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Abstract
The primary purpose of this master thesis project is to develop a deep reinforcement learning
approach to solve an online order batching problem. This project takes place at Vanderlande
Industries (VI), the global market leader for value-added logistic process automation at airports,
the parcel market and the warehousing market. In the warehousing market, VI designs warehouse
fulfilment solutions which incorporate receiving, storing, order picking and the consolidation of
goods. The specific problem concerns an Online Order Batching and Sequencing Problem in a
warehousing concept called DeepRele. DeepRele consists of a storage area for manual picking
with order pickers, a storage area for automated picking with shuttles and some subsequent con-
solidation processes. In order to reflect real-world characteristics, this problem is addressed as a
multi-objective problem, large instances are considered and a dynamic environment is used that is
subjected to change. In order to cope with these challenges, this work presents a Deep Reinforce-
ment Learning (DRL) approach and a Bayesian optimization technique for reward shaping. The
first objective within this multi-objective problem is the percentage of tardy orders (orders that
are finished after their respective cutoff time). The second objective is the order picking costs per
order. The proposed solutions are used in a benchmark study together with traditional heuristics
to asses performance. The DeepRele system is modeled as a Semi Markov Decision Process that
allows for different order batching and sequencing policies to be tested. The DRL approach in
combination with reward shaping using Bayesian optimization outperforms these heuristics on
average with 50% on the percentage of tardy orders and with 5% in terms of average order picking
costs over the four conducted experiments. With this, the DRL approach with reward shaping
provides a new intuitive solution for multi-objective online order batching problems. Lastly, this
work provides additional analysis on the learned DRL approaches including approximating the
learned DRL policies using decision trees to infer logic and provide explainable decision rules.
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Executive summary
Problem context
This thesis project takes place at Vanderlande industries and presents a deep reinforcement learn-
ing approach to solve a multi-objective online order batching problem. VI is the global market
leader for value-added logistic process automation at airports, the parcel market and the ware-
housing market. In this warehousing market, VI designs warehouse fulfilment solutions which
incorporate receiving, storing, order picking and the consolidation of goods. In order to tackle
arising challenges in the e-commerce market, VI has developed a new fulfillment concept called
DeepRele. DeepRele consists of a storage area for manual picking with order pickers, a storage
area for automated picking with shuttles and some subsequent consolidation processes. This new
warehousing concept tries to tackle several challenges within the e-commerce market: strong ex-
pected order growth, next day or even same day deliveries and highly volatile demand during
days as Single Day, Black Friday and Thanksgiving. Within this new warehousing concept, this
thesis project focuses on solving the online Order Batching and Sequencing Problem (Online Order
Batching and Sequencing Problem (OOBSP)) where for each order, either a picked-by-batch or
picked-by-order decision needs to be made and sequenced in real-time. The subsequent batching
operation is done using a heuristic. These batching and sequencing decisions can have extensive
operational consequences as a pick-by-batch decision reduces picking costs by more efficient pick-
ing but requires a longer lead time as orders within a batch needs to wait on each other. Contrary,
a pick-by-order decision has shorter lead times but higher picking costs as the picking operation
is less efficient. By this batching decision and the subsequent sequencing decision of batches, the
system tries to minimize the number of tardy orders (late orders that leave the system after their
respective cutoff time) and order picking costs. Similar sequential decision making problems have
been addressed by DRL but somewhat lacked real-world characteristics (Waschneck et al., 2018;
Hubbs et al., 2020; Shi et al., 2020). This specific problem has been addressed by DRL before by
Cals et al. (2021) but contains several assumptions that result in a theoretical environment. In
order to reflect real-world characteristics, this problem is addressed as a multi-objective problem,
considers large problem instances and uses a dynamic environment that is subjected to change.

Research approach
In the recent years, Reinforcement Learning (RL) has demonstrated impressive results for sequen-
tial decision making problems in a wide range of domains. This approach is the study on how an
agent can interact with an environment to learn a policy which maximizes expected cumulative
rewards for a task (Sutton et al., 1998). In addition to RL, deep reinforcement learning uses recent
advancements in Deep Neural Networks (DNN) to cope with the curse of dimensionality resulting
in massive state spaces. In this work, DRL addresses the OOBSP of DeepRele with real-world
characteristics and is guided by the following research question:

How can deep reinforcement learning solve a multi-objective variant of the online order batching
and sequencing problem with real-world characteristics?

In this thesis project, the focus is on solving the online order batching and sequencing problem in
a DeepRele system whereas additional processes as replenishment of goods, labeling and closing
are left out of scope. Furthermore, only the batching decision (pick-by-batch / pick-by-order) is
performed by the DRL approach, the subsequent batching operation is performed by a heuristic.
Lastly, designing a routing strategy is not included in this thesis project to solely focus on the
online order batching and sequencing problem.

Methods
In order to solve the introduced problem, this project contains two solution methods. In the first
method, a DRL approach is proposed that solves the OOBSP in a Semi Markov Decision Process
(SMDP). This SMDP can be considered as the “environment” in which a DRL approach can
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interact and learn by trial and error. The DRL approach has been designed in such a way that this
can cope with real-world characteristics. The DRL approach uses a Proximal Policy Optimization
model which strikes a favorable balance between sample efficiency, simplicity and computational
efficiency. Within the SMDP, an efficient simulation model is developed that mimics the dynamics
of a DeepRele warehousing system. This simulation model is used as an approximation to the
reality as current physical concepts are not available and it is not desirable to test policies in this
way. In the second method, the DRL approach is complemented with a Bayesian optimization
technique for reward shaping. This reward shaping process is considered as a hyper-optimization
problem that is addressed by Bayesian Optimization. It is identified that shaping a reward function
in a multi-objective real-world problem setting is considered difficult and the Bayesian optimization
method tries to improve this process. In this reward function, each component attributes to a
certain objective that the DRL approach tries to optimize. Specifically, setting these components
proportionally to each other is difficult, and the Bayesian optimization method tries to find a set
of weights that can be applied to the different components in this reward function.

Results
The two proposed solution methods have been compared in a benchmark study against more
traditional batching and sequencing heuristics as the LST heuristic, BOC heuristic by Li et al.
(2017) and the GVNS heuristic by Bustillo et al. (2015). In the first solution method, the DRL
approach is combined with the LST sequencing heuristic and outperforms the traditional heuristics
significantly in terms of tardy orders but not in terms of order picking costs which demonstrates
the complexity of solving multi-objective optimization problems. Using a policy analysis, the
learned DRL policy decreases its pick-by-batch ratio just before cutoff moments in order to make
sure that orders with imminent cutoff times are picked-by-order and therefore have a short lead
time to leave the system in time. These DRL approaches have been trained on specific instances
and a robustness analysis has been performed to observe generalization of these approaches. These
approaches are robust to small changes (10%) in throughput and resource capacities but find it
hard generalize when a complete different experiment is presented. As mentioned before, the
second solution method presents a Bayesian optimization technique for reward shaping in order to
complement the DRL approach. The DRL approach with reward shaping outperforms the DRL
approach without reward shaping both in terms of tardy orders and order picking costs. In this
reward shaping process, a Bayesian optimization technique finds a set of weights that represent
the priority for each objective within the reward function. These obtained weights confirm a prior
expectation where the DRL approach focuses during the day more on minimizing order picking
costs whereas as during the end of a day, focuses more on minimizing tardy orders. Additionally,
this work provides additional analysis on the learned DRL approaches including approximating
the learned DRL policies using decision trees to infer logic and provide explainable decision rules.

Conclusions and recommendations
During this project, a DRL approach with reward shaping presented itself as a novel and exiting
technique to solve the online order batching and sequencing problem of DeepRele with real-world
characteristics. This approach addresses these real-world characteristics by taking into account a
multi-objective variant of the OOBSP, a large problem instance size and a dynamic environment
with uncertainty in order arrivals in an online setting. The proposed DRL approaches with reward
shaping learn a policy that outperforms more traditional heuristics in the OOBSP. These DRL
approaches with reward shaping provide a better trade-off to the multi-objective problem whereby
prioritizing a certain objective at the right point in time is key. Although the scope of this thesis
project includes fewer components than can be implemented, it can be concluded that this research
shows great potential when solving real-world scenarios of the OOBSP with a DRL approach using
Bayesian optimization for reward shaping. With this, it can be recommended to extend this work
by using an even more detailed simulation model, to use exact storage locations of SKUs and
optimize a routing strategy, further industrializing the DRL approaches with reward shaping by
translating these into explainable heuristics using Explainable AI (XAI) and lastly, provide a plan
for bringing a reinforcement learning approach in production.
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1. Introduction
1.1 Problem context

This thesis project takes place at Vanderlande industries and presents a deep reinforcement learn-
ing approach to solve a multi-objective online order batching problem. Vanderlande Industries
(VI) is the global market leader for value-added logistic process automation at airports, the parcel
market and the warehousing market. In the warehousing market, VI designs warehouse fulfilment
solutions which incorporate receiving, storing, order picking and the consolidation of goods. In
order to tackle arising challenges in the e-commerce market, VI has developed a new fulfillment
concept called DeepRele. This new warehousing concept consists of a storage area for manual pick-
ing with order pickers, a storage area for automated picking with shuttles and some subsequent
consolidation processes. DeepRele has been designed to tackle challenges in the e-commerce mar-
ket: strong expected order growth (Statista, 2020), next-day or same-day deliveries (Yaman et al.,
2012) and labour scarcity within the warehousing industry (Hamberg and Verriet, 2012). The
most important challenge that DeepRele tries to tackle within the e-commerce market, are the
varying workloads. Sale events such as Single’s Day, Black Friday and Thanksgiving Weekend
cause highly volatile demand that need to be aligned with current warehouse capacity. Peak days
can have demand up to 3 times higher than average demand seen at Vanderlande’s customers.

Traditional warehouse concepts as storage areas for manual picking (Person-to-Goods (PtG)) and
storage areas for automated picking (Goods-to-person (GtP)) both have different perspectives in
operational performance. PtG systems provide flexibility in order picking capacity but operate
with relatively high lead times per order. On the other hand, GtP systems provide low lead times
per order and reduces the requirement of manual labour. However, it cannot provide flexibility in
order picking capacity and requires a significant higher investment than PtG systems. This trade-
off between the GtP and PtG systems is leveraged in the new warehousing concept called DeepRele.
DeepRele provides a combination of PtG and GtP picking areas and considers the flexibility of
picking capacity, lead times, manual labour and initial investment (Figure 3.1). According to
literature, three planning issues can be distinguished in warehouse operations (Caron et al., 1998):
assignment of articles to storage locations (article location), transformation of orders into picking
orders (order batching) and routing of pickers through the warehouse (picker routing). This
project focuses on the online order batching and sequencing part where for each order, either a
picked-by-batch or picked-by-order decision needs to be made and sequenced in real time. The
subsequent batching operation is done using a heuristic. This problem is in literature related to the
online order batching and sequencing problem (OOBSP) and both picking options have different
consequences in terms of operational performance. According to Bartholdi III and Hackman
(2018), cost of order picking is estimated to form 55% of the total warehousing costs and together
with minimizing the number of ’late’ orders are the main concerns in this project.

Although the OOBSP already has received some attention since its acknowledgement, recent
developments in the field of deep reinforcement learning (DRL) gave rise to the question whether
a DRL approach can also gain expertise in solving these kinds of optimization problems. Based
on previous work of Vanderlande and Cals et al. (2021), the decision whether to pick-by-batch
or pick-by-order, can be made using deep reinforcement learning. In the work of Cals et al.
(2021), the authors demonstrated superior performance of a DRL model for only a single scenario.
Within this single scenario, a DeepRele system was used that had a throughput of only 500 orders
per hour. However, the complexity of the proposed solution did not allow the authors to solve
a system with larger, more complex and more realistic through-puts. Furthermore, the current
problem only includes a single objective: minimizing the number of tardy (or late) orders. Ideally,
DeepRele would trade-off the number of tardy orders and the order picking time per order. Many
optimization problems that are solved with DRL are restricted to single-objective problems (Peer
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et al., 2018; Waschneck et al., 2018; Hubbs et al., 2020; Shi et al., 2020; Che et al., 2020; Cals
et al., 2021). Whereas many (sequential) decision making problems in the real world try to optimize
multiple objectives (Nguyen et al., 2020). In order to increase applicability of DRL models for
optimization problems, this master thesis project addresses the following challenge: design a DRL
approach to solve a multi-objective variant of the online order batching and sequencing problem
with real-world characteristics.

1.2 Real-world operational decision problems

These real-world characteristics, have a multi-objective problem setting, have orders arriving into
the system in real time (online problem setting), have large instance size problems arise and have
environments that change dynamically. The proposed model should account for these challenges.
This section introduces optimization problems solved by DRL, discusses the complexity of multi-
objective problems, presents shortcomings of the work of Cals et al. (2021) and thereby, provides
academic motivation for this project.

In the field of Operations Research and Computer Science, several optimization problems have
been addressed with Deep Reinforcement Learning. Waschneck et al. (2018) demonstrates DRL
as a superior method for Job Shop scheduling problem (JSP) that incorporates several manufac-
turing dynamics. Hubbs et al. (2020) provided a DRL-based scheduling algorithm that efficiently
schedules batches for a chemical production site. Shi et al. (2020) designed a reinforcement learn-
ing algorithm that solves the problem of lot scheduling for discrete automated production lines
with stochastic processing times. Of course finally, the work of Cals et al. (2021) solved the online
order batching and sequencing problem for DeepRele application. All these findings proved that
DRL can outperform simpler scheduling and allocation heuristics. However, the DRL models in
all findings have been used to solve a single-objective optimization problem, address a relatively
small instance size and some consider a somewhat static environment. As many decision mak-
ing problems in the real world require the consideration of more than one objective, addressing
this challenge could enhance the applicability of DRL models significantly. Multi-objective op-
timization problems are often conflicting so that the minimization often leads to maximization
of another. According to Nguyen et al. (2020), an aligned reward function is of high importance
when solving multi-objective optimization problems and problems with a dynamic environment
using deep reinforcement learning. Additionally, Sutton et al. (1998) state that the performance
of RL in general is heavily influenced by the way the problem is represented in terms of reward
function. Finding an aligned reward function for DRL model is considered difficult according
to Marom and Rosman (2018) and so, improving the process of finding an aligned reward func-
tion would enhance DRL approaches solving real-world operational decision problems. However,
solving these problems pose additional challenges. In the work of Cals et al. (2021), orders do
not enter the system in real time, small instances of the OOBSP were used and a fairly static
environment was considered. In this static environment, a specific part of the day is selected to
use for modeling. Selecting an entire day with changing dynamics in terms of order arrivals and
resource capacity was not possible. And so, solving real-world operational decision problems in-
cludes a multi-objective aspect, a large instance size and a dynamic environment that is subjected
to change.

1.3 Research questions

This thesis project aims to solve the OOBSP with real-world characteristics by using recent ad-
vancements in the machine learning domain. In order to guide this process, the following main
research question is defined:

2



How can deep reinforcement learning solve a multi-objective variant of the online order batching
and sequencing problem with real-world characteristics?

Answering this research question is structured by answering the following sub questions:

1. What are the existing methods that solve the OOBSP and where do they excel or fall short?

2. What is DRL and what are the applications for optimization problems?

3. In what ways can DRL be complemented so it can handle multi-objective problems?

4. What are the characteristics of the OOBSP present in the DeepRele warehousing concept?

5. How can the OOBSP be formulated in a way that enables DRL to solve a multi-objective
variant of the problem with real-world characteristics?

6. What is the performance of such a method compared to existing techniques and how can
these methods be explained?

1.4 Research design

The first three sub questions are answered in Chapter 2 by conducting a literature review. Ques-
tion 1 provides an overview of existing methods that solve the OOBSP and identifies shared
dilemma’s. The second question considers literature from DRL and DRL applications in the do-
main of operations research. This obtains an overview of optimization problems being addressed
with DRL, what algorithms have been used and what the academic contributions are. The third
question identifies techniques that can solve multi-objective optimization problems using DRL to
eventually improve applicability of DRL models.

The fourth question is answered in Chapter 3 and identifies the OOBSP for the DeepRele ware-
housing concept and provides a formal problem definition for this project.

In order to answer question 5, techniques and principles are presented in Chapter 4 for a DRL
framework that is able to solve multi-objective optimization problems with real-world character-
istics. Subsequently, Chapter 5 provides an outline of the experiment setup used to assess the
performance of the DRL application, after which in Chapter 6 the results are discussed which can
be used to answer question 6. These results include a policy analysis and robustness analysis.

Finally, Chapter 7 concludes findings from all of the above and provides limitations of this research
together with directions for future research and recommendations to VI. An overview of this
research design is presented in Figure 1.1.

Figure 1.1: Research design and dependencies
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1.5 Contributions

This work contributes to literature by providing insights on the following aspects:

• Solving the OOBSP using a DRL approach. Using the approach presented in the work of
Cals et al. (2021) as a base, this has been improved to cope with real-world characteristics as
a multi-objective variant of the OOBSP, handle large instance sizes and cope with an online
and dynamic problem setting. In order to solve these real-world characteristics, the improved
DRL approach have been complemented with a reward shaping process. This process uses a
Bayesian optimization technique that assigns a priority to each objective within the reward
function of the DRL approach.

• Analytic approach on the learned DRL policies with reward shaping to understand the
operational impact and modeling behaviour. These insights can be used to help implement
these kinds of projects by translating the learned DRL policies into more simpler heuristic
rules.

• Explainable AI technique where the DRL approach has been distilled into a decision tree.
From this decision tree, explainable decision rules and logic have been inferred. Under-
standing the learned DRL policies is an important step in the process of implementing DRL
techniques in real-world scenarios.

With these contributions, this work differentiates itself and provides a motivation for further
research in understanding and applying DRL policies for sequential decison making problems.
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2. Literature review
The objective of this literature review is to provide an academic motivation for this thesis project.
This is done by introducing a review of current solutions methods for solving the OOBSP and
by providing an overview of current (deep) reinforcement learning techniques together with ap-
plications to the operational research domain. Additionally, this literature review presents several
hyper-parameter optimization techniques that could enable a better integration between the two
aforementioned domains.

2.1 Solving the order batching and sequencing problem

This section is divided into two parts. The first part elaborates on the definition of the OBSP
whereas the second parts discusses traditional solution methods for the OBSP.

2.1.1 Definition of the OBSP

In the literature, the OBSP is defined as grouping customer orders into picker orders (batches) and
subsequently sequencing these batches to optimize a certain single or multiple objectives (Henn
et al., 2012). The majority of existing work on OBSP assumes an offline (or static) setting, where
all the orders are known in advance and the system provides a solution, which is assumed to be
valid for the entire day. However, this thesis project considers an online setting, the OOBSP. The
OOBSP is closely related to problems as the order batching and sequencing problem (OBSP),
the order batching problem (OBP), the order batching, sequencing and picker routing problem
(OBSPRP) and the order batching and picker routing problem (OBPRP). The routing problem
tries to address finding an optimal route according to a certain objective. Figure 2.1 presents the
order batching and sequencing problem in its traditional format.

Figure 2.1: The combination of the order batching and sequencing operations (Chen et al., 2015)

All OBP and related variants mainly focus on the optimization of three objectives: minimizing
order tardiness, minimizing travel distance and minimizing processing times. The OOBSP as
described above is known to be NP-hard in strong sense if the number of orders per batch is
larger than two and is found as solvable in polynomial time (Gademann and Velde, 2005). The
majority of existing work on OOBSP assumes an offline (or static) setting, where all the orders
are known in advance and the system provides a solution for a restricted period of time. In
the coming subsections, an overview is given on both online as offline solution methods and this
provides context on the complexity, and guidance in solving the OOBSP.
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2.1.2 Exact solution methods

Most of the exact solutions for the OBP available in present literature rely on applications with
small instances. This can be derived from results in Table 2.1. Besides this, all exact solution
approaches that have been discussed have the single objective to minimize total processing time
and compute a solution in an offline setting.

Armstrong et al. (1979) proposes a mixed integer linear programming approach for the OBP of
a semi-automated liquor distribution centre case. An experimental study is performed with a 30
order / 12 aisle example. The authors found optimality in their solution and outperformed the
most recent solution at the time: the benders approach.

Van Den Berg et al. (2001) defines two criteria for order batching: firstly, proximity batching
minimizes the travel time and thereby increases throughput and secondly, time window batching
optimizes due date performance. For this project, the OBP is evaluated as proximity batching.
The authors present an exact branch-and-bound algorithm that uses a 2-opt heuristic to compute
the initial upper bound of the solution.

Gademann and Velde (2005) conducted an extensive numerical study on their exact solution and
found that their algorithm is able to provide optimal solutions for smaller problem instances. The
authors devised a branch-and-price algorithm that can find the optimum solution of test instances
with up to 32 customer orders. However, the computing time increases significantly and the
guarantee to solve the instance optimally disappears when increasing the number of orders.

Bozer and Kile (2008) proposes a mixed integer programming model to obtain near-exact solutions
to the problem. This model provides good lower and upper bounds to the problem, which prove
to be useful for heuristics to solve the actual problem. The objective is to minimize the total
time to pick all orders in a ’wave’, given finite-capacity order pickers. A wave is defined as a
pre-defined period of time where order pickers simultaneously pick batches. A batch is related
to only one specific order picker. This model provides near-exact solutions because the mixed
integer linear program contains a heuristic. Unfortunately, the best batching heuristic requires
substantial computational time for large waves.

In the work of Muter and Öncan (2015), the OBP is solved using a column generation method.
The authors considered different routing strategies in the experiments, and use 90 data sets which
include up to 100 orders. These results were obtained from a case study with low-level picker-to-
parts picking systems. The column generation method is a well-known algorithm for large-scale LP
problems. In this case, it is used to solve the LP relaxation of mixed integer linear programming
with exponentially many variables.

Valle et al. (2017) considers the case of online grocery shopping, where orders may be composed of
dozens of items. The authors frame the problem as a order batching and picker routing Problem
where the objective is to find minimum-cost closed walks where each picker visits all locations
required to pick all products from their assigned orders. An integer programming method is
proposed and the authors show that given an assignment of orders to pickers, an optimal routing
can be computed very quickly. Instances involving up to 20 orders were solved to proven optimality.
Instances involving up to 5000 orders were considered where order batching was done heuristically,
but picker routing done optimally.

2.1.3 Heuristic solution methods

Existing exact solution approaches to the OBP have only a limited applicability due to NP-hard
property, real-world problems have to be solved by means of heuristic approaches (Henn et al.,
2012). A variety of heuristic approaches has been suggested for the OOBSP. These approaches can
be partitioned into priority rule-based algorithms, seed algorithms, savings algorithms, and meta-
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Work System Algorithm Order instance Items / order Objective

Armstrong et al. (1979) PtG MIP 30 orders 200 - 6000 Min. processing time

Van Den Berg et al. (2001) PtG Branch-and-bound 30 orders 4 - 20 Min. tardiness

Gademann and Velde (2005) PtG Branch-and-price 30 orders 6 - 20 Min. travel time

Bozer and Kile (2008) PtG MIP 25 orders 2 - 7 Min. picking costs

Muter and Öncan (2015) PtG Column generation 100 orders 2 - 10 Min. travel time

Valle et al. (2017) PtG IP 20 orders 4 - 5 Min. picking costs

Table 2.1: Discussed work with research objective and experiment instance sizes

heuristics (Henn et al., 2012). The first three groups contain approaches which are constructive
by nature, whereas meta-heuristics focus on improving given solutions (De Koster et al., 2007).

Constructive approaches
Elsayed (1991) uses due date information for orders when solving the OOBSP in an online setting.
Orders arrive at the system in a static fashion and are classified as storage-orders (s orders) and
retrieval-orders (r orders) and processing is performed in three different kind of cycles: (i) storage-
only cycle (the SIR machine can perform storage functions only), (ii) retrieval-only cycle (the SIR
machine can perform retrieval functions only), and (iii) interleaving cycle (the SIR machine can
store and retrieve items in the same cycle). In this study, an Automated Storage and Retrieval
system is used which is similar to the Goods-to-person system of DeepRele. Elsayed (1991)
presented three rules in his work:

• Sequencing s-orders and r-orders using Maximum Longest Travel Time rule and Earliest Due
Data rule

• Batching r-orders using the Nearest Schedule rule, the Shortest Processing Time rule and
the Most Common Location rule.

• Nearest Location rule of including s-orders in picking tour

The above rules are classified as seed and savings algorithms and are evaluated using a simulation
model. Different combination of rules have been considered but eventually, this work concluded
that for batching s-orders the Nearest schedule rule provides superior results in terms of shortest
travel time. Furthermore, the Earliest Due Date rule is used for sequencing and the Nearest
Location rule has been used for including s-orders in a pick tour.

In subsequent work, Elsayed et al. (1993) present an online setting of the OOBSP that is solved
with a dual objective: minimizing the tardiness of orders and minimizing the earliness of orders.
The OOBSP investigates the performance of order retrievals in AS/RS operating under a Just-In-
Time control policy where every order has a due date requirement. A priority rule-based algorithm
is used that contains the following steps: (1) sequencing the orders, (2) forming order batches and
(3) determining the optimal release time of batches for retrieval. Algorithms have been assigned
to each individual step in order to optimize the objectives. The sequencing step (1) consists of an
priority index for each order which is a weighted sum of the order tardiness and the order earliness.
Based on this sequence, orders are batched into groups while considering capacity of the system.
This iterative process creates seeds of first orders and continues to add orders to the formed batch
until the system’s is violated or the value of the objective function increase. In case of the two
latter scenarios, the specific order is skipped. This iterative process continues until either no more
orders can be added to the current batch due to capacity constraints or no more remaining orders
need to be assigned. This yields the first batch and subsequently, the next order is selected as
seed and the process iterates thru the remaining orders, creating batches until all orders have been
assigned to a batch. Determining the optimal release time for batches (3) is done by inserting idle
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time between the determined batches and to calculate the change in the objective function when
a batch is delayed by one unit of time and include if this provides a more optimal solution.

Lee and Kim (1995) published work as an extension on the work of Elsayed et al. (1993) where they
focus more on obtaining an optimal schedule under dual commands. They assume that the number
of s-orders are almost equal to the number of r-orders and consider a manufacturing environment
where a unit-load AS/RS is used for storing work-in-progress and tools from a production line.
Furthermore, the papers acknowledges the fact that the proposed solution need to be able to solve
large problems. In order to do this, Lee and Kim (1995) proposed 4 types of batching heuristics
all according to a 2-step approach.

1. S and r-orders are batched using one of 4 batching heuristics:

• Minimum Total Processing time (MTP) rule

• Shortest Processing Time (SPT) rule

• Shortest Processing Time Nearest Location (SPT-NL) rule

• Longest Processing Time (LPT) rule

2. During several dual-command cycles, the batched orders are sequenced to minimize total
earliness and total tardiness using:

• The first algorithm sequences formed batches in a non-increasing manner based on
processing times and selects the first batch. If the the processing time of the current
batch is smaller than the processing time of the next batch in sequence, that specific
batch is added to set A: set of batches that are finished before coming due date. If
this is not the case, the batch is added to set B in SPT order: set of batches that are
finished after coming due date (Bagchi et al., 1987).

Several experiments with different combinations of the above heuristics were computed. For smal-
ler instance sizes, the combinations of heuristics where compared with a mixed integer linear
programming model that can generate optimal solutions. For larger instance sizes, the mixed
integer linear programming model could not be used, performance among individual heuristics is
compared. MTP and SPT outperform the other heuristics in both scenarios. In the small instance
size scenario, SPT is superior but if the instance size increases, MTP appears to be superior.

Elsayed and Lee (1996) proposes a solution approach for the generation and sequencing of batches
when only the total tardiness has to be minimized. Firstly, the customer order are sequenced
according to their due dates and processing times when orders would be processed as a single-order
batch. A first bound on the optimal total tardiness can be obtained by assuming that the items of
each customer order would be collected on a single tour and sequencing the tours according to the
order’s position in the sequence. Three decision rules for the generation of batches are compiled
and evaluated. (1) The Nearest Schedule Rule assigns the first customer order as a seed to the
initial batch. Subsequent customer orders are assigned to the similar batch if the inclusion does
not increase the total tardiness and does not violate capacity restrictions. If this is the case, the
last remaining customer order in the sequence is used as seed order for the next batch. (2) The
Shortest Service Time rule adds orders to the seed which would be possess the shortest processing
time, if the order was processed in a separate tour. (3) The Most Common Location Rule, an
Order is added to the seed order which has the largest number of pick locations in common with
the seed order. Conducting an experiment with these methods yields that the Nearest Schedule
rule outperforms the other rules and achieves results which are close to optimality. A MIP model
is proposed to compute optimal results and to compare performance of defined heuristics.

Won and Olafsson (2005) presents an integrated solution for the order batching and sequencing
problem. The authors propose two heuristics for this problem which minimize the weighted average
of the total picking time of batches and the holding time of orders in the batch. The first heuristic
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is a sequential decision mechanism, sequential order batching and picking algorithm (SBP), that at
first solves the batching problem and subsequently, addresses the sequencing problem. The basic
idea is to minimize the processing time, combining the order picking time that represents the
warehouse efficiency and the order holding time that represents the responsiveness to customers
or supply chain partners. The second method, joint order batching and picking problem (JBP),
has similar goals but attempts to achieve them in a parallel manner by simultaneously constructing
batches and sequences. Besides this, this heuristic relaxes a constraint made by SBP, namely that
each picking vehicle only leaves when full capacity is reached. The numerical results demonstrate
considerable benefits when combining both heuristics.

In the work of Zhang et al. (2017), a hybrid rule-based algorithm, referred to as FTWB, is proposed
in order to address the OOBSP in an online scenario. The hybrid rule-based algorithm is proposed
in order to form batches and assign them to appropriate pickers without any information on the
arrival times of future orders. The algorithm identifies three scenarios based on quantity of the
items: off-peak (A), normal(B) and peak(C). Based on these scenarios, different rules are applied.
The algorithm is divided into two parts. In the first part, orders come in at a certain time and
a scenario is selected. Based on this scenario and the related batching rule, orders are batched.
In the off-peak scenario, no batching is allowed as there is ample picking capacity. In the normal
scenario, incoming orders are batched until some capacity violation. Lastly, the peak scenario
requires a set of batching rules in order to perform the batching operation: a seed algorithm. The
cumulative-seed algorithm is used that starts off with an empty batch. A seed order is selected
from the order pool using the Smallest Arrive Time rule (SAT) and is added to the batch and
removed from the order pool. Subsequently, the aisle-time-based rule (ATB) is used to select orders
from an set O that all can be included to the batch without violating capacity constraints. This
process is an iterative process and stops until no more orders can be added to the specific batch.
As the batches have been formed, these are transferred to the batch operating system where these
are assigned to a picker using a certain assignment rule: list processing algorithm. This algorithm
minimizes the turnover time and balances the workload among the order pickers. The proposed
model is compared to a individual time-based batching rules and the quantity-based batching
rules. The extensive numerical experiments in comparing Hybrid with the Time and Quantity
algorithm, led to the following finding: Hybrid provides better performance than the Time and
Quantity algorithm.

Meta-heuristics
In the work of Tsai et al. (2008), an OOBSP is considered where the total travel costs (depending
on the total travel time) have to be minimized and earliness and tardiness are penalized. Unlike
approaches that were previously discussed, this project allows orders to be split up. In all other
approaches, orders could be included in a batch but it was not possible to split up an existing order
and divide parts of the specific order to different batches. The problem is solved using a two genetic
algorithms (GE) where a solution is represented as a set of integers. A GE is an evolutionary
algorithm that is based on natural selection, the process that drives biological evolution. The set
of integers is considered as an initial solution to the OOBSP and is referred to as a ’chromosome’
and can be randomly generated. The first GE solves the order batching problem by minimizing
the processing times together with the earliness and tardiness penalties. The second GE searches
for an optimal travel within a batch by minimizing the travel distance. From the comparison
they have made, their solution outperforms two other state-of-the-art methods on small instance
size (1 picker, 1 vehicle). Furthermore, Tsai et al. (2008) mention that GEs perform less than
MIP/MILP formulation for small problem instances but when increasing the instance size, the GE
outperforms these exact methods. It appears that Genetic Algorithms provide a good approach
in solving real-world OOBSP because of the allowed instance size.
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In the work of Henn and Schmid (2013), the authors propose an Iterated Local Search algorithm
(ILS) and the Attribute-Based Hill Climber algorithm (ABHC) meta-heuristics for the OOBSP.
These meta-heuristics have been designed to minimize the total tardiness of all customer orders.
The ILS has been successfully implemented to a variety of different optimization problems, in-
cluding the OBP of Henn et al. (2010). The initial definition of the ILS algorithm is presented
next. Within a set of feasible solutions, every individual solution from this set has a related sub
set of neighboring solutions. The heuristic consists of two alternating phases: a local search phase
and a perturbation phase. In the local search space, the heuristic starts from an initial solution
and determines a sequence of feasible solutions where each element is a neighbor of its predecessor
and is an improvement of the objective function compared to its predecessor. This provides a
local optimum. During the perturbation phase, the incumbent solution is partially modified (per-
turbed) and a further local search phase is applied to this modified solution. In order to adapt
the algorithm to fit the OOBSP, several principles have been modified. The initial solution set is
generated using the Earliest Due Date (EDD) rule wherein orders are sorted according to their
due dates in a non-increasing order and orders are batched using a simple heuristic. In the local
search phase, two orders from different batches are interchanged (swap move) or by assigning one
order to a different batch (shift move). The iterative process start with swap moves, if no im-
provements can be made according to the objective function, ILS performs a shift move that leads
to an improved solution. These steps are repeated until no further improvements can be found.
Subsequently in the perturbation phase, 50% of the orders of a certain batch are randomly selected
and exchanged with 50% of the orders of batch 1. Should this violate any capacity constraints,
then all remaining orders will be assigned to a new batch. If the objective function decreases, the
specific solution will be accepted as incumbent solution. Next to this, the ABHC is an almost
parameter-free heuristic based on a simple tabular search principle. Henn and Wäscher (2012)
have applied ABHC to the OBP and obtained solutions with improved tour lengths compared
to other local search-based heuristics. For each problem, the tabu search proceeds the search in
solutions until every path has been investigated. In this local search, a solution can be accepted
if and only if it represents the best solution found so far and memorizes the visited solutions so
far. This guarantees that every move made is measurably improving the objective function and
that the search can never return to a solution it has visited previously. Henn and Schmid (2013)
adapt this meta-heuristic to fit the OOBSP by creating the initial solution using the Earliest Due
Date rule. New solutions can be obtained by conducting swap or shift moves. Regarding the
computation structure, two sets are created: a pair of orders that are assigned to a batch and
the actual assignment of pairs of orders to a specific batch. Henn and Schmid (2013) indicated
that the problem representations grow exponentially with the number of orders. For a small-sized
problem instance with 20 orders and in which five orders can be assigned to a single batch, the
number of feasible batches is 21,699. This concludes that the use of heuristics for larger problem
instances becomes unavoidable. In an 80 order experiment, Henn and Schmid (2013) compare the
presented heuristics with only an EDD approach. They present an average improvement of 46%
on different problems and both heuristics provide short computation times.

Henn (2015) studies the OOBSP and proposes a Variable Neighborhood descent (VND) and a
Variable Neighborhood Search (VNS) to minimize the total tardiness of customer orders. VND is
a deterministic local search algorithm that starts with an incumbent solution and iteratively goes
thru sequences of multiple neighborhood structures. In each iteration the algorithm identifies the
element of the current neighborhood structure with the (local) optimal objective function value.
If a solution with an improved objective function value can be identified, this solution becomes the
next incumbent solution and the algorithm continues to explore the next neighborhood structure.
In addition to the VND, the VNS explores different neighborhoods in a stochastic and deterministic
way (Hansen and Mladenović, 2001). It is composed of two phases, a stochastic shaking and a
deterministic local search phase. VNS starts with an initial solution that is shuffled using a
stochastic method and is improved by a local search phase. The solution stemming from the local
search phase becomes the incumbent solution. The results conclude that VND outperforms VNS
especially by means of computation times.
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Li et al. (2017) have studied a method for joint optimization of order batching and picker routing
in the online retailer’s warehouse in China. The authors propose an online order batching strategy
that uses a similarity coefficient that represents the similarity between two orders. The main idea
is to combine similar orders as one in order to obtain a high order picking efficiency. Furthermore,
the authors use a s-shaped routing heuristic to compute the order picking route. A numerical
experiment based on actual sales data is given to test the efficiency of heuristics and results
indicate that the proposed heuristic can shorten the order picking distance by optimising order
batching and picker routing, generating orders into less batches which increases the order picking
efficiency. These results were obtained based on experiments with a maximum of 10,000 orders.
In practice, problem size could be very large and is still increasing. Online retailing in China is
growing at a high speed and competition is becoming more furious.

Scholz et al. (2017) propose an integrated approach that addresses three sub problems: (1) how
the customer orders are grouped into picking orders (order batching problem), (2) how the picking
orders are assigned to and sequenced by the order pickers (Batch Assignment and Sequencing
Problem), and (3) how each order picker is routed in order to collect the items of each picking
order (Picker Routing Problem). These sub problems all try to minimize the total tardiness. For
small instances, the authors use Mixed Integer Programming and for large instances, the authors
propose a variant on the variable neighborhood descent algorithm. Compared to a standard
VND algorithm, the authors adjusted their algorithm whereby after finding an improvement, the
algorithm determines directly a local optimum regarding the current neighborhood structure. For
experiments, the work of Henn (2015) is used as base. Compared to solutions obtained by applying
the earliest start date rule-based algorithm that was also used by Henn (2015), it is demonstrated
that the initial solution leads to a reduction of the total tardiness by up to 63%.

Bustillo et al. (2015) present a General Variable Neighborhood Search (GVNS) that performs an
online batching operation and include a comparison with the work of Henn and Schmid (2013). A
case is presented where a single order picker addresses 4 different order scenario’s: 20, 40, 60, 80.
The number of items per order is uniformly distributed between 5 and 25. The GNVS of Bustillo
et al. (2015) outperforms the proposed ILS and ABHC methods of Henn and Schmid (2013) based
on minimizing total tardiness. Furthermore, the GVNS is computationally more efficient than
the ILS method and most computation times are below 10 seconds. These computation times are
however based on a maximum instance size of 80 orders. Lastly, the authors state that in order
to implement an integrated method, their work should be complemented by a routing strategy to
boost performance.

In the work of Ardjmand et al. (2018), order assignment, order batching and picker routing
problems with multiple pickers in a wave picking warehouse of a major US third party logistics
company is studied and modeled mathematically. Since the exact algorithm suffers from long CPU
time when solving large instance problems, a hybrid parallel simulated annealing and ant colony
optimization (PSA-ACO) is presented. Simulated annealing is a metaheuristic that starts from a
random solution x, and in next subsequent steps, neighbor solutions y are explored. If y is better in
terms of solution quality, it will be accepted as the new solution, otherwise it will be accepted based
on a acceptance probability. ACO mimics collective behavior of ants in nature where the objective
is to find the shortest path from their nest to the food source. In the proposed algorithm, this
metaheuristic is used for picker routing. In an experiment, the results of the proposed algorithm
are compared against the minimum makespan impact (MMI) heuristic that is currently being used
in the warehouse and a state-of-the-art variable neighborhood descent (VND). While PSA-ACO
slightly outperforms VND, for picking large waves, PSA-ACO and VND can improve the makespan
by approximately 7.8% and 6.9% over MMI respectively. This experiment consisted out of 1000
orders.

Pinto and Nagano (2019) present a set of two genetic algorithms as solution to the OOBSP
that better adjusts the trade-of between the level of customer service and the effectiveness of
a warehouse. This set of genetic algorithms consists of GEBatch and GETSP that each have a
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different purpose. GEBatch groups orders in multiple batches so that, by complying with capacity
constraints and the EDD rule, earliness and tardiness in order fulfillment is avoided and the
number of picking travels inside the warehouse is minimized. GETSP maps out the sequence of
orders within a batch so that the routing distance and picking time can be reduced. Experiments
with problems of different complexity levels showed that the proposed method produces solutions
of satisfactory quality to any problem instance. In those experiments, the authors considered
up to 50 orders out of more than 600 SKUs in total. Also, the authors performed a sensitivity
analysis on the parameters of the Genetic Algorithms: population size, generations, crossover
probability, mutation probability and mutation rate of bits. To conclude: “The proposed solution
fills a gap in the literature and makes innovative contributions to advances towards developing
picking optimization methods which are more suitable to the reality of the mentioned warehousing
operation” (Pinto and Nagano, 2019).

Work System Algorithm Order instance Items / order Objective

Elsayed (1991) GtP
H: Priority and Seed
Rule

8 - 12 35 - 65 Min. tardiness

Elsayed et al. (1993) GtP
H: 3-step priority index
algorithm

20 35 - 65 Min. tardiness

Lee and Kim (1995) GtP
H: MTP, SPT, SPT-NL,
LPT rules

3 - 50 N.A. Min. tardiness

Elsayed and Lee (1996) GtP
H: Priority and Seed
Rule

8 - 12 35 - 65 Min. tardiness

Won and Olafsson (2005) PtG H: SBP and JBP 30 1 - 5 Min. travel time

Zhang et al. (2017) PtG
H: Hybrid rule based
algorithm

120 - 480 1 - 5 Min. picking costs

Tsai et al. (2008) PtG M: Genetic Algorithm 24 - 250 30 - 400
Min. tardiness
& travel time

Henn and Schmid (2013) PtG M: ILS and ABHC 20 - 60 5 - 25 Min. tardiness

Henn (2015) PtG M: VNS and VND 100 - 200 5 - 25 Min. tardiness

Li et al. (2017) PtG M: BOC 100 - 10,000 1 - 5 Min. Travel time

Scholz et al. (2017) PtG M: VND 100 - 200 5 - 25
Min. tardiness
& Min. travel time

Bustillo et al. (2015) PtG M: GVNS 20 - 80 5 - 25 Min. tardiness

Ardjmand et al. (2018) PtG
M: Simulated Annealing
and PSO

1000 N.A. Min. picking costs

Pinto and Nagano (2019) PtG
M: Double Genetic
algorithm

10 - 50 12
Min. picking cost
& processing time

van Gils et al. (2019) PtG M: ILS 200 4 Min. tardiness

Table 2.2: Discussed work. (H: Heuristic, M: Meta-heuristic)

The work of van Gils et al. (2019) provides a decision support tool for spare part warehousing oper-
ations that also integrates and solves the three main operational order picking planning problems
(order batching, picker routing, and picker scheduling). Different from other studies, the objective
is to increase order picking efficiency while ensuring a high customer service level. The proposed
tool accounts for order due times and limited availability of order picker. The work of van Gils
et al. (2019) provides a mathematical formulation for the problem and a metaheuristic algorithm.
This meta-heuristic algorithm is based on an iterated local search algorithm (ILS), and is proposed
to approximate the global optimal solution. The main components of ILS include a procedure to
generate an initial solution, a local search procedure, and a perturbation procedure just as in the
work of Henn et al. (2010). A series of numerical experiments are used to assess the performance
of the proposed ILS model. During a planning period of 4 hours, 6-8 order pickers pick 200 orders
with up to 4 order lines. The proposed ILS model outperforms the current warehouse operations
of the case study by reducing the required number of pickers by 25%.
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2.1.4 Deficiencies of traditional solution methods

To conclude the discussed work, an overview is presented in Table 2.1 and 2.2 where all solution
approaches have been presented. Also the instance sizes of the related experiments have been
displayed. Both in problem definition as in the proposed algorithms, a lot of differences can be
found among the presented work. The type of storage system that has been included in the
problem formulation which either is defined by a Person-to-Goods system or a Goods-to-Person
system which has consequences in the design of the proposed algorithms. In terms of system
constraints, almost every study considered constraint on picking capacity. A disadvantage of the
exact methods is that these cannot cope with uncertainty and assume that all information is
known in advance (offline approaches). Furthermore, it stands out that most algorithms solve
relatively small order instances and single objective problems. Overall, the literature presents a
variety of algorithms to address different variants of the OOBSP. However, an unified design of
picking operations is not used.

2.2 Deep reinforcement learning

Reinforcement learning (RL) is the study on how an agent can interact with an environment to
learn a policy which maximizes expected cumulative rewards for a task. Recently, RL has exper-
ienced major growth in attention and interest due to promising results in areas like: controlling
continuous systems in robotics (Lillicrap et al., 2015), playing Go (Silver et al., 2016), Atari (Mnih
et al., 2013), and competitive video games (Vinyals et al., 2017; Silva and Chaimowicz, 2017). The
work of Mnih et al. (2015) combined reinforcement learning and deep learning and caused a break-
through in the field: deep reinforcement learning (DRL) was born which demonstrates impressive
results for sequential decision making problems. This chapter provides an introduction to RL by a
literature review. Secondly, DRL is presented as a continuation of RL and several applications for
optimization problems are discussed. Moreover, a conclusion at the end wr In the RL-setup, an
agent, observes a state St provided by the environment at time step t. The agent interacts with
the environment by taking an action At. After taking this action, the environment transitions
to a new state St+1. Based on the change in states, the agent receives feedback in the form of
a reward Rt and tries to optimize this reward over time. By choosing actions, the environment
moves from state to state and each interaction yields information which the agent uses to update
its knowledge. In some cases, this process is iteaps up this section.

2.2.1 Introduction to reinforcement learning

ratively repeated until the environment reaches a terminal state and this time window is referred
to as an episode. For example, a single game play in an Atari game is an episode. After this
terminal state, the environment resets and the interaction can start over again independently of
the outcome of the previous episode. On the other hand, in many cases the agent–environment
interaction does not break naturally into identifiable episodes, but goes on continually without
limit. In this case, the additional concept required is that of discounting. According to this
approach, the agent tries to select actions so that the sum of the discounted rewards it receives
over the future is maximized. In this case, the iterative process is terminated based on some
derived termination criteria. According to the work of Sutton et al. (1998), the performance of
RL is heavily influenced by the way the problem is represented in terms of states, actions and
rewards. For example, the state representation of the system should contain sufficient statistic
information of the environment and thereby comprises all the necessary information for the agent
to take the best action. RL algorithms are general in their working, representation of the problem
is different for each problem. The entire process of RL is displayed in Figure 2.2.
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Figure 2.2: The reinforcement learning framework (Sutton et al., 1998)

In order to solve RL problems, the problems are framed as Markov Decision Processes (MDP).
MDPs are a mathematically idealized form of the reinforcement learning problem for which precise
theoretical statements can be made. These theoretical statements have been incorporated in RL
models that try to solve MDPs near optimally. An MDP is defined by a tuple < S,A,R, T, γ >,
that is explained in more detail below (Sigaud and Buffet, 2013).

• Set of states S

• Set of actions A

• Reward function R(s, a) which provides an immediate reward after a transition from s to s′

with a certain action a.

• Transition probability function P (s′|s, a) that provides transition probabilities that when in
given state s, the action takes action a, the system ends up in state s′.

• Discount factor γ ∈ [0, 1], where lower values place more emphasis on immediate rewards.

A MDP provides a stochastic framework that assumes the Markov property. This property states
that the probability distribution of future states only depends on the current state and does not
depend on the past. As the transition function of a MDP is generally unknown, it remains a
problem to estimate a policy from the MDP that provides us with optimal actions. In order to
estimate a policy π, which is a stochastic rule by which the agent selects actions as a function of
states, the agent needs to learn the dynamics of the model by interacting with it. If the set of
all possible states is assumed to be finite and the set of all possible actions as well, a finite MDP
need to be solved.

2.2.2 Neural network as function approximators for DRL

Up until this point, this chapter focuses on RL methods that can exhaustively explore all states and
obtain accurate value functions due to interaction with the environment. However, in many tasks
to which reinforcement learning can be applied, the state space is combinatorial and enormous; the
number of possible camera images, for example, is much larger than the number of atoms in the
universe. In such cases, it is not expected to find an optimal policy or an optimal value function
even in the limit of infinite time and data. Instead, a good approximate solution using limited
computational resources should be applied. Memory requirements for large state spaces are not
the problem on its own, but rather the computation time to fill this memory. In many target tasks,
almost every state encountered will never have been seen before and to make sensible decisions,
it is necessary to generalize from previous encounters with different states that are somewhat
similar. Fortunately, generalization from examples has already been extensively studied and for
instance, one could try to estimate Q-values with q̂(s, a, w) ≈ qπ(s, a) in which the parameters w
can be updated based on experiences of an agent. This generalization technique is often referred
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to as function approximation and is an instance of supervised learning, a primary topic in machine
learning (Sutton et al., 1998). A neural network is considered as a function approximator for deep
reinforcement learning and the following part elaborates on this concept.

A neuron is the basic unit of deep neural networks and is formalized with numerical inputs and
outputs. Within a deep neural network, a neuron can have many output neurons in the next
layer and a neuron can also have many input neurons in the previous layer. A neuron in one
layer aggregates the signals being passed through from its input neurons in the previous layer.
This aggregated signal is then passed through an activation function that determines the neuronal
behavior. Concretely, if the aggregated signal is strong enough, then the activation function
“activates” this neuron and pass forward a high value to the output neurons in the next layer
(Dong et al., 2020). The left side of Figure 2.3 displays a signal moving through a single perceptron
and a bias is included. On the other side, this principle is displayed in a network with multiple
layers (bias operators are not shown in right figure). The activation is typically non-linear, e.g. a
Sigmoid function (Sutton et al., 1998). During training of the network, a loss function is defined
between desired output and computed output. This loss function is used as objective to minimize
by adjusting weight parameters of the neural network. A gradient descent method is used to
update these parameters using partial derivatives, and back propagation is used to compute these
partial derivatives in the network. As a network is trained iteratively on training data, new unseen
testing data can be provided in order to obtain the network’s accuracy.

Figure 2.3: Principles of a perceptron and neural network

In combining Deep Neural Networks (e.g. neural networks with multiple hidden layers), with RL,
the input layer of the network is shaped as the state representation of the RL problem. With this
input, the network tries to predict which action should be performed. Similarly for some DRL
methods, the output layers of the network represent the action space of the RL problem. Each
output perceptron represents an action in the action space and the network provides a probability
for each individual action to execute. Rewards from the environment are used in a loss function to
update the network. Similarly to plain reinforcement learning methods, a distinction can be made
between methods that use value function, policy iteration or a combined method: actor-critic.
Next sub section elaborates further on value function based and actor-critec based methods.

2.2.3 Deep reinforcement learning models

This value-function based algorithm further elaborates on Q-learning principles. Mnih et al.
(2015) published a breakthrough paper where a neural network is used to approximate the value
function of a Q-learning method, and Deep Q Networks (DQN) were born. In this work, a deep
convolutional neural network is used and demonstrated outstanding performance on a variety of
Atari games. According to Mnih et al. (2015), approximating the value function with a deep neural
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network results in unstable behaviour or even divergence. This instability has several causes: the
correlations present in the sequence of observations, the fact that small updates to Q-values may
significantly change the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values (Mnih et al., 2015). The instable behaviour
is counteracted by introducing experience replay, that randomizes a set of experiences whereby it
removes correlations. Secondly, an iterative update rule is used that adjusts the action-values (Q)
towards target values that are only periodically updated, thereby reducing correlations with the
target. Since the DQN was implemented, several additions have been implemented. (1) Double
DQN (using two networks to avoid getting overoptimistic estimates Van Hasselt et al. (2015)). (2)
Prioritised replay (prioritized experience replay method that samples from a buffer of experiences
in a different way (Schaul et al., 2015)). (3) Duelling network (implementing dual output so
that there are separate estimates of the value and advantage functions (Wang et al., 2016b)).
(4) Distributed agents (These variants could be run on many instances simultaneously, allowing
agents to acquire and learn from experience more quickly (Nair et al., 2015; Horgan et al., 2018)).
Furthermore, Badia et al. (2020) presents additional improvements to this DQN network that
enables it solve all Atari games with superhuman performance.

The PPO algorithm presented by Schulman et al. (2017) is an extension of the Trust Region Policy
Optimization (TRPO) algorithm proposed by Schulman et al. (2015) and the Actor Critic with
experience replay (ACER) presented by Wang et al. (2016a). In comparison to offline learning
methods as DQN, PPO is an online learning method that learns directly from experiences that
have been encountered from the agent. The policy gradient loss is estimated and subsequently
used to update a neural network according to some update rule. This policy gradient loss is
presented in Equation 2.1.

LPG(θ) = Êt
[
log πθ (at|st) Ât

]
(2.1)

The expectation indicates the average over a finite batch of samples, πθ refers to a stochastic policy
and Ât is an estimator of the advantage function at time step t that represents the relative value
of action at at state st. This estimation of the advantage function can be calculated with the sum
of all rewards encountered by an agent within one episode multiplied with some discount factor.
The value function is subtracted from the discounted reward in order to compute the advantage
function. This answers the question: was the specific action that the agent took better or worse
than the value function expected? According to Equation 2.1, if the advantage function is positive,
the gradient becomes positive and the probabilities of the specific action are increased. Likewise,
if the advantage function is negative, the gradient becomes negative and the probabilities of the
specific action are decreased. A posing problem with PPO and all other gradient descent methods,
if the gradient descent method is applied on a single batch of experiences, the parameters in the
neural network are updated outside the range from where this data was collected. This problem is
addressed with Trust Region Policy Optimization (TRPO) (Schulman et al., 2015). The objective
function of TRPO maximizes an objective function subjected to a constraint on the size of the
policy update: KL constraint, and is displayed below in Equations 2.2 and 2.3.
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max
θ

Êt

[
πθ (at|st)
πθold (at|st)

Ât

]
(2.2)

subject to Êt[KL[πθold (·|st), πθ(·|st)]] ≤ δ (2.3)

Here, θold are the parameters of the neural network of the old policy and the KL constraint makes
sure that the updated policy does not move too far from the original policy. As this constraint poses
additional computation, PPO incorporates this additional computation as a clipping operation in
the objective function and is displayed in Equation 2.4.

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât

]
(2.4)

in which rt(θ) = πθ (at|st)
πθold (at|st) . Furthermore, Êt represents an expected value and this indicates

that the objective is calculated over a batch of experiences. Within the expectation operator,
a minimum operator selects either the default objective or the clipped version of normal policy
gradients. The default objective multiplies rt(θ with Ât and pushes the policy towards actions that
yield a high positive advantage towards the baseline. The clipped version is similar to the default
objective but it contains a truncated ratio of the rt(θ) ratio by applying a clipping operation
between 1 − ε and 1 + ε. Finally, the minimum of the unclipped and clipped is taken so the
final objective is a lower bound on the unclipped objective Schulman et al. (2017). The final loss
function that is used when training the agent is presented in equation 2.5.

LPPOt (θ) = Êt
[
LCLIPt (θ) − c1L

V F
t (θ) + c2S[πθ](st)

]
(2.5)

Equation 2.5 is the sum of the clipped PPO objective plus two additional terms. The first ad-
ditional term ensures that the baseline network is updated. The baseline network is in charge
of estimating the average amount of discounted reward that is expected from the current state
onward. The last term is referred to as the entropy term and this term is in charge of making sure
that the agent does enough exploration during training. This entropy term behaves randomly due
to its nature but when the other terms start dominating, this effect will be diminished. Lastly, c1
and c2 are hyper parameters that define the contributions of the last two loss terms in the loss
function. Running the agent and updating the policy network can be decoupled by each other by
using thousands of remote agent that interact with the environment using a recent copy of the
policy network. In parallel, a GPU cluster runs gradient descent on the network weights using the
collected experience from those agents. This exponentially speeds up the entire process.

In the work of Wang et al. (2020), the authors state that PPO still suffers from the risk of
performance instability and to cope with this, an enhanced method is presented named Truly PPO.
The authors present two critical improvements: 1) Truly PPO adopts a new clipping function to
support a rollback behavior to restrict the difference between the new policy and the old one; 2) the
triggering condition for clipping is replaced with a trust region-based one, such that optimizing the
resulted surrogate objective function provides improvement of the ultimate policy performance.
This improves the original algorithm in both sample efficiency and performance.

Besides the DQN and the PPO algorithm, a broader literature review has been conducted which
included the following algorithms: Q-learning by Watkins and Dayan (1992), SARSA by Rum-
mery and Niranjan (1994), the REINFORCE algorithm by Arulkumaran et al. (2017) and the
Asynchronous Actor Critic model (A3C) by Mnih et al. (2016).
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2.2.4 Application of DRL in the Operational Research domain

This section provides an overview of optimization problems that have been addressed with deep
reinforcement learning. More specifically based on the OOBSP, specific scheduling problems have
been selected to scope the literature review on this topic. In this subsection, several associated
papers are discussed and an overview is provided of the instance-sizes of all problems in Table 2.3
to provide motivation for this research project.

Manufacturing systems
The work of Waschneck et al. (2018) focused on the job shop scheduling problem. The objective
is to optimize system’s throughput taking real time information into account. Their job shop
scheduling problem contains several constraints making it a complex problem to solve. The prob-
lem contains multiple workstations and each workstation is assigned to an individual agent. All
individual agents optimize a set of rules at their specific work station while monitoring the actions
of other agents and optimizing a global reward. The agents use a Deep Q-learning Network al-
gorithm to optimize the problem. An experiment based on 4 workstations is created where initially,
one agent at a time trains, the other are controlled by heuristics. After this phase, the system is
executed with learning ability for all agents simultaneously. In the experiment, the largest scenario
contained 50 orders and the DRL algorithm performance equals heuristic approach performance
based on a 2-day training session.

Rummukainen et al. (2019) also present an algorithm for job scheduling in a manufacturing envir-
onment. The authors consider a stochastic economic lot scheduling problem (SELP) that involves
scheduling production of multiple standardized products on a single machine that requires signi-
ficant time and effort to switch from one product to another. Customer demand is not known in
advance, and is assumed to be random and the proposed algorithm decides when to produce which
product, in order to optimize a performance indicator such as expected customer waiting time, or
expected production and stock holding costs. Rummukainen et al. (2019) model their problem as
a Semi-Markov Decision Process (SMDP) and interact with a simulation model. Compared to a
normal MDP, the SMDP takes actions every time the system’s state has changed instead of after a
decision epoch at MDP. The authors use a Proxy Policy Optimization (PPO) algorithm and in an
experiment, the performance of this model is outperforms other heuristic models. As mentioned,
the experiment consists of a single workstation with three 3 products that have a demand over
400 days of respectively 25, 10 and 10.

The work of Shi et al. (2020) addresses a scheduling problem that includes a discrete automated
production line, whose transportation depends on a mechanical robot. This robot needs to transfer
orders between several workstations in the production line and this process requires some schedul-
ing operations. When each product is transferred into the next processing unit, a stochastic
processing time is sampled where the scheduling system is unaware of. The authors use a DQN to
solve a formulated MDP of the above scheduling problem. In an experiment, this DQN algorithm
outperformed heuristic methods as FIFO, LPT and SPT. The latter are based on expected pro-
cessing times. The experiment had an instance size of 7 workstations with a throughput of 6
orders per hour and training took around 24 hours.

Hubbs et al. (2020) examine applying deep reinforcement learning to a chemical production
scheduling process to account for uncertainty and achieve online, dynamic scheduling, that bench-
marks the results with a mixed-integer linear programming (MILP) model that schedules each
time interval on a receding horizon basis. The scheduling process considers a continuous, chemical
manufacturing process with a single stage and single production unit operator under stochastic
demand. Transitioning the production facility from producing a product to producing a different
product causes a lot of change over costs. Furthermore, demand consists out of customer demand
and predicted demand, inventory costs occur on a yearly base and late shipments are penalized.
These measures are monetized and the goal of the proposed methods is to maximize the profitab-
ility. The authors propose an A2C algorithm to address this problem that at its turn, uses a fairly
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deep neural network of 12 hidden layers with each layer consisting 256 neurons. This approach
is compared to Integer programming approaches in an experiment. This experiment consists out
of scheduling 4 products on a single stage reactor for a 90 day period. The proposed approach
provides a natural representation for capturing the uncertainty in a system and outperforms the
MILP schedulers operating for this reason. DRL provides a viable and promising approach for
chemical production scheduling. It is often much easier to incorporate uncertain elements in sim-
ulation versus in a mathematical program. This uncertainty can be represented by the DRL agent
such that, once the DRL agent is trained, it can produce schedules online, that are superior to
more computationally intensive methods. The schedule can be generated almost instantly via a
sequence of forward-passes through a deep neural network. DRL has obvious advantages, however
there are drawbacks as well. There is no guarantee of optimality with policy gradient methods
apart from the REINFORCE algorithm as shown in Sutton et al. (1998).

Resource scheduling in in computer systems
In the work of Mao et al. (2016), a data center related problem is addressed with DRL. The
problem is defined as scheduling jobs from a job pool to a number of cluster resources. Scheduling
is constrained by the CPU and memory requirements for each job. The authors use average
job slowdown as the primary system objective. This is defined by the actual completion time
of a certain job divided by the standard completion time of that certain job. This problem is
represented as a Markov Decision Process and the REINFORCE algorithm is used to train the
system. This algorithm is the fundamental policy gradient algorithm on which nearly all the
advanced policy gradient algorithms are based on. The algorithm directly updates the policy
weights instead of the individual states. The outcomes have been compared with several heuristic
results and the authors presented their algorithm as superior in terms of optimizing the average
job slowdown. Within this experiment, the agent was given 70 jobs that needed to be scheduled
under different resource scenarios.

Che et al. (2020) propose a deep reinforcement learning approach for scheduling tasks to resources
in a Data center. The authors state that scheduling computation tasks in a data center is a complex
job due to a dynamically changing environment, limited information of tasks that arrive in the
near future and dynamically changing resource requirements. The scheduling problem includes
a task pool of unscheduled tasks, a machine cluster as a container for a fixed number of virtual
machines where tasks are assigned to and a task scheduler that acts as a dispatcher. The authors
propose a DRL model with two agents where the first agents takes actions regarding whether to
execute a certain task on a certain machine and the second agent controls the resource utilization
by turning the machines on and off. A real production dataset published by the Alibaba Cluster
Trace Program is used to train an A2C algorithm in the experiment study. This dataset includes
the collocation of online services and batch workloads about 1300 machines in a period of 12 hours.
The experiment itself used a cluster size of 300 to 500 machines for a period of 12 hours. Training
the algorithm took around 24 hours and results have been compared with scheduling heuristics
as FCFS, SJF (Shortest Job First) and Fair. The A2C algorithm outperforms other heuristics in
terms of resource utilization and average delay time.

Rjoub et al. (2020) considers task scheduling in cloud systems, that daily receive a massive number
of tasks that need to be simultaneously and efficiently mapped onto the cloud resources. A task
scheduling mechanism should both minimize tasks’ execution delay and cloud resources utilization
is of prime importance. In this article, the authors capitalize on the concept of cloud automation
and propose a deep reinforcement learning-based scheduling approach to automate the process of
scheduling large-scale workloads, while reducing both the resource consumption and task waiting
time. The problem is defined as a MDP where, the state space of the RL network represents
the amounts of available resources on the Virtual Machines (VMs) that would be hosting the
tasks in terms of RAM, CPU, disk storage, and bandwidth. The action space represents the
scheduling of the set of tasks received. The reward function (cost in our case) represents the cost
of executing the tasks on the VMs in terms of RAM, CPU, disk storage, bandwidth, and waiting
time. In an experiment where a variable number of VM (10 to 100) are considered and a fixed

19



number of arriving tasks (78 597), a DQN algorithm with a LSTM-based deep neural network
architecture outperformed all heuristics. Traditional heuristics include first-in-first-out, shortest
job first (SJF), round-robin (RR), min-min, and max-min. More ’intelligent’ heuristics included
fuzzy logic, particle swarm optimization (PSO), and genetic algorithm (GA).

Supply Chain Management
The work of Oroojlooyjadid et al. (2020) present an approach to the well known beer game
designed by Massachusetts Institute of Technology. The beer game consists of a serial supply
chain network with four echelons namely, agents—a retailer, a warehouse, a distributor, and a
manufacturer—who must make independent replenishment decisions with limited information.
The game is widely used in classroom settings to demonstrate the bullwhip effect, a phenomenon
in which order variability increases as one moves upstream in the supply chain, as well as the
importance of communication and coordination in the supply chain. Players in the game seek
to minimize costs by placing orders at their predecessors. The system uses a single agent per
echelon that is trained once for one specific echelon. Transfer learning is used to initiate agents
at the other remaining echelons. Oroojlooyjadid et al. (2020) model this problem as a Partially
Observable MDP (POMDP). This model captures historic sequence data in each state whereby
the state representation grows over time. In practice, the DQN agent only sees the last m periods
that were used in a state. The agent can order any amount at the last upstream neighbor and the
reward function applies a penalty or reward based on product shortage or inventory holding costs.
In several numerical experiments, the authors trained the model on demand scenarios up to 10
orders over multiple products. The proposed model obtains near-optimal solutions when playing
alongside agents who follow a base-stock policy and performs much better than a base-stock policy
when the other agents use a more realistic model of ordering behavior.

Vehicle scheduling
As opposed to the problems discussed above, Hu et al. (2020) addresses an AGV scheduling
problem where the authors aim to find the optimal transport time and equipment for each task,
while respecting constraints from the manufacturing location. The scheduling operation directly
contributes to the performance of an AGV system and it received extensive academical attention
in form of heuristics or meta-heuristics. Although more recently, some academia have used Q-
learning for a multi-lead carrier scheduling problem, the authors still identify limited performance
and learning efficiency. The AGV scheduling problem is defined with a set of tasks, that each need
to be transported to a different location with different transportation times. A Markov Decision
Process is defined with a state representation consisting of number of current tasks, remaining
transportation time, travel distance and working status of all AGVs. The action space is defined
by several scheduling rules (FCFS, STD, EDD, LWT and NVF) and a specific AGV. So, a future
action of an agent includes a specific sequencing rule for a specific AGV. A DQN algorithm is used
to train on the MDP and is in an experiment compared to the individual heuristics based on the
average makespan. This experiment consisted out of 800 jobs with 3 AGV per episode. The DQN
model outperformed all heuristics in terms of makespan. Future research will scale the algorithm
to handle larger instances, include a navigation task and a multi-objective reward function.

Ying et al. (2020) presents a novel actor-critic model for metro train scheduling with circulation
of limited rolling stock. These complex systems require effective schedule control policies in real
time and has been addressed in previous literature by both exact and heuristic approaches. In the
presented problem, a service loop of metro rides is considered with a set of station nodes each with a
set of platforms. Furthermore, after a days service, all trains need to return to a depot. The authors
present a actor-critic (A3C) DRL model that is used to solve an experiment wherein 8 stations, 24
carriages and 4 hour of service are used. In this experiment, a benchmark of established heuristics
is used that include Differential Evolution (DE), Particle Swarm Optimization (PSO) and Genetic
Algorithms (GE). Based on the objective of minimizing both passenger waiting times and train
operation expenses, the presented actor-critic model outperformed the benchmark provided by
several established heuristics.
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Warehousing operations
Finally, this thesis project forms the continuation of the work of Cals et al. (2021). The authors
proposed a DRL algorithm for the order batching and sequencing problem (OOBSP) in picking
operations within a warehousing concept. This warehousing concept consists of an area where
manual picking is performed and an area where automated shuttles retrieve orders (AS/RS).
Within an OOBSP, a decision mechanism needs to be designed in order to decide whether orders
will be picked with a pick-by-order or a pick-by-batch strategy and what the sequence of those
batches is. The authors frame this problem as a SMDP wherein the state of the warehousing
system is represented by a number of order categories. These order categories are defined based
on whether the order is a single-item-order or a multiple-item-order, in what storage location
they need to be picked and based on their coming cut off time. The agent has a pick-by-order
/ pick-by-batch action for each order category. The system has an objective of minimizing the
number of tardy orders (i.e. number of order that are processed before their respective cut off
times). A PPO algorithm is used for learning an agent and an experiment is used to compare this
trained agents with traditional heuristics as LST, EDD, LPT and SPT. The experiment contains
a warehousing concept in which 500 orders need to be picked. The proposed DRL algorithm
outperformed heuristics on scenario’s wherein the pickers were highly utilized.

Despite the fact that different instance-sizes are hard to compare in Table 2.3, it stands out that
current DRL algorithms addressing optimization problems in scheduling operations tend to have
difficulties with handling large instance sizes. Besides this, most of the problems presented in this
subsection consisted of single-objective problems and fairly static environments. Furthermore,
deep reinforcement learning demonstrated promising capabilities in the Operations Research Do-
main whereas it can provide superior performance in some optimization problems.

Paper Algorithm Objective Instance size experiment

Waschneck et al. (2018) DQN Single Job shop: 4 workstation, 50 orders
Rummukainen et al. (2019) PPO Single Job shop: 1 workstation, 45 orders
Shi et al. (2020) DQN Single Robot transport: 7 workstations, 60 orders
Hubbs et al. (2020) A2C Single Scheduling: 1 workstation, 4 products
Mao et al. (2016) REINFORCE Single Data center: 2 resources, 70 jobs
Che et al. (2020) A2C Single Data center: 500 resources, 12 hour
Rjoub et al. (2020) DQN Multiple Data center: 100 resources, 70.000 tasks
Oroojlooyjadid et al. (2020) DQN Single Supply chain: 4 echelons, 10 orders
Hu et al. (2020) DQN Multiple AGV: 3 AGVs, 800 jobs
Ying et al. (2020) A3C Multiple Metro: 8 stations, 24 carriages, 4h service
Cals et al. (2021) PPO Single Warehouse: 10 pickers, 500 orders

Table 2.3: Overview of optimization problems solved by DRL in OR domain

Conclusion on DRL implementations for optimization problems
Academia apply deep reinforcement learning on optimization problems in Operational Research
domain but it appears that there are some challenges in solving large instance-size problems.
In most work, proposed models are executed on single objective problems and relatively small
instance-size problems that hardly exists in the real-world. These relatively small instance-size
experiments require already a considerable amount of computational resources to obtain reasonable
performance. This may be acceptable for small problems, but as instances grow bigger, this fact
severely limits the applicability of these methods to many real-world instances. Similarly for
the OOBSP of DeepRele, it is expected that this problem also requires a considerable amount
of computational resources in order to enlarge to problem instance size, solve within a dynamic
environment and a multi-objective variant of the problem.
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2.3 Solving real-world problems with DRL

This section presents a set of techniques that can be used to enhance the traditional DRL approach
in order to solve real-world operational problems. These real-world operational decision problems
have a large instance size, have a multi-objective aspect and require to find a policy that address
dynamic environment. The first subsection presents a technique called imitation learning what can
benefit the sample efficiency of DRL approaches and allow for a large instance size. In the second
section, techniques for solving multi-objective problems are addressed. These form of problems are
firstly defined after which several solution methods are presented. In the subsequent section, this
chapter provides a set of hyper-optimization techniques that could be used concurrently with the
DRL approach. This hyper-parameter optimization technique could enhance the DRL approach
in solving dynamic environments. All of these techniques can optimize certain parts of the DRL
approach. Lastly, a technique is included to distill a policy of DRL approaches. This could be
helpful in understanding the learned policy and applicability of DRL approaches in the real-world.

2.3.1 Imitation learning

DRL algorithms usually require a huge amount of interactions with the environment to learn
feature representation of complex states, along with a complicated policy. Scaling the instance
size of a problem can have extensive consequences in computational complexity. The number
of steps per episode increases because the environment requires more time to solve it. Besides
this, reward will be even more sparse. As the number of steps per episode increase, the moment
between the agent starts and the agent receives a positive reward of the episode becomes larger.
It will be harder for an agent to learn a value function of state-action combinations. To cope
with the above challenges and to enable DRL to solve real-world operational problems, Yeo et al.
(2020) provide an approach that integrates some kind of expert demonstration data with DRL.
The demonstrations are used to initialize desired behaviour and there are several solution methods
that can be used.

Imitation learning, also known as learning from demonstrations or apprenticeship learning, has
benefited from recent progress in core learning techniques, increased availability, fidelity of demon-
stration data, as well as the computational advancements brought on by deep learning. The ob-
jective of ’pure’ imitation learning is given some demonstrations, train a policy that eventually
mimics these demonstrations (Yisong and Hoang M, 2018). Like RL, imitation learning requires
an environment modelled as a MDP and an agent performs different actions in this environment
based on its π policy. The simplest form of Imitation Learning is behaviour cloning, which uses
supervised learning to learn the expert’s policy. Based on state-action based demonstration data
of an expert, a supervised learning approach is used to predict an action of a given input state.
This approach can be problematic because it assumes that the state-action pairs are independent
and identically distributed (i.i.d.) while in a MDP, an action in a given state induces the next
state, which breaks the previous assumption. Still, behavioural cloning can work quite well in
certain applications because of its simplistic approach (Yisong and Hoang M, 2018). Below, two
implementations of this type of solution method are presented.

Deep Q-learning from Demonstrations (DQfD) by Hester et al. (2017) adds a supervised loss to the
loss function of a DQN that increases the overall loss values when an agent’s action is different from
an expert’s action. Based on a Deep Q Network presented before, the replay buffer is extended to
contain also demonstration trajectories that are stored permanently, whereas older actor data is
replaced by incoming actor data. During the learning process, a mini batch is sampled from the
replay buffer and is given as input to a neural network. The neural network is back propagated
by the sum of all losses. The authors of state that high quality demonstrations are required for
obtaining good performance using this solution method.

22



Gao et al. (2018) propose an unified reinforcement learning algorithm, Normalized Actor-Critic
(NAC), that effectively normalizes the Q-function, reducing the Q-values of actions unseen in the
demonstration data. NAC tries to alleviate the over-fitting problem of DQfD by using an unified
loss function (as opposed to distinct loss functions of DQfD) to process both off-line demonstration
data and online experience based on the underlying maximum entropy reinforcement learning
framework. The actor-critic method differs from standard methods by the fact that it utilizes a
soft policy gradient formulation in which it uses a Q-function gradient that reduces the Q-values of
actions that were not observed along the demonstrations. This avoids pushing up the Q-values of
actions that are not demonstrated. NAC is setup differently from traditional actor-critic models.

2.3.2 Multi-objective reinforcement learning

Many decision making problems in the real world require the consideration of more than one ob-
jective. The process of optimizing multiple objectives systematically and simultaneously is Multi
Objective Optimization (MOO). Formally, MOO is the process of simultaneously optimizing mul-
tiple objectives which can be complementary, conflicting as well as independent. The application
addressed in this literature review, DeepRele, provides a trade-off between two objectives: minim-
izing the number of tardy orders and minimizing picking time per order. This subsection introduces
MOO for reinforcement learning and presents several methods.

Many (sequential) decision making problems in the real world try to optimize multiple objectives.
Multi Objective Reinforcement Learning (MORL) extends the conventional single-objective rein-
forcement learning methods to integrate two or more objectives simultaneously. The objectives
of MORL are often conflicting so that maximization of one objective normally leads to minimiz-
ation of another. This is a more challenging scenario where trade-offs among objectives need to
be considered. Evaluation of MORL algorithms can be done on a Pareto front, which represents
compromise solutions among the objectives (Nguyen et al., 2020). There is no objectively optimal
solution to this type of problems, but there are subjectively optimal solutions that fit the needs
of the human decision maker. In terms of actual decision-making, the objective of solving a MOO
problem is referred to supporting a human decision-maker in finding the most preferred Pareto
optimal solution (Miettinen, 2012). This human decision maker can subsequently decide on one
solution to be implemented in practice (Hwang and Masud, 2012). For the specific OOBSP, do-
main experts have some idea on prioritizing a certain objective during a certain period based on
order arrival patterns and resource availability. However, the relative importance of objectives,
that are reflected in the reward functions of the DRL approach, are very hard for experts to define.
Hence, this could be solved by learning to determine the priority trade-off automatically.

As multi-objective optimization problems using reinforcement learning are not new, several al-
gorithms have been proposed mostly in more general multi-objective optimization problems. Most
of these algorithms are based on a scalarization principle to transform the multi-objective problem
to a single-objective problem (Vamplew et al., 2008). These scalarization algorithms include lin-
ear or non-linear approaches and have not a scalar reward signal but a vector where each element
corresponds to an objective. The linear scalarization algorithms compute with a weight vector
w = [w1, w2, ..., wn] and a reward vector r = [r1, r2, ..., rn] where n is the number of objectives,
the function for the global reward is shown in Equation 2.6.

r =

n∑
i=1

wi · ri (2.6)

A disadvantage of this method is that it only can find solutions in an convex Pareto set. More
advanced scalarization algorithms include for example the Chebyshev scalarization function (Perny
and Weng, 2010). This more advanced method uses preference information received from a human
decision maker to find a set of efficient solutions. The preference information consists of a weight
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vector w = [w1, w2, ..., wn] and an ideal point or utopian vector z∗ = [z∗1 , z
∗
2 , ..., z

∗
n]. With this, the

scalarization can be computed.

r = max
i

[wi|fi − z∗i |] (2.7)

Within this formula, fi represents the reward per objective i. The main advantage of this function
is that it can find all points in a non-convex Pareto set. There are many more scalarization
methods and each has it own advantages and disadvantages. For more of these methods, one can
refer to Kasimbeyli et al. (2019). Using these scalarization functions, a human decision maker
can decide on the priority it allocates to each objective in solving a optimization problem. So
in the case of the OOBSP, a human decision maker can for example allocate more priority for
minimizing the number of tardy orders and less priority for minimizing the order picking costs.
Some of these scalarization methods have been implemented in approach were deep reinforcement
learning is used. Two papers have been presented below.

The work of Nguyen et al. (2020) introduces a framework that can be used for solving multi-
objective problems with DRL. This framework requires a set of weights for the multiple objective
as input and outputs a Pareto graph with all solutions. This work uses both a linear scalarization
function as a more complex scalarization function, thresholded lexicographic ordering (TLO).
This latter scalarization method maximizes the performance on one chosen objective subject to
meeting a threshold level of the performance on the remaining objectives. This framework is
tested on the games Deep Sea Treasure and Mountain Car. Different scalarization methods and
single & multi policy agents are compared based on the hypervolume of the Pareto graph. As
an additional note, the authors state that an aligned reward function is of high importance when
solving multi-objective optimization problems using DRL.

The work of Hayes et al. (2021) provides a guide to the application of multi-objective DRL based
methods to difficult problems. In multi-objective problems, the properties of the user’s utility can
drastically alter the desired solution. This utility is defined as the perceived importance of each
objective within the multi-objective problem. The authors present an utility-based approach that
aims to derive the optimal solution set from the available knowledge about the utility function
of the user, and which types of policies are allowed. This knowledge allows constraints to be
placed on the solution set, reducing its size and thereby improving learning efficiency and making
it easier for users or systems to select their preferred policy. Furthermore, the authors of Hayes
et al. (2021) present several factors that influence the design of multi-objective systems. These
factors need to be taken into account when designing such a model.

2.3.3 Hyper-parameter optimization for reward shaping

As for all RL projects, finding an aligned reward function is critical to eventually obtain good
performance and is referred to as reward shaping. Additionally, when considering a multi-objective
problem, a large instance size and a dynamic environment, this process is even more challenging.
As a multi-objective variant of the OOBSP is considered, setting these weight between components
in the reward function is considered as a delicate task whereas minimizing one objective often leads
to the maximization of another objective. With an aligned reward function, an agent can learn a
policy that could possibly outperform other methods. In a RL project, shaping a reward function is
a process wherein a domain expert advises on a set of rules that reward/punish an agent. With this
set of rules (referred to as a reward function), a policy is learned, the agent’ performance is observed
and adjustments to the reward function are proposed. This process is repeated until a desired level
of performance is obtained. This iterative process is feasible for a small instance size problems but
it can become problematic when scaling the instance size and including an additional objective.
There are a few techniques presented in this subsection that could be used to improve / automate
the process of finding an aligned reward function and help the DRL approach to be able to cope
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with multi-objective, large instance, dynamic environments. The idea of improving/automating
artificial intelligence algorithms is not new and help to increase the applicability in general (Claesen
and De Moor, 2015). A lot of work has been done in the field of AutoML where several tasks in
Machine Learning have been automated using hyper-parameter optimization. More recently, work
appeared on AutoRL that tries to automate the process of learning a good policy using a DRL
agent (Chiang et al., 2019). The authors trained a RL agent to navigate a robot thru some real-
world environment based on computer vision data. The authors shaped the reward function for
their agent using a Hyper-optimization method considering components in their reward function as
hyper-parameters. The idea is constructed by using an optimization layer around a RL algorithm,
whereby the reward function can be optimized. With this approach, the process of finding an
aligned reward function and subsequently obtaining a better performing agent can be improved.
It is however unknown whether this technique works for optimization problems. There are several
hyper-optimization approaches that have been developed to find a good set of hyper parameters for
a machine learning related problem and may be helpful in obtaining an aligned reward function for
a reinforcement learning problem. These optimization approaches broadly fit within two classes:
model-based and model-free algorithms.

Grid search
Grid search (GS) is one of the most commonly-used model-free methods to explore hyper-parameter
configuration space (Injadat et al., 2020). It can be considered as an exhaustive search that eval-
uates all hyper-parameter configurations given to the grid. GS works by iteratively evaluating
the Cartesian product of a user-specified set of values. The algorithm can be easily implemented
and parallelized but is inefficient for high-dimensional hyper-parameter configurations, since the
number of evaluations increases exponentially.

Covariance Matrix Adaption evolutionary strategy
One of the best known population-based model-free methods is the Covariance Matrix Adap-
tion evolutionary strategy (CMA-ES) (Hansen, 2006). This simple evolutionary strategy samples
configurations from a multivariate Gaussian whose mean and covariance are updated in each
generation based on the success of the population’s individuals. Each iteration new individuals
(candidate solutions, denoted as x) are generated by variation, usually in a stochastic way, of the
current parental individuals. Then, some individuals are selected to become the parents in the
next generation based on their fitness or objective function value f(x). Like this, over the gen-
eration sequence, individuals with better and better f -values are generated (Hansen, 2006). Two
main principles are exploited in the CMA-ES algorithm: (1) Increase the probability of successful
candidate solutions and (2) Record evolution path so that correlation information between con-
secutive steps allows for better exploration. CMA-ES is one of the most competitive optimization
algorithms, regularly dominating the Black-Box Optimization Bench marking challenge (Elhara
et al., 2019).

Hyperspace
Lastly, the authors of the model-based hyper-optimization method Hyperspace, Young et al.
(2018), present a method that can learn the dependencies between model hyper-parameters through
the optimization process. Hyperspace initially samples a small, predefined number n points of
xi ⊂ X uniformly randomly, and compute the function values at those locations, f(x1), ..., f(xn).
Then, f is modelled by fitting a probabilistic model for the function. The authors assume
that f is drawn from a Gaussian process (GP). The GP assumes a priori that the probability
p(f(x1), ..., f(xn)) is jointly multivariate Gaussian distributed specified by the mean µ(x) and the
covariance function k(xi, xj) where k is a Matérn kernel. The Matérn kernel is commonly used to
define the statistical covariance between measurements made at two points (Genton, 2001). Mod-
eling f using a Gaussian process gives a posterior predictive mean function µ(x) and a posterior
predictive marginal variance function σ2(x). Fitting this jointly multivariate Gaussian distribu-
tion models the relationship between the hyper-parameters and the objective and becomes more
accurate over time. Using this distribution, it must be decided where to sample the next set of
hyper-parameters xn+1. The expected improvement algorithm is used to approximate the max-
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imum expected improvement of a new point xn+1 and is displayed in Equation 2.8.

uEI(x) = (f(x∗ − µ(x))Φ(Z) + φ(Z) (2.8)

Where Φ is the standard normal cumulative distribution function, φ its derivative, and Z =
f(x∗−µ(x))

σ(x) . This expected improvement algorithm balances two competing aims: first the need to

explore the domain of the objective function and secondly, to exploit the points which may be the
global minimum. To prove the effectiveness of Hyperspace, several machine learning experiments
have been conducted: finding clusters in sparse text documents, Gradient boosted regression
problems and a convolutional network on the MNIST dataset. Hyperspace is compared with
several baselines as Spearmint, Hyperband, Scikit-Optimize and Random Search. In each case,
Hyperspace outperforms the different baselines. It can be denoted that no reinforcement learning
experiment have been optimized using Hyperspace.

2.3.4 Distilling the policy of a DRL approach

Within deep reinforcement learning, Deep Neural Networks (DNN) perform well in learning policies
for control problems. A noteworthy disadvantage of these methods is the lack of clarity as to
how specific actions are selected. The root of this difficulty lies in the distributed nature of the
representations embedded in the hidden layers of the DNNs (Frosst and Hinton, 2017). This
domain is referred to as “Explainable AI”. Decision trees offer an alternative, often more legible
decision making paradigm where actions can be traced back through sequences of decision based
directly on input data. This subsection elaborates on the work of Frosst and Hinton (2017), whom
propose a Soft Decision Tree (SDT) to increase the transparency of a learned policy by a DNN.
This technique learns a certain set of weights and biases for each node in the decision tree using
mini batch gradient descent. This application is particularly useful for image-based input that
have latent dependencies. The work of Che et al. (2016) proposes a more applicable method that
uses a regular decision tree that splits classes on several features. Using structured data that has
been computed by the learned policy, a decision tree is fitted on certain state - action combinations.
It should infer a set of rules that separates different actions from each other.

2.4 Position of this research in literature

This literature review provides the academic motivation and foundation for the remainder of this
thesis project. Traditional solving methods for the OOBSP provide a good understanding of the
problem but lack in some dimensions for solving it completely. Furthermore, based on this re-
view, it appears that some DRL implementations for optimization problems suffer from scalability,
ability to solve multi-objective problems and the ability to solve within a dynamic environment.
Solving these characteristics pose a significant challenge. These characteristics severely limit the
applicability of DRL approaches to many real-world operational decision problems. Luckily, some
novel and exiting techniques have been presented that address scalability, multi-objective optim-
ization, dynamic environments of current DRL algorithms and explainable AI that could be useful
in tackling these problems. Based on this literature review, this project further designs techniques
for scalable DRL approaches, multi-objective optimization approaches and approaches to increase
the applicability of DRL models that try to solve optimization problems. As a final disclaimer,
the author of this literature review states that this study does not aim to be an exhaustive review
of the OOBSP, DRL approaches and techniques that enhance DRL approaches to solve real-world
operational decision problems. It does however serve as a broad literature review in order to get
a proper idea of the mentioned fields and to provide a base for combining DRL approaches and
techniques to optimization problems.
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3. Problem Description
This chapter introduces DeepRele and the OOBSP is formalized. The presented problem is scoped
in section 3.2 and a research design is given in section 3.4.

3.1 The Online Order Batching and Sequencing Problem

This section includes a system description of DeepRele warehousing concept, principles of the
online order batching and sequencing problem within DeepRele and introduces several challenges
that can be experienced in real world scenarios.

3.1.1 System description

As introduced, the DeepRele warehousing concept includes a sequential decision making problem
wherein an online batching and sequencing operation need to be performed. This warehousing
concept, DeepRele, consists out of two processes: picking an order in either a PtG or GtP storage
area and processing this order at one of the three subsequent workstations (Figure 3.1). The
OOBSP in this project considers the picking process in either a PtG or GtP storage area. The
PtG storage area can store goods on racks or pallets. A picker walks with a picker cart through
the aisles to pick items in a carton box or a tote. When picking-by-order in PtG area is applied,
the pickers collects items directly in a carton box and this order is ready for shipping and does
not need to be released to one of the subsequent workstations. When picking-by-batch is applied,
the picker collects items in a batch tote and this batch tote is transferred by conveyor to the GtP
area where it is temporarily stored until a workstation request the specific batched order. The
GtP system is an Automated Storage/Retrieval System (AS/RS) with shuttles that move through
the system to pick totes. These shuttles bring one tote per pick tour to one of the lifts which
are connected to a conveyor to one of the workstations. When picking-by-order is applied, the
shuttles retrieve all items from an order in product totes from the GtP area and sends them to a
Direct-to-Order workstation. When picking-by-batch is applied, two options are present. Either
the stored batch tote from PtG is retrieved with optionally additional product totes from the GtP
area, or multiple product totes are retrieved from the GtP area. Both options are transferred to
the Sort-to-Order workstation.

Product and batch totes can be released to three different workstations: Direct-to-Order (DtO),
Sort-to-Order (StO) and pack stations. A picker at a DtO workstation removes items from a
product tote and collects items of a single order in an order carrier. If an order consists of
multiple order lines (multiple SKUs), multiple product totes are provided. All associated product
totes arrive in sequence and a picker places the items in an order carrier. This order carrier is
client specific and can be a carton box or a product tote. Afterwards, totes with remaining items
are stored back in the GtP system. Besides fulfilling orders in carton boxes, the DtO workstation
can batch items. In this process, product totes from the GtP area arrive, a picker places all items
in a batch tote which is stored again in GtP area. After that, the stored batch tote in the GtP
area can be requested by either a pack station or a Sort-to-Order (StO) station.

The StO station includes three processes: sorting, buffering and packing. Within the sorting
process, a picker removes items from a batch tote and sorts them in a put wall. This put wall is
a rack with shelves where a picker can temporarily allocate a shelve to an unique order. This put
wall has a capacity of 50 orders depending on the average order sizes. The put wall is transferred
to the buffering area once it is filled. In this area, the put wall waits until a packing operator is
allocated. At packing, the operator places the sorted orders into carton boxes and transfers it.
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Figure 3.1: DeepRele warehousing concept with a manual- and an automatic picking area

Note that there is a difference between a pack station and the process packing at the StO station.

The pack station processes batch totes that consists out of only Single-item-Orders (SiO). SiO’s are
defined by orders that consists out of a single order line and a single item, so one SKU per order.
A picker removes items from batch totes and places them in carton boxes that are subsequently
send for shipping. Multi-item-Orders (MiO) consists out of multiple items from different of similar
order lines. An overview of processing options and a graphical representation of these process flows
is given in Figure 3.2 and Table 3.1.

Before shipping, two more processes take place: Value added services and closing + labelling.
During value added services, specific options are added to the carton box such as customer specific
packaging or preparing the order for international shipping. During closing and labeling the carton
box is closed and a shipping label is applied. After this step, the bar code is scanned and the
carton box is transferred to the correct outbound conveyor for shipping. Supporting processes as
replenishment of SKUs and the transportation of empty totes are not considered in this concept.

Figure 3.2: Physical process flow variants of
DeepRele

Category Location Strategy Route

SIO PtG Pick-by-batch 2
SIO GtP Pick-by-batch 5
SIO PtG Pick-by-order 1
SIO GtP Pick-by-order 5
MIO PtG Pick-by-batch 3
MIO GtP Pick-by-batch 4
MIO PtG Pick-by-order 1
MIO GtP Pick-by-order 5
MIO PtG & GtP Pick-by-batch 3
MIO PtG & GtP Pick-by-order 6

Table 3.1: All process flow variants of DeepRele
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Table 3.1 depicts the possible variants that an order can go through the DeepRele system. The
first distinction between order types is the fact whether an order is a Multi-item-Order (MiO) or
a Single-item-Order (SiO). Based on this characteristic, the storage location of the order and the
picking strategy of the order, a specific route through the system can be assigned. All these routes
have different processing times depending on the number of items in an order and the number
of orders in a batch. However, the processing time of an pick-by-order decision is in most of the
cases significantly shorter than a pick-by-batch decision. On the contrary, DeepRele can achieve a
larger throughput when a pick-by-batch strategy is selected because of a higher picking efficiency.

3.1.2 The online order batching and sequencing problem for DeepRele

As described in the literature review in chapter 2, the OOBSP is defined as grouping customer
orders into picker orders (batches) and subsequently sequencing these batches to optimize a certain
single or multiple objectives (Henn et al., 2012). More specifically, the batching operation includes
a set of orders that need to be assigned to a set of batches. In the case of DeepRele, individual
information about orders is available and includes the cutoff time and item ID(s). A model needs
to assign these orders to a batch such that the number of orders that become tardy are minimized.
A tardy order is defined by an order that is finished after its respected cutoff time provided by
the context. Furthermore, the model needs to assign orders to a batch such that the order picking
costs are minimized. The order picking costs are defined by the amount of time that a single
order requires to be picked. Within a batch with batch size larger than 1, the order picking costs
per order is fairly lower than for a batch which contains only a single order. In parallel to this
batching operation, the model needs to decide on the sequence of batches in adherence to the
aforementioned two objectives. Furthermore, the OOBSP within DeepRele is considered as an
online problem and needs to perform batching and sequencing operations in real time.

Within the OOBSP for DeepRele, a model needs to decide on a picking strategy where either an
order is picked-by-batch or an order is picked-by-order. Each picking strategy will have different
operational consequences. A pick-by-batch picking strategy has relatively short picking times per
order (order pickers picks more efficiently) but has a higher lead time (orders within a batch wait
on each other). On the other side, when deciding for a pick-by-order strategy, the picking operation
has relatively long picking times per order (no synergy of picking several orders simultaneously)
but do has short lead times (orders do not have to wait on each other). As mentioned, both
strategies have different operations consequences and could be the optimal decision on different
scenarios. In a case where a certain order has an imminent cutoff time, ideally this order would
be picked with a pick-by-order strategy as this has a low lead time. Differently, in a case where
there are no imminent cutoff times for orders, ideally orders should be picked with a pick-by-batch
strategy in order to decrease the picking time per order. This trade-off between consequences of
the pick-by-batch and pick-by-order action should be included in the proposed model.

3.1.3 Real world characteristics for the OBSP

As mentioned in the introduction, the work of Cals et al. (2021) contains some assumptions
whereby the environment used for their experiments becomes fairly theoretical. This sub section
identifies several real world aspects of the OOBSP for DeepRele and these are be addressed in the
remainder of this project.

First of all, problems with real-world characteristics are often presented as multi-objective prob-
lems. Minimizing one objective often leads to the maximizing of another objective. Within
Vanderlande, the performance of DeepRele systems is usually evaluated by multiple objectives as
the number of tardy orders and order picking costs. This dual objective optimization problem,
aims to minimize the number of tardy orders and order picking costs. Between these objectives,
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a trade-off can be identified. When performing efficient order picking (i.e. low order picking costs
per order when pick in a batch), the lead time of orders increases. If this lead time becomes too
large, the specific order can become tardy as it leaves the system after its pre-defined cutoff time.
This joint optimization problem is an extension of the work of Cals et al. (2021) where the authors
only solved the OOBSP for minimizing the number of tardy orders. For the specific OOBSP,
domain experts have some idea on prioritizing a certain objective during a certain period based
on order arrival patterns and resource availability. However, the relative importance of objectives,
that are reflected in the reward functions of the DRL approach, are very hard for experts to define.
Hence, this could be solved by learning to determine the priority trade-off automatically based on
states and the environment.

Secondly, solving small theoretical instances can prove effectiveness of solving a OOBSP using a
DRL approach, scaling to larger instance was not possible in the work of Cals et al. (2021). Dee-
pRele is designed for a throughput of up to 5000 orders per hour. When scaling the OOBSP, this
has several consequences for learning behaviour of the DRL agent and computational complexity.
The number of steps per episode increases because the environment requires more time to solve it.
Besides this, reward will be even more sparse. As the number of steps per episode increase, the
moment between the agent starts and the agent receives a positive reward of the episode becomes
larger. It will be harder for an agent to learn a value function of state-action combinations.

Figure 3.3: Arrival pattern of orders Figure 3.4: Number of items per order

Lastly, real world environments are often subjected to change and dynamics over time. Also in the
case of the OOBSP of DeepRele, orders can arrive 24 hours per day and in general, orders that
arrive before 23:00 have to be delivered the next day. As DeepRele is designed for e-commerce
applications, the data that is be used for this project is from a large e-commerce company in The
Netherlands and the arrival pattern is depicted in Figure 3.3. This pattern in Figure 3.3 brings
along several operational difficulties in terms of resource planning. Firstly, orders arrive in real
time so a proposed solution should be able to perform a batching and sequencing operation in
an online setting. According to the literature review in Chapter 2, work on this is sparse and
requires specific attention. Secondly, when looking at the arrival pattern itself, a large part of the
orders arrives at the end of the day. In order to account for this additional workload, resources
need to scheduled accordingly. Furthermore, a dynamic order batching algorithm could greatly
benefit operational performance when it adjust its batching strategy according to this order arrival
pattern. During a day, when there are little imminent shipping deadlines (cutoff moments), focus
more on order picking efficiency and more towards the end of the day, focus more on minimizing
tardy orders. Additionally, the histogram in Figure 3.4 depicts the number of items per order for
this company. So-called single-item-orders (SIO) have different lead times than multi-item-orders
(MIO) and so, have different consequences in terms of operational performance and ideal batching
strategy.
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3.2 Scope of the problem

With the DeepRele system and the OOBSP described in previous sections, the scope of the
problem can be defined. This project addresses a multi-objective optimization problem using
deep reinforcement learning where the main challenge is to find a good trade-off between the
multiple objectives and apply it in real world environments. In order to focus on solving this
challenge solely, the following aspects are of importance to thesis project:

• The batching decision (pick-by-batch / pick-by-order) is be performed by the DRL agent,
the subsequent sequencing operation is performed using a heuristic.

• Due to time constraints of this project, designing a routing strategy is not included in this
thesis project to solely focus on the batching and sequencing decision problem. This is
however considered an important aspect in warehouse operations.

• These real-world characteristics contain a multi-objective problem, a large instance size and
is subjected to change in terms of orders arriving into the DeepRele system.

3.3 Problem formulation

Given the OOBSP system description and scope for this problem leaves us with the problem in
which the current DRL methods needs to improved in order to optimize both the number of tardy
orders as the order picking costs of the OOBSP within the DeepRele system. This improvement
needs to be constructed in a way that the OOBSP is solved without violating DeepRele constraints.
With this, the problem can be formulated verbally: given a DeepRele setting with a predefined
set of resources, the DRL algorithm needs to sequentially determine a picking strategy for each
order and sequence the batched orders. This needs to be done such that the system constraints
of DeepRele are satisfied and the number of tardy orders and the picking cost are optimized.

An example of this problem formulation is a situation where 10,000 orders need to be processed
and where the DRL agent should provide pick and sequence strategies. The DRL agent should
make a trade-off between two picking strategies: either pick-by-order or pick-by-batch. When
orders are picked with a pick-by-order strategy, the individual orders have short lead times but
the system’s throughput is low. However, when orders are picked with a pick-by-batch strategy,
the system’s throughput is high but lead times of individual orders are high as well. If some
order has an imminent cut-off time, there is a risk of a tardy order when choosing a pick-by-batch
strategy. Picked-by-batch orders have a longer lead time because orders need to wait until all
other orders are picked and because batches require additional sorting operations after picking.

Additionally, this problem is represented as an abstract mathematical optimization problem. It
is abstract in the sense that it cannot be directly solved by a mathematical programming engine
because of the online aspect but it is meant to precisely define the problem. The initial formulation
of Cals et al. (2021) is used and changes have been made to include the multi-objective aspect.

Sets. The following sets define the problem domain.
O : the set of orders
B : the set of batches
T : the time
X : the types of resources X = {p, g, d, v, d}, where p is PtG pickers, g is GtP shuttles, d is

DtO work stations, v is StO work stations and b is packing work stations.

Decision variables. The decision variables model the picking strategy per order o at a particular
moment in time t.
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PbOto ∈ {0, 1} : pick order o ∈ O by order at time t ∈ T
PbBto ∈ {0, 1} : pick order o ∈ O by batch at time t ∈ T

Parameters. Each order has several properties and each resource has a capacity.
co ∈ {SIO,MIO} : o ∈ O is a single item order (SIO) or a multiple item order (MIO)
lo ∈ {PtG,GtP, both} : o ∈ O is available in the Person-to-Goods storage area, Goods-to-

Person area or in both
eo ∈ {e1, e2, e3} : o ∈ O is in cutoff category 1,2 or 3 where 1 is a cutoff time between

0 and 15 min from now, 2 is a cutoff time between 15 and 40 min
from now and 3 is a cutoff time of more than 41 min from now.

ao ∈ {T} : arrival time of order o ∈ O
do ∈ {T} : cutoff time of order o ∈ O
capx : x ∈ {PtG,GtP} is capacity of resources PtG and GtP
N : Maximum batch size in number of orders

Abstract parameters. Several parameters are left abstract, specifically: the service time of an order
(i.e. the time that an orders spends in the system, waiting or being picked or packed). Also the
picking time of a picking resource attributed to an order (i.e. when a set of orders are picked-by-
batch, a picking resource attributes a specific picking time to each order from this batch. In other
words, how much time is a picking resource busy with picking a specific order from a batch.) Also,
the batch information to which an order is assigned is left abstract, and the number of resources of
a particular type that is occupied at a particular point in time are left abstract. These parameters
must be computed, depending on the state of orders that are already being picked and decisions
that were made with respect to these orders. In the next chapter, several assumptions are made on
how these parameters are computed and show how the problem can be solved as an MDP under
these assumptions.
so ∈ {T} : the service time of order o ∈ O
po,x : picking costs: the picking time of picking resource x attributed to order o ∈ O

multiplied by a cost value
bao,b ∈ {0, 1} : order o ∈ O is part of batch b ∈ B
occtx : the number of occupied resources of type x ∈ X at time t ∈ T

Problem. The objective is displayed in the equations below. Let tardyo = 1, if ao + so > do, 0
otherwise.

min F =

{
f1 =

∑
o∈O tardyo

f2 =
∑
o∈O po,x

(3.1)

s.t.
∑
t∈T

PbOto + PbBto = 1 ∀o ∈ O (3.2)

PbOto · t+ PbBto · t ≥ ao ∀o ∈ O, t ∈ T (3.3)

occtx ≤ capx ∀x ∈ X, t ∈ T (3.4)∑
o∈O

bao,b ≤ N ∀b ∈ B (3.5)∑
t∈T

PbBto =
∑
b∈B

bao,b ∀o ∈ O (3.6)

In objective function 3.1, two functions are minimized, the number of tardy orders and the picking
costs. In order to minimize tardy orders, orders need to be processed before their respective cutoff
time. In order to minimize picking time per order, orders need to be picked with a pick-by-batch
strategy. Constraint 3.2 assures that orders are assigned to one picking strategy. Constraint 3.3
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constrains that orders can only be picked after they have arrived. Furthermore, constraint 3.4
ensures that resource abide the predefined capacities. Constraint 3.5 limits the maximum batch
size of batches. Lastly, constraint 3.6 makes sure that orders cannot be split up and be allocated
to multiple batches.

3.4 Research design

In this section, the setup of the research is discussed to solve the problem formulated above. The
current DRL setup of Cals et al. (2021) is discussed in Chapter 4 and several adjustments are
proposed. Furthermore, Chapter 4 also contains solutions that enables DRL methods to solve the
multi-objective variants of the OOBSP for DeepRele in real world environments. To test these
techniques, Chapter 5 presents an experiment where several scenarios of the OOBSP are discussed.
Furthermore, since DeepRele is a completely new system and no current solution approach exists,
the performance of the DRL cannot be validated with real-world data. Therefore a simulation
model is developed that can test different online order batching and sequencing techniques and
allows for experimentation. Design of this simulation model is included in Chapter 4. The results
for all experiments are presented in Chapter 6 and this chapter additionally performs a policy and
robustness analysis. All findings are concluded in Chapter 7.
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4. Solution methods
The multi-objective OOBSP addressed by DRL in this work forms the continuation of the single-
objective OOBSP presented in Cals et al. (2021). This chapter gives a brief introduction to
the approach of Cals et al. (2021) as this forms the starting point. This current DRL approach
considers a small instance single-objective OOBSP problem for the DeepRele warehousing concept.
This approach proved effectiveness on small instances and a single-objective variant of the OOBSP,
but did not demonstrate effectiveness on a multi-objective OOBSP with real-world characteristics.
Furthermore, this chapter proposes several adjustments in order to solve a multi-objective variant
of the problem and to cope with challenges that are included in a real-wold characteristics. Based
on findings in Chapter 2, finding an aligned reward function for DRL approaches that solve multi-
objective problems is of high importance. Because of this, a Bayesian optimization technique is
proposed that could improve the process of finding an aligned reward function for DRL approaches.
Lastly, this chapter introduces two complex heuristics that are used for bench marking studies on
the multi-objective OOBSP for DeepRele.

4.1 Current DRL solution method

The literature from chapter 2 states that the essence of RL is learning through interaction. A RL
agent interacts with its environment and, upon observing consequences of its actions, can learn to
alter its own behaviour in response to rewards received (Figure 4.1). Several components of the
DRL based approach of Cals et al. (2021) are outlined below.

4.1.1 Environment

The environment used by the authors Cals et al. (2021), is formulated as a Semi-Markov Decision
Process (SMDP) and models the processes of DeepRele. Based on a specific state of DeepRele,
an agent can take a certain action that causes the system to go into a different state. The SMDP
variant of a Markov Decision Process is defined by τ : the transition time, S : a finite state space,
A : a set of actions and R : the reward function. In a SMDP, the transition of time to the next
state will depend on changes in the environment. Whereas in a MDP the state does not have to
change after each action, the state in a SMDP always changes. In other words, when the agent
performs an action and the environment is modeled as a SMDP, there is a change in capacity or
orders arriving in the state. Besides this, the time τ it takes wherein a MDP changes from state
after taking an action is considered constant whereas in a SMDP, this time period can be variable.
All components of the SMDP are outlined below. Additionally, to explain the environment, the
notion of episode is introduced. An episode in DRL is a sequence of states, actions and rewards,
which ends with a terminal state. In each episode, the simulation model is started and with actions
performed by the DRL agent, the DRL agent tries to solve one specific instance. Specifically in
the case of DeepRele, an episode terminates when all orders have been processed.

State space S
In order to model a system that captures the dynamics of DeepRele, a state space with relevant
information has been defined based on three components. These components are not trivial, many
other components can be included in the state. However, there need to be some kind of trade-
off between the amount of information and computational resources to learn a policy. With more
information, an agent needs more computational resources to train but with too little information,
an agent will not converge to a reasonable policy.

1. Orders that need to be processed by DeepRele
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Figure 4.1: Principles of a RL agent making decisions in DeepRele

Within the state space, this component represents the set of orders that need to processed
before termination of the specific episode. In this part, order categories O are defined
based on order characteristics as composition C (single-item-order c1 or multi-item-order
c2), storage location l (PtG l1, GtP l2 or PtG & GtP l3) and the time until cut-off moment
divided into less than 15 minutes e1, between 15 and 40 minutes e2 and more than 40 minutes
e3. With two compositions, three storage possibilities and three categories for duration until
cut-off moment, 15 categories of Oci,lj ,ek exists.

2. Capacity information of DeepRele’s resources
For processing a certain action, the system is required to have resources available for that
certain action. For example, when an order needs to be picked at the PtG storage area, a
PtG picker needs to be available to perform that action otherwise orders will accumulate.
For this reason, the availability for PtG pickers and GtP shuttles are included in the state
representation and are represented by a pipeline variable that includes the current available
capacity plus a (virtual) queue variable. This queue variable is included to make sure that the
resource does not become idle too quickly between states. There are two pipeline variables
pandg for both the PtG resources and the GtP resources.

3. Additional information beneficial for learning
In order to provide the agent with additional information about the general state of the
system, variables t, nandu have been added. Variable t represents the number of tardy
orders so far. These are the orders that have left the system after their respective cut-
off times. n represents the number of processed orders and u represents the time of the
simulation. All these variables increase as the system gets closer to the end of the episode.
It is assumed that with providing this information, the learning process is enhanced.

Action space A
The work of Cals et al. (2021) maps the action space directly to the order categories in the first
component of the state representation (Oci,lj ,ek). For all of the 15 available categories, either a
pick-by-order or a pick-by-batch decision can be made. This results in 30 different actions where
action 1 refers to a pick-by-order action for order category Oc1,l1,e1 , action 2 to a pick-by-batch
action for Oc1,l1,e1 and so on. The 31th action is a wait action that the agent can take in case
there are no resources left to process a certain set of order categories. This wait action ’waits’
until the state of the system changes. This can happen either by an arrival of an order or by a
resource becoming idle within the DeepRele system. Depending on the available orders Oci,lj ,ek ,
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capacities (p, g), the agent can choose to perform a subset of feasible actions. Only if there are no
feasible actions to be taken, the agent can perform the wait action. As mentioned, the subsequent
batching operation is done using the LST sequencing heuristic.

Reward function R
The reward function included in the project provides a reward at the end of the episode and
penalties during the episodes. This reward function is displayed in Equation 4.1 and contains
penalties for infeasible actions and tardy order. Furthermore, it contains a reward at the end
of an episode based on w, the total amount of tardy orders and N the total amount of orders
processed.

r(s, a, s′) =


−0.005 if episode tardy order

−0.0075 if tardy order

(1− w/N)2 if episode terminates

0 otherwise

(4.1)

To clarify the discussed concept of the state representation and the action space, an example is
given below. The state representation is defined by the following string:
(Oc1,l1,e1 , Oc1,l1,e2 , Oc1,l1,e3 , Oc1,l2,e1 , Oc1,l2,e2 , Oc1,l2,e3 , Oc2,l1,e1 , Oc2,l1,e2 , Oc2,l1,e3 , Oc2,l2,e1 ,
Oc2,l2,e2 , Oc2,l2,e3 , Oc2,l3,e1 , Oc2,l3,e2 , Oc2,l3,e3 , p, g, t, n, u)

To start the example, the state representation could look like the following at the beginning of an
episode:

(5, 20, 300, 0, 18, 100, 0, 9, 69, 0, 23, 47, 9, 0, 0, 10, 12, 0, 0, 0)

Within the current episode, a total of 600 orders (5+20+300+18+100+9+69+23+47+9=600) need
to be processed by the DeepRele warehousing system. As discussed before, the state representation
displays the number of orders in each order category, the resource availability of PtG and GtP
pickers (10 and 12) and the additional information as tardy orders, processed orders and the
simulation time. Currently, there are 14 orders (5+9=14) that are in a category with characteristic
e1. These need to processed and leave the warehouse in under 15 minutes in order to not become
tardy. Also, there are 70 (20+18+9+23=70) orders with characteristic e2 and have a cut-off time
in between 15 and 40 minutes from now.

For example, when performing a pick-by-order actions for order category Oc1,l1,e1 , the action
requires one PtG picker. Taking this action results in following new state representation of the
system:

(4, 20, 300, 0, 18, 100, 0, 9, 69, 0, 23, 47, 9, 0, 0, 9, 12, 0, 0, 0.1)

Note that the order category Oc1,l1,e1 has been decreased with 1 (system processes a pick-by-order
action for that order category), available PtG resources has been decreased from 10 to 9 and the
simulation time has been increased from 0 to 0.1). The latter change in system can be explained by
the fact when assigning orders to resources, the state of the actual system changes. As assigning
the order to a resources takes fairly little time, the simulation time changes barely.

4.1.2 Simulation model

The authors of Cals et al. (2021) have used a discrete event scheduling simulation to map the
dynamics of DeepRele digitally. As DeepRele is a new warehousing concept, there is no actual im-
plementation of this system and no performance data. Furthermore, using the actual warehousing
system to test DRL agent is very costly.
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The discrete event simulation consists out of two events: arrival and departure that can take
place at each workstation. Furthermore, each workstation has dedicated resources and processing
times. An order arrives into the system and an arrival event is scheduled. When this order is in
the queue for processing at a certain workstation, the simulation model checks whether there is a
dedicated resource available and if so, assigns this resource to this specific order and schedules a
departure moment. Once the simulation time surpasses the scheduled departure time, the resource
is released and an arrival event is scheduled at the next work station. This logic is used for each
route and workstation in the DeepRele system.

The simulation model is built in Automod. Automod is simulation software that can model large
and complex manufacturing, distribution, and material handling systems such as our problem.
Automod is widely used within VI but causes some computational problems for this project. As
Automod runs on a dedicated server, training an agent requires communication with this server
each step the agent takes. This process is slow, constrains the learning process and is not scalable.

4.1.3 Agent

To train a certain policy in this environment that tends to minimize the number of tardy orders
on a specific resource setting, the authors of Cals et al. (2021) have used a Proximal Policy
Optimization (PPO) algorithm. This is algorithm strikes a favorable balance between sample
efficiency, simplicity and computational efficiency. This project included a single optimization
objective, namely the minimization of the number of tardy orders. An detailed introduction to
the PPO algorithm is given in the literature review in section 2.2.3. The specific implementation
of Hill et al. (2018) for the PPO algorithm has been used throughout this project.

4.2 Adjustments to the current DRL setup

Solving a multi-objective variant of the OOBSP with real-world characteristics requires several
adjustments to the DRL setup of Cals et al. (2021). The authors denote that the current simulation
model did not allow to scale the instance size due to the computational complexity. As seen in
Chapter 3, instance sizes of up to 5000 orders per hour form real-world characteristics whereas
this is currently not possible. In order to address this challenge, a new, more efficient simulation
model is designed. Secondly, the work of Cals et al. (2021) did not consider a completely online
setting for their problem. In order to form an environment with real-world characteristics, the
model is adjusted in order to cope with a real time stream of orders arriving into the system.
After this adjustment, this model can be considered as a true online solution method. Thirdly, in
order to transform the problem into a multi-objective problem, the reward function is adjusted in
order to provide incentive to the agent for minimizing two objectives. Lastly, the action space is
changed in order to improve learning behaviour for this multi-objective setting.

4.2.1 Simulation model

A discrete-event based simulation model has been designed that captures the dynamics of Dee-
pRele. In contrary to the work of Cals et al. (2021), this simulation model has been developed
using Python. The main advantage is that this aspect enables multi-processing in combination
with the DRL agent, wherein the previous model, this was not possible. The simulation model
is designed using principles from Boon and Boor (2020). This model uses arrival events, depar-
ture events, order entities, queues and workstations to map the flow of orders thru the DeepRele
system. The authors introduce Future Event Set as variable-sized arrays where events can be
added and removed. These Future Event Sets contain time-sorted scheduled future events and is
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simulated in time. The events are either marked as arrival or departure and can be scheduled in
the Future Event Set. An event contains several parts of information such as workstation, time
and related order entity. Events are scheduled for every order entity on work stations that the
specific order is required to visit. Order entities are objects that contain order-specific inform-
ation and are maintained throughout the DeepRele process to store additional information. At
every workstation, information is appended to this object on waiting time, processing time and
transporting time. Before every workstation, there is a queue to buffer orders. If a resource at a
certain work station is not available, an order waits in this queue. Lastly, the workstations are
processing units that have a certain capacity and processing time. These process orders coming
in and provide time-related information to the orders. In order to illustrate the principles and
explained components of this discrete event simulation model, a short example is given hereafter:
After a batching and sequencing operation, an order arrives into this simulation model with an
arrival event at one of the two storage areas. If a resource is available to pick this order, this
resource is claimed, a departure event is scheduled and the arrival event is removed. If there
is no resource available, the related order entity is placed in a queue and waits until a resource
becomes idle. As time progresses, the simulation model processes arrival and departure events at
all respective workstations. Because this simulation model is developed using a object-oriented
method, a lot of information can be maintained on individual orders, workstations and queues to
report on. The entire flow chart is displayed in Figure 4.2.

Figure 4.2: Entire simulated process flow of DeepRele

As displayed in Figure 4.2, the process makes a distinction between orders / batches based on
storage location. For PtG orders / batches, the orders are placed in a queue and if a resource is
available, the picking operation starts. After this picking operation, the model checks whether all
items are picked. In some cases, the order contains items that need to be picked in both storage
areas and extra picking is required. In other cases the batched order is not ready for shipping
because all orders are within a batch tote and require consolidation. In all other cases, orders are
ready for shipping and continue. For GtP orders / batches, orders together with orders from PtG
that require additional picking are placed within a queue and if there is a resource available, a
shuttle performs the picking operation and transports the totes to the workstation where order
consolidation assures that all batches are sorted into orders. Subsequently, orders can be shipped.
The arrival of orders in the DeepRele system involves uncertainty, where the proposed solution
method should deal with. These orders arrive according to a order arrival distribution displayed
in Figure 3.3 where a large part of the orders arrive into the system at the end of a day.

This simulation model has been validated with domain experts from VI. As there is currently
no physical DeepRele system implementation, validating the simulation model in other ways was
not possible. This simulation model uses a warm-up period of 15 minutes in order to fill the
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system with orders. The OOBSP during this warm-up period is solved using the BOC batching
heuristic which will be explained in the latter part of this chapter. This warm-up period ensures
that the system is occupied with orders before the DRL approach is applied to solve the OOBSP
in order to represent a real-world problem. After this warm-up period, the simulation model
starts simulating a pre-defined experiment which provides the time window, incoming orders and
the number of resources at each workstation. The simulation model stops simulating when all
orders have been processed. Furthermore, this simulation model provides information about its
state to the DRL approach. Based on this information or so-called state representation, the DRL
approach must make a suitable action. The interaction between the simulation model and the
DRL approach is depicted in Figure 4.3. At the start of an episode, the agent receives an initial
state representation of the DeepRele system and predicts the best action to take. If this action
is unfeasible, an penalty is provided to the agent and a new action is predicted on a similar state
representation. If this action is feasible, the action is transferred to the simulation model. Within
this simulation model, the action is simulated. When for example a picking action is predicted,
the DeepRele system simulates a picking order and a new state representation of the system is
compiled. When for example a wait action is predicted, the simulation model simulates until
a resources becomes idle and subsequently a new state representation is compiled. This newly
compiled state representation is transferred back to the agent. The agent checks whether this new
state representation is terminal, i.e. when the simulation time is reached and all orders have been
processed. If not, the new state representation and reward for the previous action are given to the
agent to process. This process iterates until the state representation becomes terminal.

Figure 4.3: Interaction between DRL agent and simulation model

4.2.2 Imitation learning

In order to further improve the computational complexity of solving large instance size problems,
this thesis project implemented an Imitation learning approach derived from de Oliveira da Costa
and Zhang (2021). DRL requires a considerable amount of data before they reach reasonable
performance. This may be acceptable for small problems, but as instances grow bigger, this fact
severely limits the applicability of these methods to many real-world instances. The objective
of imitation learning is given some demonstrations, train a policy that eventually mimics these
demonstrations. Subsequently, the DRL approach can start learning based on interaction with the
environment. In the case of the OOBSP for DeepRele, an online order batching and sequencing
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heuristic is used to perform imitation learning upon and transfer this ’knowledge’ to the DRL
approach. However this did not improve performance in terms of computational complexity or
system performance. This method is derived from the robotics domain where DRL approaches
have large action spaces in contrary to this application. This could have impacted the added value
of imitation learning. Furthermore, the sequence in which the actions are predicted have a very
large impact in that domain whereas it is doubted if that is the case in the OOBSP for DeepRele.

4.2.3 Online order batching and sequencing problem

As mentioned in the introduction of this section, the newly proposed model tries to solve the
OOBSP in an online fashion. This is in line with real-world characteristics where orders come in
real time and the proposed model needs to make decisions accordingly. In the work of Cals et al.
(2021), orders came into the system as hourly buckets. Based on this data, their model solved
the OOBSP. In this project, orders arrive in the system in real time. These orders are collected
in an order pool. This order pool is represented in the state representation of the DRL agent.
At every time step, this order pool is updated. Once a picking action is provided by the agent,
the related orders within this picking action are removed from the order pool. Enabling an online
DRL method for solving the OOBSP enhances applicability in the real world.

4.2.4 Reward function of DRL approach

In order to guide an agent to learn a policy, an agent needs to be rewarded for good actions
and penalized for bad actions. In order to define good and bad and how much an agent is
rewarded/punished, a reward function is used. Based on the reward function introduced in section
4.1.1, a new reward function is compiled in order to reflect the multi-objective variant of the
introduced OOBSP and displayed in Equation 4.2.

r(s, a, s′) =



−1.5 if tardy order

(1− t/N)2 If an episode terminates

−0.5 if infeasible action

− (1−a/t)
50 If order is picked

0 otherwise

(4.2)

The first two components in Equation 4.2 account to the first objective, the minimization of the
number of tardy orders. This first components gives a negative reward to the agent every time an
order leaves the warehouse after its cutoff time. This second component provides a reward when
an episode terminates where t is defined the number of tardy orders and N is defined by the total
number of order processed. With less tardy orders, this reward grows larger. The third component
in this reward function penalizes the agent when it makes an infeasible action. This can happen
when it provides a picking action for a certain order category where no resources are available. In
this case it ideally provide a wait action until resources become available. The fourth component
provides an incentive to the agent to pick large batches and so, minimize the order picking costs.
In this equation, a is defined by the actual batch size and t is defined by the maximum batch size.
In this case, an agent is not punished when the number of orders within a batch is equal to the
maximum batch size. In any other cases, the agent is punished. Lastly, if no other components
provide a positive or negative reward, the agent receives reward 0. An important note to make
is that within the reward function, the priority for both objectives can be changed according to
preference of a human decision maker. The reward function presented in Cals et al. (2021) is
used as base and is improved based on trial and error. Different configurations were tested and
improvements were made accordingly. Setting the components relatively to each other to solve the
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multi-objective problem is a delicate process. A trial-and-error approach for shaping the reward
function is used often in literature. Section 4.3 presents a Bayesian optimization technique that
learns a set of weights that can be applied to components of the reward function. This will trade-off
both objectives within the optimization problem and provide a certain priority to each objective.

4.2.5 Action space of DRL approach

Section 4.1.1 defines the action space for the current setup of a DRL approach of Cals et al.
(2021). For the 15 different order categories, the agent can either make a pick-by-order action or
a pick-by-batch action what results in 30 different picking actions and a single wait action if there
are no resources available. This action space is reduced in order to decrease the computational
complexity by proposing an action space of 10 picking actions and 1 wait action and this new action
space is displayed in Table 4.1. Compared to the work of Cals et al. (2021), this action space does
not have an individual pick-by-order / pick-by-batch action per earliness category anymore. In
this new action space, there is an individual action for three earliness categories within an order
composition and storage location configuration. This significantly reduces the number of possible
actions the DRL agent can take and therefore also reduces the computational complexity. So
for example, if the DRL agent predicts action 2, the model checks if there are any orders with
composition SIO and storage location PtG within earliness category 1. If not, the model checks
whether there are orders within earliness category 2. If so, the agent selects this earliness category
and the orders within category SIO-PtG-e2 are batched into a batch order. The state space still
provides information on the amount of order for each individual order category (composition -
location - earliness) but only the action space is not defined per earliness category anymore.

Composition Storage location Earliness category Picking strategy Action number

SIO PtG e1, e2, e3 pick-by-order 1
SIO PtG e1, e2, e3 pick-by-batch 2
SIO GtP e1, e2, e3 pick-by-order 3
SIO GtP e1, e2, e3 pick-by-batch 4
MIO PtG e1, e2, e3 pick-by-order 5
MIO PtG e1, e2, e3 pick-by-batch 6
MIO GtP e1, e2, e3 pick-by-order 7
MIO GtP e1, e2, e3 pick-by-batch 8
MIO PtG & GtP e1, e2, e3 pick-by-order 9
MIO PtG & GtP e1, e2, e3 pick-by-batch 10

Table 4.1: Newle defined aciton space for DRL approach

4.3 Bayesian optimization for reward shaping

Solving a multi-objective variant of the OOBSP is fundamentally different than a single-objective
variant. Furthermore, the current DRL setup of Cals et al. (2021) was not able to cope with chan-
ging environments in terms of order arrival patterns. This is however considered as a real-world
characteristic. Experiments only consisted of a particular time window where the environment is
considered fairly constant. As seen in the literature review in Chapter 2, it is considered difficult
to find an aligned reward function for multi-objective optimization problems. Additionally, these
reward functions need to cope with changing environments and provide reward to the agent. The
previous section made already several adjustments to the reward function in order to provide in-
centive to the DRL agent for optimizing both objectives and taking the dynamic environment into
account but this is probably not enough to outperform the benchmark. However, it is considered
that setting the reward function manually is very hard because of the dependency of the two
objectives. More prioritizing a certain objective has most probably a negative impact on the other
objective. Because of that, this section introduces a Bayesian optimization framework that could
improve the process of finding an aligned reward function for DRL approaches in order to cope
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with dynamically changing environments. This process is referred to as reward shaping in the
remainder of this project. Bayesian optimization is introduced in Chapter 2 and can be used as a
hyper-optimization model as done in several AutoML projects. The idea behind this framework
is that basic components of a reward function can be designed by a domain expert, but only the
exact weights for these components are hard to derive in a multi-objective, dynamic setting. Using
this framework to obtain the weights can improve the process of finding an aligned reward function
that allows for accurate learning behaviour of a DRL agent in solving a multi-objective problems
with changing environments.

The automatic tuning of an aligned reward function is addressed with the framework of Bayesian
optimization. This technique models a learning algorithm’s performance as a sample from a
Gaussian process (GP). The tractable posterior distribution induced by the GP leads to efficient
use of the information gathered by previous experiments, enabling optimal choices about what
parameters to try next Snoek et al. (2012). This Bayesian optimization method is part of a special
model-based optimization class that work specifically well when there are expensive objective
functions that need to be evaluated. In order to solve the multi-objective variant of OOBSP
with real-world characteristics using this technique, a framework incorporating the principles of
Bayesian Optimization has been developed and displayed in Figure 4.4.

Figure 4.4: Reward shaping for a DRL approach using Bayesian optimization

This framework has been used for hyper-parameter optimization approaches in supervised learning
methods. An initial set of hyper-parameters is selected, a model is trained and tested. Based on
the results of the testing phase, the Bayesian optimization approach updates the surrogate function
and a new set of hyper-parameters is provided. In this case, a Gaussian Process is used as surrogate
function. As this project considers finding an aligned reward function for a DRL approach that
addresses the OOBSP, a set of two weights are considered as hyper-parameters. Each weight
corresponds to a subset of components in the reward function and can put more or less priority on
these components. Subsequently, every component in a reward function can be mapped to one of
the two objectives: minimizing the number of tardy orders or minimizing the order picking costs.
Changing the weights within this reward function alters learning behaviour of the DRL approach.

Within the process of evaluating a certain set of weights, the framework first trains an agent
and subsequently tests this agent. The objective value is computed and this acts as an input for
the Bayesian optimization approach. This objective value consists initially out of two values, the
percentage of tardy orders and the average order picking costs. As the Bayesian optimization
approach requires a single scalar value as input, this objective value needs to be transformed.
Based on the findings of the literature review in Chapter 2, for transforming the multi-objective
problem into a single-objective problem, usually a scalarization technique is used. There are
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several scalarization techniques present in the literature, and this framework uses the multiplication
scalarization method. This method is preferable when both objectives have different scales as
in this case. The number of tardy orders are expressed in a percentage whereas the average
picking costs is in a range between 20 - 40. Therefore, a scalarization technique that multiplies
both two objectives makes sure that a decrease or increase in the objectives value, attributes
proportionally to the single objective value is preferred. With this single objective value, the
Bayesian optimization approach can update its Gaussian Process distribution and sample hyper-
parameters in the form of weights for the reward function. The design of the Bayesian optimization
approach for this project is displayed in Algorithm 1. This algorithm firstly defines the inputs
and outputs of the Bayesian optimization approach. The hyper-parameter space X consists of
two parameters which have a range between 0.5 and 1.5. These figures have been estimated
using several preliminary experiments. Furthermore, it requires an objective function that is
depicted in Figure 4.4 that trains and tests the agent. This objective function can evaluate a set
of weights in terms of a single objective. Also, Bayesian optimization requires a maximum number
of evaluations. This approach outputs the best objective function with the corresponding set of
weights. As a first step, the Bayesian optimization approach samples an initial set of weights from
the hyper-parameter space and evaluates the objective function with this set of weights. After
this initialization phase, the model iterates until the maximum number of evaluation are reached
and the following steps occur. First of all, a new hyper-parameter is selected using the expected
improvement formula. This expected improvement algorithm balances two competing aims: first
the need to explore the domain of the objective function and secondly, to exploit the points which
may be the global minimum. More details on this expected improvement formula can be found in
section 2.3.3 in the literature review in Chapter 2. Hereafter, this newly sampled set of weights is
evaluated using the objective function. The weights and objective values are appended to S and
herewith, the Gaussian Process distribution is updated. As a last step within this iteration, it is
checked whether, the obtained objective value is the best so far and if so, the parameters x∗ and
y∗ are updated.

Algorithm 1: Pseudo-code of Bayesian optimization for the DRL approach

Input hyper-parameter space X, objective function f(x), max evaluations nmax
Output x∗, y∗

Select an initial hyper-parameter configuration x0 ∈ X
Evaluate the initial score of x0 by training and testing the DRL approach: y0 = f(x0)
Set x∗ = x0 and y∗ = f(x0)
for n ∈ {1, ..., nmax} do

Select a new hyper-parameter xn ∈ X by maximizing the expected improvement u(x)
xn = arg max

x
u(x)

Evaluate f for xn to obtain a new objective score yn = f(xn)
Update the Gaussian Process with (xn, yn)
if yn < y∗ then

x∗ = xn and y∗ = yn
end

end

4.4 Heuristics for bench marking

In addition to designing a deep reinforcement learning approach that solves a multi-objective
variant of the OOBSP in real world environments, a set of benchmark methods need to be designed
to compute a fair comparison. In the work of Cals et al. (2021) traditional batching and sequencing
heuristic rules as Least Slack batching and Earliest Due Date sequencing were used to perform
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a benchmark. As the OOBSP is studied extensively, this section presents two more advanced
heuristics that are used in experiments in Chapter 5.

4.4.1 General variable neighborhood search for the order batching and
sequencing problem (GVNS)

In the work of Bustillo et al. (2015), a General Variable Neighborhood Search (GVNS) is presented
that performs an online batching operation and aims to minimize tardiness of orders. The GVNS
is a metaheuristic which exploits the idea of neighborhood change in a systematic way. The aim is
to descend to a local optimum or, alternatively, to escape from the basin of attraction from that
local optimum. The work of Bustillo et al. (2015) is based on the approach displayed in Algorithm
2. All principles of their proposed method have been except for the evaluate function. In this
case, the evaluate function has been adapted that computes both expected order pickings costs
as the expected tardy orders. The expected order picking costs have been computed by average
picking time and the proposed batch size of the GVNS heuristic. Furthermore, the expected tardy
orders are computed by comparing the most imminent cutoff of an order within a batch with the
expected processing time of this batch. These two objective values are computed for an entire
solution and depict the quality of this solution.

Algorithm 2: Pseudo-code for the GVNS algorithm

Input Largest neighborhood to be explored kmax, maximum computing time tmax and initial solution S
Output Improved solution s
while t < tmax do

k ←− 1
while k < kmax do

for i ∈ {0, ..., k} do
S
′ ←− Swap(S)

end
k ←− 1
while k < kmax do

S
′′ ←− Insert(S′), S′′′ ←− Swap(S′)

if evaluate(S′) < evaluate(S
′′
) then

S
′

= S
′′

k ←− 1
else if evaluate(S

′
) < evaluate(S

′′′
) and evaluate(S

′′
) < evaluate(S

′′′
) then

S
′

= S
′′′

k ←− 1
end

NeighborhoodChange(S, S
′′
, k)

end
t←− CPUTime()

end

As stated, this algorithm searches local neighborhood structures for local optima. It requires
parameters kmax and tmax as input that respectively set the number of neighborhood structures
explored and the time that can be used for this operation. Furthermore, it requires an initial
solution s. This initial solution is constructed using the Earliest Due Date (EDD) batching
heuristic. A solution to the OOBSP is represented as a list of m batches i.e., S = {B1, B2, ..., Bm},
where each batch Bj contains an unfixed number of orders that do not overcome the capacity of
a picking cart in terms of total items. Within Algorithm 2, the approach starts with an iteration
until some computation time has passed by. The parameter tmax is set in order to match the
computing time of previous approaches in the state of the art. After this, a k variable is initialized
that accounts for the number of neighborhoods explored. The first local search step is the Shaking
strategy that is introduced as an effective strategy to escape from a basin of attraction. Given
a solution S, the shake procedure performs a swap move that generates a new solution S

′
in k

consecutive times. For the OOBSP, the principles behind a Swap move and Insert move have been
depicted in Figure 4.5 where Oi depicts an order i within a batch. It is important to denote that
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only feasible insert and swap moves are considered. These feasible moves are listed based on a
maximum batch size for each order.

Figure 4.5: Local search moves of the GVNS algorithm

After this shake operation, the VND operation performs both of the local search moves in order
to improve the solution. If one of the two moves improves the current solution, it is accepted
as the new current solution. The solutions are evaluated using a function that computes average
picking time and expected tardy orders. After the VND operation, all solutions are evaluated and
a new current solution is selected in the function NeighborhoodChange. Within this evaluation
function, the solution is simulated and the performance in terms of tardy orders and order picking
costs are observed. This process iterates until some time tmax has been reached. For the OOBSP
in DeepRele, a tmax of 0.1 seconds has been used in order to obtain reasonable computational
performance in large instance size problems. Furthermore, parameters kmax was set at 2, as in
the work of Bustillo et al. (2015). This batching heuristic is complemented with a LST sequencing
heuristic. According to the work of Cals et al. (2021), this is the best performing sequencing
heuristic for all batching heuristics and is therefore be used in this project.

4.4.2 Joint optimisation of order batching and picker routing in the
online retailer’s warehouse in China (BOC)

As introduced in the literature review in Chapter 2, Li et al. (2017) have studied a method for
joint optimization of online order batching and picker routing in the online retailer’s warehouse
in China. The authors propose an online order batching strategy that uses a similarity coefficient
that represents the similarity between two orders and is referred to as the BOC batching heuristic.
The main idea is to combine similar orders as one in order to obtain a high order picking efficiency
and all principles have been used as described by the authors. Furthermore, the authors use a s-
shaped routing heuristic to compute the order picking route and is not considered for this project.
As this project does not include specific location information for orders, the similarity coefficient
is adjusted. In this case, similarity is computed based on similar items of different orders. This
newly defined coefficient is displayed in Equation 4.3.

Si∗j =
size of Ai∗ ∩Aj

size of Aj
(4.3)

Let Ai be the items of order i. Then for instance, if order j has 4 items in total and one of them is
also included in the seed order i∗, then the similarity coefficient is 25%. This function is used in the
adjusted approach of Li et al. (2017). This approach is displayed in Algorithm 3. This algorithm
requires a set of unprocessed orders I, capacity constraints about the number of items per batch
as input and the maximum simulation time. This maximum simulation time is the time where
after no orders arrive anymore and the model should finish the remaining orders. This algorithm
outputs a set of batches where all orders have been assigned to. This process iterates until there
are no orders left in I and when the simulation time exceeds the max simulation time tmax. As
this methods concerns an online batching operations, orders can arrive into this unprocessed order
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list I in a real time manner. The first step of the batching operation is to select a seed order with
the most items. After this step, the model iterates until the capacity constraints for an individual
batch are reached. Within this iteration, the similarity coefficient is computed and a suitable order
is selected based on this coefficient. This selected order is combined with the seed order and this
process iterates until the batch specific capacity constraint has reached. If so, the compiled batch
is appended to a list B and the included orders are removed from the unprocessed order list I.
As aforementioned, this process iterates until there are no more unprocessed orders in I and the
maximum simulation time is reached. Similar to the BOC batching heuristic, the GVNS heuristic
is complemented with a LST sequencing heuristic for similar reasons.

Algorithm 3: Pseudo-code of BOC batching heuristic

Input Set of unprocessed orders I, batch capacity constrains, max simulation time tmax
Output Set of batched orders B
B ←− list
t←− 0
while I is not empty and t < tmax do

Choose the order with the most items as seed order i∗

while i∗ does not violate capacity constraints do

Compute Si∗j =
size of Ai∗∩Aj

size of Aj
for all j ∈ I

Sort orders by Si∗j in descending order
Select order (i∗j) with the highest Si∗j
if Multiple orders have same similarity then

Choose the order j that arrives first
end
Combine order j and i∗ as a new order i∗

end
Append i∗ to B
Remove all orders within i∗ from I

end
update simulation time t

4.4.3 Simple heuristics

In the work of Cals et al. (2021), the authors use several online batching and sequencing heuristics
in their benchmark. This subsection provides explanation on a selected set of these heuristics for
the benchmark in this thesis project. This selected set contains only the best performing heuristics
from the work of Cals et al. (2021). Both the batching as the sequencing heuristic can be combined
with each other to provide integrate solutions for the OOBSP.

Least Slack Time batching rule
This heuristic initially sorts orders using an Earliest Due Date sequencing rule and combines
orders into batches using a maximum batch size. After this step, this heuristic can dismantle
these batches in separate orders. Orders are created once the slack time of a batch becomes
negative and picking-by-order should be applied instead of picking-by-batch. Slack time is the
amount of time left until the cutoff moment of an order is reached: s = (d − a) − t. Where s is
the remaining slack, d is the cutoff time, a is the actual time and t the total remaining processing
time. For this t only expected processing times are used and no waiting times are considered.

Picking-by-order small batching rule
This POSB rule is applied when picking-by-batch in PtG is applied and the batch size consists of
four or fewer orders. Once this is the case, the batch is dismantled into separate orders that all
have a pick-by-order picking strategy. This heuristic in combination with the LST batching rule
from Cals et al. (2021) presented the best heuristic performance.
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The Earliest Due Date sequencing (EDD) rule
This sequencing rule sequences all batches based on critical cutoff times. More imminent batches
in terms of order cutoff times receive more priority to be processed first in the DeepRele system.

Least Slack Time sequencing (LST) rule
Lastly, the LST sequencing rule assigns priority to orders based on their slack time to be processed
first. This sequencing rule shares the same principles as the LST batching rule but is used for a
different operation. Similarly to the LST batching rule, only expected processing times are used
and no waiting times are considered in calculated the slack time s.
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5. Experiment setup
This chapter introduces the experiments. As mentioned in section 3.1.3, this project assumes
real-world characteristics for the OOBSP in DeepRele. In order to test whether the proposed
methods can deliver upon this, detailed experiments need to be drafted. Before this can happen,
suitable data needs to be in place in order to reflect real-world characteristics. After the drafted
experiments, this chapter presents a setup for the current simulation model. Furthermore, this
chapter elaborates on the PPO learning algorithm and the Bayesian hyper-optimization approach.
Lastly, this chapter provides objectives and performance metrics that are used to evaluate the
proposed methods.

5.1 Data description

The order data that is used for the experiments is from a large e-commerce company in The
Netherlands that specializes in electronic appliances. This data consists out of the following
attributes: orderID, arrival time, SKU numbers of the items within the order and the quantity
per item. This dataset has been introduced in section 3.1.3 and distributions for the order arrival
time over the day and number of items per order and displayed are given in respectively Figure
3.3 and Figure 3.4. This dataset includes 257,585 orders with a total of 376,522 items. 70%
of the orders have only 1 item, 14% of the orders have 2 items, 9% of the orders have 3 items
and 4% of the orders have 4 items. According to VI, this pattern is common in the e-commerce
business. For this scenario, it is assumed that there are 100,000 SKUs in the warehouse. As the
DeepRele warehousing concept is new and there is no physical applications of this concept, several
components as the cutoff times and storage locations of SKUs need to be added to the data set.

5.1.1 Generate cutoff times

The current dataset does not include cutoff times, and should be generated based on some as-
sumptions. According to VI, hourly cutoff times from 17:00 until 24:00 need to be allocated to
each arriving order. For this scenario, these cutoff times are assigned randomly, with a maximum
of three hours later than their respective arrival time. Also, it is ensured that a cutoff moment
of an order is planned a minimum of 30 minutes after the arrival time of the order. So orders
that arrive before 23:30 are included in the model and have to processed before 24:00. This is
in line with most of the delivery requirements of these e-commerce companies where they ensure
next-day delivery and this represents real-world characteristics where orders leave the warehouse
in specific groups. With this set of rules for determining the cutoff moments, a distribution of
cutoff moments per day is depicted in Figure 5.2. Between 23:00 and 24:00, the greatest number
of cutoff moments are located and this is representable for real world environments. This poses
several operational challenges that should be addressed with the proposed model.

5.1.2 Allocate SKUs to storage locations

In order to derive sensible storage locations to individual SKUs, prior distributions are used. For
this thesis project, 30% of the SKUs are stored in the Person-to-Goods storage location, 40% of the
SKUs are stored in the Goods-to-Person storage location and lastly, 30% of the SKUs are stored in
both storage locations. In literature, better techniques exists to allocate individual SKUs to these
storage locations but as this project focuses on the online order batching and sequencing part in
warehouse operations, this is left out of scope. In cases where a Multi-item-Order for example
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Figure 5.1: Arrival pattern of orders Figure 5.2: Cutoff moments over an entire day

consists of an item stored in the PtG area and an item that is stored in both areas, the model picks
the item that is stored in both areas in the PtG area. In another case, when a Multi-item-Order
has an item that is stored in the PtG area, and an item that is stored in the GtP areas, this order
requires two pick movements (PtG & GtP).

5.2 Experiment description

This section defines the experiment setup which is used to analyze the performance of the proposed
methods. These experiments are carefully composed in order to represent real-world characteristics
of the OOBSP in the DeepRele system. This setup contains several components where after four
concrete experiments are drafted. This first component is the throughput rate. In order to
reflect real-world characteristics, a representable order throughput is required. For this project,
throughput rates between 2000 and 4000 orders per hour are analyzed and for the order arrival
process, the distribution displayed in Figure 5.1 is used. Secondly, based on the selected throughput
setting, an appropriate set of resources is required. This set of resources consists of PtG pickers,
GtP shuttles, resources for StO work stations and resources for DtO work stations. These settings
are adjusted to the desired throughput rate such that the tardy orders and picking costs are at
reasonable levels as verified with a domain expert from VI. Determining these baseline resource
settings is done in section 6.1 in the next chapter. So for a certain throughput, it is determined
using a heuristic what the least amount of resources are in order to perform bench marking on the
experiments. Thirdly, simulation time consists out of either two hours or an entire day. In both
options, it is interesting to analyze behaviour of the proposed methods and observe whether these
methods can cope with a changing characteristics in terms of a changing order arrival pattern.
Lastly, orders are released in real time, making this an online problem. At every time step, orders
can arrive into the system and the state of the system changes. With these three components,
four experiments are drafted.

Setting A: Processing 6000 orders from 15:00 - 17:00
For this first setting A, the OOBSP of DeepRele is addressed with 6000 orders between 15:00 and
17:00. According to Figure 5.1, this time window is fairly representable for the pattern in the
afternoon. Furthermore on 17:00, the first cutoff moment is scheduled and this requires a certain
policy that trades off minimizing picking costs and the number of tardy orders. The resource
settings for this settings as for all other settings are computed in section 6.1.

Setting B: Processing 7000 orders from 20:00 - 22:00
This setting tries to capture the problem of orders arriving between 20:00 and 22:00. As seen
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in Figure 5.1, a lot of orders arrive into the system and this poses a significant challenge to the
method in determining a “good” policy. As there is still 2 hours left, the priority is not completely
on minimizing tardy orders as opposed to setting C. Within this setting, there are cutoff times
between 21:00 and 24:00 according to the cutoff time distribution displayed in Figure 5.2.

Setting C: Processing 6500 orders from 22:00 - 24:00
Setting C addresses the last part of Figure 5.1 where all orders have to be processed before 23:00
and 24:00. In order to achieve this, the proposed method needs to ensure that there is enough
throughput by efficient order picking. On the other side, the proposed method needs to ensure
that some orders are prioritized to other to ensure that orders with a more imminent cutoff time
are processed first.

Setting D: Processing 50,000 orders from 10:00 - 24:00
Lastly, the objective of setting D, is to see whether the proposed method can cope with a changing
pattern of orders arriving into the system. It is expected that during the day, the method focuses
more on minimizing the order picking costs and during the latter part of the day, the proposed
method more focuses on minimizing the number of tardy orders. This final setting captures all
real-world characteristics: solving the OOBSP for large instances and the ability to cope with
a changing characteristics in terms of orders arriving into the system. Solving this setting may
require input from the other settings in terms of priority per objective at a specific time window.

5.3 Simulation setup

In order to guarantee a certain accuracy of the performance metrics of the system during computing
the results for the defined experiments, the proposed methods are simulated for multiple runs. In
order to compute the number of runs per experiment, there is a theory that provides for this
process. The Central Limit Theorem is used (Boon and Boor, 2020). Abbreviated as CLT, the
Central Limit Theorem, relates the sample mean of a sufficiently large number of random variables
to the normal distribution. The CLT provides a means for determining the number of runs of a
simulation model in order to compute an accurate mean of a performance metric. To do so, an idea
of the value of σ is required which can be estimated by performing a short initial simulation with a
relatively small number of runs. For each experimental setting, an initial simulation run with the
heuristic and the DRL approach is computed to obtain this alpha which ranges between 0.4 and
1.1 for all experiment settings. With these computed σ, one can compute the required number of
runs to obtain a (1 − α)% confidence interval based on accuracy ε with the formula depicted in
Equation 5.1. For every heuristic, the following number of runs per setting are required to obtain a
95% reliability (139, 189, 246, 140). For the DRL approaches (with and without reward shaping),
the following number of runs per setting are required (228, 554, 168, 172). This is computed at
the start of the experiment with an initial guess of σ, an α of 1% and a accuracy of 1 decimal.

n >
(Zα/2 · σ

ε

)2
(5.1)

In order to test whether the unknown population means of two models are equal or not, the student
t-test is used (Student, 1908). This test requires that the data from both models is independent,
sampled from two normal populations and the two independent models have equal variances. If so,
the test statistic can be calculated by dividing the difference of model averages by the standard
error of difference. This test statistic is compared with with a theoretical t-value from the t-
distribution based on a significance level α and the degrees of freedom. If this test statistic is
larger than the corresponding t-value, the null hypothesis can be rejected meaning that the two
model means are statistically not equal.

DeepRele is a new warehousing concept and no real-life data about the performance of this kind
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of concept is available yet. Determining the validity of the simulation model is therefore dif-
ficult. Looking at the individual storage locations and workstations within DeepRele, there is
however extensive expertise on the dynamics of PtG storage locations, GtP storage locations and
consolidation work stations in a stand alone fashion. The dynamics of an integrated system are
unknown at this moment, but the functionality of the individual parts have been verified with
domain experts. Furthermore, this project aims to analyze the performance of several methods
on the OOBSP and all these methods use the same simulation model. Therefore, this makes it
valid to compare the results with each other as each algorithm encounters similar challenges of
the DeepRele environment.

5.4 Learning algorithm: Proximal Policy Optimization

5.4.1 Selection procedure of PPO

Proximal Policy Optimization, or better referred to as PPO, is a state-of-the-art deep reinforcement
learning model that has been used extensively in the literature. Introduced in section 2.2.3 in the
literature review, this approach provides the right balance between the ease of implementation,
sample complexity and ease of tuning and according to Schulman et al. (2017), outperforms most
of the other existing DRL models in several domains, in particularly the work of Cals et al. (2021).
Besides this, recent advancements in improving the computational aspects of the algorithm have
resulted in a GPU-enabled implementation of PPO. Given these arguments, PPO is selected for
solving the multi-objective OOBSP of DeepRele with real-world characteristics.

5.4.2 Training setup for PPO

In order to successfully train the PPO model for solving a multi-objective OOBSP, a training
and testing algorithm has been defined in Algorithm 4 in addition to the framework presented in
Figure 4.3. The training algorithm starts with initializing the experiment by defining the number
of orders, time window and resource settings. The following steps occur iterated until the number
of training episode is reached. In this next step, a set of orders from the order arrival distribution
is sampled, the simulation model is initialized and a first state is retrieved from the simulation
model. After this part, the DRL approach selects action a based on state representation S and
its current policy πθ. The simulation model verifies whether this is a feasible action and if so, the
simulation model simulates this action and returns a new state S. This can be a picking action
where after an order is picked from its storage location. Furthermore, using the reward function,
a new reward rt is computed. In case of an infeasible action, this reward function provides the
agent with a penalty. New state action pairs and the rewards received through an episode are
correspondingly used for updating the policy πθ with the maximization objective of the PPO
algorithm. The testing process for the DRL approach consists of similar steps except that it does
not change the learned policy anymore. Within an episode, the policy predicts an action based
on current state St. When this action is not feasible, it will randomly choose a feasible action to
continue testing.

The model parameters for training a PPO model for learning the OOBSP present in DeepRele
are mostly similar to the original parameters of the work of Schulman et al. (2017). Several
adjustments are made that are presented next. The experiments defined in a previous section are
trained for 4 - 16 million steps according to the specific experiment. This training is done in an
environment where 4 agents train in parallel. The actor and critic network is updated by all the
agents simultaneously whereby the agent can learn more state-action pairs at the same time. The
discount factor has been set at 0.9999 as the episodes can be fairly long. These discount factors
are associated with the length of an episode. Longer episodes have much more variance as they
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include more irrelevant information, while short time horizons are biased towards only short-term
gains. A discount factor tries to find a good balance between those two challenges. The clipping
parameter used for learning was kept at 0.2, ensuring that update policies cannot differ more
than 0.2 from the old policy. The neural network initialized for learning is similar to the network
used in Schulman et al. (2017), consisting out of fully-connected multi-layer perceptrons with two
hidden layers of 64 units and tanh activation layers. PPO has been implemented using the python
package Stable-baselines (Hill et al., 2018). This package has been build upon the Tensorflow
framework (Abadi et al., 2015). For each experiment defined in section 5.2, the PPO agent is
trained separately. Additionally, in Chapter 6, a robustness analysis is included to see whether
the agents can generalize over different experiments.

Algorithm 4: Pseudo-code for training and testing process of the DRL approach

Training
Initialize experiment and number of training steps M = 6, 000, 0000
step = 0
while step < M do

Sample set of orders from order distribution
Initialize simulation model
Initialize first state St=0

while S is not terminal do
Select action a based on St and current policy πθ
step← step+ 1
if action is feasible then

Simulate action a and obtain new St
Receive reward rt

else
Receive penalty rt for infeasible action a

end

end

Compute advantage estimates Ât, ..., ÂT
Optimize Lt, via mini batch gradient descent
πθ = θold

end

Testing
Initialize experiment, load policy πθ and number of testing episodes T = 200
episode = 0
while episode < T do

Sample set of orders from order distribution
Initialize simulation model
Initialize first state St=0

while S is not terminal do
Select action a based on St and current policy πθ
if action not feasible then

Select action a randomly from feasible actions
end
Simulate action a and obtain new St

end
episode← episode+ 1

end
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5.5 Hyper-parameter tuning: Bayesian Optimization

As introduced in section 4.3, a Bayesian optimization technique is used for reward shaping to
complement the introduced DRL approach. This technique tries to find an aligned reward function
that captures priorities for both optimization objectives. This technique requires a single objective
and is defined as the percentage of tardy orders multiplied with the average picking costs per
order. This method starts with a basic reward function that has been shaped only with domain
knowledge of the DeepRele system. It is expected that the Bayesian optimization approach derives
a set of weight values that can be applied to the reward function in order to learn a better policy.
This set of weights are derived for setting A, setting B and setting C. In a first comparison, the
results from a DRL approach with reward shaping is compared with the proposed heuristics from
section 4.4 and with a DRL approach without reward shaping. Subsequently, a DRL approach is
trained for setting D where the reward function is shaped with the three sets of weights derived
from experiments A, B and C. As the first three experiments have specified time windows, the
computed weights for the reward function are specified on the related time window. In the DRL
approach for setting D, these weight are applied to the reward function dynamically based on
the simulation time. This changes the priority of the agent during an episode. It is expected
that the DRL agent has more focus on minimizing order picking costs during the day and less
on minimizing tardy orders. In the evening, it is expected that the agent has more priority on
minimizing the number of tardy orders than for minimizing the order picking costs.

5.6 Objectives and performance metrics

At last, this section provides the objectives and performance metrics for the experiments. These
are used in the benchmark study to make a fair comparison and are defined as follows:

1. Percentage of tardy orders - As introduced by Cals et al. (2021), the percentage of tardy
orders are defined by the proportion of orders that leave the DeepRele system after their
respective cutoff times. In all settings, all orders are processed and once completed, this
metric checks what proportion is tardy.

2. Order picking costs - Newly introduced for this thesis project, the order picking costs
ensure efficient order picking for DeepRele. The order picking costs are defined by the time
of a resource that were spent on a particular order. Once an order is batch picked, only
the time where a resource is picking that specific order is attributed to the metric. If a
pick-by-batch action is performed, the time that is attributed to each individual is likely to
be smaller than the time that is attributed to an order that is picked-by-order. Specifically,
this metric is calculated to divide the total picking time by the number of orders in a batch.
In order to evaluate this problem as a single-objective problem, a scalarization technique
is applied. Multiplying both objectives into a single objective is used in this case and this
method has been concluded from Chapter 2. If necessary, a certain priority can be given to
each objective depending on the use case, this has not been done in this thesis project.

3. Solutions quality: robustness - This performance metric is only applicable for the DRL
approaches and provides insights on the robustness of the solution. When a DRL agent is
trained on a specific setting with a fixed throughput and resource setting, it is the ques-
tion whether it provides similar behaviour when tested on a different setting. If so, this
would greatly increase the applicability of the DRL approach because it does not require
to be retrained every time the setting changes. The robustness is defined as the difference
between percentage of tardy orders and order picking costs of an agent trained on the specific
experiment setting and tested on a different experiment setting.

53



6. Results
This chapter assesses the performance of the proposed solution methods on several experiments.
Each experiment exposes different factors of the solution methods which can be helpful in judging
the general performance. The results and analyses of these experiments are presented in this
chapter and is structured as follows:

• Section 1: Determine the baseline resource settings for all experiments

• Section 2: Experimental results of heuristics

• Section 3: Experimental results and analysis of DRL approach without reward shaping

• Section 4: Experimental results and analysis of DRL approach with reward shaping

• Section 5: Discussion of all findings

In the first section, the baselines resource settings for all experiments are computed that are
used throughout this chapter. In the next section, results of all heuristics are presented in a
comprehensive way. The third section contains the experimental results of a trained DRL approach
without reward shaping. Additionally, an analysis of the learning behaviour is included, a policy
analysis is conducted and the robustness of the learned DRL approach is demonstrated. The
fourth section presents the experimental results of a trained DRL approach with reward shaping,
includes an analysis of the optimization behaviour and an analysis of the learned policy. Reward
shaping is in this case done by framing the problem into a hyper-parameter optimization problem
and using Bayesian optimization to solve this problem. Lastly, section 5 presents a discussion on
the findings of this chapter.

6.1 Baseline resource settings for all experiments

In Chapter 5, four experiment settings have been defined that are used to benchmark the proposed
solution methods. In order to perform a benchmark, a set of parameters need to be selected for
the DeepRele simulation model. This set of parameters consists of the number of resources at the
picking areas and subsequent work stations. As each setting has a fixed throughput and time win-
dow, adjusting the amount of resources has several consequences for the operational performance
in terms of tardy orders and order picking costs. This section provides these baseline resource set-
tings based on simulation results of the BOC batching heuristic and the LST sequencing heuristic.
Based on a preliminary analysis, this BOC batching heuristics provided stable and accurate beha-
viour and is therefore chosen to compute the baseline resource settings for all experiment settings.
Together with the LST sequencing heuristic from Cals et al. (2021), the resource setting of this
combined heuristic is displayed in Table 6.1. Results of this heuristic and all other heuristics are
introduced in the next section. As displayed in Table 6.1, the resources are displayed in sequence:
Number of PtG pickers - number of GtP shuttles - number of StO resources - number of DtO
resources. With a certain amount of orders, the performance of each experiment setting is defined
by the two objectives: the percentage of tardy orders and the order picking costs. In scenario
D, two shifts have been included that vary in the number of resources. According to the order
arrival pattern, the end of a day has the most orders coming in and resources need to be scheduled
accordingly. Furthermore, the value in between the brackets represent the standard deviation of
each value based on 150 simulated episodes. The results for these heuristics are considered reas-
onable as verified with domain expert from VI. The percentage of tardy orders is fairly high in
settings C and D. The end of a day poses challenges for methods and newly proposed methods
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should improve upon this. Utilization levels at each work station are considered when selecting the
baseline resource settings. These resource settings are used in bench marking the heuristic results,
the results of the DRL approach and the results of Bayesian optimization in combination with the
DRL approach. The reason why these specific baseline resource settings are selected is because
of the fact these provide representable scenarios in real-world warehousing concept. DeepRele has
not yet been implemented in a physical systems but these resource settings and throughput have
been used in similar fulfillment concepts.

Setting Heuristic Resource settings Number of orders Tardy orders Picking costs

A BOC 20-20-5-9 6000 3.16 % (1.1) 46.46 (0.8)
B BOC 20-20-5-9 7000 6.35 % (1.2) 48.87 (0.9)
C BOC 20-20-5-9 6500 11.92 % (1.5) 45.31 (1.0)

D BOC
S1: 20-20-7-12
S2: 25-25-8-15

50,000 23.98 % (0.4) 35.38 (0.2)

Table 6.1: Baseline resource settings for the experiment

6.2 Heuristic results

Based on the selected baseline settings, several heuristics are used to provide a basis for the
benchmark study. These heuristics are introduced in Chapter 4 and results from these heuristics
are presented in Table 6.2. These average results are obtained by simulation per setting for
respectively 139, 189, 246, 140 runs and these were computed in section 5.3.

Setting A Setting B Setting C Setting D

Model
Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

BOC 3.17 (1.1) 46.80 (0.8) 6.24 (1.4) 49.00 (0.9) 11.80 (1.8) 45.42 (0.9) 23.91 (0.3) 35.40 (0.2)

LST 17.6 (0.5) 65.12 (0.7) 18.7 (0.6) 68.83 (0.8) 21.15 (0.9) 67.21 (0.9) 25.76 (0.3) 53.34 (0.3)

GVNS 6.82 (0.2) 47.41 (0.9) 13.05 (0.5) 48.92 (0.9) 18.78 (1.5) 45.48 (1.0) 26.46 (0.2) 35.52 (0.2)

Table 6.2: Heuristic results for all settings

As displayed in Table 6.2, the BOC model obtained best results in almost every setting on per-
centage of tardy orders and picking costs. This BOC model strikes a balance between batching
efficiently using a similarity coefficient and determining whether a batch will be processed by the
system on time. In all experiment settings, the GRASP model also provides fairly good results.
This model is however much more computational expensive due to its local search principles. At
every step, neighboring structures are explored and this makes it expensive to compute. Therefore,
for the coming comparison with the proposed DRL approach, the BOC model is used.

6.3 DRL results without reward shaping

In this section, the results of the trained DRL approach are presented. This DRL approach is
trained on two objectives: percentage of tardy orders and order picking costs. First, the experi-
mental results are presented where a comparison is made with the heuristic results. After this, the
learning behaviour of the DRL approach for every experiment setting is analyzed. The third sub
section provides an analysis of the learned policies in terms of operational consequences. Lastly, a
robustness analysis is included to demonstrate generalization behaviour of the DRL approaches.
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6.3.1 Experimental results

The trained DRL approaches without reward shaping have been tested on four settings. In this
testing process, the DRL agent greedily predicts an action based on it’s trained policy and no
exploration occurs anymore. The results of these agents are displayed in Table 6.3 and Figure
6.1 together with the heuristic results from the earlier section. The values between brackets
represent the standard deviation. These average results are obtained by simulation per setting for
respectively 228, 554, 168, 172 runs and these were computed in section 5.3. The rationale for this
experiment is to assess the performance of a DRL approach without reward shaping.

Setting A Setting B Setting C Setting D

Model
Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

DRL 2.03 (0.8) 48.65 (0.8) 4.18 (0.8) 50.70 (1.0) 6.65 (0.8) 42.22 (0.7) 13.39 (0.4) 34.15 (0.2)

BOC 3.17 (1.1) 46.80 (0.8) 6.24 (1.4) 49.00 (0.9) 11.80 (1.8) 45.42 (0.9) 23.91 (0.3) 35.40 (0.2)

LST 17.6 (0.5) 65.12 (0.7) 18.7 (0.6) 68.83 (0.8) 21.15 (0.9) 67.21 (0.9) 25.76 (0.3) 53.34 (0.3)

GVNS 6.82 (0.2) 47.41 (0.9) 13.05 (0.5) 48.92 (0.9) 18.78 (1.5) 45.48 (1.0) 26.46 (0.2) 35.52 (0.2)

Table 6.3: Experimental results of the best performing heuristic and DRL approach

Figure 6.1: Box plots for experimental results of the DRL approach and BOC heuristic

The results of all of the heuristics, have been added to Table 6.3 to make a comparison in results.
For every setting, the DRL approach outperforms the best heuristic based on the percentage of
tardy orders. An independent sample t-test is used to test whether the unknown populations
means of the two methods are equal or not. For these settings, there is statistical evidence that
the mean performance of the two methods is not equal in terms of both the percentage of tardy
orders as the picking costs. This has been tested with a p-value of 0.01 (Student, 1908). It is
assumed that the DRL algorithm performs better as it is able to learn the dependencies between
orders and their characteristics. Within setting A, the percentage of tardy orders is lower than
for the heuristic method but the order picking costs are however higher. Within this setting, the
average pick-by-batch ratio was lower (63%) than the pick-by-batch ratio of the BOC heuristic
(71%) which indicates less efficient picking for the DRL approach. This observation also applies
to setting B where the percentage of tardy orders is lower but the picking costs are higher (67%
vs. 75%). For setting C and D, both the tardy orders and picking costs are lower than the BOC
heuristic. Both DRL approaches reduce the number of tardy orders without letting the order
picking costs increase. A deeper analysis on the policies is given in the next section 6.3.3.
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In order to present the complexity of solving a multi-objective variant of the OOBSP, Table 6.4
displays the results obtained by a DRL approach that has been trained in order to only minimize
a single objective: percentage of tardy orders. This Table only displays the results for setting B,
whereas the other settings present similar patterns in terms of the relation between optimizing
the two objectives. It can be denoted that when this single-objective DRL approach solely focuses
on minimizing the percentage of tardy orders, the picking costs increase significantly. The multi-
objective DRL approach finds some trade-off in between the optimization boundaries. There seems
to be a negative relationship between the two objectives.

Setting B

Model
Tardy
orders (%)

Picking
costs

Single-objective DRL 3.81 (0.3) 58.51 (0.4)
Multi-objective DRL 4.18 (0.7) 50.70 (0.9)

Table 6.4: Results of DRL approaches trained on single and multiple objectives for setting B

6.3.2 Analysis of learning behaviour

The rationale for this analysis is to observe whether the DRL approach demonstrates stable be-
haviour during learning. Figure 6.2 displays the learning behaviour of the agents for setting A, B
and C during the training process. The colored lines represent the mean over all training steps
and the translucent lines represent the actual measured values. Setting D is not included in this
graph as the episodic reward was fairly different and does not fit with the other settings. The
results of these three settings show that the episodic reward displayed in the top left plot stabilizes
after approximately 2M steps which implies that the PPO agent does not learn better strategies.
The large variance comes from the exploration part that is included during training.

Figure 6.2: Learning behaviour of PPO agent in terms of episodic reward, infeasible actions,
picking costs and tardy orders

As shown in the reward function, the reward can be attributed to three components: the number of
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tardy orders, the order picking costs and making infeasible actions. Starting with making feasible
actions, the top right plot display the infeasible action rate over all training steps. Similarly for
all settings, this stabilizes at 55%. The reason this is quite similar for all settings is the fact that
the problem of predicting feasible action is for each setting the same. A different throughput,
resource setting or time window will not have impact on that. Furthermore, the rate at which
the agent stabilizes is quite high. However, during the training process, the DRL agent makes
random actions to explore the solution space. When exploiting its policy in the testing process,
in 90% of the time, the agent predicts feasible actions. This has been observed when computing
the experimental results. This exploration behaviour also explains the huge variance around the
mean infeasible action proportion. Next, the distribution of pickings costs are displayed in the
lower left plot of Figure 6.2. This displays fairly constant behaviour for setting A and B, and a
little more unstable behaviour for setting C. As setting C has a time window of 22:00 - 24:00,
a lot of cutoff moments for all orders are located in this latter part of the day, and the agent
is figuring out whether to predict a pick-by-batch or pick-by-order action. On the one side, the
system requires a certain throughput to process all orders (by performing pick-by-batch action)
but also needs to make sure that some individual orders are processed on time (by performing
pick-by-order action). The lower right plot of Figure 6.2 displays the distribution of tardy orders
over the training process. Here, three different behaviours can be identified. Setting A stabilizes
fairly quickly after approximately 2M steps. In contrary, setting B takes a lot longer to present
stable behaviour at around 5M steps. Looking at setting C, this distribution of tardy orders over
the training process is quit different. First of all, there are more tardy orders (as confirmed by the
baseline setting), but secondly, also the distribution is quite uncertain. This may be explained by
the fact that setting C assumes a processing window of 22:00 - 24:00 where a lot of cutoff moments
are situated because this is the end of a day.

6.3.3 Policy analysis

This section tries to infer trained policies from the DRL approaches. The rationale for this analysis
is to observe whether the trained DRL approach without reward shaping makes appropriate actions
and what the consequences of these actions are on operational performance. As the results indicate
superior performance compared to heuristic results, there should be a different approach to the
OOBSP. In order to capture the learned behaviour of the policy, first, the pick-by-batch ratio
over time for the experiment settings is displayed in Figure 6.3. Providing a pick-by-batch or
pick-by-order action is nevertheless the main means of action of the DRL approach.

Within the top part of Figure 6.3, the average pick-by-batch ratio for PtG storage is given for
experiment settings A, B and C. Within this storage area, the online order batching and sequencing
operations makes the most impact. Setting A has a time window between 15:00 and 17:00 and has
a single cutoff moment at 17:00 indicated by the red vertical lines. The pick-by-batch proportion
for this setting displays some volatile behaviour where just before the cutoff moment at 17:00,
the pick-by-batch ratio dips indicating a larger proportion of pick-by-order actions in order to
process orders with a shorter lead time. For setting B, the time window is defined between 20:00
and 22:00 and the proportion of pick-by-batch actions displays a decreasing trend towards 22:00.
With two peak during 20:30 and 21:30, this can indicate efficient order picking (large proportion of
pick-by-batch actions) during a hour and close to a cutoff moment, switch to a more pick-by-order
based policy. Setting C represents the last part of the day and displays different behaviour. A dip
in the pick-by-batch ratio at around 22:30 and after this, a steady increase. As this last part of the
day is both busy and a lot of orders have an imminent cutoff time, the agent seeks some trade off
between ensuring enough throughput by making pick-by-batch actions (efficient order picking) and
minimizing the number of tardy orders by making pick-by-order action that have lower lead times.
After 23:00, the pick-by-batch ratio starts decreasing until 24:00. In the middle part of Figure 6.3,
setting D includes a time window between 10:00 and 24:00. Initially, the proportion of pick-by-
batch actions increases until around 16:00. After this moment, this proportion starts decreasing.
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Figure 6.3: Distribution of pick-by-batch actions for the PtG storage area

The end of this time window provides interesting behaviour where after 21:00 the proportion of
pick-by-batch actions increases heavily after which near the end of 24:00, it decreases heavily
again. This pattern can be recognized from setting C. A possible explanation for this behaviour
is the trade off between efficient order picking and short lead times of processed orders. As the
end of a day is a relatively busy period, the system needs to guarantee a certain throughput to
process all orders. However, some orders cannot be included within a batch as they have imminent
cutoff moments that are not satisfied due to the long lead times of batch picking. In order to infer
differences in policies between the DRL approach and the BOC heuristic, the pick-by-batch ratio
of setting C is displayed in the lower part of Figure 6.3 for both approaches. Based on this ratio
over time, one can see that the main difference is in the last hour of the setting where the BOC
heuristics demonstrates a low pick-by-batch ratio which increases near 24:00. The DRL approach
on the other side displays a higher pick-by-batch ratio until 23:30 and provides a lower ratio in the
last half hour of the setting. As the lead times of batches are significantly longer than for single
orders, increasing this ratio just before a cutoff moment inevitably leads to an increase in tardy
orders. This could also be the explanation for the better performance of the DRL approaches.
The increase in picking costs of the BOC heuristic for setting C in table 6.3 could be explained
by the pattern of pick-by-batch ratio after 23:00 which is significantly lower than that of the DRL
approach. This lower pick-by-batch ratio causes order picking costs to be higher as the order
pickers perform less efficient picking.

Secondly, the agent can of course determine the sequence of order categories to pick. This can have
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Figure 6.4: Progress of finished orders and the distribution of tardy orders for setting D

influence on the types of tardy orders that are obtained at the end of the episode. The distribution
of tardy orders after an episode for experiment setting D is displayed in the top part of figure 6.4
for both the DRL approach as the BOC heuristic. As the DRL outperforms the BOC heuristic,
the DRL approach finishes earlier than the BOC heuristic and so, has less tardy orders. Both
approaches have two order categories that have tardy orders after finishing an episode: sio-ptg and
mio-ptg-gtp. The first category consists of single item orders in storage location Person to Goods.
This second order category consists of multi item orders that are stored in both Person-to-Good
storage and Goods-to-Person storage. Besides this, the DRL approach has relatively less tardy
mio-ptg-gtp orders than the BOC heuristic. An explanation for this behaviour might be that
the DRL focuses more on processing mio-ptg-gtp orders while the BOC heuristic focuses more
on processing sio-ptg orders. The lower two plots represent the progress of different categories
of orders during an episode. Each line represents an order category that is processed and based
on this, the sequencing policy can be inferred. The DRL approach has a slightly larger priority
for the order category mio-ptg compared to the BOC heuristic as the directional coefficient is
larger. On the other side, the BOC heuristic focuses more on mio-gtp order category than the
DRL approach. Furthermore, both approaches focus on similarly on processing the largest order
category: sio-ptg. Results for the other experiment settings are similar to these described above
and are therefore omitted.

Lastly, more or less as a consequence from making either a pick-by-batch action or a pick-by-order
action and the learned sequencing policy, Figure 6.5 displays the distribution of PtG picking costs
over the time because these are impacted the most when addressing the OOBSP. A pick-by-order
action has a higher total picking costs as the order picker is less efficient when performing a pick-
by-order action and therefore spending relatively more time on an individual order. On the other
side, a pick-by-batch action has lower picking costs as the order picker picks more efficiently and
thus, relatively less time is spent on a single order. The average PtG picking costs for setting
A behaves quite linearly. This could be related to the characteristics of the setting itself as it is
conducted in a time window between 15:00 and 17:00 where the order arrival pattern is steady.
For setting B, the average order picking costs for the PtG storage area displays an upward trend
near the end of the setting. As these order picking costs is mostly a consequence from the pick-
by-order or pick-by-batch decision, the pick-by-batch ratio declines over time and thus, the order
picking costs rises (this can be confirmed by figure 6.3). The high order picking cost at 21:00 can
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be explained by the cutoff moment at this time where the agent decides to perform ’expensive’
pick-by-order action before this cutoff moment in order to process certain orders that have a high
probability of becoming tardy. After 21:00, the agent decides to perform ’cheaper’ pick-by-batch
actions. The order picking costs for the GtP storage area decline near the end of the setting,
indicating a larger pick-by-batch ratio. As experiment setting C is situated at the end of day
between 22:00 and 24:00, a similar explanation of the behaviour can be used. Again, the average
picking costs for the PtG storage area displays an upward trend near the end of the setting and
the average picking costs for the GtP storage area displays a downward trend. Lastly, for setting
D that represents an entire day of processing, more or less steady average picking costs for the
PtG storage area is displayed. However what can bee seen is that the variation intensifies near
the end of the setting. This could be explained by the fact that the agent incorporates different
behaviour near cutoff moments at the end of the setting.

Figure 6.5: Average picking cost during the experiment

6.3.4 Robustness analysis

As mentioned in section 5.6, the proposed solution needs to be evaluated on its robustness to
identify generalizing behaviour. This sub section performs a robustness analysis on the pre-trained
DRL approaches by two parts.

In the first part, all experiment settings have been adjusted so that 10% more orders require to
be processed and a few more resources are added. The argument behind these adjustments is to
analyze how the DRL approaches adapt to a slight change in experiment setting. These results
have been displayed in Table 6.5 and present similar ratios as in Table 6.3. The objective values
have been displayed for the DRL approach and the best performing BOC heuristic. It can be seen
that the DRL approach outperforms this BOC heuristic in every setting based on the percentage
of tardy orders. For setting A, B and D, the picking costs increased slightly, where it is assumed
that this can be attributed to the lower percentage of tardy orders. For DRL approach in setting
C, both the percentage of tardy orders and the picking costs is lower than the results of the BOC
heuristic. This shows that the trained DRL agents are robust to small throughput and resource
changes within their current experiment settings.
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Setting A Setting B Setting C Setting D

Model
Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

BOC 1.98 (0.7) 46.83 (0.5) 5.91 (1.6) 48.80 (0.9) 10.23 (1.8) 45.23 (0.8) 23.83 (0.2) 35.34 (0.9)

DRL 1.23 (0.4) 48.29 (0.9) 3.54 (0.4) 50.65 (0.6) 6.83 (0.1) 41.74 (0.6) 15.28 (0.4) 35.37 (0.5)

Table 6.5: Robustness analysis DRL approach adjusted experiment settings

In the second part, the trained agents are tested on three other experiment settings and the results
are captured in Table 6.6. Bold numbers mark the best objective value for a specific setting. For
models that were tested on setting A, trained models of setting B and C are fairly close to the
result of the model that was actually trained on setting A. The fact that setting A and B are
somewhat similar can explain this overlap in performance. However, the other way around, this
explanation does not hold as testing setting B using a model that was trained on setting A, yields
dramatic results. When testing setting B, it stands out that, model C outperforms model B
based on picking costs. This could be explained by the fact that experiment C has a different
priority of objectives that works particularly well for the order picking costs when testing for
setting B. In the case of testing on setting C, the model that was actually trained on setting C
outperformed all other models. The results of testing setting D provides similar results as testing
for setting B. Based on the percentage of tardy orders, the model that was trained for this setting
specifically outperformed all other models but based on the order picking costs, model C provides
better performance. Furthermore, when looking at the results of testing setting D, there is a
large difference in performance between model D and the others. Model D captures an entire day,
whereas the remaining models capture only a time window of two hours. Because of this difference,
it is assumed that there are different dynamics during an entire day of processing than instead a
two hour window. And thus, for different settings within a similar order arrival distributions, the
DRL approach finds it hard to demonstrate robust behaviour especially in terms of the percentage
of tardy orders. Every experiment has different dynamics that are captured in the learned policies
and therefore do not generalize that well.

Tested on → Setting A Setting B Setting C Setting D

Trained on ↓ Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Setting A 1.23 (0.4) 48.29 (0.9) 7.78 (1.3) 47.65 (0.8) 11.03 (1.3) 44.72 (1.0) 23.58 (0.3) 36.06 ((0.2)

Setting B 1.32 (0.5) 47.40 (0.9) 3.54 (0.4) 50.56 (0.6) 8.11 (1.2) 46.38 (0.8) 21.55 (0.3) 35.37 (0.2)

Setting C 2.56 (0.7) 43.70 (0.8) 6.00 (1.0) 44.37 (1.0) 6.83 (0.1) 41.74 (0.6) 20.72 (0.2) 33.62 (0.1)

Setting D 4.87 (0.7) 45.57 (0.7) 9.20 (0.8) 46.45 (0.7) 11.30 (0.6) 43.67 (0.4) 15.28 (0.4) 35.37 (0.5)

Table 6.6: Robustness analysis DRL approach based on the single objective

6.4 DRL results with reward shaping

This section presents the results of the DRL approaches with reward shaping. This reward shaping
process is done by using a Bayesian optimization approach. As mentioned in Chapter 4, this
method takes a standard reward function and shapes this dynamically. Each iteration, a new set
of weights is applied to this reward function, the agent is trained, tested, and the objective value
is observed. With this new information, a new set of weights is applied to the reward function
and the iteration continues until some specified maximum of iterations. First, the experimental
results are presented and compared to the DRL approaches without reward shaping. Secondly, an
analysis is provided on the optimization results. Lastly, a policy analysis is presented that uses
a Decision tree to map the learned policy to a set of explainable decision rules. This will help to
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explain the learned policy and to eventually get some insights in the dynamics of the OOBSP.

6.4.1 Experimental results

The rationale for this experiment is to assess the performance of a DRL approach with reward
shaping compared to a DRL approach without reward shaping. Using the proposed Bayesian
optimization technique for reward shaping, an agent was trained and tested for experiment settings
A, B and C. Then for setting D, the obtained weights from the previous settings are used for
training the agent. During the different time windows of the day, different weight settings are
applied to the reward function of the agent for setting D. In this way, the agent’s reward function
is dynamically shaped according to the moment in time of the day. The results are displayed in
Table 6.7 and Figure 6.6. These results are obtained by simulation per setting for respectively
228, 554, 168, 172 runs and these were computed in section 5.3. Within this table, the mean
values of both approaches for setting A, B and C are tested using a student t-test. These provide
statistical evidence that the means are different from each other with an α of 0.05. As setting
D is computational too complex to perform enough iterations and compute the student t-test,
statistical evidence is not provided. The DRL approach with reward shaping trained on setting
A outperforms the DRL approach without reward shaping on both tardy orders and picking
costs. The DRL approach with reward shaping also outperforms the DRL approach without
reward shaping in experiment setting B. However for setting C, the DRL approach with reward
shaping did not outperform the DRL approach without reward shaping based on order picking
costs. Probably, the priority for minimizing the order picking costs of the DRL approach with
reward shaping was too low. The results for the DRL approach with reward shaping on setting
D outperforms the DRL approach without reward shaping slightly in terms of tardy orders and
order picking costs.

Setting A Setting B Setting C Setting D

Model
Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

BOC 3.17 (1.1) 46.8 (0.8) 6.24 (1.4) 49.0 (0.9) 11.8 (1.8) 45.4 (0.9) 23.91 (0.3) 35.40 (0.2)

DRL 2.03 (0.8) 48.65 (0.8) 4.18 (0.8) 50.70 (1.0) 6.65 (0.8) 42.22 (0.7) 13.39 (0.4) 34.15 (0.2)

DRL + RS 1.68 (0.7) 43.02 (0.6) 2.60 (0.7) 46.87 (0.8) 5.53 (1.1) 42.90 (0.6) 12.40 (0.2) 33.96 (0.2)

Table 6.7: Experimental results of the DRL approach with and without reward shaping (RS)

Figure 6.6: Experimental results of the DRL approach with and without reward shaping
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6.4.2 Analysis of optimization results

The rationale for this analysis is identify how possible solutions (i.e. sets of weights) are distributed
over the solution space. This could yield information about the OOBSP itself. The proposed
Bayesian optimization methods iteratively gathers more information about the surrogate function
between the weights in the reward function and the resulting objective value of the DRL approach.
As this is an iterative process, it is interesting how this surrogate function is fitted and how does
that reflect a better performing DRL approach. After 50 iterations, the Bayesian optimization
method found the following weights for in the reward functions of all experiments: (0.86, 0.9),
(1.34, 0.52), (1.2, 0.45). The weights are computed for each experiment individually and consists
out of the weight for tardy orders and the weight for order picking costs respectively. Figure
6.7 displays these findings and provides information about the explored solution space of the two
weight parameters and the objective value for setting A, B and C. Setting D is computationally
too expensive to perform Bayesian optimization. However, the obtained knowledge from setting
A, B and C is used in setting D when re training the DRL approach. For each setting, figure 6.7
indicates objective values within the solution spaces where the goal is to minimize the objective
value. Several solutions have been evaluated and are subsequently used to fit a surrogate function
and sample new weights. For setting A, the best set of weights are 0.86 for tardy orders and 0.90
for picking costs. For setting B, the best set of weights are 1.34 for tardy orders and 0.52 for
picking costs. For setting C, the weight of tardy orders seems to have a slightly larger impact
on the objective value than in the other two settings. This could be explained by the fact what
within this setting, all orders have their respected cutoff time at the end of the setting and that
therefore, the agent focuses on picking these orders in time. For setting C, the best set of weights
are 1.20 for tardy orders and a weight of 0.45 for order picking costs. The weight for order picking
costs is decreasing over setting A, B, C. This could indicate that order picking costs become
less important near the end of a day and that tardy orders becomes more important. For each
setting, the Bayesian optimization method converged to some set of weights that provided the best
objective value. The trajectories of this was quite different among the experiment settings. From
a total of 50 iterations per setting, setting A found the best solution after iteration 29, setting B
found the best solution after iteration 8 and setting C found the best solution after 45 iterations.

Figure 6.7: The solution spaces for settings A, B and C explored by Bayesian optimization
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6.4.3 Policy analysis

This subsection contains a policy analysis wherein the DRL approach with reward shaping is
distilled into a decision tree. These decision trees can make learned policies more interpretable
and provide explanation for certain predicted actions on given state representations. The work
of Che et al. (2016) provides insights in a DRL policy using these decision trees and this is used
to provide insights to the DRL approach with reward shaping for settings A and C. The tree for
setting A is displayed in Figure 6.8 and the tree for setting C is displayed in Figure 6.9. The
rationale for this analysis is to obtain explainable factors that help in understanding the DRL
approaches with reward shaping.

Figure 6.8: Decision Tree trained on DRL agent of setting A

Using the DRL approach with reward shaping trained on experiment setting A, a dataset has
been compiled with a state representation of 20 features and 10-class predicted actions. This
experiment is conducted between 15:00 and 17:00 and does not contain a lot of cutoff moments.
Using this structured dataset, a classification approach is taken and a decision tree is fitted. The
dataset is unbalanced where the following list indicates the occurrence per class [7224, 13008,
20441, 59091, 1550, 1778, 9463, 20415, 17601, 5284]. Using a 10-fold cross validation evaluation
method, the decision tree obtained an accuracy of 47%. For a 10-class classification problem, this
performance is reasonable as the decision tree is only used for inference of the learned policy and a
random guess would yield 10% accuracy. Using this decision tree in Figure 6.8, several ’rules’ can
be inferred. The colors within this figure represent similar predicted actions and the entropy in all
nodes refers to the ’disorder’ of this node in providing a certain decision rule when classifying the
data. First of all, the decision tree makes a split based on whether there are orders within order
category sio-ptg-e3. This order category contains orders that are single-item, are stored in the
PtG storage area and have a cutoff time that is more than 40 minutes from the current moment.
Furthermore in node 2, the decision tree splits the data based on orders within order category
mio-ptg-gtp. If there are orders within this order category and the condition in node 5 is true, a
pick-by-order action for order category mio-ptg-gtp is predicted. In all other cases, the decision
tree predicts a pick-by-batch action for order category sio-ptg (node 4, 8, 9, 5, 11). On the right
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Figure 6.9: Decision Tree trained on DRL agent of setting C

side of figure 6.8, the decision tree makes a split based on order category mio-gtp-e3 where if there
are less than 25 orders in this category, the decision tree predicts a pick-by-batch action for order
category sio-gtp (node 6, 12, 13). If this is not the case, the model makes a cut in node 7 where
based on the simulation time, either a pick-by-batch action for order category mio-gtp is made of
a pick-by-order action for order category mio-ptg-gtp.

Experiment C is conducted between 22:00 and 24:00 and contains a lot more cutoff moments for
orders arriving within this window. This poses a different dynamic than in experiment A. Using
the structured dataset obtained from the policy learned on experiment C, a classification approach
is taken and a decision tree is fitted. The dataset is unbalanced where the following list indicates
the occurrence per class [2609, 12997, 8097, 60973, 685, 2129, 8644, 11921, 18178, 4403]. Using a
10-fold cross validation evaluation method, the decision tree obtained an accuracy of 56%. For a
10-class classification problem, this performance is reasonable as the decision tree is only used for
inference of the learned policy. The decision tree learned on data from experiment C in Figure
6.9, makes a split based on the simulation time in node 1. Setting C has a time window between
22:00 and 24:00 and if a certain state representation has a simulation time that is lower than
23:21, the decision tree guides the prediction to the right side of the tree. This indicates a certain
time dependency learned by the DRL approach. After this step, the tree checks whether there are
orders within the order category sio-gtp-e3 in node 2. This order category contains orders that
are single-item, are stored in the GtP storage area and have a cutoff time that is more than 40
minutes from the current moment. If there aren’t any orders within this category, the decision
tree prescribes to choose a batching action for mio-gtp orders in node 4. Most of the time, there
are orders within this category (node 4) and the tree describes to pick a batch of SiO GtP orders.
On the other side of the tree, the simulation time is again used for forming two branches where it
is checked whether the current simulation time is lower than 23:58 and higher than 23:21 in node
3. This can infer that the DRL approach has a priority for the left side of the tree as this part is
processed first. Furthermore, on this right side of the tree, a split is made on the sio-ptg-e2 order
category in node 6, where if there are less than 24 orders within this category, the tree describes to
pick a batch of MiO orders with storage areas PtG and GtP in node 12. With some of the decision
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of the decision tree explained, some dependency can be identified based on simulation time and
the number of orders within order categories. Again, this decision tree only reflects a small part
of the learned policy but confirms some of the dependencies. Comparing decision tree A and C
with each other, the main difference is that decision tree C has a time dependency that plays an
important role in prediction the class actions. The learned policy for experiment C appears to be
more sensitive for the time aspect as there are a lot more cutoff moments within the time window.

Both decision trees try to infer a piece of logic from the learned policies of the DRL approaches.
These decision trees are subsequently used as a heuristic for solving the OOBSP for both experi-
ment setting A as C and results are displayed in Table 6.8. These results were obtained by using
the described decision trees in simulating the OOBSP for 228 and 168 runs respectively. As the
decision trees are used as an approximation to the learned DRL approaches with reward shap-
ing, results will not match the performance. However, in terms of the percentage of tardy orders
and order picking costs for experiment setting A and C, the distilled decision tree outperforms
the BOC heuristic significantly. A student t-test has been used to provide evidence for these
statements where a α = 0.05 has been used. This indicates that the distilled decision tree has
learned some useful and explainable decision rules from the DRL approaches with reward shaping.
This last experiment provides useful information on the succeeding heuristics derived from a DRL
approach that demonstrate comparable performance with traditional heuristics for the OOBSP.
When better approximation algorithms can be developed, the performance of succeeding heuristics
will likely increase as well.

Setting A Setting C

Model
Tardy
orders (%)

Picking
costs

Tardy
orders (%)

Picking
costs

BOC 3.17 (1.1) 46.8 (0.8) 11.8 (1.8) 45.4 (0.9)

DRL 2.03 (0.8) 48.65 (0.8) 6.65 (0.8) 42.22 (0.7)

DRL + RS 1.68 (0.7) 43.02 (0.6) 5.53 (1.1) 42.90 (0.6)

Distilled DT 3.06 (0.9) 45.59 (0.7) 9.24 (1.0) 44.84 (0.7)

Table 6.8: Experimental results of the decision tree heuristic

6.5 Discussion

As this Chapter presents a lot of results from all conducted experiments, this section gives a short
recap on the key findings. In the first section, the baseline resource settings are determined using
the BOC heuristic. Using these baseline settings, the results for the other heuristics could be
computed in order to provide a comparison with the proposed solution methods.

In the second section, the DRL approach without reward shaping is tested, and the results are
compared with the heuristics. In every experiment setting, the DRL approach outperformed the
heuristics based on the percentage of tardy orders. However, the BOC heuristic outperformed the
DRL approach without reward shaping in some settings based on the order picking costs. This
confirms the complexity of shaping the reward function to address the multi-objective problem
setting. After this, the learning behaviour of the DRL approaches without reward shaping have
been examined and after a certain amount of training steps, the DRL approach demonstrates
stable behaviour. Additionally, some comparisons have been done with an DRL approach without
reward shaping that was trained on a single-objective variant of the OOBSP. This shows that
there is a delicate trade-off between optimizing the two objectives. Furthermore, a policy analysis
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demonstrates “intelligent” behaviour near cutoff moments where the pick-by-batch ratio decreases.
After these moments, this ratio increases again in order to focus on minimizing order picking
costs. A robustness analysis for the learned DRL approaches have been included that demonstrate
robustness on small changes to the experiment but presents problems when the principles of the
experiment settings are changed.

In the third section, the DRL approach with reward shaping is tested, and the results are compared
with the heuristics and the DRL approach without reward shaping. For this reward shaping pro-
cess, a Bayesian Optimization technique is used that addresses this problem as a hyper-parameter
optimization problem. This new DRL approach with reward shaping outperforms both the heur-
istics as the DRL approach without reward shaping. The learned weights that were obtained from
the Bayesian optimization technique confirm the expectation where a potential solution method
should focus on minimizing order picking during the day and focus on minimizing tardy orders at
the end of the day.

Using this DRL approach with reward shaping, a decision tree has been used to infer certain
decision rules from this policy. The main findings were that in some state representations, the
DRL approach with reward shaping uses the point in time to make a certain picking decision and
has a priority for some of the order categories. This time dependency indicates the change in focus
from minimizing order picking costs to minimizing tardy orders.
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7. Conclusion & recommendation
This thesis project is a study on solving an online order batching and sequencing problem (OOBSP)
in a warehousing concept of Vanderlande called DeepRele. The main objective of this work is to
investigate to what extend deep reinforcement learning can solve a multi-objective variant of the
online order batching and sequencing problem with real-world characteristics. In order to do so,
the literature review provided insights in traditional methods, DRL based methods and methods
that can optimize DRL approaches. These insights have been used to design a DRL approach that
can solve the OOBSP with real-world characteristics. Within these real-world characteristics, there
is a multi-objective variant of the OOBSP, large instances (5000 orders per hour) and changing
dynamics in terms of order arrival patterns. In this chapter, the conclusion of this thesis project
is presented and recommendations on further research are provided.

7.1 Conclusion

Traditional methods find it difficult to cope with an ever changing environment and increasing
instance sizes of the OOBSP in DeepRele. Together with the findings of Cals et al. (2021), a DRL
approach for this problem is proposed. In order to cope with these aforementioned challenges,
the DRL approach has been designed accordingly. A more dynamic reward function to capture
the multi-objective aspect of the problem, a smaller action space for the DRL agent to reduce the
computational complexity and re-framed to problem into an online order batching and sequen-
cing problem. Furthermore, the DRL approach uses at its base a Proximal Policy Optimization
model which strikes a favorable balance between sample efficiency, simplicity and computational
efficiency. Besides this, an efficient simulation model is developed to mimic the dynamics of a Dee-
pRele warehousing system. This new DRL approach was used in a benchmark study where it was
compared with a set of three heuristics: LST, BOC and GVNS. In this benchmark study, a scal-
arization technique has been used to transform the multi-objective problem to a single-objective
problem. In each of the experiments in this benchmark study, the DRL approach outperformed
the heuristics. The percentage of tardy orders was in all experiments significantly lower for the
DRL approach but the order picking costs remained similar to the heuristic approach. This pat-
tern confirms the complexity of solving multi-objective problems where objectives have a negative
relationship. In order to infer some “intelligence” of the learned policy, a policy analysis have
been provided. This concludes that the DRL approach demonstrates different behaviour in front
of cutoff moments. Before these moments, the pick-by-batch ratio drops where more pick-by-order
actions are made to ensure that picking orders have low lead times. This ratio increases again after
such a cutoff moment. As a results, the order picking costs follow this pattern as pick-by-batch
actions are less “expensive”. These DRL approaches have been trained on specific instances and
a robustness analysis have been performed to observe generalization of these approaches. These
approaches are robust to small changes (10%) in throughput and resource capacities but find it
hard generalize when a complete different experiment is presented.

In order to further address the challenges that come a long with a multi-objective variant of the
online order batching and sequencing problem with real-world characteristics, a hyper-parameter
optimization methods is proposed to dynamically shape the reward function of the DRL approach.
In real-world environments, it is import to have a reward function that is aligned with the objectives
and that can cope with system dynamics. A Bayesian optimization method is used to optimize a
set of weights that is applied to the reward function of the DRL approach. For every experiment,
a new set of weights is obtained. These weights provide evidence that the DRL approaches have
a larger priority for minimizing order picking costs during the day and during the end of the day,
have a larger priority for minimizing the percentage of tardy orders. With these new optimized
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DRL approaches, a benchmark study is performed compared to the “vanilla” DRL approach from
the previous section. This optimized DRL approach outperformed the vanilla approach on both
objectives: percentage of tardy order and order picking costs. Similar to the previous part, a policy
analysis is conducted to infer some kind of “intelligence” using a decision tree. This decision tree
maps a part of the learned policy to some feature-based decision rules and gives an indication
where the DRL approach bases its decision. This decision tree provides a time dependency for
the DRL approaches where it alters its decision upon. This confirms the findings of the Bayesian
optimization approach, where different objectives have a different priority over time.

Overall, the DRL approaches presented in this project provide a novel and exiting method for solv-
ing the online order batching and sequencing problem with real-world characteristics. These DRL
approaches demonstrate intelligent policies that cope with a multi-objective variant of the prob-
lem, large instances and dynamic environments. This Bayesian optimization approach provides
a technique that is able to deal with multi-objective problems and changing environments and
can contribute to current RL projects solving optimization problems. Compared to other OOBSP
heuristics, the DRL approach presents better performance and makes better use of the available
data. Using this available data, the DRL approach provides a great potential in incorporating this
algorithm into Vanderlande’s Warehouse Management Systems. Furthermore, the DRL approach
allows for a preference in the ratio of objectives when optimizing the problem.

7.2 Limitations and recommendations

This thesis project served as a experiment to investigate in what extend deep reinforcement learn-
ing can solve a multi-objective variant of the online order batching and sequencing problem with
real-world characteristics. This work provides a proof of concept for a DRL approach but due to
the available time frame of this thesis, several components and challenges were not included and
can provide directions for further research. With this, Vanderlande is advised the following:

1. First of all, the simulation that has been used in this thesis project tries to reflect the
dynamics of the DeepRele warehousing concept at a certain level of detail. Between this
current moment and implementing the DRL approach in a physical warehousing concept,
there are several steps to take. One of these steps should address the level of detail of the
simulation model by providing a more detailed simulation model that nearly replicates real-
world systems. The current level of detail provides a good trade-off between computational
complexity and the amount of incorporated system dynamics.

2. Secondly, exact storage locations of individual items are not used in computing the picking
times. This information might be useful in order to perform the online order batching and
sequencing operation. In relation to this, this work does not address any routing strategy
when picking orders. This has impact on the eventual operational performance and before
implementing a DRL approach and should be taken into account.

3. Thirdly, in order to industrialize this solution, the learned policy should be converted to an
explainable heuristic model. This work tried to infer some of the learned logic into an ex-
plainable model that subsequently demonstrated good performance compared to traditional
heuristics. Recent advancements in Explainable A.I. (XAI) include different techniques to
make Deep Neural Networks (DNN) more explainable and improve the findings of this work.

4. Lastly, there are some steps between this moment and implementing the DRL approaches
in physical systems. Bringing reinforcement learning to production, requires a significant
amount of effort as indicated by the maturity of the field. It is considered difficult to bring
DRL approaches in production, monitor these approaches and periodically retrain these
approaches. The domain of Machine Learning operations (ML-Ops) could provide tools in
supporting this process.
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