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Abstract

Condition Monitoring (CM) increases the available data on possible future demand. This challenges com-
panies to incorporate the collected Advance Demand Information (ADI) in their inventory management. In
combination with recent developments in Additive Manufacturing (AM), it is possible for manufacturers to
produce spare parts on demand instead of keeping large amounts of stock. In this thesis, we investigate to
what extent the combination of ADI and AM can result in inventory and cost reductions in the spare parts
supply chain. A Markov Decision Process is designed and implemented to provide insights in the use of ADI
and to compare an inventory system using AM to an inventory system based on conventional production
of spare parts. Through a numerical study, we show that the use of (im)perfect ADI can yield substantial
cost savings and reduction in inventory in both contexts, dependent on the quality and timing of the ADI.
Furthermore, we find that only in settings where both failure rates and production costs are equal or when
production costs are lower, the failure rate is slightly higher and backorder costs are high, the additive
manufacturing based system can outperform the traditional manufacturing system. We conclude that the
production costs and reliability of AM parts are key factors that influence the future potential of AM.
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Summary

Introduction

Increased use of Condition Monitoring (CM) results in a large amount of data about the condition of capital
goods. The data can be analysed to predict failures in advance using a prediction technique. In case of
a predicted failure, the prediction tool issues a warning signal (demand signal) before the actual failure,
which can be seen as Advance Demand Information (ADI). ADI can be used for optimising spare parts
inventory, as it enables proactive behaviour instead of reactive behaviour. However, the obtained ADI is
typically imperfect due to: 1) false positives (warnings without failures), 2) false negatives (failures without
warnings) and 3) uncertainty about the exact timing of the failure. Consequently, manufacturers are still
required to keep some level of inventory, but they want to keep this level as low as possible.

To further reduce the level of inventory, a technology called Additive Manufacturing (AM) can be used. AM
is a technology that builds 3D objects by adding layer-upon-layer of material, such as plastic or metal. The
objects are based on a digital 3D model. In the recent years, AM has become more and more popular and
is seen as a game-changer in the spare parts production, as it enables on-demand printing of spare parts
with much shorter supply lead times. Currently, additive technologies are mainly used in the automotive
and aerospace industry.

This master thesis is initiated to research the potential benefits of using ADI in combination with Additive
Manufacturing. Previous literature mainly discusses the use of ADI in the context of consumer orders or
in the context of traditional manufacturing. Furthermore, as AM is indicated as a potential game-changer
in the spare parts production, we want to investigate whether AM can realise this potential in practice,
compared to an inventory control system using traditional manufacturing (TM).

We therefore formulate the main research question:

What are the characteristics that (im)perfect ADI and Additive Manufacturing must have to
be valuable in a spare parts inventory control system compared to an inventory system using
TM?

Research Design

To answer the main research question, a discrete-time Markov Decision Process (MDP) has been designed
and implemented. An MDP is a model for decision making under uncertainty, as it considers short-term
rewards as well as opportunities for future decision making. The objective is to generate the optimal in-
ventory control policy, such that the long-run production, holding and backorder costs are minimised. This
optimal inventory policy is found by using a method called value iteration. Value iteration is an algorithm
that converges to the optimal values when time goes to infinity. The algorithm has an upper bound on the
error, which is set to 10−6. Considerable effort has been made to verify and to validate the outcomes of the
model. For example, a Markov-chain has been manually formulated and solved to check whether the outputs
of the Markov-chain and the model are identical. Also, mathematical derivations have been formulated to
ensure a solid mathematical foundation of the MDP.

A test bed has been designed using realistic values. The values have been collected via prior literature and
studies and interviews with experts in the field of inventory control and AM. For the test bed, we assume
that TM has a longer supply lead time than AM. Also, we assume that the quality of printed parts is inferior
to regular parts, which increases the probability that printed parts fail more often. Different cost values
for printed parts are considered, which range from 0.5-4 times the cost of traditional manufactured parts.
Likewise, different values for the demand lead time are considered to analyse settings where the demand
lead time is either shorter, equal or longer than the supply lead time. The obtained values are validated
by multiple experts in the field of inventory control and AM. The experts have been consulted individually
to ensure the validity of the collected values, i.e., to prevent that the experts influence each other on what
they consider to be realistic values.
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Results

A numerical experiment has been performed to provide insights on the value of incorporating (im)perfect
ADI in an inventory control system, either using AM or TM. The total cost in the different imperfect ADI
configurations are compared to the setting with perfect ADI. The results in the AM context show that for
higher failure rates, it is more desirable to have fewer false negatives than having fewer false positives. As
the failure rate decreases, it becomes more important to predict failures correctly. Also, the value that can
be gained by using (im)perfect ADI, increases for lower failure rates.

First, we tested a setting where the demand and supply lead time are equal to each other. Then, we increased
the demand lead time, such that is longer than the supply lead time. We find that increasing the demand
lead time does not result in large cost savings. This is a result from the fact that in the initial setting we
already have a demand lead time that is equal to the supply lead time. Consequently, the predicted demand
can already be satisfied JIT. Further increasing the demand lead time does therefore not result in much
value to be gained, because it is possible to react to ADI anyway.

For the TM context, we find that large value can be gained by using (im)perfect ADI. This is especially
valid for settings where the backorder costs are low. In the case where backorder costs are high, the demand
information is relatively less useful, as we find that keeping inventory diminishes the effect of an increasing
precision. The uncertainty that corresponds to the imperfectness of the ADI and the fact that the supply
lead time is longer than the demand lead time, requires that some extra safety stock is kept.

Also, we find that in this context, increasing the demand lead time does results in extensive cost savings.
First, we tested a setting where the supply lead time was longer than the demand lead time. Then, we
extended the demand lead time, such that it became equal to the supply lead time. Consequently, it is
possible to satisfy predicted demand JIT and large cost savings can be achieved. Also, using the extended
demand lead time, larger cost savings can be achieved by incorporating (im)perfect ADI compared to the
initial shorter demand lead time.

The comparison between the AM and TM context shows in general, that the system based on traditional
manufacturing outperforms the system based on additive manufacturing. The system using AM results in
lower total cost only in specific settings, such when failure rates and production costs are equal or when
production costs are lower, the failure rate is slightly higher and backorder costs are high. Increasing the
demand lead time resulted in even better outcomes for the TM context, except for the setting where the
failures rates and production costs are equal, as in this setting AM still outperforms TM.

Conclusion

This thesis has shown that a significant amount of cost savings can be achieved by incorporating (im)perfect
ADI. This is valid for both a system that is based on traditional manufacturing as well as on additive
manufacturing. Extending the demand lead time resulted only in the TM context in large cost savings, as
JIT delivery became possible. Having a demand lead time that is longer than the supply lead time does
not result in large value to be gained, as it is possible to react to ADI anyway. Furthermore, this study
has quantified the difference between a system using either traditional or additive manufacturing. Only
in settings where both failure rates and production costs are equal or when production costs are lower,
the reliability is slightly worse and backorder costs are high, the additive manufacturing based system can
outperform the traditional manufacturing system. Concluding, the production costs and reliability of AM
parts are key factors that influence the future potential of AM.
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Limitations and Future Research

Future research on the assumptions that have been made in this research might be interesting. For example,
instead of considering a deterministic and identical demand lead time for all parts, the effect of a stochastic
or non-identical demand lead time can be investigated. This increases the mathematical level of the model,
but probably does not result in many new insights. Another interesting future research direction is to
develop a heuristic that takes into account the characteristics of (im)perfect ADI. For example, traditional
base-stock policies based on predicted demand cannot be used for the model, due to imperfect demand
signals. The heuristic can be used for solving larger problem instances.
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1 Introduction

Manufacturers use capital goods for the production of their products or for delivering their services. These
capital goods are highly utilised and under almost continuous stress. Therefore, these goods require main-
tenance to keep them in a state in which they can perform their function (Van Houtum and Kranenburg,
2015). The goal is to prevent equipment from failing, as for example down-time costs are high. In order
to achieve this, Condition Monitoring (CM) is often used. Using this method, a lot of data is collected
about the condition of all equipment. The data can be analysed to predict failures in advance using a
prediction technique (Topan et al., 2018). In case of a predicted failure, the prediction tool issues a warning
signal (demand signal) before the actual failure, which can be seen as Advance Demand Information (ADI).
ADI can be used for optimising spare parts inventory, as it enables proactive behaviour instead of reactive
behaviour. In other words, if the start of the failure process can be identified early enough (expected time
to failure is longer than the supply lead time), there is no need to stock a part (Louit et al., 2011). How-
ever, the obtained ADI is typically imperfect because of the following reasons: 1) false positives (warnings
without failures), 2) false negatives (failures without warnings) and 3) uncertainty about the exact timing
of the failure (Topan et al., 2018). This last kind of demand can be seen as random demand, which can-
not be predicted. To deal with this random demand, it is still needed to keep some level of inventory, but
manufacturers want to keep this level low as possible as too much unnecessary inventory results in high cost.

A new technology called Additive Manufacturing (AM), or 3D printing, could resolve the problem of too
much inventory. This technology has become more and more popular over the last years and is a game-
changer in the spare parts production, as it enables on-demand printing of parts with much shorter supply
lead times (Segzdaite, 2019). Consequently, it is possible to eliminate inventory and only produce spare
parts when they are needed. An example is the U.S. Navy, which has installed a 3D printer on one of its
warships. They can use the printer for manufacturing specific parts that are needed in case of a failure,
instead of replacing, for example, a complete door (3DPrintingIndustry.com, 2018). However, there are also
some disadvantages of using AM, such as the high development costs compared to traditionally manufac-
tured parts, which decreases the attractiveness of always using AM (Westerweel et al., 2018b). Another
disadvantage is the potential inferior quality of printed parts. Deloitte (2019) states that currently only a few
materials can be used for manufacturing, while satisfying industry quality standards. There are also some
size restrictions in the use of AM, only parts that are smaller than the printer’s casing size can be produced
(Attaran, 2017). This results in situations where large parts need to be produced in separate segments, but
this increases production time. Still, many researchers agree on the fact that Additive Manufacturing is the
future (DHL, 2016; PWC, 2017).

There is an increasing number of papers being published on how AM can be used in, for example, spare
parts inventory control or maintenance policies. The same is valid for papers about incorporating perfect
ADI in inventory control, while papers considering imperfect ADI are rare. A more detailed discussion of
related papers is provided in Section 2. This thesis aims to quantify how and by how much inventory levels
and costs can be reduced by using AM and (im)perfect ADI compared to a traditional inventory control
system using (im)perfect ADI. In order to quantify the effect, a Markov Decision Process will be formulated
and optimised using the value-iteration method. The MDP is inspired by the work of Topan et al. (2018)
and Westerweel et al. (2018a). This thesis can be placed in the context of relatively inexpensive, plastic
(polymer) parts, such as gears, gauges and housings for sensitive electronics. It can also be placed in the
context of laboratories and medical equipment. For example, parts of a washing centrifuge for blood group
serology or parts of X-ray equipment are manufactured by using additive technologies (GmbH, 2020).

This thesis is organised as follows. In Chapter 2, literature related to Additive Manufacturing in the spare
parts supply chain and Advance Demand Information is discussed. In Chapter 3, the problem description
for the thesis is introduced and the corresponding research questions are formulated. Also, the method-
ology of how to answer the research questions is discussed. In Chapter 4, the model description and the
corresponding mathematical model are provided. Furthermore, the verification and validation efforts of the
model are presented. In Chapter 5, the test bed is presented. Chapter 6 provides the results of the numerical
experiment for both the AM and TM context. The last chapter, Chapter 7, provides the main conclusions,
managerial insights and suggestions for future research.
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Academic Relevance

This thesis differs from the reviewed literature in Section 2, in that it is, to the author’s best knowledge,
the first that considers (im)perfect ADI in a context with additive manufacturing. As Sections 2.3 and 2.4
show, most of the papers consider inventory systems that use traditional manufacturing, for example Topan
et al. (2018), which is used as inspiration how to incorporate (im)perfect ADI. Therefore, this thesis provides
insights in the use of ADI in the context of additive manufacturing. Also, as we make a comparison between
a traditional and an additive manufacturing system, we provide insights in the differences (in performance)
between these type of inventory systems. The use of an additive manufacturing system is inspired by the
work of Westerweel et al. (2018a). Furthermore, both Topan et al. (2018) and Westerweel et al. (2018a),
are used as motivation for the MDP that has been formulated in this thesis.

Additionally, Topan et al. (2018) assume a lost-sales inventory model, while in this thesis a backordering
inventory model is used. In other words, Topan et al. (2018) assume that all unmet demand is satisfied by
either an emergency shipment or that it is lost to a competitor. In the context of this thesis, it is not realistic
to use that assumption. For example, the car manufacturer Porsche uses additive technologies to produce
spare parts for its classic cars. Classic car owners want the parts of the Original Equipment Manufacturer
(OEM) and are not able to switch to another car manufacturer. Therefore, it is reasonable to assume a
backordering policy.

Last, Westerweel et al. (2018a) assume a zero lead time for the (emergency) printing source. However, in
this thesis, it is assumed that not only the regular supply source has a positive lead time (L > 0), but also
the additive supply source. It is reasonable to assume a positive lead time, as it cannot be expected that all
parts can be printed during an overnight printing job. Furthermore, it can also be the case that a printed
part has to come from a central warehouse, which implies that it takes a certain amount of time before it is
delivered at the location where the part is required. In the example of Porsche, it is reasonable to assume
that only at large factories a printer is available for printing spare parts. So, when a part is required at a
local store, it takes a certain amount of time before the part is delivered at that local store. Therefore, it is
reasonable to assume a (small) positive lead time for the additive supply source.
Another key difference is that Westerweel et al. (2018a) do not use any kind of (im)perfect ADI. While, in
this thesis, it is the aim to investigate the value of (im)perfect ADI in an inventory control systems using
either TM or AM.

2



2 Literature Review

In this chapter, relevant literature regarding Additive Manufacturing and Advance Demand Information
is discussed (see Figure 1). The papers mentioned in the Venn diagram are considered to be the most
important papers for this thesis. First, Additive Manufacturing is discussed and its applications in practice.
Then, we discuss how AM is used in a dual sourcing strategy. Furthermore, two different forms of ADI are
discussed: perfect and imperfect. In the end, some papers regarding Markov Decisions Problems (MDP)
are discussed.

Figure 1: Venn diagram with overview of different literature directions

2.1 Additive Manufacturing

Additive Manufacturing, or 3D printing, is the construction of an object by adding materials layer by layer
based on a digital 3D model (Huang et al., 2013). The development of AM technologies started in the
1980s. Large progress has been made since then and it is believed that AM will be a game-changer in many
industries. AM naturally affects the production industry, as it does not require tools and changeover times.
Furthermore, as it only uses the necessary amount of material to produce, it minimises material waste.
Another industry in which the use of AM is growing, is the healthcare industry. Based on, for example,
tomography and imaging, it is possible to produce high complex, patient-specific constructs. The healthcare
industry is the third largest user of AM technologies and the use is expected to grow even more (Liaw and
Guvendiren, 2017). Also, in the retail sector the use of AM is growing. For example, Nike and Adidas use
AM for customised end products, such as footballs and shoes (Weller et al., 2015).

Major AM processes are fused deposit modelling, inkjet printing, laminated object manufacturing, laser
engineered net shaping, stereolithography, selective laser sintering and three-dimensional printing (Huang
et al., 2013). Initially, mainly polymers were the considered materials in AM technology, but recently more
materials are being used to produce functional parts. Still, more research is needed to ensure that AM
can compete with traditional manufacturing, as AM technologies are, for example, unable to produce large-
sized objects (Prakash et al., 2018). Despite some drawbacks, already many manufacturers are using AM
technologies for the production of (spare) parts. For example, in the automotive industry, Ford uses 3D
printed brake components for one of their cars. Another example is Porsche that uses 3D printing for some
specific parts of their engines. Also, in the aviation industry 3D printing is a popular production method.
British Airways has installed 3D printers around the world to make it possible to produce parts on demand
(Boissonneault, 2019).
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2.2 Additive Manufacturing in the Spare Parts Supply Chain

An industry in which AM can have a significant effect is the spare parts industry. The number of papers
that investigate the effect AM technologies can have on the supply chain has increased massively in the last
years (Gao et al., 2015). A dual source supply chain is often used to deal with potential interruptions in
the supply process. By using two suppliers, a manufacturer uses supplier diversification to reduce risks and
uncertainty (Ahiska et al., 2013). Another reason why manufacturers often uses a dual sourcing strategy
is that one of the two suppliers offers a faster (expedited) delivery at a higher cost compared to the other
supplier. So, as argued by Minner (2003), the optimal choice in an environment with multiple suppliers has
to trade-off the aspects of direct costs and supplier services.

Holmström et al. (2010) propose two different approaches to implement AM in the spare parts supply chain.
The first approach is centralised AM, in which spare parts are centralised in a single location per region.
This should improve the availability of spare parts and reduce holding cost, but the downside is the increase
in response time. The other approach is distributed AM, in which there are many locations where spare
parts can be manufactured and stored. This is especially help full for isolated systems, such that parts
can be produced on demand. Holmström et al. (2010) conclude that currently on demand and centralised
production of spare parts is the better approach. However, if AM does develop as expected, the distributed
approach becomes more feasible.

Knofius et al. (2020) consider the situation with traditional and additive manufacturing for spare parts,
a so called dual sourcing option. They assume a different failure behaviour of parts produced by the two
methods. Their numerical experiments shows that a dual sourcing option is superior compared to single
sourcing. The savings can go up to 10%, even when the costs of an AM part are three times higher than
a traditional manufactured part. The main conclusion of the paper of Knofius et al. (2020) is that dual
sourcing strategies are important for discovering all of the benefits of AM technologies. Song and Zhang
(2019) continue to investigate the situation in which both traditional and additive manufacturing are avail-
able. Their model decides on which part to stock and which part to print. Song and Zhang (2019) find that
as the unit cost of printing decreases and the lead time of 3D printing decreases, the utilisation of the AM
technology increases. Furthermore, they conclude that putting parts on stock and printing parts on demand
are complementary for achieving cost minimisation.

Another situation in which a number of papers have investigated the effect of AM is in military and human-
itarian missions. For example, Westerweel et al. (2018a) study how the Dutch army can use remote-location
printing to deal with spare parts shortages that occur between replenishments. They assume that printed
parts are less reliable than regular parts and that printed parts are only temporary replacements until a
regular part has arrived. Westerweel et al. (2018a) show that the optimal policy is relatively simple and
has a single threshold deciding when to print or when to wait until the next replenishment. They conclude
that the policy results in large operational cost savings and increased availability of assets. Den Boer et al.
(2020) conduct a qualitative study on the impact of AM on responsiveness, efficiency and sustainability on
the supply chain during military missions. They conclude that AM can reduce lead times, waste, inventory
and improves readiness and sustainability of parts for armed forces during missions abroad.

2.3 Perfect Advance Demand Information

An early paper that considers advance warnings of customers for their demands is the paper of Hariharan
and Zipkin (1995). They analyse constant and stochastic lead times, as well as single-stage systems and
multi-stage systems. Hariharan and Zipkin (1995) conclude that all lead time information must be available
in some central point in the supply chain where all the decisions are made, as policies benefit of coordina-
tion. However, they also indicate that their models need to be tested in more realistic scenarios with more
(demand) uncertainty.

Instead of a continuous review policy, Gallego and Özer (2001) consider a periodic review system. They
analyse stochastic inventory systems with either a positive set-up cost for each order or a zero set-up cost.
In the case of a positive set-up cost, state-dependent (s, S) policies are optimal for finite-horizon problems.
The state of the system is dependent on a modified inventory position. In case of a zero set-up cost, a
state-dependent base-stock policy is found to be optimal. The optimal policy is an increasing function of
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observed demands beyond a certain protection period. Gallego and Özer (2003) extends the problem to a
multi-echelon system. They show that the original multi-echelon problem can be decomposed into single
location periodic-review problems. Again, they used the modified inventory position as proposed in Gallego
and Özer (2001) for further reducing the dimension of each location. Gallego and Özer (2003) show that
state-dependent, echelon base-stock policies are optimal, especially in case of stationary problems. Another
extension of the paper of Gallego and Özer (2001) is discussed in the paper of Wang and Toktay (2008).
They discuss the same model, but now flexible (early) delivery is allowed. Wang and Toktay (2008) show
that by introducing flexible delivery, large cost savings can be achieved. Furthermore, they found that the
benefits of flexibility increases when there are larger degrees of ADI available. A striking finding in their
paper is that the benefit of increasing the demand lead time by one period is larger than decreasing the
supply lead time by one period. Previous studies that did not consider flexible delivery argued that the
effect of decreasing the demand lead time or the supply lead time is equivalent.

Louit et al. (2011) consider a spare parts inventory control model based on the condition (remaining life
time) of an item. They argue that inventories can be reduced as parts can be ordered at the moment a
potential failure is identified. In their numerical experiment, they show that an expedited order is more
beneficial than early delivery of the spare part in case of a failure. Instead of considering a single-component
configuration, Lin et al. (2017) consider an arbitrary number of machines. They show that a state-dependent
policy may lead to costs savings of on average 20% compared to a state-independent policy. Furthermore,
Lin et al. (2017) show that some parameters (e.g. number of machines or lead time) have a large influence
on the costs savings. Another important conclusion is that not using available degradation information may
result in additional costs of more than 25%.

2.4 Imperfect Advance Demand Information

In the paper of Topan et al. (2018), a clear explanation on what is imperfect ADI is given. As mentioned
in Section 1, they argue that ADI is imperfect because of the following three reasons: 1) false positives
(warnings without failures, also known as the precision), 2) uncertainty about exact timing of the failure
and 3) false negatives (failures without warning, also known as the sensitivity).

Topan et al. (2018) consider a lost-sales inventory model with imperfect ADI in a spare parts case as well as
in machine sales case. Condition monitoring is used for collecting the ADI. A numerical study showed that
imperfect ADI can result in significant cost savings, but that the quality of the information is dependent for
the amount of savings. It is desirable to have less false negatives than false positives. The benefit of ADI
increases even further when it is allowed to return excess stock, especially in the case of false ADI.

Tan et al. (2007) are analysing inventory policies incorporating imperfect ADI, where the ADI is collected on
customers demands. Their numerical experiment shows that the optimal ordering policy is a state-dependent
order-up-to type. The optimal order level is an increasing function of the ADI size. Furthermore, Tan et al.
(2007) propose a function for the upper bound of the order-up-to level, which is also depending on the ADI
size.

Tan et al. (2009) consider a multi-period inventory problem with two different demand classes having
different priorities (class 1 and class 2). To deal with the different priorities, they developed a rationing
policy utilising ADI. Numerical tests show that the value of ADI increases when the demand variance is
higher, relative importance of class-1 demand is higher and when there is sufficient demand of class-2 at the
first period. Tan et al. (2009) conclude that despite ADI is often imperfect, the benefits of using imperfect
ADI can be sufficiently large.
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3 Research Design

In this chapter, the project description is formulated. In Section 3.2, the main research question and the
corresponding sub-questions are formulated. Each of the research question is more elaborated on directly
after the question itself. Last, the scope of the thesis is provided.

3.1 Project Description

In this master thesis, we study a single-item, single-location spare parts inventory problem by utilising
(im)perfect Advance Demand Information with an option to produce via Traditional (TM) or Additive
Manufacturing (AM). Condition monitoring is used for collecting information in order to produce a demand
signal (ADI). We assume that the timing of the ADI is known and fixed. In other words, the demand lead
time is deterministic and identical for all parts.

As mentioned in Chapter 1, there are multiple demand types. The first type are so-called true positives
(TP), a demand signal that turns out to be true with probability p. The second demand type are so-called
false positives (FP), the demand for which we obtain a demand signal but will eventually not occur with
probability 1− p. This could result in a situation where it is decided to produce a part based on the ADI.
In the end, however, the demand will not occur and we have a part on stock. This part could be used for
another future demand, but in any case, some inventory cost needs to be paid.

How sure we can be about the number of true positives is dependent on the precision of the condition
monitoring tool. The precision (p) is defined as the number of true positives divided by the sum of true and
false positives. Hence, the precision can be formulated as:

Precision =
TP

TP + FP

The third and last demand type are false negatives (FN). This is demand for which no demand signal
is obtained but still occurs. So, only a specific fraction of demand can be predicted, which is called the
sensitivity (q). Hence, the sensitivity can be formulated as:

Sensitivity =
predicted demand

predicted demand + random demand

3.2 Research Questions

The main research question of this thesis is:

What are the characteristics that (im)perfect ADI and AM must have to be valuable in a
spare parts inventory control system compared to an inventory system using TM?

To answer the main research question, the following research questions are formulated:

1. How to model a spare parts inventory control system with ADI?
To answer this research question, we develop a Markov Decision Process (MDP). An MDP is used, as
this kind of model is helpful in decision making in situations where outcomes are partly random and
partly under the control of a decision maker. The defined MDP is used for both the traditional and the
additive manufacturing context. Westerweel et al. (2018a) consider the use of AM at remote locations.
Their MDP is used as an inspiration for the MDP that we develop. This thesis differs in three ways
from the paper of Westerweel et al. (2018a): 1) we consider ADI, 2) we assume a positive lead time
for regular and printed parts instead of a zero lead time and 3) they consider three different supply
sources. We also use Topan et al. (2018) as a starting point for this thesis. Furthermore, several
key assumptions for the model have to be made (e.g. single-location, single-item and backordering).
Another important part of modelling is to decide on how to evaluate the model with respect to cost or
other measurements.
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2. What are the model input values for the AM and TM supply methods?
The model developed at RQ1 needs several input parameters (e.g. supply lead time or production
costs). It is important to use realistic values in order to make reasonable conclusions. The values can
be collected via prior literature and studies or interviews with experts in the field of inventory control
and AM. In this thesis, the goal is to collect input parameters both based on literature and previous
studies (e.g. Coumans (2017), Jansman (2017)). The obtained values are evaluated in interviews with
multiple experts in the field of inventory control and AM.

3. What is the value of (im)perfect ADI within the AM and TM context? And what are
the characteristics of the optimal policy?
This research question provides insights on the value of incorporating ADI in a spare parts inventory
control policy. Using the answers of RQ1-RQ2, we should be able to compute costs for different
configurations. A numerical experiment can provide the exact insights on the value of ADI and AM
for the different configurations compared to an inventory control system using TM. Furthermore, as
parameters influence the outcome of the model, it is interesting to perform a sensitivity analysis by
changing the values of the input parameters (e.g. precision, costs and lead times). Also, we provide
insights on the characteristics of the optimal policy.
For example, as downtime cost are often very high, it might be required to have 3 regular parts on
stock when only traditional manufacturing is available. When ADI is implemented, we can anticipate
on some future demand. This could result in the fact that inventory can be reduced to 2 regular parts.
When switching to AM, it is possible to print parts with a shorter lead time. Consequently, it could
be the case that inventory is even further reduced to only 1 regular part as we have implemented ADI
and AM.

4. How does the inventory control system using AM perform compared to the system using
TM?
To answer this research question, we make a comparison between the inventory system using AM and
the system using TM. Again, using the answers of RQ1-RQ2, we should be able to make a comparison
between both systems. The comparison is made based on the total cost in both settings. Furthermore,
the comparisons should provide insights on investment decisions for a firm that could either go for
ADI precision/sensitivity (through sensors) or for AM.

3.3 Scope

In Section 1, we explained that ADI can be imperfect in three ways. In this thesis, we assume that the
demand lead time is deterministic and identical for all parts. That means that the ADI can only be imper-
fect in two ways: 1) only a certain amount of demand can be predited (q) and 2) only a specific amount of
demand signals will materialise (p).

Furthermore, in the thesis, we consider two different supply methods, which are Traditional Manufacturing
(TM) and Additive Manufacturing (AM). We want to study the effect of ADI and its quality on the control
policy considering different supply methods. We assume that traditional manufacturing has a significantly
longer supply lead time than AM. More specifically, we assume that the traditional manufacturing lead
time is larger than/equal to the demand lead time, but that the additive manufacturing lead time is shorter
than/equal to the demand lead time. The downside of using AM is that it has significantly higher production
cost than traditional manufacturing, which decreases the attractiveness of always using AM. Furthermore,
we assume that the quality of printed parts is inferior to regular parts (non-strictly), which increases the
probability that printed parts fail more often.
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4 Model

In this chapter, we first describe the model and introduce notation in Section 4.1. In Section 4.2, we provide
an example of how (un)predicted demand and ADI signals are generated. The formulation as MDP is
provided in Section 4.3. In Section 4.4, we discuss the verification and validation of the model. This chapter
provides the answer to RQ1:

How to model a spare parts inventory control system with ADI?

4.1 Model Description

We consider a single-item, single-location inventory system with periodic review and an infinite horizon. Let
N ∈ N be a finite number of systems in service. Each system has one critical part. When this critical part
fails, the machine is down and the part needs to be replaced by a spare part. Each part can only fail once
during a period. The failure probability of a part is denoted by f .

Condition monitoring is used to collect data in order to produce a demand signal (ADI), or in other words,
to predict a failure. We assume that each machine can only give one demand signal per period. Wt is a
stochastic variable and denotes the collected number of demand signals that is available at the beginning of
period t. wt denotes the realisation of Wt. This can be interpreted as the system being updated overnight
and receiving the new signals before the start of the new period. Wt is binomial distributed with parameters
equal to N − Bt −

∑t−1
u=t−τ wu and PADI, where Bt denotes the total number of backorders in the system

at the beginning of period t, which is elaborated on later in this section, and PADI denotes the corrected
probability of giving a demand signal. Section 4.2 provides an example of the model and explains why a
corrected probability is required. In Section 5.2 it is further elaborated on how the correction is derived. w
is a vector containing the demand signals that are in the system. Each collected demand signal either turns
out to be a true positive with probability p or a false positive with probability 1− p; p is also known as the
precision. In the former case, the signal belongs to an actual demand in period t + τ . In the latter case,
the signal leaves the system at the beginning of period t + τ + 1. τ is the time between a demand signal
becomes available to the system and when it becomes an actual demand or leaves the system, also known
as the demand lead time. The demand lead time is deterministic and identical for all parts.

The variable Dp
t denotes the number of signals that turn into an actual demand in period t+τ . This variable

is binomial distributed with parameters wt−τ and p. So, the total predicted realised demand in period t is
given by Dp

t . As we also consider unpredicted demand, the variable Du
t is introduced. This variable is defined

as the unpredicted demand in period t and follows a binomial distribution with parameters N −Bt −wt−τ
and PR. The first parameter indicates the number of parts that can still fail in period t, i.e. parts that are
not part of the predicted demand in period t, and the second indicates the random failure probability, which
is further elaborated on in Sections 4.2 and 5.2. This random failure probability is partly based on the
sensitivity q, i.e., the fraction of demand that can be predicted. So, the total demand in period t consists of
Dp
t and Du

t and is denoted by Dt.

Demand for parts is immediately satisfied from stock, if sufficient parts are on stock. The on-hand stock
is denoted by I. The stock is re-supplied by an ample supplier with a deterministic lead lime L (> 0) at a
cost of c (> 0) per part. In each period t, the size of the replenishment order placed in period t−L+ l and
due in period t+ l is denoted by zl for l = 0, ..., L. z is a vector containing the stock in the pipeline. When
a part is required but there is no available stock on hand, the demand is backlogged. In this situation, a
penalty cost b (> 0) per unit of unmet demand per period is incurred. A holding cost h (> 0) needs to
be paid for each unit of stock carried over from one period to the next. An overview of all mathematical
notation is provided in Appendix B.

The sequence of events in period t is as follows:

1. The collected signals wt are observed.

2. The replenishment order z0 that has been placed in period t− L and due in period t arrives.
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3. The current system state (Bt, It, z, w) is now completely known.

4. The order size zL is determined. It will arrive in period t+ L.

5. Both the predicted (Dp
t ) and unpredicted demands (Du

t ) are realised and fulfilled from stock, if spare
parts are available. The unmet demand is backlogged. There is no distinction between predicted and
unpredicted demand. Also, for both demands, the same backorder costs are incurred, so costs are
linear in the number of backorders. If required, a First Come First Served (FCFS) policy is applied.

6. Finally, at the end of period t, the ordering, holding and penalty costs are incurred.

4.2 Demand & ADI Generation

In this section, we provide an example on how the demand and ADI signals are generated. Also, we explain
why it is required to do corrections for the probability of ADI signals and random demand. The derivation
of the correction terms are further elaborated on in Section 5.2.

The demand that is coming from the ADI signals is generated in two steps. First, the machines should give
ADI signals based on a binomial distribution and, second, the demand signals become true or false, which
is again based on a binomial distribution. For the first step, the number of ADI signals follows a binomial
distribution and one would expect with parameters N − Bt −

∑t−1
u=t−τ wu and q·f

p
. The first parameter

indicates how many parts are left over that could give an ADI signal and the second parameter indicates
the probability that a signal is given. The probability is based on the fact that the fraction of failures we
can predict is q. So, the expected number of failures that can be predicted is q · f . Then, we need to take
into account the precision of the system. In other words, if p = 1, all of the predicted demand is true, so we
get q · f . However if p = 0.5, the number of signals that we receive increases, because now only in 50% of
the cases the demand signal is true. This leads to the usage of q·f

p
.

The second step for the ADI demand consists of calculating whether the ADI signal(s) become true or false.
This is done by using a binomial distribution with parameters wt−τ and p, which are the number of demand
signals that have been in the system for exactly τ periods, and the precision.

We now introduce two examples to show how the ADI signals and predicted demand are generated. These
examples demonstrate that the effective failure rate, i.e. the actual observed failures, deviate from the input
failure rate. Consequently, it is not possible to make fair comparisons between different settings.

Example 1. Consider N = 2, τ = 2, f = 0.025 and p = q = 1. Notice that precision and sensitivity are
both 1, so that all demands are predicted and all predictions become demands. These input values result
in the following probability of ADI: q·f

p
= 0.025. Table 1 shows how the generation of ADI and the demand

following from the ADI, evolves over time using expected values.

The first column of Table 1 shows that at t = 0, there are 2 systems available for providing an ADI signal.
Then, the expected number of ADI signals is 2 · 0.025 = 0.050. There is no predicted demand, in this first
period. Next, at t = 1, there are in expectation N − 0.050 = 1.950 systems available that can give a signal.
So, the expected number of ADI signals is 1.950 · 0.025 = 0.049. Again, there is no predicted demand. At
t = 2, the expected number of machines that can give a signal is N − 0.50− 0.49 = 1.901 and the expected
number of signals 1.951 · 0.025 = 0.049. We now also have some predicted demand as a result from the ADI
signals that were given in period t− τ . Because p = 1, all of the given demand signals turn out to be true.
So, the expected predicted demand at t = 2 is 0.050. The effective failure rate, i.e. the actual observed
number of failures, is 0.050/N = 0.025. Repeating all of these steps for t = 3, we find that the effective
failure rate has dropped to 0.024 and stays at this level as t goes to infinity. In other words, the long run
effective failure rate is not equal to the input failure rate.

9



Table 1: Example of generation of (ADI) demand and ADI signals with p = q = 1

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.950 1.901 1.904 1.905 1.905
ADI signals (wt) 0.050 0.049 0.048 0.048 0.048 0.048
Dp

t 0.000 0.000 0.050 0.049 0.048 0.048
Effective failure rate 0.000 0.000 0.025 0.024 0.024 0.024

Example 2. Consider N = 2, τ = 2, f = 0.025, q = 1 and p = 0.5; half of the predicted demands turn
out to become an actual demand. These input values result in the following probability of ADI signals:
q·f
p

= 0.05. The probability of random demand is zero, as q = 1. Table 2 shows how the generation of ADI
and the demand following from the ADI, evolves over time.

Table 2: Example of generation of (ADI) demand and ADI signals with p = 0.5 and q = 1

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.900 1.805 1.815 1.819 1.818
ADI signals (wt) 0.100 0.095 0.090 0.091 0.091 0.091
Dp

t 0.000 0.000 0.050 0.048 0.045 0.045
Effective failure rate 0.000 0.000 0.025 0.024 0.023 0.023

The difference between Tables 1 and 2 is that in the latter, only half of the predicted demands turn out to
be an actual demand. For example, at t = 0 the expected number of ADI signals is 0.100. Then, τ periods
later at t = 2, it turns out that the expected realised demand is 0.025. As t goes to infinity, we see that the
expected realised demand is 0.023, which is not equal to the input failure rate.

As Tables 1 and 2 show, when t goes to infinity, the long run effective failure rate is not equal to the input
failure rate. This already happens in the most straightforward case of p = q = 1. Also, the effective failure
rate increases as the precision increases, which is caused by the finite installed base size. The intuition
behind this is that machines provide demand signals, resulting in the situation where machines have pro-
vided ADI and are therefore ‘free of failing’. Meaning, for a specific time period nothing can happen with
these machines. As the precision decreases, the ADI does not result in an actual failure, which decreases
the effective failure rate. As the precision increases, more of the ADI becomes an actual failure, which
increases the effective failure rate. This, of course, needs to be corrected, because a better precision should
not result in extra failures. The mathematical derivations of the correction term can be found in Section 5.2.

The other part of the total demand is the random demand. The random demand is generated by using a
binomial distribution with parameters N − Bt − wt−τ and (1−q)·f

1− q·f
p

. The probability is based on that the

expected number of unpredicted failures is (1− q) · f and we need to compensate for the fraction of demand
signals that has been given for a specific period, as this is the predicted demand. So, to compensate for the
fact that not all machines can still randomly fail, we subtract the probability that a demand signal has been
given earlier. This leads to the usage of 1− q·f

p
.

Example 3. Consider N = 2, τ = 2, f = 0.025 and p = q = 0.5. These input values result in the following
probability of ADI signals: q·f

p
= 0.025 and of random demand: (1−q)·f

1− q·f
p

= 0.013. Table 3 shows how the

generation of ADI, the demand following from the ADI and the generation random demand, evolves over
time.
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Table 3: Example of generation of (ADI) demand and ADI signals with p = q = 0.5

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.950 1.901 1.904 1.905 1.905
ADI signals (wt) 0.050 0.049 0.048 0.047 0.048 0.047
Dp

t 0.000 0.000 0.025 0.024 0.024 0.023

Available for random 2.000 2.000 1.975 1.976 1.976 1.997
Du

t 0.026 0.026 0.025 0.025 0.025 0.026

Dp
t + Du

t 0.026 0.026 0.050 0.049 0.049 0.049
Effective failure rate 0.013 0.013 0.024 0.024 0.024 0.024

As Table 3 shows, when t goes to infinity, the effective failure rate is lower than the input failure rate.
Furthermore, if p increases to 1, we find that the effective failure increases (effective f = 0.025). Therefore,
for both the probability of ADI signals and random demand, it is required to do a correction to keep the
effective failure rate the same as the input rate. The mathematical derivations of the correction terms can
be found in Section 5.2.

4.3 Markov Decision Process

We use a discrete-time Markov Decision model to formulate the optimisation problem. A state of the system
is defined as S = (B, I, z,w), where:

• B denotes the number of backorders in the system.

• I denotes the on-hand inventory level.

• z is a vector containing the stock in the pipeline, z = (z1, ..., zL−1), with zj , j = 1, ..., L− 1, denoting
the number of parts to arrive in j periods.

• w = (wt−τ , ..., wt) is a vector containing the number of demand signals that are available in the
system at the beginning of period t.

The objective is to determine zL, the order size that will arrive at time t + L, such that total costs are
minimised. Therefore, the action space is defined as At = {(zL) | zL ≥ 0}.

The direct costs that consist of ordering, inventory holding, and backorder costs, is defined as:

C(B, I, z0, zL, d) = czL + h(It−1 + z0 −Bt−1 − d)+ + b(Bt−1 + d− It−1 − z0)+ (1)

As we consider an infinite horizon MDP, the problem can be solved using backward induction. We define
Vt(B, I, z,w) as the value function in period t. The objective is formulated as:

Minimise lim
t→∞

Vt (2)

Then, for all t the following Bellman equation is formulated:

Vt(B, I, z,w) = min
(zL)∈At

C(B, I, z0, zL, d)+γ

N∑
d=0

P (D = d)Vt+1(B+d−I−z0, I+z0−B−d, z̄, w̄,Wt+1), (3)

where z̄ = (zL) and w̄ = (wt−τ+1, ..., wt+1). Also, d denotes the realisation of the variable Dt. d is calculated
using the convolution of Dp

t and Du
t . Equation (3) represents the value function and consists of the direct

cost for the corresponding state plus the discounted value of successor states. These successor states are
dependent on the demand and the replenishment sizes. An example of the model’s output is given in Section
4.4.
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4.4 Verification and Validation of Model

Verification and validation are important steps in modelling, as these steps are used for confirming that the
model is correctly implemented based on the conceptual model and that the output is correct. In this thesis,
verification and validation have been done by manually checking the value function for multiple states. For
small problems, it is possible to manually track the steps that can be taken in the MDP and also to cal-
culate the corresponding value functions. When the manually calculated values are the same as the values
calculated by the model, we can assume that the model is implemented correctly. Furthermore, when the
model works for small problems, it can be expected that it also works for larger problems.

For the extreme situation where we have a precision = recall = 1.0, it is possible to formulate a Markov-chain
problem instead of a MDP, due to the low number of possible states. Furthermore, because in this situation
only predicted demand from the ADI can occur and all of the signals are true, we can formulate the optimal
policy by hand. As the lead time is only one period, it is optimal to order when the ADI demand is also one
period from occurring. The optimal solution of the Markov-chain should correspond to the optimal solution
of the formulated MDP.

Example 4. The input parameters that are used to present the solution of the Markov-chain and the
corresponding MPD, are as follows: N = 2, τ = 1, L = 1, f = 0.01, c = 10, h = 1, b = 25, γ = 0.99, p =
q = 1.0. The situation in which p = q = 1.0 results in the following Markov-chain and probability matrix:


0.9797 0.0202 0.0001 0 0 0

0 0 0 0.9898 0.0102 0
0 0 0 0 0 1

0.9797 0.0202 0.0001 0 0 0
0 0 0 0.9898 0.0102 0
1 0 0 0 0 0


Figure 2: Markov-chain example

This Markov-chain can be solved using the following matrix notation:

vπ = (I − γPπ)−1Rπ, (4)

where

vπ Value function corresponding to policy π
Pπ Probability matrix corresponding to policy π
Rπ Reward values corresponding to policy π
I Identity matrix
γ discount factor

When solving this Markov-chain, we find that the value for the (0,0,0,0,0) state is 20.00. Solving the MDP
using Python gives the exact same number. So, we find that both methods result in the same value. This
also holds for the system states (B,I,z,w) and transition probabilities of both methods. So, based on these
verification steps, we can conclude that the model solves the problem in the correct way.

Another extreme situation that could be used to validate the MDP, is when precision = recall = 0. In
this situation, only random demand can occur. However, because of only random demand, it is hard to
manually derive what the optimal policy should look like. Therefore, this situation cannot be used as an
extra situation to validate the model’s output.

We now check the solutions of the model for lower values of p and q. Because we cannot manually determine
what the optimal policy must be for lower values, we check whether the solutions evolve as expected. For
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example, as the precision of the system improves, it can be expected that the total cost decreases. To show
the behaviour of the model for lower values for the precision, we introduce an example that is discussed next.

Example 5. In order to show the behaviour of the model, another small example is presented. The following
parameters are considered in this example: N = 2, τ = 1, L = 1, f = 0.2, c = 10, h = 1, b = 25, γ = 0.9, p =
{0.5, 0.7, 0.9}, q = 0.5. The values do not represent parameters in reality, but do show the behaviour of the
model as long as the cost parameters make sense relative to each other. Furthermore, because the same
model is used for the TM and the AM context, the behaviour of the model will be the same, only the input
values that are used will be different. The results of the example are shown in Table 4. The values represent
the state in which all values are zero, so (B, I, z,w) = (0, 0, 0, 0).

Table 4: Small example of MDP

Precision V (e)
0.5 65.35
0.7 65.33
0.9 64.56

As Table 4 shows, the costs are decreasing when the precision of the ADI increases. This makes sense,
because when you can predict more precisely what your total demand from ADI will be, you can better
anticipate on this demand. The better anticipation means that you can order the required parts just-in-time,
reducing the amount of inventory needed. Furthermore, you are able to reduce the backorder cost, because
you know there will be a part needed with high certainty (because the precision is high) and you can order
this part just-in-time making sure you have the part available when required.
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5 Test Bed Design

A numerical study is performed to evaluate the performance of the MDP. In Section 5.1, we describe the
different test bed that is used for the numerical study. Next, we provide a mathematical correction term for
the generation of ADI and random demand in Section 5.2. We thus answer RQ2 in this chapter.

What are the model input values for the AM and TM supply methods?

5.1 Test Bed

We design a test bed that is used for the regular supply source, as well as for the AM supply source. The
test bed can be placed in a context where the printed parts are produced by a Fused Deposition Modelling
(FDM) process. In other words, the printed parts consist of polymers. This test bed is presented in Table
5, which has a total of 36 instances for traditional manufacturing and 324 instances for AM.

Table 5: Setup test bed

Parameters Options Value Reference
N 1 3
τ (days) 2 1,2 Topan et al. (2018)
b (e/day) 2 50, 250 Topan et al. (2018), Experts
p 3 0.5, 0.75, 1.0 Topan et al. (2018)
q 3 0.5, 0.75, 1.0 Topan et al. (2018)
γ 1 0.995
ε 1 10−6

Lr (days) 1 2 Experts
f r 1 0.001 Westerweel et al. (2018a)
cr (e) 1 100 Experts

hr (e/e/day) 1 20%cr

365 Van Houtum and Kranenburg (2015)

Lp (days) 1 1 Experts
fp 3 0.001, 0.005, 0.025 Westerweel et al. (2018a)
cp (e) 3 100, 200, 400 Experts

hp (e/e/day) 3 20%cp

365 Van Houtum and Kranenburg (2015)
Heinen and Hoberg (2019)

The difference between the traditional and additive manufactured parts is in the lead time, the production
costs and the failure probability (reliability). The lead times of the printed parts are shorter compared to
the traditionally produced parts. This assumption is made in many other papers (e.g. Knofius et al. (2020);
Pijnappels (2019); Westerweel et al. (2018a)). A reason why it is possible to assume such a short lead time,
is because often a printer is located on-site, which eliminates a large amount of transportation time.

Considering the production costs, Heinen and Hoberg (2019) suggest that parts produced by AM have a
cost premium between zero and three compared to regular manufacturing. Knofius et al. (2020) mention
that also the costs of raw materials used for AM, are high. Furthermore, based on the interviews with
multiple experts, it became clear that the cost premium can even be up to a factor 10, especially for metal
parts. For this type of parts, the development costs are much higher than for plastic parts. Therefore, the
cost factor is higher for metal parts compared to plastic parts. Based on the two papers and conversations
with experts, we consider a cost premium between 2 and 4 (including investment/development costs), as
this thesis is placed in the context of inexpensive polymer parts.
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The failure rate represents the reliability of parts. To differentiate between the reliability of traditional and
additive manufactured parts, we use several rates for printed parts. Three different rates for AM are used
to emphasise the difference in quality, two of three rates are higher than the rate used for the conventional
produced parts. The third rate is equal in both contexts to analyse if both part types have the same reli-
ability. Examples of papers that also use this assumption are: Westerweel et al. (2018a), Westerweel et al.
(2018b), Knofius et al. (2020) and Holmström et al. (2010).

Two different values are used for parameter τ ; 1 and 2. These values are used to analyse situations where
the demand lead time is equal to the supply lead time (L = τ), where the supply lead time is longer than
the demand lead time (L > τ) and where the demand lead time is longer than the supply lead time (L < τ).
Furthermore, we can provide insights on a setting where we change from L > τ to L = τ (see TM context).

For the precision and recall, three different values are considered, because we want to study the effect of
(im)perfect ADI. Using different values makes it possible to provide insights in which characteristics ADI
must have to be valuable. The chosen values are based on the study of Tan et al. (2009).

The holding costs are based on 20% of the production costs of the corresponding supply source. For exam-
ple, Van Houtum and Kranenburg (2015) suggest that inventory holding costs per part are often 20% of its
value, also Heinen and Hoberg (2019) consider a value of 20% and Lamghari-Idrissi et al. (2020) consider
17%. Therefore, it is reasonable to use 20% of the production costs.

The data is validated by multiple practitioners/experts in the field of inventory control and AM. The ex-
perts have been consulted individually to ensure the validity of the collected values, i.e., to prevent that the
experts will influence each other on what they consider to be realistic values. Also, the final test bed has
been evaluated with two experts.

For computational purposes, the order size (action space) is restricted by a specific value, which is set to
2 ∗N . This value is chosen, because it means that in every state it is possible to order two times the size of
the installed base. So, in case that the entire installed base size is a backorder, it is possible to satisfy all
of the backorders plus putting the complete installed base size on stock as well. For the optimal policy, it
is verified that the order limit is never reached, but is always below this limit. In other words, setting the
order limit does not influence the optimal values and policy. Another restriction is placed on the number of
parts that can be in the system (state space). So, the maximum number of parts that can be on stock and
on order during L+ 1 states, can never exceed 2 ∗N ∗ (L+ 1). Meaning, it is possible in each stage during
the lead time to have the maximum order size in the system. It has been checked whether it was possible
to reach that maximum state, which was found to be possible. However, the results showed that is never
optimal to be in that state.

5.2 Correction on Failure Probabilities

In Section 4.2, it is explained that when applying the model, the effective failure rate is not equal to the
input failure rate. In this section, a corrected failure rate (f̂(q)) is introduced to correct for this issue. Now

f can be interpreted as the target or effective failure rate and f̂(q) as a derived failure rate to guarantee that

the effective failure rate is not influenced by other variables. f̂(q) is a function of f, q,N, p and τ .

To define f̂(q), we explain how the probabilities of giving an ADI signal and of random demand are corrected.
First, we elaborate on the correction for the probability of generating an ADI signal. Next, we provide the
correction term for random demand. We show the same example as in Section 4.2, but now with these
correction terms. With this example, the intuition behind this correction is provided.

ADI Demand
In a period t, the number of machines that could give a demand signal is denoted by xt and the number of
machines with a demand signal is denoted by ADIt. So, xt can be calculated by xt = xt−1 + ADIt−(τ+1).

From Section 4.1, we know that xt = N−Bt−
∑t−1
u=t−τ wu. Furthermore, we know that

∑t−1
t−τ ADIt+xt = N .

For an infinite horizon, we define X and ADI as follows:
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X∞ = lim
T→∞

1

T

T∑
t=1

xt (5)

ADI∞ = lim
T→∞

1

T

T∑
t=1

ADIt (6)

Where X∞ is the expected number of machines that could give a demand signal and ADI∞ the expected
number of machines that actually provided a demand signal. The expected (effective) number of failures
that are a result from the ADI should be q · f ·N (see Section 4.2). In the long run, the following equation
should hold.

ADIt · p = q · f ·N (7)

We now introduce f̂(q) to denote the corrected failure probability for ADI. The uncorrected failure probability

of getting ADI was q·f
p

, while the adjusted probability of getting ADI is defined as
q·f̂(q)
p

. The expected
number of parts that give a demand signal is then:

ADIt =
q · f̂(q)
p
·Xt−1 (8)

When filling in Equation (8) into Equation (7), we get:

q · f̂(q)
p
·Xt−1 · p = q · f ·N

q · f̂(q) ·Xt−1 = q · f ·N

f̂(q) ·Xt−1 = f ·N

Xt−1 =
f ·N
f̂(q)

(9)

it further holds that:

t−1∑
t−τ

ADIt +Xt = N (10)

In the steady state:

... = ADIt−2 = ADIt−1 = ADIt = ADIt+1 = ADIt+2 = ... = ADI∞ (11)

... = Xt−2 = Xt−1 = Xt = Xt+1 = Xt+2 = ... = X∞ (12)

from (10), (11) and (12) follows:

τ ·ADI∞ +X∞ = N (13)

Filling in Equation (8) into Equation (13) (using (11) and (12)) results in:

τ ·
q · f̂(q)
p
·X∞ +X∞ = N

X∞

(
τ · q · f̂(q)

p
+ 1

)
= N

X∞ =
N(

τ ·q·f̂(q)
p

+ 1

)
(14)
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Combining Equations (9) and (14), gives the following equality:

f ·N
f̂(q)

=
N(

τ ·q·f̂(q)
p

+ 1

)
f

f̂(q)
=

p

τ · q · f̂(q) + p

p · f̂(q) = f · τ · q · f̂(q) + f · p

f̂(q)(p− f · τ · q) = f · p

f̂(q) =
f · p

p− f · τ · q

(15)

The adjusted probability on ADI was defined as
q·f̂(q)
p

. So, filling in Equation (15) gives the actual probability
of ADI:

PADI =
q · f̂(q)
p

=
q · f

p− τ · q · f

(16)

However, it should be noted that this results in a corrected probability. Consequently, there are certain
limits belonging to the adjustment. For example, if p − qτf = 0, there will be a division by zero. Also, if
p < qτf , there will be a negative probability, which by definition is not possible. Finally, if qf > p − qτf ,
there will be a probability larger than one, which is also by definition not possible. In other words, there
are certain mathematical limits for which this correction term will work, but outside these limits it will not
function.

We now introduce two examples, which are the same as Example 1 and 2 in Section 4.2, but are now based
on the correction terms. Both examples show that as t goes to infinity, the effective failure rate is the same
as the input failure rate, as is required to make fair comparisons.

Example 6. Consider N = 2, τ = 2, f = 0.025 and p = q = 1. These input values result in the following
probability of ADI signals: PADI = 0.026. The probability of random demand is zero, as q = 1. Table 6
shows how the generation of ADI and the demand following from the ADI, evolves over time using expected
values.

Table 6: Example of corrected generation of (ADI) demand and ADI signals with p = q = 1

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.947 1.896 1.899 1.900 1.900
ADI signals (wt) 0.053 0.051 0.050 0.050 0.050 0.050
Dp

t 0.000 0.000 0.053 0.051 0.050 0.050
Effective failure rate 0.000 0.000 0.026 0.026 0.025 0.025

Example 7. Consider N = 2, τ = 2, f = 0.025, q = 1 and p = 0.5. These input values result in the
following probability of ADI signals: PADI = 0.053. The probability of random demand is zero, as q = 1.
Table 7 shows how the generation of ADI and the demand following from the ADI, evolves over time.

Table 7: Example of corrected generation of (ADI) demand and ADI signals with p = 0.5 and q = 1

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.889 1.784 1.796 1.801 1.800
ADI signals (wt) 0.111 0.105 0.099 0.100 0.100 0.100
Dp

t 0.000 0.000 0.056 0.052 0.050 0.050
Effective failure rate 0.000 0.000 0.028 0.026 0.025 0.025
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Random Demand
The other part of the total demand is the random demand. The random demand is generated using a
Binomial distribution with parameters N −Bt−wt−τ and PR. N −Bt−wt−τ denotes the number of parts
that could fail during a period (installed base size - backorders - the realised predicted ADI demand for that
specific period). Now, the derivation of the random failure probability is explained.

In each period in steady state, the expected effective failure rate should be the same as in the input failure
rate. In steady state, the expected number of unpredicted failures per period can be given by:

E[Du] = (1− q) · f ·N (17)

The actual number of machines that could fail randomly at time t is denoted by yt = N − ADIτ · p. In
a random period t, the random failures are calculated by yt · f̂(r), where f̂(r) denotes the adjusted random
failure probability. On average for an infinite horizon, the following is formulated:

Y∞ = lim
T→∞

1

T

T∑
t=1

yt (18)

Y∞ = N −ADI∞ · p (19)

E[Du] = Y∞ · f̂(r) (20)

Furthermore, the expected number of parts that have provided ADI per period in steady state is q·f ·N
p

, (see
Equation (7)). So, when combining Equations (17) and (20), the following random failure probability can
be formulated:

(1− q) · f ·N = Y∞ · f̂(r)
(1− q) · f ·N = (N −ADI∞ · p) · f̂(r)

(1− q) · f ·N =

(
N − q · f ·N

p
· p
)
· f̂(r)

(1− q) · f ·N = (N − q · f ·N) · f̂(r)

f̂(r) =
(1− q) · f ·N
N − q · f ·N

f̂(r) =
(1− q) · f
1− q · f

(21)

Example 8. Consider N = 2, τ = 2, f = 0.025 and p = q = 0.5. These input values result in the following
probability of ADI signals: PADI = 0.026 and of random demand: f̂(r) = 0.013. Table 8 shows how the
generation of ADI, the demand following from the ADI and the generation random demand, evolves over
time.

Table 8: Example of corrected generation of (ADI) demand and ADI signals with p = q = 0.5

t 0 1 2 3 4 ∞
Available for ADI 2.000 1.947 1.896 1.899 1.900 1.900
ADI signals (wt) 0.053 0.051 0.050 0.050 0.050 0.050
Dp

t 0.000 0.000 0.026 0.026 0.025 0.025

Available for random 2.000 2.000 1.974 1.975 1.975 1.975
Du

t 0.025 0.025 0.025 0.025 0.025 0.025

Dp
t + Du

t 0.025 0.025 0.051 0.050 0.050 0.050
Effective failure rate 0.013 0.013 0.026 0.025 0.025 0.025
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6 Results

In this chapter, the results of the numerical experiment are discussed. First, in Section 6.1, we further
elaborate on how the performance (total cost) of the MDP is evaluated. Then, in Section 6.2, we present
the results of the additive manufacturing context. Third, the results of the traditional manufacturing context
are presented in Section 6.3. Last, in Section 6.4, we discuss the differences between the traditional and
additive manufacturing context. We thus answer RQs 3 and 4 in this chapter.

What is the value of (im)perfect ADI within the AM and TM context? And what are the
characteristics of the optimal policy?

How does the inventory control system using AM perform compared to the system using TM?

6.1 Performance Evaluation

The optimal solutions for the different parameter settings are compared to each other and the gaps between
the solutions are evaluated. Furthermore, we want to find the optimal starting inventory on-hand for each
setting of p and q (OH∗q,p) by taking the value function and adding the corresponding production costs. We
consider starting OH’s from zero to six and we add OH∗q,p · c to the value function of that state. If we omit
to do this, states with OH > 0 are receiving parts for free. In ‘normal’ inventory systems, it is not needed to
add the production costs in this way, because these costs are seen as unavoidable costs. In other words, these
costs have to be made to deal with demand and are therefore, most of the time, not considered. However,
in this thesis, the production costs are used as a fundamental characteristics of both the traditional and the
additive manufacturing source.

The states that will be compared are the states that resulted in the optimal starting inventory on-hand,
so (B, I, z,w) = (0,OH∗q,p, 0, 0). This state is chosen, because it is important to use the optimal state for
every setting in order to make fair comparisons. Furthermore, to not give any state any kind of benefits
of already having parts on stock, in transit or any ADI signals, all other parameters are set to zero. This
makes it possible to make justified comparisons.

The total expected cost of the MDP with perfect ADI (p = q = 1) are denoted as V1,1 and with other
values for p and q as Vq,p. The gap %GAP, which is also referred to as the value of (im)perfect ADI, is the
percentage cost difference between the different levels of ADI quality, which can be determined as follows:

%GAP =
Vq,p(0,OH∗q,p, 0, 0)− V1,1(0,OH∗1,1, 0, 0)

V1,1(0,OH∗1,1, 0, 0)
· 100% (22)

Then, to calculate the relative cost difference between the TM and AM context, we define:

%AM Value =
V AM
q,p (0,OH∗q,p, 0, 0)− V TM

q,p (0,OH∗q,p, 0, 0)

V TM
q,p (0,OH∗q,p, 0, 0)

· 100% (23)

6.2 Additive Manufacturing

In this section, we present the results of the numerical experiment for the additive manufacturing context.
We start with discussing the value of (im)perfect ADI for the different failure rates. Comparisons between
the different failure rates are made throughout the section. Furthermore, we discuss the characteristics of
the optimal policy for the different failure rates and the effect of imperfect ADI on the optimal policy.

As mentioned in Section 5.1, two different values are used for τ ; 1 and 2. In this section, we only discuss
the results for τ = 1, as there are only minimal differences in total cost between using either τ = 1 or τ = 2.
The relative cost difference compared to perfect ADI with τ = 2 is shown in Appendix C.2. Appendix C.3
shows the relative cost difference between τ = 1 and τ = 2 for each individual failure rate.
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In general, we find that for higher failure rates it is more desirable to have fewer false negatives (high q)
than having fewer false positives (high p). As the failure rates decreases, it becomes more important to
predict demand more precisely. Also, the value that can be gained by using ADI, increases for lower failure
rates. For the characteristics of the optimal policy, we find that as the ADI improves, it is possible to keep a
minimum amount of stock. Stock level can even be zero for low demand rates. Depending on the precision
of the system, the order size is the same as the number of demand signals or some signals are ignored. Also,
the values of b and cp have a large effect on determining the optimal order size. Furthermore, we find that,
in this context, increasing the demand lead time does not result in large cost savings. The reason is that
we have a supply lead time that is equal to the demand lead time (Lp = τ). In other words, the predicted
demand can already be satisfied JIT. Increasing the demand lead time does therefore not result in much
value that can be gained, because it is possible to react to ADI anyway.

6.2.1 The Value of (im)perfect ADI

In this section, we discuss the value of (im)perfect ADI for the different failure rates. The relative cost
differences are calculated following Equation (22). We present the results for cp = 100 and cp = 400, see
Appendix C.1 for the results with cp = 200.

6.2.1.1 Failure Rate 0.025

Table 9: Relative cost difference compared to perfect ADI with fp = 0.025 and τ = 1

b = 50 b = 250
q p cp = 100 cp = 400 cp = 100 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 19.50 1 11.66 0 19.61 2 19.60 1
0.75 19.41 1 10.83 0 19.60 2 19.60 1
1.0 19.00 1 9.85 0 19.60 2 19.38 1

0.75
0.5 18.81 1 9.73 0 18.90 1 18.70 1
0.75 18.09 1 7.38 0 18.89 1 18.30 1
1.0 17.94 1 4.98 0 18.89 1 18.05 1

1.0
0.5 10.17 0 8.69 0 10.22 0 10.19 0
0.75 4.42 0 4.41 0 4.42 0 4.42 0
1.0 - 0 - 0 - 0 - 0

Table 9 shows the relative cost difference between the different values for q and p compared to the ideal
setting where p = q = 1 (see Appendix G.1 for the actual values). As can be seen in Table 9, increasing q
results in a relatively larger cost decrease than increasing the precision. The situation where p = q = 0.5 is
when costs have increased the most compared to the situation with perfect ADI. This makes sense, as this
situation in which both parameters are equal to 0.5, is the worst scenario that has been considered. Some
small performance gains are achieved when increasing p, except for cases where q = 1, as in this setting
only the precision can further decrease total cost. These small gains are a result of the fact that when p
increases, the probability of predicting the demand correctly increases as well. Consequently, the predicted
demand can be ordered Just-in-Time (JIT) and will be used immediately when arrived. In contrast to the
situation with lower values for p, where the ordered parts might not be required and are put on stock. As
a result, the costs are relatively higher in situations where p is lower.

Hence, in this setting, it is more beneficial to predict more failures than having more precise predictions
(unless q = 1). This is in line with Topan et al. (2018), as they conclude that having fewer false negatives
(high q) is more desirable than having fewer false positives (high p). However, Topan et al. (2018) find that
the (average) value of ADI is slightly higher. A reason for the difference in value of ADI is that Topan et al.
(2018) use higher values for the emergency costs. As costs become higher to not be able to satisfy demand,
it becomes more beneficial to invest in better ADI.
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The relatively low holding costs and the high backorder costs (setting where b = 250) are causing the effect
that parts are put on stock, as it is relatively cheap to have stock to prevent backorders from happening. A
higher level of q can result in a lower level of inventory, as more demand is predicted, which decreases the
probability of random demand. In other words, the (safety) stock that is required to fulfil or to anticipate
on random demand can be reduced. Hence, as q increases, less inventory is needed, because the predicted
demand can be satisfied JIT. These findings are in line with Benjaafar et al. (2011), as they concluded that
when the backorder/holding cost ratio is large, the base-stock levels are high for systems both with and
without ADI, and the probability of backorders is relatively low. Hence, the demand information becomes
relatively less useful and makes little difference for decisions taken.

6.2.1.2 Failure Rate 0.005

Table 10: Relative cost difference compared to perfect ADI with fp = 0.005 and τ = 1

b = 50 b = 250
q p cp = 100 cp = 400 cp = 100 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 37.50 1 18.76 0 41.15 1 37.71 1
0.75 37.46 1 14.80 0 41.05 1 37.69 1
1.0 37.42 1 11.97 0 38.67 1 37.50 1

0.75
0.5 29.43 0 17.19 0 39.07 1 33.38 0
0.75 26.75 0 11.01 0 39.00 1 32.00 0
1.0 24.75 0 6.00 0 37.53 1 31.00 0

1.0
0.5 16.66 0 16.01 0 16.73 0 16.73 0
0.75 7.61 0 7.60 0 7.61 0 7.61 0
1.0 - 0 - 0 - 0 - 0

Similar to fp = 0.025, it is observed that increasing q has a larger effect on cost reduction than increasing the
precision (see Appendix G.2 for the actual values). However, considering the case with b = 50, we observe
that the effect of an increasing precision becomes larger for higher values of q. In contrast to the case with
b = 250, in which an increasing recall clearly has the largest effect on cost reduction (especially when q
becomes one). The difference in the effect of precision is caused by the relatively large effect of the size of
b. In case b is high, it has a relative large impact on the total cost compared to the holding costs, which are
relatively small. As a result, it becomes more important to predict more demand than having the predicted
demand right. However, in case b gets lower, the relative effect it has on the total cost decreases as well.
This results in a situation where it is also important to correctly predict demand, as the relative impact of
b and the holding costs become more equal. Furthermore, as q increases, the probability of random demand
decreases and therefore, the probability of a backorder decreases as well (predicted demand can be delivered
JIT as L = τ). This results in a decrease in the relative effect that the backorder costs have on the total
cost compared to the holding costs. So, now the holding costs become relatively more important and these
can be further reduced by increasing the precision. Hence, precision plays a more important role to further
decrease the total cost. This also explains the fact why in the case of b = 250 and q = 1, a relatively larger
effect of a higher precision is visible.

Consider b = 50 and cp = 400, an interesting observation is that the setting with q = 0.75 and p = 1.0
is closer to the ideal setting than q = 1.0 combined with p = 0.75. The same is observed for q = 0.5 and
p = 0.75 compared to q = 0.75 and p = 0.5 (for some settings in case of cp = 200 the same is observed).
These observations show that in some specific situations a higher precision can result in a lower cost increase
compared to situations with a higher recall but lower precision. In other words, a higher precision results in
a higher probability on true demand signals, which results in less unnecessary ordered parts that are placed
on stock. Consequently, holding costs will be lower in these situations with higher precision.

Looking at the optimal starting OH*, we observe some interesting changes in OH*, especially in the case
of b = 250. Considering the highest value for b, we observe that for some specific value of q, OH* de-
creases from one part to zero inventory. Depending on the value of cp, the change in OH* happens when
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q increases from 0.75 to 1.0 or from 0.5 to 0.75. Consider cp = 100, the reason why for this value the
change in OH* occurs later, is that the ratio between backorder and production costs is relatively smaller
than in the case where cp = 400. As a result, the backorder cost has a relatively larger effect on the order
decision, as it is more expensive to have a backorder than to order a part. Therefore, it is relatively less
expensive to keep a part on stock compared to the situation where cp > b. This implies that it becomes rela-
tively less expensive to have a penalty than to order a part. Hence, the inventory on-hand is reduced sooner.

Table 10 shows that the relative cost increase is almost the same in all cases where q = 1. This is caused by
the fact that the same decision is made regardless of the different backorder costs, as these have a relative to
no effect on the total cost. Because q = 1 and the supply lead time is equal to the demand lead time, parts
can be delivered JIT. The only situation where backorder costs can have an influence, is when for a lower
value of precision it is decided not to order a part, while a demand signal is received (see Section 6.2.2 for
characteristics of the optimal policy with imperfectness in p). Consequently, with a certain probability the
demand signal can turn into an actual failure, but no part is available. Therefore, in situations with q = 1
and p < 1, there is a certain probability that backorder costs need to be incurred.

6.2.1.3 Failure Rate 0.001

Table 11: Relative cost difference compared to perfect ADI with fp = 0.001 and τ = 1

b = 50 b = 250
q p cp = 100 cp = 400 cp = 100 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 71.42 0 24.15 0 186.20 1 81.98 0
0.75 57.97 0 22.59 0 186.18 1 69.76 0
1.0 49.98 0 12.42 0 186.12 1 62.50 0

0.75
0.5 60.30 0 23.84 0 138.67 0 65.23 0
0.75 38.80 0 21.56 0 130.43 0 44.52 0
1.0 25.00 0 6.21 0 125.20 0 31.26 0

1.0
0.5 50.69 0 23.56 0 50.96 0 50.74 0
0.75 20.66 0 20.59 0 20.68 0 20.67 0
1.0 - 0 - 0 - 0 - 0

As Table 11 shows, the effect of the different values for p and q can again be observed clearly (see Appendix
G.3 for the actual values). Especially in the case when b = 250, large cost reductions can be achieved by
improving the ADI quality. The explanation for why there is a relatively large ADI value in the case of this
lower failure rate, is that the holding costs have become more relevant now. A lower failure rate implies that
the reliability of a part is high and that the probability of a failure is low. For example, the failure rate of
0.001 implies that a part on average will fail once every 1000 periods, while a rate of 0.025 implies a failure
on average once every 40 periods. In other words, in the case of a lower failure rate, a wrong predicted
failure will result in a part that on average will be longer on stock compared to a higher rate. Consequently,
the holding costs will increase.

Therefore, the relative effect of a better precision is now higher compared to the (higher) failure rates dis-
cussed before. Hence, more value can be gained from the ADI in case of a relatively lower failure rate, which
is supported by Topan et al. (2018).

Similar to fp = 0.005, we observe some parameter settings in which a combination with a lower q but higher
precision results in lower total cost than a setting with a higher q and lower precision (e.g. q = 0.75 with p
= 1.0 versus q = 1 with p = 0.75 for cp = 400 and b = 50). This observation is in line with the previous
section, as a wrong predicted failure results in an ordered part that on average will be on stock for a longer
period.

22



Looking at the values of OH*, we observe that for all parameter settings it is optimal to keep zero inventory.
It makes sense to keep zero stock, because the probability of expected and random failures is relatively low.
Even in the case of p = q = 0.5, the probability of a random failure is low. Consequently, it would be
relatively expensive to order and to keep a part on stock, while having a failure probability of 0.001. These
findings are again in line with Topan et al. (2018). They concluded that a ‘spare parts manufacturer subject
to low demand can keep minimum - most of the time zero - stock’ (Topan et al., 2018). This conclusion
appears also to be valid for the other failure rates, as a higher failure (demand) rate requires that some
amount of inventory needs to be kept.

6.2.2 Characteristics of the optimal Policy

In this section, we discuss the characteristics of the optimal policy for the different failure rates and the
effect of (im)perfect ADI on the policy. The optimal values of the decision variable z∗1 (the order size) are
displayed for different values of (w, I), where w denotes the number of demand signals that are present in
the system (wt−τ , wt) and I denotes the on-hand inventory after receiving the replenishment order z0. So,
in each cell, the value represents the optimal order size for that specific state of the system. Notice that in
this section we only discuss the setting where τ = 1. Appendix D shows an example of how the optimal
policy looks like when τ = 2.

6.2.2.1 Failure Rate 0.025

First, we show the optimal policy in a situation with perfect ADI (p = q = 1). For these values of p and q,
the optimal policy remains the same for the different values of cp and b. Table 12 demonstrates the optimal
values of the decision variable, the order size, for different values of (w, I).

Table 12: Values of z∗1 for different (w, I) with p = q = 1 and fp = 0.025

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 2 1 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

The first setting in Table 12 (a) is when there are no demand signals in the system, w = (0, 0). Independent
of the value of I, the optimal order decision z∗1 is zero. As seen in Table 12 (b), when there is 1 signal that
has arrived at the beginning of the period (w = (0, 1)) and available inventory is zero (I = 0), then the
optimal action is to order 1 unit (z∗1 = 1). If I > 0, then the optimal action is to order nothing. Also, as
seen in Table 12 (d), when there are 3 signals that have arrived at the beginning of the period (w = (0, 3))
and available inventory is zero (I = 0), then the optimal action is to order 3 unit (z∗1 = 1). If I > 0, then
the optimal action decreases linearly with I.

As can be seen in Table 12, the order size increases with the number of demand signals that are present
in the system. So, this can be seen as a situation where a part is only shipped to a warehouse/customer,
if a demand signal is issued in the system. Furthermore, this also explains why the OH* in Table 9 on
page 20 is equal to zero. Orders are only placed in the case demand signals are present within the system.
Furthermore, the order size is equal to the number of signals minus the available inventory, so that all
ordered parts are needed and no inventory is held.

In order to show the effect of q < 1 and how OH* can be recognised in the optimal policy, we introduce
Table 13, which shows p = 1 with q = 0.75.

Table 13: Values of z∗1 for different (w, I) with p = 1, q = 0.75 and fp = 0.025

a) w = (0,0)
I 0 1 2 3 4
z∗1 1 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 2 1 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 3 2 1 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 4 3 2 1 0

23



As Table 13 shows, the characteristics have now changed compared to the policy where p = q = 1. As can
be seen in Table 13 (a), when there are no signals in the system at the beginning of the period (w = (0, 0))
and I = 0, the optimal action is to order one part (z∗1 = 1). Then, as move through Table 13 (b)-(d), we
observe that the optimal action is always to order one part more than the number of demand signals. The
reason is that there is a certain probability of random demand as q = 0.75, while with q = 1 this probability
of random demand is non existing. To deal with this uncertainty of random demand, some extra inventory
is required.

The extra inventory that is required to deal with the uncertainty of random demand, was shown in Table
9 on page 20. The OH* is either 1 or 2, depending on the exact values of the parameters. The value of
the optimal OH can be seen in the optimal order policy, because orders are being placed as long as OH*
has not been reached. After reaching the optimal level, the orders are stopped. So, OH* can be found by
looking for the state in which the ordering process is stopped. Furthermore, the order quantity is mostly
one unit more than the number of demand signals that are present in the system (except for the setting
with p = q = 1). This implies that it is optimal to have one extra part on stock, which also has been shown
in Table 9 on page 20.

6.2.2.2 Failure Rate 0.005

We start with showing the optimal policy in the situation where perfect ADI is available. The other
parameters are cp = 100 and b = 50. Note that the optimal policy is the same for other values of cp and b.
Characteristics of the optimal policy are shown in Table 14.

Table 14: Values of z∗1 for different (w, I) with p = q = 1 and fp = 0.005

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 2 1 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

As seen in Table 14, the order size increases with the number of demand signals that are present in the
system. The actual order size also takes into account the number of parts that is already in the pipeline.
So, this can be seen as a situation where a part is only shipped to a warehouse/customer, if a demand signal
is issued in the system. Furthermore, this also explains why the OH* in Table 10 on page 21 is equal to
zero. Orders are only placed in the case demand signals are present within the system. Furthermore, the
order size is equal to the number of signals, so that all ordered parts are needed and no inventory is held.
Table 15 shows characteristics of the optimal policy in the case that the precision has decreased to 0.5.

Table 15: Values of z∗1 for different (w, I) with p = 0.5, q = 1 and fp = 0.005

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 1 0 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 2 1 0 0 0

As Table 15 shows, the difference is that in some situations it is optimal to ignore a demand signal. This
makes sense, as there is some degree of imperfectness in p. Referring back to Section 6.2.1, where we stated
that when p 6= 1, a relatively small probability is present that a backorder could occur can now be visualised.
For example, Table 15 (d) shows that the optimal decision is to order two parts, while three signals have
arrived at the beginning of the period. So, we are ignoring one demand signal. In the end, there is a
probability > 0 that all of the three signals turn out to be true. Consequently, we are short on one part and
we have to pay a penalty.

Another interesting comparison can be made between the situations where cp = 100 or cp = 400, combined
with b = 250, p = 1 and q = 0.75. Both situations are presented in Table 16 and Table 17.
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Table 16: Values of z∗1 for different (w, I) with p = 1.0, q = 0.75, cp = 100 and fp = 0.005

a) w = (0,0)
I 0 1 2 3 4
z∗1 1 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 2 1 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 3 2 1 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

Table 17: Values of z∗1 for different (w, I) with p = 1.0, q = 0.75, cp = 400 and fp = 0.005

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 2 1 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

As Table 16 and Table 17 show, there are some differences in the optimal order policy. These differences
also explain why the OH* for both situations, displayed in Table 10 on page 21, are different. In the case
of cp = 100, the OH* is found to be one, while for cp = 400, the OH* equals zero. For both situations we
know that all of the demand signals are true, as p = 1. In other words, the order size should at least be
equal to the number of signals to satisfy all predicted demand. This is something that can be observed in
the setting with cp = 400, while for cp = 100, we observe that in some states the order size is larger than the
number of demand signals. At first sight, you might expect that this is caused by having q 6= 1. However, in
both settings the probability of having random demand is equal. The actual reason why the optimal policy
changes is a result of lower order/production costs, because a lower cp also results in a lower holding costs,
as these are calculated by 20%∗cp

365
. Due to the lower holding costs, it becomes relatively cheaper to keep

a part on stock compared to the higher cp. Also, considering the high penalty cost of 250, it is therefore
attractive to change the optimal policy.

Next, we compare the previous described setting with b = 250, cp = 400, p = 1 and q is either 0.75 or 0.5.
In other words, if q decreases from 0.75 to 0.5, a smaller part of the total demand can be predicted and the
probability of random demand increases. The setting with q = 0.75 is shown in Table 17 and with q = 0.5
in Table 18.

Table 18: Values of z∗1 for different (w, I) with p = 1.0, q = 0.5, cp = 400 and fp = 0.005

a) w = (0,0)
I 0 1 2 3 4
z∗1 1 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 2 1 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 3 2 1 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

Looking at Table 17 and Table 18, it is observed that also now for this cost parameter the optimal policy
changes. This is caused by a further decrease of the recall from 0.75 to 0.5, which implies a smaller part of
predicted demand and a higher probability of random demand. In order to deal with the uncertainty of a
higher probability of random demand, it is required to increase the inventory level to prevent a backorder
from happening. As cp has an effect on the holding costs, the decision to increase the inventory level for cp

= 400 happens at a later stage compared to cp = 100. The holding costs are higher in the first situation
and have a relatively larger effect on what the optimal order decision should be.

6.2.2.3 Failure Rate 0.001

The analysis in Section 6.2.1 has shown that the optimal value function is obtained when OH∗ = 0 for
all different parameter settings. Table 19 shows the characteristics of the optimal policy in the case when
p = q = 1 with cp = 100 and b = 250.
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Table 19: Values of z∗1 for different (w, I) with p = q = 1 and fp = 0.001

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 2 1 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 3 2 1 0 0

As seen in Table 19, the moments that an order is placed is only when a demand signal is received (or when
a backorder is present in the system. However, this situation is not possible when p = q = 1 and L = τ).
Furthermore, the order size grows with the number of ADI signals that is present in the system taking into
account the number of parts that is on stock. In order to show the difference between a system perfect ADI
and a system with imperfectness in p, we also analyse the situation in which p = 0.5 and q = 1.0. The
results are displayed in Table 20.

Table 20: Values of z∗1 for different (w, I) with p = 0.5, q = 1.0, b = 250 and fp = 0.001

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 2 1 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 2 1 0 0 0

As Table 20 shows, due to imperfectness in p, we observe that the optimal action may involve ignoring a
demand signal. Also, as seen in Table 20, the number of parts that is on stock and/or in transit is taken
into account while making the optimal decision. An interesting observation is made when b is decreased
from 250 to 50. These results are displayed in Table 21.

Table 21: Values of z∗1 for different (w, I) with p = 0.5, q = 1.0, b = 50 and fp = 0.001

a) w = (0,0)
I 0 1 2 3 4
z∗1 0 0 0 0 0

b) w = (0,1)
I 0 1 2 3 4
z∗1 0 0 0 0 0

c) w = (0,2)
I 0 1 2 3 4
z∗1 1 0 0 0 0

d) w = (0,3)
I 0 1 2 3 4
z∗1 1 0 0 0 0

As Table 21 shows, we observe that for this lower value of b, the number of demand signals that is being
ignored has increased. It makes sense that the magnitude of b has a certain effect on the order size, as
missing demand results in a backorder. A higher penalty affects the decision in such way that backorder
are relatively less desirable compared to a situation with a lower penalty. Hence, the optimal order size
decreases slightly for situations with a lower backorder costs.

6.3 Traditional Manufacturing

In this subsection, we present the results of the numerical experiment for the traditional manufacturing
context. First, we present the value of (im)perfect ADI with the setting where τ = 1. Then, we show the
amount of cost savings that can be achieved by increasing the demand lead time from 1 to 2. The value of
(im)perfect ADI with the setting where τ = 2 is shown in Appendix E.1. Next, we discuss the characteristics
of the optimal policy and the effect of imperfect ADI on the optimal policy.

In general, we find that large value can be gained by using ADI, especially in the case of a low value for
b. For a high value of b, the demand information is relatively less useful, as we find that keeping inventory
diminishes the effect of an increasing precision. The optimal policy shows the same characteristics as were
observed for the AM context. Furthermore, we find that increasing the demand lead time results in large
possible cost savings. The savings are a result from changing from a setting where L > τ to a setting where
L = τ , which makes it possible to deliver predicted demand JIT instead of receiving late demand signals.
Also, using the extended demand lead time, larger cost savings can be achieved by using (im)perfect ADI
compared to the shorter demand lead time. Now, we find that the largest value can be gained in the case
of a high value for b.
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6.3.1 The Value of (im)perfect ADI

In this subsection, we discuss the value of (im)perfect ADI for the failure rate of 0.001. Note that we now
consider a situation where the supply lead time is larger than the demand lead time (Lr > τ). The relative
cost difference, %GAP, is calculated following Equation (22) in Section 6.1. The results for this case are
presented in Table 22.

Table 22: Relative cost difference compared to perfect ADI with f r = 0.001 and τ = 1

b = 50 b = 250
q p cr = 100 cr = 100

%GAP OH∗ %GAP OH∗

0.5
0.5 42.47 0 25.05 1
0.75 36.75 0 25.03 1
1.0 33.34 0 24.94 1

0.75
0.5 33.03 0 24.69 1
0.75 23.06 0 24.62 1
1.0 16.68 0 24.60 1

1.0
0.5 24.85 0 6.78 0
0.75 10.02 0 2.73 0
1.0 - 0 - 0

As can be seen in Table 22, relatively large value can be achieved by incorporating (im)perfect ADI (see
Appendix H for the actual values). In the case of b = 50, cost reductions of more than 40% can be achieved
when using perfect ADI, while in the case of b = 250, it can go up to around 25%.

The differences in value between q = 1 and q 6= 1 are caused by the fact that in the former case no random
demand can happen. Consequently, there is a lower probability of having backorders, while in the case of
q 6= 1, there is a relatively larger probability of having backorders, as Lr > τ . Furthermore, this shows that
the demand lead time has an important role as well. Also, increasing the OH* helps to prevent backorders
from happening. This, of course, comes at a certain cost, but this cost is lower than having backorders and
also stops a further large increase of the total cost. This can be seen by the fact that the relative cost..

Considering b = 50, an interesting observation is that a higher precision results in much lower total cost
than a higher q. This observation was also made in Section 6.2.1.3. In that section, it was stated that due to
a lower failure rate, the relative effect of a better precision is higher compared to cases with a higher failure
rate. Hence, more value can be gained from the ADI in case of a relatively lower failure rate. Furthermore,
we can again agree with the results in the paper of Benjaafar et al. (2011), as they argued that a high
backorder/holding cost ratio results in relatively less useful demand information. So, in the case of b = 250,
the demand information is relatively less useful, as we observe a relatively small effect of p and q. While in
the case of b = 50, the ratio is smaller and the demand information becomes relatively more useful.

In the TM context, increasing the demand lead time (τ) from 1 to 2 results in changing from a setting where
Lr < τ to a setting where Lr = τ . In other words, it is now possible to satisfied all predicted demand JIT.
In order to determine what the exact value is that can be gained from increasing the demand lead time,
Equation (22) is used to calculate the relative cost difference between the different settings of τ . The results
are shown in Table 23. Appendix E shows the value of (im)perfect ADI in the TM context with τ = 2.
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Table 23: Relative cost difference in the TM context between τ = 2 and τ = 1

q p b = 50 b = 250
%GAP %GAP

0.5
0.5 -9.73 -34.08
0.75 -11.37 -34.08
1.0 -12.40 -34.18

0.75
0.5 -14.49 -34.15
0.75 -18.43 -34.15
1.0 -21.29 -34.16

1.0
0.5 -19.18 -59.34
0.75 -26.71 -66.26
1.0 -33.16 -71.30

As can be seen in Table 23, large cost savings can be achieved by increasing the demand lead time from 1
to 2 periods. As mentioned before, this makes it possible to satisfy the predicted demand JIT. This is the
main reason why such extensive cost savings can be achieved. In the case where τ = 1, demand could only
be satisfied JIT by keeping some level of inventory or otherwise backorder costs have to be incurred. The
amount of cost savings that can be achieved as the ADI improves becomes larger, because more demand is
predicted and can be deliver JIT compared to the previous setting where τ = 1, in which predicted demand
was satisfied too late. This is especially observable in the setting where b = 250, as the largest cost savings
can be achieved in this setting. In this setting, large backorder costs are now prevented due to the extended
demand lead time. Furthermore, we do not observe any changes in the optimal OH* when changing the
demand lead time from 1 to 2. The reason is that because of longer supply lead time, there is still some
uncertainty if q 6= 1. To deal with this uncertainty, it is optimal to keep some level of inventory. As observed
before, the effect of increasing the precision is minimal when it is optimal to keep inventory.

6.3.2 Characteristics of the optimal Policy

In this subsection, we discuss the characteristics of the optimal policy and the effect of (im)perfect ADI on
the policy where τ = 1. Appendix D shows an example of how the optimal policy looks like when τ = 2.
The optimal values of the decision variable z∗2 are displayed for different values of (w, I, z), where w denotes
the number of demand signals that are present in the system (wt−τ , wt), I denotes the on-hand inventory
and z denotes the pipeline stock z1. Table 24 shows the optimal policy in the case of p = q = 1.

Table 24: Values of z∗2 for different (w, I, z) with p = q = 1 and f r = 0.001

a) w = (0,0)
I + z1 0 1 2 3 4
z∗2 0 0 0 0 0

b) w = (0,1)
I + z1 0 1 2 3 4
z∗2 1 0 0 0 0

c) w = (0,2)
I + z1 0 1 2 3 4
z∗2 2 1 0 0 0

d) w = (0,3)
I + z1 0 1 2 3 4
z∗2 3 2 1 0 0

As Table 24 shows, orders are being placed from the moment demand signals are present in the system. As
the number of signal increases, the order size increases with the same amount. Furthermore, in the case of
backorders being present in the system, the order size increases with the number of backorders. Note that
the presence of backorders decreases the number of possible demand signals in the system. As shown in
previous sections, imperfectness in p results in ignoring demand signals. In other words, the order size is
less than the number of signals. In order to show also imperfectness in q, we introduce Table 25. This table
also shows why the OH*, in the setting with q = 0.5, is one.
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Table 25: Values of z∗2 for different (w, I, z) with p = 1, q = 0.5 and f r = 0.001

a) w = (0,0)
I + z1 0 1 2 3 4
z∗2 1 0 0 0 0

b) w = (0,1)
I + z1 0 1 2 3 4
z∗2 2 1 0 0 0

c) w = (0,2)
I + z1 0 1 2 3 4
z∗2 3 2 1 0 0

d) w = (0,3)
I + z1 0 1 2 3 4
z∗2 4 3 2 1 0

As can be seen in Table 25, the optimal order size is always one unit more than the number of demand
signals. This supports the claim of Table 22 on page 27 that the optimal inventory on-hand should be
one part. The extra inventory is required to deal with the uncertainty that is associated with q = 0.5,
but also because of the uncertainty of the longer supply lead time. As the supply lead time is now two
periods compared to the single period in the AM context, some extra safety stock is needed to deal with
the uncertainty of that extra period. Hence, the OH* in the case of q = 0.5 becomes one.

6.4 Traditional vs. Additive Manufacturing

In this section, we discuss the differences between the results of the traditional and additive manufacturing
context and show the %AM Value. In Section 6.4.1 the results in the case where cp > cr are presented.
For this configuration, we mainly discuss the results where τ = 1. Then, in Section 6.4.2, the results in the
situation where cp ≤ cr are discussed. For this setting, we both discuss the results where τ = 1 and 2.

In general, we find that the system based on traditional manufacturing outperforms the system based on
additive manufacturing. The system using AM results in lower total cost only in specific settings, such when
failure rates and production costs are equal or when productions costs are lower, the reliability is slightly
worse and backorder costs are high. So, in these specific settings it is beneficial to change from TM to AM.
In other settings, its more beneficial to invest in improving the ADI. Different values for the demand lead
time resulted in even better outcomes for the TM context, except for the setting where the failure rates and
productions costs are equal. The results show that the characteristics of ADI are not relevant for whether
AM can outperform TM, but that the characteristics of AM (production costs and quality) itself are most
relevant.

6.4.1 Case cp > cr

Notice that from the AM context only fp = 0.001 is discussed in this section, because with higher failure
rates the total costs are much higher compared to the TM context, in which f r = 0.001 and cr = 100. The
exact values for all failure rates can be found in Appendix F.1. Table 26 shows the %AM Value following
Equation (23).

Table 26: %AM Value for setting where τ = 1, fp = 0.001, f r = 0.001 and cp > cr

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 39.79 132.98 7.77 67.08
0.75 31.39 139.69 4.99 55.88
1.0 25.26 125.43 3.42 49.31

0.75
0.5 49.30 148.92 -12.62 52.16
0.75 38.33 164.12 -20.24 33.14
1.0 28.87 143.39 -25.10 20.94

1.0
0.5 58.64 164.62 -20.35 32.86
0.75 46.48 192.79 -32.57 34.78
1.0 33.69 167.38 -42.60 14.81
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As Table 26 shows, in general the total cost in the AM context are higher than in the TM context. Consider
the situation with b = 50, we observe that the relative cost difference increases as the ADI improves. This is
caused by the fact that as the perfectness of the ADI increases, the correctness of the prediction is better and
as a result the order size increases. In other words, as you become more certain about the future demand,
you want to ensure that you can satisfy this predicted demand. Because the production costs of printed
parts are significantly higher than of regular parts, the total cost become higher as more parts are ordered
due to more perfect ADI.

The significantly higher production costs outweigh the fact that in the TM context Lr > τ , which means that
the predicted demand cannot be delivered JIT. Consequently, backorder costs of 50 are incurred as demand
is not satisfied on time. However, because printed parts are significantly more expensive than regular parts,
it is possible to ‘use’ this difference in cost price to cover up the backorder costs that are incurred. This also
explains why the relative cost difference between the AM and TM context further increases as cp becomes
400.

As Table 26 shows, there is a setting where the AM context results in lower total cost than the TM context.
Referring back to the discussion earlier in this section, where it was mentioned that the backorder costs of
50 could be covered by the difference between cp and cr, now due to the higher value b, this is not possible
anymore. Because in the TM context the predicted demand cannot be delivered JIT (Lr > τ), each time
a backorder penalty is incurred. As a result of the higher value of b, the late delivery of demand has now
become a real disadvantage, as it results in higher backorder costs. The reason why the TM context in the
case of imperfect ADI has the better performance, is because of the part that has been placed on stock. As
can be seen in Table 22, the OH* is raised to one when q equals 0.5. The inventory ensures that demand
can be satisfied immediately, which prevents a backorder from happening. Because in the AM context no
inventory is used, still a backorder can happen and corresponding costs need to be incurred. The holding
costs of one part is significantly less than the backorder costs. As a result, the total cost in the TM context
are stabilising, while in the AM context, the total cost further increases as the ADI becomes worse. Conse-
quently, the TM context results in lower total cost.

As mentioned in Section 6.2, extending the demand lead time does not results in significant cost savings
in the AM context. The reason is that the demand lead time was equal to the supply lead time, so that
JIT delivery is possible. A demand lead time longer than the supply lead time does therefore not result in
large cost savings. However, in the TM context, extending the demand lead time does result in large cost
savings (see Table 23). So, in the AM context the total cost are almost equal, while in the TM context the
total cost have decreased. Consequently, the value of AM decreases. As can be seen in Appendix F.2, in all
settings the TM context results in the lowest total cost.

As can be seen in Table 26, the relative cost difference between both contexts decreases as the imperfect-
ness in ADI increases. We observe that the percentage difference between the situation with perfect ADI
(p = q = 1) and the most imperfect ADI (p = q = 0.5), increases relatively faster in the TM context than
in the AM context. Still, because cp is significantly higher than cr, and therefore the holding costs as well,
we obtain a situation in which the total cost of printed parts are still significantly higher than in the case
of traditional manufactured parts.

Consider b = 250, we observe a different trend compared to the situation with b = 50. Now, the cost
difference between the two contexts becomes larger as the imperfectness increases. As mentioned before,
in the case of b = 50, the total cost in the TM context increases relatively faster than in the AM context.
Now, we observe that in the case of a higher backorder cost, the AM total cost increases relatively faster
than in the TM context. The first reason is that in the TM context a part is put on stock, which is shown
in Table 22. As a result, the inventory can be used to immediately satisfy a part of the demand and to
avoid backorders, while in the AM context no inventory is used. In other words, random demand results
in a backorder. Because the penalty that is incurred for a backorder is now higher, it increases the total cost.

Another reason is that a higher value of b results in placing more and/or larger orders, which can be seen in
Table 20 and Table 21 on page 26. A higher value of b (e.g. 250) ensures that backorders are relatively less
desirable compared to a lower value of b (e.g. 50). So, based on the fact that backorders are less desirable
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and that more and/or larger orders are placed, results in higher production costs. Furthermore, because cp

is significantly higher than cr, the total production costs of printed parts are a relatively larger fraction of
the total cost compared to the case of regular parts. Also, as cp effects the holding costs, these costs will
increase as well due to imperfectness of the ADI.

Based on the results, we can conclude that the requirements of ADI do not have an effect on the question
whether additive manufacturing can result in lower total cost than traditional manufacturing. It is shown
that the characteristics of AM itself (production costs and reliability) are the most important factors. This
is in line with Westerweel et al. (2018b) (note that they did not consider ADI), as they concluded part
reliability and production costs are crucial to the success of AM components. It is expected that in the
nearby future, the production costs of AM will decrease substantially. Westerweel et al. (2018b) conclude
that ‘typically allowed deficits compared to regular parts in terms of reliability and production costs are
approximately 5% and 10%, respectively’. Furthermore, Knofius et al. (2020) mention that reduction in
lead time alone does not compensate for high AM production costs, while the short supply lead time is
often mentioned as the key advantage of AM. This supports the findings based on Table 26, as we observed
that in almost all cases TM outperforms AM. Hence, in almost all settings it is not beneficial to switch
from traditional to additive manufacturing, but it is more beneficial to invest in ADI (precision, sensitivity
and/or demand lead time).

6.4.2 Case cp ≤ cr

Notice that in this section, we discuss fp = 0.001 combined with cp = 100. Furthermore, we introduce
an extra value for cp, which is 50. This value is only used for fp = 0.005 and fp = 0.025 to provide
insights in settings where fp > f r, but cp < cr. The values of the TM context are still f r = 0.001 and
cr = 100. The exact values for all settings can be found in Appendix F.3 and are not displayed in this
section, because the total costs for certain settings are much higher compared to the TM context. Table
27 shows the relative cost difference (%AM Value) between the TM and AM context following Equation (23).

Table 27: %AM Value for setting where τ = 1, fp = 0.001, fp = 0.005, f r = 0.001 and cp ≤ cr

fp = 0.001 fp = 0.005
b = 50 b = 250 b = 250

q p cp = 100 cp = 100 cp = 50

0.5
0.5 -27.44 -34.31 -16.44
0.75 -25.91 -34.30 -17.35
1.0 -24.82 -34.27 -19.47

0.75
0.5 -30.65 -45.05 -18.42
0.75 -29.44 -46.93 -18.44
1.0 -28.39 -48.13 -20.57

1.0
0.5 -33.53 -59.42 -21.55
0.75 -33.37 -66.28 -24.83
1.0 -33.16 -71.30 -28.24

As can be seen in Table 27, in cases where cp ≤ cr it becomes more attractive to use AM, especially when
the failure rate (reliability) of AM parts is the same as TM parts. In Section 6.4.1, we mentioned that the
difference between cp and cr can be used to cover up the backorder costs that need to be paid in the TM
context. Now, as cp = cr, this is not possible anymore and the total AM cost have decreased significantly
due to lower production costs (compared to previous values of cp).

We now also observe that is very beneficial to have the supply lead time equal to the demand lead time.
In the AM context, all predicted demand can be deliver JIT, while in the TM context JIT is not possible.
Consequently, in the TM context, backorder costs need to be paid or parts are put on stock. As Tables 11
and 22 on page 22 and 27 show, in both contexts the optimal OH∗ is zero. So, if demand cannot be satisfied
immediately, a penalty must be incurred. In other words, the relative cost difference in the setting where
b = 50 is purely caused by backorder costs, while in the setting where b = 250, the difference is caused
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by both holding and backorder costs (for both the AM and TM context the optimal OH∗ = 1). When cp

would further decrease, it can be expected that it becomes even more beneficial to use AM compared to TM.

In settings where fp > f r, we find that the AM context in only one specific setting results in lower total
cost. This setting is described by fp = 0.005, cp = 50 and b = 250. As can be seen in Table 10 on page 21,
for the AM context OH∗ = 1 as long as q 6= 1. So, this means that there is a very small probability that a
backorder cost must be incurred, as there is some stock available and predicted demand can be deliver JIT.
As mentioned before, in the TM context this is not possible and therefore, a large backorder costs must
be incurred for demand that cannot be satisfied immediately. Despite that the AM productions costs and
failure rate are higher, it does not outweigh the higher backorder costs. Therefore, also in this setting, the
AM context outperforms the TM context.

Also for the case where cp ≤ cr we tested for the setting where τ = 2. The results are shown in Table 28.

Table 28: %AM Value for setting where τ = 2, fp = 0.001, f r = 0.001 and cp ≤ cr

b = 50 b = 250
q p cp = 100 cp = 100

0.5
0.5 -11.08 -0.44
0.75 -13.03 -0.43
1.0 -14.31 -0.23

0.75
0.5 -6.10 -16.71
0.75 -7.87 -19.54
1.0 -9.29 -21.35

1.0
0.5 -0.64 -0.66
0.75 -0.54 -0.54
1.0 0.00 0.00

Table 28 shows that in the case where b = 50 some relatively small cost savings can be achieved by using
AM compared to TM. However, as these savings are small, it is questionable whether this in practice will
result in actual cost savings. For example, we do not consider costs for training people how to work with
additive technologies, but this knowledge is required. When taking into account such costs, it eventually
might turn out that switching to AM does not result in actual cost savings. The same is valid for the setting
where b = 250 combined with q is either 0.5 or 1.0

A setting that stands out is where b = 25 and q = 0.75. In this setting, large cost savings can be achieved
compared to other values of q. The reason is that in the AM context it is optimal to keep zero inventory,
while in the TM context some level of inventory is optimal. This increases the total cost difference between
both contexts, especially as the failure rate is lower, which implies that failures are relatively rare (and are
even more rare as q = 0.75). In other words, the parts are on average placed on stock for a relatively long
period, which results in large holding costs.

For q = 0.5, in both contexts it is optimal to keep inventory to prevent backorders from happening. Still,
in case a backorder occurs, the AM context has the benefit of the short supply lead time compared the TM
context. Therefore, the total cost is slightly lower. The same is valid for the setting where q = 1. In both
contexts, it is possible to use JIT to satisfy all predicted demand. As we have seen before, when p 6= 1, it
is optimal to ignore some demand signals. Still, it is possible that all of the demand signals turn out to be
true, resulting in a backorder. In that situation, the AM context has an advantage, which results in slighlty
lower total cost.
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The results shown in Tables 27 and 28 support the conclusion made at the end of Section 6.4.1. We conclude
that the characteristics of AM itself (production costs and reliability) are the most important factors. As
can be seen in Table 27, as these characteristics are further optimised (lower production costs and higher
reliability), more settings where AM is predominate are observed. Hence, in more settings it becomes
attractive to change from traditional manufacturing to additive manufacturing, as large cost savings can be
achieved. In other settings, it is more beneficial to invest in improving ADI.
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7 Conclusions

In this final chapter, conclusions for the research are drawn. First, answers to the research questions
formulated in Section 3.2 are provided in Section 7.1. Section 7.2 discusses the managerial insights. In
Section 7.3, we discuss the limitations of this research and provide suggestions for future additional research.

7.1 Conclusions

The main research question of this research has been:

What are the characteristics that (im)perfect ADI and Additive Manufacturing must have to
be valuable in a spare parts inventory control system compared to an inventory system using
TM?

To answer the main research question, several research questions were formulated. Below, the conclusions
per research question are given.

1. How to model a spare parts inventory control system with ADI?
We have formulated a discrete-time Markov Decision Process (MDP). An MDP is helpful in decision
making in situations where outcomes are partly random and partly under the control of a decision
maker. The MDP is inspired by the work of Topan et al. (2018) and Westerweel et al. (2018a).
However, several key changes had to be made to fulfil the specific requirements of our research (e.g.
positive supply lead times and backordering). Furthermore, considerable effort has been made to verify
and validate the outcomes of the model (e.g. a solid mathematical foundation and Markov-chains to
verify outputs).

2. What are the model input values for the AM and TM supply methods?
The input parameter values are collected via prior literature and studies that are related to our
problem definition. To validate whether realistic values have been collected, multiple experts in the
field of inventory control and AM have been consulted. The experts have been consulted individually
to ensure the validity of the collected values, i.e., to prevent that the experts will influence each other
on what they consider to be realistic values.

3. What is the value of (im)perfect ADI within the AM and TM context? And what are
the characteristics of the optimal policy?
Firstly, experimental results demonstrated that the total cost performance can be significantly im-
proved by incorporating (im)perfect ADI. We reveal that more perfect ADI results in a large cost
decrease, especially in the case of relatively low failure rates. Furthermore, for relatively low failure
rates, it is better to have a high precision instead of a high value of q. Meaning, it is more important
to correctly predict demand than to predict more demand. This unlike for higher failure rates, for
which we concluded that an increasing q results in a larger cost decrease. In other words, it is more
beneficial to predict more failures than having more precise predictions.

Secondly, we showed that knowing the exact timing of a demand occurrence has a large impact on
the benefit of the information. Having a demand lead time that is longer than the supply lead time
does not result in large value to be gained, because it is possible to react to ADI anyway. In a setting
where the supply lead time is longer than the demand lead time, increasing the demand lead time can
results in large cost savings.

Thirdly, the characteristics of the optimal policy showed that the optimal policy depends on both the
inventory on-hand and the pipeline stock. Concluding, the optimal policy is dependent on the state
of the system. Further, more perfect ADI results in lower inventory levels, which can be most of the
time either one or zero. So, the optimal policy shows that it is possible to keep a minimum level of
inventory.

4. How does the inventory control system using AM perform compared to the system using
TM?
The comparison between the AM and TM context showed that in general the system based on tra-
ditional manufacturing outperforms the system based on additive manufacturing. The system using
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AM results in lower total cost only in specific settings, such when failure rates and production costs
are equal or when productions costs are lower, the reliability is slightly worse and backorder costs are
high. Different values for the demand lead time resulted in even better outcomes for the TM context,
except for the setting where the failure rates and productions costs are equal, as in this setting AM
still outperforms TM. Based on the results, we can conclude that the requirements of ADI do not
have an effect on the question whether additive manufacturing can result in lower total cost than
traditional manufacturing. It is shown that the characteristics of AM itself (production costs and
reliability) are the most important factors.

To conclude, this study has shown that a significant amount of cost savings can be achieved by incorporating
(im)perfect ADI. This is valid for both a system that is based on traditional manufacturing as well as on
additive manufacturing. Increasing the demand lead time resulted only in the TM context in large cost
savings, as JIT delivery became possible. Having a demand lead time that is longer than the supply lead
time does not result in large value to be gained, because it is possible to react to ADI anyway. Furthermore,
this study has quantified the difference between a system using either traditional or additive manufacturing.
Only in settings where both failure rates and productions costs are equal or when production costs are lower,
the failure rate slightly higher and backorder costs are high, the additive manufacturing based system can
outperform the traditional manufacturing system. The production costs and reliability of AM parts are key
factors that influence the future potential of AM.

7.2 Managerial Insights

• An important factor that determines the extend in cost savings, is the failure rate. So, it should be
questioned whether the value gained from better ADI outweighs the required investment to collect
better demand information (e.g. sensors in machines for condition monitoring). In other words, the
return on investment (or payback period) is something that must be taken into account when making
decisions about investing in ADI. For example, in Section 6.2.1.1, it was shown that improving the
ADI only resulted in small cost savings. Such small savings do probably not outweigh the investment
costs that are required to make to collect better ADI. In contrast to Section 6.2.1.3, where it was
shown that small increases in p or q, result in large cost savings. These large cost savings make it
beneficial to invest in better ADI, as the investment can easily be earned back.

• Another consideration that depends on the failure rate, is whether to invest in more demand infor-
mation (high q) or in more precise demand information (high p). For the relatively high failure rates,
the numerical experiments showed that increasing q results in more value from the ADI. On the other
hand, for low failure rates, it was more important to have precise predictions (high p), especially in
situations with low backorder costs. For settings with the specific combination of a low failure rate
and high backorder costs, it is beneficial to invest in predicting more demand as well as in predicting
more precisely.

• Increasing the demand lead time only results in substantial cost savings in settings where the demand
lead time is not already equal to or longer than the supply lead time. In such a situation, it is possible
to react to ADI anyway. Only if the demand lead time is shorter than the supply lead time, it is
beneficial to invest in increasing the demand lead time. Otherwise, it is more beneficial to invest in
improving the ADI precision and/or sensitivity.

• Considering the characteristics of the optimal policies, in the cases of relatively low demand, parts
are only requested when a demand signal (or backorder) is present in the system. In practice, such
characteristics corresponds to situations where local manufacturers do not have to keep any inventory.
This not only results in cost savings, but also in savings in terms of space. Furthermore, this makes
it possible to store inventory at a central warehouse, resulting in a more centralised inventory system.

• The comparison between the additive and traditional manufacturing based system showed that in
general, it is not beneficial to switch from TM to AM. Only in settings where both failure rates
and production costs are equal or when production costs are lower, the reliability slightly worse and
backorder costs are high (assuming that the same (im)perfectness of ADI can be used in both systems),
using additive technologies results in lower total cost. So, the significantly higher failure rates (lower
reliability) and production costs of printed parts do not outweigh the benefit of having a shorter
supply lead time. To make the additive technologies more attractive, it is required to further increase
the reliability or to decrease the production costs of printed parts, as shown in Section 6.4.2. As
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discussed in Section 6.4, this is in line with previous literature (e.g. Knofius et al. (2020); Pijnappels
(2019); Westerweel et al. (2018b)).

• The magnitude of the backorder penalty (b) has a relatively large effect on whether or not to keep
inventory, but also on the value that can be gained from ADI. In practical settings where penalties
are considerably high, it can be attractive to implement a type of (im)perfect ADI.

7.3 Limitations and Future Research

• The first limitation is that we have considered a deterministic demand lead time that is equal for
all demand signals. However, in practice it could be the case that a time window is provided for
the demand occurrences instead of an exact timing. The model may be extended by adding a time
window for the demand lead time. A probability function can be used to model the probability that
a signal turns out to be true during the time window. Also, it is required to keep track of all the
demand signals that are given within the window to determine the predicted demand. Topan et al.
(2018) can be used as a reference.

• Second, we did not extend our model to a multi-item, multi-location inventory model. It may be
interesting to investigate how the model using traditional manufacturing could be extended to a
multi-echelon model and what the effect of (im)perfect ADI is across multiple echelons. A suggestion
is to solve the multi-echelon model as a single-location problem. Meaning, for the highest echelon
(N) it is possible to formulate a single-echelon problem. The formulated cost function can be used
to derive a penalty function for echelon n − 1. Because the penalty costs for echelon N can be seen
as that echelon n − 1 cannot deliver to echelon n. So, it is possible to derive some penalty function
for echelon n − 1, this procedure can be repeated for each echelon. For example, Gallego and Özer
(2003) can be used as a starting point. It is expected that total cost and inventory levels will decrease
as the demand information is more perfect across the supply chain. Like in this research, it can be
expected that when the demand lead time is at least the same as the sum of the supply lead times of
all echelons, it is possible to deliver demand JIT.

• Third, value-iteration optimally solves the model, but has the disadvantage of computational ineffi-
ciency. As we did not propose a heuristic to solve the model, this would be a direction for future
research. Traditional base-stock policies based on predicted demand cannot be used for the model,
due to imperfect demand signals. Therefore, a heuristic should be developed that takes into account
the characteristics of (im)perfect ADI. A suggestion is to use the expected demand from the demand
signals plus the expected random demand during the supply lead time, resulting in the total expected
demand. Then, this total expected demand can be used to determine the inventory position of the
system.

• Last, it may be interesting to extend this model to a dual sourcing inventory model, in which both
traditional and additive manufacturing can be used within an inventory system. For example, in the
case of imperfect ADI, there are random failures that occur. To deal with these random failures, it is
possible to keep some level of inventory. Another option is to use additive manufacturing with a short
lead time. If there is no available inventory, a printed part can be produced and used as a temporary
replacement, while a regular part is being manufactured. This can be interesting, because using a
temporary replacement decreases the downtime of a system. However, as both a temporary AM part
and a regular part need to be manufactured, the consequence is an increase in production costs. The
question is whether the savings in downtime costs outweigh the increase of in production costs, both
cost values are dependent on the context of the industry. For example, Knofius et al. (2020) can be
used as a starting point, because they consider a dual-sourcing inventory problem combining AM and
TM technologies.
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Appendix A List of Abbreviations

ADI Advance Demand Information
AM Additive Manufacturing

CM Condition Monitoring

FCFS First Come First Served
FDM Fused Deposition Modelling
FN False Negatives
FP False Positives

JIT Just-in-Time

MDP Markov Decision Process

OEM Original Equipment Manufacturer

TM Traditional Manufacturing
TP True Positives
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Appendix B Mathematical Notation

Variable Description

Input Variables

N Installed base size
f r Failure probability of regular parts
Lr Lead time of a regular part
cr Production cost of a regular part
hr Holding cost per regular part
fp Failure probability of printed parts
Lp Lead time of a printed part
cp Production cost of a printed part
hp Holding cost per printed part
b Backordering cost per part
τ Demand lead time
p Precision
q Sensitivity
γ Discount factor

Decision Variables
zL Order size

State Variables
I On-hand inventory level
z Vector containing the stock in the pipeline
Bt Number of backorders in period t
t Current time period
Wt Binomial distributed variable denoting the collected number of

demand signals available at beginning of period t
wt Realisation of Wt

w Vector containing the number of demand signals that are available
in the system at the beginning of period t

Dp
t Binomial distributed predicted demand in period t

Du
t Binomial distributed unpredicted demand in period t

Dt Total demand in period t
Output Variables

C(B, I, z0, zL, d) Direct expected cost
Vt(B, I, z,w) Total expected cost for period t
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Appendix C Results AM Value of (im)perfect ADI

C.1 Relative Cost Difference with cp = 200 and τ = 1

b = 50 b = 250
q p fp = 0.025 fp = 0.005 fp = 0.001 fp = 0.025 fp = 0.005 fp = 0.001

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 18.23 1 27.90 0 48.98 0 19.60 2 38.94 1 134.75 0
0.75 18.16 1 25.87 0 34.40 0 19.60 2 38.85 1 128.68 0
1.0 17.62 1 24.44 0 24.94 0 19.60 2 37.89 1 125.09 0

0.75
0.5 13.94 0 21.25 0 48.57 0 18.90 1 37.75 1 89.78 0
0.75 12.41 0 16.26 0 27.33 0 18.90 1 37.66 1 73.16 0
1.0 11.20 0 12.25 0 12.48 0 18.53 1 37.34 1 62.58 0

1.0
0.5 9.76 0 16.30 0 48.16 0 10.22 0 16.73 0 50.93 0
0.75 4.42 0 7.61 0 20.66 0 4.42 0 7.61 0 20.68 0
1.0 - 0 - 0 - 0 - 0 - 0 - 0

C.2 Relative Cost Difference with τ = 2

C.2.1 Failure Rate 0.025

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 19.87 1 18.61 1 11.96 0 19.97 2 19.98 1 19.98 1
0.75 19.79 1 18.54 1 11.13 0 19.96 2 19.98 1 19.98 1
1.0 19.38 1 18.00 1 10.16 0 19.95 2 19.98 1 19.76 1

0.75
0.5 18.36 1 14.14 0 9.89 0 19.16 1 19.17 1 18.97 1
0.75 18.21 1 12.60 0 7.54 0 19.16 1 19.16 1 18.58 1
1.0 18.09 1 11.38 0 5.14 0 19.16 1 18.80 1 18.31 1

1.0
0.5 10.19 0 9.78 0 8.71 0 10.25 0 10.25 0 10.22 0
0.75 4.43 0 4.43 0 4.42 0 4.43 0 4.43 0 4.43 0
1.0 - 0 - 0 - 0 - 0 - 0 - 0

C.2.2 Failure Rate 0.005

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 37.90 1 28.28 0 19.08 0 41.68 1 39.28 1 38.17 1
0.75 37.86 1 26.25 0 15.12 0 41.58 1 39.21 1 38.13 1
1.0 37.84 1 24.81 0 12.28 0 39.11 1 38.33 1 37.94 1

0.75
0.5 29.69 0 21.56 0 17.36 0 39.38 1 38.06 1 33.67 0
0.75 27.00 0 16.45 0 11.17 0 39.31 1 37.97 1 32.28 0
1.0 25.00 0 12.44 0 6.16 0 37.84 1 37.65 1 31.28 0

1.0
0.5 16.69 0 16.32 0 16.03 0 16.77 0 16.77 0 16.76 0
0.75 7.62 0 7.62 0 7.61 0 7.62 0 7.62 0 7.62 0
1.0 - 0 - 0 - 0 - 0 - 0 - 0

41



C.2.3 Failure Rate 0.001

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗ %GAP OH∗

0.5
0.5 71.93 0 49.31 0 24.45 0 187.38 1 135.64 0 82.56 0
0.75 58.48 0 34.78 0 22.91 0 187.37 1 129.56 0 70.32 0
1.0 50.48 0 25.31 0 12.73 0 187.30 1 125.97 0 63.06 0

0.75
0.5 60.58 0 48.65 0 23.99 0 139.43 0 90.24 0 65.54 0
0.75 39.06 0 27.53 0 21.73 0 131.19 0 73.60 0 44.81 0
1.0 25.25 0 12.66 0 6.37 0 125.96 0 63.02 0 31.55 0

1.0
0.5 50.74 0 47.98 0 23.55 0 51.01 0 50.98 0 50.79 0
0.75 20.69 0 20.67 0 20.61 0 20.69 0 20.69 0 20.69 0
1.0 - 0 - 0 - 0 - 0 - 0 - 0

C.3 Relative Cost Difference between τ = 1 and τ = 2

C.3.1 Failure Rate 0.025

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP %GAP %GAP %GAP %GAP %GAP

0.5
0.5 -0.18 -0.18 -0.22 -0.19 -0.18 -0.18
0.75 -0.18 -0.18 -0.22 -0.20 -0.18 -0.18
1.0 -0.18 -0.18 -0.22 -0.20 -0.18 -0.18

0.75
0.5 -0.26 -0.33 -0.34 -0.27 -0.27 -0.27
0.75 -0.27 -0.33 -0.35 -0.28 -0.27 -0.27
1.0 -0.27 -0.33 -0.35 -0.27 -0.27 -0.27

1.0
0.5 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47
0.75 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48
1.0 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50

C.3.2 Failure Rate 0.005

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP %GAP %GAP %GAP %GAP %GAP

0.5
0.5 -0.18 -0.20 -0.22 -0.19 -0.18 -0.18
0.75 -0.18 -0.20 -0.22 -0.19 -0.18 -0.18
1.0 -0.18 -0.20 -0.22 -0.18 -0.18 -0.18

0.75
0.5 -0.29 -0.33 -0.34 -0.28 -0.27 -0.28
0.75 -0.30 -0.33 -0.35 -0.27 -0.27 -0.28
1.0 -0.30 -0.33 -0.35 -0.27 -0.27 -0.28

1.0
0.5 -0.47 -0.47 -0.47 -0.47 -0.47 -0.47
0.75 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48
1.0 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
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C.3.3 Failure Rate 0.001

b = 50 b = 250
q p cp = 100 cp = 200 cp = 400 cp = 100 cp = 200 cp = 400

%GAP %GAP %GAP %GAP %GAP %GAP

0.5
0.5 -0.20 -0.28 -0.25 -0.09 -0.12 -0.18
0.75 -0.18 -0.22 -0.24 -0.09 -0.12 -0.17
1.0 -0.17 -0.20 -0.22 -0.09 -0.11 -0.15

0.75
0.5 -0.32 -0.44 -0.38 -0.18 -0.26 -0.31
0.75 -0.31 -0.34 -0.36 -0.17 -0.24 -0.30
1.0 -0.30 -0.33 -0.35 -0.17 -0.23 -0.29

1.0
0.5 -0.47 -0.62 -0.51 -0.47 -0.47 -0.47
0.75 -0.49 -0.49 -0.49 -0.49 -0.49 -0.49
1.0 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50
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Appendix D Example of optimal Policy with τ = 2

In this appendix, we show the optimal policy in a situation where fp = 0.005, p = 1 and q = 1. Table 1
demonstrates the optimal values of the decision variable, the order size, for different values of (w, I).

Table 1: Values of z∗1 for different (w, I) with fp = 0.001, p = 1.0, q = 0.75, b = 250 and cp = 100

a) w = (0,0,0)
I 0 1 2 3 4
z∗1 1 0 0 0 0

b) w = (0,0,1)
I 0 1 2 3 4
z∗1 1 0 0 0 0

c) w = (0,0,2)
I 0 1 2 3 4
z∗1 1 0 0 0 0

d) w = (0,0,3)
I 0 1 2 3 4
z∗1 1 0 0 0 0

As Table 1 shows, the optimal policy is in every setting of w the same. The reason is that the predicted
demand occurs at time t+2, while an order arrives at time t+1. So, as it is possible to satisfy the predicted
demand JIT, the order will be placed one period before the demand is due (see Table 2. Still, the optimal
action is to order 1 part, because the optimal OH* was found the be 1. This part is used for dealing with
the (im)perfect ADI, as still some random failures can occur.

Table 2: Values of z∗1 for different (w, I) with fp = 0.001, p = 1.0, q = 0.75, b = 250 and cp = 100

a) w = (0,0,0)
I 0 1 2 3 4
z∗1 1 0 0 0 0

b) w = (0,1,0)
I 0 1 2 3 4
z∗1 2 1 0 0 0

c) w = (0,2,0)
I 0 1 2 3 4
z∗1 3 2 1 0 0

d) w = (0,3,0)
I 0 1 2 3 4
z∗1 4 3 2 1 0

As can be seen in Table 2, now the optimal action takes into account the number of demand signals that
are available at the beginning of the period. The optimal action is to order 1 part more than the number of
demand signals, because the optimal OH* was found to be 1.
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Appendix E Results TM Value of (im)perfect ADI

E.1 Relative Cost Difference with τ = 2

Table 3: Relative cost difference compared to perfect ADI with f r = 0.001 and τ = 2

b = 50 b = 250
q p cr = 100 cr = 100

%GAP OH∗ %GAP OH∗

0.5
0.5 92.40 0 187.22 1
0.75 81.31 0 187.18 1
1.0 74.74 0 186.53 1

0.75
0.5 70.17 0 186.04 1
0.75 50.18 0 185.89 1
1.0 37.40 0 185.88 1

1.0
0.5 50.95 0 51.26 0
0.75 20.74 0 20.74 0
1.0 - 0 - 0
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Appendix F Results AM vs. TM

F.1 Case cp > cr with τ = 1

Table 4: %AM Value for setting where fp = 0.025 and f r = 0.001

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 2389.50 4626.54 1272.65 2645.20
0.75 2671.06 5098.27 1272.82 2645.54
1.0 2863.49 5407.06 1273.70 2642.41

0.75
0.5 2364.87 4647.34 1268.66 2623.69
0.75 2757.28 5358.98 1269.17 2633.86
1.0 3085.26 5914.53 1265.14 2619.15

1.0
0.5 2320.58 4694.06 1381.43 2861.92
0.75 2782.56 5664.54 1358.73 2817.46
1.0 3242.24 6584.49 1335.11 2770.22

Table 5: %AM Value for setting where fp = 0.005 and f r = 0.001

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 500.07 1014.38 218.53 531.82
0.75 515.30 1022.37 218.74 532.19
1.0 523.86 1022.69 216.77 531.75

0.75
0.5 509.80 217.15 282.52 514.75
0.75 531.48 1105.94 217.07 508.05
1.0 543.10 1114.58 216.36 503.54

1.0
0.5 522.66 212.62 292.93 523.70
0.75 553.18 1206.22 200.67 501.28
1.0 568.46 1236.91 187.03 474.06

F.2 Case cp > cr with τ = 2

Table 6: %AM Value for setting where fp = 0.025 and f r = 0.001

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 2951.42 5690.53 1978.36 4056.67
0.75 3152.77 5999.08 1978.66 4057.27
1.0 3277.05 6172.83 1983.31 4059.02

0.75
0.5 3237.01 6325.96 1972.76 4024.98
0.75 3630.22 7025.42 1973.79 4040.88
1.0 3933.25 7514.23 1967.52 4018.23

1.0
0.5 3518.30 7066.13 3526.56 7150.82
0.75 4203.06 8505.14 4203.06 8506.12
1.0 4875.34 9850.68 4875.34 9850.68
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Table 7: %AM Value for setting where fp = 0.005 and f r = 0.001

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 563.44 1131.77 382.29 856.67
0.75 592.87 1163.57 382.62 857.26
1.0 610.77 1178.82 380.40 858.09

0.75
0.5 610.82 1272.58 380.30 830.02
0.75 671.60 1373.23 380.24 820.86
1.0 714.32 1437.65 379.13 813.95

1.0
0.5 666.81 1429.82 668.17 1436.28
0.75 786.95 1673.68 786.95 1673.91
1.0 895.09 1890.19 895.09 1890.19

Table 8: %AM Value for setting where fp = 0.001 and f r = 0.001

b = 50 b = 250
q p cp = 200 cp = 400 cp = 200 cp = 400

0.5
0.5 54.44 157.45 63.27 152.98
0.75 47.93 169.80 59.08 136.06
1.0 42.72 156.77 56.95 126.50

0.75
0.5 73.84 190.00 32.35 130.33
0.75 69.00 222.62 20.84 101.61
1.0 63.18 208.13 13.48 83.15

1.0
0.5 95.09 225.76 98.64 296.77
0.75 98.89 297.57 98.92 297.84
1.0 99.01 298.01 99.01 298.01

F.3 Case cp ≤ cr with τ = 1

Table 9: %AM Value for setting where fp = 0.025 and f r = 0.001

b = 50 b = 250
q p cp = 50 cp = 100 cp = 50 cp = 100

0.5
0.5 532.85 1164.55 243.16 586.33
0.75 601.23 1300.22 243.21 586.41
1.0 649.43 1391.38 243.42 586.85

0.75
0.5 543.00 1174.28 242.18 584.34
0.75 655.42 1400.80 242.31 584.60
1.0 747.43 1589.22 242.34 584.66

1.0
0.5 507.71 1114.83 270.36 640.71
0.75 620.64 1341.28 264.68 629.36
1.0 735.56 1571.12 258.78 617.56
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Table 10: %AM Value for setting where fp = 0.005 and f r = 0.001

b = 50 b = 250
q p cp = 50 cp = 100 cp = 100

0.5
0.5 190.81 46.37 61.89
0.75 222.38 62.27 62.02
1.0 244.47 72.62 59.28

0.75
0.5 179.99 48.71 60.09
0.75 222.19 74.63 60.08
1.0 257.36 96.65 58.40

1.0
0.5 157.30 28.72 56.90
0.75 197.08 48.54 50.34
1.0 234.23 67.12 43.51

F.4 Case cp ≤ cr with τ = 2

Table 11: %AM Value for setting where fp = 0.025 and f r = 0.001

b = 50 b = 250
q p cp = 50 cp = 100 cp = 50 cp = 100

0.5
0.5 675.65 1449.92 419.61 939.10
0.75 723.08 1543.57 419.81 939.16
1.0 754.00 1599.46 420.98 941.44

0.75
0.5 771.02 1626.26 418.12 936.35
0.75 886.80 1860.55 418.35 936.86
1.0 973.68 2040.28 418.49 936.94

1.0
0.5 808.48 1715.94 806.64 1713.28
0.75 975.77 2051.53 975.76 2051.53
1.0 1150.00 2400.00 1150.00 2400.00

Table 12: %AM Value for setting where fp = 0.005 and f r = 0.001

b = 50 b = 250
q p cp = 50 cp = 100 cp = 50 cp = 100

0.5
0.5 79.40 256.44 26.50 145.09
0.75 90.47 278.41 25.15 145.29
1.0 96.71 292.53 22.14 141.56

0.75
0.5 101.45 279.19 23.49 142.43
0.75 128.11 320.77 23.53 142.44
1.0 149.15 352.65 20.29 139.91

1.0
0.5 92.43 284.61 92.05 284.09
0.75 121.74 343.48 121.74 343.48
1.0 150.00 400.00 150.00 400.00
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Appendix G Results Additive Manufacturing

G.1 Failure Rate 0.025

G.1.1 τ = 1

b cp p q B I z w Value

50 50 0.5 0.5 0 1 0 0 892.54
50 50 0.75 0.5 0 1 0 0 892.54
50 50 1 0.5 0 1 0 0 892.49
50 50 0.5 0.75 0 1 0 0 887.26
50 50 0.75 0.75 0 1 0 0 887.12
50 50 1 0.75 0 1 0 0 883.09
50 50 0.5 1 0 0 0 0 822.51
50 50 0.75 1 0 0 0 0 779.20
50 50 1 1 0 0 0 0 746.25
50 100 0.5 0.5 0 1 0 0 1783.46
50 100 0.75 0.5 0 1 0 0 1782.24
50 100 1 0.5 0 1 0 0 1776.07
50 100 0.5 0.75 0 1 0 0 1762.45
50 100 0.75 0.75 0 1 0 0 1760.29
50 100 1 0.75 0 1 0 0 1758.36
50 100 0.5 1 0 0 0 0 1644.24
50 100 0.75 1 0 0 0 0 1558.40
50 100 1 1 0 0 0 0 1492.50
50 200 0.5 0.5 0 1 0 0 3529.18
50 200 0.75 0.5 0 1 0 0 3527.09
50 200 1 0.5 0 1 0 0 3511.06
50 200 0.5 0.75 0 0 0 0 3401.24
50 200 0.75 0.75 0 0 0 0 3355.40
50 200 1 0.75 0 0 0 0 3319.28
50 200 0.5 1 0 0 0 0 3276.19
50 200 0.75 1 0 0 0 0 3116.81
50 200 1 1 0 0 0 0 2985.00
50 400 0.5 0.5 0 0 0 0 6666.06
50 400 0.75 0.5 0 0 0 0 6616.52
50 400 1 0.5 0 0 0 0 6558.28
50 400 0.5 0.75 0 0 0 0 6550.78
50 400 0.75 0.75 0 0 0 0 6410.69
50 400 1 0.75 0 0 0 0 6267.58
50 400 0.5 1 0 0 0 0 6488.62
50 400 0.75 1 0 0 0 0 6233.00
50 400 1 1 0 0 0 0 5970.00
250 50 0.5 0.5 0 2 0 0 892.56
250 50 0.75 0.5 0 2 0 0 892.55
250 50 1 0.5 0 2 0 0 892.50
250 50 0.5 0.75 0 2 0 0 887.31
250 50 0.75 0.75 0 2 0 0 887.31
250 50 1 0.75 0 2 0 0 887.27
250 50 0.5 1 0 0 0 0 822.53
250 50 0.75 1 0 0 0 0 779.20
250 50 1 1 0 0 0 0 746.25
250 100 0.5 0.5 0 2 0 0 1785.11
250 100 0.75 0.5 0 2 0 0 1785.10
250 100 1 0.5 0 2 0 0 1785.00
250 100 0.5 0.75 0 1 0 0 1774.56
250 100 0.75 0.75 0 1 0 0 1774.56
250 100 1 0.75 0 1 0 0 1774.48
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b cp p q B I z w Value

250 100 0.5 1 0 0 0 0 1645.06
250 100 0.75 1 0 0 0 0 1558.40
250 100 1 1 0 0 0 0 1492.50
250 200 0.5 0.5 0 2 0 0 3570.22
250 200 0.75 0.5 0 2 0 0 3570.20
250 200 1 0.5 0 2 0 0 3570.00
250 200 0.5 0.75 0 1 0 0 3549.05
250 200 0.75 0.75 0 1 0 0 3549.05
250 200 1 0.75 0 1 0 0 3538.11
250 200 0.5 1 0 0 0 0 3290.12
250 200 0.75 1 0 0 0 0 3116.81
250 200 1 1 0 0 0 0 2985.00
250 400 0.5 0.5 0 1 0 0 7140.18
250 400 0.75 0.5 0 1 0 0 7140.13
250 400 1 0.5 0 1 0 0 7127.03
250 400 0.5 0.75 0 1 0 0 7086.49
250 400 0.75 0.75 0 1 0 0 7062.77
250 400 1 0.75 0 1 0 0 7047.37
250 400 0.5 1 0 0 0 0 6578.15
250 400 0.75 1 0 0 0 0 6233.62
250 400 1 1 0 0 0 0 5970.00

G.1.2 τ = 2

b cp p q B I z w Value

50 50 0.5 0.5 0 1 0 0 892.54
50 50 0.75 0.5 0 1 0 0 892.54
50 50 1 0.5 0 1 0 0 892.49
50 50 0.5 0.75 0 1 0 0 887.26
50 50 0.75 0.75 0 1 0 0 887.12
50 50 1 0.75 0 1 0 0 883.09
50 50 0.5 1 0 0 0 0 822.51
50 50 0.75 1 0 0 0 0 779.20
50 50 1 1 0 0 0 0 746.25
50 100 0.5 0.5 0 1 0 0 1783.46
50 100 0.75 0.5 0 1 0 0 1782.24
50 100 1 0.5 0 1 0 0 1776.07
50 100 0.5 0.75 0 1 0 0 1762.45
50 100 0.75 0.75 0 1 0 0 1760.29
50 100 1 0.75 0 1 0 0 1758.36
50 100 0.5 1 0 0 0 0 1644.24
50 100 0.75 1 0 0 0 0 1558.40
50 100 1 1 0 0 0 0 1492.50
50 200 0.5 0.5 0 1 0 0 3529.18
50 200 0.75 0.5 0 1 0 0 3527.09
50 200 1 0.5 0 1 0 0 3511.06
50 200 0.5 0.75 0 0 0 0 3401.24
50 200 0.75 0.75 0 0 0 0 3355.40
50 200 1 0.75 0 0 0 0 3319.28
50 200 0.5 1 0 0 0 0 3276.19
50 200 0.75 1 0 0 0 0 3116.81
50 200 1 1 0 0 0 0 2985.00
50 400 0.5 0.5 0 0 0 0 6666.06
50 400 0.75 0.5 0 0 0 0 6616.52
50 400 1 0.5 0 0 0 0 6558.28
50 400 0.5 0.75 0 0 0 0 6550.78
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b cp p q B I z w Value

50 400 0.75 0.75 0 0 0 0 6410.69
50 400 1 0.75 0 0 0 0 6267.58
50 400 0.5 1 0 0 0 0 6488.62
50 400 0.75 1 0 0 0 0 6233.00
50 400 1 1 0 0 0 0 5970.00
250 50 0.5 0.5 0 2 0 0 892.56
250 50 0.75 0.5 0 2 0 0 892.55
250 50 1 0.5 0 2 0 0 892.50
250 50 0.5 0.75 0 2 0 0 887.31
250 50 0.75 0.75 0 2 0 0 887.31
250 50 1 0.75 0 2 0 0 887.27
250 50 0.5 1 0 0 0 0 822.53
250 50 0.75 1 0 0 0 0 779.20
250 50 1 1 0 0 0 0 746.25
250 100 0.5 0.5 0 2 0 0 1785.11
250 100 0.75 0.5 0 2 0 0 1785.10
250 100 1 0.5 0 2 0 0 1785.00
250 100 0.5 0.75 0 1 0 0 1774.56
250 100 0.75 0.75 0 1 0 0 1774.56
250 100 1 0.75 0 1 0 0 1774.48
250 100 0.5 1 0 0 0 0 1645.06
250 100 0.75 1 0 0 0 0 1558.40
250 100 1 1 0 0 0 0 1492.50
250 200 0.5 0.5 0 2 0 0 3570.22
250 200 0.75 0.5 0 2 0 0 3570.20
250 200 1 0.5 0 2 0 0 3570.00
250 200 0.5 0.75 0 1 0 0 3549.05
250 200 0.75 0.75 0 1 0 0 3549.05
250 200 1 0.75 0 1 0 0 3538.11
250 200 0.5 1 0 0 0 0 3290.12
250 200 0.75 1 0 0 0 0 3116.81
250 200 1 1 0 0 0 0 2985.00
250 400 0.5 0.5 0 1 0 0 7140.18
250 400 0.75 0.5 0 1 0 0 7140.13
250 400 1 0.5 0 1 0 0 7127.03
250 400 0.5 0.75 0 1 0 0 7086.49
250 400 0.75 0.75 0 1 0 0 7062.77
250 400 1 0.75 0 1 0 0 7047.37
250 400 0.5 1 0 0 0 0 6578.15
250 400 0.75 1 0 0 0 0 6233.62
250 400 1 1 0 0 0 0 5970.00

G.2 Failure Rate 0.005

G.2.1 τ = 1

b cp p q B I z w Value

50 50 0.5 0.5 0 1 0 0 206.54
50 50 0.75 0.5 0 1 0 0 206.44
50 50 1 0.5 0 1 0 0 205.57
50 50 0.5 0.75 0 1 0 0 205.20
50 50 0.75 0.75 0 1 0 0 205.07
50 50 1 0.75 0 1 0 0 204.92
50 50 0.5 1 0 0 0 0 174.22
50 50 0.75 1 0 0 0 0 160.61
50 50 1 1 0 0 0 0 149.25
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b cp p q B I z w Value

50 100 0.5 0.5 0 1 0 0 410.34
50 100 0.75 0.5 0 1 0 0 410.22
50 100 1 0.5 0 1 0 0 410.15
50 100 0.5 0.75 0 0 0 0 386.36
50 100 0.75 0.75 0 0 0 0 378.36
50 100 1 0.75 0 0 0 0 372.40
50 100 0.5 1 0 0 0 0 348.24
50 100 0.75 1 0 0 0 0 321.22
50 100 1 1 0 0 0 0 298.51
50 200 0.5 0.5 0 0 0 0 763.57
50 200 0.75 0.5 0 0 0 0 751.48
50 200 1 0.5 0 0 0 0 742.95
50 200 0.5 0.75 0 0 0 0 724.50
50 200 0.75 0.75 0 0 0 0 694.07
50 200 1 0.75 0 0 0 0 670.17
50 200 0.5 1 0 0 0 0 694.31
50 200 0.75 1 0 0 0 0 642.44
50 200 1 1 0 0 0 0 597.01
50 400 0.5 0.5 0 0 0 0 1418.02
50 400 0.75 0.5 0 0 0 0 1370.77
50 400 1 0.5 0 0 0 0 1337.01
50 400 0.5 0.75 0 0 0 0 1399.24
50 400 0.75 0.75 0 0 0 0 1325.46
50 400 1 0.75 0 0 0 0 1265.70
50 400 0.5 1 0 0 0 0 1385.19
50 400 0.75 1 0 0 0 0 1284.73
50 400 1 1 0 0 0 0 1194.03
250 50 0.5 0.5 0 1 0 0 217.34
250 50 0.75 0.5 0 1 0 0 214.95
250 50 1 0.5 0 1 0 0 209.29
250 50 0.5 0.75 0 1 0 0 211.49
250 50 0.75 0.75 0 1 0 0 211.47
250 50 1 0.75 0 1 0 0 205.85
250 50 0.5 1 0 0 0 0 174.23
250 50 0.75 1 0 0 0 0 160.61
250 50 1 1 0 0 0 0 149.25
250 100 0.5 0.5 0 1 0 0 421.06
250 100 0.75 0.5 0 1 0 0 421.35
250 100 1 0.5 0 1 0 0 413.94
250 100 0.5 0.75 0 1 0 0 415.12
250 100 0.75 0.75 0 1 0 0 414.94
250 100 1 0.75 0 1 0 0 410.55
250 100 0.5 1 0 0 0 0 348.46
250 100 0.75 1 0 0 0 0 321.22
250 100 1 1 0 0 0 0 298.51
250 200 0.5 0.5 0 1 0 0 828.93
250 200 0.75 0.5 0 1 0 0 828.48
250 200 1 0.5 0 1 0 0 823.23
250 200 0.5 0.75 0 1 0 0 822.39
250 200 0.75 0.75 0 1 0 0 821.88
250 200 1 0.75 0 1 0 0 819.93
250 200 0.5 1 0 0 0 0 696.90
250 200 0.75 1 0 0 0 0 642.44
250 200 1 1 0 0 0 0 597.01
250 400 0.5 0.5 0 1 0 0 1644.10
250 400 0.75 0.5 0 1 0 0 1643.33
250 400 1 0.5 0 1 0 0 1641.81
250 400 0.5 0.75 0 0 0 0 1592.61
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b cp p q B I z w Value

250 400 0.75 0.75 0 0 0 0 1576.13
250 400 1 0.75 0 0 0 0 1564.22
250 400 0.5 1 0 0 0 0 1393.76
250 400 0.75 1 0 0 0 0 1284.88
250 400 1 1 0 0 0 0 1194.03

G.2.2 τ = 2

b cp p q B I z w Value

50 50 0.5 0.5 0 1 0 0 206.17
50 50 0.75 0.5 0 1 0 0 206.07
50 50 1 0.5 0 1 0 0 205.20
50 50 0.5 0.75 0 1 0 0 204.65
50 50 0.75 0.75 0 1 0 0 204.52
50 50 1 0.75 0 1 0 0 204.37
50 50 0.5 1 0 0 0 0 173.41
50 50 0.75 1 0 0 0 0 159.83
50 50 1 1 0 0 0 0 148.51
50 100 0.5 0.5 0 1 0 0 409.60
50 100 0.75 0.5 0 1 0 0 409.48
50 100 1 0.5 0 1 0 0 409.41
50 100 0.5 0.75 0 0 0 0 385.23
50 100 0.75 0.75 0 0 0 0 377.24
50 100 1 0.75 0 0 0 0 371.29
50 100 0.5 1 0 0 0 0 346.59
50 100 0.75 1 0 0 0 0 319.67
50 100 1 1 0 0 0 0 297.03
50 200 0.5 0.5 0 0 0 0 762.04
50 200 0.75 0.5 0 0 0 0 749.97
50 200 1 0.5 0 0 0 0 741.47
50 200 0.5 0.75 0 0 0 0 722.13
50 200 0.75 0.75 0 0 0 0 691.78
50 200 1 0.75 0 0 0 0 667.95
50 200 0.5 1 0 0 0 0 691.02
50 200 0.75 1 0 0 0 0 639.33
50 200 1 1 0 0 0 0 594.06
50 400 0.5 0.5 0 0 0 0 1414.84
50 400 0.75 0.5 0 0 0 0 1367.71
50 400 1 0.5 0 0 0 0 1334.05
50 400 0.5 0.75 0 0 0 0 1394.42
50 400 0.75 0.75 0 0 0 0 1320.83
50 400 1 0.75 0 0 0 0 1261.26
50 400 0.5 1 0 0 0 0 1378.61
50 400 0.75 1 0 0 0 0 1278.50
50 400 1 1 0 0 0 0 1188.12
250 50 0.5 0.5 0 1 0 0 216.90
250 50 0.75 0.5 0 1 0 0 214.57
250 50 1 0.5 0 1 0 0 208.92
250 50 0.5 0.75 0 1 0 0 210.88
250 50 0.75 0.75 0 1 0 0 210.84
250 50 1 0.75 0 1 0 0 205.30
250 50 0.5 1 0 0 0 0 173.42
250 50 0.75 1 0 0 0 0 159.83
250 50 1 1 0 0 0 0 148.51
250 100 0.5 0.5 0 1 0 0 420.53
250 100 0.75 0.5 0 1 0 0 420.26
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b cp p q B I z w Value

250 100 1 0.5 0 1 0 0 413.99
250 100 0.5 0.75 0 1 0 0 413.79
250 100 0.75 0.75 0 1 0 0 413.20
250 100 1 0.75 0 1 0 0 409.44
250 100 0.5 1 0 0 0 0 346.84
250 100 0.75 1 0 0 0 0 319.67
250 100 1 1 0 0 0 0 297.03
250 200 0.5 0.5 0 1 0 0 827.41
250 200 0.75 0.5 0 1 0 0 826.97
250 200 1 0.5 0 1 0 0 821.75
250 200 0.5 0.75 0 1 0 0 820.18
250 200 0.75 0.75 0 1 0 0 819.65
250 200 1 0.75 0 1 0 0 817.71
250 200 0.5 1 0 0 0 0 693.66
250 200 0.75 1 0 0 0 0 639.34
250 200 1 1 0 0 0 0 594.06
250 400 0.5 0.5 0 1 0 0 1641.13
250 400 0.75 0.5 0 1 0 0 1640.38
250 400 1 0.5 0 1 0 0 1638.85
250 400 0.5 0.75 0 0 0 0 1588.15
250 400 0.75 0.75 0 0 0 0 1571.68
250 400 1 0.75 0 0 0 0 1559.79
250 400 0.5 1 0 0 0 0 1387.27
250 400 0.75 1 0 0 0 0 1278.67
250 400 1 1 0 0 0 0 1188.12

G.3 Failure Rate 0.001

G.3.1 τ = 1

b cp p q B I z w Value

50 100 0.5 1 0 0 0 0 102.34
50 100 0.75 0.5 0 0 0 0 94.31
50 100 1 0.5 0 0 0 0 89.54
50 100 0.5 0.75 0 0 0 0 95.70
50 100 0.75 0.75 0 0 0 0 82.86
50 100 1 0.75 0 0 0 0 74.63
50 100 0.5 1 0 0 0 0 89.96
50 100 0.75 1 0 0 0 0 72.04
50 100 1 1 0 0 0 0 59.70
50 200 0.5 0.5 0 0 0 0 177.88
50 200 0.75 0.5 0 0 0 0 160.47
50 200 1 0.5 0 0 0 0 149.18
50 200 0.5 0.75 0 0 0 0 177.39
50 200 0.75 0.75 0 0 0 0 152.04
50 200 1 1 0 0 0 0 134.30
50 200 0.5 1 0 0 0 0 176.90
50 200 0.75 1 0 0 0 0 144.07
50 200 1 1 0 0 0 0 119.40
50 400 0.5 0.5 0 0 0 0 296.46
50 400 0.75 0.5 0 0 0 0 292.74
50 400 1 0.5 0 0 0 0 268.46
50 400 0.5 0.75 0 0 0 0 295.74
50 400 0.75 0.75 0 0 0 0 290.30
50 400 1 1 0 0 0 0 253.64
50 400 0.5 1 0 0 0 0 295.07
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b cp p q B I z w Value

50 400 0.75 1 0 0 0 0 287.98
50 400 1 1 0 0 0 0 238.80
250 100 0.5 0.5 0 1 0 0 170.86
250 100 0.75 0.5 0 1 0 0 170.85
250 100 1 0.5 0 1 0 0 170.81
250 100 0.5 0.75 0 0 0 0 142.49
250 100 0.75 0.75 0 0 0 0 137.57
250 100 1 0.75 0 0 0 0 134.45
250 100 0.5 1 0 0 0 0 90.13
250 100 0.75 1 0 0 0 0 72.04
250 100 1 1 0 0 0 0 59.70
250 200 0.5 0.5 0 0 0 0 280.30
250 200 0.75 0.5 0 0 0 0 273.05
250 200 1 0.5 0 0 0 0 268.76
250 200 0.5 0.75 0 0 0 0 226.60
250 200 0.75 0.75 0 0 0 0 206.75
250 200 1 1 0 0 0 0 194.12
250 200 0.5 1 0 0 0 0 180.21
250 200 0.75 1 0 0 0 0 144.09
250 200 1 1 0 0 0 0 119.40
250 400 0.5 0.5 0 0 0 0 434.58
250 400 0.75 0.5 0 0 0 0 405.38
250 400 1 0.5 0 0 0 0 388.04
250 400 0.5 0.75 0 0 0 0 394.56
250 400 0.75 1 0 0 0 0 345.12
250 400 1 1 0 0 0 0 313.46
250 400 0.5 1 0 0 0 0 359.97
250 400 0.75 1 0 0 0 0 288.18
250 400 1 1 0 0 0 0 238.80

G.3.2 τ = 2

b cp p q B I z w Value

50 100 0.5 0.5 0 0 0 0 102.13
50 100 0.75 0.5 0 0 0 0 94.14
50 100 1 0.5 0 0 0 0 89.39
50 100 0.5 0.75 0 0 0 0 95.39
50 100 0.75 0.75 0 0 0 0 82.60
50 100 1 0.75 0 0 0 0 74.40
50 100 0.5 1 0 0 0 0 89.54
50 100 0.75 1 0 0 0 0 71.69
50 100 1 1 0 0 0 0 59.40
50 200 0.5 0.5 0 0 0 0 177.39
50 200 0.75 0.5 0 0 0 0 160.12
50 200 1 0.5 0 0 0 0 148.88
50 200 0.5 0.75 0 0 0 0 176.61
50 200 0.75 0.75 0 0 0 0 151.52
50 200 1 0.75 0 0 0 0 133.85
50 200 0.5 1 0 0 0 0 175.80
50 200 0.75 1 0 0 0 0 143.37
50 200 1 1 0 0 0 0 118.80
50 400 0.5 0.5 0 0 0 0 295.71
50 400 0.75 0.5 0 0 0 0 292.04
50 400 1 0.5 0 0 0 0 267.86
50 400 0.5 0.75 0 0 0 0 294.61
50 400 0.75 0.75 0 0 0 0 289.24
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b cp p q B I z w Value

50 400 1 0.75 0 0 0 0 252.74
50 400 0.5 1 0 0 0 0 293.56
50 400 0.75 1 0 0 0 0 286.57
50 400 1 1 0 0 0 0 237.61
250 100 0.5 0.5 0 1 0 0 170.71
250 100 0.75 0.5 0 1 0 0 170.70
250 100 1 0.5 0 1 0 0 170.66
250 100 0.5 0.75 0 0 0 0 142.23
250 100 0.75 0.75 0 0 0 0 137.33
250 100 1 0.75 0 0 0 0 134.22
250 100 0.5 1 0 0 0 0 89.70
250 100 0.75 1 0 0 0 0 71.69
250 100 1 1 0 0 0 0 59.40
250 200 0.5 0.5 0 0 0 0 279.95
250 200 0.75 0.5 0 0 0 0 272.73
250 200 1 0.5 0 0 0 0 268.46
250 200 0.5 0.75 0 0 0 0 226.02
250 200 0.75 0.75 0 0 0 0 206.25
250 200 1 0.75 0 0 0 0 193.67
250 200 0.5 1 0 0 0 0 179.37
250 200 0.75 1 0 0 0 0 143.39
250 200 1 1 0 0 0 0 118.80
250 400 0.5 0.5 0 0 0 0 433.78
250 400 0.75 0.5 0 0 0 0 404.70
250 400 1 0.5 0 0 0 0 387.45
250 400 0.5 0.75 0 0 0 0 393.33
250 400 0.75 0.75 0 0 0 0 344.09
250 400 1 0.75 0 0 0 0 312.56
250 400 0.5 1 0 0 0 0 358.29
250 400 0.75 1 0 0 0 0 286.77
250 400 1 1 0 0 0 0 237.61
250 200 0.5 0.5 0 1 0 0 827.41
250 200 0.75 0.5 0 1 0 0 826.97
250 200 1 0.5 0 1 0 0 821.75
250 200 0.5 0.75 0 1 0 0 820.18
250 200 0.75 0.75 0 1 0 0 819.65
250 200 1 0.75 0 1 0 0 817.71
250 200 0.5 1 0 0 0 0 693.66
250 200 0.75 1 0 0 0 0 639.34
250 200 1 1 0 0 0 0 594.06
250 400 0.5 0.5 0 1 0 0 1641.13
250 400 0.75 0.5 0 1 0 0 1640.38
250 400 1 0.5 0 1 0 0 1638.85
250 400 0.5 0.75 0 0 0 0 1588.15
250 400 0.75 0.75 0 0 0 0 1571.68
250 400 1 0.75 0 0 0 0 1559.79
250 400 0.5 1 0 0 0 0 1387.27
250 400 0.75 1 0 0 0 0 1278.67
250 400 1 1 0 0 0 0 1188.12
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Appendix H Results Traditional Manufacturing

H.1 τ = 1

b cp p q B I z w Value

50 100 0.5 0.5 0 0 0 0 141.03
50 100 0.75 0.5 0 0 0 0 127.28
50 100 1 0.5 0 0 0 0 119.09
50 100 0.5 0.75 0 0 0 0 137.99
50 100 0.75 0.75 0 0 0 0 117.43
50 100 1 0.75 0 0 0 0 104.21
50 100 0.5 1 0 0 0 0 135.35
50 100 0.75 1 0 0 0 0 108.13
50 100 1 1 0 0 0 0 89.31
250 100 0.5 0.5 0 1 0 0 260.09
250 100 0.75 0.5 0 1 0 0 260.06
250 100 1 0.5 0 1 0 0 259.88
250 100 0.5 0.75 0 0 0 0 259.31
250 100 0.75 0.75 0 0 0 0 259.21
250 100 1 0.75 0 0 0 0 259.18
250 100 0.5 1 0 0 0 0 222.09
250 100 0.75 1 0 0 0 0 213.67
250 100 1 1 0 0 0 0 208.00

H.2 τ = 2

b cp p q B I z w Value

50 100 0.5 0.5 0 0 0 0 114.86
50 100 0.75 0.5 0 0 0 0 108.24
50 100 1 0.5 0 0 0 0 104.32
50 100 0.5 0.75 0 0 0 0 101.59
50 100 0.75 0.75 0 0 0 0 89.66
50 100 1 0.75 0 0 0 0 82.03
50 100 0.5 1 0 0 0 0 90.12
50 100 0.75 1 0 0 0 0 72.08
50 100 1 1 0 0 0 0 59.70
250 100 0.5 0.5 0 1 0 0 171.47
250 100 0.75 0.5 0 1 0 0 171.44
250 100 1 0.5 0 1 0 0 171.05
250 100 0.5 0.75 0 1 0 0 170.76
250 100 0.75 0.75 0 1 0 0 170.68
250 100 1 0.75 0 1 0 0 170.66
250 100 0.5 1 0 0 0 0 90.30
250 100 0.75 1 0 0 0 0 72.08
250 100 1 1 0 0 0 0 59.70
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