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Abstract

Most modern-day issues where optimization is required involve uncertainty, in particular in the form of events
which are outside of our control. Incorporating stochastic aspects in optimization problems allows one to
�nd solutions which are more robust to these uncertainties. In particular, when focusing on inventory control
problems, several di�erent techniques exist, ranging from fully heuristic to computationally expensive decision
methods. In order to compare these methods, a simulation framework is built, in which several di�erent
inventory problems can be formulated, such that techniques can be tested on multiple instances.

The two methods which were investigated in detail are stochastic programming and a base stock policy.
Both methods can be used for multiple di�erent optimization problems, but the base stock policy is particularly
tailored to inventory control problems. Because of this, it is able to provide solutions which are close to optimal
with only limited computation time required. Within the framework, complexities were added to test the
accuracy of such a policy method, which turns out to remain quite e�cient for more di�cult instances.

Stochastic programming requires much longer computation time, but it provides more e�cient and accurate
results than the simpler heuristic algorithms. In particular, it is able to make stochastic decisions, where similar
model states result in di�erent decisions made. This results in more robustness to uncertainty, allowing for
better results overall. If a shorter amount of computational time is allowed, stochastic programming can be
used to optimize important one-time decisions, while using a heuristic approach for the remaining decisions.

When considering the modular expansion of the decision methods, the heuristic algorithm gives more
complications than the stochastic program. When iteratively adding complexities and di�culties to the policy
method, it can easily result in bloated heuristics. Stochastic programming, however, allows for easier modular
expansion of simulations and models, as additional complexities or assumptions can be modi�ed naturally.
Initial investigation of this topic shows promising results for the stochastic program if computational time allows.
Further research could greatly decrease this time required, while maintaining similar e�ciency and accuracy for
the results. By researching specialized techniques and model structures for stochastic programming, it can be
used as a computationally e�cient optimization method which is able to e�ectively incorporate uncertainty.
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1 | Introduction

Optimization under uncertainty is a key aspect in many modern-day issues. Faster computations and more
data allow us to investigate matters in more detail, considering all aspects much more extensively. Instead of
merely optimizing under a certain expectation of uncertainty, the focus can be put on incorporating uncertainty
throughout the design process, such that new, more robust solutions can be found.

One of the �elds in which optimization under uncertainty is required is in the �eld of inventory control and
supply chains. Stock needs to be transported between locations in order to ful�l demand, at several di�erent
scales: a stock clerk restocking its items on display, or a long distance supplier of chemical goods. For each
of these situations, decisions need to be made under uncertainty: the stock clerk might not know what the
customers demand, and transport trucks might be blocked by tra�c jams. But it could even be prior to the
actual restocking, where decisions must be made on where warehouses are constructed, or how products are
transported. Sometimes, an educated guess can be made considering how these uncertainties will unfold, in
particular by using past data on similar matters. Still, one can never be absolutely sure of how things will be,
such that decisions should be made which are robust for all sorts of uncertainty.

More often than not, uncertainty reveals itself in several stages, where decisions can be adjusted at each
stage. In fact, decisions are often based on prior decisions and revealed uncertainty, as a better understanding
often results in better decisions. For example, if there are only a limited number of stock clerks in a store, a
choice must be made which items to restock at a particular day. Knowing the rate at which items are bought
from the store provides a better understanding of which products to restock �rst. Still, waiting until shelves are
completely empty before starting to restock them is often a bad idea. This can easily be prevented by restocking
shelves in time. Next to that, the stock clerks can be utilized more e�ciently, resulting in lower costs overall.

Research Question

The focus of thesis is on investigating and modelling these optimization problems, where dealing with uncertainty
is key. Several di�erent techniques are researched, focusing on solutions which are either computationally fast
or very accurate. In particular, these techniques are compared to simpler heuristics, which have only limited
incorporation of uncertainty. In short, the research question which we focus on is

What is the e�ect of incorporating the stochastic aspects in inventory control problems, and

how do di�erent solution techniques within a particular framework compare to one another?

1.1 Sioux Lime

The supervision of this project has primarily been performed by Sioux Lime. Lime is a consultancy agency in
Eindhoven, focused on providing Mathware solutions for its customers. By combining state-of-the-art algorithms
with di�erent �elds of expertise (such as Mathematics or Physics), solutions can be found in terms of either
software or hardware. The company originates from the department of Mathematics & Computer Science from
the Eindhoven University of Technology. Later, it separated itself, and became part of the Sioux group.
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CHAPTER 1. INTRODUCTION Stochastic Stock Control

1.2 Motivation

This thesis was initiated as a research project for the optimization expertise group of Lime. Instead of focusing
directly on a particular project of a customer, the goal was set to further research the �eld of optimization under
uncertainty. This way, other projects could bene�t from any knowledge and models resulting from this research
project. Initially, the main goal was to look into stochastic programming, and determine how other optimization
could bene�t from this. As the �eld of stochastic programming is very broad, we have only scratched the surface
of the various techniques. In addition to the techniques in the �eld of stochastic programming, we researched
robust optimization and several (advanced) heuristics, primarily focused on inventory control problems.

Using these techniques, the next step was to create a solution method for all kinds of di�erent optimization
issues. An interesting topic to investigate would be the garbage collection in a municipality, which would require
quite complex optimization to �nd optimal solutions. Another topic of interest was to determine a schedule or
algorithm for picking robots, which would be used to pick items from a conveyor belt and place them in separate
boxes. With these separate issues in mind, our goal was to �nd similarities between these separate problems: we
found that restocking inventory in a warehouse had great similarities to an inventory routing problem. These
in turn could be compared to a much simpler newsvendor problem; as such, by using minor simpli�cations or
assumptions, several optimization issues could be modelled and solved with the same framework. By starting
from the basic newsvendor problem, we were able to add complexities and reformulations to use the same idea
for the optimization of inventory in a warehouse. With this in mind, the focus was to construct such a general
framework, where we would be able to easily modify several model aspects.

With a general idea of a framework in place, the next step in the process was to construct a model, able to
create a simulation to compare the various techniques. The model was constructed with the idea of optimizing
inventory in a warehouse in mind, but in such a way that it could be used for di�erent optimization problems as
well. By using simulation techniques from the �elds of stochastics (from queueing theory in particular), we were
able to construct such a model. It formulates a linear program to indicate which constraints should be taken
into account, and uses predictions of uncertainty to determine better decisions. Using this model, we were able
to create a simulated environment, in which the di�erent techniques could be compared to one another, where
each environment could represent a di�erent optimization issue.

The �nal leg of the research project consists of a more in-depth investigation of simulation results, in
particular to compare the di�erent methods used to �nd (optimal) decisions. For this end, several examples of
inventory control in a warehouse are described, where di�erent aspects of each method are highlighted. Next to
this, the same framework is used for a larger problem in the �eld of inventory routing. The solution techniques
are tested in such a way that we have an idea on how they would perform in real-life optimization cases.

1.3 Problem Formulation

The main problem that is investigated in this report is the inventory control of a (�ctive) warehouse. Several
di�erent products are kept in stock, which are used to ful�l orders from customers. To increase e�ciency, the
warehouse is split into two main parts: the direct- and bulk-pick area. The direct-pick area is a small and
compact area, where items are stored in such a way that they can easily be retrieved by the order pickers.
The bulk-pick area, however, denotes the spacious zone where all items are stored on pallets reaching from the
bottom up to the ceiling. By assumption, the inventory level (i.e. the number of items in stock) of the bulk-pick
area is `unlimited', in the sense that there is never a shortage of products.1 The goal of this split in zones is so
that products are easily picked in the direct-pick area, which in turn is re�lled from the bulk-pick area.

Throughout the day, customers place orders for speci�c products. The cumulation of all orders on a day
is denoted as the demand. Each day, this demand needs to be ful�lled entirely; preferably, all items are taken

1While this may seem to be a strong assumption, the bulk-pick area is restocked with products over time through external

deliveries. As such, there are always enough products to re�ll the direct-pick area.
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CHAPTER 1. INTRODUCTION Stochastic Stock Control

from the direct-pick area, as this is much more time-e�cient. However, if an item is no longer available in the
direct-pick area, it must be retrieved from the bulk-pick area. Doing this takes a signi�cantly longer time, as
heavy machinery is needed to access items in the bulk-pick area.

Warehouse

Restock

Bulk-pickBulk Pick Area

PickDirect Picking Area

Satisfy DemandReceiving*

Figure 1.1: Schematic view of the warehouse described. Note that the receiving of products is taken for granted,
and is not further investigated in this report.

Figure 1.2: View of a bulk-pick area.

As the direct-pick area is more time-e�cient (considering the picking
of orders) than the bulk-pick area, an e�cient strategy is to restock
products from the bulk- to the direct-pick area. Restocking is per-
formed either at speci�c discrete times (i.e. at the start of each day),
or continuously throughout the day. For this report, each day starts
with a restocking possibility, with no restock moments throughout the
day. When items are restocked, they are taken from the bulk-pick area
(which is assumed to have enough stock), and placed in the direct-pick
area. Unfortunately, restocking is a time-consuming activity as well:
items need to be retrieved from the bulk-pick area, and subsequently
placed in the direct-pick area using a First-In-First-Out policy (FIFO).
Essentially, this means that restocking takes more time if there are
more items in the direct-pick area: items need to be taken out or at
least moved, such that the newer products can be placed behind them.
If a restock is performed with too many items in stock, then the usage
of a FIFO policy gives a signi�cant overhead; restock too late, and we
might need to perform a bulk-pick action too often. As such, we are
interested in the optimal moment to restock: the restock action needs
to be worth the required time, while maintaining a low probability of
needing to perform a bulk-pick action.

3



CHAPTER 1. INTRODUCTION Stochastic Stock Control

1.4 Report Outline

In order to solve a multi-stage decision problem with uncertainty, di�erent techniques have been researched in
the �eld of stochastic programming and robust optimization (Chapter 2). Using these techniques, the warehouse
in question is modelled (Chapter 3). In order to model uncertainty (in the form of demand) each day, several
di�erent methods were investigated and worked out (Chapter 4). Lastly, a simulation is used (Chapter 5) to
investigate the e�ects of di�erent techniques, and results for several examples are provided (Chapter 6). Lastly,
we conclude and discuss our �ndings, and provide pointers for possible future research (Chapter 7).

4



2 | Literature Research

The techniques described in this chapter are all aimed at incorporating uncertainty or randomness into the
optimization of inventory problems. This has the advantage that solutions are more robust to the uncertainty
in our model; however, �nding these solutions is often a computationally heavy task. Most of the techniques
described require solving some Mixed Integer Linear Program (MILP). These are solved using either a freely or
commercially distributed linear program solver. Next to this, the techniques described are easily extendable to
di�erent instances; for this report, the focus is primarily on controlling the inventory levels of a warehouse. In
the remainder of this chapter, the basics of several techniques are described, including algorithms and heuristics
aimed at decreasing computational times while maintaining su�cient accuracy.

2.1 Newsvendor Model

The inventory model in its most basic form is the newsvendor model, where the mathematical model dates back
to an older publication from Edgeworth.[Edgeworth, 1888] Here, he determines optimal cash reserves in order
to satisfy uncertain withdrawals. The model is used to determine the number of products to purchase, given
the price to purchase and sell, where the demand is uncertain. As an analogy, imagine a newsboy who has to
decide each morning how many papers to purchase in stock, not knowing the exact demand on a day, where
any unsold copies are worthless at the end of the day. The newsvendor model is a basic single-stage inventory
model, as only a single decision needs to be made. For multiple successive days, each decision is independent of
any past decisions or demands (assuming the demand is independent in time).

Let D be the random variable denoting the demand, p the purchase price per product, s the selling price,
and q the number of products purchased. It is assumed that p < s, otherwise the optimal decision would be
purchasing no papers at all. This pro�t function which we wish to maximize is given by

max
q

E[s ·min(q,D)]− pq

s.t. q ≥ 0
(2.1)

Observe that, if the number of items bought q is less than the demand D, only q items can be sold. On the
other hand, the number of items sold cannot exceed the demand. In any case, the price p has to be paid for
every item purchased. As explained in the remainder of this section, the optimal order amount q∗ can easily be
determined:

q∗ = F−1
D

(
s− p
s

)
(2.2)

Intuitively, the optimal order amount increases if the ratio between the pro�t per product s − p and purchase
price p increases. This optimal order amount can be found by conditioning on the demand being higher or lower

5



CHAPTER 2. LITERATURE RESEARCH Stochastic Stock Control

than the order amount:

E[s ·min(q,D)]− pq = P(D ≤ q) · E[s ·D |D ≤ q] + P(D > q) · E[sq |D > q]− pq

= FD(q) · s ·
∫
x≤q xfD(x) · dx∫
x≤q fD(x) · dx

+ sq · (1− FD(q))− pq

= s ·
∫
x≤q

xfD(x) · dx+ sq · (1− FD(q))− pq (2.3)

Taking the derivative with respect to q gives

δ

δq
E[pro�t] = sq · fD(q) + s · (1− FD(q)) + sq · (−fD(q))− p

= s(1− FD(q))− p (2.4)

Setting the derivative to 0 and solving for q gives

=⇒ q∗ = F−1
D

(
s− p
s

)
(2.5)

In the remainder of this section, methods are described to extend this basic newsvendor problem into a model
which can be used for our inventory control problem.

2.1.1 Two-Stage Newsvendor

The �rst way to extend the simple one-stage newsvendor problem is to add a second decision moment, dependent
on the �rst. The di�erence between these decision moments is that the �rst is made before the realization of
the uncertainty, but the second is made afterwards. In general, the second decision not only depends on the
uncertainty, but also on the prior decision(s). To extend the model from above, let c be the salvage pro�t: any
papers not sold by the end of the day can be salvaged for c per item. Logically, assume that c < p, otherwise the
optimal order amount would be in�nitely large. Let y(q,D) be the second stage decision indicating the number
of papers to salvage. The mathematical formulation of this adapted model is given by

max
q, y(q,D)

− pq + E[s ·min(q,D) + c · y(q,D)]

s.t. q ≥ 0

0 ≤ y(q,D) ≤ max(0, q −D)

(2.6)

Observe that if the demand exceeds the number of items in stock, then no items can be salvaged at the end of
the day. While this extension of the model adds a second stage decision to the model, the solution is still the
same: the optimal order quantity q remains as Equation (2.2), and y(q,D) must be chosen maximally, such that
all remaining papers are salvaged. One possible way of actually increasing the di�culty of solving this problem
is to have uncertain prices. Finding the optimal order quantity q becomes signi�cantly more di�cult if the
prices p, s and c are no longer �xed. In particular, if P(s < c) > 0, it is possible that salvaging items is worth
more than selling them. This changes the obvious choice of selling all items in stock up to the demand, as items
might be worth more if they are salvaged instead of sold. In fact, one can even alter the moment when this
uncertain salvage price c is revealed, in particular before or after determining the number of items to salvage.

General Two-Stage Decision Problem

The objective value of the two-stage newsvendor problem follows the basic formulation of a two-stage decision
problem: let xt be the decision vector and ft the objective value at stage t (for now, t ∈ {1, 2}), and let

6
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ξ[t] := (ξ1, ξ2, ..., ξt) represent the history of uncertainty up to time t. Then the objective value is formulated by

max
x1∈X1

f1(x1) + max
x2∈X2(x1,ξ1)

E[f2(x2, ξ1)] (2.7)

Note that each decision variable xt has to be an element of the set Xt(xt−1, ξ[t−1]), which indicates that decisions
and realizations of the uncertainty a�ect the current set of possible decisions. In the newsvendor example, the
number of salvaged papers y(q,D) is a second-stage decision, in�uenced directly by the number of papers bought
and sold.

2.1.2 Extension to Multiple Stages

Another model extension to the newsvendor problem is to view multiple days in succession, where decisions are
in fact in�uenced by previous ones. For example, one could replace the papers by products which can be kept
in stock for longer periods of time. This way, any products at day's end can be stored until the next day. For
these products, a holding cost h has to be paid. Following the formulation of (2.6), assume that the salvage
pro�t c ≡ 0 (as products will be sold eventually), and de�ne the order quantity at day t by

xt := f ((x1, x2, ..., xt−1), (D1, D2, ..., Dt−1)) (2.8)

The decision at day t is some function f(·) depending on all decisions and (realizations of) demands up to day
t− 1. For clarity, de�ne yt as the number of products in stock at the start of day t, and assume y1 = 0. For a
given time-period T , the objective is to maximize expected pro�t, given by

max
{xt}Tt=1

T∑
t=1

−p · xt + E [s ·min(yt + xt, D)− h · yt+1]

s.t. xt ≥ 0 ∀t ∈ {1, ..., T}

yt+1 = max
(
yt + xt − D̃t, 0

)
∀t ∈ {1, ..., T}

(2.9)

Here, D̃t denotes the realized demand at day t. As the inventory level at each day is dependent on the (uncertain)
demand, the goal is to minimize the average holding costs. Additionally, note that there are no holding costs if
there are no items in stock.

If the demand realizations are independent and identically distributed (i.i.d.) throughout the horizon, it
can be noted that the inventory should be restocked to some level Ω ≥ 0 on a daily basis. As the objective
value is not in�uenced by how often a restock is performed, there is no reason not to restock every day. Next
to that, as the (distribution of the) demand is identical every day, the optimal inventory level is the same every
day. In other words, the optimal restock amount is given by

x∗t := Ω− yt (2.10)

This formula can be plugged into the equations of (2.9); however, depending on the parameter settings p, s, h
and the exact distribution of D, di�erent values of Ω are found. We will not go into further detail on this for
the newsvendor model, but more on this phenomenon can be found in Section 2.4.

General Multi-Stage Decision Problem

The objective value formulation as seen in (2.7) can be extended to multiple stages, using similar reasoning.
For T stages, the objective value can be formulated as

min
x1∈X1

f1(x1) + E
[

min
x2∈X2(x1,ξ1)

f2(x2, ξ1) + E
[
...+ E

[
min

xT∈XT (xT−1,ξ[T−1])
fT (xT , ξ[T−1])

]]]
(2.11)

7



CHAPTER 2. LITERATURE RESEARCH Stochastic Stock Control

The nested expectations do not appear to occur in the multi-stage newsvendor problem (2.9), but these are
circumvented by explicitly de�ning the inventory level yt. Unfortunately, because of these nested expectations,
analytically solving a general multi-stage decision problem is often not possible. The remainder of this chapter
will describe di�erent techniques in order to numerically solve such problems.

2.2 Stochastic Programming

The �rst and foremost technique investigated in this report is stochastic programming. [Shapiro and Philpott,
2007] The main goal of stochastic programming is to incorporate the uncertainty of (random) variables into
the optimization steps, such that the (optimal) solution is robust considering the uncertainty. Essentially, the
randomness is discretized into separate scenarios. For each scenario, additional variables and constraints are
formulated, which are in turn solved using a linear program. Single-stage decision problems can often be solved
using an analytical approach (such as the newsvendor problem), yet only limited theoretical solutions are known
for multi-stage stochastic decision problems. Because of this, stochastic programming is a widely used technique
for solving complex multi-stage problems. [Boland et al., 2008] [Kim et al., 2015]

Stochastic programming is based on creating a scenario tree, which is a projection of (a subset of) the
uncertainty. An example scenario tree for a two-stage decision problem is displayed in Figure 2.1. Here, levels
1 and 2 of the tree consist of two new scenarios, each with a speci�c probability of occurring. Starting at the
root node, we are able to compute the probability to end up in leaf node (1, 2) by p · (1− p1), and likewise for
the other leaves.

t=1

t=2

(t=3)

1

1,1 1,2

2

2,1 2,2

p

p1 1− p1

1− p

p2 1− p2

Figure 2.1: An example scenario tree for T = 2 stages. Each node represents a series of scenarios up to that
point, and each edge the probability of that particular scenario. The new scenarios originating from the leaf
nodes at t = 3 are not taken into account.

In order to model such a scenario tree, a requirement is being able to sample realizations from the uncertain
variables, i.e. using the distribution of a random variable. If more detailed information of the uncertainty is
known (e.g. the support or even the probability density function), other scenario generating techniques can be
used. Several examples of scenario-generation are as follows:
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CHAPTER 2. LITERATURE RESEARCH Stochastic Stock Control

Unbiased sampling
Generate n samples of the uncertainty at each stage, where each sample corresponds to a di�erent scenario.
Note that this sampling technique does not prevent identical scenarios originating from a single node.

Percentile discretization
Generate n equidistant numbers on the interval [0, 100], e.g. k

n+1 for k = 1, 2, ..., n. Then, for each of these
numbers v, compute the v'th percentile of the random variables, and use these for the new scenarios.

Priority sampling
Generate samples according to a prede�ned priority function. For example, samples are generated close
to the extremes (tails) of the distribution, or with high probability above the expected value.

Note that for higher dimensional random variables, the sampling techniques might be altered to sample sepa-
rately for each dimension. For example, the percentile discretization is performed separately for each dimension.
As such, if we wish to use a percentile discretization of n steps, where the uncertainty is m-dimensional, there
are mn scenarios for a single stage.

Having created a scenario tree, which contains a discretization of the uncertainty, we are left with a
deterministic multi-stage optimization problem. By creating additional decision variables and constraints for
each of these scenarios, a much larger linear program is constructed.

Following the general multi-stage formulation (2.9), as described in Section 2.1.2, the objective function
with respect to the scenario tree of Figure 2.1 is reformulated as

min
x1∈X1

f1(x1) + p ·
(

min
x2∈X2(x1,ξ1=1)

f2(x2, ξ1 = 1)

)
+ (1− p) ·

(
min

x2∈X2(x1,ξ1=2)
f2(x2, ξ1 = 2)

)
(2.12)

While not directly visible in the equations above, both functions f2(x2, ξ1) can use the predictions of the
upcoming scenarios at t = 3. However, at each node, only a single decision xt can be made, regardless of how
many scenarios originate from that node. More on this in the next section.

Unless the scenario tree incorporates all possible scenarios, it cannot be shown that the optimal decisions
found by solving (2.12) are the true optimal decisions. To circumvent this, more scenarios can be added. This
decreases the optimality gap, yet signi�cantly increases the computation time required to solve the model.

Nonanticipativity Constraints

When formulating the decision variables of a scenario tree, one must be cautious: at each node in the scenario
tree, only a single decision can be made, regardless of what the upcoming scenarios are. Decision variables
x need to satisfy the nonanticipativity constraints: all decisions with identical past scenarios must be equal,
regardless of the upcoming scenarios.

A commonly used manner of formulating all decision variables is by using a split-variable notation. [De-
fourny et al., 2011] Instead of de�ning a single decision variable per node at each stage, each stage has the same
number of variables. Following our previous example (Figure 2.1), there are four leaf nodes, de�ned as the �nal
scenarios A,B,C,D. Then, at each stage t, 4 decision variables xt,A, xt,B , xt,C and xt,D are de�ned, as shown
in Figure 2.2.

In Figure 2.2, notice that the root node has been split into four separate variables. By nonanticipativity,
these four variables must all be the same value: the decision cannot depend on the future, as it is not possible
to know which of the four end-scenarios will occur. The same logic is used for the second-stage variables, such
that the following constraints need to be added:

x1,A = x1,B = x1,C = x1,D

x2,A = x2,B x2,C = x2,D

(2.13)
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x1,ABCD

x2,AB

x3,A x3,B

x2,CD

x3,C x3,D

x1,A

x2,A

x3,A

x1,B

x2,B

x3,B

x1,C

x2,C

x3,C

x1,D

x2,D

x3,D

Figure 2.2: Schematic view of the conversion to split-variable notation with nonanticipativity constraints,
following the example of Figure 2.1. On the right, horizontal lines indicate the nonanticipativity constraints
between decision variables.

Because of the large number of constraints which are added, the split-variable notation is not an interesting
formulation method for us. However, several algorithms (such as the progressive hedging algorithm, see Section
2.2.2) require a split-variable notation, and it allows for easier (array) notation of decision variables.

2.2.1 Receding Horizon

When optimizing decision variables considering a large number of scenarios, stochastic programming requires
solving a large (mixed-integer) linear program, as the number of decision variables grows exponentially with the
number of scenarios. For example, if we wish to investigate a large number of successive stages (say T = 50),
the linear program becomes too large to solve directly.1 As such, a commonly used technique of a receding
horizon is used. Here, instead of constructing a large, single scenario tree, we construct several smaller scenario
trees over time, as illustrated in Figure 2.3. [Beltran-Royol et al., 2010]

1
1,1

1,2

2
2,1

2,2

t=1 t=2 t=3

2

2,1
2,1,1

2,1,2

2,2
2,2,1

2,2,2

t=2 t=3 t=4

2,1

2,1,1
2,1,1,1

2,1,1,2

2,1,2
2,1,2,1

2,1,2,2

t=3 t=4 t=5

Figure 2.3: An example receding time horizon of 3 successive realizations, with a scenario tree of T = 2 stages
at every step. Each node displays the (predicted) scenarios up to that point in time. The demand realizations
are indicated in bold, where the �rst realization is scenario 2, and the second is scenario 1. The probabilities of
each scenario are omitted for clarity.

At each time t = 1, 2, ... a (small) scenario tree is constructed, based on the information currently available. In

1Following the example of Figure 2.1 with 2 scenarios per stage, a 50-stage stochastic program would require solving a linear

program with about 1013 decision variables.
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the example �gure, it is known at time t = 2 that the �rst scenario ξ1 = 2, and at time 3, it is known that
ξ[2] = (2, 1). Each scenario tree is used to �nd the optimal decision at the current time (i.e. using stochastic
programming). After resolving this decision, the `true' demand becomes clear, the time t is increased, and the
process is repeated.

Note that, unlike Figure 2.3 suggests, it is possible that the true demand is not one of the generated
scenarios in the scenario tree. In fact, if the scenario tree consists of only a few samples of the demand, chances
are that the realized scenario is di�erent than any of the generated scenarios. Because of this, any optimal
decisions found in prior scenario trees often become irrelevant, and the process of �nding the optimal decision
needs to be repeated at each new step.

2.2.2 Progressive Hedging Algorithm

Another heuristic approach for solving a stochastic program is to use the progressive hedging algorithm. [Rock-
afellar and Wets, 1991] This algorithm �nds (near-)optimal values for all decision variables in a complete
scenario tree by using a split-variable notation, but ignoring the nonanticipativity constraints. Because of this,
we are e�ectively able to �nd all optimal decision variables per end-scenario in parallel. After having found
these optimal decision variables, nonanticipativity is enforced by means of a penalty factor, which is increased
at every iteration. Convergence is achieved if the separate decision variables are less than ε distance apart.
For continuous decision variables, it is provable that the algorithm converges in linear time. [Rockafellar and
Wets, 1991] An implementation of the progressive hedging algorithm (for continuous variables) is provided in
Appendix A.2. In our case, however, we are mostly interested in discrete decision variables. While there are
methods to adjust the algorithm for discrete decision variables [Watson and Woodru�, 2011], these are not in
the scope of this thesis.

2.3 Robust Optimization

The second �eld of techniques we investigated are those in the �eld of robust optimization. [Ben-Tal et al.,
2009] [Gorissen et al., 2015] In contrast to stochastic programming, robust optimization does not assume any
distribution or probability measure on the uncertain data. Instead, it maximizes the objective function, such that
the minimum value over all realizations of the uncertainty is maximized. For this end, a bounded uncertainty set
is required for the randomness, which can be seen as the support of the random variables. Several distinctions
between constructing uncertainty sets are compared in Section 2.3.1.

With only minor adjustments, the framework of stochastic programming can be used in robust optimization.
In order to do so, two adjustments are made: �rstly, the objective value is adjusted from minimizing an expected
value to minimizing the maximum value over all scenarios. Secondly, a percentile-based scenario generation is
used, where merely the minimum and maximum values of the uncertainty are sampled. It is only required
to take these two samples, as it is known that the objective value is maximal when the uncertainty is either
maximal or minimal - in our case, the total costs are obviously maximal if the demand at each day is maximal.

2.3.1 De�nition of the uncertainty set

As the uncertainty set is the main aspect of robust optimization which can be altered, we provide a few di�erent
options for an uncertainty set. [Ben-Tal et al., 2009] For ease of display, let the number of dimensions be n = 2,
such that the uncertainty set Ω ⊂ Rn. Note that the same reasoning holds for any dimension n ∈ N+.

Let d = (d1, d2) ∈ Ω be an element of the uncertainty set, and let γ be the (chosen) centre value.2 As the
set is bounded, there exist lower and upper bounds (l1, u1), (l2, u2), such that

li ≤ di ≤ ui ∀i ∈ [n] (2.14)

2If the expectation of the random variables is known, this would be the optimal choice for the centre value.
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Using these bounds, the box set is constructed:

Ω1 = {d ∈ Rn : li ≤ di ≤ ui ∀i ∈ [n]} (2.15)

The box set indicates that all random variables can attain their maximum and minimum values, independently
of one another. However, this means that it is an extremely conservative approach to robust optimization: it
might not be realistic that all random variables attain their maximal (or minimal) value at the same time. As
such, we investigate di�erent, smaller sets with similar properties.

The second uncertainty set is the ball-box set, which is found by taking the intersection of a ball (sphere)
of radius r ∈ R+ around the centre value γ and the original box set:

Ω2 = Ω1 ∩ {d ∈ Rn : ‖d− γ‖2 ≤ r} (2.16)

The radius r can be chosen such that the extreme points of the box are removed from the uncertainty set. This
creates a less robust solution for the extreme cases of uncertainty, but can provide (on average) much better
results.

The third construction is the budgeted-box set, which uses the ‖ · ‖1 norm (or taxicab metric) as a means
of `budgeting' the variation of uncertainty by β ∈ R+ from the centre value. Again, the set is constructed by
taking the intersection with the original box set:

Ω3 = Ω1 ∩ {d ∈ Rn : ‖d− γ‖1 ≤ β} (2.17)

Similar to the ball-box set, the choice of β greatly in�uences the size of the uncertainty set. Similarly, it aims at
removing the extreme points of the uncertainty set. An example of how these sets are constructed is provided
in Figure 2.4

Figure 2.4: The three uncertainty sets, from left to right: box, ball-box, budgeted-box. Note that in the latter
two, only the overlapping part is considered as the uncertainty set.

For our goal of optimizing an inventory restocking process, initial solutions resulting from robust optimization
techniques appear to be too conservative; as the process consists of repeating events and decisions, it is much
more interesting to have solutions which perform better on average, instead of performing optimal in the worst-
case scenarios. This could be researched further with the improvement of di�erent uncertainty sets, but this is
outside of the scope of this thesis.

2.4 Base Stock Policy

The third technique we investigated is the use of a base stock policy. This technique is often used in inventory
control problems, as it is computationally extremely light to determine which products require a restock, while
providing optimal results under certain assumptions. [Sethi and Cheng, 1997] The policy which we investigate
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is the (s, S) policy, which can be described as follows: let xt be the decision variable indicating the number of
items to restock at stage t, and yt the inventory level at stage t. Then

xt =

{
0 if yt ≥ s
S − yt else

(2.18)

Essentially, a restock only occurs if the inventory level is below the threshold s. The advantage of using this
technique is that, if the policy values (s, S) are known, then it is merely a simple comparison to decide how
much to restock. The disadvantage, however, is that the base stock policy does not allow any freedom of choice
throughout the process, as restocks are only performed if the inventory is below the threshold s. Next to that,
�nding the `optimal' policy values might be quite di�cult, and choosing sub-optimal policy values might result
in either far too many restocks or inventory shortages.

2.4.1 Finding the Policy Values

Both policy values (s, S) can be found using several di�erent methods. A di�erent method can be used,
depending on how much computation time is allowed, the size of the support of both s and S, and how close
to optimal the policy values need to be. Several methods are described in the remainder of this section, each
excelling at di�erent aspects.

Heuristic Average

The fastest method which we investigate is to heuristically determine the best average restock level. To use this
method, the density function of the uncertainty is required. In addition, the value of S is set to be maximal: only
a single stage is considered, and choosing a very low value of S provides much better results when considering
only a single stage. The reason for this is that restocking is more expensive if more items are restocked, such
that a minimal restock amount appears to be more pro�table. Unfortunately, this causes too many restock
actions in the long run.

With a �xed value of S, what remains is to �nd the restock threshold s. Given the inventory level y and
demand realization d, the following steps are performed: �rst, compute the objective value for either performing
no restock (x = 0) or restocking up to S (x = S − y). Second, compute the (weighted) average objective value
for each combination of (x, y) with respect to d, as the demand is unknown when deciding the value of x. Lastly,
the inventory level y of interest can be extracted; i.e. the smallest inventory level y where performing a restock
is more expensive than doing nothing. See Figure 2.5 for an example.

Local Search

The next method which can be performed quite fast as well is to use a local search algorithm to �nd optimal
policy values (s, S). Several di�erent local search algorithms exist, but the main idea is as follows: given some
point (s, S), compute the (expected) costs when using these policy values. Next, search in the (local) vicinity for
a point (s∗, S∗) with lower (expected) costs. If such a point is found, perform the same steps again at this new
point (while iteratively reducing the search space). If no point is found, (s, S) is a (locally) minimal solution.
To increase robustness of the local search, initiate from several di�erent start points.

While local search algorithms are computationally fast to execute, it might occur that the algorithm has
trouble �nding the globally optimal solution, in particular if a lot of local minima exist. Next to that, determining
that a minimal solution is in fact the global minimum requires thorough understanding of the behaviour of the
objective function.

In our case, the support of the values (s, S) has reasonable size, in particular because we only consider
integer values. For example, following the example of Figure 2.5, the inventory level is at most 180. Considering
that S > s, there are about 16 · 103 values possible, where for each of these values the expected costs can be
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computed quite fast.3 The advantage is that the global optimum can be determined exactly, with the downside
that a longer computation time is required.

Figure 2.5: An overview of the results from the heuristic policy-�nding method. The images on the left provide
heatmaps of the costs for speci�c inventory levels and demand realizations. The image on the right plots the
(weighted) average costs for all possible inventory levels.

Stochastic Programming

With the techniques of stochastic programming (see Section 2.2), slight adjustments can be made to said
techniques to �nd (near) optimal policy values (s, S). By constructing a scenario tree and adding constraints
based on Equation (2.18), a linear program can be solved, with the aim of choosing optimal policy values (s, S)
instead of directly choosing optimal decision variables x. These policy constraints are explained in detail in
Section 3.7. When using this approach, note that using the receding time horizon (Section 2.2.1) is not required,
as the policy values are used throughout the horizon to determine the decision variables. As such, a much larger
scenario tree can be constructed, as it needs to be solved merely once.

Robust Optimization

As described in Section 2.3, a robust optimization can be performed with minor adjustments to the stochastic
programming approach. Likewise, similar policy constraints can be added to robust optimization to �nd the
policy values. However, as robust optimization provides very conservative solutions, the policies resulting from
it perform poorly.4 Because of the nature of the inventory control problem, it is much more interesting to
perform better on average than to perform optimal in the worst-case scenario. As such, we will not go into
detail on further performance of this approach.

3It would be possible to decrease the number of possible values even further, considering that s is a relatively small number

compared to S. More thought could be put into this if a larger support or several items simultaneously are considered.
4This is concluded from initial results. These results are not included in the thesis.
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3 | Model Description

The inventory control model we analyse is based on the problem description of Section 1.3, and is solved using
the techniques of Chapter 2. As stochastic programming is our main approach, the notation in this chapter will
be focused primarily on the stochastic programming method. An overview of the symbols used in this chapter
is provided in Table 3.1.

The remainder of this chapter is structured as follows: in Section 3.1, it is explained how the indices are
used. Next, the main variables that are used in the model are provided: the demand realizations D̃ in Section
3.2 and the decision variables in Section 3.3. In Sections 3.4 and 3.5, the constraints and objective function
are provided in mathematical terms. Afterwards, the technicalities of using a mixed integer linear program are
described (Section 3.6), by providing a list of how several variables and constraints are reformulated. Next, we
provide an overview of the adjustments required when using the stochastic program to �nd the policy values in
Section 3.7. Lastly, the complete linear program (as used in the simulation itself) is presented in Section 3.8.

Model Assumptions

Several assumptions and simpli�cations have been mentioned in previous chapters. Here, an overview of all
model assumptions is given.

Restocks and demands are at discrete time events
Instead of simulating a constant stream of orders, we choose to modify the inventory levels only once
per day (as an aggregated sum of all orders from that day). Similarly, restock actions are not allowed
throughout the day, but only at the start of each day. Because of this, we can simply use time indices t
to indicate the restocks and demands per day.

Decisions are made with zero lead time
Whenever a decision is made (i.e. what items to restock), the e�ects of these decisions are realized
immediately. The (time) penalties for restocking and order picking are merely to indicate the relative
time required to actually perform such actions. Because of the zero lead time, optimizing which decisions
should be made can be done much more accurately.

Perfect state information is used
All state descriptions used (such as current inventory levels and previous demands) are 100% accurate.
This way, decisions can be made with a particular state in mind, where there is no ambiguity regarding
the current state.

The bulk-pick area has unlimited stock
As mentioned in the introduction (Section 1.3), it is assumed that the bulk-pick area of the warehouse
holds enough items in stock. By means of external deliveries, the inventory levels in the bulk-pick area
are kept in check, such that we are always able to restock items from this area to the direct-pick area.
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All demand is non-negative
The demand is represented by particular orders, and a negative demand would indicate items being
brought back to the warehouse. To avoid confusion and unnecessary complexity, the process of returning
items is ignored in this model.

Table 3.1: An overview of all parameters and variables used in the model description.

Scenario tree De�nition Dimension
T Depth of tree 1
N Number of di�erent items (products) 1
St Number of nodes (scenarios) at time t T
Ct Number of children per node at time t T

Indices De�nition Values
t Period number {1, 2, ..., T}
i Product number {1, 2, ..., N}
j Scenario number {1, 2, ..., St}
k Child node number {1, 2, ..., Ct}

Decision variables De�nition Dimension
xtij Restock quantity (number of packages) T ×N × St
ztij Binary decision: is the item restocked? {0, 1}T×N×St

σ Sta� level (optional) 1
ftj Number of �ex workers (optional) T × St

Policy variables De�nition Dimension
si Restock threshold: restock item i if inventory below si N
Si Restock level: restock up to (at least) Si N

Implicit variables De�nition Dimension
ytijk Inventory level at the start of day t+ 1 T ×N × St × Ct

negInvtijk How much the inventory level is below 0 T ×N × St × Ct
restockInvtijk The restock inventory amount T ×N × St × Ct
Uncertainty De�nition Dimension

D̃tijk Realization / prediction of the demand T ×N × St × Ct
ρ Correlation factor (for non-i.i.d. demand) 1
Γ Pool of all customers (for arrival process) N+

Parameters De�nition Dimension
Pi Direct-picking time N
Bi Bulk-picking time N
Ri Restocking time (constant) N
Ai Restocking time per item moved N
Vi Maximum inventory space N
Qi Amount of items per container N
Y0i Initial inventory level N
E Costs per employee (optional) 1
F Costs per �ex worker (optional) 1
L Labour: number of items each worker can restock (optional) 1
F Maximum number of �ex workers (optional) 1

3.1 Indices

In order to keep track of the decision variables and the inventory levels, we introduce a quadruplet of indices:
the indices t, i, j, k indicate the day t, the item number i, the scenario number j and the child node number
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k respectively. In Figure 3.1, an example is provided regarding how these indices are used for the three main
variables y, x, D̃. The size of this scenario tree is described by the following parameters:

Depth T = 3 Child nodes Ct = [3, 2, 1] Scenarios St :=

{∏t
l=1 Cl if t > 1

1 else
= [1, 3, 6, 6] (3.1)

t=1

t=2

t=3

t=4

Y0,i

x1,i,1

y1,i,1,1

x2,i,1
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y3,i,1,1

−
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−
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y2,i,2,1

x3,i,3
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−

y2,i,2,2
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y3,i,4,1

−

y1,i,1,3

x2,i,3

y2,i,3,1
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−

y2,i,3,2

x3,i,6
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−

D̃1,i
,1,

1

D̃2,i,1,1

D̃3,i,1,1

D̃2,i,1,2

D̃3,i,2,1

D̃1,i,1,2

D̃2,i,2,1

D̃3,i,3,1

D̃2,i,2,2

D̃3,i,4,1

D̃
1,i,1,3

D̃2,i,3,1

D̃3,i,5,1

D̃2,i,3,1

D̃3,i,6,1

Figure 3.1: Tree of inventories yt,i,j,k, restock decisions xt,i,j and demand realizations D̃t,i,j,k. Note that i is
�xed, and that the indexing of x does not depend on the child node number k.

Index t indicates that the variable is relevant at time t. The exception to this is the inventory variable y, as
yt indicates the inventory level at the start of period t+ 1. The reason for this is that the computation of the
inventory level is less cumbersome regarding the indexation. The index i is straightforward, as it indicates the
reference number of the item in question.

The remaining two indices j and k attain values depending on the period number t: j indicates the number
of the scenario, ranging from 1, 2, ..., St, which is the number of scenarios at period t. In the example Figure
3.1, observe that index j of x3,i,j ranges from 1 to 6, as the number of scenarios at time t = 3 is given by
S3 = C1 · C2 = 6. On a similar note, k indicates the number of the child node with respect to its parent node,
ranging from 1, 2, ..., Ct, which is the total number of child nodes per node when going from depth t − 1 to t.
In the example, the index k of y2,1,j,k attains only the values 1 and 2.

By combining this absolute indexing j and relative indexing k, we can describe the position and relation
of all nodes in the scenario tree. To illustrate the usage of the indexing j, k, observe the following: suppose we
are at some decision point with indices (t, i, j), and we are interested in the indices j of the scenarios at time
t+ 1. It is known that the demand realizations D̃ have indices (t, i, j, k) where k ∈ {1, 2, ..., Ct}. Using this, the
indices that follow are given by

(t, i, j), child node k ⇒ (t+ 1, i, (j − 1) · numChilds[t+ 1] + k) (3.2)
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Furthermore, for any decision point with indices (t, i, j), we can �nd the indices of the parent node (t− 1, i, j∗, k∗):

j∗ =

⌈
j

Ct−1

⌉
(3.3)

k∗ = j − Ct−1 · (j∗ − 1) (3.4)

The computation of j∗ and k∗ can be explained as follows: as the number of child nodes is equal throughout
each level of the scenario tree, all scenarios at time t− 1 have Ct−1 child nodes. As such, at level t, the �rst Ct
nodes have scenario 1 as parent node, the next Ct nodes scenario 2, and so on. For k∗, we require the di�erence
between j and Ct−1 · j∗, which results in a number modulo Ct−1. Note, however, that the numbering of parent
nodes starts at 1 instead of 0, such that we subtract 1 from j∗.

Throughout this chapter, we will use j∗ and k∗ to indicate the scenario- and child number resulting from
equations (3.3) and (3.4).

3.2 Sampling Demand

One of the main requirements for the model is that demand (uncertainty) needs to sampled. This demand
indicates (per item type) how many products are taken out of stock, either from the direct-pick area or the
bulk-pick area. There are several di�erent methods which are used to sample demand; the most straightforward
method is to use independent and identically distributed random variables (i.i.d.), where each variable indicates
the demand for a single product. The second method is to use random variables which are not i.i.d. distributed,
such that a correlation between successive days can be enforced. The third method considered is the simulation
of an arrival process of customers, each placing a particular order of products upon arrival. These di�erent
demand models are explained in detail in Chapter 4.

Throughout this report, the variable D̃ is used to indicate a sample of the demand. As such, D̃ is a (real-
valued) number, and never a random variable. This is necessary for the stochastic programming techniques,
as these are based on the fact that any randomness and uncertainty is substituted by its samples. For more
information on this matter, see Section 2.2.

For the demand realizations D̃, the only assumption made is that the demand is always non-negative, such
that

D̃t,i,j,k ≥ 0 ∀t, i, j, k (3.5)

The reason for this is that a negative demand would indicate an increase in inventory level, for example when
products are returned to the warehouse. However, for the sake of this model, this is not taken into account, as
mentioned earlier. Next to this assumption, the demand realizations are in general rounded to integer values;
while not necessary for the model, it makes sense that a product is never partially demanded (e.g. half a
product). As a result, the inventory level y and restock quantity x are also integer-valued.

3.3 Main Variables

Besides the demand variable D̃, the three variables most used in the model are the restock amount x, the
implicit binary restock indicator z and the implicit inventory variable y. Optionally, the decision variables
indicating the sta�ng level σ and the number of �ex workers f can be added to the model. In this section, we
provide a brief overview of these variables.

3.3.1 Restock Amount x

The main decision variable of the stochastic program is the restock amount xt,i,j , which is to be optimized for
all investigated periods t, items i and scenarios j. The restock amount indicates the number of containers which
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are restocked; each container contains Qi products of type i. As such, the actual amount of products restocked
is given by

Qi · xt,i,j (3.6)

3.3.2 Binary Restock Indicator z

One of the most commonly used implicit variables used in the model is the restock indicator zt,i,j . This variable
is used especially for computing the restock costs (Section 3.5.2), as the restock costs are logically 0 if there is
no restock. As such, we de�ne zt,i,j as follows:

zt,i,j = I{xt,i,j>0} =

{
1 if xt,i,j > 0

0 else
∀t, i, j (3.7)

3.3.3 Inventory Level y

Another important implicit variable used in the model is the inventory level yt,i,j,k. This variable describes the
level of the inventory at the start of day t+ 1. As the inventory level is in�uenced by the restock amount x and
the realized demand D̃, the formula is given by

yt,i,j,k =

{
Qi · xt,i,j + D̃t,i,j,k + Y0,i if t = 1

Qi · xt,i,j + D̃t,i,j,k + yt−1,i,j∗,k∗ else
∀t, i, j, k (3.8)

Often, we require the inventory level directly after a restock x, but before the demand D̃ is subtracted from the
inventory level. Using (3.8), observe the equality

yt,i,j,k + D̃t,i,j,k = xt,i,j + yt−1,i,j∗,k∗ where y0,i,j,k = Y0,i ∀t, i, j, k (3.9)

When using the left-hand side of (3.9), we do not require to �nd the previous indices j∗ and k∗, which makes
the formulation of some constraints easier. See Section 3.6 for more on this matter.

3.3.4 Sta�ng Level σ and Flex Workers f

An optional module which can be added to the model is the use of employees. Adding employees adds complexity
by bounding the number of items that can be restocked, depending on how many employees there currently are.
When adding employees, consider that there are two separate types of employees: the �xed sta� and the �ex
workers. The di�erence between these employees is that the sta� level σ is determined and �xed for the entire
horizon, while the number of �ex workers f can be adjusted on a daily basis. Next to this, the costs for hiring
the sta� and �ex workers are given by E and F respectively, where E < F . For convenience, assume that the
amount of �ex workers can be determined with zero lead time, such that they are determined at the same time
as the other decision variables.

Each worker (sta� or �ex) can restock L di�erent item (types) on a single day, de�ned as the amount of
labour of one worker. The total number of workers on a particular moment can be found by taking the sum of
the number of sta� members σ and the �ex workers f . As such, the total number of items that can be restocked
on a single day is bounded by

L · (σ + ft,j) ∀t, j (3.10)

3.4 Constraints

The next ingredient required to use the linear program is to de�ne the list of all constraints used. These are
listed in this section.
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3.4.1 Maximum Space

The inventory level after a restock may never exceed the maximum amount of space available for that product.
For this type of constraint, we require the inventory after the restock x but before the demand D̃, as formulated
in (3.9). Using this formulation, the maximum space constraint is given by

yt,i,j,k + D̃t,i,j,k ≤ Vi ∀t, i, j, k (3.11)

3.4.2 Restock up to S

When a restock of item i occurs, we want the inventory level to be restocked up to at least some level Si (i.e. up
to full capacity). However, to decrease the amount of restocking freedom allowed, we also enforce the restock
level to be as close as possible above Si. As such, the inventory level after restocking will be equal to some
y ∈ {Si, Si + 1, ..., Si + Qi − 1}. These constraints are combined into a single if-and-only-if statement, as no
constraint is required if no restock is performed:

zt,i,j = 1⇐⇒ Si ≤ yt,i,j,k + D̃t,i,j,k ≤ Si +Qi − 1 (3.12)

Observe that the inventory level after a restock but before the demand is required, such that the reformulation
of Equation (3.9) can be used. In addition, note that Si is either optimized by the model (i.e. by the (s, S)
policy), or that it is �xed to indicate a full restock:

Si = Vi −Qi + 1 (3.13)

3.4.3 Maximum Labour by Workers

A described in Section 3.3.4, the total amount of di�erent items that can be restocked is determined by the
number of sta� members σ and �ex workers f . As the total amount of labour that can be performed on a
particular day is given by (3.10), the constraint of total restocks that follows is

N∑
i=1

zt,i,j ≤ L · (σ + ft,j) ∀t, j (3.14)

3.4.4 Maximum Number of Flex Workers F
It is possible that there are only a limited number of �ex workers available, as indicated by F. For example,
only a few employees can be hired in addition to the sta�, as not everyone is able to restock certain products
(i.e. due to heavy weights or dangerous compounds). In particular, it might be that �ex workers cannot be
hired at all (F = 0), such that all restocks need to be performed by (trained) sta� members. As a constraint
for the model, we simply add

ft,j ≤ F ∀t, j (3.15)

3.5 Objective Function

As a (mixed integer) linear program is used to �nd the optimal values for the decision variables, a central
objective function to be minimized is required. This function consists of several types of costs: restock, direct-
pick and bulk-pick, and optionally employee costs. In the sections below, these costs are described in detail.

When computing the objective value, it should be noted that the stochastic program uses a scenario tree,
where each scenario has a particular probability of occurring. In the general case, each scenario at time t has
a probability of (St)

−1 or (St+1)
−1 of occurring (depending on whether the variable is dependent on the index
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k). As such, when computing the (expected) costs over the entire scenario tree, we take the normalized sum of
all costs combined, and aim at minimizing these total costs:

min
x

Sta�(σ) +

T∑
t=1

1

St

St∑
j=1

[
Flex(t, j) +

N∑
i=1

[
Restock(t, i, j)

+
1

St+1

Ct∑
k=1

[
Direct-pick(t, i, j, k) + Bulk-pick(t, i, j, k)

]]]

= min
x

σ · T · E +

T∑
t=1

1

St

St∑
j=1

[
ft,j · F +

N∑
i=1

[
zt,i,j · (Ri +Ai · (xt,i,j + 2 · yt−1,i,j∗,k∗ + max (0,−yt−1,i,j∗,k∗)))

+
1

St+1

Ct∑
k=1

[
Pi ·

(
D̃t,i,j,k −max (0,−yt,i,j,k)

)
+Bi ·max(0,−yt,i,j,k)

]]]
(3.16)

3.5.1 Employee Costs

Employees are an optional module which can be added to the model (i.e. if the costs E = F = 0 are �xed,
setting employee levels is irrelevant for the objective value). The employee costs consist of two separate cost
functions: the sta� costs and the �ex costs. As the number of sta� members is �xed over the horizon, the sta�
costs can be taken out of the sum completely. The costs per sta� member is E per time step, such that the
total sta� costs is given by

Sta�(σ) = σ · T · E (3.17)

If there are not enough sta� members to restock all items on a particular day, additional �ex workers can be
hired. The costs per �ex workers is F at any time step, and as the number of �ex workers can vary per scenario,
the costs are given by

Flex(t, j) = ft,j · F (3.18)

3.5.2 Restock Costs

Restock actions are performed in order to increase the inventory level of the direct-pick area. One must note
that, when restocking this area, it is important that products are placed according to a First-In-First-Out
policy (FIFO). The reason for this is that products might have a limited shelf life. Using this property, it
can be seen that the restock costs consist of two main aspects: a constant time Ri required to restock, and a
time-per-product Ai needed to physically move the products.

Suppose that the inventory level in the direct-pick area is equal to y products, and we wish to restock x
items. Then the time required to perform a restock is equal to a �xed time Ri (for going to and returning
from the bulk-pick area to retrieve the products), then removing y items from the picking area (using the FIFO
policy), putting x items on the shelf, and �nally placing the y taken out items back in the direct-pick area (by
placing them in front of all other items). In terms of a formula, this boils down to

Restock(t, i, j) = zt,i,j · (Ri +Ai · (xt,i,j + 2 · yt−1,i,j∗,k∗ + max (0,−yt−1,i,j∗,k∗))) (3.19)

Note that, for a restock during period t, we require the inventory variable at period t− 1, as this indicates the
number of items in stock at the time of restocking. In addition, the inventory level y can be `negative' at some
point (i.e. a bulk-pick was needed in the previous period), a restock might occur where there are no products
in the direct-pick area. Below, we show that (3.19) incorporates all possible inventory levels.
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Positive inventory

Let yt−1,i,j∗,k∗ ≥ 0. Then the restock amount xt,i,j and current inventory level yt−1,i,j∗,k∗ are correct. Using
the fact that max (0,−yt−1,i,j∗,k∗) = 0, we get

zt,i,j · (Ri + 2 ·Ai · yt−1,i,j∗,k∗ +Ai · xt,i,j) (3.20)

Negative inventory

Let yt−1,i,j∗,k∗ < 0. Then the actual restock amount is −yt−1,i,j∗,k∗ higher than xt,i,j , as we �rst `restock' up
to 0 inventory, and afterwards actually restock the products. To compensate for this, we add y to x. Note that,
as we need to FIFO �ll 0 items, and max(0,−yt−1,i,j∗,k∗) = −yt−1,i,j∗,k∗ , we obtain

zt,i,j · (Ri +Ai · yt−1,i,j∗,k∗ +Ai · x) (3.21)

3.5.3 Bulk-Pick Costs

The bulk-picking costs are relatively high, but only occur if the direct-picking area does not contain enough
products. If the inventory level yt,i,j,k is negative, it means that there were not enough items in the direct-pick
area (after restocking) to ful�l the full demand D̃t,i,j,k. For each of these items, a bulk-pick time Bi is needed.1

As such, the bulk-pick costs are given by

Bulk-pick(t, i, j, k) = Bi ·max (−yt,i,j,k, 0) (3.22)

3.5.4 Direct-Pick Costs

The direct-picking costs cannot be prevented, as these describe the process of order-picking and thus satisfying
the demand of each day. Per product of type i taken out of the direct-picking area, a time Pi is required. The
amount of products taken from the direct-pick area is equal to D̃t,i,j,k, except when there are not enough items
in stock. If this occurs, a bulk-pick time is required instead of a direct-pick time. By compensating for this, the
direct-pick costs are given by

Direct-pick(t, i, j, k) = Pi ·
(
D̃t,i,j,k −max (yt,i,j,k, 0)

)
(3.23)

3.6 Reformulation of Variables and Constraints

Some of the current formulations of variables and constraints cannot be used in a linear program; in particular,
if-else statements are not supported directly. As such, it is required that we rewrite these formulations, in
particular by using big-M constraints, such that they can be used. The basic idea of a big-M constraint it that
an upper bound is constructed by multiplying a large number M with some binary variable. This way, if the
binary variable is equal to 1, the constraint is always satis�ed by the fact that M is an upper bound.

3.6.1 Reformulating zt,i,j

As the formulation of zt,i,j in Equation (3.7) is based on two if-and-only-if statements, it needs to be rewritten
it using two separate big-M constraints:

zt,i,j ≤ xt,i,j ∀t, i, j (3.24)

xt,i,j ≤M · zt,i,j ∀t, i, j (3.25)

1These costs are not entirely realistic, as the bulk-pick time should have a similar structure as the restock costs. However, this

further increases the complexity of the model, while not having a signi�cant impact on the rest of the model.
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If xt,i,j = 0, then by (3.24) it follows that zt,i,j = 0, and (3.25) is satis�ed. However, if xt,i,j > 0, then zt,i,j = 1
in order to satisfy (3.25). We wish to choose M as a small upper bound to x: note that the number of items
restocked can never exceed Vi (the maximum inventory space) plus the lowest attainable inventory level yt,i,j,k.
We assume yt,i,j,k > −Vi, such that

M = max
i

(
2 · Vi
Qi

)
(3.26)

3.6.2 Reformulating the Restock Constraint

As described in Section 3.4.2, a constraint is added indicating that the restock level should be at least equal to
Si. As this constraint is an if-and-only if statement, it can be rewritten using two big-M constraints:

yt,i,j,k + D̃t,i,j,k + (1− zt,i,j) ·M ≥ Si ∀t, i, j, k

yt,i,j,k + D̃t,i,j,k + (1− zt,i,j) ·M ≤ Si +Qi − 1 ∀t, i, j, k
(3.27)

Again, an upper bound to yt,i,j,k + D̃t,i,j,k for the value of M is required. As a rough upper bound, we use
M = 2 · Vi.

3.6.3 Reformulating max(0,−yt,i,j,k)
If the inventory level of the direct-pick area becomes negative, it means that not all demand of the previous
period could be picked from the direct-pick area. As such, a bulk-pick time penalty is required. To use a max
function in a linear program, we de�ne a dummy variable negInvt,i,j,k, given by

negInvt,i,j,k ≥ 0 ∀t, i, j, k (3.28)

negInvt,i,j,k ≥ −yt,i,j,k ∀t, i, j, k (3.29)

The reason why we can utilize such a rewrite is because our objective function is a minimization function. As
such, the solver will choose each negInv variable variable to be a value which is as small as possible, while still
satisfying both constraints. In short, negInv is equal to the maximum of both 0 and −y.

3.6.4 Reformulating Restock(t, i, j)

The restock costs function (Section 3.5.2) contains quite a few di�culties: it uses both the binary restock
variable z, as well as the dummy variable negInv. In addition, observe that (3.19) contains a multiplication
of z and y. As we wish to use a linear program, these quadratic terms need to be reformulated. As such, we
de�ne a new dummy variable restockInv, which is de�ned as

restockInvt−1,i,j∗,k∗ = zt,i,j · (2 · yt−1,i,j∗,k∗ + negInvt−1,i,j∗,k∗) (3.30)

Unfortunately, we cannot de�ne a variable by means of a quadratic variable constraint. To circumvent this,
four constraints are required: let L and U be the lower and upper bound of (2 · y + negInv). Then we rewrite
Equation (3.30) to

restockInvt−1,i,j∗,k∗ ≤ U · zt,i,j ∀t, i, j
restockInvt−1,i,j∗,k∗ ≥ L · zt,i,j ∀t, i, j
restockInvt−1,i,j∗,k∗ ≤ (2 · yt−1,i,j∗,k∗ + negInvt−1,i,j∗,k∗)− L · (1− zt,i,j) ∀t, i, j
restockInvt−1,i,j∗,k∗ ≥ (2 · yt−1,i,j∗,k∗ + negInvt−1,i,j∗,k∗)− U · (1− zt,i,j) ∀t, i, j

(3.31)

The equations above can most easily be veri�ed by showing that they hold for both z = 0 and z = 1: if z = 0,
then the �rst two equations combine to restockInv = 0, and the latter two are always valid because of L and
U . If z = 1, the reasoning is almost identical, except that we conclude restockInv = 2 · y + negInv by the last
two equations.
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3.7 Policy Adjustments

It is possible to use the technique of stochastic programming to determine (base stock) policy values. When we
wish to do this, a few constraints and variables need to be added to the linear program, as described below.

3.7.1 Base Stock Policy Optimization

When using stochastic programming to �nd base stock policy values (as described in Section 2.4), it is required
to make a few adjustments to the linear program. Instead of directly optimizing the decision variables x, we
instead optimize the policy values (si, Si) for all i ∈ {1, ..., N}, which fully describe what the value of xt,i,j is
at every step: if the inventory level yt−1,i,j∗,k∗ drops below si, we restock up to (at least) Si. If not, we do not
restock item i. This can be described using two simple if-and-only-if statements:

yt−1,i,j∗,k∗ < si ⇐⇒ zt,i,j = 1 ∀t, i, j
yt−1,i,j∗,k∗ ≥ si ⇐⇒ zt,i,j = 0 ∀t, i, j

(3.32)

These if-and-only-if constraints can be added to the linear program using big-M constraints. Below, the big-M
formulation for the above equations is given.

yt−1,i,j∗,k∗ < si +M · (1− zt,i,j) ∀t, i, j (3.33)

yt−1,i,j∗,k∗ ≥ si −M · zt,i,j ∀t, i, j (3.34)

By case distinction, we can check that the big-M formulation indeed satis�es the original if-and-only-if con-
straints:

yt−1,i,j∗,k∗ < si =⇒

{
(3.33) X

(3.34) =⇒ zt,i,j = 1

yt−1,i,j∗,k∗ ≥ si =⇒

{
(3.33) =⇒ zt,i,j = 0

(3.34) X

z = 0 =⇒

{
(3.33) X

(3.34) =⇒ yt−1,i,j∗,k∗ ≥ si

z = 1 =⇒

{
(3.33) =⇒ yt−1,i,j∗,k∗ < si

(3.34) X

(3.35)

Furthermore, observe that the e�ciency of the model solving can be increased by indicating possible values of
si. As a lower bound, si should never be less than 0, as then we will always pay backorder costs. As an upper
bound, si cannot be larger than Si: this would result in always performing a restock, regardless of what the
demand or inventory level is. As such, we add the constraints

0 ≤ si ≤ Si ∀i (3.36)

3.7.2 Determining Flex Workers

When incorporating the employment module in the base stock policy, a few adjustments need to be made.
Initially, instead of merely determining the optimal policy values (si, Si) during initialization, the sta�ng level
σ needs to be determined as well. With these (policy) values determined, the only decision which needs to be
made is that of the �ex workers f .

Given some inventory level y = (y1, y2, ..., yN ), it can be determined which restocks zi are performed, using
(3.32). When determining the number of �ex workers, we distinguish between three separate cases:
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No �ex workers are needed
Set f = 0 if there are enough sta� members to restock all items on that day.

Hire �ex workers to restock all items
By setting f ≤ F, the total labour on that day is enough to restock all items.

Not enough �ex workers can be hired
Even when setting f = F, not all items can be restocked.

The �rst two cases do not cause any di�culties when determining the number of �ex workers and which items
to restock (i.e. all as indicated by the base stock policy). In the third case, however, a decision has to be made
considering which items to restock. This last case is explained in detail below.

Suppose that, with f = F, a total of k items can be restocked, while the total number of items which needs
to be restocked is given by n. Then there are a total of

(
n
k

)
options of which items are restocked. In order to

determine which items are restocked, several di�erent approaches can be made:

Random selection
Randomly select k of the n items to restock. No additional information or decision making is required,
however this approach might perform far from optimal.

Lowest inventory level
Select the k items with the lowest inventory level. By ordering the items by inventory level, these can
easily be found without any di�cult decisions. Unfortunately, not all inventory levels might decrease at
similar speeds.

Lowest inventory level after realizing demand
As an addition to the previous approach, we can determine the new inventory level by subtracting the
(expected / simulated) demand, and then choosing to restock the k items with the lowest new inventory
level. While this does capture the demand, it does not take into account that not all products have similar
bulkpick and restock costs.

Determine the costs for all possible cases
For each of the

(
n
k

)
possible restock situations, the costs can be determined. With all these costs deter-

mined, picking the optimal restock situation is trivial. However, determining all
(
n
k

)
costs might require

some computation time.

From the aforementioned approaches, the latter gives the best restock solution, and remains computationally
feasible as long as

(
n
k

)
is �small�. For the computation of the costs, it is merely needed to know all parameter

values and the expected demand E[Di] for each item i. By choosing a subset of items to restock R, with |R| = k,
the costs are given by

Costs when restocking R →
∑
i∈R

[Ri +Ai · (Si + yi = max(0,−yi))] +
∑
i/∈R

[Bi ·max(0, yi − E[Di])] (3.37)
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3.8 Mixed Integer Linear Program

Using the constraints, variable reformulations and the objective function described in this chapter, we can
formulate the entire (mixed integer) linear program used.

min
x

σ · T · E +

T∑
t=1

1

St

St∑
j=1

[
ft,j · F +

N∑
i=1

[
zt,i,j · (Ri +Ai · (xt,i,j + 2 · yt−1,i,j∗,k∗ + max (0,−yt−1,i,j∗,k∗)))

+
1

St+1

Ct∑
k=1

[
Pi ·

(
D̃t,i,j,k −max (0,−yt,i,j,k)

)
+Bi ·max(0,−yt,i,j,k)

]]]
(3.38)

subject to

yt,i,j,k = Qi · xt,i,j − D̃t,i,j,k + yt−1,i,j∗,k∗ ∀t, i, j, k (3.39)

yt,i,j,k ≤ Vi − D̃t,i,j,k ∀t, i, j, k (3.40)

zt,i,j ≤ xt,i,j ∀t, i, j (3.41)

xt,i,j ≤M · zt,i,j ∀t, i, j (3.42)

negInvt,i,j,k ≥ 0 ∀t, i, j, k (3.43)

negInvt,i,j,k ≥ −yt,i,j,k ∀t, i, j, k (3.44)

yt,i,j,k ≥ Si − D̃t,i,j,k − (1− zt,i,j) ·M ∀t, i, j, k (3.45)

yt,i,j,k ≤ Si +Qi − 1− D̃t,i,j,k − (1− zt,i,j) ·M ∀t, i, j, k (3.46)

xt,i,j ≥ 0 ∀t, i, j (3.47)

xt,i,j integer ∀t, i, j (3.48)

zt,i,j binary ∀t, i, j (3.49)

If the employees module is used, add:

L · (σ + ft,j) ≤
N∑
i=1

zt,i,j ∀t, j (3.50)

σ integer (3.51)

ft,j integer ∀t, j (3.52)

If the base stock policy values are requested, add:

yt−1,i,j∗,k∗ < si +M · (1− zt,i,j) ∀t, i, j, k (3.53)

yt−1,i,j∗,k∗ ≥ si −M · zt,i,j ∀t, i, j, k (3.54)

0 ≤ si ≤ Si ∀i (3.55)

si integer ∀i (3.56)
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As explained in Section 3.2, sampling demand is an important aspect of the model. There are several di�erent
methods in order to create such demand realizations: the straightforward method is to construct a random
Di per item i, such that the demand on a particular day is given by realizations of all Di. In this method, a
distinction can be made between independent or dependent samples. A di�erent method is based on using an
arrival process of customers, such that the orders of customers provide the daily demand. These methods are
explained in detail in the remainder of this chapter.

4.1 Independent and Identically Distributed Demand

The �rst demand model described is the sampling of independent and identically distributed (i.i.d.) random
variables Di for i = 1, ..., N , where each Di indicates the demand for item i. As the random variables are i.i.d.,
no time index t or scenario index j are required. In fact, each of the St demand samples needed at time t in
the scenario tree are easily sampled as i.i.d. copies.

The advantages of using i.i.d. demand distributions is that it is the easiest and most straightforward
method of sampling demand values: only a single distribution is required per item, and no information on past
demands needs to be stored. Next to that, several analytical results can be proven when the uncertainty is
independent of the past (as seen in Section 2.1). However, it is often not a realistic approach, as uncertainty is
almost never independent of the past.

4.2 Dependent Demand

The second, more complicated demand model used is sampling dependent yet identically distributed (non-i.i.d.)
random variables. The main idea is that a correlation factor ρ ∈ [−1, 1] can be speci�ed, such that successive
demand realizations have a correlation of around ρ. Two demand realizations D̃t, D̃t+1 are successive if they
share a common scenario j at time t; in other words, if they are child nodes of the same parent scenario. In
general, it holds that

D̃t+1,i,j,k
succeeds
=====⇒ D̃t,i,j∗,k∗ ∀t, i, j, k (4.1)

Note that k∗ only depends on j and not on k, such that each D̃t,i,j,k is succeeded by numChilds[t+ 1] demand
realizations.

In order to create such a correlation between successive demand realizations, a method is needed to enforce
this dependency. Unfortunately, the common method of sampling correlated random variables is by using a
copula (e.g. a Gaussian copula). However, these generate a pair of correlated random variables, where we require
a new value given the previous realization. As such, several methods of sampling a new value, conditioned on
a correlation factor, have been investigated. Details of these methods are provided in the following sections.
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The advantage of using non-i.i.d. demand with respect to the simpler i.i.d. demand (Section 4.1) is that an
(anti)-correlation of successive demands often makes sense: if the demand of a particular item is relatively high
today, it is probably lower tomorrow. However, one must be careful that the correlated new samples are taken
from the same distribution; if not, new samples might become too much distorted from the original distribution
for longer sampling horizons. Next to this, the demand only in�uences samples directly succeeding it, such that
there is still a strong Markovian property to the uncertainty.

4.2.1 Uniform Number Sampling

Several of the investigated methods are based on the inverse transform sampling technique for random variables.
It is based on the following: generate random numbers between 0 and 1, and treat these as probabilities. Then,
given some random variable X, the probability density function of X can be constructed by taking the quantile
function (or inverse cumulative distribution function) F−1(·) of the uniform numbers. For our case, we perform
the following steps of translating to and from uniform numbers:

1. Let D̃ ∼ D be the previous demand realization, with D an arbitrary random variable

2. De�ne u1 := FD(D̃), where FD(·) is the cumulative distribution function of D. Note that FD(D) ∼ U [0, 1]

3. Generate a new number u2 ∈ [0, 1], using u1 and the correlation factor ρ

4. Return the new demand realization D̃∗ := F−1
D (u2)

Notice that both D̃ and D̃∗ are based on the demand distribution D, but have a correlation of approximately
ρ by construction. The exact distribution of D̃∗ and correlation factor ρ depend heavily on the third step, for
which a few methods have been investigated. These methods are described in detail below.

Adding Uniform Noise

The �rst method of generating a correlated number u2 is by adding "noise" to the previous realization u1.
This noise is de�ned as a sample of a uniform random variable. Based on the following restrictions, we build a
function Y1(u1, ρ) : [0, 1]→ [0, 1]:

Y1(u1, 1) = u1 (4.2)

Y1(u1, 0) = U [0, 1] (4.3)

Y1(u1,−1) = 1− u1 (4.4)

By construction, Y1 is a function representing a random variable. For all other values of ρ, a linear combination
of the noise and the previous realization u1 is needed. As such, de�ne Y1 as follows:

Y1(u1, ρ) :=

{
ρ · u1 + U [1− ρ] for ρ ∈ [0, 1]

ρ · u1 + U [1 + ρ]− ρ for ρ ∈ [−1, 0]
(4.5)

Figure 4.1 displays possible values that Y1(u1, ρ) can attain. Multiple lines in each plot indicate (a sample of)
possible values. For example, if (u1, ρ) = (0.25, 0.5), then Y1 attains values uniformly on [0.125, 0.625].
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Figure 4.1: Examples of possible values of Y1, plotted for �xed u1 and varying correlation factors ρ.

As the goal is to have a correlation of ρ between D̃ and D̃∗, we compute the correlation between u1 and
Y1(u1, ρ). These correlation factors are not exactly equal to one another, but could be computed using the
following theorem: [Cuadras, 2002]

Theorem 1. Let X and Y be random variables, and α(·) and β(·) functions de�ned on [a, b] and [c, d]
respectively. Assume that both functions have bounded variation and bounded expectational values. Then

cov(α(X), β(Y )) =

∫ b

a

∫ d

c

(FX,Y (x, y)− FX(x) · FY (y)) · dα(X) · dβ(Y ) (4.6)

Figure 4.2: Comparison between the correlation factors of the normalized variables and the actual variables.

In our case, we set X = D̃, Y = D̂∗, and α(·) ≡ β(·) = FD(·) on the interval [0, 1]. However, the marginal
cumulative distribution function FD̃∗(·) is quite di�cult to compute, such that we omit the usage of this theorem.
Instead, we assume that the correlation between D̃ and D̃∗ is similar to the factor between u1 and Y1(u1, ρ). As
such, we only need to �nd the correlation factor of u1 and Y1(u1, ρ). In order to determine this correlation factor,
de�ne Uρ := U [0, 1− |ρ|] and U1 := U [0, 1], such that u1 is a realization of U1. For notation, let Y1 := Y1(u1, ρ).
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Then the correlation is computed as follows:

E[Y1 |U1] =

{
E[ρ · U1 − ρ+ Uρ] for ρ ∈ [−1, 0]

E[ρ · U1 + Uρ] for ρ ∈ [0,+1]

=

{
ρ
2 − ρ+ 1+ρ

2 for ρ ∈ [−1, 0]
ρ
2 + 1−ρ

2 for ρ ∈ [0,+1]

=
1

2
(4.7)

cov(U1, Y1) = E [cov(U1, Y1 |U1)] + cov (E[U1 |U1],E[Y1 |U1]) . Law of total covariance

=

{
E
[
cov(U1, ρ · U1 − ρ+ Uρ) + cov(U1,

1
2 )
]

for ρ ∈ [−1, 0]

E
[
cov(U1, ρ · U1 + Uρ) + cov(U1,

1
2 )
]

for ρ ∈ [0,+1]
. Using (4.7)

= E[cov(U1, ρ · U1) + cov(U1, Uρ) . cov(X, constant) ≡ 0

=
ρ

12
. Uρ is independent (4.8)

V[Y1] = E[V[Y1 |U1]] + V[E[Y1 |U1]] . Law of total variance

=

{
V[ρ · U1 − ρ+ Uρ] + V[ 1

2 ] for ρ ∈ [−1, 0]

V[ρ · U1 + Uρ] + V[ 1
2 ] for ρ ∈ [0,+1]

= V[ρ · U1] + V[Uρ] . All covariances are 0

=
ρ2

12
+

(1− |ρ|)2

12
(4.9)

corr(U1, Y1) =
cov(U1, Y1)

σ(U1) · σ(Y1)

=
ρ/12√

ρ/12 ·
√

(ρ2 + (1− |ρ|)2)/12

=
ρ√

ρ2 + (1− |ρ|)2
(4.10)

This theoretical correlation factor is in line with simulation results. Next, we check our prior statement about
the similarity between this correlation factor and the true correlation between D̃ and D̃∗. This similarity is
plotted for several demand distributions in Figure 4.2. Of those investigated, only the Gamma distribution
shows signi�cant deviation near ρ = −1 from the theoretical results.

Sampling using Equality Probability

A di�erent method used to enforce the correlation exactly is by de�ning a random function Y2, which is equal
to its input with a speci�c probability:

ρ ∈ [−1, 0] =⇒ Y2(U1, ρ
−) :=

{
1− U1 with P = |ρ|
U [0, 1] with P = 1− |ρ|

(4.11)

ρ ∈ [0,+1] =⇒ Y2(u1, ρ
+) :=

{
U1 with P = ρ

U [0, 1] with P = 1− ρ
(4.12)

As the random variable Y2 attains values of two separate random variables with particular probabilities, it can
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be seen that

corr(U1, Y2) =


corr(U1, 1− U1) with P = |ρ| if ρ ∈ [−1, 0]

corr(U1, U1) with P = |ρ| if ρ ∈ [0,+1]

corr(U1,U [0, 1]) with P = 1− |ρ|

=


−1 with P = |ρ| if ρ ∈ [−1, 0]

1 with P = |ρ| if ρ ∈ [0,+1]

0 with P = 1− |ρ|
(4.13)

However, by the construction of Y2, the distribution of the new demand D2 is nothing like the original D. More
on this in the next section.

Comparing the Uniform Samplers

The uniform samplers Y1 and Y2 described above can both be used to generate correlated uniform samples. For
Y1, the actual correlation of Y1 with U1 is not equal to the user-de�ned correlation factor ρ, as seen in (4.10).
This could be prevented by determining the inverse function, but this is outside the scope of this research.
Regardless, the method of adding uniform noise retains parts of the original distribution, as seen clearly in
Figure 4.3: the distribution of Y1 (given one particular value D̃) is uniform on a smaller interval between 0 and
1.

For Y2, however, the true correlation factor matches the user-de�ned factor exactly. The downside, unfortu-
nately, is that the behaviour of the resulting demand D2 is undesirable: it provides far too many samples which
are equal to the previous. For example, if we generate 4 new demand samples, using a user-chosen correlation
factor of |ρ| = 0.6, then the probability that all of these new samples are the same is ρ4 ≈ 0.13. If this would
occur when generating new samples in a scenario tree, there is no advantage to investigating more scenarios, as
each of these new scenarios is the same. Next to that, the distribution of D̃∗ is signi�cantly di�erent than the
original demand distribution. See Figure 4.3 for a visual representation of this behaviour.

As the distribution of the new demand is much more important than the actual correlation between suc-
cessive demands, we will primarily use the method of adding uniform noise to generate new correlated uniform
samples.
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Figure 4.3: Comparison of the discussed correlated uniform number generators Y1 and Y2 (Section 4.2.1). The
images on the left show the distribution of the actual demand, where the red line indicates a realization D̃. On
the right, the �uniform� random variables are shown, where the red line indicates FD(D̃).

4.2.2 Normal Distributed Demand

Instead of using the dependency methods described above, a di�erent method can be used for the special case
where D is normally distributed. If this is the case, the following method constructs a new correlated random
variable:

1. Let D ∼ N (µ, σ) and ρ be the user-de�ned correlation factor

2. Let d1 := D̃ − µ be the normalization of the previous demand realization D̃

3. De�ne D̂∗ := ρ · d1 +
√

1− ρ2 · d2, where d2
R←− N (0, σ)

4. Return the new demand realization D∗ = D̂∗ + µ

By the normalized random variable N (0, σ0), it is possible to construct a new sample D̂∗ with the speci�c
correlation factor ρ, while retaining a mean of 0 and the same variance. The construction of step 4 can be seen
as follows:
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Given two i.i.d. random variables X1, X2 where E[Xi] = 0 for i = 1, 2, we wish to construct a third variable
Y , such that

Y = α ·X1 + β ·X2 such that


corr(Y,X1) = ρ

E[Y ] = E[X1]

V[Y ] = V[X1]

(4.14)

By combining the properties above, it follows that

E[Y ] = α · E[X1] + β · E[X2]

= 0 (4.15)

V[Y ] = α2 · V[X1] + β2 · V[X2]

=⇒ 1 = α2 + β2 (4.16)

corr(Y,X1) =
cov(α ·X1 + β ·X2, X1)

σ(Y ) · σ(X1)

=
α · cov(X1, X1) + β · cov(X1, X2)

V[X1]

= α (4.17)

=⇒ α = ρ ∧ β = ±
√

1− ρ2 (4.18)

By letting X1 = X2 ← D̂ and Y ← D̂∗, we obtain our desired result. As such, it becomes clear that the
normalization is needed to ensure that E[D̂∗] = 0. In fact, the reason why this technique only works for
normally distributed demand D is because we merely compare the �rst and second moment when constructing
the new dependent random variable. As such, it cannot be ensured that the new random variable follows the
same distribution. However, as the sum of independent normally distributed variables is again normal, D∗

retains the normal distribution. By comparing for example the moment generating function, this technique
could be used with random variables other than the normal distribution. However, this is outside the scope of
this thesis.

4.3 Arrival Process

A completely di�erent method for creating demand realizations which was investigated is to use an arrival
process. This technique is based on (parts of) simulations used in the �eld of queueing theory. The main idea
is that customers arrive with a particular order, such that the demand on a particular day is given by the sum
of all orders of arrived customers. In particular, if the pool of customers is not too large, and the inter-arrival
times of the customers are not exponentially distributed, it becomes clear that the demand per day is not
independent.

Let Γ = (γ1, γ2, ...) be the customer pool, which is the collection of all customers that can possibly arrive.
Each customer γl with l = 1, 2, ... has the following properties:

Inter-arrival time Al
A discrete non-negative random variable indicating the number of days between successive arrivals of
customer γl. Note that Al can be constant, which is a special case of a random variable.

Order amount for item i Ol(i)
A random variable indicating the amount of product i customer γl orders upon arrival, for i ∈ {1, 2, ..., N}.
Note that Ol(i) is non-negative, and can be constant if desired. In particular, Ol(i) ≡ 0 for every item
the customer does not order.
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Time since last arrival τl
An integer indicating the number of time steps (i.e. days) since the previous arrival. By de�nition, τl is
non-negative, and is set to 0 only upon arrival of the customer.

Note that no time indices are required for the inter-arrival time and order amount of each customer; for
convenience, it is assumed that these properties are independent through time.1

Upon initializing the customer pool, the time since the last arrival tl is set to a (uniformly chosen) random
value between 1 and maxAl. This way, the previous arrival of each customer can be any number of periods
ago, so long as it does not exceed the maximum number of periods between arrivals. After initialization, it can
be checked which customers arrive on a day:

P(γl arrives) = P(Al = tl |Al > tl − 1) ∀l : γl ∈ Γ (4.19)

Upon arrival of customer γl, an order Ωl is placed by that customer, given by

Ωl := (Ωl(1),Ωl(2), ...,Ωl(n))
R←− (Ol(1), Ol(2), ..., Ol(n)) ∀l : γl ∈ Γ (4.20)

For ease of notation, let Ωl = 0 if customer γl does not arrive. Using the above, the full order of item i is given
by

D̃i =
∑
γl∈Γ

Ωl(i) ∀i ∈ {1, ..., N} (4.21)

As we wish to implement such an arrival process in the scenario tree (Section 3.1), it is required to keep track of
a scenario tree of customer pools Γt,j : at time t and scenario j, customer pool Γt,j is used to sample Ct demand
realizations, where Ct indicates the number of child nodes at time t. The only variable which changes between
the di�erent customer pools is the number of days since the last arrival tl for each of the customers γl ∈ Γt,j ,
as seen in the example below.

t=1

t=2

t=3

Γ1,1

(1, 1)

Γ2,1

(1, 2)

Γ3,1

(1, 1)
Γ3,2

(2, 1)

Γ2,2

(2, 2)

Γ3,3

(1, 3)
Γ3,4

(1, 1)

Γ2,3

(1, 2)

Γ3,5

(2, 3)
Γ3,6

(1, 3)

γ1

γ1, γ2 γ2

−

γ1 γ1, γ2

γ
1

− γ1

Figure 4.4: Tree of customer pools Γt,j and previous arrivals (t1, t2). Each customer pool contains 2 customers
γ1, γ2 where A1 = U [1, 2] and A2 = U [2, 4]. Each edge denotes which customers arrive (if any). The order
amounts Ok are omitted for readability.

1This assumption is not required, and can easily be adjusted in the model if desired.
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4.3.1 Parameter Reduction

By the construction of the arrival process, a signi�cant amount of di�erent parameters are allowed: each of the
n customers can be unique, with each a particular arrival and order distribution. As the main goal of the arrival
process is to enforce a speci�c correlation, we wish to drastically reduce the number of di�erent parameters,
and search for a relation between these parameters and the correlation of successive demands.

Let M denote the number of (identical!) customers, where the inter-arrival distribution of each customer
is Uniform{1, b} for b ∈ N+, and the order amount for each item Oi is constant. Per customer, the average
number of days between arrivals is given by b+1

2 , such that the average demand of item i per day is given by

E[Di] = M ·Oi ·
2

b+ 1
(4.22)

For computing the correlation between successive demands, we investigate a single item (n = 1), such that we
omit the subscript i. Furthermore, let Oi = 1 and M = 1.2 Let D and D′ represent the demand of yesterday
and today respectively. Both D and D′ are de�ned by (the same) customer with an inter-arrival distribution
of Uniform{1, b}. As such, D is in fact a Bernoulli distribution with a success probability of p = 2

b+1 . This
phenomenon is proven in detail in the following section. Observe that

E[D] = E[D′] =
2

b+ 1
(4.23)

V[D] = V[D′] =
2

b+ 1
·
(

1− 2

b+ 1

)
E[D ·D′] = P(D = 1 ∩D′ = 1)

= P(D = 1) · P(D′ = 1 |D = 1)

=
2

b+ 1
· 1

b
(4.24)

If the customer arrived yesterday, chances of arriving again today are given by 1
b . Combining the equations

above, it follows that

cor(D,D′) =
cov(D,D′)

σ(D) · σ(D′)

=
E[D ·D′]− E[D] · E[D′]

V[D]

=

2
b(b+1) −

(
2
b+1

)2

2·(b+1−2)
(b+1)2

=

2(b+1)
b(b+1)2 −

4
(b+1)2

2b−2
(b+1)2

=
2b+2−4b

b

2b− 2
(4.25)

=⇒ cor(D,D′) = −1

b
∨ b = 1 (4.26)

The exception b = 1 follows from a zero-valued denominator. However, the correlation can easily be computed
for b = 1, as D ≡ D′ ≡ 1 every day. While D and D′ are in fact equal, they are independent, such that the
correlation is equal to 0. For varying values of b, these theoretical results are veri�ed by simulation.

2Simulation results show that the correlation remains the same for higher values of M , such that we only prove the result for

M = 1.
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Figure 4.5: Comparison of theoretical and simulated correlation between successive demands, created by an
arrival process of a single customer.

It follows that the lowest anti-correlation that can be enforced this way is by setting b = 2, resulting in a
correlation of ρ = −0.5. To obtain even higher anti-correlation, adjusting the inter-arrival distribution to be
Uniform{2, 3} gives the desired result. Following the same logic as the equations above, it follows that

E[D] = E[D′] =
2

5
(4.27)

V[D] = V[D′] =
2

5
· 3

5
(4.28)

E[D ·D′] = P(D = 1) · P(D′ = 1 |D = 1)

= 0 (4.29)

corr(D,D′) =
0−

(
2
5

)2
6
25

= −2

3
(4.30)

If we wish to create even higher anti-correlation between successive demands, a di�erent approach is required.
Examples are changing the arrival distribution, taking a non-deterministic order amount, or adding one or two
additional customer types to the process.

Stationary Distribution

For any inter-arrival distribution, the probability of arriving is dependent on the number of days τ since the
last arrival. However, in Section 4.3.1, we claim that the inverse of the expected inter-arrival time provides
the expected demand per day. To verify this, using the fact that the inter-arrival distribution is Uniform{1, b},
de�ne a discrete-time Markov chain, where each state indicates the number of days since the last arrival. Then
the transition matrix P is as follows:
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Figure 4.6: A Markov chain showing the behaviour of τ , indicating the number of days since the last arrival
for a single customer, where the probability transitions are shown for each connection. All blue arrows point
towards the node τ = 1.

P =



1
b

b−1
b 0 · · · 0

1
b−1 0 b−2

b−1 · · · 0

...
...

. . .
. . .

...

1
2 0 0

. . . 1
2

1 0 0 · · · 0


(4.31)

Observe that each state τ has two outgoing connections: one representing an arrival (the blue arrow connecting
to 1) and the other representing no arrival, such that τ is increased by 1. Using the above, the steady-state
distribution can be found using the global balance equations:

πb =
1

2
· πb−1

=
1

2
· 2

3
· πb−2

=
1

3
· πb−2 (4.32)

=⇒ πb =
1

k + 1
· πb−k ∀k ∈ {0, 1, ..., b− 2} (4.33)

All nodes have a non-negative transition probability to node τ = 1, such that

π1 =
1

b
· π1 +

b∑
τ=2

1

b− τ + 1
· πτ

=
π1

b
+

b∑
τ=2

1

b− τ + 1
· (b− τ + 1) · πb

b− 1

b
· π1 = (b− 1) · πb

=⇒ π1 = b · πb (4.34)
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Lastly, the normalization formula is applied, resulting in

1 =

b∑
τ=1

πτ

= πb ·

(
b+

b∑
τ=2

(b− τ + 1)

)

= πb ·
(
b+

b · (b− 1)

2

)
(4.35)

=⇒ πτ =
2b− 2τ + 2

b · (b+ 1)
∀τ ∈ {1, 2, ..., b} (4.36)

Using the stationary distribution and the probability of arriving for each τ , it follows that the the probability
of customer C arriving on a particular day is given by

P(C arrives) =

b∑
t=1

P(C arrives | τ = t) · πt

=

b∑
t=1

1

b− τ + 1
· 2(b− τ + 1)

b · (b+ 1)

=

b∑
t=1

2

b(b+ 1)

=
2

b+ 1
(4.37)

Stationary Distribution - Revised

An alternative, more hands-on method of determining the stationary distribution is as follows: assume that,
upon arrival of a customer, the next arrival is immediately planned. These next arrivals are uniformly distributed
between 1 and b. Observe that all possible numbers of days τ since the last arrival can be denoted as follows:

Next arrival:


1
2
3
...
b

 =⇒ τ ∈


1
1 2
1 2 3
...

...
...

. . .
1 2 3 · · · b

 (4.38)

In the matrix notation, observe that each number τ occurs b − τ + 1 times. As each next arrival is chosen
uniformly between 1 and b, each of the b·(b+1)

2 numbers in the matrix has equal probability of appearing. In
terms of the stationary distribution,

πτ = (b− τ + 1)

(
b · (b+ 1)

2

)−1

∀τ ∈ {1, 2, ..., b} (4.39)

The equation above is in fact identical to Equation (4.36), which veri�es our previous conclusions.
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5 | Implementation

The program described in this report has been written in Julia (v.1.2.0).[Bezanson et al., 2017] The code is
written in an object-oriented manner, as indicated in Section 5.1. Moreover, we use the property of multiple
dispatch for several di�erent methods, as is common in Julia code.

By creating di�erent objects for di�erent tasks, we are able to simulate an environment in which a fair
comparison can be made between di�erent decision methods. A particular Decider does not have information
regarding the upcoming uncertainty, and uses a DemandModel to create a DemandPrediction. Afterwards, a
separate Simulator is used to create a (series of) DemandRealizations, which are the same for all compared
Deciders.

For the stochastic programming approach, in order to build and solve mixed-integer programs, Julia for
Mathematical Programming (JuMP) is used.[Dunning et al., 2017] The reason for using JuMP is because it
provides a clear way of constructing linear programs, where we can easily add or modify existing variables and
constraints. Furthermore, it supports several di�erent solvers, such as Gurobi and CPLEX. In our case, Gurobi
was chosen as the solver, primarily because of its fast solving speed.[Gurobi Optimization, 2019]

5.1 Structures

Several di�erent objects have been used to provide a clear structure for the program. These objects are de�ned
as structs (similar to classes in Python), where each struct has several �elds containing its properties. Next to
that, most structs have a number of functions associated with it1. Figures 5.2, 5.3, and 5.4 provide an overview
of the structs and functions used. The structures and corresponding functions are categorized into three main
categories, explained in detail in the following sections.

subtype of

Struct

+ public_field_1::Type
+ public_field_2::Type
- private_field_1::Type

+ public_function(Input_1_Type) : Output_Type
- private_function!(Input_1_Type,           
                    Input_2_Type)

Abstract Type

Figure 5.1: An example of a UML hierarchy.

Throughout this section, we use diagrams correspond-
ing to the Uni�ed Modeling Language (UML). An example
of such a diagram is provided in Figure 5.1. Most structs
used are subtypes of a (user-de�ned) abstract type. This
subtype hierarchy is used primarily for multiple dispatch,
as explained in Section 5.2. Each block in the diagram
contains the �elds and functions belonging to a particular
struct. A distinction is made between public and private
�elds (or functions) - this is mainly to indicate which prop-
erties are not directly accessed by other structs.

1Functions are not necessarily associated with a speci�c struct in Julia - however, associations have been made according to

the in- or output of a function.
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5.1.1 Basic Objects

The objects used throughout the simulation are described �rst. These objects are not hierarchical, but are often
used by the other objects.

ScenarioTree Contains information on the size of the scenario tree. Primarily used by the StochasticProgram.

Warehouse Contains most model parameters, such as penalty times (costs) and maximum inventory levels.

State Represents the current state (of the Warehouse), and is used to keep track of (past) demands.

Results Stores important information resulting from the simulation, such as computation time and costs.

Simulator Contains information on the simulated reality, such as the (true) DemandModel and the horizon
to be simulated. Note that this DemandModel is not necessarily the same as what the Deciders use.

Basic Objects
ScenarioTree

+ T::Int
+ items::Int
+ numChilds::Vector{Int}
+ numScens::Vector{Int}
+ numScens0::Vector{Int}
+ warmup::Vector{Int}
+ cooldown::Vector{Int}

- findPrevious(Int, Int)
    : (Int, Int)

Warehouse

+ items::Int
+ t_pick::Vector{Real}
+ t_bulkpick::Vector{Real}
+ t_restock::Vector{Real}
+ t_restockAmount::Vector{Real}
+ maxSpace::Vector{Real}
+ q_restock::Vector{Real}
+ staff_cost::Real
+ flex_cost::Real
+ labour_amount::Int

Simulator

+ horizon::Int
+ maxTime::Real
+ fixSeed::Bool
+ D::Vector{DemandModel}

+ simulate(Simulator, Decider)
    : Results

State

+ inv::Vector{Real}
+ previousDemand::Vector{Real}

Results

+ computationTime::Real
+ states::Tuple{Vector{State}}
+ restocks::Vector{Restock}
+ employment::Vector{Employment}
+ demands::Vector{Demands}

+ allCosts(Results) : Real
+ pushToResults!(Results, ...)
+ writeToCSV(Results, String)
- _getDay(Int, Results)
    : Vector{Any}

Figure 5.2: An overview of the basic objects.

5.1.2 Deciders

When simulating the inventory model, a Decision needs to be made on a daily basis. The Decider object is used
to provide a Decision (in our current situation, a Restock and / or an Employment), where di�erent methods
are used depending on the type. Furthermore, the Costs (as a consequence of each Decision) are split into
employment, restock, direct- and bulk-pick costs, and subsequently stored in a separate struct.

Decider Abstract type. Used to provide a Decision.

StochasticProgram Builds and solves a JuMP model to �nd the optimal Decision.

Policy Requires one-time initialization of policy values, found using its PolicyApproach.

PolicyApproach Abstract type. Used to provide Policy values.

PolicyHeuristic A heuristic approach, which determines the optimal restock inventory in the single-stage
problem.

PolicySP Uses a similar approach as StochasticProgram, but instead optimizes policy values.

Decision Abstract type. Provided as a result by the Decider.

Restock The amount of containers to restock from the bulk area to the picking area.
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Employment The number of sta�- and �ex workers to hire on a particular day.

Costs Abstract type. Distinguished in employment, restock, direct- and bulk-pick costs, primarily used for
analysis and debugging.

CostsItem Costs of a single item in the Warehouse, used by PolicyHeuristic. Employment costs are not
incorporated as these cannot be computed for a single item.

CostsVector Costs for all items in the Warehouse, used by the Simulator.

Deciders

PolicyApproach

Policy{PolicyApproach}

+ values::Tuple{Real}
+ approach::PolicyApproach
+ W::Warehouse
+ D::Vector{DemandModel}
+ setStaff::Bool
+ staffLevel::Int

+ initialize!(Policy)
+ nextDecision(State)
    : Restock
+ nextDecision(State)
    : [Restock, Employment]

StochasticProgram{DiscretizeTechnique,
          DemandModel}

+ W::Warehouse
+ tree::ScenarioTree
+ DT::DiscretizeTechnique
+ D::Vector{DemandModel}
+ m::JuMP.Model
+ D_pred::DemandPrediction
+ setStaff::Bool
+ staffLevel::Int

+ buildModel(State) : JuMP.Model
- objectiveFunction(JuMP.Model)
    : JuMP.AffExpr
+ addEmployees!()
+ fixStaffLevel!(JuMP.Model, Int)
+ realizeDemand(DemandModel)
    : Array{Real, 2}
+ createDemandPrediction(State)
    : DemandPrediction
+ nextDecision(State) 
    : Restock
+ nextDecision(State) 
    : [Restock, Employment]
+ findStaffLevel!(State)
+ updateDecider!(
   DecisionMethod{ArrivalProcess}))

Decider

+ initialize!(Decider)
+ updatestate!(State)

PolicySP

+ SP::StochasticProgram

+ findPolicy() : Tuple{Real}
- addPolicyConstraints!(JuMP.Model)

PolicyHeuristic

+ dict::Dict{Tuple, CostsItem}

+ findPolicy() : Tuple{Real}
- getAllHeuristicVals(Int)
    : Tuple{Vector{Real}}
- getAllHeuristicCosts(Int)
    : Tuple{Vector{CostsItem}}

CostsItem

+ item::Int
+ restock::Real
+ pick::Real
+ bulkpick::Real

+ generateCosts(Int, Warehouse)
    : CostsItem

Costs

+ employmentCosts(Int, Int, Warehouse) : Real
+ restockCosts(Int, Real, Real, Warehouse) : Real
+ pickCosts(Int, Real, Real, Warehouse) : Real
+ bulkpickCosts(Int, Real, Warehouse) : Real
+ sumCosts(Costs) : Real

CostsVector

+ employment::Real
+ restock::Vector{Real}
+ pick::Vector{Real}
+ bulkpick::Vector{Real}

+ generateCosts(State, Restock, 
    Warehouse) : CostsVector
+ generateCosts(State, Restock, 
    Employment, Warehouse) : CostsVector

Decision

Restock

+ val::Vector{Real}
+ quantity::Vector{Real}

Employment

+ staff::Int
+ flex::Int

Figure 5.3: The hierarchy of the Deciders section.

5.1.3 Demands

Throughout the simulation, demand is simulated to indicate orders of customers, such that the number of
products in stock is reduced. The most important functionalities are to create DemandRealizations (called
by the Simulator) and DemandPredictions (called by the Decider). The exact way how these are constructed
depends on the (type of) DemandModel used.
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DemandModel Abstract type. Used to create DemandRealizations and DemandPredictions.

Demand_IID Creates independent and identically distributed samples.

Demand_NonIID Uses a DependencyEnforcer to form dependent samples.

ArrivalProcess Simulates a process of arriving customers, each having a particular order of items.

DependencyEnforcer Abstract type. Enforces correlation between samples; used only in the non-i.i.d. De-
mandModel.

EqualityProbability Creates a new sample which is equal to the previous sample with a certain prob-
ability.

UniformNoise Creates a new sample by adding uniform `noise` to the (normalized) previous sample.

NormalCorrelation Correlates normally-distributed `random` samples, retaining the properties of the
normal distribution.

Customer Used only in the ArrivalProcess; has properties to determine inter-arrival time and order amounts.

DemandRealization Contains vector of demand values, indicating the (simulated) reality.

DemandPrediction Used in Stochastic Programming techniques to create a ScenarioTree of demands.

DiscretizeTechnique Abstract type. Indicates method used to create DemandPrediction.

RandomSample Randomly sample values based on the provided DemandModel.

Percentiles Use percentiles of the DemandModel distribution.

Demands
DemandPrediction

+ val::Array{Array{Real, 2}, 2}

DiscretizeTechnique

DemandModel

+ setSeed!()
+ getMeans(Vector{DemandModel})
+ findExtremes(DemandModel)
+ pdf_normalized(DemandModel, Real)
+ random(DemandModel) : Vector{Real}

PercentilesRandomSample

NormalCorrelation

+ random(Real,
   Demand_NonIID{NormalCorrelation}) : Real

Demand_NonIID{Distribution, DependencyEnforcer}

+ D::Distribution
+ DE::DependencyEnforcer

+ random(Real, Demand_NonIID) : Real

Demand_IID{Distribution}

+ D::Distribution

+ percentiles(Demand_IID, Int)
    : Vector{Real}

UniformNoise

+ newUniform(Real,
   UniformNoise) : Real

ArrivalProcess

+ items::Int
+ customerPool::Vector{Customer}

+ random(ArrivalProcess) 
    : Vector{Real}
+ getMeans(ArrivalProcess) 
    : Vector{Real}

DemandRealization

+ val::Vector{Real}

+ getNextRealization(Vector{DemandModel})
   : DemandRealization
+ getNextRealization(ArrivalProcess)
   : DemandRealization

Customer

+ interArrivalTime::Distribution
+ orderAmount::Dict{Int, Distribution}
+ prevArrival::Int

+ checkArrival(Customer) : Bool
- getAverageDemand(Vector{Customer},Int)
    : Real
+ getPrevArrivals(Vector{Customer})
    : Vector{Int}
+ getOrder(Customer) : Vector{Real}

EqualityProbability

+ newUniform(Real,
   EqualityProbability) : Real

DependencyEnforcer

+ correlation::Real
+ random(Real,
   Demand_NonIID) : Real

Figure 5.4: The hierarchy of the Demands section.
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5.2 Functions

The main function of our model is a simulation using a receding time horizon (see Section 2.2.1). All objects
required are initialized (the Decider in particular), and afterwards the main loop is initiated. At each step,
the Decider provides the `optimal' decision, after which the actual demand is realized, the current state is
updated, and the loop is repeated. The loop is terminated once the complete horizon has been simulated, or
the computation time exceeds its threshold. A high-level overview of this function is provided in Figure 5.5.

Start
Construct objects

&
Set initial state

No YesSimulation
terminated?

Update state 
& 

Update results

nextDecision(DecisionMethod)

Si
m
ul
at
or

D
ec
id
er

Return results

initialize!(DecisionMethod)

getNextRealization(DemandModel)

Figure 5.5: The simulation function, as initiated by the Simulator. See Figures 5.6, 5.7 and 5.8 for the empha-
sized functions.

The highlighted functions in the �gure above are illustrated in the remainder of this section. All of these
functions make use of the multiple dispatch property: depending on the type of its input, a di�erent method
is initiated. Each function shows what abstract type is required (in our example: either a DecisionMethod or
DemandModel), where each subtype results in a di�erent method being called.2

2These methods do not necessarily need to be de�ned on subtypes, but it gives a clearer overview of the hierarchical structure

of the code.
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The �rst is the intialize! function, which methods are provided in Figure 5.6. The exclamation mark is
added to indicate that the input is modi�ed in-place by the function. Each of the separate methods returns
a result of a di�erent type: the StochasticProgram does not require any (prior) initialization, hence returning
nothing. However, both Policy Deciders require policy values, which are returned by their corresponding
initialize! methods. These policy values are added directly to the policy decider struct.

Return nothing
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restocking

Return found
inventory level

Add policy
variables &
constraints

Solve model Return (optimal)
policy values

Figure 5.6: The initialize! methods, which perform signi�cantly di�erent depending on whether the Decider is
StochasticProgram or Policy based.

The second function is the nextDecision function, which is called by the Decider in every iterative step of
the simulation loop. A Policy Decider merely requires a simple comparison between the inventory level and
its (precomputed) policy value. The StochasticProgram, however, builds a scenario tree, creates a demand
prediction, and subsequently constructs and solves a MILP in order to provide a restock decision. See Figure
5.7 for an overview of these methods. Note that creating a new DemandPrediction is quite similar to generating
a new DemandRealization, as described below.
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Figure 5.7: The nextDecision methods, corresponding to the two di�erent Decider types.

The third function is the getNextRealization function, which is also called in every iterative step of the simulation
loop. However, this function is independent of the speci�c Decider, as it is called by the Simulator. As described
in Chapter 4, there are several possible methods for sampling demand. For the Demand_NonIID function, one
step is to use the DependencyEnforcer to generate a new sample: details of how these are used can be found in
Section 4.2.

Lastly, while not directly mentioned in the previous function, we can add employees to the model. The two
main changes made to the functions above are as follows:

initialize! For any Decider, the initialize! function must also return the (optimal) sta�ng level; in particular,
there is in fact an initialization required for the Stochastic Program, as a nextDecision function is called
to return a sta� level. In order to add such sta�ng properties, the addEmployees! function is used prior
to the model optimization.

nextDecision Any Decider must also return the number of �ex workers as the next Decision (together with
the next Restock). For the Stochastic Program, the addEmployees! function is used. For any Policy
Decider, �ex workers are hired to ensure that all items are still restocked (if the sta� cannot restock all
items themselves).

The addEmployee! function as mentioned above is displayed in Figure 5.9. Note that, besides adding these
variables and constraints, the sta� level is �xed (as it is optimized during initialization).
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Figure 5.8: The getNextRealization methods, corresponding to the di�erent DemandModel types used. Note
that the ArrivalProcess describes the demand for several items, while the other DemandModels describe the
demand of a single item.
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Figure 5.9: The addEmployees! function, used in the initialize! and nextDecision functions of the Stochastic
Program, but only if employees are modeled.
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Besides the functions described above, there are many more used in the code (even more if we count all methods
per function). For the full list of functions and their documentation, see the code itself. A shortlist of important
functions is as follows:

createDemandPrediction
E�ectively creates a large number of demand realizations, but stores it in such a way that it represents a
scenario tree of (predicted) demands. For any demand that is not i.i.d., the dependency between successive
demand realizations is taken into account.

buildModel
Used only with StochasticProgram solvers: constructs the entire MILP in JuMP, and accesses the (private)
function buildObjective for the objective value in particular.

�ndPrevious
Used only in the building of the linear program by the ScenarioTree: it determines the previous scenario
and child node index j∗, k∗ by using Equations (3.3) and (3.4).

generateCosts
Combines the separate functions of costs types ((employment), restock, direct- and bulk-pick), and con-
structs a CostsVector object.

updateDecider!
Does not adjust anything in most cases, but is required if both the Decider and the Simulator use an
ArrivalProcess to simulate demand. If this occurs, the Decider is updated such that it has updated
information on the previous arrivals of all Customers.

updateState!
Updates the State (the current inventory level and the newest DemandRealization) using the provided
Decision and DemandRealization.

pushToResults!
Updates the Results object by adding the (newest) DemandRealization, State, Decision, and computation
time.
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6 | Results

Having described all aspects of the model and simulation, we now investigate and discuss various results in more
detail. These results are all generated using simulations. This way, we are able to emphasize speci�c behaviour
of deciders by choosing certain parameter values. First, we investigate the behaviour of di�erent deciders on a
high level. These are among the �rst results generated from this project, such that these in turn were used in
the remainder of the design process. Next, we demonstrate the power of the stochastic program in two separate
examples, constructed in such a way that a standard (heuristic) policy has trouble making optimal choices.
Lastly, we investigate a large-scale garbage collection problem. Here, we wish to determine how the stochastic
program is able to make decisions, in particular when limiting the total amount of computation time allowed.

6.1 Initial Comparison Deciders

As a �rst result using the simulation, an initial comparison between deciders has been made. In addition to
the deciders discussed in Chapter 2, we add an all-knowing decider. This all-knowing decider can be seen as
a stochastic program without nonanticipativity constraints: it can make decisions based on future uncertainty,
such that it always makes the best possible decision. While such a decider is not realistic, it gives an idea of
how far our decider solutions are from the true optimum. Next to that, it gives a bound on how much we should
(theoretically) be willing to pay in order to be able to predict the future with complete certainty.

The initial results were constructed with several parameters not initiated, as these were not added to the
model at the time of these simulations. The parameters which were not initiated are the sta�ng variables σ
and f , as well as the restocking time per item Ai. Next to that, a simple i.i.d. demand distribution was used
for a single item. For the simulator, the most important parameter settings are

τ = 14 D ∼ Gamma(17, 2)

For the scenario tree, the settings used are

N = 1 Ct = [5, 5, 3, 2, 1, 1, 1, 1]

As the chosen horizon τ is quite short, we use a Monte Carlo simulation of multiple runs, where each run has
di�erent demand realizations and a randomly chosen initial inventory level. For each run, these demands and
initial inventories are used for all compared deciders, such that a fair comparison is made. These results are
plotted in Figure 6.1, and an overview of some of the basic results are provided in Table 6.1. For the policy
deciders used, either a stochastic program (SP) is used to determine the policy values, or they are determined
using a heuristic algorithm (Section 2.4.1).
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Table 6.1: Overview of simulation results from several deciders. For the costs, the mean and standard deviation
are given.

Decider Costs Time (s)
All-knowing 613 (± 61) < 0.1

Stochastic program 654 (± 113) 89
Policy - SP 656 (± 167) 17

Policy - Heuristic 693 (± 163) 0.1
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Figure 6.1: The di�erence in costs between several deciders and the all-knowing decider.

On of the �rst things which becomes clear is that the stochastic program is only marginally better than the
policy decider with SP-determined policy values. Even though the stochastic program could perform much
better than any heuristic approach, note that a base-stock policy is almost the best thing we can do for i.i.d.
demands. If the optimal restock threshold is found, there is no reason to deviate from this policy on subsequent
time steps, as the (distribution of) demand at each time step is independent from all other demands. However,
as the scenarios of the scenario tree are randomly generated, the SP is able to make di�erent decisions for the
same inventory level. For example, at an inventory level of 30, the SP decides to restock about 50% of the time.
This behaviour is demonstrated in Figure 6.2.

Because of this ability to make probabilistic decisions, the stochastic program can attain slightly lower
mean costs, and a signi�cantly lower standard deviation than the policy deciders. However, with an average
computation time of more than 5 times as long, one could argue that the marginal decrease in costs is not
worth the required computations. The same could be said about the policy deciders: on the one hand, the SP
is able to �nd policy values which result in a decrease in costs of about 6% in comparison to the heuristic policy
decider. On the other hand, the computation time required for only 1 item in the warehouse is already about
17 seconds, let alone if we wish to optimize the policy values for several hundred items.

As described the policy deciders have less decision freedom than the stochastic program, they can never
attain the same optimal decisions. To compare: if the upcoming demand would be known beforehand for the
policy decider and the stochastic program, then the average costs resulting from the stochastic program are
about 4% less than what the optimal policy value provides. By indicating what the (expected) costs are for
several di�erent policy values, we can indicate how well the policy deciders perform. These results are plotted
in Figure 6.3.
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Figure 6.2: The probability of restocking for di�erent inventory levels, as found by the stochastic program. A
tree of depth T = 1 with C1 = 20 scenarios is used, where the deviation is computed over 500 runs.
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Figure 6.3: The expected costs for varying restock threshold values, and an indication of the policy values
found by di�erent deciders. The simulation horizon τ is increased to 100, in order to reduce the e�ect of the
randomized initial inventory.

From these initial results, we concluded that the problem should be increased in di�culty for stochastic pro-
gramming to be worth the computational costs. As the base stock policies are (near)-optimal for i.i.d. demand,
we added several methods to create a correlation between successive demands (Sections 4.2 and 4.3). Next to
that, we added complexity to the restocking costs (Section 3.5.2), and added employee costs and constraints.
By doing this, the computational cost of solving a stochastic program is increased, but the idea is that the
heuristic approaches are not able to cope with all of these additional complexities.

In order to test these new additions to the model, two separate examples have been investigated, each made
for a particular aspect of the decider. These examples are described in the sections below.
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6.2 Example: Predicting Customer Arrivals

An example which we investigate in detail is constructed to illustrate the power of stochastic programming
compared to a simpler base stock policy. For this end, only a single item is considered (i = 1). For the demand
model, an arrival process is used, where the customer pool Γ contains two identical customers γ1, γ2, each having
a constant order amount of 1 upon arrival, and a discrete-uniform inter-arrival time Al ∼ U [2, 3]. Using this,
the average daily demand that follows is

E[Dt] = 2 ·
(

5

2

)−1

=
4

5
∀t ∈ {1, 2, ..., T} (6.1)

As the demand on a particular day is at most 2, the maximum inventory space is set to 2 as well. On the one
hand, we enforce the decision method to perform a restock if both customers arrive simultaneously. On the
other hand, the demand can sometimes be predicted quite well, such that restocks can often be postponed to a
later time. As no costs are charged for restocking too early, we de�ne the following errors:

False Positive
A restock which was not necessary that day, i.e. the inventory level would not have dropped below 0.

False Negative
No restock was performed while it was necessary that day, i.e. a bulk pick which could have been prevented.

A long horizon (τ = 500) is simulated over several runs, where identical demand realizations are used per run.1

Using this, we are able to compare several di�erent deciders. For the Policy-s deciders, we test policy values of
s = 0, s = 1 and s = 2, with S = 2 in all cases. The next decider is the (default) stochastic program, and as
a comparison we include the all-knowing decider. This last decider provides the restock amount, knowing the
value of the upcoming demand. Theoretically, this all-knowing decider can be used to evaluate how much one
should be willing to pay to know the exact future.

1Each simulation run has di�erent demand realizations, but the deciders at each run are compared with the same demand

realizations.
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Figure 6.4: A comparison of the number of false positives and negatives for di�erent deciders. The size and
annotation of each marker indicates the total (average) number of restocks performed; note that a larger node
indicates more restocks.

In Figure 6.4, observe the three deciders which behave as expected: the Policy-0 never has an unnecessary
restock (i.e. no false positives), the Policy-2 always prevents bulk pick orders (i.e. no false negatives), and the
all-knowing decider makes no mistakes. This in turn gives a clear indication of the number of restocks: the
Policy-0 performs the lowest number of restocks, and the Policy-2 performs the most. The all-knowing decider
performs on average 207 restocks, which is in line with the horizon of τ = 500 and a daily expected demand of
E[D] = 4/5 (as a restock usually adds one or two items). In fact, the stochastic program performs only slightly
more restocks than the all-knowing decider, whereas the Policy-1 method does not perform enough restocks.
This can be seen clearly as the stochastic program has almost no false negatives, while the Policy-1 has several.

Figure 6.5: A zoomed view of the policy 1 and stochastic program de-
ciders. Each node represents a simulation result, where diamonds are
from the stochastic program, and circles from the policy. Each (dotted)
line indicates which values result from the same demand realizations.

Concluding from the �gure
above, the two most interesting de-
ciders are the Policy-1 and the
stochastic program (besides the all-
knowing decider); this is no sur-
prise, as the optimal base stock pol-
icy value (as found by using stochas-
tic programming) is equal to 1. For
each of the used simulation runs, the
actual numbers of false positives and
negatives are plotted in Figure 6.5.
Here, it is clear that the stochas-
tic program always outperforms the
policy method regarding both errors.
Unfortunately, this comes at the cost
of additional computational time re-
quired: each horizon of length τ =
500 takes about 5 minutes to deter-
mine the restocks, compared to less
than 0.3 seconds for a policy decider.
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6.3 Example: Optimizing Employees

The second example which we investigate uses the employee module. We wish to show how a (standard) base-
stock policy has di�culties coping with correctly using its sta�, while the stochastic programming decider can
adapt to the situation. The idea is that an ArrivalProcess is used with two types of customers: one type of
customer γi arrives (almost) daily, but has a very small order amount of a single item; the second customer
type γ∗ arrives only once a week, yet orders quite large amounts from all items. As such, the pool of customers
Γ for the ArrivalProcess is de�ned as follows:

Γ = (γ1, γ2, γ3, γ
∗) (6.2)

γk =

{
A ∼ U [1, 2]

O(i) = I{k=i}
∀k ∈ {1, 2, 3} (6.3)

γ∗ =

{
A ∼ U [4, 6]

O(i) = 6 ∀i ∈ {1, 2, 3}
(6.4)

For the warehouse, the most important chosen parameters are the number of items N = 3, the maximum
inventory Vi = 7 for i = 1, 2, 3, and the costs for sta�- and �ex workers 15, 45 respectively. By construction, all
items should be (almost) fully restocked when γ∗ arrives, as it empties all inventories almost completely.

When comparing the stochastic program decider, we chose to compare it to the `optimal` policy, where the
restock threshold s = 1 and the number of sta� workers σ = 0. This policy turns out to be the best possible
choice, found by simply comparing the (expected) costs for all di�erent values of s and σ. For 30 separate runs,
the total costs over a horizon of τ = 20 are compared for these deciders, where the same (series of) demand
realizations are compared per run.

Figure 6.6: A comparison of the stochastic program and the (optimal) policy. The horizontal line and ribbon
indicate the mean and standard deviation of the costs for both deciders.

Observe that in Figure 6.6, the stochastic program always results in lower costs than the policy does. For
one particular run, we will investigate where this di�erence in costs originates from. The sta�ng levels of the
stochastic program and policy are σ = 1 and σ = 0 respectively.
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Figure 6.7: The behaviour of bulk-picks and restocks for both deciders.

Figure 6.8: The behaviour of employee costs for both deciders.
The policy has no (�xed) sta�ng costs, whereas the stochastic
program never hires �ex workers.

As seen in Figure 6.7, the total number of bulk-
picks required appears to be similar for the
stochastic program and the policy decider. How-
ever, the behaviour of the bulk-picks is quite dif-
ferent: the stochastic program has a few bulk-
picks each day, but the policy results in a large
amount of bulk-picks at particular days. The
behaviour of restocks clearly shows that the
stochastic program performs a restock nearly
every day. The policy, however, only restocks
the day after the arrival of γ∗ (i.e. the day
that all bulk-picks are performed). As such, the
stochastic program is able to stock up on inven-
tory before the arrival of γ∗, while the policy
does not. Furthermore, the stochastic program
ensures that no additional �ex workers need to
be hired to perform all restocks, while the pol-
icy only uses �ex workers. Figure 6.8 shows
the costs resulting from hiring workers, which
clearly shows a di�erence between the deciders.
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6.4 Case Study: Garbage Collection

The primary part of Chapter 6 focuses on the garbage collection problem, as mentioned in Section 1.2. Here, the
warehouse model is slightly altered (in terms of de�nitions) to simulate an inventory control problem considering
the collection of garbage in a municipality. The goal is to timely empty containers by using garbage trucks,
such that no container ever exceeds its capacity. Of course, this has to be done by using the minimum amount
of garbage trucks possible, as the costs should be minimized.

In this section, we will �rst describe the changes made to the warehouse model (Section 6.4.1). Next,
we provide an overview of the parameters and deciders used (Section 6.4.2), and lastly indicate more in-depth
results on the behaviour of these deciders in Section 6.4.3.

6.4.1 Altering the Warehouse Problem

The garbage collection problem is in fact quite similar to the warehouse model, as described in Chapter 3. The
following alterations in de�nitions are used:

Containers ⇐ items
Each container in the municipality is represented by a separate item type in the warehouse.

Container �ll rate ⇐ demand model
The containers are �lled with garbage at a particular rate, which can be simulated using a demand model.

Garbage ⇐ inventory
Instead of directly translating the inventory level to the amount of garbage, we instead translate the
inventory level of a product to the amount of air in a container, as the amount of air decreases as garbage
is added to the container.

Emptying containers ⇐ restock
Containers should be emptied (i.e. re�lled with air) to prevent overfull containers (i.e. there is no more
air left). As such, a bulk-pick is a penalty which has to be paid if this does happen.

Garbage truck ⇐ sta�
Each garbage truck can only empty a certain amount of containers each day. This amount is constrained
by either the amount of distance which needs to be travelled, or by the capacity of the truck. The labour
amount can be chosen in such a way that it represents the minimum of both constraints.

Note that, in order to model the garbage collection problem, the routing aspect is ignored, which is a major
simpli�cation to the problem. Instead, we simply investigate which containers should be restocked, and assume
that these containers can be reached.

6.4.2 Parameters and Deciders Used

The model parameters and settings are chosen with two particular ideas in mind: on the one hand, we wish to
create a situation which resembles an actual garbage collection problem. On the other hand, some parameters
are chosen di�erently, such that it can be made more clear how the stochastic program is able to perform
di�erently than the heuristic deciders. A list of the most important model parameters is as follows:

Number of items N = 100
To investigate how the deciders perform on a problem of a larger scale, we choose a signi�cantly higher
number of items than in prior simulations.
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Simulation horizon τ = 7
The reason why the horizon length is chosen to be quite short is because the sta�ng level is �xed over
the entire horizon, and the decider is not allowed to hire additional �ex workers. As such, the sta� level
is �xed for one week, after which it can be adjusted and �xed for another week.

Demand Di non-i.i.d. demand model
Each container has a di�erent �ll rate, provided by a normal distribution with negative correlation (see
Section 4.2.2 for details). The reason for this is that there is some anti-correlation in the �ll rate of a
container: if a large number of citizens deposit their garbage today, they probably will not make a deposit
again tomorrow.

Labour amount L = 2
Even though it is not realistic that each garbage truck can only empty 2 containers on a day, the labour
amount is set quite low on purpose. The reason for this is that it allows more variation in the number of
sta� members required.

Maximum inventory Vi = 1000
While this inventory level (i.e. the amount of air) is measured in some arbitrary, unknown unit, it is only
interesting what the demand is with respect to this maximum inventory level. For our case, an average
demand (over all containers) of about 100 is taken, such that on average 10 of the 100 containers need to
be restocked each day.

As the number of sta� members is �xed over the horizon, and no �ex workers can be hired, it does not make that
much sense to use our default policy decider. As such, we use an alternative heuristic policy decider: given that
K containers can be emptied on a day, empty the K containers with the (current) highest amount of garbage
in them. If desired, a slight alteration can be made by emptying the K containers with the highest predicted
amount of garbage by the end of the day (i.e. adding the expected demand to the current garbage level). In
our case, K is determined easily by

K = L · σ = 2σ (6.5)

Besides this alternative policy decider, the default stochastic program is used with two particular settings: the
�rst is that we investigate how well the stochastic program is in deciding what the sta�ng level would need
to be for the horizon (given some initial inventory levels). If the stochastic program is not asked to �nd this
sta�ng level, then the stochastic program is simply initialized multiple times, each time with a di�erent �xed
sta�ng level. The second setting is that we di�erentiate between two particular scenario tree structures: one
tree is quite deep but narrow, while the other is very wide but only a few layers deep. The tree depth T and
the number of child nodes Ct used in both settings are

T (1) = 7 C
(1)
t = [2, 2, 2, 1, 1, 1, 1] (6.6)

T (2) = 3 C
(2)
t = [5, 5, 5] (6.7)

6.4.3 Results

The results from this section are based on the parameters and settings as described in the previous chapter.
Besides that, we set a time limit of 1000 seconds for the MILP solver, as it might take a signi�cant amount of
time to �nd the actual global minimum, while getting close to the best solution is often good enough.

Randomized Initial Inventories

The �rst results we discuss are based on simulations with randomized initial inventory levels. Each of the
simulation runs is independent of the other simulations; per simulation run, all deciders are tested on the same
demand realizations.
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Figure 6.9: The time required for both stochastic pro-
grams to determine the sta�ng levels.

One of the �rst results which we �nd is that the initial-
ization time required for determining the sta�ng level
often takes longer than the provided time limit. The
reason for this is because we did not limit the solver to
determine only the optimal sta�ng level, but also to
determine all other decision variables resulting from
its scenario tree. As a result, it has signi�cantly more
freedom than having a �xed sta�ng level, which is
most probably why it has so much trouble �nding the
optimal sta�ng level. To circumvent this, we could
alter the decision problem (or the solver) to merely de-
termine the sta�ng level; unfortunately, due to time
constraints, this is outside of the scope of this project.
For the remainder of this section, we do in fact let
the stochastic program (SP) optimize its own sta�ng
level, because it takes even longer to simulate with
multiple sta�ng levels.

Next to this, we compared the di�erent SP deciders with the policy deciders. The SP's were set to determine
the optimal sta�ng level themselves, the policy deciders were simply run multiple times with multiple sta�ng
levels. A quick overview of the average costs and computation times is given in Table 6.2.

Decider Sta�ng σ Average costs Average computation time (s)
Stochastic Program - Deep tree * 6360 3094
Stochastic Program - Wide tree * 5875 60

Policy 4 > 40000 < 0.01
Policy 5 5927 < 0.01
Policy 6 7724 < 0.01

Table 6.2: Average costs and computation times for compared deciders. No di�erence is made between the two
policy decider settings, as both resulted in similar results.

From these initial results, the SP with a wide but shallow tree appears to perform the best: it has reasonable
computation time, and attains the best results on average. In fact, when investigating the restock behaviour
considering false positives and negatives (as described in Section 6.2), this SP performs much less errors than
the other deciders. As seen in Figure 6.10, the wide SP has strictly less errors than both the deep SP and the
policy decider for multiple di�erent simulation runs.

The stochastic program with the deep scenario tree does not seem to perform any better than the policy
decider considering costs and restock errors, even though it does require signi�cantly more computation time.
This is likely because of the independence between simulation runs: any long-term costs (which the policy and
wide tree might not prevent) are not simulated in the short horizon of only 7 steps. Next to that, deciding 7
steps in advance what to do might be too far ahead for what is needed, as it is primarily important to look far
ahead when deciding the sta�ng level.

The policy deciders perform quite well considering average costs (except for the �xed sta�ng level of only
4), while maintaining an incredibly fast computation time. In fact, the average costs resulting from this policy
approach are only slightly higher than the costs resulting from the wide SP. Because of its heuristic approach of
restocking the fullest containers (i.e. with the lowest level of air), it has only a small amount of false negative
restocks (i.e. an overfull container). However, this comes at the cost that if often has a signi�cant number of
false positive restocks, even on quite a small horizon. No direct costs result from restocking too early, but it is
an indication that it could probably perform similarly using less sta� members.
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Figure 6.10: The number of false positives and negatives for several compared deciders, indicated for multiple
simulation runs. The size of each marker indicates the total costs of that simulation run, where a smaller node
indicates lower costs.

Continuing Inventory Levels

As concluded in the previous section, the stochastic program with a wide but shallow scenario tree is able to
perform the best short-term decisions, and is not faced with higher costs in the long run. To circumvent this,
we create a setting of dependent simulations: at each simulation of τ = 7 steps (or 1 week), the sta�ng level
per decider is �xed. After the horizon, the inventory level of the last day is copied to the next week, and a
new simulation run is started. This way, the SP's are allowed to choose a new sta�ng level each week, but are
in fact forced to deal with long-term e�ects of their (short-term) choices. The policy deciders are �xed with a
sta�ng level of either 5 or 6 (as a sta�ng level of 4 turned out to be too little).

Figure 6.11: The sta�ng levels per week as initialized
by the stochastic programs.

Figure 6.11 shows how both SP's decide how
many sta� members are required each week. Observe
that the SP with a deep tree has almost no variance in
the number of sta� members required each week. The
average number of sta� members required is about
5.5, such that it usually sets the sta� level to either 5
or 6. On a few occasions, it might need 7 trucks, prob-
ably because too many containers are too full. The
SP with a wide but shallow tree, however, has a much
higher variance in the number of sta� members hired.
One week it decides that only 4 trucks are needed, but
the next week 11 trucks are needed to compensate for
this. On average, it hires about 6.2 sta� members per
week, which is a lot higher than what the other SP
hires.
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Figure 6.12: An overview of the cumulative costs of the compared deciders for 30 successive simulation runs.

From Figure 6.12, it can be seen that the SP with the wide tree has trouble choosing the correct number of
sta� members: in particular, in the week of time 133 to 139, the costs rocket up due to bulk-picks at the end
of the week. As the depth of the tree is only 3 steps deep, it did not take this into account when deciding the
sta�ng level for that week. As such, it is important to realized that, even though a wide scenario tree might
result in better results, a deep scenario tree must be used with respect to long-term decisions.

The highest costs originate from the policy deciders with a �xed sta�ng level of only 5. This is due to
the fact that 5 trucks are not enough to restock all containers in time, resulting in minor bulk-pick costs each
week. The lowest costs result from the deep SP and the policy deciders with a �xed sta�ng level of 6. The total
costs are nearly the same, yet the policy deciders have a slight edge over the SP. The reason for this is twofold:
the costs for hiring employees is (relatively) low (i.e. 150 per sta� member per day), and the deciders are not
penalized when restocks are performed too soon. Because of this, the SP attempts to minimize the number of
sta� members for only minor improvements in expected costs, which sometimes results in having too little sta�
to restock all containers.

When investigating the number of false positives over time (as shown in Figure 6.13a), it can be seen clearly
that the policy method has signi�cantly more unnecessary restocks than both SP's. The reason for this is that
the sta�ng level is �xed at 6, such that the same number of restocks are performed every week. As seen in the
sta�ng level behaviour of the SP's (Figure 6.11), the sta�ng level of 6 is not required every week. From the
SP's, it can be seen that the wide scenario tree results in less false positives, primarily because it is often not
able to prevent a bulk-pick. This can be seen clearly in Figure 6.13b.

59



CHAPTER 6. RESULTS Stochastic Stock Control

(a) False positives. (b) False negatives.

Figure 6.13: The number of cumulative (restock) errors for the compared deciders.

6.4.4 Concluding Remarks

Depending on what aspects are important, di�erent settings can be chosen for the decider. If computation
time is not an issue, it would be optimal to use a stochastic program where the scenario tree is both wide and
deep. However, for our current settings, the standard policy methods are good enough, primarily because false
positive restocks are not penalized, and the computation time required is almost non-existent.

Of course, we could be able to tweak the settings a bit more than we are currently able to. For example,
it would make sense to initialize the sta�ng level with a deep and large tree, but afterwards use a much more
shallow tree (or even a simple heuristic policy approach) to determine the daily restocks. With only minor
adjustments to the program, such settings could be realized.
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In this thesis, we have created a simulation environment which can be used as a framework for several di�erent
optimization instances. With a focus primarily on inventory control in a warehouse, we have investigated several
di�erent techniques, and compared them in terms of computation time, accuracy and e�ciency. The remainder
of this chapter is focused on providing the concluding remarks based on the results (Chapter 6), and to give an
overview of interesting future research.

7.1 Conclusion

First and foremost, the method of stochastic programming does not seem to be worth the additional computation
time for our investigated examples. In the current setting, the objective value is only slightly better, while
the computation costs skyrocket for larger scenario trees. Unfortunately, these larger scenario trees are in fact
required. If a small or narrow scenario tree is used, the results are often relatively worse than a simple (heuristic)
policy approach. Even when adding several additional complexities (such as sta�ng levels), the heuristics can
be tweaked and updated, such that the stochastic program loses its bene�t of �nding better solutions.

Tweaking and updating heuristic algorithms might result in a proper solution, but this does not always
result in a desirable situation. If adjustments need to be made iteratively to a simple heuristic, the �nal algorithm
might not be as readable or easily implementable as desired. By creating exceptions on top of exceptions, the
simple heuristics might not be as simple any more. For stochastic programming, however, the modular structure
can be used much more easily. With respect to the linear program, we can add some constraints or variables,
and the remainder of the algorithm remains exactly the same. In addition, we can easily use the multiple
dispatch property of Julia: for example, we could de�ne a new Decider type, and simply de�ne new methods
(with existing function names) for this particular Decider type. This way, no adjustments need to be made to
the existing code, while we are able to add additional features.

Instead of iteratively changing a heuristic (policy) approach, an alternative would be to use a stochastic
programming approach for the more signi�cant one-time decisions, such as determining a restock threshold or
sta�ng level. The scenario tree we use for the stochastic program can be quite large, in particular as it needs
to be solved only once. By using a scenario tree which is both wide and deep, we are able to incorporate a
large horizon for the decision, while including a very wide range of scenarios. Even when incorporating all
sorts of additional complexities, we are able to �nd (near) optimal values, which can be used in the (heuristic)
algorithm.

In conclusion, stochastic programming could be used to improve existing heuristics, in particular to de-
termine the values used in heuristic algorithms. In some situations, using stochastic programming to directly
determine decisions could be worthwhile: if the computational time remains within feasible bounds, it could
be used to determine daily restock actions. By tweaking with parameters such as bulk-pick and restock costs,
the timing of these restocks can be altered; one could restock such that a bulk-pick can (almost) never occur,
or restock only when the odds are very slim that the current inventory level is enough. In any case, stochastic
programming is a promising method when one wishes to incorporate uncertainty in its optimization process.
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7.2 Future Research

There are quite some aspects which we were not able to fully research, because it was outside of the focus of
this thesis. A list of the major aspects which could be researched further are described below.

Robust optimization
Even though we concluded from initial results that robust optimization did not provide valuable results,
it might solve current issues we have regarding the computational time required. By further investigating
the use of uncertainty sets, we might be able to have less conservative solutions, while maintaining proper
solutions.

Progressive hedging algorithm
Another method aimed at decreasing the computational time required in the stochastic program. This
algorithm could be used in combination with the current linear program solver, as this should result in
much faster convergence rates.

Bender's decomposition
This technique can be used when solving large linear programs (as a result from the scenario tree) by
creating a particular block structure of constraints and variables. By doing this, the decision variables
can be solved in two successive stages, which greatly speeds up the computation time.

Extending the demand models
Currently, when we do not want to use a simple i.i.d. demand model, we are quite limited in how correlation
is enforced. More time could be spend on determining new dependency enforcers, or the arrival process
could be extended further by using dependent inter-arrival distributions. Next to that, other demand
models could be constructed, which might be a much better �t to what happens in reality.

Modify restock and demand behaviour
As described in the assumptions, we currently model restocks and demand on a daily base, but this could
be adjusted signi�cantly. For example, instead of allowing a restock only at the end of the day, we could
allow restocking to be performed throughout the day, where demand is also simulated over the course of
a day. This way, additional complexities arise where sta� members could be either restocking or picking
orders, and the time penalties needed to perform these actions becomes even more important.

Uncertain lead times
As described in the assumptions, all decisions have zero lead time. By setting these lead times to be
non-negative (stochastic) value, the di�culty of �nding solutions increases tremendously. For example, in
our garbage truck model, the time needed to restock a container is �xed. However, it might be that the
roads are busier than expected, such that it would take much longer to empty a container.

Imperfect state information
Another assumption which could be removed is the usage of perfection information in the state descrip-
tions. Continuing in our garbage routing problem, it is possible that we have no clear information regarding
the amount of garbage in each container. Here, several di�erent levels of imperfect information can be
used. These levels range from an inventory sensor which is a few percent o� to a complete black-box
structure where no state information is known at all. When dealing with this, an educated guess should
be made considering what the inventory levels would be, after which the remainder of the optimization is
performed.

Bayesian statistics
While not investigated in this thesis, an interesting aspect would be if the predicted demand is not from
the same demand model as the (simulated) uncertainty. For example, the parameters of the distribution
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could be slightly o�, or the dependency could be neglected completely. With this in mind, two new
questions come to mind. Firstly, how well do the deciders perform when their demand model is incorrect?
And secondly, how can we use Bayesian statistics to iteratively update the demand model settings?
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A | Appendix

A.1 Glossary

Item A single package (or product) which is ordered by a customer, and must be order-picked from one of the
picking areas.

Inventory The number of items in stock in a particular area.

Bulk-pick area Large area of a warehouse where products are stored in bulk.

Direct-pick area Smaller area of a warehouse where products can easily be order-picked.

Demand The uncertainty in the model, indicating the number of products ordered by the customers.

Restock The action of moving items from the bulk-pick area to the direct-pick area.

Stochastic programming An optimization technique, based on discretizing uncertainty, constructing a sce-
nario tree, and optimizing a linear program over all scenarios.

Robust optimization An optimization technique, aimed at �nding an optimal solution given an uncertainty
set. The provided solution is found by optimizing over the worst-case scenario(s) in the uncertainty set.

Scenario tree A discretization of the uncertainty, where di�erent scenarios are grouped in a tree-like structure.

Nonanticipativity constraints Used in stochastic programming, these indicate that decisions are indepen-
dent of upcoming uncertainty, i.e. all decisions with the same past must be equal.

Receding horizon A technique used in the simulation of a long horizon; only a small part of the horizon is
focused on, and this focus is shifted with small steps in successive simulation steps.

Base stock policy A heuristic approach commonly used in inventory control problems. A restock threshold
is de�ned, such that products are restocked if the inventory is below the threshold.

Big-M constraints Used only in the formulation of constraints and variables in a linear program. By using
an upper bound M , an if-else constraint can be formulated.

Correlation The Pearson correlation coe�cient, indicating the linear correlation between two random vari-
ables. It is de�ned on the interval [−1,+1], where +1 indicates full correlation, 0 indicates no correlation,
and −1 full anti-correlation.

Multiple Dispatch Used in the Julia implementation. It is the term used to describe that methods with the
same (function) name are constructed, where each method requires di�erent inputs. Each method can be
completely di�erent from the other methods with the same name.
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A.1.1 Abbreviations

FIFO First In First Out policy.

MILP Mixed Integer Linear Program.

SP Stochastic Program.

I.I.D. Independent and Identically Distributed.

A.2 Progressive Hedging Algorithm

Algorithm 1 Progressive Hedging

1: Initialize ν = 1, notTerminated = true. Fix r > 0, ε > 0
2: for σ ∈ S do
3: Initialize Ψ0(σ) ≡ 0
4: Find scenario numbers Jσ . Not used in pseudocode
5: X0(σ)← optimal decisions for (solved!) SP corresponding to scenario σ without NA constraints
6: end for
7: Initialize X̂0 ←

∑
σ∈S P(σ) ·X0(σ) . P(σ) = (ST )

−1

8: while notTerminated do
9: for σ ∈ S do
10: Construct SP corresponding to scenario σ without NA constraints, Xν(σ) are decision variables

11: Add Ψν−1(σ) ·Xν(σ) + 1
2 · r ·

(
Xν(σ)− X̂ν−1

)2

to the objective value of SP

12: Optimize the model, store optimal values Xν(σ)
13: end for
14: X̂ν ←

∑
σ∈S P(σ) ·Xν(σ)

15: for σ ∈ S do Ψν(σ)← Ψν−1(σ) + r ·
(
Xν(σ)− X̂ν(σ)

)
16: if stopping criterion < ε OR ν too large do notTerminated = false
17: ν ← ν + 1
18: end while

67


	Introduction
	Sioux Lime
	Motivation
	Problem Formulation
	Report Outline

	Literature Research
	Newsvendor Model
	Stochastic Programming
	Robust Optimization
	Base Stock Policy

	Model Description
	Indices
	Sampling Demand
	Main Variables
	Constraints
	Objective Function
	Reformulation of Variables and Constraints
	Policy Adjustments
	Mixed Integer Linear Program

	Demand Models
	Independent and Identically Distributed Demand
	Dependent Demand
	Arrival Process

	Implementation
	Structures
	Functions

	Results
	Initial Comparison Deciders
	Example: Predicting Customer Arrivals
	Example: Optimizing Employees
	Case Study: Garbage Collection

	Conclusion
	Conclusion
	Future Research

	Bibliography
	Appendix
	Glossary
	Progressive Hedging Algorithm


