1

N
z<i>(t)>emj (t)

: =
(
R<i>zϕj

)−1

R<i>zemj
,

(VI.14)

with ϕj from (VI.8).
All the equations above can be combined to update the FF

signal per trial and computing an estimate of the IVs and θ̂∆,
which can be seen in Algorithm 2.

D. Accuracy Analysis of Optimal IVs

The covariance of the estimated FF parameters can be
calculated, to evaluate the accuracy of the estimation. To assess
the accuracy, the covariance matrix PIV is defined as:

√
N
(
θ̂∆ − θ̄∆

)
∼ N (0, PIV ) , (VI.15)

where θ̄∆ is the asymptotic parameter estimate, specifically:

emj (t) = (ϕj (t))
>
θ̄∆ − ewj (t), (VI.16)

where ewj (t) is the error induced due to measurement noise
in trial j. When taking nz , L(q) and W equal to (VI.10), the
covariance matrix PIV is equal to [12]:

PIV = R−1
zϕjλ

2
wE
[
z (t) z> (t)

]
R−>zϕj , (VI.17)

with Rzϕj from (VI.14). The λ2
w is equal to the variance of

the zero-mean white noise w acting on the output.
When using (VI.12) and (VI.13), the covariance matrix

related to the FF parameters can be calculated. Furthermore,
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Algorithm 2: IV FF control algorithm, with estimated
optimal IVs.

Input: Ntrials, Nit, Ψ(q), r(t), Cfb(q)
Output: Converged FF parameters ~θNtrials

1 Set ~θ1 ← ~0;
2 for j = 1 to Ntrials − 1 do
3 Set fj(t)← Ψ(q)~θjr(t);
4 Run system with fj , r and Cfb. Measure ymj ;

5 ϕj(t)← Ψ(q)
(
Cfb(q) + Cffj (q)

)−1

ymj (t);
6 for < i >= 1 to Nit do
7 Calculate z<i>(t), see (VI.13);
8 Calculate R̂<i>zϕj and R̂<i>zemj

;

9 Calculate θ̂<i>∆ , using (VI.14);

10 Update FF parameters with ~θj+1 ← ~θj + θ̂<Nit>∆ ;
11 Update FF controller with Cffj+1 ← Ψ(q)~θj+1;

12 return ~θNtrials

the covariance matrix PIV can be used as initial guess for opti-
mizing the σ2

n hyperparameter of the GP, seen in Section III-E,
provided an estimation of the variance of the noise present in
the output, λ2

w, is known.

E. Extending IV to MIMO Systems

Since IV FF control requires the SISO commutative prop-
erty [12], the algorithm is constructed using multiple inde-
pendent SISO structures to accommodate MIMO systems.
Algorithm 2 shows the algorithm for SISO IV but can easily
be extended to MIMO systems, as can be seen in Algorithm 4
in Appendix A. For each direction, the FF force is calculated
as:

fj,dir(t) = Ψdir(q)~θj,dirrdir(t). (VI.18)

Example 3. Consider a FF force for the x axis is parame-
terized as:

fj,x(t) = θj,1r̈x(t) + θj,2r̈y(t). (VI.19)

The term rdir in (VI.18), using this example, is equal to:

rdir(t) =
[
rx(t) ry(t)

]
.

To avoid singularity of the inversion in (VI.14), (VI.8) is
changed to:

ϕj,dir(t) = Ψdir(q)
(
Cfbdir(q) + Cffj,dir(q)

)−1

ymj,dir(t), (VI.20)

where ymj,dir(t), for the example FF parameterization in
(VI.19), is equal to:

ymj,x(t) =
[
ymj,x(t) ymj,y(t)

]
.

This will influence the value of z(t) and will therefore affect
the convergence speed and accuracy of the FF parameter
estimates. However, using sub-optimal IVs will still result in

unbiased FF parameter estimates, as long as z(t) is uncorre-
lated with the error due to measurement noise, as is shown in
[11]. �

The matrices ymj,dir and rdir together with Algorithm 4 en-
able IV based FF control to be applied to MIMO systems using
multiple SISO structures. However, this does not guarantee
convergence in trial domain or in the estimation of the optimal
IVs for MIMO systems. Furthermore, many non-linear BF
cannot be incorporated in IV FF control since the BFs need
to be translated into R(q).

VII. INTEGRATION

This section shows a framework for modelling position-
dependent FF parameters, by combining FF parameter learn-
ing, GP modelling and MI optimization seen in respectively
Sections V or VI, III and IV. This section thereby constitutes
contribution C3 and will describe the method such that the
individual solutions to P1, P2 and P3 can be combined.

First, some design choices are made. Second the training
data set is defined. Third, the greedy sequential MI optimiza-
tion design choices are elaborated upon. Finally, the complete
framework is encapsulated.

A. Design Choices

Certain design choices have been made for the framework.
The FF parameters are determined using ILCBF as specified
in Section V, since ILCBF is able to cope with MIMO systems
and can have non-linear BF, which IV is not capable of. The
covariance function which is used is the RBF kernel, seen in
(III.7). This covariance function is chosen since it is widely
used and is a suitable choice for modelling position-dependent
FF parameters. This can be explained since the RBF kernel
assigns a high similarity to FF parameters close to each other
and a low similarity to FF parameters far away from each
other, which is expected. Each FF parameter is modelled using
a separate GP, therefore the result of the framework will return
nθ GPs. These design choices enable the framework to be
applied to MIMO or SISO systems with multiple (non-linear)
basis functions.

B. Defining the Training Data

The training data for the GP, can be defined in several
different ways. The FF parameters should be modelled as a
function of XY position, meaning the input dimension D is
equal to 2. Therefore, the test and training positions, seen in
(III.10) and (III.12), are defined as:

X =

[
x1 x2 · · · xl
y1 y2 · · · yl

]>
∈ Rl×2,

X∗ =

[
x∗,1 x∗,2 · · · x∗,l∗
y∗,1 y∗,2 · · · y∗,l∗

]>
∈ Rl∗×2.

(VII.1)

The training positions X are determined using the MI op-
timization seen in Section IV. For visualization purposes,
the test positions X∗ are chosen as a fine grid covering the
operating range, but can be any single position or vector of
positions.
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All converged FF parameters are used as training data for
the GP. Specifically, the training data θ seen in (III.6) is now:

θi =
[
θi,Nconv · · · θi,Ntrials

]>
, (VII.2)

where Nconv is the trial where the FF parameters in ILCBF
are converged. This shows there are multiple training outputs
y for each training position X . This is done such that the
marginal likelihood optimization can more easily capture the
noise variance hyperparameter σ2

n. Furthermore, this makes
the framework more robust to variations of the FF parameters
due to trial-varying disturbances and noise realizations.

C. Greedy Sequential MI Optimization

A greedy sequential MI optimization scheme is imple-
mented to pick the training positions X near-optimal. A
sequential method has been chosen because the hyperparam-
eters of the GPs are not (exactly) known. In Section IV the
procedure for applying a greedy sequential MI optimization
can be seen. Since all GPs are trained on the same training
positions (isotopic data), the MI can only be optimized for
one GP. Hence, near-optimality for the training positions is
only guaranteed for one GP. Here, the GP of the FF parameter
which has the highest contribution to the error signal is chosen
to optimize the MI for, which is determined by comparing
the values of So(z)Gx(z)

(
Ψiθi

)
. However, because the data

is isotopic, the near-optimal training positions for different
GPs do not vary much. Using this, the greedy sequential
MI optimization is used for choosing training positions when
identifying multiple FF parameters as a function of position.

D. Complete Framework

The complete framework for position-dependent GP FF is a
combination of ILCBF, MI optimization and a GP regression.
Fig. 7 visually illustrates the sequence how these methods
are combined. Fig. 7 first shows an initialization phase of
the framework, since the MI algorithm requires an initial
hyperparameter set. The initial hyperparameter set can be
initialized random or based on prior knowledge. Subsequently,
k − 1 repetitions of ILCBF, optimization of hyperparameters
and picking of a new training position using MI are done. The
value for k is the total amount of training positions and can
either be a set constant, or the framework can be stopped when
the MI does not change significantly anymore.

Algorithm 5 seen in Appendix A shows the pseudocode
of the entire learning algorithm over the operating range of
a machine, including the identification of the FF parameters
using ILCBF, hyperparameter optimization, greedy sequential
MI optimization and GP regression. Using the obtained GPs,
FF parameters can be determined at test positions X∗, using
(III.15). Next, the framework will be applied to a computer
simulation.

Fig. 7: Illustration of the complete framework, which is executed
before normal operation, to identify FF parameters, choosing training
positions with MI and make a GP regression of the identified FF
parameters.

VIII. SIMULATION RESULTS

The framework presented in Section VII is implemented in
a computer simulation of the XYZ stage from the wirebonder
seen in Fig. 16. The model of the XYZ stage is derived in [16]
and only the X and Y stages are actuated. The initial position
for the X and Y stages can be varied and the reference is
designed according to Assumption 1. This section will describe
the application and results of the framework described in
Section VII for the computer simulation.

The identification of FF parameters with ILC is presented
in Section VIII-A. In Section VIII-B the GP is trained and it
is ended with a performance comparison with other position-
dependent FF methods in Section VIII-C.

A. ILCBF

The ILCBF algorithm seen in Section V has been applied
to the computer simulation. The BF and FF parameters are
selected using velocity, acceleration and snap FF and are:

Ψ
(
r(t)

)
=

[
ṙx(t) r̈x(t) r

(4)
x (t) 0 0 0

0 0 0 ṙy(t) r̈y(t) r
(4)
y (t)

]
,

~θ =
[
θ1 θ2 θ3 θ4 θ5 θ6

]>
.

(VIII.1)

Fig. 8 clearly shows the convergent properties of the ILCBF
algorithm.

The convergent properties are further illustrated by looking
at the time domain error signal for both the first and last
trial, seen in Fig. 9, which demonstrates the substantial error
reduction ILCBF achieves.

B. Training the GP

To create a GP regression of the FF parameters as a function
of position, ILCBF has been carried out on several training
positions. The training positions, both based on a grid and MI
optimization, can be seen in Fig. 10.

Position-dependent GP modelled FF parameters can be
made with the procedure in Section VII. The advantage of
using MI optimal training positions compared with grid based
training positions can be seen by comparing the posterior
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Fig. 8: Normalized convergence results in terms of error 2-norm for
x and y axes at center position.
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Fig. 9: Normalized time domain error for the first and the last trial
of ILCBF at the center position.

variances of the acceleration FF parameter GP for the x axis,
seen in Fig. 11 and Fig. 12.

When comparing the posterior variances, Fig. 12 shows a
much lower posterior variance compared with Fig. 11, in both
the measured and unmeasured space. This indicates the GP
is more confident in estimating FF parameters. From now on,
the MI optimal training positions are used. The GP regression
of the acceleration FF parameter for the y axis can be seen in
Fig. 13.

The regressions of the FF parameters both show how the
GP models the FF parameters as a function of position and
does this with a relatively small set of training data.

C. Performance Comparison

To validate the framework for the computer simulation,
three methods for position-dependent FF have been performed
on several test positions to compare the framework with. The

Fig. 10: Normalized training positions used to measure the FF
parameters with ILC using BF for a computer simulation, both using
a grid ( ) and MI based positions ( ).
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Fig. 11: Normalized GP regression of the acceleration FF parameter
for the x axis. The color indicates the posterior variance of the GP,
which is normalized using the same factor as in Fig. 12. The FF
parameters used as training data ( ) are determined using ILCBF.
The training positions are an equispaced grid.

test positions are chosen as an equispaced four by four grid
covering the operating range. The three methods for FF on
these positions which are executed are:

M1: FF parameters determined in the center position
of the machine, i.e. not taking position-dependent
dynamics into account for FF control,

M2: FF parameters determined using a nearest-
neighbour search, meaning the FF parameters of a
training position closest to the test position,

M3: FF parameters determined from the GP regressions.
The error 2-norm for the different methods and test positions

can be seen in Fig. 14.
Fig. 14 clearly shows applying either the nearest-neighbour

or GP method can improve the error 2-norm in certain areas
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Fig. 12: Normalized GP regression of the acceleration FF parameter.
The color indicates the posterior variance of the GP. The FF pa-
rameters used as training data ( ) are determined using ILCBF. The
training positions X are determined near-optimal using MI. Note that
the posterior variance is lower compared with the grid based training
positions, as seen in Fig. 11.

Fig. 13: Normalized GP regression of the acceleration FF parameter
of the y axis. The x and y axes are the machine position. The FF
parameters used as training data ( ) are determined using ILCBF.

of the machine drastically. For negative y positions, the error
2-norm can be reduced up to a factor 2 by utilizing a GP
FF compared with the center approach. The GP method has
similar performance compared to nearest-neighbour, but still
has a lower error 2-norm for all test positions. A similar
plot can be made for the y axis, however, since there is no
significant difference for the different FF methods, it is not
presented here.

The error ∞-norm, seen in Fig. 15, shows a similar situa-
tion, the GP method outperforms both the center and nearest-
neighbour methods. Again, when observing the error ∞-norm
of the y axis, there is no significant difference between the
three methods.

To conclude, a significant performance gain can be achieved

Fig. 14: Normalized error 2-norm for the x axis when using different
methods for picking the FF parameters. This shows the GP FF method
outperforms the other methods in all positions.

Fig. 15: Normalized error∞-norm for the x axis when using different
methods for picking the FF parameters. This shows the GP FF method
outperforms the other methods in all positions.

for the x axis in a computer simulation when using the GP
FF method, compared with the center or nearest-neighbour
method. This is caused by the position-dependent dynamics
for this axis. In addition, the y axis does not contain significant
position-dependent effects in the computer simulation, shown
by the similar performance of the three methods.

IX. EXPERIMENTAL RESULTS

The framework presented in Section VII is implemented
on the XYZ stage from the commercial wirebonder seen in
Fig. 16. This section will describe the application of the
framework and validation thereof, by using FF parameters
determined with the GP on several test positions of the
machine.
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Fig. 16: AB383 wirebonder designed and built by ASM PT. Photo
courtesy of ASM PT.

Firstly, in Section IX-A, the experimental setup will be
described. Secondly, Section IX-B shows the application and
results of applying ILCBF on the setup. This is followed by
the training positions determined with MI in Section IX-C.
The GP is trained in Section IX-D. Finally, a performance
comparison with other FF methods is done in Section IX-E

A. Experimental Setup

The experimental setup is a commercial wirebonder from
ASM PT, model AB383, seen in Fig. 16. The wirebonder
consists of an XYZ-stage, where the X and Y stages move
perpendicular with respect to each other using linear motors
and the Z stage moves vertically and is actuated with a rotating
motor and a pivoting mechanism. On this setup, the initial
position for both the X and Y stage can be varied and the
reference is designed according to Assumption 1. The machine
has interesting position-dependent effects, such as changing
motor force constants and is therefore a good example for
this work.

B. ILCBF

FF parameters on a single position ~θ are learned on the
wirebonder using the ILCBF procedure as described in Sec-
tion V. The BF is based on the dynamic model and determined
in [32, 33] and is equal to:

Ψ(r) =

[
r̈x ṙx 0 0 0 0 0 0
0 0 r̈y ṙy ψc,y 0 0 0

0 0 0 0 ψc,z r
(4)
z r̈z ṙz

]
, (IX.1)

where (t) has been left out for brevity and:

ψc,y =
[
r̈z sin(rz) + ṙ2

z cos(rz) r̈z cos(rz)− ṙ2
z sin(rz)

]
,

ψc,z =
[
r̈y sin(rz) r̈y cos(rz)

]
.

(IX.2)

The BF can be combined with the following FF parameters to
parameterize the FF force:

~θ =
[
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9

]>
. (IX.3)

The reference used is a 7th order motion profile which can be
seen in Fig. 17.

Fig. 17: Normalized reference profile for x, y and z axes used in the
experiments.

The convergence result in terms of the error 2-norm can be
seen in Fig. 18.

Fig. 18: Normalized error 2-norm over trials when performing ILCBF
in the center position of the machine.

Fig. 18 shows the ILCBF scheme is convergent and sig-
nificantly reduces the tracking error compared with feedback
only.

C. Near-optimal Training Positions
The ILCBF is performed on several positions of the wire-

bonder, which are determined using MI optimization. A greedy
sequential algorithm is used to determine the positions, pre-
sented in Section IV and seen in Algorithm 3. The initial
hyperparameter set is determined using prior knowledge of the
hyperparameters. The prior knowledge of the hyperparameters
is acquired by performing the framework on arbitrary training
positions and optimizing the marginal likelihood. The resulting
training positions from the MI scheme can be seen in Fig. 19.
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Fig. 19: Normalized training positions ( ), determined with MI opti-
mization, and test positions ( ), arbitrarily chosen using interpolation
and extrapolation with both high and low posterior variance of the
GP, used in the experiments.

Fig. 20: Term δx seen in (IV.7), plotted as a function of position after
training position 4. The maximum of the function ( ) indicates the
next training position. Training positions 1 to 4 ( ) can be easily
recognised in the upper right contour plot, as the local minima. An
animation of an example (a priori) MI optimization can be seen at
http://bit.ly/MIOptimizationGPFF.

An example of the term δx after training position 4, can be
seen in Fig. 20. Fig. 20 shows that the next training position
will be roughly equal to (x, y) ≈ (0.41, 0.65), which is equal
to training position 5 seen in Fig. 19.

The maximization of the term δx is done after each training
position and will result in the near-optimal training positions
seen in Fig. 19.

D. Training the GP

On all training positions seen in Fig. 19, the FF parameters
~θ are determined and together with the training positions, are

combined to train a GP. The training data is specified as ex-
plained in Section VII and the hyperparameters are optimized
using marginal likelihood optimization. A GP regression of the
acceleration FF parameter for the x and y axes can be seen in
respectively Fig. 21 and Fig. 22.

Fig. 21: Normalized GP regression of θ2 for the experimental setup.
The FF parameters ( ) are identified with ILC using BF on the
training positions seen in Fig. 19.

Fig. 22: Normalized GP regression of θ4 for the experimental setup.
The FF parameters ( ) are identified with ILC using BF on the
training positions seen in Fig. 19.

This is done for all the other FF parameters as well and
can be seen in Appendix E. The acceleration FF parameter
for the x axis in Fig. 21 shows an interesting behaviour which
is periodic in the x direction. The physical interpretation is
straightforward, since the period distance in x direction of
the GP regression is roughly equal to the magnet pitch of
the linear motor. This suggests a periodic covariance function
might be able to model this FF parameter accurately, which
can be seen in Appendix D. Both Fig. 21 and Fig. 22 show that
the wirebonder has significant position-dependent effects and
should therefore be accounted for to achieve best performance.

15

http://bit.ly/MIOptimizationGPFF


E. Performance Comparison

To validate the framework for the experimental setup, three
methods for position-dependent FF are performed on several
test positions to compare the framework with. The test posi-
tions can be seen in Fig. 19. The three methods for FF on
these positions which are executed are:

M1: FF parameters determined in the center position
of the machine, i.e. not taking position-dependent
dynamics into account for FF control,

M2: FF parameters determined using a nearest-
neighbour search, meaning the FF parameters of a
training position closest to the test position,

M3: FF parameters determined from the GP regressions,
R: ILCBF to serve as a reference frame to compare the

three methods.

In the test positions, the error signals and norms are compared
to evaluate performance for each method. The error signals in
test position 2 can be seen in Figs. 23, 24 and 25.
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Fig. 23: Normalized error signals of the x axis for the three position-
dependent FF methods and ILCBF on test position 2, as seen in
Fig. 19.

Figs. 23 and 24 show the GP can reduce the error compared
with the center and nearest-neighbour methods by using a GP
to model the FF parameters for the x and y axes. For the z axis
the error, seen in Fig. 25, remains relatively constant for all
methods, even when using the validation data, where the FF
parameters are determined at the test position using ILCBF.

The error 2-norm for all test positions can be seen in Fig. 26.
This shows the GP method has a lower error 2-norm for most
positions in the operating range of the machine, compared
with the center or nearest-neighbour methods. For several test
positions, such as test position 1, the center and nearest-
neighbour method perform similarly compared to the GP
method. This can be explained since these are located roughly
one magnet pitch away from the center position, making the
position-dependency negligible, as is seen in Fig. 21.
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Fig. 24: Normalized error signals of the y axis for the three position-
dependent FF methods and ILCBF on test position 2, as seen in
Fig. 19.
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Fig. 25: Normalized error signals of the z axis for the three position-
dependent FF methods and ILCBF on test position 2, as seen in
Fig. 19.

Fig. 26: Error 2-norm for FF methods: center ( ), nearest-
neighbour ( ), GP ( ) and ILCBF ( ) per test position,
as seen in Fig. 19. Note that the GP outperforms the center and
nearest-neighbour methods for most test positions.
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The error∞-norm, measured only during the time where the
reference velocity is not equal to zero, i.e. the dynamic part,
can be seen for the x and y axes in Fig. 27. Similar conclusions
as from the error 2-norm can be drawn with Fig. 27.

Fig. 27: Error ∞-norm for FF methods: center ( ), nearest-
neighbour ( ), GP ( ) and ILCBF ( ) per test position,
as seen in Fig. 19. Note that the GP outperforms the center and
nearest-neighbour methods for most test positions.

Additionally, the sum of the error 2-norm for all directions
is computed, seen in Fig. 28, which shows that the GP has
improved performance compared with the center and nearest-
neighbour method in all test positions, with the exception of
test position 1. However, the small performance difference
between the center and GP method can be explained due to
trial varying disturbances.

Fig. 28: Sum of the error 2-norm of all axes for FF methods: center (
), nearest-neighbour ( ), GP ( ) and ILCBF ( ) per

test position, as seen in Fig. 19. This shows, with the exception of
test position 1, that the GP outperforms both the center and nearest-
neighbour methods.

Both the error norms for x and y axes and the sum of the
error 2-norm for all directions show that the GP method for
determining the FF parameters achieves similar performance
as ILCBF. For the center and nearest-neighbour methods,
several positions have considerable higher error 2- and ∞-
norms than the GP method, showing the superior performance
achievable when using the GP position-dependent FF method.

X. CONCLUSIONS

In this work, position-dependent feedforward control is
developed using Gaussian processes which model feedforward
parameters as a function of position. Gaussian processes are
used since they are non-parametric and therefore model non-
linear and black box effects accurately. Additionally, the com-
bined effect of position-dependent dynamics and motor force
constant can be compensated for without prior knowledge of
both, based on data. Furthermore, Gaussian processes enable
the use of mutual information optimization to determine near-
optimal training positions. The framework is tested in a com-
puter simulation and experiments on a commercial wirebonder.
Both show that a Gaussian process models the feedforward
parameters such that it improves performance over the entire
operating range.

Future research on this topic should be directed at investigat-
ing different kernel choices and the impact on the performance
thereof. Secondly, prior knowledge of the FF parameters
should be incorporated in the kernel choice, hyperparameters
and mean function. This might make the algorithm more
robust to less training data and could improve performance.
Thirdly, the mutual information could be used to determine the
amount of training positions necessary. Lastly, extrapolation
capabilities to other references and to references that are not
negligible with respect to the position dependency, should be
investigated.
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APPENDIX A
SEQUENTIAL MI ALGORITHM

An algorithm showing the sequential version of the MI
optimization scheme can be found in Algorithm 3.
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Algorithm 3: Greedy MI algorithm to determine op-
timal training positions in a sequential manner.

Input: Initial training data XG
1 and y1, discretized

space X
Output: Near-optimal training positions XMI and

training outputs yMI .
1 for i = 1 to k − 1 do
2 Optimize hyperparameters with XG

i and yi;
3 for x ∈ X \XG

i do
4 Set X̂ ← X \

(
XG
i ∪ x

)
;

5 Calculate k(x, x), Ky , K(x,XG
i ), K(x, X̂) &

K(X̂, X̂);
6 Calculate δx with (IV.7);

7 Set xseq ← arg maxx δx;
8 Update XG

i+1 ← XG
i ∪ xseq;

9 Sample function with training position xseq;
10 Update yi+1 ←

[
yi f(xseq) + ε

]
;

11 return XG
k and yk;

APPENDIX B
MIMO IV BASED FF CONTROL ALGORITHM

Algorithm 4 shows an extension of IV to MIMO systems,
where the subscript dir is used to denote the input direction.
This uses estimated optimal IVs and matrices ymj,dir and rdir
that indicate the direction the basis functions in Ψ are acting.

Algorithm 4: MIMO IV FF control algorithm, based
on multiple SISO loops with estimated optimal IVs.

Input: Ntrials, iterations for estimation of optimal IVs
Nit, BF Ψ, reference r, FB controller Cfb

Output: Converged FF parameters
1 Set ~θj ← ~0;
2 for j = 1 to Ntrials do
3 for dir = 1 to ni do
4 Set fj,dir ← Ψdir

~θj,dirrdir;

5 Run system with fj and Cfb, measure ymj ;
6 for dir = 1 to ni do
7 Set Cdir ←

(
Cfbdir + Cffj,dir

)
;

8 Set ϕj,dir ← ΨdirC
−1
diry

m
j,dir;

9 for < i >= 1 to Nit do
10 Calculate z<i>dir , see (VI.13);
11 Calculate R̂<i>zϕj ,dir

and R̂<i>zemj ,dir
;

12 Calculate θ̂<i>∆,dir, as (VI.14);

13 Update FF parameters and controllers with
~θj+1,dir ← ~θj,dir + θ̂<Nit>∆,dir and
Cffj+1,dir ← Ψdir

~θj+1,dir;

14 return Converged FF parameters

APPENDIX C
FULL FRAMEWORK ALGORITHM

Pseudocode for applying the full framework, where FF
parameters are determined with ILCBF, training positions are
determined with MI and the FF parameters are regressed using
a GP can be seen in Algorithm 5.

Algorithm 5: Algorithm for GP regression of position
dependent FF parameters in x and y direction.
Input: Trials for ILC Ntrials, maximum measuring

positions k, BF Ψ, arbitrary initial position x1

and reference r for ILC
Output: Position-dependent FF parameter GP

regression for the BFs used as input
1 for i = 1 to k do
2 Procedure ILCBF on position xi:
3 Calculate Q, L;
4 ~θ1 ← ~0;
5 for j = 1 to Ntrials do
6 fj ← Ψ~θj ;
7 Run system with fj and r ;
8 ~θj+1 ← Q~θj + Lej ;

9 Set yi ←
[
yi−1 θi

]
with θi from (VII.2);

10 Set Xi ←
[
Xi−1 xi

]
;

11 Optimize GP kernel hyperparameters;
12 Do GP regression;
13 Determine measurement position xi+1 using MI;

14 return GP Regressions

APPENDIX D
INVESTIGATING A PERIODIC KERNEL

Different kernels can be used that the squared exponential
kernel to model position-dependent FF parameters. For exam-
ple, the periodic kernel seen in (III.9) can be used to model the
acceleration FF parameter for the x axis, which is previously
seen in Fig. 21. It makes sense to use a periodic kernel here,
since the FF parameter seems to repeat itself in x direction. A
GP regression when using a periodic kernel of the acceleration
FF parameter can be seen in Fig. 29.

Interestingly, when using this periodic kernel, the period hy-
perparameter p optimized using the marginal likelihood is only
1.55% different than the designed magnet pitch. This shows
when using the correct kernel function, physical properties can
be estimated accurately using the GP modelled FF parameters.
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Fig. 29: Normalized GP regression of θ2 for the experimental setup.
The FF parameters ( ) are identified with ILC using BF on the
training positions seen in Fig. 19. The kernel used is the periodic
kernel, seen in (III.9)

APPENDIX E
GP REGRESSIONS OF EXPERIMENTAL SETUP

Next to the GP regressions of the acceleration parameters
for x and y axes seen in Section IX, the other GP regressions
for the FF parameters in (IX.3) can be seen below.

Fig. 30: Normalized GP regression using experimental data of FF
parameter θ1, seen in (IX.3)

Fig. 31: Normalized GP regression using experimental data of FF
parameter θ3, seen in (IX.3)

Fig. 32: Normalized GP regression using experimental data of FF
parameter θ5, seen in (IX.3)

Fig. 33: Normalized GP regression using experimental data of FF
parameter θ6, seen in (IX.3)
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Fig. 34: Normalized GP regression using experimental data of FF
parameter θ7, seen in (IX.3)

Fig. 35: Normalized GP regression using experimental data of FF
parameter θ8, seen in (IX.3)

Fig. 36: Normalized GP regression using experimental data of FF
parameter θ9, seen in (IX.3)
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