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Abstract

Computer graphics strongly relies on physically-based renderings to accurately model light

behavior and simulate the real world. State-of-the-art approaches to obtain realistic results

are based on path tracing and multiple variance reduction methods. However, these opera-

tions do not take into account the configuration of the scene to render; for this reason, they

not always perform correctly for indirectly illuminated settings. In this regards, Machine

Learning methods have been leveraged as variance reduction techniques for light transport

path guiding. Specifically, a recent study introduced an importance sampling strategy that

uses Reinforcement Learning to learn the optimal path of the light during rendering. This

method, possible on the basis of the structural similarity between two cardinal equations in

Reinforcement Learning and rendering, is limited by the discretization of the input data. Our

proposed approach overcomes this constraint, learning and approximating the total incident

radiance for a continuous set of points in a scene using Deep Reinforcement Learning instead

of a tabular policy. The promising results obtained prove that this technique can lead to a

better rendering quality than the previous work for specific settings.
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Chapter 1

Introduction

Physically Based Rendering (PBR) is an approach in Computer Graphics that simulates

accurately the light behavior in the real world to reproduce realistic images of a virtual scene.

This technique relies upon Monte Carlo methods and Mathematical Optimization to compute

the result. The fascinating aspect of this field is that it combines multiple disciplines, ranging

from computer science, electronics and mathematics to art and visual design.

In this chapter, we introduce the main topic of the thesis. First of all, we describe the

Business context of this work and its role in various Industrial sectors. This section is relevant

for my Minor in Innovation&Entrepreneurship. Then, we motivate the defined goals and list

the research questions to investigate. Next, we summarize the main contributions of the

thesis and mention the system engineering challenges faced during the implementation of the

proposed approach. Finally, we present the outline of the report.

1.1 Business context

Computer-rendered images are pervasive in our daily life. They are used in the Entertainment

Industry, making possible the realization of stunning movies and videogames to maximize

consumers’ immersion in the virtual experience. Computer-Generated Imagery (CGI) is also

applied in architecture or engineering, and it is revolutionizing the way products are designed

and developed. In this work, we study and propose a novel approach to leverage Machine

Learning as a numerical tool for PBR.

While pursuing this thesis, I worked part-time as a Research engineer in the field of

autonomous driving at the Netherlands Organisation for Applied Scientific Research (TNO).

Autonomous Driving Systems (ADS) rely upon the use of simulators, sensors, and cameras to

train their navigation controls and improve object detection algorithms. Simulators have an

essential role in ADS because smart agents need to learn the actions and conditions that lead

to negative outcomes [49] in dangerous scenarios. Virtual environments help achieve this goal

without the expenses of real-world applications. Besides this, cameras are employed on real

Deep Reinforcement Learning for Light Transport Path Guiding 1



CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of images obtained with Physically-Based Rendering. On the left,
an image from the project NVIDIA Drive Constellation, an autonomous vehicle simulation
platform that allows photorealistic simulation of virtual scenarios. On the right, a frame from
WALL-E (2008) by Walt Disney Pictures and Pixar Animation Studios.

vehicles to acquire images that simulators cannot provide accurately at this stage. Although

this solution is costly because of the devices and personnel required, it is necessary for some

specific tasks. For instance, training an algorithm to detect objects on the street demands

very precise images of the obstacles that the vehicle may encounter. Another example is

lane detection, which is the process of training a vehicle to recognize its position on the road

and on the lane. A possible solution to overcome the necessity of physical equipment is the

realization of photorealistic simulators able to render the setting precisely and coherently with

the physics of the environment. This work is being conducted by many companies and research

centers, like the German Research Center for Artificial Intelligence, in German Deutsches

Forschungszentrum für Künstliche Intelligenz (DFKI). During a conference at TNO, Prof.

Slusallek from DFKI, who also studies photorealistic rendering engines for autonomous driving

[36], remarked that a major challenge in this regard is the correct approximation of the light

behavior. The goal of this work is to research Machine Learning solutions to eventually

overcome this obstacle.

Another extensive application of Computer Graphics techniques is found in the Animation

Industry, which fully relies upon the research and development of new approaches to maximize

the rendering quality and minimize costs of production. With a total value projected to reach

US$ 270 billion by 2020 and an average growth rate of 2% [1], the Global Animation, VFX

and Games Industry play a crucial role in the entertainment market. As technology advances,

so does the quality of Computer-generated images and Computer Graphics techniques. To

stay competitive in such a fast-growing market, Companies need to update continuously their

software and hardware with the latest developments. For this reason, researching optimization

techniques to render frames fast and accurately is essential for the Business. The entity of

the costs of rendering is significant: a single frame can take up to 24 hours to render on a

cluster of 24000 cores and 2000 computers [2]. This indicates that even small improvements

in the rendering technique could reduce costs drastically.

2 Deep Reinforcement Learning for Light Transport Path Guiding
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Techniques developed for CGI are not only limited to image-based fields like Animation

or Image processing for autonomous driving. When Machine Learning is used to reproduce

the physics of a virtual character, the results obtained can be employed for various tasks. For

instance, the Biomedical sector can benefit from it for prosthetic design. As additional proof

of the cross-applicability of these studies, it was recently announced that scientists at CERN

were interested in the results of light transport path guiding [29] to predict particle collision.

Finally, the need for computational power propels the electronics sector, which finds in

the Graphic Industry an unlimited market. In Chapter 6, we report how the future progress

with regards to the current GPU architecture might initiate a new research field for sparse

matrix computations, enabling faster and more accurate renderings.

1.2 Research aims

Modern path tracing algorithms are based on the interaction between a camera and a virtual

scene. Rays are shot from the camera towards the scene and bounce accordingly to the geo-

metry of the environment, its physical properties, and the chosen scattering strategy. The

amount of radiance emitted towards the viewing direction is described by the rendering equa-

tion [25]. Solving the rendering equation, which is the foundation of path tracing algorithms,

is an intractable problem [33]. In other words, there is no algorithm that can precisely solve

this equation. Currently, the common practice to approximate its value is using Monte Carlo

importance sampling. For the last three decades, researchers have studied variance reduc-

tion strategies to improve the efficiency of this technique, such as importance sampling the

geometry term of the rendering equation, or sampling light sources directly. However, these

traditional schemes are not always efficient since they do not adapt to the scene, or they

require before-hand the knowledge of all the light source contributions. In contrast, path

guiding is a family of algorithms that adapts ray scattering to a given scene. Therefore, the

amount of traced paths necessary for a converged image is reduced. Recently, Dahm et al.

studied a methodology to approximate the radiance function inside a scene using Q-Learning

[6]; this is a model-free off-policy Reinforcement Learning algorithm that learns a tabular

policy to facilitates its decision-making process. The main limitation of this approach is the

assumption of a discrete input space, which may hinder the learning process and forces the

embedding of continuous coordinates into a discrete data structure.

The goal of this thesis is to propose a novel approach to approximate the incident radiance

function in every point of a virtual scene using Deep Q-Learning. This method extends the

Q-Learning algorithm and adopts a Deep Neural Network to generate the policy, which is

the core of the algorithm’s decision making process. The main advantage of a Deep Neural

Network over a tabular policy is that it enables the input of a continuous space. We believe

that this solution can improve the previous method, since the discretization of the input space

Deep Reinforcement Learning for Light Transport Path Guiding 3



CHAPTER 1. INTRODUCTION

often entails loss of information. A detailed explanation of these two algorithms and their

differences is reported in Section 2.2.

As the main objective depends on the Q-Learning method, this approach needs to be

accurately studied, implemented and finally extended. In this regards, multiple secondary

goals need to be realized as follows.

• Engineer a Q-Learning algorithm to sample scattering directions proportionally to the

value function. The resulting PDF used to importance sample the value function ob-

tained with Q-Learning is also consistent with the Deep Q-Learning approach.

• Study the possible integration between two components: the path tracing algorithm

and the Machine Learning (ML) module. This is necessary to extend the path tracer

with Deep Q-Learning, since these two software frameworks are independent and im-

plemented in different programming languages.

• Study, develop and optimize a Deep Q-Learning algorithm for path guiding, which

supports a continuous state space input. This represents the core of our proposed

method.

• Investigate metrics to assess the effectiveness of the Deep Q-Learning training process

and the quality of the images generated.

• Evaluate, test and analyze the results.

1.3 Research questions

Due to the nature of this work, which has both a significant theoretical component and a

practical one, we identified two categories of research questions to reach our goals. While

the first category refers to the fundamental research, the second one considers the technical

challenges to overcome in order to successfully conduct the study. These questions and their

context are addressed in detail in Section 1.4

Fundamental research:

1. To what extent deriving a probability density function based on Q-values for importance

sampling is beneficial for path tracing? The probability density function based on Q-

Learning importance sampling is a detail that is not explicitly articulated in the work

conducted by Dahm et al. on Reinforcement Learning for path guiding [6]. In Chapter

3.2, a detailed explanation of the PDF we formulated is presented, along with its two

main components. Furthermore, the effect that the derived PDF has on the Q-Learning

path guiding approach is described.

2. How can the incident radiance be learned from a continuous set of possible locations in

a scene using Reinforcement Learning? The use of Q-Learning for importance sampling

is limited by the necessity to discretize the input space. Our proposed method approx-

4 Deep Reinforcement Learning for Light Transport Path Guiding
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imates the incident radiance function with a Deep Neural Network over a continuous

state space. The proposed technique can be found in Section 3.3

3. Can the application of Deep Reinforcement Learning as a light transport path guiding

approach for physics-based simulators result in a better image quality than Q-learning,

given the same Sample Per Pixel (SPP) ? To answer this question, we first need to

establish metrics to evaluate the result of the developed importance sampling strategies

and estimate the effectiveness of the training process. In Section 4.3.2, these metrics are

defined and results based on them are presented. As discussed in Chapter 5, there is not

a conclusive answer to this question, because the performance of the Deep Reinforcement

Learning algorithm studied depends on factors like the complexity of the scene, the

chosen hyperparameters, and the considered metrics.

System and software engineering challenges:

1. How can we combine a Machine Learning module in python with a C++ application

for ray tracing? The path tracing algorithm used for traditional importance sampling

strategies and for Q-Learning was written using the C++11 Standard Library [18].

We made this decision because of the good performance of this coding language and

its explicit memory management. On the contrary, the Deep Q-Learning module was

designed using Python 3.6, one of the most popular Machine Learning languages. To

combine the two software frameworks, many tools and strategies were experimented. In

Section 1.4.2, details of the system engineering are illustrated.

1.4 Thesis contribution

Path guiding methods strive to adapt the ray scattering strategy to the characteristics of

the scene to render. Figure 1.2 shows the effect of importance sampling based on the policy

learned by our Deep Q-Learning algorithm. As one can see, the algorithm does not consider

the light position before the training phase (Figure 1.2.b) and rays are randomly scattered

according to a uniform sampling. In Figure 1.2.c, the learning process is completed and

scattering follows a policy generated for this specific configuration. Therefore, the density of

rays that reach the light source is significantly higher when importance sampling is performed

on the incident radiance function generalized for each point of the scene.

The contributions of our work can be classified conforming to the same categories identified

for our research questions.

1.4.1 Fundamental research

The core of a path tracing algorithm is the iterative process to approximate the rendering

equation. Since the solution of this equation is intractable, it is commonly approximated

Deep Reinforcement Learning for Light Transport Path Guiding 5



CHAPTER 1. INTRODUCTION

Figure 1.2: Rays scattering in the scene before and after the Deep Q-Learning training. The
source of rays is the dark green square located on the red wall, while the light source is the
orange rectangle on the upper wall. Every blue point represents the coordinates of one ray
scattered from the source of rays. The leftmost image represents the scene used to show the
rays scattering. The figure in the middle refers to the scattering based on uniform sampling.
On the right, the agent has correctly learned the incident radiance function inside the scene
and scatters rays mainly towards the light source. The scenes displaying the scattering are
presented from a different perspective than the reference image.

by Monte Carlo importance sampling. As stated before, traditional strategies used for this

purpose do not take into account specific characteristics of the environments, such as the light

position, hence reducing the efficiency of the stochastic sampling. A solution to this problem

is the use of Reinforcement Learning to approximate the incident radiance function in every

point of a scene [6]. Consequently, rays are sampled proportionally to the learned function.

Our proposed method contributes deriving and presenting the PDF for Q-Learning, which

considers two different terms. The first is related to the distribution of the Q-values learned

during the training phase, which reflects the incident radiance function approximation. The

second concerns the uniform scattering probability over a physical patch on a unit hemisphere.

Among the different path guiding algorithms developed for variance reduction, the only

one to our knowledge that approximates the incident radiance function with a Deep Neural

Network is Neural Path Guiding (NPG) [29]. This method, that was presented during the exe-

cution of this thesis, is based on Non-linear Independent Component Estimation (NICE) [7], a

framework that models high-dimensional densities faster and more efficiently than competing

techniques used for this purpose. This approach was adapted to guarantee the applicability

of Monte Carlo integration and it was extended with One-Blob encoding [29], multiple fully

connected layers and a piecewise-polynomial warp to achieve higher performance. Although

NPG is capable of handling a continuous action space, differently from our proposed method,

the computational complexity of all the building blocks characterizing this approach makes

it very expensive. Our method contributes to expanding the path guiding technique studied
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by Dahm et al. with a Deep Q-Learning algorithm to approximate a PDF for importance

sampling. Different from NPG, our proposed strategy embeds the input generated with the

One-Blob encoding directly into the Neural Network and only consists of 4 fully connected

layers.

To assess the validity of our approach, we present our results based on an algorithmic and

an image quality perspective. To understand if the learning process is effective, we study and

exhibit the results obtained with 4 different evaluation metrics for each importance sampling

strategy: (1) the Structural Similarity Index (SSIM), (2) the Mean Squared Error (MSE),

(3) the average amount of bounces inside the scene and (4) the evolution of the accumulated

non-valid paths. These evaluators illustrate that Deep Q-Learning yields better results at

equal sample count for two of the three settings tested.

1.4.2 Software and system engineering

The Computer Graphics community released over the years multiple complete ray tracing

environments. Open-source path tracers, such as PBRT [32] or Mitsuba [16], simulate light

physics very accurately, and reflection, refraction, different types of shadows and generation

of caustics are reproduced with great detail. However, we decided to implement the algorithm

from scratch to guarantee full control of every aspect of it. Indeed, the scope of this work is

to investigate whether Deep Reinforcement Learning can be employed to improve traditional

importance sampling methods in path tracing, regardless of the complexity of the environment

to render. The possibility to only render a very limited set of geometries and basic visual

effects do not affect the conclusion drawn with the implementation of our approach, which

can be extended to a more complex configuration once it proves to work on simpler ones.

Thus, testing our proposed method in a simple setting suffices.

Our main contribution regarding the engineering of the proposed technique is the intro-

duction of two open-source frameworks. The first application is a path tracer written in

pure C++11 to train a Q-Learning algorithm, which discretizes automatically the state space

depending on the user’s parameters. Moreover, every aspect of the training process can be

easily customized, and the tabular policy generated is stored locally to be loaded at any time.

It will be released soon here: https://github.com/maurock/Q-tracer.

The second framework is a path tracer written in Python and Pybind11 [17], a header-

only library developed by Jakob et al. that exposes C++ types in Python. The use of this

library reduced the path tracing running time by 8 times. The algorithm is based on Deep

Q-Learning, encodes the input with One-Blob encoding and stores the policy in the HDF5

format for re-use. It will be released soon here: https://github.com/maurock/DQN-tracer.

Moreover, we provide a Python script that generates graphs to visualize the scattering inside

a scene. The visualization library used for this purpose is Plotly, and an instance of the
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obtained results can be seen in Figure 1.2. [13]

1.5 Outline

This work combines two different fields: Computer Graphics and Machine Learning. This is

reflected by the structure of the thesis, which is organized as follows.

Chapter 2 shows the background necessary to understand the context of this work. In

particular, it is divided into two main sections. Section 2.1 gives an overview of stochastic ray

tracing and traditional techniques used for variance reduction. In this section, the mathemat-

ical framework required to support the integration of Monte Carlo methods to our proposed

approach is described. Section 2.2 first focuses on the basics of Reinforcement Learning to

introduce the main concepts of this family of algorithms. Then, a detailed explanation of two

model-free off-policy approaches, namely Q-Learning and Deep Q-Learning, is provided. Next,

common strategies employed for the optimization of these two methods are clarified. Finally,

the state-of-the-art for modern path guiding algorithms based on Reinforcement Learning is

reviewed and illustrated.

Chapter 3 presents our proposed methods on a high level. Here, we introduce the math-

ematical procedure to define the probability density function and the scattering equations.

Furthermore, the novelty introduced by our work is stated.

The results of our methodology are reported in Chapter 4. The structure of this chapter

reflects the combination of the two aforementioned research areas. Indeed, we propose an

algorithmic perspective regarding the validity of the Reinforcement Learning algorithms and

a Graphics perspective that addresses the performance of our approach with regards to the

image quality.

In Chapter 5, the steps followed to obtain our results are summarized in chronological

order. Then, a detailed discussion in view of the outcomes is outlined. The conclusions

advanced in this chapter are particularly important because of the intrinsic research-oriented

nature of this work.

Finally, in Chapter 6 the limitations of this work are indicated, along with the possible

further works.
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Background

This chapter provides the conceptual and mathematical framework to fully understand the

context of the thesis. The aim of this chapter is twofold. First, we give an overview on

stochastic ray tracing algorithms (Section 2.1). Second, we define the main concepts in

Reinforcement Learning, and how this family of algorithms can be used in ray tracing (Section

2.2).

In the first section, we begin with a brief overview on the history of Physically-Based

Rendering approaches and the main developments in the last few decades. This description

is important because the fundamentals are still used today in the Graphics Industry, ap-

proximately unaltered since their introduction. Then, we define the rendering equation in its

hemispherical formulation and discuss its features. Next, we outline the basics of Monte Carlo

methods, starting from Monte Carlo integration to derive Monte Carlo importance sampling.

Finally, we conclude with a high-level introduction of the original naive path tracing al-

gorithm, as well as two common improvements towards variance reduction: cosine-weighted

importance sampling and Next Event Estimation (NEE).

In the Reinforcement Learning section, we first describe the key concepts of Reinforce-

ment Learning and the notation we use in this thesis. Then, we present the state-of-the-art

application of Q-Learning for path tracing. Finally, we show how Deep Neural Networks are

used in Physically Based Rendering.

2.1 Stochastic Ray Tracing

2.1.1 Physics-based approaches

Physics-based approaches used in rendering simulate the light behavior to generate realistic

images. Global Illumination algorithms operate in this domain by computing and combining

the light directly coming from light sources with its indirect contribution, caused by refraction

and reflection. Global lighting effects and the idea of light transport simulation through
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ray tracing were first introduced by Turner Whitted in 1980 [47]. Whitted’s approach was

significantly different from any previous work proposed in Computer graphics, and it marks

the beginning of PBR.

A few years later three notable researchers, Cook, Torrance, and Goral, suggested im-

provements to Whitted’s technique taking into account new reflection models [10] and energy

exchange. The main problem in these solutions was the high computational complexity that

made their use very inefficient. To reduce this issue, ray tracing based on Monte Carlo integ-

ration was advanced. Even though this methodology was received at the time with skepticism

due to the inevitable noise in the results, it was a breakthrough [32]. Still today, all the main

approaches in PBR are based on Monte Carlo integration.

In 1986, Kajiya published one of the most important works in the history of ray tracing

[19], introducing the idea of path tracing and formalizing the rendering equation, explained

in detail in Section 2.1.2. The main idea behind this work was to compute the incoming

radiance for each point in a three-dimensional scene recursively.

After 1997, Veach introduced in his dissertation [43] novel methods such as Monte Carlo

Multiple importance sampling, bidirectional path tracing and Metropolis. Research started

then to focus on noise reduction and realistic simulation for specific physical phenomena.

Over the last few years, the use of Machine learning as a preferred numerical tool, along with

the advances in GPU performance, opened the possibility to explore real-time path tracing.

2.1.2 The rendering equation

The rendering equation was introduced by Kajiya in 1986 [19], and it is considered since

then one of the most important concepts of Global Illumination algorithms. Equation (2.1)

describes the light transport mechanism as a recursive integral equation, where the integrand

contains material and visibility properties. The rendering equation computes the exitant

radiance at point x and direction wo. This definition is the hemispherical formulation of the

equation since the domain of integration is the unit hemisphere aligned by the surface normal

and centered in x (Figure 2.1).

Lo(x,wo) = Le(x,wo) +

∫
Ω
Li(x,−wi) · fr(x,wi, wo) · cosθi dwi (2.1)

In the formula:

• fr is the Bidirectional Reflectance Distribution Function (BRDF), explained in the

following paragraph.

• Lo(x,wo) is the reflected radiance, which is the radiant energy reflected from point x in

direction wo.

• Le(x,wo) is the emitted radiance, which is the radiant energy emitted from point x in

direction wo. This quantity is positive when x lies on a light source.
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• Li(x,−wi) is the incident radiance, which is the radiant energy incoming to point x in

direction wi.

• θ is the angle between the direction of the incident light and the surface normal. Its

value lies between 0 and π
2 .

• Ω is the integration domain, representing the unit hemisphere centered in x.

The notation used in this thesis is shown in Figure 2.1.

Figure 2.1: Notation used for the variables in the rendering equation.

The BRDF represents how light is reflected on a surface. Specifically, it is the ratio of

the reflected radiance in a specific direction w, computed for a surface at a point x, and the

irradiance through a differential solid angle dw. In our application, we consider all materials

as Lambertian surfaces, for which reflection is constant and uniform in all the directions. In

other words, a Lambertian surface looks equally bright from any point of view. It is important

to mention that in reality surfaces are not ideal, and are all non-Lambertian to some degree.

Figure 2.2: Difference between diffuse BRDF (in blue) and specular BRDF (green and purple).
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The rendering equation was derived using the energy conservation law at a point x. In-

deed, the total outgoing radiance in that point is equal to the sum of the emitted radiance

and the total reflected radiance. Two important assumptions in this formalization are the

absence of participating media and that light propagates instantaneously. These two elements

make this formula a simplification of real light transport, even if it leads to an accurate ap-

proximation of the light behavior for the majority of applications.

2.1.3 Variance reduction methods for Monte Carlo

Monte Carlo integration

Monte Carlo methods are a family of mathematical techniques used to find approximated

solutions through repeated random sampling. These methodologies are usually computation-

ally intensive, and for this reason their popularity in science is strictly correlated with the

rise of computational machines.

A powerful Monte Carlo technique, and arguably among the most important ones in

Computer Graphics, is Monte Carlo integration. This method allows the approximation of an

integrand f(x) over a domain D, by evaluating the function at arbitrary points selected based

on a probability density function. It is important to notice that this property guarantees

applicability also to discontinuous functions. Specifically, the goal is to approximate the

following integral of a function f(x) over some domain D:

F =

∫
D
f(x) dx (2.2)

To achieve this result, two important concepts need to be defined: the PDF and the expected

value. The PDF p(x) over the domain D is a quantity that represents the density of samples as

a function of x. The PDF has two important properties: it is always positive, and its integral

over the sampling domain is equal to 1. Mathematically, these properties are formalized as

follows:

p(x) > 0, ∀x ∈ D∫
D
p(x) dx = 1 (2.3)

The expected value of a random variable x is defined as the average of the variable in the long

run. The expected value of a function depending on a continuous variable f(x), where the

probability p(x) of the variable x is known, is defined by the law of unconscious statistician

as:

E[f(x)] =

∫
D
f(x)p(x) dx (2.4)

Combining Equations (2.2) and (2.4), one can see that the integral F can be also expressed
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as:

F =

∫
D
f(x) dx =

∫
D

f(x)

p(x)
p(x) dx = E[

f(x)

p(x)
] (2.5)

The estimation of the integrand can be computed by generating random samples according to

the probability p(x). When increasing the number of samples, the average converges towards

the expected value. This process, often used to approximate intractable integrals such as the

recursive Fredholm integral in the rendering equation, is called Monte Carlo integration. In

practice, the domain D is discretized to be computed by an algorithm:

< I >=
1

N

N−1∑
i=0

f(xi)

p(xi)
(2.6)

where < I > is called Monte Carlo estimator. An important measure in stochastic methods

is the variance of the estimator. The variance σ2 of < I >, described in [8], is:

σ2 =
1

N

∫
(
f(x)

p(x)
− I)2p(x)d(x) (2.7)

An estimator is said unbiased if it converges towards the expectation as N →∞.

In contrast, a biased estimator is an estimator for which the expected result, that from now

will be referred to as ζ , differs from the parameter it is estimating. Equation 2.8 summarizes

these concepts:

E[< I >unbiased]− ζ = 0

E[< I >biased]− ζ 6= 0 (2.8)

Ray tracers can be either biased or unbiased. Ray tracers based on biased estimators are

not always worse than those related to unbiased ones: a biased estimator can introduce less

variance, and if the bias is small enough, it might be barely noticeable. The ray tracer im-

plemented for this work is unbiased. A considerable advantage of Monte Carlo integration is

that is independent of the integral dimensionality. This property differs from other determ-

inistic methods to approximate intractable integrals, such as the Riemann Sum, and makes

this method greatly versatile for many different kinds of applications.

Even though this technique is powerful and vastly used in Computer Graphics, it intro-

duces two main practical issues. First of all, Monte Carlo (MC) has slow 1√
N

convergence

– that is, four times the number of samples is necessary to halve the error. For this reason,

finding techniques to reduce the variance independently of the number of samples is compel-

ling.

Secondly, when samples corresponding to low likelihood are retrieved, f(xi)
p(xi)

is intrinsically

very large. This increases the variance, since the sample mean would be skewed away from

the true mean. There are various variance reduction methodologies to deal with these issues,
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as explained in the following sections.

Monte Carlo importance sampling

A solution to slow convergence is to consider a PDF function p(x) that minimizes the variance

of the estimator in Equation 2.6. To do this, we use the Lagrange multiplier technique [24].

According to this method, if the variance of the estimator (Equation 2.7) is the function to

optimize, and the boundary condition is Equation 2.1.3, the Lagrangian Lm(p) is expressed

as:

Lm(p) =

∫
(
f(x)

p(x)
)2p(x)dx− λ

∫
(p(x)dx− 1) (2.9)

To find the PDF that minimizes the variance, we need to solve the equation ∂Lm
∂p(x) = 0. For

the Chain rule, the derivative ∂Lm(p)
∂p(x) is equal to:

∂Lm(p)

∂p(x)
=
∂Lm(p)

∂x

∂x

∂p(x)
=
Lm′(p)

p′(x)
(2.10)

The first component to calculate is then Lm′(p):

Lm′(p) =
∂Lm(p)

∂x
=

∂

∂x

[ ∫
(
f(x)

p(x)
)2p(x)dx−λ(

∫
p(x)dx−1)

]
= (

f(x)

p(x)
)2p(x)−λ·p(x) (2.11)

The second component is simply p′(x). Combining all together, and setting ∂Lm(p)
∂x = 0:

(
(
f(x)

p(x)
)2p(x)− λ · p(x)

) 1

p′(x)
= 0 (2.12)

This means:

(
f(x)

p(x)
)2p(x)− λ · p(x) = 0 (2.13)

Finally, the PDF can be expressed as:

p(x) =
|f(x)|√

λ
(2.14)

For a detailed explanation of this derivation, we refer to [31, 8]. Equation 2.14 shows that,

when the PDF is proportional to f(x), the variance is minimized. Intuitively, since this is

not always possible, p(x) should match the integrand f(x) as closely as possible [8]. That is,

peaks and valleys in the function f(x) correspond to peaks and valleys in the function p(x).

This technique is called importance sampling and can greatly reduce the estimator variance,

which results in image noise. It is important to highlight that an incorrect PDF can result in

higher variance, so uniform sampling would be preferred in those cases where the integrand is

unknown. This concept is represented in Figure 2.3, where three different sampling methods
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are shown.

Figure 2.3: Comparing three different sampling importance functions

In Computer Graphics, Monte Carlo importance sampling can be applied to approximate

the integral equation in the rendering equation:∫
Li(x,−wi) · fr(x,wi, wo) · cos(θi) dwi (2.15)

2.1.4 Stochastic path tracing algorithms

Path tracing algorithms are a class of algorithms that simulate light bouncing to render a

three-dimensional scene. Even though multiple variants of the original procedure have been

implemented over the years, the standard set up is composed of three main components:

a virtual camera, a scene to render and a single or multiple light sources. The strategy

followed for ray scattering determines the efficiency of the algorithm. In this section, three

different strategies are explained: uniform sampling in the naive path tracer, cosine-weighted

importance sampling and NEE.

Naive Path Tracing

The simplest version of the algorithm attempts solving the rendering equation using basic

Monte Carlo integration, explained in detail in Section 2.1.3. The integral component of the

rendering equation (Equation 2.1) is evaluated by generating N random directions over the

unit hemisphere built on the point in the scene for which the radiance is computed iteratively.

Figure 2.4 shows two different paths scattered inside a scene. For each pixel, one or multiple

rays are traced from a predefined point representing the camera. The color value of that

pixel is then computed through the rendering equation to simulate global illumination. In

the image, the ray hits the scene in point p and the algorithm randomly chooses a direction

to extend the light path. This operation is repeated until the ray hits the light source, or a

stopping condition is met. Path γ bounces once before hitting the light source. Differently,

path Φ does not reach the light source. For this reason, since the value Le representing the
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Figure 2.4: Overview of the path tracing algorithm. From point p, two different paths are
traced. Path γ reaches the light, yielding a positive contribution to the pixel color. On the
other hand, path Φ stops before hitting the light and results in zero-contribution.

emitted radiance is zero, this path is said to have zero contribution. The color of the pixel

is the average of all the paths starting from p. Smaller area lights are harder to reach, and

this increases the amount of noise and black pixels generated in the image. One of the main

research areas in Computer Graphics, and the ambition of this work, is to reduce the number

of paths having zero contribution. Indeed, as one can infer, these paths lead to a significant

waste of computational power, since they need to be computed but do not account to the

final radiance.

The number of rays scattered inside each pixel is called SPP and the higher this number,

the more accurate the approximation of the integral. The next described approaches aim at

improving the image quality at constant or lower SPP.

Cosine-weighted importance sampling for Global Illumination

A simple optimization of the naive path tracing algorithm can be obtained through cosine-

weighted importance sampling. The mathematical framework of this variance reduction

method is illustrated in Section 3.1. As described previously, using the naive path tracing

algorithm rays are scattered following a random distribution over the hemisphere aligned by

the surface normal. Since the integrand (Equation 2.15), representing the reflected radiance,

depends on the cosine of the angle between the incoming ray and the surface normal, scat-

tering with uniform probability over the hemisphere is not efficient, as explained in Section

2.1.3. Indeed, the contribution of the incoming radiance is lower for those rays scattered with

higher θ angles. To prioritize those directions that yield higher contributions, we can generate

rays according to a probability distribution proportional to the rendering equation, thus to

the cosine of θ. As one can see in Figure 2.5, this technique results in more rays scattered
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towards the upper section of the hemisphere, while random sampling yields a uniform scat-

tering distribution.

Figure 2.5: Distribution of rays scattered over the hemisphere. On the left, rays are scattered
based on a uniform distribution. Here, rays are distributed evenly on the surface. On the
right, rays are scattered based on a PDF proportional to the cosine of the angle formed with
the surface normal. Here, it is possible to appreciate a higher density in the upper part of
the hemisphere.

It is essential to mention that cosine-weighted importance sampling does not affect the

number of paths with zero contribution. Indeed, the probability density function followed to

continue the path is independent of the light source position.

Next Event Estimation

As previously stated, cosine-weighted importance sampling ensures the probability density

function to follow the integrand in the rendering equation, but does not take into account the

position of light sources. On that account, convergence remains problematic for small light

sources. Moreover, since only paths that hit a light source contribute to the computation of

the radiance, a long path where no material with positive emittance was hit returns a radiance

equal to zero. Explicit light sampling, also known as Next Event Estimation, is a different

importance sampling technique developed to overcome these issues.

Figure 2.6 shows a schematic overview of the path tracing algorithm with the implement-

ation of explicit light sampling. The concept of NEE is based on the computation of direct

and indirect light contributions separately. The main difference with the naive path tracer is

that for every cast ray, one shadow ray is directly scattered towards the light source. This

requires to know the exact position of the emittance materials, and it is trivial for few light

sources, but becomes computationally very expensive for many light sources.

When computing the direct incident light at a specific point x in the scene, it is more

convenient to express the integral over the hemisphere above x as an integral over the visible

area seen from this point. If Ω is the solid angle subtended by an area A on the hemisphere

with radius r, its value is defined as:

Ω =
A

r2
(2.16)
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Figure 2.6: Overview of the path tracing algorithm with explicit light sampling

This relation allows the approximation of the solid angle subtended by a projected surface

area, such as a light source. Specifically, we are interested in the transformation of a hemi-

spherical integral into an area integral. Using Definition (2.16), the differential solid angle dw

can be expressed as:

dw =
cosθdA

d2
(2.17)

where cosθdA is the differential projected area, and d2 is the distance between the point P

and a point on the light surface.

Figure 2.7: Conversion from differential solid angle to differential projected surface

This element, combined with the rendering equation, gives the contribution of the direct

light Lo,d (Equation 2.18). The integral is estimated choosing a random point Q uniformly

distributed on the surface of the light source.

Lo,d ≈ Le(x,wo) · fr(x,wi, wo)
A · cos(θiL)

r2
(2.18)

In the equation, cosθiL is the cosine of the angle between the normal to the light surface
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Figure 2.8: On the left, only direct light contribution. In the middle, only indirect light
contribution. On the right, Next Event Estimation with both contributions summed. Every
image is rendered with 1024 SPP.

and the vector linking point P to point Q. Since we only want the direct light contribution,

the algorithm returns no radiance if the light is not visible from point P . The contribution

of the indirect light is given by the rendering equation after the first bounce into the scene.

These two values of radiance are then summed, and the final scene is returned. Figure 2.8

shows the two different images produced by this procedure, that takes into account both the

contribution of direct and reflected light. This approach is widely used in the Industry not

only for its simplicity and faster convergence, but also because it allows managing direct and

reflected contributions separately. It also adds value for artistic purposes, and can help to

debug the path tracer.

Among all the techniques used so far, NEE is the one that results in the lowest image

noise. Indeed, since for each point in the scene the light source is directly sampled, rays

always hit a light area if direct illumination exists for that point. This is the reason why the

reference images used for Image Quality Assessment are obtained with this method.

Both cosine-weighted importance sampling and NEE do not consider blockers between

the point for which the integration is computed and the light source. This inevitably leads

to a high number of scattered rays with zero contribution, unless visibility is considered. The

goal of this work is to implement a technique based on Reinforcement Learning to guide the

path towards the light taking blockers into account.

2.1.5 Full-reference Image Quality Assessment

Image Quality Assessment (IQA) is a field composed of different methods to predict perceived

image quality. It is mainly divided into two research areas: reference-based evaluation, also

called full-reference (FR) IQA, and no-reference evaluation. While the former approach needs

a base image, the latter estimates image quality without any reference. In this work, we assess

the quality of the generated images with reference-based evaluation methods, namely MSE

and SSIM. The reference images are generated with Next event estimation using 5120 SPP.
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MSE is still today one of the most common metrics to evaluate the quality of an image. It

consists in calculating the average of the squared differences between all the reference pixels

and the target ones.

MSE(x, y) =
1

m · n

m−1∑
i=0

j−1∑
j=0

[x(i, j)− y(i, j)]2 (2.19)

In the formula:

• m,n are respectively the height and width of the images

• x, y are respectively the test and reference images

The main assumption behind the use of this evaluator is that the loss of perceptual quality

is directly related to the error signal. Wang et al. [45] proved that this hypothesis does not

hold, generating pictures with a very similar MSE score, but very different perceptually. To

overcome this limitation, many perceptual image quality assessment approaches have been

developed.

To compute the SSIM, structural information is extracted from the image based on the

dependencies among spatially proximate pixels. Then, changes in perceived structural in-

formation are evaluated and compared.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(2.20)

In the formula:

• x, y are respectively the test and the reference image

• µx is the average of x

• µy is the average of y

• σ2
x is the variance of x

• σ2
y is the average of y

• σ2
xy is the covariance of x and y

• c1, c2 are two variables to stabilize the division when the denominator is very small

The SSIM ranges between -1 and +1. The lower bound indicates that no similarity can be

computed between the two images, while +1 is only scored when the test and reference images

are the same. We argue that this method can perform better for our tasks, and we employ

it in this work as an alternative evaluation metrics to the MSE, commonly used in Graphics

research.
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2.2 Reinforcement Learning for Path Tracing

2.2.1 Key concepts

Reinforcement Learning (RL) is a family of Machine Learning algorithms, and its goal is

to find a policy that maximizes a reward signal [38]. The main difference with traditional

supervised learning is the significantly less amount of information available to the system [12].

The environment where RL operates is simulated as a Markov Decision Process (MDP).

Within this framework, the agent is the decision maker that interacts with the environment,

performing actions and receiving numerical rewards. An MDP is defined by:

• a set of possible states S characterizing the agent in the environment.

• a set of possible actions A.

• the reward function R(s).

• (optionally) a transition model T (s,a,s’).

The role of the reward function is to provide a quantitative measure of the desirability of

some states compared to others. A policy π(a|s) defines the stochastic agent’s behavior, and

is a mapping from each state s ∈ S to the probability distribution of all the possible actions

{a1, a2, ...an} ∈ A. A very important concept in RL is the balance between exploration vs.

exploitation. In order to gather the necessary information, the algorithm needs to explore

the environment as much as possible. Usually, the policy is designed to maximize exploration

during the initial phase of the training. Over time, the policy starts to take advantage of the

gathered information, prioritizing the exploitation of this knowledge over random exploration.

A practical application of this notion is described later on in this section. To reach the optimal

policy, a large number of different approaches have been derived over the last decade according

to the configuration of the environment, and the type of policy to optimize.

One of the most famous RL methods is Q-Learning. This approach was developed by

Prof. Watkins [46] and is an off-policy tabular learning method, meaning that Q(s, a) will

eventually converge towards its real value regardless of the policy that is being followed.

To find the optimal policy, the value for each state-action pair, called Q-value, is updated

following the Bellman equation:

Q′(s, a) = Q(s, a) + α · (r + γ · argmaxa′Q(s′, a′)−Q(s, a)) (2.21)

where r is the reward for taking the action a resulting in a transition to a future state s′, γ

the discount rate, and Q(s, a) is the Q-function, often referred to as action-value function.

Q-Learning is a model-free method, because it does not need the transition function T (s,a,s’)

for the MDP environment.

In this work, we use the Bellman equation formalized for continuous action space, which is

structurally similar to the rendering equation:
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Q′(s, a) = Q(s, a) + α · (r + γ

∫
maxa′Q(s′, a′)da′ −Q(s, a)) (2.22)

Likewise supervised learning, Reinforcement Learning requires a target in order to compute

the loss function. In Q-learning, if s is not the terminal state, the target is defined as:

target = r + γ · argmaxa′Q(s′, a′) (2.23)

In case s is the terminal state, which means that by design the episode ends for that iteration,

the target is:

target = r (2.24)

As one can deduce from Equations 2.23,2.24 the algorithm is always trained with the estim-

ation of future expected rewards except for the terminal state. In this event, the target is

equal to the reward obtained, and that is the only instance when it corresponds to the ground

truth.

Q-Learning proved to work well in many implementations where the state-space and

action-space are discrete and low dimensional. The need for limited input and output size

stems from the fact that the algorithm stores information in a table containing every com-

bination of the action-state pairs. Deep Reinforcement Learning was introduced to solve this

curse of dimensionality. Mnih et al. proved that a Deep Neural Network, combined with the

principles of Q-learning, could tackle and outperform humans in multiple tasks, even keep-

ing the same architecture for different problems [26]. In Deep Q-Learning, a fully connected

artificial neural network approximates the Q-function. Using a gradient descent method, the

weights θ of the network are updated to minimize a loss function. A common loss function

J(θ) is the MSE of the Temporal Difference (TD) error between the target and the current

estimate of Q-value:

J(θ) = [(r + γmaxa′Q(s′, a′))−Q(s, a)]2 (2.25)

Previously, we mentioned the concept of exploration vs. exploitation. In practice, this

can be achieved by a decaying ε policy. This technique, formulated by DeepMind researchers,

works as follows: first of all, a random quantity q in the range [0, 1] is uniformly sampled.

Then, if q is lower than a decaying ε value, a random action is selected, hence prioritizing

exploration. Otherwise, in case q is higher than ε, the action predicted by the policy is chosen,

exploiting the knowledge acquired. It is trivial to observe that, if ε is initialized to 1, the

policy most likely chooses to explore during the initial phase of the training, and gradually

increases the importance of the policy over time. The decaying ratio is a critical parameter,

and usually it is set to lead to an exponential decrement.

In Deep Q-Learning, the action-value function Q(s, a) is approximated by a Deep Neural

Network, different from Q-learning, where Q-values are stored in a state-action matrix. This
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feature entails two significant differences during the action-value iteration update. The first

distinction is the exact values cannot be retrieved by a look-up table, as in tabular Q-learning,

but can only be approximated. Hence, there is no guarantee of convergence [3]. The second

difference consists in a simultaneous update of multiple state-action values for each timestamp.

In Q-Learning this does not happen, since only one state-action value is updated each time.

This characteristic fosters a situation analogous to a dog chasing its own tail: every time the

network acts to reduce the TD error, the target moves as a result of its own action. To tackle

this and additional issues, we implemented two semi-standard solutions: target network and

experience replay.

The introduction of a target network is primarily used to stabilize the learning. In the

standard Deep Q-Learning procedure, training to predict the expected reward for the next

state and updating the value of executing an action in the current state are achieved by the

same network. An improved variation of this algorithm is realized performing backpropaga-

tion by the main network and using a copy of it, the target network, to estimate the expected

reward related to the next state. The weights of the main network are copied to the target

network every n iterations. This technique, applied to our work, proved to improve conver-

gence, and reduce the image noise. The principal drawback of target networks is that they

slow down learning because of the delayed value function updates [22].

Lack of convergence is only one among many issues that can occur when dealing with Deep

Q-Network (DQN). In RL methods, catastrophic forgetting refers to the tendency of a network

to forget the acquired knowledge of previously learned tasks. To avoid this, experience replay

is used [27]. This technique consists in collecting a tuple of < st+1, at, rt, st+1 > at the end

of each iteration, where t is the current timestamp. Then, a fixed-sized batch of these entries

is randomly sampled and the network is trained. This procedure guarantees to train on past

experiences and reduce the bias due to the high correlation between subsequent observations.

Taking into consideration the improvements presented so far, Deep Q-Learning proved to be

suitable for problems characterized by a high-dimensional state and action space.

2.2.2 Q-Learning for importance sampling

In 2018, Dahm and Keller proposed a novel approach to optimize the light transport simula-

tion with a Q-Learning algorithm [6]. The rationale behind it is that traditional techniques,

such as cosine-weighted Monte Carlo importance sampling, do not take into account the po-

sition of the light source. The proposed approach, on the contrary, attempts at learning the

incident radiance in each point of the scene, and guiding the path towards those voxels with

the highest expected radiance. It is based on the correspondence between the Bellman equa-

tion for continuous action space 2.22, and the rendering equation, described in Section 2.1.2.

As one can see, both equations display similarities that can be investigated to match terms.

Specifically, this is obtained linking the reward with the emitted radiance Le(x,wi) = r(s, a),
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and the incoming radiance with the Q-value in the future hitting point Li(x,−wi) = Q(y, wi).

Thus, the formula for updating the Q-value is:

Q′(x,w) = (1− α) ·Q(x,w) + α
(
Le(y,−wi) +

∫
D
Q(y, wi)fs(y, wi,−w)cosθi dwi

)
(2.26)

where α is the learning rate, y is the position of the future hitting point, and cosθi is the cosine

of the angle between the surface of the future hitting point and the scattering ray for each

specific action. The resulting images present lower noise levels compared to those generated

with cosine-weighted importance sampling, proving the potential of such an approach. Being

Q-learning a tabular method, one of its main limitations is the need for the state-action matrix

to be limited in size. The discretization of the input space leads to significant information loss

and incorrect results. Indeed, the policy would result in the same distribution of actions for

two points belonging to the same state, represented by physical tiles in the real environment.

Figure 2.9 shows why this is a limitation: point A and B belong to the same state s, thus rays

scattered from these two points follow the same policy. The scattering is performed correctly

from point A, but not from point B, due to the distance between them.

Figure 2.9: Visualization of rays scattering from two different points belonging to the same
state. Since the direction of the scattered ray depends on the same policy, the distance
between results in different outcomes. In the case A, the ray hits the light source, thus
rewarding the agent. In the case B, the ray does not hit the light source, even though the
same action is chosen for the same state.

2.2.3 Deep Neural Networks for path guiding

The major limitation in the use of Q-Learning to approximate the incident radiance function is

the need for a discrete input space. To overcome this restriction, Dahm and Keller investigated

a possible method to approximate the solution of the integral in the rendering equation

using Deep Learning [21]. As the authors stated, learning the incident radiance was not

very practical due to the difficulty in mapping correctly continuous states into a probability

distribution over actions in such a setting. Instead, the scene is discretized in a finite number
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of states, and multiple fully connected Artificial Neural Networks (ANN) are trained on each of

them. The input for each network encodes the relative position inside a voxel, the incoming ray

and the orientation of the voxel. The output of the networks is not the radiance estimation,

as in the aforementioned work, but the RGB color estimation. This approach is strongly

dependent on the geometry and the size of the environment, and it is computationally very

expensive because of the multiple networks necessary. This work proved that it is possible to

learn the importance of light sources in settings with multiple emitting surfaces. While their

results are very promising, additional research needs to be done to reduce the computation

necessary to apply deep neural networks in path tracing. Our methods extend this work,

evaluating the local light path for importance sampling, in order to learn and approximate

the incident radiance in every point.

Additional use ANN for variance reduction was applied by Zheng et al. [50] to learn

importance sampling in the primary sample space. In this research, training samples are first

obtained from the renderer, and used to generate a target density in the primary sample

space. Samples from this density are then drawn and provided to the renderer for path

tracing. Similarly to the majority of the research done in Graphics, this method focuses on

the distribution of initial samples in the scene.

To our knowledge, the only paper that presents a solution to the approximation of the

incident radiance function in a scene with Deep Neural Networks was published by Müller et

al. at the beginning of our work. Authors introduced the concept of NPG [29], a methodology

that leverages conditional probability densities learned with Deep neural Networks for path

guiding. The first building block of the procedure is to apply NICE [7] to transform data to

learn the non-linear distribution of the incident radiance function faster. Data generated by

this operation are then encoded through the one-blob encoder, which is described as a gen-

eralization of the one-hot encoder with no information loss. This encoding method consists

in placing a kernel, such as a Gaussian kernel with n-bins (σ = 1
n), at a specific quantity and

discretizing it. The encoding generates an array whose size is equal to the number of bins,

containing the kernel value in each bin. This procedure is based on the so-called kernel trick

[48], and allows expressing non-linear functions over the coordinates much more easily. In

our work, encoding the coordinates via the One-Blob encoding helped achieve better results.

The advantage of NPG is the ability to learn the distribution of the incident radiance over a

continuous domain, while our proposed approach is limited by the discretization of the action

space. Still, NPG is a very computationally expensive approach that consists of multiple

modules, while Deep Q-Learning only embeds a single Deep Neural Network.
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Proposed methods

In this chapter, the main steps of our research are outlined at a high level and linked to

their theoretical framework. We first lay out the steps followed to apply importance sampling

in practice. Here, we also describe how to generate random samples following a specific

probability distribution function from uniform generators. Then, we present how the Q-

learning algorithm is used to produce a PDF to follow for importance sampling. Finally,

we describe how to extend the aforementioned procedure with Deep Q-Learning, and briefly

picture the challenges it entails.

3.1 Cosine-weighted importance sampling

In Section 2.1.4, we presented Monte Carlo integration and explained how importance sampling

can help reduce the variance when solving an integral through stochastic samples. In this

section, we describe how this technique is adopted in our domain.

To estimate the value of an integral as close as possible to the arithmetic solution, it is

essential to get samples from those regions that lead to the highest contribution. As a first

step, the approximation of the intractable rendering equation requires to find a proper PDF,

which will be used to generate samples. Function 2.1 needs to be expressed in dependency of

the angle θ; a common technique in Computer Graphics is to define it as:

p(w) = f(θ) =
cosθ

π
(3.1)

The mathematical derivation of this PDF is reported in Appendix A.2. The reason why this

PDF is often chosen for calculate importance sampling is that it is proportional to cosθ in

the rendering equation. Thus, following the equation closely, it helps to reduce the variance,

as explained in Section 2.1.3. For ideal Lambertian surfaces, the BRDF represented in the

rendering equation as fr(x,wi, wo) is equal to ρ
π , where ρ is the radiance term. Hence, the

integral component of the rendering equation can be approximated using Monte Carlo integ-
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ration with the PDF defined in Equation 3.1. This operation also allows micro-optimization

of the integrand as follows:

∫
Li(x,wi) · fr(x,wi, wo) · cos(θi) dwi ≈

1

N

N−1∑
j

Li(xj , wij ) · fr(xj , wij , woj ) · cosθ
p(wij )

=
1

N

N−1∑
j

Li(xj , wij ) · ρj

(3.2)

Once the PDF is defined, the objective is to sample random directions wij following this func-

tion. In order to do so, it is convenient to express the differential solid angle dw in spherical

coordinates. This operation is obtained combining the definition of the differential solid angle

with the differential area of the segment of a unit sphere dA according to trigonometry:

dw =
dA

r2
= sinθ dθ dϕ (3.3)

where θ is the co-latitude of the sphere, ϕ the longitude, and r the radius of the sphere. These

notations are graphically reported in Figure 2.1.

The probability density function can be expressed in polar spherical coordinates as well:

p(w) dw = p(θ, ϕ)dθ dϕ (3.4)

and combining it with (3.3), we obtain:

p(θ, φ) = p(w)sinθ (3.5)

This equation represents the transformation from the distribution expressed in terms of spher-

ical coordinates to solid angle. In order to draw samples according to a non-uniform density,

such as a cosine-weighted function, we first need to express the joint probability distribution

p(θ, ϕ) as two different probability functions only dependent on θ and ϕ. To compute them,

we calculate the marginal and conditional PDF for the two different variables.

p(θ) =

∫ 2π

0
p(θ, ϕ)dϕ =

∫ 2π

0
p(w) sinθdϕ = 2π sinθ f(θ) = 2sinθcosθ (3.6)

p(ϕ) =
p(θ, ϕ)

p(θ)
=

1

2π
(3.7)

Equation 3.7 reveals that the PDF in terms of the angle ϕ is uniform.

As explained at the beginning of Section 3.1, the goal of this procedure is to generate random

samples from a specific non-uniform density, namely a cosine-weighted PDF. Since generating

uniformly-distributed samples is computationally efficient, we need to draw samples based on

the distributions p(θ) and p(ϕ) from a set of uniform random values ξ ∈ [0, 1]. To do so,
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we apply the inverse Cumulative Density Function (CDF) sampling technique . First, we

calculate the CDF for both variables:

ξ1 =

∫ ϕ

0
p(ϕ)dϕ =

ϕ

2π
(3.8)

ξ2 =

∫ θ

0
p(θ)dθ =

∫ θ

0
2 sinθcosθdθ = sin2θ = 1− cos2θ (3.9)

These equations relate uniformly-distributed values to our chosen variables. From those, it is

finally possible to sample and express ϕ and cosθ as:

ϕ = 2πξ1 (3.10)

cosθ =
√

1− ξ2 (3.11)

In order to draw randomly generated samples with the chosen probability density functions

for our use case, we need to transform Cartesian coordinates into spherical coordinates and

express them as functions of the uniformly-distributed ξ1 and ξ2 just retrieved.


x = cosϕsinθ = cos (2πξ1)

√
ξ2

y = sinϕsinθ = sin (2πξ1)
√
ξ2

z = cosθ =
√

1− ξ2

(3.12)

This system of equations computes the three-dimensional coordinates (x, y, z) of a point on

the surface of a unit hemisphere, chosen according to a distribution depending on cosθ and

sampled using a uniformly-distributed generator ξ. Once the coordinates are calculated, a

ray is scattered from the center of the hemisphere through this point. This operation is called

cosine-weighted importance sampling, and applied to the rendering equation guarantees, in

general, a faster convergence compared to sampling from a constant probability density func-

tion. Indeed, more rays are scattered towards the upper part of the hemisphere, where the

radiance contribution is higher since it depends on cosθ.

To compare this strategy with a uniform sampling over the hemisphere, we also calculate

the Cartesian coordinates setting p (ω) = 1
2π . As proven in Appendix A.1, this is the PDF for

uniform sampling on a hemisphere. Following the same procedure already applied to compute

the coordinates for cosine weighted importance sampling, the system of equations obtained

is: 
x = cosϕsinθ = cos (2πξ1)

√
ξ2 (2− ξ2)

y = sinϕsinθ = sin (2πξ1)
√
ξ2 (2− ξ2)

z = cosθ = 1− ξ2

(3.13)
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3.2 Q-Learning

3.2.1 Concept

The methodology applied for the implementation of the Q-learning algorithm follows the

work conducted by Dahm et al.[6]. The objective of this approach is to find light transport

paths that lead to significant contributions for the image and prioritize them. In other

words, the objective is to guide rays towards the light sources to minimize their number

with zero contribution. This approach is based on the correspondence between the Bellman

equation for continuous action space (Equation 2.22), and the rendering equation, described

in Section 2.1.2. The resulting equation (Equation 2.26) is used to compute the normalized

Q-values for importance sampling and represents the probability density function based on

which a specific action is chosen. Indeed, instead of following a greedy approach and always

choosing the maximum Q-value per state, actions are chosen proportionally to the Q-values.

To understand how this approach works in practice, we first need to define two important

elements of our MDP framework: the state and the action space.

3.2.2 State and action space

Due to the limitation of the algorithm, both the state and action space characterizing our

setting need to be discretized. The states in our Q-learning approach are represented by a

regular grid in the scene. Each tile in the environment represents a state, and its dimension

affects the quality of the final image, as well as the duration of the training phase. Figure 3.1

shows an example of states generated in our environment.

Figure 3.1: Visualization of the states in the scene. Colors in this figure do not hold any
intrinsic meaning, but they are only used to differentiate the states.

The actions selected from the distribution mapped to each state represent the possible

scattering discretized directions. Based on the aforementioned definition, actions are a finite
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Figure 3.2: Physical representation of the actions. On the left, the division of the hemisphere
in equally sized patches. On the right, the notation used to derive the area of the patches,
starting from the spherical zone.

number of equally-sized patches in the hemisphere aligned with the surface normal. In Figure

3.2, one can see the physical representation of the actions. To divide the hemisphere in equally

sized patches, we first consider the integral formulation of the surface area of the hemisphere

in spherical coordinate:

A = 2πR

∫ θ2

θ1
Rsinθdθ = 2πR[Rcosθ]θ2θ1 (3.14)

Equation 3.14 shows that the area depends on Rcosθ, which in Figure 3.2 is the height h

of the spherical zone. For this reason, if the hemisphere is divided into spherical zones with

equal height, the surfaces of these zones are the same. Furthermore, we can split each zone

into the same amount of spherical segments to obtain equally sized patches.

3.2.3 PDF for Q-values importance sampling

As explained at the beginning of this section, rays are scattered proportionally to the value

function. For this reason, the probability of choosing a specific action a out of all the possible

actions is the normalized Q-value for that particular state-action pair:

pdf1 =
Q(s, a)∑N

n=0Q(s, an)
(3.15)

Figure 3.3.a reveals a graphical intuition of this variable: pdf1 represents the probability of

choosing a specific patch, colored in red in the picture, over all the possible patches. The

Q-values cannot go below a certain small positive threshold, since all the values need to be

non-zero to guarantee exploration and convergence. As far as exploration is possible for all

the actions, Q-learning has been proven to converge given an infinite amount of iterations

[15, 4].
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Algorithm 1: Path tracing based on Q-values importance sampling, following Dahm
and Keller’s approach [6]. As in stochastic ray tracing, rays are shot from the camera
into the scene. The traditional approach is modified since a Q-function is updated
for importance sampling during the image generation. The scattering directions are
chosen proportionally to the Q-values.

function QPathTracer(camera, scene)
for pixel in screen do

for sample← 0 to SPP do
ray ← initializePrimaryRay(camera)
for j ← 0 to ∞ do

(ns, n, fs, Le)← intersectScene(ray, scene) // ns: next state, n:
normal

if noIntersection(ray) or LightIntersected(ray) then
radiancesample ← Le

end if
if j > 0 then

(fs, pdf, wns)← scatterProportionalToQ(ns) // ws: action next
state
Q′(s, ws) = (1− α) ·Q(s, ws) + α(Le(ns,wns) +∑n

k=0Q(ns,wns)fs(ns,ws, wns)cosθns)
end if

end for
ray ← (ns,wns)
radiancesample ← computeRadiance(fs, n, pdf)
s← ns; ws ← wns // s: state, ws: action old state

end for
end for

end function

Figure 3.3: Graphical intuition of the two components contributing to the PDF for Q-values
importance sampling. Figure a) represents pdf1, the probability of choosing a specific patch,
colored in red in the picture, over all the possible patches. Figure b) is related to pdf2, the
probability of scattering a ray through a point p inside the chosen patch.

The PDF formalized in Equation 3.15 does not completely describe the overall probability

of scattering a ray based on the procedure conceived in [6]. Indeed, once an action is selected,

a ray is scattered accordingly through a point lying on the surface of the hemisphere. This

point is chosen via uniform sampling the area on the hemisphere mapped to the selected
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action. This technique avoids biases in the path tracer because it introduces randomness in

the process. The probability of uniform sampling a patch is equal to the PDF for uniform

sampling on a hemisphere divided by the number of total patches:

pdf2 =
N

2π
(3.16)

where N is the number of actions. A detailed derivation of the PDF for uniform sampling on

a hemisphere is reported in Appendix A. A graphical intuition of this quantity is displayed in

Figure 3.3.b. The PDF used for Q-values-weighted importance sampling for action a in state

s is obtained combining 3.15 and 3.16.

pdf =
Q(s, wa) ·N∑N
n=0Q(s, wn) · 2π

(3.17)

The main difference with the previous work is the separation between a learning phase

and an active phase. Indeed, while Dahm et al. performed on-line training, our version

first preprocesses the tabular policy, and later uses the computed policy to generate the

actual image. This operation allows faster results and less bias in the resulting image. The

rationale behind this is that the vanishing learning rate decreases exponentially with each

state-action visit. After some time, the Q-function converges because the adjustment of the

Q-values becomes very small. Thus, updating the Q-function for the whole image generation

is pointless since no significant changes are made to the policy. This concept is shown in

Section 4.2, Figure 4.2 where the convergence of the value function after a certain number of

episodes is displayed. The number of rays to scatter in order to reach a satisfactory policy is

determined empirically and treated as a hyperparameter.

3.2.4 Hyperparameters

There are only three hyperparameters to set. The first one is the learning rate α, which in

our work is defined as:

α =
1

1 + number visits(s, a)
(3.18)

where number visits(s, a) is a counter taking into account the number of visits to each state-

action pair. The vanishing learning rate is a common practice used in Reinforcement Learning,

and this specific definition was explored by Keller et al. in similar work on consistency in the

light transport simulation [20]. The second parameter is the dimension of the tiles representing

the states. Since rays are scattered all over the state surface based on the same Q-value, a

finer grid leads to more reliable results. The same reasoning applies to the third parameter,

the number of actions. A small number of actions means that the hemisphere is divided into

bigger patches, scattering the ray towards a wider area.
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Algorithm 2: Path tracing based on Deep Q-Learning. As in stochastic ray tracing,
rays are shot from the camera into the scene. The traditional approach is modified
since a Q-function is updated for importance sampling during the image generation.
The scattering directions are chosen proportionally to the Q-values.

function QPathTracer(camera, scene)
for pixel in screen do

for sample← 0 to SPP do
ray ← initializePrimaryRay(camera)
for j ← 0 to ∞ do

(ns, n, fs, Le)← intersectScene(ray, scene) // ns: next state, n:
normal

if noIntersection(ray) or LightIntersected(ray) then
radiancesample ← Le

end if
if j > 0 then

(fs, pdf, wns)← scatterProportionalToQ(ns) // ws: action next
state
ns enc← oneBlobEncoder(ns)
input← createInput(ns enc, n)
Qs ← network.predictQ(old input)
target Q← target network.predictQ(input)
∇Q← (Le + cosθ ·Qs ∗ fs)− target Q
network.train(∇Q)

end if
end for
ε← ε · decay
target network ← network
ray ← (ns,wns)
radiancesample ← computeRadiance(fs, n, pdf)
s← ns; ws ← wns; input← old input // s: state, ws: action old state

end for
end for

end function

3.3 Deep Q-Learning

3.3.1 Concept

Deep Q-Learning, explained in Section 2.2, is an extension of the classical Q-Learning ap-

proach and for this reason it follows the same structure. The algorithm implemented is

improved with the use of a target network and experience replay, both explained in Section

2.2. While the target network technique proved to lead to better results, standard experience

replay was tested but did not help significantly. The reason for this might be that consecutive

states are highly uncorrelated. Since standard experience replay is usually employed to reduce

the linear correlation in the input space, this technique didn’t provide any meaningful advant-

ages. Instead, we employed an interesting variation of experience replay, which is presented in

a recent work by Giannakopoulos et al. [9]. Here, the authors explore a methodology to deal
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Figure 3.4: Pipeline showing the input pre-processing of the deep neural network. This pro-
cedure consists in coordinates normalization, One-Blob encoding, and finally concatenation
of the resulting values in a single space vector.

with sparse episodic rewards. Specifically, the setting analyzed assumes a single reward given

at the end of each episode, defined as a series of observations O = {(s1, a1), (s2, a2)...(sn, an)},
where sn is the terminal state. Their approach first consists in storing a batch of multiple

< st, at, rt, st+1 > tuples encountered during an episode. Then, experience replay is applied to

the whole sequence of tuples characterizing the randomly sampled episode. The application

of this method to path tracing results in slight improvements, because it helps to deal with

sparse and delayed rewards.

Due to the lack of computational resources, the policy is learned during the generation of

a low-resolution image, usually 128x128. The same policy is then applied to high-resolution

images to compute the final results.

3.3.2 State and action space

The rationale behind the use of Deep Q-Learning is its ability to handle a continuous state

space. This aspect made this algorithm a popular choice for solving tasks in those applications,

such as Robotics or Physics simulation, where coordinates in the three-dimensional space

can be processed as continuous variables. In our work, the input of the DQN is not the

combination of raw coordinates, but rather a pre-processed version of them. Specifically, the

coordinates are first normalized; even though this operation is not always necessary, because

of the ability of the ANN to scale the magnitude of the input variables, it is proven to help

convergence [14]. Then, an encoding method recently proposed by Müller et al. is applied to

the normalized vector. The authors introduced the One-Blob encoding, described in Section

2.2.3. This encoding technique is applied to the ANN input, which in our case is composed of

the normalized x, y and z coordinates. Along with the aforementioned methods, this expedient

further improved the final results. Figure 3.4 shows how raw coordinates are preprocessed

before being received by the Deep Neural Network.
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3.3.3 Hyperparameters

Correct hyperparametrization is a complex, delicate and crucial aspect of gradient-based

approaches. Choosing the correct parameters for a given task is an open problem. To find

the optimal architecture of the network, we need to find the proper number of layers and

neurons. This operation follows a trial-and-error approach, starting from a low number of

hidden layers and neurons, and increasing them depending on the obtained results. The core

of gradient descent methods is to minimize the loss function, moving the parameters θ towards

the negative gradient w.r.t the loss function. The learning rate determines to what extent we

are adjusting the network parameters. As for the number of neurons and layers, this value is

chosen via trial-and-error.

The hyperparametrization of the network’s topology is even more involved because it

strongly depends on the chosen optimizer. This function determines how weight parameters

changes during backpropagation, and it takes into account multiple elements such as the

learning rate and momentum. Our chosen optimizer is Adam [23], because it adapts the

learning rate to the input parameters. As mentioned in Section 3.2, a common strategy to

improve convergence is to set a vanishing learning rate (Equation 3.18), which is dependent on

the number of visits to each state-action pair. Even though this is not possible in a continuous

state space, where there are no discrete states that are constantly visited, we partially replace

the benefits of the vanishing behavior with Adam’s learning rate adaptation.

In order to ensure non-linearity in the training process, each layer needs to be mapped to

an activation function. In our application, the selected one is Rectified Linear Unit (ReLU)

[11]. ReLU is an activation function that works by thresholding the output of a hidden layer at

0, i.e g(x) = max(0, x). This algorithm has an important advantage besides the introduction

of non-linearity: its output is not limited to a specific range, as it happens using different

activations, and this suits the goal of our network; we want to learn the incident radiance in

each point of the scene, and avoid an upper and lower boundary of the learned values that

would introduce bias in the rendering.

In Section 2.2, the concept of decaying ε policy was defined. The strategy described, as it

is often used in Deep Q-Learning, is to decrease the ε value exponentially. In our work, the

ε is decreased linearly in order to extend the exploration time. This approach is justified by

the need to approximate the incident radiance for all the actions, and not only for those that

maximize the reward signal.

The last hyperparameter is the number of Gaussian bins to encode the input through

the One-Blob encoding. Even though it is true that increasing the input dimensionality can

significantly help the network expressing non-linear functions, it may be harder to find the

global optimum of the loss function when the input vector space is too big. The trade-off is

reached via trial and error.
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Experimental setup and Results

In this chapter, we first describe the different scenes used to compare the algorithms and the

details of our implementation. Then, we present the results from two different perspectives:

Section 4.2 focuses on the algorithmic convergence of the two Reinforcement Learning ap-

proaches, Q-Learning and Deep Q-Learning, while Section 4.3.2 considers the Image Quality

Assessment.

4.1 Setup

The methodology explained in the previous chapter has been applied to three different scenes,

shown in Figure 4.1.

Figure 4.1: Scenes designed to compare the path tracing algorithms. The different light pos-
ition introduces increasing challenges for the path tracer. On the left (Box), the light source
is directly reachable by the majority of coordinates in the scene. In the middle (Sunrise),
the light source is partially blocked, but it can still be directly reached by a relevant set of
coordinates . On the right (Door), a door blocks the majority of points to directly reach the
light.

The different light surfaces and positions in these scenes have been designed to introduce
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increasing challenges for the path tracer. The characteristics of these configurations are

outlined as follows:

• Box: the first scene from the left is the simplest one and the fastest to render. The

light is directly reachable from almost every point in the environment. This results in a

bright image, where few soft shadows are present. It’s interesting to notice the red and

green reflections on the sides of the cubes.

• Sunrise: in the second scene, the light source has a small surface and it is partially

blocked by an obstacle, that prevents a significant amount of rays from reaching it

directly. Nevertheless, the points on the right side of the scene can directly reach the

light source.

• Door: the last scene is the hardest to render, even though it features the biggest light

source area. Indeed, the light is almost completely blocked by a door and can only be

reached through a narrow opening. The highly-stochasticity introduced by the state

and action space discretization lowers the chances to reach the light-emitting surfaces

despite the choice of best actions. This issue is detailed in Chapter 5.

In the last two cases, only a very limited percentage of rays would reach the light source if

scattered according to a random distribution. Since the main contribution is given by indirect

illumination (Section 2.1.4), path guiding can be very beneficial.

4.2 Results: An algorithmic perspective

4.2.1 Analysis of the selected parameters for Q-Learning

Section 3.2.2 reports a high-level description of the states and actions in the proposed methods.

In this section, we explain the details of these values in our implementation of Q-Learning.

Specifically, each state s ∈ S ⊂ R6 is identified by the 3 normalized coordinates of the hit

point and by the 3 coordinates of the surface normal; the virtual scene is discretized in 3644

states in total. Each state is mapped to 72 actions, a ∈ A ⊂ R which represent the scattering

directions from the center of the hemisphere aligned by the surface normal.

The learning process is stopped after that 3 rays are shot through every pixel in the image

at 128x128 resolution. The amount of episodes for training is a hyperparameter, and 3 passes

prove to perform well in the first scene. The main assumption of stopping the training after

3 passes is based on the fact that Q-values for every state in the scene converge on average

at the same rate. Since the vanishing learning rate decreases by the same amount for all the

states, this hypothesis is reasonable. We decided to keep the same number of passes for every

scene, even if Door and Sunrise are more complex than Box, and additional training episodes

might be necessary. In Chapter 5, we describe the rationale and consequences of this choice.

Since we apply the same reasoning when Deep Q-Learning is employed, we believe that the
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Figure 4.2: Evolution of the Q-values during the Q-Learning training process for a specific
state. In the plot, the Q-values against the number of Q-updates are shown. Every time the
state is visited, the Q-values are updated. As every line in the plot refers to a specific action,
there are 72 lines in total. The legend shows the 4 actions resulting in the highest values
in the last iteration. It is possible to observe a satisfactory Q-values convergence due to the
vanishing learning rate after about 400 updates, or 3 rays samples inside every pixel of an
image at 128x128 resolution.

comparison is still fair and unbiased.

Figure 4.2 shows the update of the Q-values for one specific state, referred to as sQ, during

3 passes. As one can see, all the Q-values converge after about 400 updates. The two best

actions in the image, colored in blue and yellow in the plot, converge towards 10. This value

represents the cumulative expected reward that the agent would obtain choosing one of these

two actions for that specific state. In Section 2.2.2, we stated that the reward r ∈ R obtained

when the scattered ray hits a light source is equal to its emitted radiance Le(x, ω). In our

experiments, the emitted radiance Le is set to 12 for light sources and 0 otherwise, thus the

domain of the reward space R is formalized as R ⊂ {0, 12}. Since the maximum reward

that the agent can obtain from the MDP environment is 12, we can deduce that an expected

reward close to 10 presumes a high probability of reaching the light source. Moreover, it is

important to point out that the Q-values adopted for importance sampling cannot be null,

as explained in Section 3.2.1. Therefore, a threshold equal to 0.1 is set and Q-values smaller

than the threshold are automatically replaced with 0.1. This way, the full exploration of the

action space is guaranteed. Taking into account that sampling is proportional to the value

function Q(s, a), the actions that lead to the highest expected reward, mapped to Q-values

approximately equal to 10, are 100 times more likely to be chosen by the policy π(a|s) over

the least favorable actions in the instance presented in Figure 4.2, with a Q-value equal to

0.1.

Results are shown in Section 4.3, Figure 4.9, where the images are rendered using 32 SPP
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at 256x256 resolution.

4.2.2 Analysis of the selected parameters for Deep Q-Learning

The fully connected Deep Neural Network developed to approximate the policy has an input

size of 51, 4 hidden layers each with 1000 neurons, and an output layer with a size of 72

(Figure 4.3). Formally, this entails that each state is defined as s ∈ S ⊂ R51 and each action

as a ∈ A ⊂ R.

The learning rate is 0.0001, and the decaying ε-policy is linear, with the ε value decreasing

from 1 to 0.01 in 28000 episodes. The total number of training episodes is 80000. The Gaussian

kernel used for encoding the input data with the One-Blob encoding has 16 bins, and it is

applied to each of the 3 normalized three-dimensional coordinates, accounting then for 48

variables out of the 51 in the state space. The additional values in the input space consist of

the 3 coordinates of surface normal hit by the ray.

Figure 4.3: Structure of the Deep neural Network: 4 hidden layers each with 1000 neurons,
and all the layers are associated with a ReLU activation function. The picture only displays
a high-level overview of the network architecture adopted, and the color of the connections
does not hold any intrinsic meaning.

In Section 2.2.1, we described the use of two identical Deep Neural Networks during the

training process. The principal network is used to predict the value function for the current

state and its weights are updated for every iteration, or in other words for every ray sampled.

A second network, called target network, is employed to predict the target value and its

weights are synchronized with the original network only at the end of each episode, which

consists of multiple iterations. In Section 4.3, we demonstrate that this technique improves

the overall image quality.
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Figure 4.4: Evolution of the Q-values during the Deep Q-Learning training process for a
specific state sDQN . Everytime a ray is scattered from a coordinate belonging to sQ, the
Q-values for all the actions are stored and plotted. Every line represent an action, and for
readability each curve has been smoothed using a polynomial fitting with a degree of 15. This
is necessary because of the high stochasticity of the framework that causes instability in the
progress of the Q-values. The legend shows the 4 actions resulting in the highest values in
the last iteration.

.

Analyzing the evolution of Q-values during the training process is slightly different from

the procedure performed for Q-Learning. Indeed, while the value function Q(s, a) in Q-

Learning is only updated when the agent visits s, in Deep Q-Learning the weights of the

network change at every iteration regardless of the visited state. Figure 4.4 displays the

evolution of the Q-values during the Deep Q-Learning training process: everytime a ray

is scattered from one of the coordinates belonging to sQ, the Q-values for all the actions

are stored and plotted. This visualization choice allows the comparison between the two

plots (Figure 4.4, 4.2), which would not be possible if the Q-values were stored at every Q-

update due to the very noisy signal. The figure reveals a large number of actions leading

to a high expected reward. The state sDQN considered to elaborate this plot is obtained

by sampling a random three-dimensional coordinate belonging to the state sQ, mentioned in

the previous section. Furthermore, because of the instability caused by the absence of the

vanishing learning rate, the plot was smoothed using a polynomial fitting with a degree of 15

for readability. It is also important to observe that, for a readability purpose, the Q-updates

on the x-axis do not represent every update to the value function, which is adjusted at every

iteration. Instead, Q(s, a) is plotted every time a ray hits a point included in the physical tile

representing the formerly sQ used for the Q-Learning analysis. These elements are discussed

in Chapter 5.
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4.2.3 Conclusion on algorithmic convergence

The main difference between the two Reinforcement Learning approaches with regards to

the training process is their convergence rate. Indeed, Q-values learned using the Q-Learning

algorithm feature a smoother evolution than those learned with Deep Q-Learning. The reason

is that the learning rate used in Q-Learning decreases over time for every Q-update. As the

learning rate converges towards zero, the contribution of the new information acquired by

visiting new states becomes irrelevant. In Deep Q-Learning, estimating the influence of the

step size during the training process is harder. Because the optimizer employed is Adam, the

learning rate varies based on the mean and the uncentered variance of the weights’ gradients

[23].

Despite the distinct convergence rate for the two approaches, the value function displays

a similar behavior for the specific states sQ and sDQN examined previously. This behavior

can be seen in the distributions reported in Figure 4.5, that reveal peaks corresponding to the

same directions. Moreover, to give a better intuition of the meaning of these distributions, the

visualization of rays scattering for both methods from the considered sQ and sDQN are shown.

Since the actions mapped to the highest Q-values are the same for both the approaches, rays

are scattered in a very similar way. This information, which cannot be deduced from the

evolution of Q-values due to very noisy signals in Deep Q-Learning, is clearly visible in this

plot.

Figure 4.5: Distribution of the Q-values for a specific state, both for Q-Learning (on the left)
and Deep Q-Learning (on the right). The value function retrieved by the Deep Q-Learning
algorithm overestimates the incident radiance for some actions. Overall, both distributions
are strongly correlated, and present peaks in correspondence of the same actions.
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In both distributions, action 8 and action 10 are associated to the largest Q-values. The

difference is their magnitude and these actions estimate a higher incident radiance when using

Deep Q-Learning compared to Q-Learning. The consideration that the Deep Neural Network

overestimates the Q-values is also exhibited in Figure 4.6. Here, the magnitude of the total

incident radiance in each point of the Box scene is reflected by the intensity of the color

gradient. It was calculated summing all the Q-values for every state encountered.

Figure 4.6: Magnitude of the incident radiance inside the Box scene learned with Q-Learning
(on the left) and Deep Q-Learning (on the right). For each point of the scene, the sum of the
Q-values for all the actions, defining the total incident radiance, is calculated and its value
is represented by the color intensity. The tiles visible in the Q-Learning approach are due to
the discretization of the input space.

Besides this visualization, a good measurement to discuss the comparison between the

two Reinforcement Learning approaches is to estimate the quality of the generated images,

as the next section explores.

4.3 Results: An image quality perspective

4.3.1 Evaluation metrics

The three importance sampling strategies compared are cosine-weighted importance sampling,

importance sampling the value function approximated with Q-Learning and the value function

retrieved with Deep Q-Learning. In order to compare the images generated by the these

methods, four different metrics were evaluated. The metrics need to satisfy two important

properties. The first requirement is to be independent of the software and the hardware

utilized for the experiments. For this reason, the execution time was discarded. The second

requirement is to capture the variance of the distribution of the pixels in the generated image.

To comply with these conditions, the first measure considered is the average number of

bounces before hitting the light source. The rationale behind this measurement is that, when

the path is not guided, rays need more bounces in order to hit the light. In case the ray
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Metrics Disadvantages Advantages

Average amount of bounces • Affected by Russian Roul-
ette stopping strategy
• No insight on the Q-value
distribution

• Direct evaluation for path
guiding towards the light
source

MSE • Poorly correlated with hu-
man perceptions
• Not very reliable for low
SPP
• Images with same MSE
have very different distor-
tions

• Clear mathematical mean-
ing

SSIM • Not very reliable for low
SPP
• Significantly affected by
nonlinear or multiple sources
of distortions [44]

• Consistent with visual per-
ception
• Score is bounded

zero-contribution rays • Affected by ε-decaying
strategy
• No insight on the Q-value
distribution

• Clear evaluation of training
performance

Table 4.1: Advantages and disadvantages of the metrics used to assess the image quality and
validity of the proposed importance sampling strategy

does not reach the light after a certain amount of bounces, its contribution is set to zero.

This operation is achieved through Russian Roulette [43], an adaptive cut-off path length

technique. The generated rays need a stopping condition or path tracing would not come to

a halt. Stopping the generation of rays at a fixed amount of bounces introduces biases, since

potentially important paths would not be considered and the complexity of the scene would

not be taken into account. In Russian Roulette, the radiance computed at each bounce is

accumulated and stored. After a certain number of bounces, which in our case is set at 5, this

accumulated factor is compared to a value randomly generated in the interval [0, 1] for every

recursion. If the radiance factor falls below this threshold, the rays generation is halted.

Even though the number of bounces gives a reliable insight into the scattered rays’ be-

havior, no conclusions can be drawn regarding the approximation of the radiance function

in the scene. This observation is evaluated via the quantification of the image noise. The

metrics used in our comparison is the SSIM [45] and belongs to the referenced-based family

of methods, described in Section 2.1.5. This evaluator is compared with the standard Mean

Squared Error. Better image quality is expressed by a higher SSIM or a lower MSE.

The final metric is the number of paths with zero contribution. Especially, we are inter-

ested in the evolution of this value over time during the training process. If the training is

Deep Reinforcement Learning for Light Transport Path Guiding 43



CHAPTER 4. EXPERIMENTAL SETUP AND RESULTS

successful, the accumulated amount of paths with zero contribution should stop increasing at

a constant rate.

In Table 4.1, the advantages and disadvantages of these metrics are outlined. For a detailed

discussion on the limitations, please refer to Chapter 5.

4.3.2 Image Quality Assessment

In this section, we present the main results obtained during our work. Unless explicitly repor-

ted, every conclusion is based on the use of fine-tuned parameters and optimized techniques.

Before showing these results, we express the reasons for some specific design choices.

Previously in this chapter, we mentioned the use of a target network to predict the target

value function, instead of using a unique network in the training process. As we explained in

Section 2.2.1 , the target network is a common strategy used in Deep Q-Learning to reduce

the error variance in the target values and stabilize the training process. This confirms to be

valid for our case and Figure 4.7 shows that this technique improves the SSIM score, while

the MSE is not affected.

Figure 4.7: SSIM and MSE of the approach based on Deep Q-Learning to render the Box
scene. The metrics are plotted against the SPP. In one case, both the principal and the
target network are used, while in the other case one single network is employed in the training
process. The target network yields a better SSIM, but does not affect the MSE.

A second important subject to address is the motive for using a large network, when most

Deep Learning applications rely upon smaller architectures. As an example of this, Dahm

and Keller predict the RGB color of a rendered image using multiple tiny networks composed

of a single hidden layer with 9 neurons [21]. However, during the hyperparametrization, we

observed that larger networks are associated with higher SSIM scores. In Figure 4.8, this de-

pendency is depicted and three different architectures are used: 4 hidden layers with 200, 500

and 1000 neurons each. These plots substantiates that using 4 hidden layers of 1000 neurons

each yields the best result. For the aforementioned reasons, two Deep Neural Networks with

4 hidden layers and 1000 neurons per layer are used during the training: the first is the main

network and the second its copy with periodic weights update. After presenting these design
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Figure 4.8: SSIM and MSE for three different Deep neural Network structures, using 4 hidden
layers of 200, 500 and 1000 neurons each for the Box scene. The metrics are plotted against
the SPP. The images generated to assess the quality are renderings at 128x128 resolution of
the scene Box. The best SSIM and MSE scores are those obtained with the largest network.

choices, we focus on the results achieved with the tuned hyperparameters declared at the

beginning of this chapter.

Figure 4.9 shows the SSIM for the three scenes. The reference image used for the compar-

ison, displayed in the first column to the right, is generated with NEE and 5120 SPP. All the

other images are generated using 32 SPP. In Box and Sunrise, the highest SSIM is obtained

with Deep Q-Learning. In the Door scene, on the other hand, Q-Learning is the approach

that leads to the highest image quality.

A comprehensive overview of the results obtained when assessing the quality of the gen-

erated images is summarized in Table 4.2. The MSE and the SSIM display a similar outcome

for both Door and Box, where Deep Q-Learning compares favorably against the two other

approaches. In contrast, it is interesting to notice that in Sunrise the SSIM score is signific-

antly higher for Deep Q-Learning, while the MSE is lower for Q-Learning. In Chapter 5, this

difference is analyzed.

Box Sunrise Door

SSIM MSE SSIM MSE SSIM MSE

Cosine 0.111 0.041 0.057 0.035 0.067 0.048

Q-Learning 0.135 0.028 0.077 0.026 0.084 0.034

Deep Q-Learning 0.151 0.025 0.089 0.027 0.067 0.048

Table 4.2: SSIM and MSE of the different importance sampling approaches. A higher SSIM
score and a lower MSE score represent better image quality. On one hand, considering SSIM
as the principal metric, Deep Q-learning compares favorably against the other approaches for
Box and Sunrise. In the last scene, Q-Learning yields the highest SSIM score. On the other
hand, the MSE score is lower both for Sunrise and Door.
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Figure 4.9: Comparison among three approaches: cosine-weighted importance sampling, Q-
Learning and Deep Q-Learning. The SSIM and MSE are reported for each scene and method.
The images for the comparison are rendered using 32 SPP, while the reference image in the
very right column is rendered with 5120 SPP and Next event estimation. All images are
rendered at 256x256 resolution.
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Conforming to the results reported in Table 4.2, the SSIM and MSE are plotted against

the SPP in Figures 4.10, 4.11. While for Sunrise and Box the use of both Reinforcement

learning approaches produces better results, the application of Deep Q-Learning with the

aforementioned architecture seems to yield no effect on the outcome in Door. Moreover, the

SSIM value is substantially higher for the Box scene, endorsing the fact that simpler scenes

are easier to model by a Markov Decision Process framework.

Figure 4.10: The three plots show the SSIM of the three importance sampling strategies per
scene against the SPP. In the first two scenes, Deep Q-Learning results in the best method,
while in the last scene Q-Learning yields the best score.

Figure 4.11: The three plots show the MSE of the three importance sampling strategies per
scene against the SPP. While in the first scene Q-Learning and Deep Q-learning almost lead
to the same result, importance sampling based on discretized Q-values results in a lower MSE
for the last two scenes.

To analyze the impact of the Deep Neural Network architecture on the image quality of

Door, we tested a more complex structure. Specifically, this new network is composed of

4 layers, each with 1500 neurons. All the other hyperparameters are maintained the same.

Figure 4.12 shows that no gain is obtained using the new topology, suggesting that alternative

changes might be needed for improvement.
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Figure 4.12: SSIM and MSE against the SPP for two different Deep Neural Network archi-
tectures. The plots show that no improvement is obtained when the number of neurons is
increased.

When rays are scattered inside the scene, they bounce until they reach the light source, or

until they are stopped by a Russian Roulette strategy, explained in Section 4.3.1. Intuitively,

guiding the path towards the light source should reduce the average number of bounces. This

behavior is confirmed by the results shown in Table 4.3. As one can see, Deep Q-Learning

always leads to a considerable reduction in the average bounces, followed by Q-Learning. In

this regard, it is essential to remark that no conclusive insight can be drawn by this result

alone. Indeed, our goal is not only to choose those actions that increase the chance to hit

the light source; the objective is to approximate the incident radiance accurately for all the

possible actions. Even though the average number of bounces does not demonstrate that our

aim is reached, it strongly suggests that Reinforcement Learning techniques can be correctly

employed for path guiding.

Box Sunrise Door

Cosine, mean±SD 7.66±0.005 10.29±0.007 10.21±0.005

Q-Learning, mean±SD 6.31±0.005 9.72±0.010 9.91±0.015

Deep Q-Learning, mean±SD 5.05±0.002 7.03±0.002 7.18±0.005

Table 4.3: Average number of bounces inside each scene per approach. The results are repor-
ted in the format mean±standard deviation, obtained averaging 5 different computations for
each result. Russian roulette allows to probabilistically stop rays scattering after 6 bounces.

Finally, the number of paths with zero contribution against the episodes during the

training phase is plotted in Figure 4.13. Comparing Q-Learning and Deep Q-learning to

cosine-weighted importance sampling, it is possible to appreciate the significant reduction

of non-valid paths when the former approaches are adopted . Even though the training is

interrupted at 80 000 iterations, the trend lines suggest an increasing gap between the Re-

inforcement learning approaches and cosine-weighted importance sampling for longer training.
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Figure 4.13: Accumulated paths with zero contribution during training. In the beginning, rays
scattering mainly follows a random distribution for both Q-learning and Deep Q-Learning.
After about 35000 iterations, the number of non-valid paths starts to decrease with the
episodes. Differently, cosine-weighted importance sampling is not a path guiding approach
and the number of non-valid paths increases constantly.
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Discussion

In this chapter, we first summarize the main steps observed in this work to answer the Re-

search questions we initially formulated. Then, we describe and discuss the principal findings

of the proposed approach and the challenges it posed.

5.1 Summary of our main steps

The primary goal of this thesis is to investigate how Reinforcement Learning techniques can

be leveraged to learn the incident radiance function within a scene. The main assumption in

this regard is that it is possible to frame the components of the naive path tracing algorithm

as a Markov Decision Process. This hypothesis is based on the work conducted by Dahm and

Keller on path guiding. To test this assumption, we first implemented a naive path tracer able

to scatter secondary rays based on a random distribution. Then, we expanded this version to

include a cosine-weighted importance sampling strategy and Next Event Estimation. While

the former strategy is used in comparison with Reinforcement Learning driven approaches,

the latter is employed to generate ground truth images. These images are then used to assess

the quality of the renderings obtained adopting the various importance sampling strategy

explained in detail in Chapter 3. Once the implementation of the path tracer was refined, and

after comparing traditional variance reduction methods, we followed the approach proposed

by Dahm et al. to guide the light path according to a tabular policy π generated with Q-

Learning. Due to the lack of implementation details in the paper, we presented our solutions

to technical and theoretical issues that arose during the work, such as the discretization of

the action space or the formulation of the resulting PDF. Even though it is not possible to

infer how the authors tackled these problems, a careful study of their work and the referred

literature suggests that a very similar procedure was adopted. Next, we proposed a novel

method to use a Deep Neural Network as a function approximator for learning the incident

radiance function within a scene. The implementation of this method was very challenging
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and required to develop a new software framework. Finally, we framed four evaluation metrics

and compared the different importance sampling strategies.

5.2 Key insights

Among the numerous algorithms that belong to the Reinforcement Learning paradigm, the

focus of our work is on Q-Learning and Deep Q-Learning. Although the use of these two

particular algorithms introduces many challenges, we consider them to be suited for solving

our problem since they are both off-policy approaches: this means that they can learn an

optimal policy while following a different one. This factor is crucial, since it guarantees

the validity of the learning process even when following an exploratory policy instead of an

exploiting one. That is, we can approximate the incident radiance for all the actions and not

only for the ones that lead to the highest reward. This behavior also enables the simultaneous

use of two different networks, the target network and the principal one, that is not possible

for on-policy algorithms.

The rationale behind the extension of Q-Learning and the use of Deep Neural Networks

is to overcome the constraints imposed by the discretization of the state space. The policy

produced by Deep Q-Learning relies on the generalization over the state space, since the

algorithm needs to approximate the target function over a continuous set of points in the

scene. This represents an improvement if the algorithm maps correctly continuous unseen

input values into the distribution of the incident radiance. Differently, the policy obtained

with the Q-Learning algorithm consists in a matrix where all the state-action pairs have been

explored.

In light of the results reported in Section 4.3, we looked into whether a function approxim-

ation over a continuous space results in better image quality compared to a tabular discretized

approach. To analyze this question, two different concepts need to be considered: the effi-

ciency of path guiding towards the light source, and the reliability of the value function’s

approximation. Table 4.3 reveals that the Deep Q-Learning algorithm reduces the average

number of bounces for all the scenes. This means that the ray is scattered faster and more

efficiently towards the light source. To determine whether the approximation of the value

function reflects reality, the quality of the images generated needs to be assessed. The res-

ults reported in Section 4.3 show two different metrics: the SSIM and the MSE. Evaluating

which of these scores better represent the image quality is not an easy task, since it is highly

subjective. The plots in Figures 4.10, 4.11 show that the MSE of the images obtained with Q-

Learning and Deep Q-Learning is almost the same. As one can see looking closely at the two

pictures in Figure 5.1, Deep Q-Learning seems to generate more uniform tones and shades,

that can be appreciated looking at the zoomed detail on red wall.
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Figure 5.1: Images obtained with Q-Learning (on the left) and Deep Q-learning (on the
right). The details on the very right column show that Deep Q-Learning results in more
uniform tones and shades.

As stated, this result is subjective, but due to the differences between the images that

the MSE is not able to capture, we consider SSIM more reliable in perceiving the overall

image quality. However, given the low SPP rate, caution must be exercised when drawing

conclusions.

The SSIM scores visible in Table 4.2 show that Deep Q-Learning improves Monte Carlo

convergence in some cases, namely in the first two scenes. Despite the lack of data to ascertain

which setting better fits the use of Deep Neural Networks, it is reasonable to think that the

scene complexity represents a key factor. Since, as mentioned previously, Deep Q-Learning

improves path guiding, we believe that its weakness can be attributed to the difficulty in

modeling the correct distribution of the incident radiance function. Indeed, if the algorithm

importance samples over an improper distribution, it computes a wrong PDF: this results in

the incorrect estimation of the pixels’ final radiance, since the PDF is an essential component

of Monte Carlo integration (Section 2.1.3). According to the lower average number of bounces

required to reach the light source and the higher estimated Q-values (Figure 4.5), we can then

conclude that the employed architecture causes an overestimation of the incident radiance.

The amount of shorter paths resulting from the use of Deep Q-Learning seems to contradict

the fact that this method also leads to a higher number of accumulated non-valid path, as

revealed in Figure 4.13. We argue that this might be explained by network overfitting. Indeed,

overfitting causes a lack of generalization which results in two possible extreme cases. On the

one hand, the network maps the most visited states into accurate distributions, leading to

very short paths. On the other hand, multiple invalid paths can occur when proper inference

is not correctly achieved for those input values that are far from the commonly seen ones. This

unbalance could be generated by the configuration of the scene, which favors the visit of those
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states with higher visibility from the camera. Moreover, the function approximator for all

the scenes is a Deep Neural Network with the same structure. Hence, we cannot exclude that

re-iterating the hyperparametrization process on the network used for the last scene would

improve the SSIM score and positively reduce overfitting. The use of the same agent for all

the scenes is not ideal, since the hyperparametrization should be scene-dependent. However,

the amount of possible parameters combinations is extremely large, and hypertuning for the

first scene took weeks due to the current software framework. Under the current limitations,

it has not been possible to adapt the agent to every scene.

The difficulties in training the algorithm for the third scene can be also explained by

two characteristics of our setting: the sparse episodic reward signal and the highly-stochastic

environment. The sparse episodic reward signal is caused by the way our Reinforcement

Learning environment is framed. Based on Equation 2.26, derived from the combination

between the Bellman equation and the rendering equation, the reward given to the agent

is equal to the emitted radiance of the hit surface. This entails that the reward function

is episodic, since it is provided to the agent only when the whole episode is concluded. An

episode is considered the sequence of states and actions starting when the primary ray is

scattered and ending when the ray hits the light source or it is stopped by the Russian

Roulette strategy explained in Section 4.3.1. Consequently, as the ray can be stopped before

hitting an emitting surface, the reward can be null even at the terminal state. This introduces

additional sparsity in the reward signal. We calculated that the light source is only reached

about 1.5% of the times a ray is scattered inside the scene. These factors are not ideal for the

learning process and account considerably for the lack of convergence of the value function.

As a possible solution, replay memory (Section 3.3.1) was implemented. Due to the lack of

correlation among successive tuples < s, a, r, s′ > , it did not significantly help.

In Section 2.2.2, we showed how the discretization of the state space in physical tiles in

the scene could negatively affect the performance of the path tracer based on Q-Learning.

Namely, when rays belonging to the same state are scattered from different coordinates,

their direction is sampled from the same distribution. This factor causes different outcomes

depending on the coordinates from where the rays are bounced (Figure 2.9). This is not

the only element that introduces high stochasticity to the approach. Similarly to the state

space, also the action space is discretized in virtual patches over the unit hemisphere. When

an action is chosen by the importance sampling strategy, a point is randomly selected inside

the patch mapped to that action, and the new ray is scattered through it. Thus, multiple

rays scattered from the same coordinates and based on the same actions can follow different

directions, as one can see in Figure 5.2.

When the metrics to assess the proposed approaches were investigated, one of the funda-

mental principles was to consider the evaluators as independent from the algorithms’ running

time. Indeed, the engineering performance of the methods presented is out of scope and for
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Figure 5.2: On the left, a scheme showing how scattering rays through points evenly distrib-
uted inside a patch leads to different outcomes. On the right, the real scattering distribution
of multiple rays from the same state, represented by the purple tile, according to the same
action. Half the rays do not hit the light source, thus increasing stochasticity in the learning
process.

this reason was not examined. This being said, we can consider the use of Deep Q-Learning

in the production pipeline unfeasible at this stage. To obtain a better rendering quality than

the one achieved with Q-Learning, the network needs to be very large. Hence, the compu-

tational cost is highly increased and the gain in quality, for complex scenes, is very limited.

The adoption of two Deep Neural Networks, necessary to adopt the target network technique,

does not slow down noticeably the performance of the algorithm, since only the principal

network is used to backpropagate the error and compute the gradients to minimize the loss.

The bottleneck of the proposed approach is the gradient calculation, which in the case of our

network is composed of 3.12e+6 parameters. Moreover, the difficulties that made impractical

to introduce Deep Neural Networks in the C++ pipeline suggest that research and develop-

ment need to be undertaken before this approach can be considered useful for production

purposes.

Regardless of these considerations, the good results obtained in the first two scenes are

very promising and can be further developed, as discussed in the next chapter.
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Chapter 6

Conclusions

6.1 Conclusions

This research was mainly undertaken to design a Deep Q-Learning approach and evaluate

its efficiency for importance sampling the approximation of the incident reward function in

every point of a virtual scene. Our findings suggest that the proposed method is capable

of mapping accurately a continuous set of input variables into a distribution over a discrete

action space. Indeed, in two out of the three settings we tested, our method outperformed

the previous work on Q-Learning for path guiding. To obtain this result, the approach proved

to model correctly a highly-stochastic environment with a sparse episodic reward signal. The

relevance of this element is supported by the MSE and SSIM evaluators used to assess the

quality of the generated images, that are better than or equal to the measurements for the

discrete version. In addition, further analysis showed that the average amount of bounces

is reduced for every scene when Deep Q-Learning is used. This also validates the usefulness

of the proposed method. Taken together, these findings could conceivably lead to the use of

Deep Reinforcement Learning as an importance sampling technique for path guiding.

Furthermore, the previous work on Q-Learning has been slightly altered to include a short

training phase employed to create a policy, followed by an active phase that generates the

image based on the knowledge acquired. The derivation of important aspects of this method,

that were not explicitly reported in the previous work on Q-Learning, are also detailed in

our research. This is especially important for the formulation of the PDF, used for both

Q-Learning and Deep Q-Learning, since it guarantees the reproducibility of our results.

6.2 Limitation and Future work

Finally, a number of caveats regarding the present study need to be noted. It is recommended

that further research be undertaken in the following areas: hyperparametrization, Policy
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Gradient methods, and sparseness.

In one case, namely in the third scene presented, our Deep Q-Learning approach does not

prove to contribute meaningfully to the importance sampling strategy. There is, therefore,

a definite need for additional hyperparametrization to estimate whether this is caused by a

technical limitation or by the methodology adopted. In this regard, further research might

explore the network’s topology and the influence of the learning rate on the final results.

Then, different experience replay strategies can be investigated to improve the convergence

of the value function. Specifically, Prioritized Experience Replay (PER) proved to perform

successfully in multiple tasks [34]. Moreover, research is also needed to determine the optimal

input size and kernel characterizing the One-Blob encoding. A larger input might be beneficial

for complex scenes, since an increased dimensionality can help the inference of non-linear

mapping. Automatic hypertuning, which is currently performed with Genetic Algorithms,

might ease the procedure.

Besides the hyperparametrization, additional adjustments can be considered for further

improvements. Deep Q-Learning is not usually the preferred option for highly-stochastic

environments, and changing paradigma to adopt Policy Gradients methods might advance

numerous benefits [39]. We believe that the need to discretize the action space might be among

the major limitations of our work, and Policy Gradients approaches are specifically suitable

for settings with a continuous action space [5]. Among all the Policy Gradients algorithms,

REINFORCE [39], CACLA [42] and DDPG [35] are the most investigated techniques in this

field.

In Chapter 5, we discuss the feasibility of implementing the proposed approach beyond

the scope of research investigation. As mentioned, the large number of network parameters to

update at every iteration increases significantly the computation necessary for path guiding.

An intuitive solution might be to reduce the number of network’s weights, while trying to keep

the performance unaltered. The Deep Neural Networks developed in our method are charac-

terized by fully connected multilayer perceptrons [30], where nodes have full connections to

all activations in the previous layer. Sometimes, this can be unnecessary since different parts

of the network are adapted to diverse subtasks during the training. A concept of efficiency in

this regard is sparseness. Sparse connectivity, opposed to full connectivity, means that each

neuron is connected to a limited amount of other neurons [40]. Mocanu et al. introduced

Sparse Evolutionary Training (SET) [28], a procedure closely related to NeuroEvolution [37]

that yields sparse adaptive connectivity. The authors presented the promising results obtained

with this technique, which could be further tested for Reinforcement Learning methodologies

and might lead to an optimized structure to be used for path guiding.
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Appendix A

Derivation of the PDF for different

importance sampling strategies

A.1 PDF for uniform sampling

To derive the PDF for uniform sampling on a hemisphere, the sample space can be conveni-

ently expressed in terms of solid angle w. Since the solid angle subtended by an hemisphere

is 2π, the integration of the PDF over the entire sample space results:∫ 2π

0
p(w)dw = 1 (A.1)

As the PDF is constant, p(w) = C:

1 = C

∫ 2π

0
dw = C · 2π (A.2)

Thus:

C = p(w) =
1

2π
(A.3)

A.2 PDF for cosine-weighted importance sampling

In cosine-weighted importance sampling, the PDF p(w) is proportional to cosθ, where θ is

the angle between the direction of the incident light and the surface normal.

p(w) = f(θ) = C · cosθ (A.4)
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SAMPLING STRATEGIES

The differential solid angle, as seen in Section 3.1, can be expressed as:

dw = sinθ dθ dφ (A.5)

The two properties of the PDF are the following:

p(x) > 0, ∀x ∈ D∫
D
p(x) dx = 1 (A.6)

Expressing the domain D in spherical coordinates, and combining Equations A.4, A.5, and

A.2:

1 =

∫ 2π

0

∫ π
2

0
C · cosθ sinθ dθdφ = 2πC

∫ π
2

0
cosθ sinθ dθ = 2πC [−1

2
cosθ]

π
2
0 = πC (A.7)

Thus:

C =
1

π
(A.8)

The resulting PDF is obtained combining Equations A.4 and A.8:

p(w) =
cosθ

π
(A.9)
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