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II. Executive summary 
Project background 
The Royal Netherland Navy (RNLN) explores data-driven maintenance opportunities as part of the 
Sailplan 2030 and Defence Vision 2035. Part of that exploration is performing different case studies, in 
which IPMS data of the Holland class is analysed. This research focuses on the early detection of 
defective main bearings of the main diesel engines. This creates opportunities to make maintenance 
decisions that prevent failures, resulting in an increased reliability. 
 
The main bearings are located in the main diesel engine and support the crankshaft and rotate with 
minimal friction. Literature and expert knowledge are utilised to determine the failure mode and 
underlaying failure mechanisms. The most important failure mechanisms found are cavitation and 
abrasive wear. In the IPMS data, the only measurements directly related to the bearings are 
temperature measurements. These individual temperature readings could be used to detect 
degradation. The current maintenance policy of main bearings is an usage-based policy with inspection 
and preventive replacements. Failures are self announcing and detected by the safety system of the 
main diesel engine.  
 
Proposed monitoring approach 
The data-driven defect detection model that is used to detect the increased bearing temperature, 
consists of different steps, see Figure 1. Data preparation is necessary to transform the high-resolution 
data into useful data for the monitoring model. As operational circumstances influence the bearing 
temperature, the measurements must be removed from its contextual anomalies. This is performed 
by a multiple linear regression model (MLR). MLR is selected based on four criteria: understandable, 
domain knowledge, suitable with data, implementation. These criteria are selected to build a model 
that could be used as proof of concepts and convince maintenance engineers who are not familiar with 
artificial intelligence. 
 
The next step is trend analysis on the residuals, the difference between the measured and the 
estimated bearing temperature. This is performed based on statistical process control (SPC) in the form 
of EWMA control charts. This method is able to detect small progressive mean changes in the process. 
Indicating the change of the physical process, which could be due to deterioration of the main bearings. 
Based on these warnings maintenance decisions could be made. 

Result 
With the developed data-driven defect detection model, warnings could be generated when a positive 

temperature shift is found. Three cases are monitored in the research, of which one is shown in Figure 
2. In this case, the model is learned and set in the initialising period of 800 hours. Several hundreds of 
hours before the failure, at the end of the timeline, the warnings arrive, indicated by the vertical red 
lines. In the second case, it is seen that maintenance disrupts the monitoring process, changing the 
statistics suddenly. Shortly after maintenance, the bearings are failed. In a third case, another 
maintenance scenario is analysed, here it is demonstrated that after relearning, the model behaves as 
expected. 

Figure 1: Flowchart of the proposed monitoring approach 
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Since the first warnings are not sufficiently decisive and could be caused by other events such as 
maintenance, it is recommended to implement a validation step into the current maintenance policy 
to validate the additional warnings. The proposed extension of the maintenance policy is schematically 
shown in Figure 3. During the validation, the engine is under enhanced supervision. An action that 
could be taken for validating the warnings is data analytics or additional oil sampling. These actions 
could be performed without interrupting the operations of the vessel. 
 
The advantage of adding this to the current policy is that the reliability increases because the 
probability of sudden failures decreases. Alternatively, when preferring to keep the reliability identical, 
the inspection interval could be extended. Because there is limited information available to 
approximate a mathematical distribution, exact numbers for the improvements are not determined.  

Conclusion, discussion, recommendations 
It can be concluded that by making use of the proposed monitoring approach, it is possible to detect 
defects with the available sensors, as shown in the presented case, in the operating hours before the 
failure warnings are generated. The warnings generated with the data-driven defect detection model 
could be used to plan preventive maintenance action to increase reliability.  
 
The developed model is built as a proof of concept. Therefore several discussion points could be 
addressed. The user should understand the model's capabilities, it is made to detect an increasing 
temperature trend caused by the found failure mechanisms. Other failure mechanisms that develop 
differently will not be detected. The model is also built to be able to handle non-stable operations. The 
consequence of this is that long constant operations, such as ocean crossings are not monitored.  The 
model as build in this research is not ready for implementation in practice yet. Several issues must be 
solved, such as automatization of data acquisition, initialising of models and effect of maintenance 
action should be further investigated.   
 
In future research at the RNLN on this subject, three topics should be addressed. First, converting this 
proof of concept towards a pilot project. Second, apply this method to other components to create 
more insights into the model's performance. Third, improve the quality of the different steps taken in 
the defect detection model, including the data preparation, regression model and control chart.   

         
       

       
          

         

       
          
           

         

           
        

          
           

        
        

         
    

         
        

         
           

Figure 2: EWMA control chart detecting defect, failure is at the end 

Figure 3: Schematical overview of maintenance policy, in grey the additional procedure for warnings 
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1. Introduction 
Back in 1896, Guglielmo Marconi created the basics for long-distance radio transmission 

(Bondyopadhyay, 1995). Nowadays, data exchange with vessels around the world is an ordinary 

subject. The digitalization of systems is often described as industry 4.0, which could change the domain 

of maintenance (Tiddens, 2018). The MARCONI project focuses on using digitalization developments 

to optimise the service logistics chain. This thesis, conducted at the Royal Netherlands Navy, goes into 

the phenomenon of data-driven maintenance. Performing adequate maintenance is essential for the 

Royal Netherlands Navy to keep its fleet of vessels operational. 

In this chapter, the background of the project will be explained. The case that will be used during the 

project is introduced in the second chapter. The actual procedure of data-driven maintenance is 

explained in chapter three, after which it is worked out in chapters 4 to 6. In chapter 7, there is 

attention to the implementation of data-driven maintenance in the current policy. Completing the 

thesis with a conclusion, discussion and recommendations in chapter 8.  

1.1. Organisation Royal Netherlands Navy 
The Royal Netherlands navy (RNLN) is the maritime department of the Netherlands Ministry of 

Defence, the military organization of the Netherlands. Besides the RNLN there are six other 

organizational elements, as shown in Figure 4. The four-armed forces, of which the RNLN is part, are 

headed by the Chief of Defence, General Eichelsheim. The Defence Materiel Organisation (DMO) is the 

department engaged throughout the entire life cycle of material, from procurement to sale. It supports 

the armed forces with logistics supports, administrative and coordination of equipment. 

The goal of the Ministry of Defence is ‘protecting what we value’. In a world of turmoil, it is necessary 

to protect all that we as a nation cherish. This could be summarised in the following three main tasks 

(Ministerie van Defensie, 2020): 

• Defending national territory and that of our allies. 

• Enforcing the national and international rule of law. 

• Providing assistance during disasters and crises. 

  

Figure 4: Organization chart of the Ministry of Defence (Ministerie van Defensie, 2020) 
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The RNLN supports these three main tasks at sea and from the sea. Understanding these tasks is 

important throughout this thesis because the RNLN is not driven by financial profit, instead, it is about 

the ability to act when necessary, to ensure safety. The Dutch government is responsible for the 

decision which mission will be performed, influenced by international allies (The NATO). The RNLN has, 

at its disposal, a fleet of 29 navy vessels, consisting out of frigates, submarines, patrol vessels, 

minehunters, Landing Platform Docks (LPDs) and a Joint Support Ship (JSS). Besides these major 

vessels, there are multiple tugboats, training vessels and supporting vessels (Karremann, 2020). 

The organization of the RNLN (Figure 5) is lead by vice-admiral Kramer, who is responsible for ensuring 

that the navy units are mission ready. The commander of the RNLN also holds the position of Admiral 

Benelux, which implies supervising the close cooperation with the Belgian navy. The division which has 

a leading role in this thesis is, the Directie Materiele Instandhouding (DMI). 

DMI is responsible for maintaining vessels, submarines and other systems to provide reliable 

equipment for the users. This involves systems like power supplies, electronics and weapon systems. 

Besides maintaining assets of the RNLN, assets of other defence departments are maintained as well 

as for international partners. Interestingly, the DMI employs several civilians who contribute with their 

technical background to the operations. This thesis is conducted at two departments within DMI, DvO 

(‘Data voor Onderhoud’, English: Data for maintenance) and TGP (‘Techniek groep platform’, English: 

‘technology group platform’). 

Data voor Onderhoud 
Data voor Onderhoud (DvO) is a relatively new department that focuses on the transition to smart 

maintenance within RNLN. With different projects, they are exploring the opportunities and focus on 

the involvement of the different operational departments to get them ready for the future. This is 

done by different topics, such as data acquisition, infrastructure, governance, data analytics and asset 

management. Examples of different projects are improving the maintenance process for future vessels 

and analyses for the CO2 race for seafarers from OceansX program that focuses on social value and 

sustainable impact. 

The data that DvO uses is primarily gathered from the Holland-class, consisting out of four identical 

oceangoing patrol vessels (OPV). Part of the Holland-class is the HLNMS Groningen, which is equipped 

with multiple extra sensors that are logged for further analyses as part of a pilot in data-driven 

           . T      k   f       O  ’    ff             f               ,              ,            

missions. They operate in areas with a lower violence spectrum, such as the Caribbean. The vessels are 

operative since 2012/2013 and are expected to last for 25 to 30 years.  

  

Figure 5: Organization chart of the Royal Netherlands Navy (Ministerie van Defensie, 2020) 
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As part of their strategy, DvO collaborates with various consortiums, such as the MARCONI project 

(Maritime Remote Control Tower for Service Logistics Innovation). This project is a collaboration 

                                                               y. T                      ‘             ’ 

to improve service logistics in a maritime setting involving multiple stakeholders. Therefore, the 

processes of operations, maintenance and resource planning should be synchronised. 

Techniek Group Platform 
The Techniek Groep Platform (TGP) is responsible for the major maintenance tasks of the different 

mechanical installations on board the different vessels, such as the engines, freshwater maker and 

HVAC. The strength of this department is the amount of expertise they have and the capabilities to 

repair almost all the equipment that is on board the vessels. They normally operate from their 

workshop ‘Marine B    jf’    D   H     , T              . But in case of urgency, they travel around 

the world to support the crew on board with specific maintenance actions. TGP is one of the 

departments that is involved in the exploration of smart maintenance in the form of providing cases 

that could be explored by DvO.  

1.2. Problem definition 
Interest to invest in data  

In the Defence Vision 2035 of the ministry of defence and more specific the Sailplan 2030 of the RNLN, 

the importance of innovation in the field of data use is underlined. In those plans, the opportunities 

given by big data are mentioned for improving current processes. The department DvO is working on 

this first exploration of data to implement in future vessels. This is done using the current sensors and 

additionally installed sensors, part of the regular process control, to generate data for maintenance.  

Another change mentioned in the Sailplan 2030 is the test with alternating crews and smaller crews 

onboard. Currently, there is a pilot study in which crews rotate between different Oceangoing Patrol 

Vessels (OPV), which improves the balance between activities and gives more perspective and space 

to perform the tasks for the employees. Besides that, crews are getting smaller due to scarcity of 

employees and technological evolution. However, the consequence is that more responsibility is 

shifted towards the engineers located in Den Helder. As a result of this, online services and diagnostics 

from ashore are increasing in value. 

Current maintenance situation 

Currently, maintenance is planned based on the determined intervals by the OEM. Due to the specific 

use pattern of the RNLN, this method is not always successful. Vessels are used on their limits and 

compared to commercial operated vessels, relatively low number of operating hours. This causes 

irregular deterioration of their assets which is hardly possible to incorporate in predetermined 

maintenance intervals. Yet, for the RNLN, it is important to have reliable equipment to carry out 

missions at any time. 

Challenge to transform data into decision making 

The use of IPMS (Integrated Platform Management System) data provides opportunities to increase 

reliability. This data is usually used for monitoring and control but not for predictive maintenance. 

Creating additional value from this data in the form of maintenance decisions is often seen as 

challenging. The engineers responsible for the maintenance do not have the knowledge and capacity 

to process a large amount of data. That is why a supportive decision-making model is needed to use 

the potential added value of data in the maintenance process. 
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Case: main bearings of the main diesel engine 

The current state of innovation at the RNLN is exploring opportunities for data-driven maintenance by 

performing real case studies on different systems/components. The main journal bearings are such a 

component for which a decision-making model would have added value, as shown in section 2.1. The 

main diesel engines onboard are used irregularly depending on the current tasks. And the bearings are 

mission-critical components, a single failure will influence the operational unavailability of the entire 

vessel. In Chapter 2 the further explanations about the main bearing itself and why they were chosen 

as a case study are given.  

Research goal 

The ambitions as mentioned above lead to the following research goal: improve the reliability of the 

main diesel engine by making a data-driven model such that the condition of the main bearings could 

be determined in order to make operational decisions.  

1.3. Research questions 
The project’  definition leads to the following main research question: 

How could the available data of the main diesel engines of the oceangoing patrol vessels be 
used to create a defect detection of the main bearings to make maintenance decisions to 
increase the reliability of this critical asset? 
 

The following research questions (RQ) help to answer the main research question and structure the 
research. This structure is schematically shown in Figure 6. 

1. What are the different failure modes and mechanisms of the main bearings in the diesel 
engine? 

2. What sensors are available to give insight into the condition of the main bearings? 

3. How could the available sensor measurements be related to the condition of the bearings? 
4. How could a defect detection of the main bearings be generated using a data-driven model? 
5. How could the developed defect detection model of the main bearings be used to make 

maintenance decisions to increase reliability? 
6. What are the advantages of implementing the developed defect detection model for the 

maintenance process? 

  

Figure 6: Setup of research and document 
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1.4. Methodology  
The methodology that is used in the report is CRISP-DM methodology (Wirth & Hipp, 2000). As part of 

the business understanding, with RQ1 the important failure mechanisms of main bearings will be 

investigated. This is done based on literature in combination with expert knowledge within the RNLN. 

Data understanding is the focus of RQ2, in which the available data in the data sets is explained.  

The information gathered in the first two research questions is input for RQ3, in which current 

monitoring of bearings is studied and the link is made between the available information and failure 

mode. These business and data understanding results are input for the defect detection. As part of 

RQ4, the data-driven defect detection model will be created based on selected studies and the earlier 

obtained information. This question consists of the data preparation and modelling step of the CRIPS-

DM methodology, resulting in a model that can provide a warning when the process is out of control.  

Finally, based on the outcome of the data-driven defect detection model, a decision-making model will 

be implemented/deployed for RQ5. An expansion of the current policy will be made and 

mathematically worked out. By making use of numerical analyses, the advantages of the new policy 

can be explored to answer RQ6. 

1.5. Contribution 
This research is performed at the RNLN, which focuses on the exploration of data-driven maintenance. 

It is also part of the research consortium MARCONI. This research contributes in the form of working 

out theoretical models in a real application with real data. The final results of this thesis could be an 

important step in the path towards data-driven maintenance. By using simple ‘     -  x’ models, the 

data could be transformed to obtain useful information for maintenance. Knowledge will be developed 

about which hurdles must be taken to handle data efficiently. As a secondary effect, employees 

involved in the project become familiar with the possibilities that data has. This is important for the 

successful implementation of data-driven maintenance at the RNLN.  

1.6. Scope 
In this section, the scope of the thesis is defined. The complete exploration of data-driven maintenance 

is broad and too complex to handle in the available time of the master thesis. Therefore, this project 

focuses only on the exploration of a defect detection model for a single component. And describing 

the maintenance policy in which the information of the defect detection model could be implemented 

to improve the reliability. 

The RNLN has multiple vessels in their fleet, this research focuses on the Holland class. The selected 

component is the main bearings of the main diesel engine, as mentioned in section 1.2 and section 

2.1. Although this project focuses on a specific vessel, the used techniques and generated insights 

should be useful to expand further for the RNLN. The expansion to other equipment and 

implementation of the model are excluded.  
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2. Case introduction 
This chapter introduces the case that will be used throughout the entire thesis. Therefore, this chapter 

is quite dense with information and the first research question will be addressed. It starts with the 

justification of the selection of the main bearing for this thesis. Followed by the current policy and the 

mechanical explanation of the working and deterioration of the component. At the end of the chapter, 

the conclusion is given for the first research question. 

2.1. Justification of component selection: main bearings  
The component for this study has already been selected. The selection procedure that is followed 

consists out of multiple steps, as shown in Figure 7. First, because this thesis is a follow up of another 

project, the main diesel engines of the Holland class is further explored. Second, based on the available 

data in the data set, the candidate subsystems/component is selected. A restraining factor is the fact 

that there is only a limited amount of data points. Third, based on the added value of predictive 

maintenance for these subsystems' maintenance process, the main bearings are selected for this 

thesis. The entire selection procedure is captured in the research proposal (Heek, 2019). In the 

following paragraphs, a small summary is given. 

 

Figure 7: Selection procedure of component (based on Tiddens, 2018) 

2.1.1. Critical asset  
The critical asset on which this thesis is performed are the main diesel engines. The diesel engines are 

part of the diesel-electric transmission system onboard. This is one of the primary functions and 

therefore, critical equipment on board the vessel. The main diesel engines installed are two identical 

MAN V12 engines delivering approximately 5460 KW, Figure 8 shows the engine that is 6.2 by 2.3 by 

3.7 meters (l x w x h). The two engines are placed on port side and starboard side, which have different 

fire order. This leads to a different rotational direction of the propeller to prevent drifting off to one 

side. 

 

Critical asset 

selection Data availability Selection 

Figure 8: MAN V28-33D engine (onboard are similar V12 engines installed) (source: MAN) 
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2.1.2. Show stoppers 
Data availability and lack of potential critical failures could be a major showstopper for a component 

to be selected. For the project, data is already collected over the last years and therefore limiting the 

opportunities. Within the available dataset, there are 60 sensors directly marked towards the main 

engine. Most of them are temperature sensors and pressure sensors in cooling or oil circuits. Besides 

that, the engine's performance could be determined based on information on fuel usage, RPM and 

torque. Also, a Failure Mode Effect & Criticality Analysis (FMECA) of another type of marine diesel 

engine is used as a guideline to obtain critical components based on their frequency of failure and 

subsequent impact (Tiddens, 2014). The subsystems/components in Table 1 came out through these 

showstopper criteria.  

Table 1: Candidate sub-systems/ components 

System/parts Function and measurements 

Bearings 
Main bearings supporting the crankshaft, directly measured with individual 
temperature sensors. 

Cooling 
Two separate circuits (high and low temperature) cool the engine indirect with 
seawater. Temperature and pressures are available as measurements.  

Air inlet 
The air inlet system consisting out of two turbochargers and heat exchangers to 
cool the air back. Different temperatures and pressures are measured which could 
be used to determine performance. 

Oil system 
The oil system secures lubrication of the engine and the internal cooling. Parts are 
gear pump, cooling and filtering. Pressure and temperatures could give insights.   

Fuel 
Supply and injection of fuel into the engine for combustion. Flow, temperature and 
pressures are captured and available for analyses.  

 

2.1.3. Selection framework 
Selecting the right component is important for CBM, creating models for the selected component must 

have a positive impact on the operational process. Tiddens (2018) developed a framework for selecting 

suitable candidates for CBM. The criteria used are clustering of maintenance activities, technical 

feasibility, economic feasibility, and organisational feasibility. Applying this framework to the diesel 

engine case resulted in the main journal bearings as the most interesting component. Below a 

summary is given why the bearings pass the different conditions. 

The maintenance actions of the main bearings could be executed independently of other activities, 

making it useful to optimise the scheduled inspections and replacement actions. From a technical point 

of view, considerable research has been previously performed on bearings which shows the feasibility 

of capturing degradation. As already covered by the showstoppers, the data for defect detection 

modelling is also available for the project. In the dataset, it is known that there were deprecated 

bearings replaced. Therefore, analysis of the deterioration process could be made.  

Another criterion is economic feasibility, the developed models on bearings are beneficial to 

implement in the future within RNLN. The impact of bearing failure is significant on the engine, 

influencing the engine's availability and, therefore, the entire operations of the vessel. Lastly, 

organisational feasibility, the maintenance policy for the selected component must fit the work 

methodology of the RNLN. In the case of main bearings, there is a clear need for engineers to monitor 

these components thoroughly. They are open to supporting tools to improve the current maintenance 

process.  
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2.2. Maintenance process   
As part of understanding the general maintenance process at RNLN and for the main bearings, multiple 

conversations with employees were held. They have different roles within the process from planning 

the maintenance moments to deciding which maintenance actions to perform during these 

maintenance moments. This section will explain the used maintenance policy and available 

maintenance opportunities for the main bearings. 

Maintenance policy  

Maintenance is important to keep capital goods available for the primary processes. Sufficient losses 

or danger could occur when navy vessels suddenly face failures, especially in the transmission system. 

There are multiple policies to perform maintenance, as shown in Figure 9 (Arts, 2017). Below the 

maintenance policy of the main bearings will be discussed and explained why that is implemented. 

Figure 9: Overview of maintenance policies (Based on Arts, 2017) 

Since the main bearings are critical components, preventive maintenance is used to prevent having 

unscheduled breakdowns. The maintenance actions are performed based on the usage of the main 

diesel engine defined in operating hours. This policy is defined by the original equipment manufacturer 

(OEM) but could be adapted by DMI. During the life cycle of the bearings also visual inspections are 

planned based on operating hours. These inspections reveal the actual condition and could be used as 

input to perform the maintenance action before originally planned. Periodically there are also oil 

samples taken, the presence of wear debris, metallic particles give valuable information of the engine 

wellbeing (Kumar et al., 2018). 

Maintenance actions 

The maintenance actions that are important for the bearings are inspections and replacements. These 

actions are integrated into Figure 10 with their triggering events. The inspections and preventive 

replacements are determined based on operating hours indicated by the OEM. These actions could be 

scheduled to fit the operational schedule of the vessel. Inspections could also be triggered by the 

currently used warnings of the safety system of the engine or wear debris monitoring based on oil 

samples. In case of a failure, the bearings are correctively replaced to make the vessel back operational. 

After the maintenance actions, the condition is good, either from the replacement or found in the 

inspection.  

Maintenance

Corrective Preventive

Usage-based Condition-based

Modificative

Figure 10: Overview maintenance actions 



9 
 

Bearings are wear parts, therefore they are replaced for identical new components in case of 

maintenance. The visual inspections in which a bearing is dismantled and visually inspected is also a 

labour-intensive procedure. Performing either of these actions takes several working days due to the 

complexity, difficulty to reach, size, and weight of components. These actions are performed by TGP 

or a contractor, which makes scheduling more important.  

The deterioration of the bearings is correlated, during an inspection, only one bearing has to be visually 

inspected. Based on expert knowledge and experience one of the heavily loaded bearings is selected, 

which is expected to be representative of the group. The replacement of bearings is carried out 

simultaneously for the entire group. This is due to the setup costs for the maintenance moment and 

the correlated degradation. After maintenance, there are several assessments before releasing for 

operational tasks as part of the quality control.   

Maintenance planning 
In general, there are three levels of maintenance actions to distinguish: Organic Level Maintenance 

(OLM), Intermediate Level Maintenance (ILM) and Depot Level Maintenance (DLM).  

First of all, OLM consists of the daily activities executed by the crew on board, also named ‘unassisted 

maintenance’ jobs for DMI. This consists out of small repairs, emergency repairs and regular checks of 

the systems. These activities are performed during the mission. 

The second level is ILM, also referred to as ‘assisted maintenance’ (AM), which are maintenance tasks 

executed by experts of TGP. These tasks are bigger and more complex, therefore more expertise is 

necessary. These actions are undertaken approximately twice a year and take multiple weeks 

(approximately 4-6 weeks).  

Finally, there is DLM, also referred to as ‘Benoemd Onderhoud’ (BO, English: ‘assigned maintenance’), 

after four years of service the vessel undergoes major maintenance and is for a longer time in Den 

Helder. This takes roughly one year, in which the vessel also will go to the dry dock. During these longer 

periods, it is possible to perform updates are performed to keep up with the current technology 

available. 

Maintenance associated with the main bearings belongs to ILM, which implies that it must be planned 

during the predetermined scheduled downs. On rare occasions, it could also occur that during a 

mission a scheduled down is organized. During those maintenance actions, a vessel is for a few days 

off duty in any foreign harbour.  
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2.3. Function and working of journal bearings 
The function of the seven main bearings, is to support the crankshaft and limit the amount of friction 

while rotating in the V12 engine block. The bearings are located around all six pairs of piston rods, see 

Figure 11 and Figure 12. The bearings are from the type of journal bearings. This type of bearing has a 

simple design without rolling elements. The bearing consists of two shells, with a diameter of 

approximately 300 mm. In the upper shell, there is a groove for the application of oil and the lower 

shell is solid for optimal support of the crankshaft. Due to the rotation of the shaft, an oil film is created, 

which eliminates the surface-to-surface contact between the bearing and the shell, this is called 

hydrodynamic lubrication.  

The lubrication oil is actively supplied to the engine by a gear pump. The oil is drawn in from the carter 

and passes the heat exchanger and oil filter before being pumped back into the engine. The oil first 

passes the camshaft towards the free end of the engine. From this point, oil is fed towards the main 

bearings, supplied in the groove on the top of the bearing. The end of the groove is a smooth run out 

that is designed to press oil in between the bearing shell and axis. For the oil supply towards the rod 

and pistons, a canal inside the crankshaft is present from the main bearing journals towards the rod 

bearing journals. (De Schelde, 2015) 

As mentioned, due to the crankshaft rotation, an oil film is created between the bearing and 

crankshaft. Oil is pulled along the surface of the shaft and slides in between the two surfaces. The 

thickness of this film depends, besides the oil properties on the angular speed, in Figure 13 this is 

schematically demonstrated. A higher velocity results in a thicker oil film. The crankshaft is slightly off 

centre compared to the bearing shell when facing a stationary force. In the diesel engine, the load is 

irregular due to the different cylinders' fire moment, which stand under an angle, while the principle 

stays the same, more vibrations will be present (Nikolic et al., 2012).  

 
Figure 11: Cross-section view MAN 28/33D V20 (V12 is 

built similar) (source: MAN) 

 
Figure 12: MAN 28/33D Zoomed in on crankshaft, pointing 

at  main bearings (source: MAN) 

Figure 13: Position of axis in bearing in static situation (based on: (Wittel et al., 2013)) 
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The friction of the crankshaft in the bearing is related to the rotational velocity, which the Stribeck 

curve could explain (Tinga, 2013), shown in Figure 14. On micro-level, material surfaces are not entirely 

smooth but are rough to a small extent. The minimal required height of the oil film to overcome these 

deviations is given by hmin. Low rotational velocity results in increased surface-to-surface contact, 

therefore the friction coefficient is high. This is a boundary lubrication condition. When there is 

sufficient oil, micro-level tops do not collide. The film thickness h is greater than hmin, there is 

hydrodynamic lubrication. In this stage, the friction coefficient is significantly lower, up to more than 

100 times (Wittel et al., 2013). In between, there is mixed lubrication in which only part of the tops 

collides. 

The oil that gets in between the crankshaft and bearing provides a normal force, which represents the 

counterforce supporting the crankshaft. The corresponding pressure pattern that is created is shown 

in Figure 15. The pressure is built up from the lubrication groove due to narrowing until the location 

where the highest pressure is. After this pressure zone, there often is a slight under pressure (Wittel 

et al., 2013). Any wear or damage will affect this pressure profile (Fillon & Bouyer, 2004).  

 

  

Figure 14: Schematic of Stribeck curve (Tinga, 2013) 

 

Figure 15: Lubrication oil pressure profile (based on: Wittel et al., 2013) 
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2.4. Failure mode and underlying mechanisms of journal bearings 
Before determining the condition of the main bearings, it is important to understand the degradation 

process and failures of the main bearings. The failure modes, the manner in which the component fails, 

have to do with the overload of the surface, leading to overheating. Which result in the engine shutting 

down due to its safety system. There are multiple failure mechanics, physical or chemical processes 

that could be the cause of the failure of a bearing (Tinga, 2013).  

Venci & Rac (2014) performed a field examination about failing diesel engine journal bearings. The four 

failure mechanisms that occurred the most in the 616 investigated cases are abrasive wear, adhesive 

wear, surface fatigue, and cavitation. Wear is a general term, which implies, the relative motion 

between elements with physical contact where movement yields a loss of material (Tinga, 2013). An 

overview of the four failure mechanisms leading to a failure is given in the Isikawa diagram (Figure 16). 

On the top of the branch, the failure mechanism is given with on the branch different causes of the 

failure mechanism. The maintenance engineers of the RNLN have found that abrasive wear and 

cavitation are the most important causes for defects, these are further explained in sections 2.4.1 and 

2.4.2. 

2.4.1. Abrasive wear 
Abrasive wear happens when there is surface-to-surface contact between the bearing and crankshaft. 

According to Tinga (2013), there are two requirements for abrasive wear, the difference in hardness 

and the harder material has a rough surface or when hard particles are present between the surfaces. 

The bearing has a softer material than the crankshaft, as these bearings are made out of a copper alloy. 

This design choice is made because replacing bearings is easier than replacing the crankshaft.  

As mentioned, abrasive wear occurs when there is surface-to-surface contact, this is prevented by the 

lubrication oil. A temporary oil film breakdown should be avoided to have the hydrodynamic 

lubrication. Proper filtering is necessary to avoid third components in the form of wear particles or 

contamination of the oil since these particles could cause the wear (Venci & Rac, 2014). 

Figure 16: Isikawa diagram of selection of possible failures for journal bearings (based on: Venci & Rac, 2014) 

Figure 17: Example of abrasive wear (Wittel et al., 2013) 
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2.4.2. Cavitation 
Cavitation is a phenomenon in which vapour bubbles form in the fluid which later implodes, causing 

shockwaves that stress the metal surface. This overload of force results in marks on the bearing surface 

and the dissolving of little metal parts. This increases the risk of breaking larger parts of metal, causing 

potential bearing failure. Figure 18 shows the result of extensive cavitation, in this image the created 

holes are clearly visible.  

Important for this research is to focus on what can cause vapour bubbles and why they implode 

afterwards. The vapour bubbles are formed when the static pressure in the oil locally becomes below 

the vapour pressure of the oil at a given temperature. When these bubbles encounter high pressure, 

because of the fluid flows, the bubbles condense instantly and implode, causing the high local pressure 

waves. Repeatedly implosion at the same location can lead to ‘cavitation erosion’ on the bearing 

surface (ISO, 2008). 

As shown in Figure 15, there was a slight negative pressure after the load zone. Other sources that 

influence the pressure are pulse pressures from the oil supply. The temperature has also an effect on 

the vapour pressure properties of the lubrication oil. The vapour pressure is temperature-dependent, 

with higher temperatures the vapour pressure drops, and more air bubbles can form. (Garner et al., 

1980). As an example, this temperature effect is also visible with the boiling point of water when having 

different air pressure, or even getting boiling water at room temperature in a vacuum. 

2.5. Conclusion RQ1 
What are the different failure modes and mechanisms of the main bearings in the diesel engine? 
 
The first research question was investigating the causes of failure for the main bearings. The different 

failure modes and mechanisms of the main bearings were analysed. This analysis showed that the 

failure mode of the main bearing is the overheating of the bearing surface that causes the safety 

system to shut down the engine. The common failure mechanisms that occur at the journal bearings 

were analysed based on literature and expert knowledge. From these analyses, abrasive wear and 

cavitation were marked as the most important failure mechanisms. Important to note is that these 

failure mechanisms do not occur during normal operations but are incidents that could happen during 

operations. With hydrodynamic lubrication, there is no direct surface-to-surface contact which 

eliminates the abrasive wear. The contamination of the oil should be avoided. Cavitation is also not a 

constant process that could be directly linked to operating hours.  

  

Figure 18: Example of cavitation (Wittel et al., 2013) 
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3. Proposed data-driven monitoring approach   
In this chapter, the focus is on explaining the approach of converting the data into a defect detection 

warning. This starts with analysing the available sensors and setting the definition of defect for this 

project. After that, the connection between the available data and the condition of the main bearings 

will be made based on literature. Finally, the approach that will be used for creating the data-driven 

defect detection model is demonstrated. The approach outlined in this chapter will be implemented in 

the following chapters. 

3.1. Available sensor measurements of main diesel engine  
On the main diesel engines, different sensors are already installed and logged that are available for 

analysis. These sensors are part of the engine control unit and are also connected to the integrated 

platform management system (IPMS). IPMS is used to monitor the current operating conditions of 

technical equipment onboard. The sensors are logged every 3 seconds before the system is updated 

to logging each second. There are hundreds of sensors logged in total, of which 60 are used to monitor 

each of the engines. Unfortunately, not all installed sensors from the motor management system are 

available due to the manufacturer's protection. This limits the number of sensors that could be used 

for analysis of the engine performance. 

Table 2: Sensor measurements overview 

Measurement Unit Range Location 

Bearing temperature °C 45-257 Against outside of the lower bearing shell 
Rotation crankshaft RPM 0-1160 On crankshaft 
Temperature of oil supply °C 45-69 Main feedline to engine  
Temperature of oil return °C 41-77 Main return line of engine 
Pressure of oil supply Bar 0-10 Supply to the engine after filter 
Temperature of cooling supply °C 40-78 Supply to engine 
Temperature of cooling return °C 40-88 Return of engine 
Fuel rack position [%] 0-100 Valve in main fuel line to engine 
Rotation turbocharger RPM 0-36116 On shaft turbine 

In Table 2, an overview of the different sensors that could be useful in this research is given with their 

observed range in the raw data and location of measuring. These sensors are selected in consultation 

with the maintenance engineers. The focus is on sensors that are related to the performance of the 

bearings and capturing the conditions in which the bearings operate. The positions of the sensors are 

schematically given in Figure 19. The seven bearings are all individually monitored, the thermocouples 

are placed against the bottom bearing shell, corresponding with the area that has the most load.  

  

Figure 19: Overview sensors main diesel engine with focus on bearings 
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The rotational engine speed and turbo rotational speed are two indications of the intensity of 

operations. This is because the function of the crankshaft is to convert the linear movement of the 

pistons into the rotational movement of the shaft. Depending on the torque that is delivered, the load 

on the bearings varies (Gomes et al., 2018). The maintenance engineer of the diesel engines declared 

that the forces related to the torsion in the crankshaft result in extra friction in the main bearings. The 

amount of friction is related to the temperature increase of the bearing (Wittel et al., 2013). 

On the other hand, there is the cooling effect from lubrication oil and conduction to the surroundings, 

which is cooled by the engine cooling water circuit. Measurements of these fluids are done centrally 

in the supply and return pipes, therefore actual temperatures or pressure at the bearings could be 

different. The measurements related to flow are related to the RPM because the pumps are driven by 

a gearbox connected to the crankshaft (De Schelde, 2015). 

3.2. Discretionary the condition of main bearings 
In this section, the used definition for the main bearing condition will be set. This helps with the 

understandability of the approach. In this thesis, three discrete stages (‘good’, ‘defect’ and ‘failed’) will 

be used. This distinction is often made in research (Arts, 2017). Further detailing in more stages is 

challenging because of the limited information available. This distinction is also approved by the 

engineers as a proper distinction for initial research. 

Good 

A bearing is defined as being in a good state if there are none to minor scratches or minor marks of 

cavitation. When a new bearing is mounted, the condition of the bearing is new, and therefore good, 

although some running in must be performed. The time of the running in is expected to be negligible 

compared to the expected lifetime. Bloch & Geitner (1997) stated that journal bearings would last in 

theory indefinitely with proper lubrication, correct design, and operating conditions.  

Defect 

The second stage is defect. Here the bearing is still functioning, but the wear limits are exceeded. There 

are scratches or cavitation marks from a certain depth, size or area are above the set limit. In an 

inspection, this would be the reason for preventive replacement. The development of defects are 

unpredictable, therefore the bearing likely to fail within a reasonable time  (Kumar et al., 2018).  

Failure 

Failure is a state in which the main bearings can no longer perform their intended function (Tinga, 

2013). The failure of a main bearing is self-announcing and revealed by the safety system on the 

engine. This system shuts down the engine when the threshold temperature of the main bearing 

(115°C) is reached.  This immediately shut down is performed to keep the follow-up damage limited. 

This temperature will be reached when there is an increased amount of friction. This could be because 

of particles that are broken off or insufficient lubrication.  

After failure, the engine is no longer available to run, maintenance is required before the engine is 

operational again.  During the time from failure until the repair, the entire vessel is not able to perform 

its operational task.  With the engine that is left, they can sail to a port where a maintenance crew 

must come onboard to perform the replacement.  
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3.3. Review of applications condition monitoring bearings  
In literature, the monitoring of (journal) bearings is often performed. Nabhan et al. (2015) and Kumar 

et al. (2018) reviewed fault detection techniques and categorized these as either: vibration, noise, 

temperature or wear debris monitoring.  

In this research, the focus is on investigating the possibilities of using the available IPMS data, as 

mentioned in section 1.2. In the IPMS data, only temperature measurements are available from the 

mentioned techniques mentioned by Nabhan et al. and Kumar et al.. Measurements such as vibrations 

and noise are not performed for the main bearings. Oil samples are taken and analysed periodically as 

mentioned in section 2.2, but will not be used as an input in the data-driven defect detection model. 

3.3.1. Literature review 
Multiple publications investigated the relationship between the condition of bearings and bearing 

temperature. The temperature has always been a key parameter to track for bearings to assess the 

condition, in the form of operational limits. Neale (2001) describes different operating limits based on 

temperature. These limits are based on a temperature rise of 10 °C above the normal operating 

temperature. The difference is seen as a more convenient indication of trouble than an absolute 

temperature value.  

Touret et al. (2018) reviewed studies that use the thermal approach in condition monitoring. The 

temperature approach is based on power losses which induce temperature increase of the system. In 

the found studies with ball bearings most often surface defects were found. They stated that with a 

proper setup, the defect could be detected several months before catastrophic failure. 

Fillon & Bouyer (2004) invested in a scientific lab experiment on the relation between wear and 

thermohydrodynamic performance of worn plain journal bearing. A 100 mm bearing was submitted to 

different static loads in a stationary situation. Minor defects, up to 20% of the bearing radial clearance, 

had little influence on the temperature, wear of 30-50% showed a significantly lower temperature, 

due to the tendency of the footprint. This research did not focus on the actual prediction of failures.  

In case studies on the drivetrain of wind turbines by Wilkinson et al. (2014) and Kenbeek et al. (2016) 

the temperature sensors were used to predict upcoming failures. Statistical methods were used to 

detect the temperature rise compared to normal circumstances. They both used models to 

compensate for the external factors that influence the measurements. Wilkinson et al. were able to 

predict failures between one month and two years ahead. In the research of Kenbeek et al. no statistics 

were given of the early detection. 

In the research to malfunc      f   j                y A       ć      . ( 0 8) f zzy       k            

for temperature and vibration sensors. Different membership functions for the used fuzzy network 

were created, where a higher temperature (>100°C) belongs to overheated. The method was tested 

                 . A       ć      .                                       f                   f     

condition of the bearing.   

A different method of using temperature data to perform defect detection is abnormality detection. 

In the work of Cheng et al. (2018) defective bearings of high-speed trains are detected using 

abnormality detection. The different identical components were compared and the defect bearings 

attained a higher temperature compared to the others. With this method, they were able to predict 

upcoming failures several days before the static operating limit was reached.  
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3.4. Proposed data-driven defect detection model  
In section 3.3, the possibility of monitoring bearings based on temperature effects has been mentioned 

in the literature discussed. An objective manner is necessary to detect when the bearings are defective. 

Ding et al. (2020) stated that behaviour is significantly different in several stages of degradation. Using 

fixed thresholds for temperature monitoring has its drawback since it is not able to handle the non-

stable operations of the engine. This non-stable operation significantly influences the bearing 

temperature, as shown in the data analyses, see Figure 30 of section 4.6. Therefore, the monitoring 

technique with an intermediate step has major potential as found in the research of Kenbeek et al. 

(2016) and  Wilkinson et al. (2014).  

The intermediate step is needed to take out the variability caused by the operating conditions. Chow 

& Willsky (1980) were one of the first to divide the monitoring process into a two-stage process. First, 

the residuals are generated, and second, the residuals are evaluated (Jardine et al., 2006). This 

procedure is integrated in Figure 20. The residuals are the temperature difference between the 

expected operating condition and the actual measured bearing temperature is the interesting attribute 

to monitor. 

Examples of implementation of this two-stage technique could be found in different studies, such as 

in the area of wind turbines, which are introduced in section 3.3. Similar to the case of the RNLN, 

condition monitoring is important due to the difficulty to reach locations and high costs of 

maintenance while having a low number of failures. The lesson that could be learned from Wilkinson 

et al. (2014) is that a physics-based model approach works the best compared to signal trending 

methods. Cambron et al. (2017) also used this model and explored the use of a different control chart 

method, namely exponential weighted moving average. With the advantage of detecting progressive 

variations within a process. 

In the research of Kenbeek et al. (2016) this two-stage method is used on several variables, namely: 

nacelle temperature, generator temperature and generator vibration readings. Environmental 

circumstances and conditional variables are taken into account in the linear regression model. In the 

implementation of the two-stage model, four different steps were taken: 

1) Determine a baseline period with normal operational behaviour. 

2) Create a regression model for the parameter of interest for the period of step 1. 

3) Determine adaptive thresholds based on the residuals of the regression model. 

4) Monitor the residuals of the regression model using the set adaptive thresholds.  

Based on the results of these studies, we found it promising to make use of a two-stage approach to 

create defect detection for the main bearings. Similar steps used in the research of Kenbeek et al. 

(2016) will also be used in this research. First, the data preparation is explained, after which a 

regression model is selected and learned to predict the bearing temperature. Finally, the generated 

residuals of the regression model are monitored to develop defect warnings.  

Figure 20: Flowchart of the proposed monitoring approach 
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3.5. Intermediate conclusions  

3.5.1. Conclusion RQ2 
What sensors are available to give insight into the condition of the main bearings? 

This research question investigated the available sensors which will be used to create a defect 

detection model. The available sensors are part of the IPMS. This system is not specifically for 

monitoring the bearings to perform maintenance decisions. But is used to monitor the process during 

operations of the different platforms on board. With respect to the main bearings, the temperature is 

individually measured on the bottom of the bearing shell. Besides the bearing temperature, different 

sensors give information about the operational setting of the engine. These sensors consist of 

measurements from crankshaft and turbo rotation, the oil circuit, cooling circuit and fuel position. 

Unfortunately, not all installed sensors are available due to the protection of the manufacturer. 

Concluding, there are sensors available for the project that provide information on the main bearings. 

3.5.2. Conclusion RQ3 
How could the available sensor measurements be related to the condition of the bearings? 

With the third research question, the link between the available data and the main bearing condition 

is made. Based on the reviewed publications, it can be concluded that there are different monitoring 

principles to determine the main bearing condition. From these principles only temperature 

monitoring is available in the situation of using IPMS data. Using fixed limits for warnings, such as in 

the safety system, is an indication of the condition but not as useful (Neale, 2001). The operational 

conditions must be taken into account since they significantly impact the bearing temperature 

(Kenbeek et al., 2016; Wilkinson et al., 2014). Therefore, the raise of bearing temperature compared 

to the normal operating temperature is seen as a sign of deterioration. By monitoring the temperature 

this way, defects can be found several days to months before actual failures as shown in applications 

build for wind turbines (Touret et al.,2018; Wilkinson et al., 2014).  
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4. Data preparation  
In this chapter, the data is prepared before it will later be used in the modelling in chapter 5 and 6. The 

data preparation is an important step of the CRISP-DM methodology to ensure reliable results of the 

model. In Figure 21 schematically, an overview is given of the steps that are made to convert the raw 

data to a usable dataset. 

4.1. Raw data 
Unique about this project is the amount of real data that is available for analysis. Although DvO is still 

working on optimizing the process of data acquisition, there is data available for this research. The 

available data is recorded over a period of six years in which the vessel has performed different tasks, 

including deployment. In some periods, the recording of data is stopped while the vessel was in a 

maintenance period. An impression of the data is given in Figure 22, due to confidentiality reasons, it 

is not possible to provide the complete timeline of data.  

Figure 22: Extract from raw data Port side engine for 20 hours 

Figure 21: Schematic overview of data preparation process 
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The data of the two engines (port side and starboard side) come in separate monthly files and is 

collected non-stop with a sample range of 1/3 Hz, and 1 Hz after an update of the monitoring system. 

Combining these files results in over ten thousand operating hours of the engines combined. Each 

sensor is represented as a single column in these datasets. In this report, three data parts will be used 

which do not cover the entire lifetime of components. Two parts will have a failure in the end and are 

respectively 1625 and 3150 operating hours long. The third data path of 2050 operating hours does 

not have a failure and is added for validation of observing no changes. 

4.2. Determine operating hours  
The feature that must be added to the data is a record of operating hours. Operating hours are 

important to add to the data because the engine is used irregularly and degradation is linked to 

operations. Normally, the operating hours are irregularly logged by hand. This makes it important to 

mine operating hours from the dataset. 

The engine's rotational speed is a simple indication that the engine is operational for the mining of 

operating hours. Therefore, the data records with a rotational speed above 400 RPM, the minimum 

RPM, could be seen as moments in which the engine is operating. Based on the sampling rate the 

elapsed time could be determined. This sample rate is increased from 1/3Hz to 1Hz in 2019, which is 

taken into account in the data mining.  

This method has compared to the manually register operating hours a difference of 12.5%, in which 

there were fewer hours mined as logged. This difference is expected to have come from mistakes in 

the automatic recording of the sensor readings. Also, the start-up procedure of the engine and having 

the engine in stand-by could influence the operating hours. From this point on, the mined operating 

hours are used. 

4.3. Outlier detection 
Data quality is important for the performance of the regression model therefore, the raw data will be 

checked for outliers and missing values. Outliers are seen as data points that differ significantly from 

other data points. In the available data for this project, no outliers are found in the used raw data. The 

original dataset has readings from a temperature sensor in the return of cooling water, containing 

missing values. Based on an initial model fit, in which the period of missing values was excluded, this 

attribute has been found insignificant. Therefore, no measures are taken for these missing values. 

4.4. Filtering out transient behaviour  
The operating conditions of the engine are not constant and the engine is not always operational. 

Different activities lead to change in the use of the engine, for example, due to a man overboard drill. 

The influence of changing operational circumstances is shown in Figure 23. Here is visible that the 

bearing temperature depends on the RPM of the crankshaft but is disrupted when changing RPM. The 

bearing temperature needs time to become stable at the new setting. The process of going to that 

other stable point is called transient behaviour. For the analysis, this transient behaviour should be 

filtered out to remove bias from the physical relation. After filtering, steady operations will remain, 

which has a constant mean and constant variance (Dalheim & Steen, 2020). This means that warming 

up and cooling down behaviour after a change of rotation speed does not influence the found relation 

between these attributes.  
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Dalheim & Steen (2020) describe a technique based on local linear trend regression to find stable 

points. For a moving window, the simple linear regression is established with the theory that an 

insignificant slope indicates stable behaviour. Unfortunately, this method is too computational-

intensive to implement in this initial study. Therefore, an alternative manner will be used based on the 

observed variation in the moving window.  

When the process is stable, the variation in the data will be limited as it is constant. Therefore, by 

looking at the different sensors’ rolling variation, it could be determined whether the process is stable 

or not. This rolling variation 𝑠𝑎,𝑡
2  for attribute a part of the set of attributes A for moment t of the entire 

timeline T could be determined for a window length of w observations as follows: 

 
𝑠𝑎,𝑡

2 =
∑ (𝑥𝑖 − 𝑥̅)𝑡+𝑤

𝑖=𝑡

𝑤 − 1
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 Formula 1 

This could be performed for the different bearing temperatures and the rotation of the crankshaft. To 

find the stable periods there must be set a limit ℒ𝑎 to the observed variation. Time moments will only 

be marked stable if all attributes 𝐴 meet the following criteria: 

 𝑠𝑎,𝑡
2 < ℒ𝑎 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 Formula 2 

Besides the marking of stable data also the engine must be operating. An engine that is off, will have 

stable readings but will not provide insights into the condition of the bearings. Therefore, the last 

condition that must be met to detect operational stable data points is that the engine's RPM must be 

greater than 400. This represents the minimal RPM of the engine when running stationary. 

In this project, we used a moving window (w) of one minute and attributes as mentioned in Table 3. 

These parameters are selected based on analysing the data and observing the corresponding natural 

variation in the sensor readings. Applying the three formulas with the selected parameters the amount 

of data is reduced by 82.6%. As shown in Figure 24 this technique with these settings is capable of 

filtering out the points in which the bearing temperature is constant. 

 

 𝑥𝑅𝑃𝑀,𝑡 > 𝑅𝑃𝑀𝑚𝑖𝑛 = 400 Formula 3 

Figure 23: Transient behaviour of bearing 3 
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Table 3: Used attributes to determine stable operations 

Attribute Limit (ℒ𝑎) 

Temperature bearing 1 0.1 
Temperature bearing 2 0.1 
Temperature bearing 3 0.1 
Temperature bearing 4 0.1 
Temperature bearing 5 0.1 
Temperature bearing 6 0.1 
Temperature bearing 7 0.1 

Rotation crankshaft 5 

 

4.5. Data aggregation 
The filtered data is still of high dimension, it contains thousands of hours of data sampled with a high 

frequency. The sample rate of 1/3 Hz and 1Hz is compared to the degradation build up in hundreds of 

hours. Also, the detection should not be in several seconds before a failure but earlier in hundreds of 

hours. To make it computationally efficient to handle the amount of data, a single data record per 

operating hour will be created. This results in a sufficient amount of data to see a possible trend 

evolving. 

Taking the average over the stable sensor reading of one hour will lead to bias in the analyses. Within 

one hour there could be multiple stable periods present. When there is no linear pattern, as could be 

observed in Figure 23 between the crankshaft rotation and bearing temperature rotation, this results 

in abnormalities. This is schematically shown in Figure 25, in this example, the average will have a 

positive difference compared to the actual relation. To overcome this problem, only the first 10 

minutes will be used. This takes out the change of having multiple stable periods.  

In the next step, the autocorrelation should be taken into account. In the later used models, the data 

should be identical individual distributed, therefore correlated observations should be removed, as 

later explained in section 5.2. Having a constant operation of the engine results in correlated readings 

and therefore correlated residuals of the regression model. The research of Kenbeek et al. (2016) 

focused on defect predictions for wind turbines and took a single sample every four hours instead of 

Figure 24: Example of performing filtering on stable data (green points are marked as stable) 

Figure 25: Example of error introduced when taking the average 
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every four minutes to reduce autocorrelation. However, using a larger fixed interval in the observations 

does not make sense in the application of the main diesel engine. The duration of a similar operating 

mode varies depending on the vessels task, for instance, ocean crossing or training on the North Sea. 

Therefore, it is decided to sample observations that have at least a certain difference in RPM from the 

last observation, represented by the limit ℒ𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, based on the following rule:  

 |𝑥𝑅𝑃𝑀𝑡−1
−  𝑥𝑅𝑃𝑀𝑡

| >  ℒautocorrelation  Formula 4 

With setting the minimal required difference on 50 RPM, roughly 40% of the data remains, which is 

selected to cover the natural variation and minor adjustments to the vessels speed. The result of this 

is shown in Figure 26 and Figure 27. These plots are generated later in the modelling stage but are 

presented to show the effectiveness of this measure. From the first lag, there is a drop visible in the 

autocorrelation for most bearings under 0.2. Still, there is some autocorrelation left. The possible cause 

is minor maintenance, as later explained in section 6.3. If the earlier mentioned uniform time interval 

is used to sampling records, only 8.5% of the data would have remained with similar autocorrelation 

results.  

4.6. Result of data preparation: clean data 
The data preparation step started with raw data that was recorded from the IPMS system. By taking 

different steps, a dataset is created that could be used to monitor the main bearings. Transient 

behaviour is removed from the data, which could influence the quality of detection later. The 

remaining data is made compact by aggregating it to a single datapoint per operating hours based on 

the average of the first ten minutes, making it computational possible to handle. Also, the 

autocorrelation in the data is limited. Due to removing several data points to limit the autocorrelation, 

uneven intervals are created; therefore, there will be referred to as observations from now on. In Table 

4, an overview of the three different relevant data parts is given. These data parts are selected from 

the entire data set to show the functionality of the monitoring approach. However, this is not the 

entire record of the full lifetime because of data confidentially.  

Table 4: Relevant data parts that are used 

Case Begin End Shown operating hours Observations 

I Good Failure 1625 889 
II Good Failure 3150 1306 
III Good Good 2050 1102 

 

  

 
Figure 26: Autocorrelation before removing points 

 
Figure 27: Autocorrelation after removing points 
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Data exploration 

With this cleaned dataset, data analysis could be performed to understand better the data used in the 

defect detection model. The bearing temperature of the entire dataset is shown in Figure 28. In these 

boxplots, it is visible that the bearing temperature has a range in which it is operational. The bearing 

temperature across the seven bearings is unequal. Bearings located in the middle have a higher 

temperature compared to the outer bearings. Causes for this could be the heat radiation to the 

surroundings and the higher torsion in the crankshaft by the main bearings located in the middle 

(Gomes et al., 2018).  

 

In the raw data plot in Figure 22 is already visible that the different attributes are correlated to each 

other. The correlation matrix of the different sensors is shown in Figure 29, in which the high 

correlation is visible. That the different sensors are correlated does not directly mean they are 

causation. It is therefore important to analyse the cause of the correlation. As discussed in section 2.3, 

the leading factor for the bearing temperature is the rotational velocity of the crankshaft, which causes 

friction that is converted into heat.  

 

 

  

Figure 29: Correlation matrix of the explanatory variables 

Figure 28: Boxplot of bearing temperature 
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To show the correlation between the rotation of the crankshaft and bearing temperature, both 

attributes are plotted in Figure 30 for the different bearings. From these graphs, it is visible that there 

is a positive relationship between the two variables, although the pattern is different between the 

multiple bearings. This physical relation is different in the two showed cases, see the two drawn lines. 

This is because different bearing types were installed, which causes different physical relations. 

The initial data exploration of the lubrication oil system is shown in Figure 31. The lubrication oil 

pressure is generated by the gear pump that is connected to the crankshaft. In the monitored data, 

the gear pump is replaced by another type of pump, therefore the pressure distribution is disrupted.  

The temperature input towards the engine is regulated around 61 °C, the return temperature shows 

more variation. As can be seen in the last histogram based on the temperature difference of supply 

and return, the temperature increases in the engine between 2.5°C and 12.5°C. It is worth mentioning 

that this temperature delta is not only generated by the friction in the bearings because the oil is used 

to cool and lubricate also the other parts of the engine.  

Figure 30: Scatterplots of RPM against bearing temperature of case I (orange) and case II (grey) 

Figure 31: Descriptive plots lubrication oil 
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5. Modelling I – Residuals generation 
In section 3.4, the monitoring approach is introduced containing out two steps, residual generation and 

residual evaluation. In this chapter, the residual generation is discussed and the evaluation is in chapter 

6. A regression model will be developed to predict normal bearing operating temperature. The residuals 

of this model are the observations that are removed from their operational circumstances. The used 

modelling procedure is schematically shown in Figure 32. The chapter goes step by step through the 

development of the model, from selecting the regression model, explaining the principles, 

implementing and analysing the results.  

5.1. Selection of regression model 
Various regression models could be used to determine the expected temperature. The general form 

of a regression model is 𝑦̂𝑖  =  𝑓(𝑋𝑖). In which 𝑋𝑖 = (𝑥1,𝑖, 𝑥2,𝑖, … , 𝑥𝑘,𝑖) are the explanatory variables 

with target value 𝑦̂𝑖  (bearing temperature) for observation i. This model should capture the physical 

relation between the explanatory variables and the target value. The residuals, calculated based on 

the observed value (𝑦𝑖) subtracted with the predicted value ( 𝑟𝑖  =  𝑦𝑖 − 𝑦̂𝑖), which is defined by Chen 

& Patton (2012) as a ‘fault indicator or an accentuating signal which reflects the faulty situation of the 

monitored system.’ This residual will be used as an observation of the bearing condition. By monitoring 

this residual, the effect of different operating conditions is taken out of the data. Degradation is 

expected to influence the physical relation and therefore the residuals.  

Design criteria regression model 

Different types of regression models could be used for modelling the physical relation. The model 

should satisfy different factors to ensure the usefulness of the defect detection model for the RNLN. 

The RNLN, and especially the maintenance engineers that will be making use of the data in the future, 

are not familiar with artificial intelligence, therefore an understandable technique is preferable. 

Implementing domain knowledge of the actual situation and physical relations will further increase the 

trust in the model. Every engine behaves slightly different, as seen in section 4.6, therefore it should 

be ‘easy’ to transform the used method to another engine (generalization). For the model IPMS data 

is available, this consists of numerical values, the models should be able to handle this type of data.  

These different qualitative criteria are taken into account in a multi-criteria analyse, see Table 5. The 

scores one, two and three correspond to good, moderate and bad, respectively. These scores are given 

based on experience with these models, theory (Friedman et al., 2001; Grossmann & Rinderle-Ma, 

2015) and the outcome is validated with expert knowledge within the RNLN. Not all criteria are equally 

important, therefore a weight factor is used. The model with the lowest score is a usable model for 

this project. This method does not necessarily select the optimal model in terms of performance. To 

find an optimal model for performance, quantitative tests should be performed on the quality of the 

models in this situation. 

  

Figure 32: Schematic overview of modelling process and data handling 

           
           

      
    

T          
     

           
     

T                    

T        

T         



27 
 

Table 5: Regression model selection, good 1, moderate 2 and bad 3 points. Analysed models: Multiple linear regression 
(MLR), artificial Neural Network (aNN), Random Forest Regression (RFR) and k-Nearest Neighbor (k-NN) 

Criteria Weight MLR aNN RFR k-NN 

Understandable 2 1 3 2 2 

Domain knowledge 1 1 2 3 3 

Usable with available data 2 2 1 1 2 

Implementation (generalization) 1 2 2 3 3 

Score  9 12 11 14 

Explanation made choices 
Out of the selection method the multiple linear regression (MLR) model is chosen as most useful. This 

model is due to the understandability of the method and knowledge that could be implemented in the 

model. The artificial neural network (aNN) is often seen as a black-box operation, which is why this 

technique scores poorly on understandability. It is capable of fitting a non-linear function but also has 

the danger of overfitting the data. The random forest regression (RFR) fits the data without a clear 

physical relation as a foundation, which makes it less understandable. A k-Nearest Neighbor (k-NN) 

regression model focuses on the similar points that are located around the new observation, this 

makes that all the training data must be stored, which could be data intensive.  

5.2. Theory multiple linear regression 
In multiple linear regression, multiple attributes (explanatory variables) are used to estimate a target 

value 𝑦̂𝑖. The standard form of this MLR is given in Formula 5. In this formula, 𝛽1 is the intercept of the 

model and 𝛽𝑎 is the coefficient for attribute a, denoting the increase of 𝑦̂𝑖  if 𝑥𝑎,𝑖 increased by one and 

the other attributes are staying constant. Transformations of the attributes give options to add data 

that is by itself not linear related to the target value. Common transformations are, for example, log 

or square attributes. Fitting the model will be performed based on minimising ordinary least squares 

(OLS) over the entire observation set N, see Formula 6. In this approach, the coefficients are selected 

which minimise the sum of squares.  

 
𝑦̂𝑖 = 𝛽1 + 𝛽2𝑥2,i + 𝛽3𝑥3,i + ⋯ + 𝛽𝑘𝑥𝑘,𝑖 Formula 5 

 
argmin

𝛽
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1
  Formula 6 

Mathematical assumptions 

Hendry & Nielsen (2007) state the following assumptions for generating an MLR model: 

1) Independence between pairs of observations and outcome (𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)  

The data is collected in real-time and the use of the engine could be for constant several hours. 

Therefore, it is likely that the observations of different sequential operations are similar. To reduce 

this problem data is subsampled to get rid of the constant operations, this is discussed in the data 

preparation see section 4.5. 

2) Identical conditional normal distributed (𝑦𝑖|𝑋𝑖) ~𝑁(𝛽1 + 𝛽2𝑥2,𝑖 + ⋯ + 𝛽𝑘𝑥𝑘,𝑖,  𝜎2) 

The model requires that the different pairs of observations are identical conditional normal distributed 
with the target variable. Therefore, the outcome of the model is expected to be randomly distributed, 
which will be later checked in section 5.5. The different bearings that will be analysed are similar but 
not identical to each other. In Figure 30, it is visible that each bearing is differently correlated with the 
RPM and that there is also a difference visible between the two presented cases. Differences between 
the different cases are based on bearing type, position causing different forces and rotational direction 
of the engine (different between portside and starboard side). Therefore, models should be 
individually learned for the different configurations of engines and bearing positions.  
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3) Exogeneity of the conditioning variables 𝑋𝑖, non-correlation between the exogenous 

variables.  

This assumption goes into the independence of the different attributes. For the collected data of the 

main diesel engine, this assumption is violated. As shown in Figure 29, there is a correlation between 

the different attributes, which is logical in this kind of system which works in harmony. Having 

attributes that are correlated among each other does not mean the model could not get a good fit on 

the data (Kutner et al., 2004). In this research, the goal is to obtain precise estimates to capture the 

physical relation, therefore understanding the role of each independent attribute is less important. 

The ceteris paribus assumption, in which the coefficients 𝛽𝑘  show the increase of 𝑦
𝑖
 if 𝑥𝑘,𝑖 increases 

by one, does not hold with the correlated data (Kutner et al., 2004).  

4) Parameter space 𝛽, 𝜎2 𝜖 ℝ ×  ℝ+ 

The coefficients of the model should be real numbers with a standard deviation that is non-negative. 

This assumption is part of the formal description of the statistical model. If this assumption does not 

hold, there is no realistic multiple linear regression model.  

5.3. Building regression model approach 
For building MLR models there are different tactics to use. Because of the degree of dimensions, it is 

not recommended to train each different configuration. Other tactics are using forward- or backwards-

stepwise selection of attributes. Hereby in each modelling step, one attribute is either added or 

removed until a sub-optimal model is found. In this case, forward stepwise selection will be used to be 

able to start with a model as simple as possible. The model generation will further explain this 

procedure in section 5.4 (Friedman et al., 2001).  

The performance measure that will be used to determine the performance objectively is the root mean 

squared error (RMSE). This measure is chosen because it gives higher weights to large errors because 

of the squared term. Besides the performance measure, the determined coefficients will be checked 

for a logical sign, and the residuals plots will be examined to check if there is any pattern visible that 

indicates higher-order relation. If necessary, a linear transformation will be performed. 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

𝑁
 Formula 7 

The attributes that will be used in the model should first be standardised. Standardised attributes make 

it in the end easier to compare the different attributes because their ranges variate heavily. Bearing 

temperatures ranges are between 45°C and 257°C while the turbocharger goes up to 36116 RPM. 

Therefore, the corresponding coefficients are not comparable. The attributes are standardised before 

implementing in the model, this is done based on 𝑥 =
𝑥−𝑥̅

𝑠
, in which 𝑥̅ is the sample mean and 𝑠 the 

sample standard deviation. This standardization comes into place when looking at the different 

attributes. 

Data usage 

Not all data will be used to learn the model, as shown in Figure 32. Because the model must capture 

the physical relation to a good condition of the bearing, only the in-control period is used to build the 

model. The in-control period is determined in consultation with the mechanical engineers based on oil 

analysis and an initial model with all the data. This in-control data of case I will be randomly split into 

two parts, 70% for training and 30 % for testing, 384 and 168 observations, respectively. The test set 

will check how the model behaves with unseen data and could indicate when the model is overfitting 

the data.  
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5.4. Model generation  
In this section, the actual model building is performed, of which in section 5.1 and 5.2 the theory 

behind is explained. For the model making the package Statsmodels version 0.12.2 will be used in 

Python. This gives the options to directly check different aspects of the model such as the sign and 

significance of the different coefficients.  

Separate models with the same formula will be learned for each bearing because, as can be seen in 

Figure 30, the bearings behave differently, which is also expected for the other attributes. For example, 

the pressure oil supply could, due to pressure loss, have a different effect on the first bearing compared 

to the last. In this section, there is made use of data from Case I and graphs will be given only for 

bearing 3, this bearing is one of the bearings with the most forces. In Appendix I, detailed information 

is also given for the other cases to show their similar results.  

In each step of the model, different attributes are added to improve the average RMSE. The attributes 

that are used are explained in Table 2 of section 3.1. The bearing temperature of other bearings is 

excluded to ensure that correlated degradation is observed. The sequence of adding attributes is 

determined based on forward-stepwise selection. In each step, the attribute that has the most 

reduction in RMSE will be selected. In Table 6 the development of the different models is given based 

on the RMSE. These results are plotted in Figure 33, including the minimum and maximum over the 

seven different models.  

Table 6: Model building, the performance measure is average RMSE 

Model 
step 

Attribute to add Attributes 
RMSE 

Training 
RMSE 
Test 

Accepted? 

1 Basic model – rotation crankshaft 1 0.919 0.812 Yes 
2 Temperature of oil return 2 0.427 0.413 Yes 
3 Rotation turbocharger 3 0.268 0.262 Yes 

4a Fuel position 4 0.257 0.252 No 
4b Temperature of oil supply 4 0.257 0.251 No 
4c Pressure of oil supply 4 0.263 0.257 No 
4d Temperature of cooling supply 4 0.257 0.254 No 
4e Temperature of cooling return 4 0.268 0.261 No 

 

5.4.1. Model step 1 - rotation crankshaft 
As a starting point, a model is made based on only the rotation of the crankshaft. This is seen as the 

dominant factor that drives the bearing temperature because RPM is directly linked to the operational 

setting of the engine. Other systems, such as oil pump and cooling water pumps, are connected to the 

Figure 33: Model development of stepwise adding attributes 
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crankshaft by the gearbox, as discussed in chapter 2, which influence the operational situation of the 

bearing. From Figure 30 in section 4.6, it is visible that there is no linear pattern between the RPM and 

temperature but more a second-order relation. The need for a quadratic term is also visible in the 

residuals analysis, which can be seen in Appendix IV. This results in the following formulation of the 

first model in which 𝑦̂𝑏,𝑖  is the predicted bearing temperature of bearing 𝑏: 

 𝑦̂𝑏,𝑖 = 𝛽1,𝑏 + 𝛽2,𝑏 ∗ 𝑥𝑅𝑃𝑀,𝑖 + 𝛽3,𝑏 ∗ 𝑥𝑅𝑃𝑀,𝑖
2 , 𝑏 ∈ {1, . . ,7} Formula 8 

5.4.2. Model step 2 - Temperature of oil return 
The first attribute that is added is the return oil temperature of the engine. The function of the 

lubrication oil is to lubricate and cool the bearings and therefore, an important attribute when 

analysing the bearing temperature. Based on the first law of thermodynamics, the link could be made 

between the bearing temperature and the added oil temperature. The inlet temperature of oil gives a 

smaller improvement, this is expected because the inlet temperature is controlled to a fixed value. 

Over the major range of the data, there is non-linear behaviour visible between the bearing 

temperature and the return temperature of the lubrication oil, see Figure 34. 

 
Figure 34: Temperature bearing 3 against lubrication oil temperature return 

5.4.3. Model step 3 - Rotation turbocharger 
As a second attribute, the rotation of the turbocharger will be added to the model. The turbo is a good 

indication of the intensity of the engine. Based on the amount of air input to the engine, the fuel is 

controlled, which is turned into the power delivered by the engine. In the scatterplot, as shown in 

Figure 35, it is visible that there is a non-linear pattern between the temperature and RPM of the 

turbocharger. Also, in the analysis of the residuals set out against the explanatory variables, there is a 

pattern visible. Therefore, also for the RPM of the turbocharger, a second-order transformation is 

added. 

Figure 35: Temperature bearing 3 against RPM of the turbocharger 
 

5.4.4. Model step 4 - Other elements 
The other elements, the cooling system, fuel position and oil pressure measurement, do not show any 
substantial improvements in the RMSE and the number of insignificant coefficients increases. 
Therefore no additional elements are added to the model, this will only result in more bias. The 
different attributes are, as we saw in Section 5.2, also correlated with each other.  
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From a mechanical point of view, there are arguments why these attributes do not contribute. The 
cooling system causes more indirect cooling compared to the lubrication oil that is actively applied. 
The oil pressure sensor has a high correlation with RPM because the crankshaft powers the oil pump. 
Which variates over time is the resistance through the oil filter, which causes a pressure drop in the oil 
supply. This pressure drop did give a small improvement of the RMSE but bit big enough to add to the 
model.  
 

5.4.5. Final model 
Based on the stepwise adding of attributes, the following formula is formulated: 

𝑦̂𝑏,𝑖 = 𝛽1,𝑏 + 𝛽2,𝑏 ∗ 𝑥𝑅𝑃𝑀,𝑖 + 𝛽3,𝑏 ∗ 𝑥𝑅𝑃𝑀,𝑖
2 + 𝛽4,𝑏 ∗ 𝑥𝑂𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛,𝑖 + 𝛽5,𝑏 ∗ 𝑥𝑅𝑃𝑀𝑇𝐶,𝑖 + 𝛽6,𝑏 ∗ 𝑥𝑅𝑃𝑀𝑇𝐶 ,𝑖

2 , 

𝑏 ∈ {1, . . ,7} 
Formula 9 

For this formula, the coefficients are given in Table 7. In this Table, it is visible that the models have 

different coefficients. The corresponding p-values are all below the 0.05 margin, see appendix II. Some 

coefficients for the RPM and RPM TC are not positive, meaning an increase will lead to a lower bearing 

temperature, but these are part of the transformed attributes and present twice in the model. The 

sum of both standardized coefficients should be analysed to determine the positive or negative 

relation compared to the target value. However, we should be careful with these analysis because of 

the multi correlation between the attributes, as discussed by assumption 3 of the MLR model.  

There is one coefficient set to zero because this one showed not to be significantly different to zero. 

In the parameters, we also see the symmetry come back of the system, which is also seen in Figure 28. 

If we look, for example, at the intercept, the outer bearings have a lower intercept compared to the 

more inner bearings. This comes to the forces that are different per position. Similar patterns are 

visible in the other attributes. When performing this stepwise selection of attributes for the other two 

cases, the same attributes were selected, see appendix I, but their coefficients were different. 

Therefore, it is concluded that only the coefficients should be learned per case. 

Table 7: Fitted coefficients of the regression model for the different bearings 

Final model Intercept RPM RPM2  
Temp. oil 

out 
RPM TC RPM TC2 

B 𝛽1,𝑏 𝛽2,𝑏 𝛽3,𝑏 𝛽4,𝑏 𝛽5,𝑏 𝛽6,𝑏 

Bearing 1 81.893 4.930 -0.018 2.166 -0.139 0.517 
Bearing 2 84.308 5.051 0.535 2.957 2.315 1.027 
Bearing 3 86.197 5.192 0.294 3.081 2.940 1.531 
Bearing 4 87.571 7.716 0.820 2.397 0.000 0.076 
Bearing 5 84.169 5.265 0.460 2.663 1.703 0.902 
Bearing 6 84.423 4.848 0.349 2.887 1.749 1.002 
Bearing 7 81.706 4.651 -0.003 2.408 -0.318 0.450 

 

5.5. Regression model verification  
In this section, the residuals of the final model will be explored to obtain relations and verify the results. 

To get a first impression of the temperature estimations, in Figure 36 the outcomes of the model are 

plotted in combination with the real data. In here, all hourly data points are included to give a complete 

image. As mentioned in section 4.5, only the first data point of a sequence of similar data points is 

included in the data used for monitoring. The points that are included in the model are marked with 

the red colour, the grey points are only for display purposes.  
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Based on Figure 36, we can see that the model is performing quite well. The residuals, difference 

between the observation and estimation must be further explored to see if the made assumptions 

hold. Based on assumption two from section 5.2 the residuals are expected to be white noise and 

normally distributed, which means that there is no correlation left in the residuals and that the model 

besides the unexplainable part captures all behaviour. This will be verified by making use of 

histograms, scatterplots, and autocorrelation graphs. In this section, the plots for bearing 3 are shown, 

the graphs for the other bearings are in appendix III. 

 

Figure 36: Estimated temperature compared with the observed temperature of bearing 3 

Residuals distribution 

First, we have a look at the distribution of the residuals of bearing 3 in Figure 37. Based on this graph, 

it is visible that the residuals seem to follow a normal distribution. The mean is centered around zero 

and the number of outliers from the model is limited. The cause of these outliers has to do with the 

data preparation, still, three data points contain the average of two stable operations. The sampling 

of data should be further improved in follow-up studies with investigating the generation of one data 

record per stable measurement period. 

 
Figure 37: Histogram residuals distribution for bearing 3 

Explorational variables 

The spread of residuals set out against the explorational variables patterns could become visible, which 

would indicate some uncovered relation. In Figure 38, we see the residuals of bearing 3 plotted against 

the standardized explorational variables, similar graphs of the other bearings are given in Appendix III. 

In these plots, there does not seem to be a clear pattern. This indicates that there is no further 

uncaptured relation to the attributes that are added. Therefore, we can assume that there is likely no 

unobserved pattern and the residuals are distributed as white noise. In Appendix IV these same plots 

are given for the model where the 𝑥𝑅𝑃𝑀
2  and 𝑥𝑅𝑃𝑀𝑇𝐶

2  terms are not included. This shows the importance 

of performing the quadratic transformation.  
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Figure 38: Residuals compared to exploration variable RPM (not standardized) of test data 

Autocorrelation  

At last, the correlation with respect to time is checked. The data that we have used is from a period in 

which the condition of the bearings was good. The correlation within the residuals of the used data 

should be limited. In Figure 39 the autocorrelation plot is given for the residuals of bearing 3, for the 

other bearings see Appendix III. From this graph, we can conclude that there is still some correlation 

between the residuals with respect to time. This indicates that there is an unobserved component of 

the physical relation, this is expected to come from minor maintenance tasks to the engine, which will 

be further analysed in section 6.3. The used filter, as explained in section 4.5, has ensured that the 

correlation has remained limited.  

 
Figure 39: Autocorrelation analysis bearing 3 

5.6. The result after the regression model 
In this chapter, the regression model for the residual generation is explained. Based on qualitative 

criteria, it is concluded that an MLR model is useful. This model has understandable behaviour and 

domain knowledge could be used. The model is built using forward steps, ending with three different 

attributes: rotation crankshaft, the temperature of oil return, and rotation turbocharger. With these 

attributes, the MLR is able to predict with an RMSE of 0.268 °C on the training set and 0.262 °C  on the 

test set. Adding more attributes did not result in a significant decrease in RMSE and is therefore not 

performed. This building is also performed on the other cases, in which the same attributes were 

selected, but the coefficients were different. With the MLR model, it is possible to compensate for the 

physical relation making use of the three attributes. The residuals are, therefore, free of their 

contextual anomalies. These residuals will be used in the next chapter to determine when the bearings 

are defect.  
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6. Modelling II – Residual evaluation 
In the previous chapter, the residual generation is explained. This provides an attribute related to the 

bearing temperature that is removed from its contextual anomalies. In this chapter, the focus is on the 

residual evaluation, to obtain information in relation to the condition of the bearings. This information 

will be in the form of a warning. Which later could be used as input in the maintenance decision process.  

As the first step, the generated residuals are plotted over a timeline in Figure 40. This graph shows 

case I, containing out the last 1625 hours before a failure. In this plot, there is some variation visible 

over the first 1000 hours. From hour 1200 on, there is an increase towards the end of the shown 

timeline. This is the first indication that defect detection could be made based on the temperature 

measurements. The control chart will be used to statistically determine when the process is out of 

control, which is expected to indicate the bearing's defect. Defect bearings stand for themselves for 

upcoming failures.  

In this chapter, we will first go into what a control chart is and the selection of a type of control chart 

to use. After this general theory, we will go into how the control charts are constructed for the 

bearings. After that, three different cases will be worked out and analysed to see the working of this 

method. Further analysis of the signal and trend will be performed to get insights into the defect 

detection.  

6.1. Theory control chart 
To find statistical changes in the residuals, the technique of control charts is used. This method is a 

statistical process control tool (SPC) and first introduced by Shewart back in 1924. It was designed to 

monitor the quality of produced goods. In normal circumstances, a certain natural amount of variation 

will be present in the process, but if this changes, it would come out of this normal behaviour and 

marked as out-of-control, which means that something happened and that the process is disturbed. 

Degradation could be one of the sources of variation in the process (Mehrafrooz & Noorossana, 2011). 

A standard control chart consists of a few important elements, an example is given in Figure 41. There 

is a central line corresponding to the mean of the process and an upper and lower limit which is 3𝜎 

from the central line. The points represent observations, which should fall within the control limits 

with a 99.9% probability if the process is stable. This is the first phase in which the process is in-control 

and corresponds to having a bearing of which the condition is good. The 𝐴𝑅𝐿0 is the average run length 

before an observation will exceed the control limits given that the process is still in control, 

corresponding to a false warning.  

Figure 40: Residuals plotted over time of case I 
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When points fall outside the limits, the process mean has likely shifted and the system is found in 

phase two, out of control. The cause of this difference in behaviour is expected to be from a defective 

bearing but could be caused by different factors that influence the physical behaviour. For the out-

control phase, the 𝐴𝑅𝐿1 gives the average running length until the control chart observes this change. 

Ideally, the system has an early detection (small 𝐴𝑅𝐿1) and a low amount of false detection (high 

𝐴𝑅𝐿0). 

A rule for signals is having an observation outside the control limits. Besides that, there are other rules 

to detect not-random patterns. Statistically, these rules are set to detect activities that are unlikely to 

occur when the process is randomly distributed. Increasing the number of rules, however, make the 

control chart more sensitive. An example of such a decision rule suggested in the Western Electric 

Handbook (1956) is eight consecutive points located on one side of the centre line.  

 

Different kind of control charts 

As mentioned in the book Introduction to statistical process control by Qiu (2013), there are three 

traditional used SPC charts, see Table 8. All the control charts are based on the theory of Shewhart, 

but all with their strengths. The CUSUM (cumulative sum) is a version in which the data points are 

cumulatively summed to find the change point in which the process is out of control. They are useful 

when it takes a sufficient amount of time for trends to grow because it takes all observed data into 

account. The EWMA (Exponentially weighted moving average) developed by Roberts (1959) has similar 

capabilities but is easier to implement. In the EWMA chart and exponentially weighted moving average 

is taken over the past points, another advantage of taking the average is that it works as a high-

frequency filter. 

 
Table 8: Advantages of different kind of control charts (Bucchianico, 2021) 

Method Advantages 

Shewhart Easy to implement, good at detecting large changes 

CUSUM Useful for the detection of small changes, theoretical optimality in certain cases 

EWMA Easy to implement, robust against non-normality 

As can be seen in the timeline in Figure 40, there is an increase of around two sigma of the mean of 

the process before the failure occurs. Using the standard Shewhart chart is not suitable because that 

model is good in detecting large changes in the process. The implementation of a CUSUM chart is 

relatively complicated to implement and use. That is the reason why the EWMA chart chosen to use, 

which has similar performance and easier to implement. 

  

Figure 41: Example graph of Shewhart control chart 
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6.2. Mathematical formulation EWMA control chart 
The implemented theory about the EWMA control chart is from the book Introduction to statistical 

process control by Qiu (2013). The model will be based on a stationary situation just as in the work of 

Cambron et al. (2016) and Kenbeek et al. (2016). Because of the relatively long period in which the 

degradation will develop against the number of observations that will arrive, the central line and limit 

will converge fast. The control chart will be learned on an initializing period, corresponding to the first 

part of the data per monitored case. 

 

The observations in our two-stage model are the residuals from the MLR model because this attribute 

is removed from its contextual anomalies. These observations are assumed to be independent and in 

the in-control period normally distributed with mean 𝜇 and variance 𝜎2. These tests are performed in 

section 5.5, although the independence is violated, the control chart will be used.  

 𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖  
Formula 10 

The EWMA chart makes use of the statistic 𝑧𝑖  which is the exponentially weighted moving average of 

point i with the smoothing factor 𝜆. The effect of taking a higher smoothing factor is that newer data 

points are taken more into account. With a lower 𝜆 factor more previous data points are weighted 

more. Setting 𝜆 equal to 0.3, makes it able to detect progressive drifts and to capture sudden 

differences (Lucas & Saccucci, 1990). 

 
𝑧𝑖 =  𝜆𝑟𝑖 + (1 − 𝜆)𝑧𝑖−1 Formula 11 

The centreline (𝐶) of the graph is based on the mean of the initial period. Because we are analysing 

the residuals of the MLR model, which is solved by OLS, the 𝜇0 will be roughly zero. As found in section 

3.34.6, the increase of bearing temperature compared to normal is the indication of a degraded 

bearing. Therefore, the focus is only on exceeding the upper control limit of the chart. Because the 

upper limit normally quickly converges and we got a long observation sequence, we will take a 

stationary upper limit into account. Therefore, the central line and control limit could be defined as 

follows: 

 𝐶 =  𝜇0 Formula 12 

 𝑈𝐶𝐿 = 𝜇0 + 𝜌√
𝜆

2 − 𝜆
𝜎 Formula 13 

The 𝜇0 and 𝜎 will be estimated based on an initial period which is the beginning of the stable period, 

this is not intended to be the entire stable period. The coefficient 𝜌 is chosen to achieve a pre-specified 

average run length of the in-control period, 𝐴𝑅𝐿0. This 𝜌 value could be determined based on the 

xewma.crit() function in the R-package spc version 0.6.5. For taking an 𝜆 = 0.3 and an 𝐴𝑅𝐿0 of 8000 

hours corresponding to the inspection interval, 𝜌 = 3.728 is given.  

As a rule, to generate warnings, it is chosen to look only at the multiple data points that fall outside 

the upper control limit. Identical to the work of Cambron et al. (2016), three consecutive points are 

taken. Looking at single data points that fall above the UCL the model will respond hard to outliers. In 

the case of using multiple rules, such as the rules from the Western Electric Handbook, the system will 

only get more sensitive, which is not recommended because of the slight autocorrelation that is 

observed in section 5.5. Therefore, warnings are generated if the following condition holds: 

 {𝑧𝑖−2, 𝑧𝑖−1, 𝑧𝑖} > 𝑈𝐶𝐿 Formula 14 
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6.3. Results implemented control chart 
In this section, the results of the defined statistical process control chart will be discussed. The EWMA 

control chart is implemented in Python as formulated in section 6.2. This gives the option to create 

these charts for the different bearings. Three different cases are tested with the defect detection. The 

first two cases are captured on a portside engine and the third case is from a starboard engine. It must 

be noted that in all graphs, the operating hours are levelled to start at zero, which means that these 

records do not correspond with the historical engine operating hour record. Also, not the entire life 

span of the components is shown.  

6.3.1. Case I 
The first situation which we will explore is a bearing that has failed during operating. The corresponding 

control chart is shown in Figure 42, with the defect at the end of the timeline. In this plot the first 800 

operating hours are used as the initialize period, to learn the regression model and determine the SPC 

settings. The dotted line represents the mean of the in-control situation, which is located near zero. 

The UCL is based on Formula 13 set at 0.37 °C.  

By analysing the exponentially weighted moving average, the signal first oscillates around the central 

line and in the end drifts upwards. Around hour 1300, the first warnings are given, but this trend seems 

to stabilize until hour 1400. From this moment, the number of warnings increases until the moment of 

failure. From an actual-time perspective, these warnings from operating hour 1400 to 1500 are more 

than a month previous to the failure. If we have a closer look at the data, the oscillating process will 

be related to the autocorrelation in the residuals. Given the time perspective of this pattern, it looks 

like minor maintenance actions cause it. 

 

Figure 42: EWMA control chart case I, bearing 3 

6.3.2. Case II  
The second situation is shown in Figure 43, in this case bearing four is shown, which actually failed at 

operating hour 3149. Without knowing the further context, it seems that this failure could have been 

detected by making use of this control chart technique. Unfortunately, there is more to it than that. If 

we start from the beginning, again we see the data oscillating around the central line and from hour 

2400 most data points above the central line. At hour 2720, there suddenly is an increase of one degree 

and the data points end up above the control limit. 
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Figure 43: EWMA control chart case II, bearing 4 

This sudden change did exactly happen after maintenance was performed to the engine and some 

parts were renewed, which had influenced the engine's performance. This has caused that under the 

same operational conditions, the bearing temperature becomes higher. In the first 200 hours, there is 

still an increasing trend visible so it could indicate the degradation of the bearing. But because of the 

influence of the maintenance, this is difficult to establish with certainty. To overcome this problem, 

the model should be continuously updated, especially after a maintenance moment. 

6.3.3. Case III  
The third case is presented in Figure 44. The same monitoring is performed on a starboard engine 

where no defect or failure has occurred. In the first 1150 hours, the data points behave similarly as 

seen in other cases. But after this point, the mean seems to be shifted upwards. Similar to case II, there 

is a maintenance action performed in which several components are adjusted. This affects the physical 

relation that is captured by the defect detection model in the initialize period.  

 

Figure 44: EWMA control chart case III, bearing 4 – maintenance causes warnings 

To overcome this problem, the model must be initialized again after a maintenance action. This is 

performed in Figure 45, in which a second initialize period is added. After this relearning of the model, 

the pattern adjusts back around the central line. The outliers that were visible before are also removed. 

This indicates that the change in physical relation is not just a shift of the temperature upwards and 

therefore, the model had to be updated.  

 

Figure 45: EWMA control chart case III, bearing 4 – after maintenance models again initialized   
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6.4. Analyses of the defect detection signal  
In the previous section, we have seen that by making use of a control chart it is possible to detect 

defects. In this section, we will have a closer look at the visible trend by further analysing case I. This 

is performed by further analysing case I, presented in section 6.3.1. First, the signal development will 

be analysed. Second, we will show from this case the correlation between the defect detection of the 

other bearings. 

6.4.1. Signal development  
In Figure 46, the control chart from case I is plotted with additional markings. The first addition is the 

rolling mean of the EWMA residuals over a period of 200 operating hours. During the first 1200 hours, 

this is oscillating around the central line after which approximately linear increases starts until the 

moment of defect, at hour 1623. Because the trend starts around hour 1200, this is to be seen as the 

moment the system gets out-control. The found increase in this graph is 0.137°C per hundred hours 

until the inspection in which the defect is found. This means that the probability of getting a warning 

slowly increases. While the mean is drifting up the spread of the data points stays similar. 

 

Figure 46: Annotated EWMA control chart case I, bearing 3 

 Multiple

Figure 47 Figure 53

 
Figure 47: EWMA control chart of bearing 1

 
Figure 48: EWMA control chart of bearing 2
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6.5. Intermediate conclusion RQ4 
How could a defect detection of the main bearings be generated using a data-driven model? 

This research question focuses on how the available data and acquired knowledge about the main 

bearings could be transformed into useful insights in the form of defect detection. In answering the 

previous research questions, it was found that the available temperature sensors could be used to 

create a defect detection. Due to the variating operating conditions, a two-stage model, as used by 

Chow & Willsky (1980), is convenient to use for the defect detection for the main bearings. The 

difference between the expected and measured temperature gives insight into the additional friction 

caused by the deterioration.  

The MLR model, as shown in chapter 5, is able to capture the physical behaviour of the bearings. The 

advantage of this type of regression model is that it is understandable, making implementation within 

the organization feasible. The regression model residuals are a useful attribute for statistical process 

control because it is removed from the operational conditions. Using the EWMA control chart, the 

bearing temperature could be monitored, as shown in Figure 42. As expected, a raise of the residual is 

visible before the actual failure, corresponding to an increasing bearing temperature compared to the 

predicted temperature.  

This model is implemented on the actual collected IPMS data of the main bearings of two different 

diesel engines. Based on this, we can conclude that this model is capable of detecting defects in front 

of actual failures. The warnings are generated approximately 200 operating hours before the actual 

failure, which is when constantly operating just over a week ahead. But in the actual situation, this 

would have been 1.5 months before failure.  

  

 
Figure 49: EWMA control chart of bearing 3

 
Figure 50: EWMA control chart of bearing 4

 
Figure 51: EWMA control chart of bearing 5

 
Figure 52: EWMA control chart of bearing 6

 
Figure 53: EWMA control chart of bearing 7
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7. Implementation of defect detection in the maintenance process 
The focus of this chapter will be how the generated warnings could be implemented in the maintenance 

process with the goal to increase reliability. The imperfection of the warnings, as seen in section 6.3, 

must be taken into account. First, the current policy will be expanded with additional warnings from 

the defect detection model. Second, the potential advantage of the implementation is explored.  

7.1. Putting the data-driven defect detection model into practice 
Looking back at the set research goal, reliability is an important factor to improve. The definition of 

reliability set in ISO 8402 is: ‘The ability of an item to perform a required function, under given 

environmental and operational conditions and for a stated period of time’ (Rausand and Hoyland, 

2003). This is a general definition that implies for the main bearings did not fail, as defined in section 

3.2. Missions, which take several days that should not be interrupted by sudden failures, define the 

duration of the period for the RNLN.  

When warnings occur, different operational decisions could be made (Haddad, 2011). Before 

determining how these warnings should be handled, we must consider the consequences and 

importance of these (improved) warnings. These warnings are in favourable circumstances to predict 

defects hundreds of hours in advance, which we can conclude from case I, section 6.3.1. This implies 

that it is not possible to make decisions before the deployment of multiple months, in which the engine 

is used for thousands of hours.  

Another question that would raise quickly is, should the engine be shut down when a warning arrives 

to prevent a failure. For that question, we should go into the used definition of a failure. As earlier 

described in section 3.2, a failure is when the safety system of the diesel engine detects a too high 

bearing temperature and shuts down the engine preventively. This interruption of the safety system 

prevents catastrophic failure. Therefore, the warnings should not be used to shut down the engine 

immediately.  

Given the time perspective and the importance of warnings, it should not mean there is no opportunity 

to use this information to increase the current policy. It could be seen as an improvement of the 

current warnings generated by too high temperature or from oil analysis. It is possible to prevent the 

failure from happening during a mission and prepare the maintenance intervention in an additional 

maintenance moment.  

The operating crew on board could be informed about the observed degradation and advised to adjust 

the propulsion configuration. This alternative is possible because OPVs are able to propel on multiple 

configurations, such as, single or both engines or using electric propulsion. This operational decision 

minimizes the operational hours, which extends the period before maintenance must be performed. 

This prevents failure so that both engines could still be used if necessary.  

7.2. Implications on the current maintenance policy  
The current state of research of data-driven maintenance at RNLN is still at the exploration phase, as 

explained in section 1.2. Therefore, for implementation to be successful, it should be applied besides 

the current usage-based policy. The current policy, as introduced in section 2.2, is therefore expanded 

with the improved warnings shown in grey, see Figure 54. This procedure consists of validating the 

warning before taking maintenance decisions because of the expected imperfection. This is, for 

example, visible in Figure 50, in which a single warning is generated before the actual trend started. 

This validation could be a task for a ‘control tower,’ as often referred to in the MARCONI project, which 

currently could be coordinated by the operational engineering. 
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Control tower - Validation process 

Experts in the control tower should validate warnings by performing actions that could be done 

without interrupting the operational tasks of the vessel, for instance, analysing the data or taking 

additional oil samples. The data could be analysed on outliers in the measurements online. Also, 

lubrication oil monsters for additional debris monitoring could be taken without the need to go to a 

harbour and to open the engine.  

After an initial warning, the equipment could be taken under enhanced supervision by the control 

tower and involved specialists. During this period, the crew on board could be advised about the engine 

usage and involved in the enhanced supervision. Because of the increasing trend, as determined in 

case I in section 6.4.1, the first warnings will not be conclusive. The advantage of the initial validation 

is that it could be performed without affecting the current operations of the vessel. Also, the costs of 

these actions are lower as performing a full visual inspection. Which validation action should take 

depends on the moment in which the warnings arrive. Before a deployment, actions will be taken more 

quickly than during the deployment. 

Performance  

The situations that should be avoided are false negative and false positive warnings. In the situation of 

a false negative, there is no warning given while the actual condition of the bearing is defect. Because 

actions are only taken after a warning, this will not be captured by the defect detection model. For the 

defect detection performance, this is not favourable, but the current policy always has a worse 

performance because there is no monitoring system. As we saw in section 6.4.1, the mean 

temperature difference compared to the normal situation increased slowly. This indicates that the 

probability of getting no warnings while the bearing is defective decreases over time.  

False positives are warnings that are raised while the actual condition of the bearings is good. When a 

simple outlier causes this, it is straightforward to validate that there is nothing. When there is an actual 

increasing trend visible, more validation must be performed. It can never be excluded that after 

validation, unjustified inspections are still carried out. Concerning reliability, this is no factor, but it will 

result in higher costs and decrease trust in the system, as Berrade et al. (2015) mention. 

7.3. Advantage of the proposed maintenance policy 
In the previous section is explained how the warnings could be implemented in the current policy. In 

this section, the aim is to give insight into the benefits related to the reliability of implementing the 

described policy. To be able to perform these analyses, the degradation process is captured in a 

mathematical model. This allows comparing the current policy with the just-explained expansion 

addition of warnings. Different assumptions are taken to capture the degradation process in a 

mathematical model to be able to indicate the advantages of the model. These simplifications are 

elaborated in appendix VI. 

Figure 54: Expansion of maintenance policy with in grey the additional procedure for warnings 
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In principle, the degradation process for all bearings is captured in one delay-time model making uses 

of the three states as defined in section 3.2. While there is a limited amount of failure data available, 

the parameter estimation of this model is difficult. It is chosen to fit the parameters of the different 

distributions used in the delay-time model based on the current maintenance policy. The performance 

of the warnings in combination with the validation is captured in a general factor (n), corresponding 

to the number of defects that would have been successfully detected before the actual failure.  

The delay-time model is implemented in a Python script to analyse two different situations. Firstly, the 

current policy, which will lead as the reference case. Secondly, the situation in which there are 

successful defect detections implemented. With this second situation, the impact on reliability could 

be found. 

7.3.1. Reference situation – current policy 
The result of the reference situation with the current policy is given in Figure 55. The graph shows the 

expected cycle-end given a certain inspection interval (𝜏). The probabilities of the different cycle-ends 

are stacked on top of each other to give a complete view. The different outcomes are shown in 

different colours. With green and orange, the bearings reached the inspection and are found in good 

and defect condition, respectively. A failure, shown in red, means that before the inspection, the 

bearings failed. These are the events that the RNLN would like to avoid. The dotted lines give the 

maximum inspection interval while having reliability of 95%.  

7.3.2. Improved policy including warnings 
In Figure 56, the influence of the warnings is added to the analyses. The defects that are found making 

use of the improved warnings are shown in blue. This corresponds to inspections before the pre-

described inspection moment, where the defects are discovered. The black dotted lines give the 

increase in reliability or the increased inspection interval. One of the first things to notice is that there 

                              y  f ‘G   .’ This makes sense because the defect detection model does 

not influence the degradation process of the main bearings. 

When analysing what the improvements are of the defect detection model, there are two things to 

conclude. First, when keeping the same inspection interval, the expectation of a failure will decrease 

by 50%. Before the failure happens, the defect detection model has interrupted the cycle. Second, 

when sticking to the same reliability level, the inspection interval could be extended from a reliability 

perspective. The increase in this situation will be roughly 4000 hours. The defect detection model 

captures defects, so the change of a facing a failure decreases. It must be noted that the size of the 

improvements found depends on the mathematical formulation of the problem and the parameters 

used. Therefore, one should be careful with the interpretation and more focus on the general insight.  

Figure 55: Results of reference situation 
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7.4. Intermediate conclusion 

7.4.1. Conclusion RQ5 
How could the developed defect detection model of the main bearings be used to make maintenance 
decisions to increase reliability? 
 
The developed defect detection model is able to detect defects reliable hundred to two hundred hours 
in advance of failures. This relatively short before a failure compared to the duration of deployment 
determines that prediction in front of deployment is not possible. Additionally, the created defect 
detection model is sensitive to other maintenance activities. Therefore, it is concluded that a validation 
step must be performed before acting on the warnings. This validation and coordination of enhanced 
supervision could be performed from a control tower. The warnings and data could be further analysed 
by data analytics or additional oil samples. Both are actions in which the operational process of the 
main diesel engine is not restricted. Another action for the control tower is to advise the crew onboard 
to limit the usage of the engine to gain time for analyses and scheduling of the maintenance activity.  

7.4.2. Conclusion RQ6 
What are the advantages of implementing the developed defect detection model for the maintenance 
process? 
 
To determine the advantage of the implementation of the developed defect detection model, the 
policy is captured in a delay-time model. This is used to predict the probability of having a certain 
condition at the inspection interval. The advantage of the developed defect detection model depends 
on the operational strategy. The RNLN prefers to keep the current inspection interval as described by 
the OEM. The benefit of this strategy is that the reliability increases because the number of sudden 
failures will decrease. Otherwise, it is possible to increase the inspection interval without 
compromising on the current reliability level. Depending on the preference finetuning between 
reliability and inspection interval is also possible.   

Figure 56: Results with improved policy 
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8. Conclusion, discussion and recommendations 
This chapter contains the conclusion of this explorative research to data-driven defect detection. 

Further, the research limitations are discussed, with the focus on identifying gaps for follow-up 

research. To extend the work further in creating added value for the maintenance process at the RNLN 

based on data-driven maintenance. 

8.1. Conclusion 
In this thesis, a data-driven defect detection model is created for the main diesel engine's main 

bearings. For the development of this monitoring approach, different steps are taken, captured in 

different research questions. In this section, these conclusions will be summarised to answer the main 

research question.  

How could the available data of the main diesel engines of the oceangoing patrol vessels be 
used to create a defect detection of the main bearings to make maintenance decisions to 
increase the reliability of this critical asset? 

The main bearings in the diesel engine support the crankshaft and allow it to rotate with limited 

friction. A failure of a bearing results in the unavailability of the entire engine, influencing the 

operational availability of the vessel. The bearings are considered failed when the safety system of the 

engine performs an interruption and shuts the engine down. The degradation of the main bearings is 

limited thanks to proper lubrication, correct design and good operating conditions (Bloch & Geitner, 

1997). When defective, there are marks from abrasive wear or cavitation that exceed the limit.  

As stated in the main research question, the project focuses on the available data of vessels part of the 

Holland class. Temperature monitoring of bearings has been performed in the past (Kenbeek et al., 

2016; Neale, 2001; Touret et al., 2018; Wilkinson et al., 2014). In the data collected from the IPMS, it 

is found that there are bearing temperature sensors that could be used. Before these sensor readings 

could be used to generate warnings, data preparation must be performed. The transient behaviour 

should be removed to get to the actual thermodynamic behaviour of the main bearings. The data 

should be made compact to generate useful data records for analysis.  

With the defect detection model, the moment that bearings are defect must be captured. Because the 

operational condition of the main diesel engines varies, it is chosen to use a two-stage strategy. First, 

residuals generation is performed in which the temperature observations will be removed from the 

contextual anomalies. With a regression model, the expected temperature could be predicted based 

on explanatory variables, 𝑦̂𝑖  =  𝑓(𝑋𝑖). The difference between measured and predicted temperature 

is the residual that will be further used. Second, the residuals analyses which is used to detect a shift 

in residuals. SPC is a method that could be used to determine when the bearing temperature 

significantly is increased, indicating a defect.  

This method is implemented on the available data making use of MLR to predict the bearing 

temperature and EWMA control charts to monitor the residuals. From the analysed cases, it can be 

concluded that this method is able to detect a defect in front of failure. The increasing temperature is 

visible and the signal is well developed 200 hours before failure. It is also found that the model is 

sensitive to maintenance actions. These actions influence the physical relation of the main diesel 

engine.  
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In the strategy towards data-driven maintenance, the created defect detection model should first be 

deployed beside the current policy. To cope with the imperfection for making maintenance decisions, 

the warnings should first be validated. This is managed by   ‘             .’ Validation consists of data 

analyses and could be extended with additional oil samples. When keeping the same inspection 

interval, the probability of sudden failure will decrease because the monitoring system could foresee 

them.  

To summarize, the available IPMS data could be used in the defect detection model to detect 

increasing bearing temperature, which indicates degradation. Because other causes could influence 

this signal, validation of the warnings is important. At the possible detection of defects, maintenance 

actions could be undertaken to perform inspection and when necessary, preventive maintenance to 

prevent failures.  

8.2. Discussion and direction future research 
This research answers how the available data could be used to monitor the condition of the bearings. 

The used approach has potential but is a proof of concept. This brings several limitations concerning 

implementing the model in the maintenance process of the RNLN. In this section, the different aspects 

of the developed data-driven defect detection model will be reviewed and options for future research 

are given. 

Capabilities of the defect detection model  

The user of the developed defect detection model should understand the model's capabilities. The 

model is built to detect the increasing temperature trend. Prediction is not included because the 

underlying physical relation can not be determined with the limited amount of failure data. In case 

other failure mechanisms occur in the future with a different failure mode, the model might not be 

able to detect the defects. The developed model covers only the bearings. To detect defects of other 

components, separate models should be built. A failure of these other components could cause 

consequential damage, for example, when the oil supply is inefficient due to a defective oil pump.  

The model is also built the be able to handle non-stable operations. Due to the filter limiting the 

autocorrelation as introduced in section 4.5, long constant operations are not monitored. This 

happens, for example, during a long ocean crossing in which the engine is used constantly. This design 

choice is made to monitor the varying operations that represent most of the usage of the engine. 

Another fundamental note must be made about the number of defects and failures that will occur. 

Because the model does not influence the degradation of the main bearings, the number of defects 

will not decrease. Only failures could be prevented by early detection. For decreasing the number of 

defects, preventive actions must be taken to prevent the cause of degradation. 

Validation of the monitoring approach 

For the validation of the monitoring approach is a limited amount of failure data available. The 

individual parts (regression and control chart) are known models which could be validated as, for 

example, performed in section 5.5 for the regression model. For the entire defect detection model, 

the observed pattern over the complete timeline is analysed with maintenance engineers. In this 

analysis, the model is verified by linking the visible pattern to expected changes after real-world actions 

are performed to the engine. An example is the graduate temperature decrease after installing new 

bearings, which correspond to break-in wear.  

Takeaways of the project  

The developed models are made to show the potential there is in the available IPMS data. The currently 

developed models are not built for direct implementation. Several aspects must be improved to make 
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it functional. This starts with the data acquisition, the data gathering from the vessel to the analyses 

must be automated, without the delay of three months because of confidential reasons.  

The models are made based on a specific selected initialize period which was the stable period. When 

deploying the models, it is impossible to determine the learning periods as in this research. From 

bearings, it is known that after installation, break-in wear occurs in which the temperature decreases 

(Bloch & Geitner, 1997). This makes the learning of the model challenging because the first operating 

hours will not directly be the stable period used to learn the model now.  

The effect observed of maintenance actions on the physical relation needs extra attention. During the 

maintenance action, the defect could have been initiated. When comparing cases II and III in section 

6.3, the scale of shift is different, in which case II had a bigger shift and is soon failed. This magnitude 

of shift could be an indication of whether the maintenance causes the defect. More maintenance 

actions should be analysed in future research to determine what could be classified as a typical shift 

and where potentially a defect has been introduced.  

Used models 

In this thesis, monitoring is performed individually per main bearing, using MLR for the residual 

generation and the residuals evaluation with EWMA control charts. These models are both selected 

based on qualitative considerations. They have proven to be capable of detecting the defect before 

the failure and therefore show that the monitoring approach has potential. However, these models 

are not necessarily optimal. Within the used models, improvements could be made in future research, 

such as using non-linear transformations for input attributes in the MLR and multi-variate control 

charts could be explored to improve the results. 

Correlated residuals 

The assumption of (identical) independently distributed residuals is made for the MLR and EWMA 

control chart. As Qiu (2013) stated, correlation among the observed data at different time points would 

have a substantial impact on the performance of the EWMA control chart. A part of the correlation is 

successfully removed by filtering on the operations, as explained in section 4.5. As seen in the residuals 

analyses in section 5.5, the assumption is still violated. Nevertheless, the models are created and used. 

The remaining correlation is expected to be caused by minor maintenance actions because the 

maintenance interval is in accordance with the found pattern.  

Discretization of condition  

In the thesis, the bearing condition is set to three discrete states. The degradation evolves actually on 

a continuous scale. In the analysed case in section 6.4.1, the increasing temperature started around 

600 hours before the failure. Because the bearings are not inspected regularly during the installation, 

it is unknown how the degradation development happened. With the monitoring approach, only the 

moment in which the bearing temperature is increased, is detected. Therefore, it is not possible to 

prove whether this point is equal to the moment in which the bearing exceeded the wear limits.  

Managerial insights 

The goal of created analytics was to give a visual impression of the impact of defect detections. The 

specific advantages of implementing the defect detection model are difficult to describe. Distributions 

are unknown and the complete policy is complex to model. The use of mathematical formulation gives 

just limited insights because the distributions are unknown. With the multiple assumptions made, 

different aspects are not included, for example, having false positives and early detection of defects 

are not included.   
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8.3. Recommendations 
In the previous section, the limitations of the research are discussed. Three major recommendations 

arise from this research and are described in this section. This contains the three paths that should be 

performed in follow-up studies at the RNLN. 

Implementation 

In this research, it is shown that the presented monitoring approach is capable of detecting defective 

main bearings of the main diesel engine. The next steps should be taken towards implementation. 

Having specific applications are important in the exploration of data-driven maintenance. Therefore, 

work should be carried out to translate the results into a pilot project. This pilot needs to focus on 

making the analyses dynamic and the interface that is needed to make it understandable. Moreover, 

maintenance engineers must be involved because they are responsible for making the maintenance 

decision. 

Increase the number of assets monitored 

This research focuses on the main diesel engines of the Holland class. In future research, the same 

technique should be implemented for other vessels at the RNLN. This is possible because the sensors 

that are used are also installed on other engines. But in a new situation, the best attributes to be used 

should be explored again. Expanding the amount of performed analyses will give a better 

understanding of the model performance. The same approach could also be used to monitor other 

(plain) bearings that are, for example, placed to support the propellor shaft.  

Improve quality 

As mentioned in the discussion, multiple aspects could be further improved to optimise the defect 

detection model. It is recommended to improve these actions in future studies to improve the quality 

of the defect detection model. In the current build model, techniques are used that were 

understandable. This shows the principles of the monitoring approach. Future models may be more 

complex and considered black-box models but could be verified using understandable white-box 

models. The specific steps that could be improved include the data sampling, type of regression model 

and exploring the use of multivariate control charts. 
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Appendix 

I. Stepwise selection of attributes 
 

 Case I Case II Case III 

 Attributes first step 
Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2  0.9194 0.8117 0.9364 0.8187 0.9638 0.9817 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑓𝑢𝑒𝑙 𝑟𝑎𝑐𝑘  0.6729 0.5695 0.5475 0.4965 0.5893 0.5737 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

 0.4265 0.4127 0.5003 0.4533 0.4810 0.5349 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶

2  0.6798 0.5973 0.5889 0.5974 0.6423 0.6869 
𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀

2 , 𝑥𝑜𝑖𝑙𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 0.7269 0.6342 0.6295 0.5643 0.6830 0.8136 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑠𝑢𝑝𝑝𝑙𝑦

 0.7200 0.6551 0.7115 0.5971 0.9074 0.9090 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝐻𝑇𝑠𝑢𝑝𝑝𝑙𝑦

 0.7782 0.6666 0.8121 0.6748 0.8152 0.8127 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝐻𝑇𝑟𝑒𝑡𝑢𝑟𝑛

 0.9167 0.8075 0.8234 0.6851 0.8460 0.8360 

 

 

 Case I Case II Case III 

 Attributes second step 
Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2  0.9194 0.8117 0.9364 0.8187 0.9638 0.9817 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

 0.4265 0.4127 0.5003 0.4533 0.4810 0.5349 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑓𝑢𝑒𝑙 𝑟𝑎𝑐𝑘  0.3980 0.3825 0.4597 0.4075 0.3995 0.3827 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2  0.2682 0.2622 0.2972 0.2844 0.2657 0.2910 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑜𝑖𝑙𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
 0.4208 0.4076 0.4948 0.4504 0.4603 0.5610 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑜𝑖𝑙𝑠𝑢𝑝𝑝𝑙𝑦
 0.4197 0.4055 0.4898 0.4452 0.4738 0.4994 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝐻𝑇𝑠𝑢𝑝𝑝𝑙𝑦
 0.3578 0.3489 0.4289 0.4156 0.4343 0.4993 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝐻𝑇𝑟𝑒𝑡𝑢𝑟𝑛
 0.4237 0.4080 0.4320 0.4168 0.4401 0.4955 

 

 Case I Case II Case III 

 Attributes third step 
Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

Train 

RMSE 

Test 

RMSE 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2  0.9194 0.8117 0.9364 0.8187 0.9638 0.9817 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

 0.4265 0.4127 0.5003 0.4533 0.4810 0.5349 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2  0.2682 0.2622 0.2972 0.2844 0.2657 0.2910 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2 , 𝑥𝑓𝑢𝑒𝑙 𝑟𝑎𝑐𝑘  0.2569 0.2520 0.2894 0.2769 0.2545 0.2752 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2 , 𝑥𝑜𝑖𝑙𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

 0.2567 0.2513 0.2939 0.2792 0.2525 0.2812 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2 , 𝑥𝑜𝑖𝑙𝑠𝑢𝑝𝑝𝑙𝑦

 0.2635 0.2570 0.2883 0.2760 0.2589 0.2790 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2 , 𝑥𝐻𝑇𝑠𝑢𝑝𝑝𝑙𝑦

 0.2568 0.2542 0.2864 0.2760 0.2570 0.2767 

𝑥𝑅𝑃𝑀 , 𝑥𝑅𝑃𝑀
2 , 𝑥𝑜𝑖𝑙𝑟𝑒𝑡𝑢𝑟𝑛

, 𝑥𝑅𝑃𝑀 𝑇𝐶 , 𝑥𝑅𝑃𝑀 𝑇𝐶
2 , 𝑥𝐻𝑇𝑟𝑒𝑡𝑢𝑟𝑛

 0.2678 0.2614 0.2869 0.2763 0.2579 0.2778 
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Development model Case II Development model Case III 

 

Resulting performance per bearing with final formula 

 Case I Case II Case III 

Model Train RMSE Test RMSE Train RMSE Test RMSE Train RMSE Test RMSE 

Bearing1 0.2513 0.2504 0.3066 0.2906 0.3179 0.3555 
Bearing2 0.2853 0.2408 0.3316 0.3129 0.2707 0.2843 
Bearing3 0.2889 0.2886 0.3316 0.3246 0.2482 0.2763 
Bearing4 0.2711 0.2907 0.2512 0.2223 0.2545 0.2424 
Bearing5 0.2865 0.2659 0.2716 0.2388 0.2518 0.2769 
Bearing6 0.2339 0.2366 0.3226 0.3023 0.2462 0.2958 
Bearing7 0.2549 0.2570 0.2564 0.2774 0.2632 0.2742 

 

  



54 
 

II. P values of learned model  
 

Final 
model 

Intercept RPM RPM2  Temp. oil out RPM TC RPM TC2 

B 𝛽1,𝑏 𝛽2,𝑏 𝛽3,𝑏 𝛽4,𝑏 𝛽5,𝑏 𝛽6,𝑏 

Bearing1 0.00E+00 8.75E-220 1.02E-01 1.15E-111 3.92E-06 4.75E-47 

Bearing2 0.00E+00 2.66E-200 3.55E-33 1.14E-117 1.60E-38 6.76E-81 

Bearing3 0.00E+00 2.39E-219 9.22E-10 2.85E-125 2.35E-70 3.80E-101 

Bearing4 0.00E+00 0.00E+00 1.17E-98 8.19E-163 NaN 7.98E-04 

Bearing5 0.00E+00 1.93E-294 2.47E-72 4.33E-156 6.60E-21 4.64E-103 

Bearing6 0.00E+00 1.71E-230 7.38E-27 4.80E-144 4.89E-24 1.21E-95 

Bearing7 0.00E+00 1.14E-246 3.56E-08 1.62E-116 1.90E-07 2.18E-31 
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III. Graphs residuals of all explanatory variables 
Residual distribution 

 

Explorational variables 
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Auto Correlation Function plots 
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IV.  Importance quadratic term 
In the following plots the residuals are plotted for a model in which the quadratic terms are excluded. 

In these plots it is clearly visible that there is still a clear relation between the residuals and the 

explanatory variables. Therefore it can be concluded that the quadratic terms have added value. 
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V. Plots case I all bearings 
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VI. Formulation of the delay-time model 
i. Assumptions/ simplifications 

Different assumptions and simplifications are necessary to create a mathematical model of the 

degradation and maintenance process at the RNLN. In this appendix, these assumptions and 

simplifications are explained. It starts with the analytical model that is used to model the degradation 

process and follows by more detailed assumptions regarding the system and imperfection in the 

warnings and validation. 

Analytical model 

The degradation process will be modelled as a Markov process in the form of a delay-time model (Arts, 

2017). This is different from the created defect detection model that is data-driven and does not rely 

on general lifetime distributions. The model has three sequential states, as shown in the Figure below, 

these correspond to the set definition in section 3.2. The lifetime (T) is the sum of the time to defect 

(X) and time to failure (Y). Based on the analysis in section 3.2 the time distributions are determined, 

exponential and Weibull respectively for time to defect and time to failure. This combination of 

distributions implies that defects occur randomly in time, but the defect development has time 

dependence. Analysing this policy based on the different cycle-end with the decision-making model 

gives insight into the performance.  

 

Figure: Schematically view of the delay-time model 

Converting to one system 

The seven main bearings in the diesel engine are in large degree correlated to each other. From the 

analysis in section 6.4.2, we saw that the increase in bearing temperature was visible for multiple 

bearings concomitantly. The bearings are also replaced in a group in the last maintenance actions, as 

mentioned in chapter 2. Therefore, as a simplification, the bearings are considered as one system with 

an identical time to defect and time to failure.  

The imperfection of the defect detection model and validation process 

As earlier mentioned in section 7.1, the warnings will never be able to predict all defects in advance. 

When simulating a signal as a condition indicator, not all imperfection of the real process could be 

included. The impact of the validation step is also difficult to replicate in a mathematical model. 

Therefore, the imperfection of the entire improved warning scenario will be implemented making use 

of a factor, 𝑛. Corresponding to the condition of successful detection, 𝑤 = 𝑇𝑟𝑢𝑒. Because the 

temperature increase is just visible several hundred hours in advance and the defects are expected to 

be visible earlier, it is assumed that the moment of defect detection is equal to the failure time. 

  

              

 ~            

               

Y~        , 
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ii. Mathematical formulation 
For the generation of insights, the process will be modelled. The focus will be on analysing the 

reliability given a certain inspection interval (𝜏). In the delay-time model, there are different cycle-end 

        ’          .        ff          arios are considered, as formulated in the Table below. These 

                      f         f             ’           Figure 54. The functions 𝐹𝑋(𝑥) and 𝐹𝑌(𝑥) are 

the cumulative distribution of exponential distribution for the time to failure and the Weibull 

distribution for the time until defect respectively. The 𝑓𝑋(𝑥) is the probability density function of the 

time to defect. The factor 𝑛 is Bernoulli distributed corresponding to the probability of having a 

successful detection (𝑤 = 𝑇𝑟𝑢𝑒) of the defect before failure.  

Table:                                           ’  

No Scenario Probability 

1 Good 𝑃(𝑋 > 𝜏) = 1 − 𝐹𝑋(𝜏) 

2 Defect 𝑃(𝑋 < 𝜏 ∩ 𝑋 + 𝑌 >  𝜏) = ∫ (1 − 𝐹𝑌(𝜏 − 𝑥))𝑓𝑋(𝑥)𝑑𝑥
𝜏

𝑥=0

 

3 Detection defect 𝑃(𝑋 + 𝑌 < 𝜏 ∩ 𝑤 = 𝑇𝑟𝑢𝑒) = 𝑛 ∫ 𝐹𝑌(𝜏 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝜏

𝑥=0

 

4 Failure 𝑃(𝑋 + 𝑌 < 𝜏 ∩ 𝑤 = 𝐹𝑎𝑙𝑠𝑒) = (1 − 𝑛) ∫ 𝐹𝑌(𝜏 − 𝑥)𝑓𝑋(𝑥)𝑑𝑥
𝜏

𝑥=0

 

 

iii. Model parameters 
Determining the parameters is a difficult step for this system. There is a limited amount of data 

available to fit certain distributions to because failures are limited due to the low amount of assets 

that the navy uses with these engines. The parameters that are used, if not differently specified for the 

given scenario, are given in the Table below. The values with respect to the delay time models are 

derived from the FMECA (Tiddens, 2014) and fit to match the current inspection interval. The 

performance of the validation cannot be estimated based on this research, as initial performance is 

50% taken.  

Table: Used parameters of the mathematical model 

Symbol Value Explanation 
𝜆 70000 Scale parameter exponential distribution time to defect 
𝛽 2 Shape parameter Weibull distribution time to failure 
𝜂 4000 Scale parameter Weibull distribution time to failure 
𝑛 0.5 Parameter of successful detection defect 
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