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Abstract

Businesses operate by executing numerous business processes. Business Process Management
(BPM) is the discipline of attempting to manage and improve business processes. As an extension
to BPM, process mining is a relatively young research discipline which develops techniques for
analyzing business processes. Performance analysis of business processes is a major aspect of
process mining. However, recent research has shown that current process mining techniques only
give limited insight into the performance analysis aspect of business processes, since the techniques
do not capture variability in performance data. In this thesis, we propose and develop an approach
for extracting, analyzing and visualizing variability in performance data. The method is evaluated
using comparisons to contemporary analysis, and validation tests with domain experts. The
comparisons indicated that our approach is accurate. Additionally, the domain experts noted that
the approach assisted them with identifying and analyzing bottlenecks, in a way that was not
possible before.
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Chapter 1

Introduction

Current businesses operate by executing numerous activities in a structured way. These activities
are performed by people or equipment, which, when performed in a certain sequence, create a
product or service. The set of activities performed to create this product or service is called a
business process. Business Processes can be administrative processes, such as the onboarding of
a new employee. Procure-to-pay processes, such as purchasing, invoice management and paying,
or information technology processes, such as ticketing system processes. Business processes are
most commonly described using business process models. These models indicate which activities
have to be executed, who should execute these activities, when, and in what order they should
be executed. The act of monitoring and improving business processes is generally referred to as
Business Process Management (BPM). Companies strive to improve business processes to save
costs, improve throughput times, and improve product/service quality. Several sets of tools and
techniques have been created to aid in improving business processes. Process mining is one such
set of tools and techniques.

This thesis relates to business process management, process mining, and process bottlenecks.
These concepts are explained in more detail in the coming sections. Additionally, we describe
the research methodology used, and describe the company at which the research is performed
(ProcesGold). Finally, we provide a section describing the structure of this thesis.

1.1 Business process Management

Business process management (BPM) is the discipline of attempting to improve business processes
[1]. This is done by discovering, modeling, measuring, analyzing, optimizing, and automating ex-
isting business processes. A company benefits from improving their business processes, since it
can lead to lower production costs, improved throughput time, or improved product quality [2].
To keep track of all business process activities performed within a company, process-aware inform-
ation systems (PAIS) are used to record process information. This has become a standardized
business practice in the past decade [3]. Examples of these PAIS are Enterprise Resource Planning
(ERP) systems, Workflow Management (WFM) systems, Business Process Management (BPM)
systems, etc.

Business processes are not static. While these processes can be defined beforehand, external factors
cause the processes to not behave as desired, creating a need for adapting them. Factors, such
as, new emerging markets, changes in governmental laws and emerging/disruptive technologies
can cause changes in the environment of these processes. Many companies have to navigate these
changing environments and adapt their processes accordingly to keep a competitive advantage [4].
Whenever a business processes does not perform as desired (as determined by Key Performance
Indicators (KPIs), or other measures), there is a need to address this problem. Problematic

Guided bottleneck identification in business process event logs 1



CHAPTER 1. INTRODUCTION

business processes should be analyzed and (if needed) redesigned. A relatively young research
discipline called Process Mining has gained popularity over the past decade. Process mining is
the discipline of extraction, analysis, and visualization of the information produced and stored by
PAIS.

1.2 Process Mining

The systems described in Section 1.1 save process related information in so-called event logs [5].
Such an event log consists of events, which contain information regarding: which activity was
performed, what work item (loan applications, fines, subsidy requests, etc.) this activity was
performed upon, and the time at which this activity was performed. Additionally, events may
contain information about which resource executed the event, and other such attributes.

Events are grouped into cases. Depending on the type of work a company performs, cases are
sequential records of events that follow a work item throughout its lifetime, identified by a Case
ID. These events can be performed automatically (by a machine) or manually (by a human).

Real-life event logs can contain hundreds if not thousands of cases. To get a better grasp on
all these cases, and the deeper analysis of event logs, the discipline of Process Mining has been
researched and developed for the past decade. It is being applied to process data of corporations
and (semi-)governmental sectors more frequently [2]. The goal of process mining is to extract
process-related information from event logs. Process Mining contains several techniques to extract
useful information from event logs. This information is used for several different purposes [6].
Firstly, process discovery is the technique of extracting, analysing, and modelling process based
on the information contained in an event log. Secondly, process conformance checking is a tech-
nique which takes an event log of a process, and compares this to a predefined process model of
the same process. This is to check whether the behaviour of a business process is reflected by
the model it is based on. Lastly, process enhancement is used to extend or improve an existing
business process using information gained from the analysis of the event log.

Several perspectives are considered within process mining [7]. The control-flow perspective focuses
on the control-flow, i.e., the ordering of activities. The organizational perspective focuses on
information about resources in the log, i.e., which resources are used, when, and for what? The
case perspective focuses on properties of cases, i.e., what set of events and attributes are part of
each case. Finally, the time perspective is concerned with the timing and frequency of events. This
information can be used to discover performance bottlenecks and improve throughput times.

1.3 Process bottlenecks

Business processes do not always perform as planned, and often have so-called bottlenecks. In pro-
duction, a bottleneck can be described as a part of the chain of processes, which for some reason,
limits the flow of the entire chain. This can result in lower production rates, supply overstock,
pressure from customers, and low employee morale.

From a business process perspective, the term ”You’re only as fast as your slowest team member”
comes to mind. Here, it refers to (a set of) activities that negatively influence the throughput/wait-
ing/process times of the entire process. This negative influence can be caused by many things:
(unforeseen) bad design of the process model, lacking resources, oversaturation of the process,
inefficient/unused steps with the process model, and more. For a business, these bottlenecks can
ultimately lead to delays, losses in revenue, and customer dissatisfaction. For the remainder of
this thesis, when the term bottleneck is used, it is defined as follows: A bottleneck is (a set of)
activities that negatively influence the throughput times of the entire process. Negative influence
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CHAPTER 1. INTRODUCTION

can be defined as having a negative influence on any KPI a company deems important, such as,
maximum throughput time, minimal resource usage, revenue growth, support resolution time etc.

1.4 Research motivation and question

The time perspective is a major aspect of process mining. As stated in Process Mining: Data
science in action, “The presence of timestamps enables the discovery of bottlenecks, the analysis
of service levels, the monitoring of resource utilization, and the prediction of remaining processing
times of running case” [7]. However, for this analysis to be accurate and functional, there is a need
for precise knowledge about process behaviour and performance [8]. Models have been created for
predicting thoughput and cycle times [9, 10]. Generally, the nodes and edges of these models are
annotated with performance measures (i.e., average throughput time, waiting time, etc.). These
performance measures are based on the aggregation of (historic) event timing information. While
aggregation of performance data is widely used within the process mining discipline, such aggreg-
ations are based on the assumption that performance of a case does not change over time, and is
not influenced by other cases.

Research done in the paper Unbiased, Fine-Grained Description of Processes Performance from
Event Data [11] has shown that such assumptions are often made by a lack of a more precise
understanding of the (changes in) process performance across cases and over time. In this paper,
a novel visualization for process performance data is proposed. Additionally, a taxonomy of per-
formance phenomena is created in the form of elementary and composite performance patterns.
Validation of several real-life event logs confirms that process performance is neither stationary
nor that cases are isolated from each other.

The PSM has show that variability in performance exists in event logs. However, there has not
been any research on developing methods to (automatically) discover, analyze, and visualize this
variability. We hypothesize that developing such methods will lead to improvements within busi-
ness process management, and can be used as an additional tool within process mining. Therefore,
we try to answer the following research question:

RQ: Can variability in performance be automatically discovered, analyzed, and visualized to
facilitate bottleneck identification?

This research question breaks down into several secondary research questions. In Chapter 3,
we explore the general research question in detail, and developed the following set of secondary
research questions:

RQ 1: Can performance information, extracted from event log segments, be (automatically)
subdivided into different performance classes which each represent a part of the variab-
ility in performance?

RQ 2: Can a set of analyses be created, as to discover similarities/differences within and
between the performance classes?

RQ 3: Can the outcome of the performance class analysis be aggregated and visualized in such
a way, as to support bottleneck identification?

First, in Chapter 2, we explain all relevant background knowledge needed to understand this
thesis. In Chapter 3, we first explore limitations of the current approach to timing analysis,
and explain how this approach can lead to misinterpreting performance information. We explore
literature which highlights this limitation/misinterpretation. Finally, we elaborate upon the main
and secondary research questions. In Chapter 4, we explore several methods for answering the
research questions. Additionally, we present which methods are utilized for answering them. In
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CHAPTER 1. INTRODUCTION

Chapter 5, we describe the required input format, how performance information (contained in
segments) can be extracted from event logs and how the cases in these segments are classified into
distinct groups automatically. Furthermore, this chapter aims to answer RQ 1. In Chapter 6, we
explain several measures which quantify characteristics of the segment groups. We describe how
these characteristics may indicate bottlenecks, and we describe a ranking which ranks the segments
on their likelihood of containing a bottleneck. Furthermore, this chapter aims to answer RQ 2.
In Chapter 7, we describe the visualization we created to aid in bottleneck identification using the
created ranking. We explain how each of the four perspectives of process mining are represented
within our visualizations. Furthermore, this chapter aims to answer RQ 3. In Chapter 8, we
evaluate the correctness of our work, by comparing our findings to BPIC reports. Additionally
we evaluate the understandability and usefulness of our work, by performing validation tests with
process analysts from ProcessGold (explained in Section 1.5). Finally, in Chapter 9, we discuss
the conclusions, limitations and future work of this thesis.

1.5 ProcessGold platform

This thesis is performed at ProcessGold, which is a software company based in the Netherlands.
It currently develops one of the leading process mining platforms. This platform is able to analyze
event data and is used to create company-specific process mining analysis dashboards. Function-
alities such as process-flow comparison, conformance checking, variant overviews, frequency and
timing information, resource utilization, and various data visualization tools are available within
the platform. Findings of this thesis are visualized within the ProcessGold platform. These
visualizations are further elaborated upon in Chapter 7.

4 Guided bottleneck identification in business process event logs



Chapter 2

Preliminaries

This chapter aims to describe the background knowledge needed to understand this thesis. In
Section 2.1, we explain what event logs are, what their structure is, and how bottleneck information
is caught within event logs. In Section 2.2, we explain how the timing perspective in process
mining works with a practical example. In Section 2.3 we explain how segments are defined in the
context of this thesis, how segments are detected in event logs, and how performance information
is extracted from these segments. In Section 2.4, we explain recent research done on frequency
analysis, which provides a statistical basis for attribute analysis. Finally, In Section 2.5, we
describe several template dashboard available in the ProcessGold Platform, and link these the
process mining perspectives.

2.1 Event logs

2.1.1 Structure

Event logs consists of a combination of the 3 parts described below:

• Case ID, an identifier that defines that a particular case

• Activity, label of the activity that is performed

• Timestamp, time when the event occurred

Depending on the type of work a company performs, cases are sequential records of events that
follow a work item (loan applications, fines, subsidy requests, etc.) throughout its lifetime, iden-
tified by a Case ID. These events can be performed automatically, by a machine, or manually, by
a human. As described in Section 1.1, anytime an action is performed, the BPM system saves a
record of this action in the form of an event. Any set of such events can be combined into an event
log. In practice, event logs can contain thousands to millions of events. Table 2.1 shows a small
snippet of an event log of a synthetic invoice payment process.

2.1.2 How do event logs capture possible bottleneck information?

As discussed in Section 1.3, bottlenecks are (parts of) activities that negatively influence the
throughput/waiting/process times of the entire process. Since event logs hold a record of what
activities are performed when, and which activities pre/pro-ceed them (which is inferred from
their timestamp), the event log also implicitly holds information on possible bottlenecks. These
bottlenecks can be discovered because it is not only possible to determine the time spent on an
activity, but it is also possible to compare different executions of the same activity, and see whether
they have deviating (performance) characteristics.

Guided bottleneck identification in business process event logs 5
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Case ID Properties
Activity Timestamp

1 Receive invoice 01/01/2018 10:00:00
Check received invoice 01/01/2018 10:00:02
Final check of invoice 03/01/2018 13:00:12
Approve Invoice 05/01/2018 09:35:15
Pay Invoice 06/01/2018 16:25:54

2 Receive invoice 04/01/2018 14:12:35
Check received invoice 04/01/2018 14:12:42
Request data 07/01/2018 12:09:16
Check contract conditions 07/01/2018 12:10:25
... ...

Table 2.1: An example event log with Case ID, Activity and Timestamp

To give an example, Table 2.1 shows two different executions of Check received invoice. The
throughput time of Check received invoice is calculates as the time between its timestamp and the
timestamp of the next activity. In Case 1, Check received invoice takes 51 hours and 10 seconds
to complete and is proceeded by Final check of invoice. In Case 2, Check received invoice takes
69 hours, 56 minutes, and 34 seconds to complete and is proceeded by Request data. We can
determine that these 2 executions of Check received invoice clearly deviate from each other. This
small snippet of events therefore raise many important business process questions:

• Does the throughput time of Check received invoice comply with our Service Level Agree-
ments (SLA) or Key Performance Indicators (KPIs) in both cases?

• Why is Check received invoice in Case 2 slower than Case 1?

• Does the order of performed activities affect the throughput time of Check received invoice?

Event logs can contain much more information related to the business processes. For example,
which employee worked on the activity, which machine was involved, which department performed
the activity, what type of activity was performed, which client was this activity for, etc. This
information can be used to discover possible root causes of bottlenecks (e.g., particular invoices
are more complicated and require more time).

2.1.3 Minimum viable event log

The desired input for this thesis is an event log, we consider the minimal viable event log to be the
same event log structure as Table 2.1. That is, an event log that holds atleast the following three
attributes: Case ID, Activity and Timestamp. Later in this thesis, we define several techniques for
enhancing the two most common type of nonstandard event logs which deviate from this format,
such that they can also be used in our research.

2.2 Time Perspective in process Mining

For the purposes of this research, focus will be on the time perspective of process mining, as
discussed in Section 1.4. In this section, we explain the current execution and usage of time
perspective in process mining. We do this to show what insights can be gained from the time
perspective of process mining. According to chapter 9.4 of Process Mining [5], the time perspective
of process mining provides to following performance related information:

Type 1: Analysis of frequencies and utilization, using model and frequency information to de-
termine routing probabilities.
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Type 2: Visualization of waiting and service times, using statistics such as average waiting time
for an activity

Type 3: Flow time and SLA analysis, using measurement from activity x to activity y to check
adherence to agreements made

Type 4: Bottleneck detection and analysis, using highlights to annotate where the most time is
spend in the system, and analyzing separately to find root causes for the delays.

The following example shows a simple business process that involves the payment of incoming
invoices. As can be seen in Figure 2.1 and 2.2, this process follows 2 distinct flows, namely:

Flow 1: Receive invoice → Check received invoice → Final check of invoice → Approve Invoice
→ Pay invoice

Flow 2: Receive invoice → Check received invoice → Request data → Check contract conditions
→ Final check of invoice → Approve Invoice → Pay invoice

The information presented in Figure 2.1 and 2.2 is used by business analysts to extract performance
related information in the following way:

Type 1: Flow 1 is utilized 871 times, while Flow 2 is utilized 383 times. Flow 1 is utilized 69%
of the time, while Flow 2 is utilized 31% of the time (Figure 2.1)

Type 2: Flow 1 takes ∼4.7 days on average (3m + 1.7d + 1.8d + 1.2d), while Flow 2 takes ∼8.7
days on average (3m + 2.7d + 16s + 3d + 1.8d + 1.2d) (Figure 2.2)

Type 3: Using the information from 1 and 2, we can check whether our business process is
adhering to flow times and SLA’s we defined with our clients.

Type 4: Using the information from 1, 2 and 3, we can check whether our business process is
performing as we expect. If not, what root cause can we find for this?

Performance (information) consists of several different types. These types all utilize different
parts of the information present in an event log. In this thesis, when we mention performance
(information), we mean Type 2 performance (information). This definition is very similar to the
one made by Leemans et al. [12], where performance (information) is defined as service time
(the time a resource is busy with a task), waiting time (the time between an activity becoming
enabled and a resource starting to execute it), sojourn time (the sum of both) and synchronisation
time (for concurrent activities, the time between completion of the first and completion of the last).

From the relatively simple view presented in Figure 2.1 and 2.2, quite some information on this
business process can be gathered. This could explain why the discipline has been gaining much
attention from the governmental and corporate sectors [5, 13, 14]. In Chapter 3, we will discuss
the limitations of this type of performance analysis.
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Figure 2.1: Visualized event log using
a directly-follows graph, edges are an-
notated with the number of cases that
pass through it

Figure 2.2: Visualized event log using a
directly-follows graph, edges are annot-
ated with the average throughput time
per activity
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2.3 Segments in event logs

This thesis analyzes the performance of segments in event logs. In Section 2.3.1, we explain how
a segment is defined. This definition is based on research done by Fahland et al. [11] (which is
discussed in Section 2.3.3). In Section 2.3.2, we explain how segment are detected within event
logs, and how performance information is extracted from these segments.

2.3.1 What is a segment?

The definition of a segment is based on a data structure defined in research by Fahland et al. [11].
To provide an example of how a segment is defined, we first visualize the event log as a flow model.
The flow model can be used to show the control-flow of a (sub)set of cases. Shown in Figure 2.3
is the flow model of Case 1 from the event log of Table 2.1.

We define a Segment as the flow from one activity, to an activity that directly follows it. From
table 2.1, the trace of Case 1 is <Receive invoice, Check received invoice, Final check of invoice,
Approve invoice, Pay invoice>, which in turn translates to the segments (Receive invoice → Check
received invoice), (Check received invoice → Final check of invoice), (Final check of invoice →
Approve invoice), (Approve invoice → Pay invoice). The time interval of a segment is calculated
as the difference between the timestamps of the two events. So for segment Check received invoice
→ Final check of invoice, the time interval is 2 days, 3 hours and 10 seconds. For Final check
of invoice → Approve Invoice, the time interval is 1 day, 20 hours, 35 minutes and 3 seconds,
etc. The time interval can be of different types, namely, in seconds, minutes, hours, or days. We
chose to convert every time interval type to seconds, since this can be easily done. Furthermore,
seconds are the smallest practical unit of time to perform analysis with. We chose seconds because
counting in milliseconds produces impractical large numbers when dealing with activities that take
longer than a few hours.

2.3.2 Detecting segments and extracting performance information

For the event log specified in Table 2.1, a list of every segment within it can easily be determined.
Event logs consist of cases which hold multiple (successive) events. To extract which segments are
in an event log, we traverse every case in the event log and record every pair of events < A, B >
where B directly follows A. Furthermore, the time interval is also recorded. We show an example
segment table in Table 2.2.

Any case can be part of one or more segments. For example, Case 1 appears in four different

Segment Properties
Case ID Time interval (seconds)

Receive invoice → Check received invoice Case 1 2
Case 2 25
Case 14 18
... ...

Check received invoice → Final check of invoice Case 1 183610
Case 2 146120
... ...

Final check of invoice → Approve invoice Case 1 160503
Approve invoice → Pay Invoice Case 1 111039

Case 2 122320
... ...

Table 2.2: Segment table after detection
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Figure 2.3: Segment and time interval, when event logs only contain end times

segments in Table 2.2. Alternatively, any segment can contain one or more cases. The event log
shown in Table 2.1 contains only end times. Therefore, we cannot know exactly how the difference
in time between two activities is distributed. As can seen in Figure 2.3, the time interval is
calculated as the throughput time of the activity after the arrow in the pair (so for segment (A
→ B), the time interval is calculated as the throughput time of activity B).

2.3.3 Performance Spectrum Miner

The segment extraction technique is based on research done by Fahland et al. [11]. This research
explores process performance measures that do not rely on prior aggregation, and provides a novel
visualization of process performance data. In Figure 2.4, we see an example of the Performance
Spectrum Miner (PSM) application being applied on an event log. On the left side of Figure 2.4,
we see an example of a widely used technique for visual performance analysis of event logs, namely,
using a graph-based model (as discussed in Section 2.2). This graph-based model shows no tem-
poral patterns or changes over time, just aggregated (i.e., min, max, median, etc.) performance
information. The right side of Figure 2.4 displays the performance spectrum of the data used to
discover the model on the left side. The performance processes event log data into segments (as
discussed in Section 2.3.2), whereafter the performance of each occurrence of the segment is meas-
ured, and plotted onto a timeline. The resulting performance spectra reveal several non-stationary
of performance and synchronization of different cases over time. Additionally, the visualization
shows that different cases perform differently due to systematic and unsystematic variability in
performance. The research highlights the presence of systematic variability in performance in
event logs. The exploration and utilization of this phenomenon is the main topic of this thesis.
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Figure 2.4: Performance analysis, using Graph based model (left) and Performance Spectrum
Miner (right)

2.4 Frequency analysis of case attributes

One of the perspective of process mining discussed in Section 1.4, is the case perspective [6]. The
case perspective focuses on the properties (data attributes) of a case. Such properties could be:
supplier, order type, loan reason, risk factor, etc. Recent research done by Verhoef [15], provides a
new way of analysing case attributes. This research was done as part of an internship assignment
at ProcessGold. The goal of this internship was to integrate case attribute frequency analysis into
the platform. Case attribute frequency analysis is a type of root-cause analysis which analyzes
whether the observed number of case attribute values, is significantly different than the expected
number of case attribute values. The implementation was based on the presence of tags within
cases. A tag is used to identify whether a case does, or does not, comply with certain rules set up by
the company. For example, a tag could denote whether a manufactured product was constructed
within tolerances. To explain how the frequency analysis works, we present the following example.
We have an even log which consist of cases. These cases have an attribute named ’Manufacturer’,
which denotes who manufactured the product. The attribute can have the value ’Manufacturer A’
or ’Manufacturer B’. Additionally, the cases have a tag called ’Within tolerance’, which denotes
whether the product was manufactured within tolerances. The tag can have the value ’True’ or
’False’. We observe that 90% of the cases have the tag ’Within tolerance’ set to ’True’, the other
10% is set to ’False’. Now, if we take all cases which were handled by ’Manufacturer A’, we expect
to see that 90% of cases have the tag ’Within tolerance’ set to ’True’, and 10% set to ’False’. We
now use frequency analysis to check whether the observed frequency of this tag is significantly
different from the expected frequency of this tag. So, for example, we could observe that cases
of ’Manufacturer A’ are set as 60% ’True’ and 40% ’False’. Frequency analysis shows that this is
significantly more than the expected average. This discrepancy could signify that ’Manufacturer
A’ is under performing, and is a bottleneck. This type of frequency analysis fits really well with
our research. Therefore, this research is implemented in the visualization of our research (albeit
slightly adapted to work with our data type). This is discussed in Section 7.3.

2.5 Process mining perspectives in the ProcessGold Applic-
ation

The ProcessGold application contains many template dashboards, each which visualize a part of
the process mining perspectives discussed in Section 1.4. Further in this thesis, we base two of
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our visualizations on these template dashboards. The first dashboard we base our visualization
on is the Process analysis dashboard of the ProcessGold application. This dashboard visualizes
(amongst other things) the organizational perspective of process mining. In Figure 2.5, the user
can select which event attribute they want to analyze. Currently, the application is limited to
showing the event attribute frequency with respect to their appearance in activities (i.e., for every
activity, the application calculates how frequently the event attribute appears in that activity).

The second dashboard we base our visualization on is the Process Compare dashboard of the
ProcessGold application. This dashboard visualizes (amongst other things) the control-flow of
process mining. The dashboard provides process-flow analysis capabilities in the form of a process
graph viewer. This viewer has the functionality to visually compare two processes flows to each
other, and display the similarities and differences between them. We show the process graph
viewer in Figure 2.6.

Figure 2.5: Event attribute viewer in the ProcessGold Application
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Figure 2.6: Graph viewer in the ProcessGold Application
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Chapter 3

Research Motivation and Goals

The purpose of this chapter is to set up, explore, and identify a precise problem definition, together
with our research motivation and goals. First, in Section 3.1, we explore the limitations of the
current approach to the timing analysis presented in Section 2.2, and explain how this approach
can sometimes misinterpret performance information. In Section 3.2, we explore and explain a
technique described by Fahland et al. [11] which highlights the limitation and misinterpretation of
current timing analysis approaches. The paper proposes a novel visualization of process perform-
ance data in event logs, in the form of the Performance Spectrum Miner (PSM). Furthermore, we
highlight the shortcomings of this approach, by addressing several limitations. Finally, in Section
3.3, we combine the knowledge gap highlighted by the PSM, together with the limitations of the
PSM, into a main research question. We present how this research question can be divided into
smaller secondary research questions, and what our approach is to solve these research questions.

3.1 Limitations of current timing analysis

Current descriptive performance analysis is quite mature within process mining. Usually, the ana-
lysis is done by aggregating measures over a certain period of time, using for example, maximum
or average waiting times. This descriptive performance analysis however, does not account for
fluctuations in performance. Taking maximums and averages of a set measurements will obfuscate
any information about possible interactions, distributions and details of these measurements.

Process mining [5] explains a common way of presenting performance related information of timing
perspective type 2 and 4. Usually, it is done by annotating the average throughput times on their
respective edges. Furthermore, highlighting the activities where the most time is spend, by giving
that activity a different color. An example of this can be found in Figure 3.1.

Figure 3.1: Subsection of the directly-follows graph of Figure 2.2
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Figure 3.2: Distribution of segment A

In this thesis, we see a segment as a pair of activities (A,B), where activity B directly follows
activity A. In this example, we are interested in the segment Final check of invoice → Approve
invoice (hereafter referred to as segment A). Denoted on the the edge is the average throughput
time (average of all cases that pass through that edge). In this example, the average throughput
time is 1.8 days.

However, when we look at the actual distribution of throughput times of segment A in Figure
3.2, we see some interesting differences. While the graph from Figure 3.1 only shows aggregated
information (average: 1.8 days, median: 1.55 days) in segment A, the actual distribution of this
segment reveals substantially more information. Not only does it show that the data is spread
quite for apart from the average and median, it also shows 2 distinct performance classes (peaks)
of cases going though this segment. The left peak resembles a log-normal distribution, while
the right peak resembles a normal distribution. This means that segment A has a multi-modal
distribution. Further analysis on additional datasets reveal that many segments contain two or
more distinct performance classes, and therefore consist of many multimodal distributions. This
shows that currently a substantial amount of (valuable) information is lost by applying currently
standardized process mining techniques.

In this section, we showed that variability in performance is present within event logs. In the
next section, we explore research, which shows that this variability in performance is not a single
occurrence, but systematic within event logs.

3.2 Performance Spectrum Miner

In the paper “Unbiased, Fine-Grained Description of Processes Performance from Event Data”
[11] research is done on process performance measures without prior aggregation. The paper sets
out to “provide a comprehensive of raw process behavior without enforcing prior aggregation of
data”. The paper starts by structuring process data into segments, and creates a performance
spectrum of each segment. To provide an example, we run the event log of Table 2.1 through the
Performance Spectrum Miner (PSM). The application creates a performance spectrum for each
segment in the event log. In Figure 3.3, we show the performance spectrum of the segment Final
check invoice → Approve invoice. In the performance spectrum, the x-axis is a timeline. Each
case that passes through this particular segment is drawn as a line. For every case, the PSM takes
the timestamp of Final check invoice, and the timestamp of Approve invoice, and draws a line
between these two points. The colour of a line denotes to how the case performance (i.e. how fast
the case goes though the segment) relative to other cases. There are four colours: Blue, light blue,
yellow, and orange. Each colour holds 25% cases of the dataset. In the example, the colour blue
means the case is in the top 25% fastest cases, light blue means the case belongs to the next 25%
cases (25% - 50%), yellow means the case belongs to the next 25% cases (50% - 75%), and orange
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Figure 3.3: Performance spectrum of segment Final check invoice → Approve invoice

means the case belongs to the final 25% cases (75% - 100%).

In Figure 3.3, we see that the segment Final check invoice → Approve invoice has significant vari-
ability in performance. First, we see a five day workweek, indicated by the five consecutive blue
pillars. Additionally, some of the cases go through the segment in a few hours, others take several
days to complete it. Additionally, we see that many cases are passed towards the next workweek.
All of this information is not visible in the weighted DFG of Figure 3.1, since it only shows that
the segment took 1.8 days on average to complete the segment. This means it that the weighted
DFG provides very limited insight into the actual performance of the segments. Alternatively, the
PSM shows that the the actual performance of this segment varies significantly.

Current process mining analysis techniques can lead to wrong conclusions. To provide an example,
assume the segment of Final check invoice → Approve invoice has an SLA which says it has to
be completed within 2 days. Using the DFG on Figure 3.1, an analyst would assume the cases
are inline with this SLA, since the DFG shows that the segment takes only 1.8 days to complete.
However, the PSM of Figure 3.3 shows numerous breaches of this SLA, where many cases take
more than 2 days to complete the segment. Therefore, Figure 3.3 provides an analyst with better
insight into the actual performance distribution of this segment. Additionally, not only does the
performance spectrum show segment performance, it also shows segment characteristics through
the patterns it generates. These patterns can be FIFO, LIFO, Batching, Variable speed, Constant
speed, etc. These characteristics are not shown in the DFG of Figure 3.1.

Fahland et al. [11] analyzed 12 event logs using the PSM. They concluded that “Process perform-
ance is neither stationary nor are cases isolated from each other”. Additionally, they highlighted
that current process mining techniques give only limited insight into performance data. They
showed that variability in performance does not occur randomly throughout an event log, but
appears to be a systematic phenomenon in event logs.

3.2.1 Limitations of the PSM

While the PSM gives an interesting new perspective in process performance analysis, there are
several limitations to visualization through the PSM:

1. The assessment of whether a segment has significant variability has to be made by a
human.

2. The PSM contains an overwhelming amount of information

3. There is no easy way to compare cases with different performance characteristics

We start with limitation 1. Some performance spectra consist of only the same throughput time,
for example, when a segment is automated, such that every iteration takes an exact amount of
time. This highlights the limitation that the assessment of whether a segment has significant
variability has to be made by a human. The analysis therefore has to be done manually, which is
not preferable when knowing that event logs contain hundreds of segments and thousands of cases.
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For limitation 2, it is clear that PSM contains an overwhelming amount of information. The
current presentation of this information is neither easily readable nor understandable for the un-
trained eye. For any business analyst, it is very important that such information is presented in
a clear and interpretable way.

Finally, for limitation 3, there is no easy way to compare cases with different performance charac-
teristics (which go through the same segment) to each other. Such a comparison is essential when
business analysts want to perform bottleneck identification, since that information is essential for
highlighting which characteristics cause the difference/instability.

3.3 Problem definition and research questions

In Section 3.1, we showed that variability in performance exists within event logs. In Section
3.2, we showed that variability in performance is a systematic phenomenon in event logs. Addi-
tionally, we showed that segments consist of several interesting performance characteristics when
using non-aggregated data of over time. Finally, we described several additional limitations with
the PSM in the previous section, which currently inhibit proper bottleneck identification.

The (automatic) extraction of performance information and analysis of the variability in per-
formance has not been researched thus far. This is a gap within process mining knowledge, and
discovery of this knowledge could possibly be used to facilitate bottleneck identification. To try
and discover this knowledge, we set up to following main research question.

RQ: Can variability in performance be automatically discovered, analyzed, and visualized to
facilitate bottleneck identification?

To answer the main research question, several secondary research questions have to be answered.
The first of these questions is a follows:

RQ 1: Can performance information, extracted from event log segments, be (automatically)
subdivided into different performance classes which each represent a part of the variab-
ility in performance?

As discussed in Section 3.2, variability in performance is present in event data. This variability
shows itself on a segment level. In order to answer RQ 1, we have to answer the following sub-
problems. First, we need to discover every segment in an event log. For every segment found, we
extract and store which cases go through the segment, and what performance information these
cases have in that segment. Secondly, we need to subdivide them into several performance classes,
which each represent a part of variability in performance. To classify the performance inform-
ation, several different clustering/segmentation techniques for numeric data have to be explored
and compared. The technique should be able to automatically subdivide performance information
into classes, such that it subdivides the variability in performance. Once a satisfactory technique
has been found, it is adapted to properly work with event data.

For each the classified performance classes, it is important to discover what makes them similar/dif-
ferent from other performance classes (within the same segment). We can gain valuable insights
by comparing performance classes and determining why some classes are performing worse/better
than others. Furthermore, it helps us to understand the relation of one class to the process overall.
For these reasons, we create the second secondary research question:

RQ 2: Can a set of analyses be created, as to discover similarities/differences within and
between the performance classes?

To answer RQ 2, we need to discover, test and compare several statistical analysis techniques.
These techniques should be able to distinguish several different performance characteristics, such
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as size, speed, frequency, distribution etc.

To ultimately support bottleneck identification, all information found in the previous step needs
to be presented as to be understandable and usable for business analysts. For this, we create the
third and final secondary research question:

RQ 3: Can the outcome of the performance class analysis be aggregated and visualized in such
a way, as to support bottleneck identification?

To answer RQ 3, we need to discover which (sub)set of techniques from the previous step have
the highest probability of signifying bottlenecks. There are two steps taken to validate whether
these techniques actually signifying bottlenecks. First, the techniques are applied to several BPI
Challenges [16], whereafter the findings are compared to the reports of the BPI Challenge winners
(academic and professional categories). If the techniques reach conclusions similar to the conclu-
sions in the BPI reports, we confirm that the techniques are able to identify bottlenecks. Further-
more, the outcome of the techniques need to be presented into an interpretable way, such that
a business analyst can understand, and gain (bottleneck) knowledge from it. Several validation
tests should be constructed and performed, such that we can validate whether these visualizations
support analysts in discovering bottlenecks. This is done by cross-referencing whether the analysts
are able to pinpoint bottlenecks with the support of the visualization better, than without the
support of the visualization.

18 Guided bottleneck identification in business process event logs



Chapter 4

Approach

This chapter aims to present an overview of the steps needed to answer the RQ: Can variability in
performance be automatically discovered, analyzed, and visualized to facilitate bottleneck identific-
ation? We do by answering the secondary RQs defined in Chapter 3.3. We answer these questions
by first defining the (sub)problems that need to be solved. Secondly, we present one or more
methods which aim to solve these problems. Finally, we present which solutions are discovered
and what follow-up steps are taken. In Section 4.1, we provide the approach for answering RQ 1.
In Section 4.2, we provide the approach for answering RQ 2. Finally, in Section 4.3, we provide
the approach for answering RQ 3.

4.1 Extraction and automatic classification of performance
information

This section aims to provide an overview for answering RQ 1: Can performance information,
extracted from event log segments, be (automatically) subdivided into different performance classes
which each represent a part of the variability in performance?

We summarize the method for answering RQ 1, the details of which are given in Chapter 5. The
research question consist of 2 parts. The first part is the extraction of performance information
from event logs, per segment. We defined which information we need from event logs based on
the motivation of Section 3.2. This information consists of an event log with a Case ID, Activity
and Timestamp (i.e. minimum viable log), explained in Section 2.1.3. In Section 5.1, we present
several techniques for converting the two most common types of event logs which do not adhere to
our required format. After obtaining our required event log structure, we detect which segments
are present within an event log, which we explain in Section 5.2.

The second part of the research question requires us to identify and adapt a method to (auto-
matically) subdivide performance information, into several difference classes, such that each part
represents a part of the variability in performance. The entire structure is discussed in Section
5.3. We start by first creating several criteria/requirements to which the method needs to adhere
in Section 5.3.1. These requirements are based on the characteristics of our input data, and the
desired form in which these need to go. These criteria are:

(1) The method should be able to handle positive number

(2) The method should not make assumptions on what the distribution of its input data is

(3) The method should not determine/restrict the size of the class, just determine whether
two datapoints belong to the same class.

In Section 5.3, we look towards literature to discover several existing techniques for separating
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performance information into distinct classes. The techniques we identified are: Equal Interval,
Quantile [17], Head/Tail Breaks [18], k-means clustering [19] and Jenks Natural Breaks Optim-
isation [20]. Both Equal Interval and Jenks Natural Breaks Optimisation satisfied the criteria.
Therefore, we test both techniques on our data and inspect the results manually. We observe that
using Equal Intervals can result in unwanted behaviour (i.e. splitting a peak down the middle).
Furthermore, Osaragi [21] argues that a classification method which keeps the loss of inherent
information as low as possible can be considered an effective method, since it lessens the error of
judgment. Osaragi also showed that Equal Interval classification comes with significantly more
information loss compared to Jenks Natural Breaks Optimisation.

From the discoveries in Section 5.3, we decide that Jenks Natural breaks (hereafter referred to as
Jenks) [20] is the classification method that suits our purposes best. Jenks tries to divide data into
several classes, such that the variance within each class is minimized, and the variance between
each class is maximized. An overview of how Jenks works is given Section 5.4. Additionally, to
create a clear picture of how Jenks is applied in the context of performance information, we give
an in-depth example of applying Jenks on performance data in Section 5.4.1.

Our goal for this sub RQ is to automatically subdivide performance information into different
performance classes. For this, we need to approximate what an optimal number of subdivisions
is for a particular dataset. However, Jenks requires the number of classes in which the data is to
be classified, as an input parameter. In Section 5.4.2, we explain how output from Jenks is used
to automatically approximate an optimal number of classes. For this method to work, it requires
one input parameter to be set beforehand. How the value of this parameter is set, alongside an
argument why, is also discussed in Section 5.4.2.

Finally, in Section 5.5, we try to create an understanding of the output that is created by the
techniques explained in Section 5.1 through 5.4. We do this by providing an example using real
data from BPI2017 [22].

4.2 Analysis, extension and classification of performance
classes

This section aims to provide an overview for answering RQ 2: Can a set of analyses be created,
as to discover similarities/differences within and between the performance classes?

In Section 4.1, we discussed how performance information is extracted from an event log, and how
to classify this information into distinct performance classes. We also discussed how performance
information is extracted from an event log per segment. In this section, we summarize the method
for answering RQ 2, the details of which are given in Chapter 6. In Section 6.1, we explain how a
segment is part of a larger overall process (determined by the cases that make up a segment). The
segment performance classes consist of a set of cases, and their respective segment time. To gener-
ate overall performance classes, we determine, for each case in a class, what the total throughput
time of that case is (i.e., time between the start and end of the case). In the overall performance
classes, each case still belongs to the some class, however, we replace the segment time of the case
with total time of the case. This generates a new overall performance class distribution shown in
Figure 6.3.

Now that we have our segment and overall performance classes. We would like to understand how
these performance classes relate to each other. In a perfect world, every case should be able to
pass a segment equally fast. However, various reasons (i.e., a difficult cases, different event/case
attributes, external factors) cause some cases to perform worse in the same segment. To properly
assist analysts, we want to automatically analyze each segment, determine which segments are
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most likely bottlenecks (i.e. segments which negatively influence the throughput time of a pro-
cess), and therefore to focus their improvement efforts on. To address this, we need to discover a
set of measures, which quantify the characteristics of performance classes. For simplicity sake, we
define performance class characteristics as measures for the rest of this thesis. We have two types
of measures: Measures within segment/overall performance classes, and measures between seg-
ment/overall performance classes.

Measures within segment/overall performance classes:

1. Do the performance classes have significant overlap, or not? (Effect size)

2. What is the time difference between the slowest and fastest classes? (Potential lost time)

Measures between segment/overall performance classes:

3. What is the influence of the segment time, with respect to the total time? (Total weighted
impact)

We want to be able to automatically collect the measures from the segment classes. Therefore, in
Section 6.2, we propose several algorithmic solutions which quantify these measures, while keeping
in mind that we have a specific data type, namely segment data. To determine whether the per-
formance classes has significant overlap (measure 1), we have to find a measure which calculates
class overlap (i.e., effect size). We determine that Cohens d [23] is a suitable statistical analysis
technique to measure class overlap. Because Cohens d is a measure between two classes, and
our classification can produce more than two classes, we create a custom algorithmic solution for
determining the average effect size of segment/overall performance classes. For determining what
the time difference between the slowest and fastest classes is (measure 2), there is no standard-
ized statistical measure. Therefore, we develop a custom algorithmic solution to determine this
measure. For determining what the influence of segment time has on the total time (measure 3),
there is also no standardized statistical measure. Therefore, we also develop a custom algorithmic
solution to determine this measure.

Now that we have the ability to calculate all three measures for each segment. We should create
a way to rank them such that we can determine which segments are most likely bottlenecks
(or atleast have interesting characteristics). Each measure can be used to form an opinion on
whether a segment is more interesting to analyze relative to other segments (e.g., a segment can
have the highest effect size compared to the other segments, making that segment relatively more
interesting). Therefore, in Section 6.3, we first rank the segments for each measure separately. So,
for each measure, every segment gets assigned a number, based on the magnitude of that measure.
Every segment gets a number from one to the number of segments analyzed. The higher the
number, the higher that segment ranks with respect to other segments, as shown in Figure 6.4.
Now, for each segment, we sum the rankings they get for each measure, to create a cumulative
ranking, as shown in Figure 6.4. The cumulative ranking is subsequently used as input for the
visualization of Chapter 7.

4.3 Assisted bottleneck identification

This section aims to provide an overview for answering RQ 3: Can the outcome of the performance
class analysis be aggregated and visualized in such a way, as to support bottleneck identification?

In Section 1.2, we discussed four different perspectives that are present in process mining. To
recap, these perspectives are time, case, organization, and control-flow. Each perspective high-
lights a different part of the wealth of information event logs hold. To assist a business analyst
with bottleneck identification, we want them to be able to inspect their data from each of these
perspectives. In this section, we summarize the method for answering RQ 3, the details of which
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are given in Chapter 7 and 8.

In Chapter 7, our goal is to build a set of dashboards where each board highlights one of the
four perspectives of process mining. This is to assist the analyst with bottleneck identification.
To do this, we first explored the default dashboards that the ProcessGold application has, and
noted which useful visualizations it already provides. With feedback from ProcessGold Solution
Engineers, we either extended the default dashboards, or custom developed new dashboards, each
of which highlight a different process mining perspectives. In Section 7.1 and 7.2, we implemented
two dashboards which visualize the time perspective, by providing an overview of segments, and
tools for deeper analysis. In Section 7.3, we visualize the case perspective. We do this by using
the frequency analysis (as discussed in section 2.4) functionally that was already implemented in
the ProcessGold platform by Verhoef [15]. We slightly adapt it to work with our segment data.
In Section 7.4, we visualize the organizational perspective. We do this by adapting the template
Event attribute dashboard discussed in Section 2.5. This dashboard is severely limited by the fact
that is can only show event attributes with respect to activities. Therefore, we extend it such that
it allows for the comparison of event attribute frequency between classes. Finally, in Section 7.5 we
visualize the control-flow perspective, by extending the process flow analysis dashboard (discussed
in Section 2.5) to be able to work with segment data.

A business analyst is now able to view our segment analysis from every perspective within pro-
cess mining. While this does not provide any guarantees that root causes for bottlenecks will
be discovered, we do provide the analyst with an extensive set of tools to facilitate bottleneck
identification.

Additionally, In Chapter 8, we demonstrate the functionality and correctness of the application, by
applying our segment analysis on a Business Process Intelligence Challenge (BPIC) dataset, and
comparing our findings with those of the BPIC reports. The BPIC dataset that we demonstrate
the functionality on is the BPIC 2017 [22] dataset. Additionally, we evaluate the usefulness and
understandability of our segment analysis, by performing several validation tests with ProcessGold
Analysts. The validation tests are set up as follows. A ProcessGold analyst is presented with our
approach, and with a BPIC dataset (either BPIC 2017 [22], or BPIC 2018 [24]). We ask the
analysts to find as many (potential) bottlenecks as they can discover in 45 minutes. Afterwards,
a second test is performed, this time with a different dataset than the first test, and without
our approach (just using the default ProcessGold Application). Additionally, we interview the
analysts ask them about their experience with our approach. We perform these two tests with
four different ProcessGold analysts (for a total of eight tests). After all tests are done, we compare
the set of (potential) bottlenecks the analysts found, with and without our approach. We tests
whether it is possible for analysts to analyze an event log, quicker and more thorough, using our
approach, compared to when they use contemporary process mining tools.
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Chapter 5

Extraction and automatic
classification of performance
information

This chapter is dedicated to answering RQ 1: Can performance information, extracted from event
log segments, be (automatically) subdivided into different performance classes which each represent
a part of the variability in performance?

In Section 2.3.2, we discuss the desired input format of event logs, alongside an explanation on
how segments (pairs of activities [A,B], where activity B directly follows activity A) are defined
in context of those logs. In Section 5.1, we present several techniques for converting the two most
common type of nonstandard event logs, to our desired format. In Section 5.2, we discuss how
to detect segments in event logs and extract performance information from these segments. In
Section 5.3, we explore and discuss several different techniques for classifying cases with similar
performance characteristics. In Section 5.4, we discuss which technique are used, including an
explanation and exploration of its parameters. Finally, in Section 5.5, we provide an example
using real data, by running a segment of the BPI 2017 dataset [22] through the classification
technique.

5.1 Converting nonstandard event logs

We have defined what our desired input format in Section 2.3.2. However, event logs also can
appear in different forms. The two most common ones (which differ from our preferred type) are
logs with lifecycle information, and logs with start and end timestamps. To ensure that these types
of logs can also be used for our analysis, we present some preprocessing steps. These preprocessing
steps are explained in the following sections.

Event logs containing both activity start and activity end timestamps While most
event logs only contain activity end times, it is possible to run into event logs that contain both
start and end timestamps Analysis of BPI challenge logs 2012 through 2019 [25, 26, 27, 22, 24, 28]
, showed that BPI 2012 and BPI 2017 [25, 22] contained start and end times. We first illustrate
what such an event log looks like in Table 5.1.

To ensure proper execution, every event in the event log is to be split up, such that the that
every activity Receive invoice with start time Receive invoicestart time and end time Receive in-
voiceend time is split up into two separate events. These event are Receive invoicestart and Receive
invoiceend, with timestamps Receive invoicestart time and Receive invoiceend time respectively. An
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Case ID Properties
Activity Start time End time

Case 1 Receive invoice 01/01/2018 09:00 01/01/2018 10:00
Check received invoice 01/01/2018 11:00 01/01/2018 12:10
Final check of invoice 02/01/2018 08:00 02/01/2018 08:17
Approve invoice 02/01/2018 10:00 02/01/2018 13:25

Table 5.1: Event log with start and end times before preprocessing

Figure 5.1: Segment time intervals, when event logs only contain both start times and end times

example is this is displayed in Table 5.2.

The event log of Table 5.2 can also be visualized using a flow diagram. Shown in Figure 5.1
is the flow diagram of Case 1 from Table 5.2. The same trace <Receive invoice, Check received
invoice, Final check of invoice, Approve invoice > has now been extended to contain the segments
(Receive invoicestart → Receive invoiceend), (Receive invoiceend → Check received invoicestart),
(Check received invoicestart → Check received invoiceend), etc. When an event logs contains start
and end times, it is possible to make a distinction between the type of segment that is analyzed.
For example, the type of segment (Bstart → Bend) is ‘processing time’ and the time interval is 1
hour and 10 minutes. The type of segment (Bend → Cstart) is ‘waiting time’ and the time interval
is 19 hours and 50 minutes.

The distinction between the type of segment adds to the analysis made in the later steps of this
research, by enabling an analyst to distinguish between types of bottlenecks. There has been some

Case ID Properties
Activity Timestamp

Case 1 Receive invoicestart 01/01/2018 09:00
Receive invoiceend 01/01/2018 10:00
Check received invoicestart 01/01/2018 11:00
Check received invoiceend 01/01/2018 12:10
Final check of invoicestart 02/01/2018 08:00
Final check of invoiceend 02/01/2018 08:17
Approve invoicestart 02/01/2018 10:00
Approve invoiceend 02/01/2018 13:25

Table 5.2: Event log with start and end times after preprocessing
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research on start time estimation [29], which explore techniques to add start times to event logs
which only contain end times. However, the addition of start time estimation would add (unknown)
variation and uncertainty to the analysis methods used, and, therefore, would obfuscate whether
the conclusions the we reach are accurate. Therefore, these estimation techniques are not included
in this thesis.

Event logs with activity lifecycles Some event logs can contain attributes that denote the
state of an activity, named lifecycles. These lifecycles denote what ’status’ an activity is in, for
example, started, ended, suspended, or resumed [5]. An example of such a log is given in Table 5.3.
During this research, several event logs [25, 22] are analyzed that have such a lifecycle attribute
in it. Both of these play an essential role during the implementation and validation phases, and
therefore, the decision was made to explicitly state how these logs are converted.

Since our approach works using only Case ID, Activity and Timestamp, we can adapt this input
into a workable form. This is done by changing the activity name into a combination of the activity
and the lifecycle. An example is presented in Table 5.4.

This conversion alters the activity name, such that it contains the event log cycle within. Instead
of having one activity variant, the event log now has four different variants. An example of how
this changes the definition of a segment is presented in Figure 5.2.

The only change to the event log is that activities are renamed. This means that we can use the
same method for extracting segment and calculating time intervals as in Section 2.3.2. However,
lifecycles give us a bit more context about this process. Lifecycle information tells us when the
activity is being actively worked on, and when the activity is currently suspended. Therefore, just
like in the previous section, we can now distinguish between types of segments. For example, the
segment (Receive invoice+start → Receive invoice+suspend) is categorised as ’processing time’,
the segment (Receive invoice+suspend→ Receive invoice+resume) is categorised as ’waiting time’,
and finally, the segment (Receive invoice+resume → Receive invoice+complete) is again categor-
ised as ’processing time’.

Case ID Properties
Activity Lifecycle Timestamp

Case 1 Receive invoice start 01/01/2018 16:00
Receive invoice suspend 01/01/2018 16:10
Receive invoice resume 01/01/2018 16:12
Receive invoice complete 01/01/2018 16:20

Table 5.3: Event log with lifecycles

Case ID Properties
Activity Timestamp

Case 1 Receive invoice+start 01/01/2015 16:00
Receive invoice+suspend 01/01/2015 16:10
Receive invoice+resume 01/01/2015 16:12
Receive invoice+complete 01/01/2015 16:20

Table 5.4: Event log with lifecycles combined
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Figure 5.2: Segment and time interval, when event logs contain lifecycles

5.2 Segment detection and extraction of performance in-
formation

In Chapter 3, the variability in performance over time is shown to occur when analyzing the per-
formance of a segment. In Section 2.3.1, we already determined what a segment is, and in Section
2.3.2, we explained an approach for detecting segments, and extracting time interval information
from these segments. However, we do not consider each segment to be valid. In this section, we
explain which requirements a segment needs to have to be considered valid, and why.

Later in this thesis, several different statistical analysis techniques are used on the time intervals
of segments. These techniques require a minimum number of observations to be considered valid
[30, 31, 32]. This is why we do not only record a list of every segment, but we also records how
many times this segment has occurred in the event log (i.e., how many time intervals have we
encountered for this segments) to be considered a valid segment. For this research, we decided
the number of cases existing in a segment must therefore be atleast 50 for the segments to be
considered valid. The next section explains how we use the extracted time intervals (and their
respective cases) automatically classified into classes which hold similar performance information.

5.3 Automatic classification of cases with similar perform-
ance information

Recall the example of Section 3.1, where we displayed a figure of the distribution of a segment. In
that section, we explained that a segment has a distribution which is not necessarily reflected by the
information presented on a weighted graph, and most likely consists of a multimodal distribution.
Therefore, we are looking for a way to subdivide this multimodal distribution into several classes,
such that we decompose the multimodal distribution into several smaller distributions, as presented
in Figure 5.3.

Figure 5.3: Distribution of segment Receive invoice, classed into distinct sections
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5.3.1 Classification criteria and literature

To discover which methods best suit our purpose, it is important to denote what the characteristics
of our input data are. First off, we are dealing with time interval data, in our case, this data will
always be a positive number (constraint 1). Secondly, we have no knowledge of what the event
log data looks like beforehand. This means we cannot make any assumptions on how the data is
distributed (constraint 2). Finally, we cannot be certain how the peaks within the data will be
distributed (how many elements a peak contains). This means we cannot make any restrictions
on the size of any of the classes (constraint 3).

Based on these constraints, we construct the following requirements the classifications needs to
adhere to:

(1) The method should be able to handle positive numbers

(2) The method should not make assumptions on what the distribution of its input data is

(3) The method should not determine/restrict the size of the class, just determine whether
two datapoints belong to the same class.

In Section 5.2, we discussed a technique to extract performance information from an event log,
per segment. We can use this information as input for the automated classification. Recall that
the goal of the automated classification is to class cases, such that cases with similar performance
characteristics are in the same classify. We looked towards the literature to discover several dif-
ferent classification methods for single and multi-dimensional data, including whether they satisfy
these constraints. These methods have been tried and tested throughout the years. Such methods
include: Equal Interval, Quantile [17], Head/Tail Breaks [18], k-means clustering [19] and Jenks
Natural Breaks Optimisation [20].

In Table 5.5, we show an overview of all methods, including whether they adhere to constrains 1
to 3. We can already remove some options which violate our requirements. Quantile classification
breaks up the data into several chucks of equal size. This method divides the data up such that
each class contains the same number of elements (e.g., 4 classes that contain 25% of the data
each). While this method does not take into account the distribution of the data. It may split up
a distribution (peak), directly down the middle, into two separate classes. Therefore, Quantile is
not suited for our purposes.

Head/tails breaks classification relies on the data distribution containing a heavy tail, which vi-
olates requirement 2, and is therefore not suited for our purposes. In the same vein, K-means
clustering relies on the data being multi-dimensional, which our data is not. Therefore, K-means
clustering is also not suited for our purposes.

This leaves us with classification methods Equal Interval and Jenks Natural Breaks. Recall that
we are searching for a method which is able to split up a multimodal distribution, such that hidden
information from the distributions contained within is exposed and separated. To determine which
of the two methods is best suitable for this purpose, we set up several different datasets which

Classification type Data Input assumption Class size Suitable
Equal Interval Numerical None Unrestricted Yes
Quantile Numerical None Restricted No
Jenks Natural Breaks Numerical None Unrestricted Yes
Head/Tail Breaks Numerical Tail-heavy Unrestricted No
K-means Clustering Numerical Multi-dimensional Unrestricted No

Table 5.5: Classification types, including their constraint attributes
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holds the multimodal distribution, and test which of the two methods handles these datasets better.

Equal interval or Jenks Natural Breaks
We can see how data is partitioned when using the Equal Intervals method in Figure 5.4. This
method divides the data up into equally sized intervals (i.e. 0-200, 200-400, 400-600). Equal In-
tervals uses equal ranges. Therefore, it works best on data that is somewhat equally spread across
the entire range.

Secondly, we can see how the data is distributed when using the Jenks Natural Breaks method in
Figure 5.5. The method tries to optimize the classification by dividing data such that the variance
within each class is minimized, and the variance between each class is maximized. The method
takes into account that the data can have several peaks (classes) in different areas, and tries to
separate them.

Since we want to capture the distributions in their entirety, Equal Interval does not produce our
desired results. Our data consists of multimodal distributions. The classes it produces are not as
good. As can be seen in Figure 5.4, this method can split a distribution (peak) directly down the
middle into two separate classes. This method does neither take into account the values of the
data nor the distribution of the data, and is simply a slice and dice of the data. Alternatively,
Jenks Natural Breaks is able to capture the different distribution significantly better. As can be
seen in Figure 5.5, the division created by this method manages to enclose every peak better than
the other methods.

An additional criteria to consider is information loss. When different observations are placed
within the same class, some of the information on what made these observations different from the
original data is lost. Osaragi [21] argues that a classification method which keeps the loss of inher-
ent information as low as possible can be considered an effective method, since it lessens the error of
judgment. Additionally, Osaragi showed that equal interval classification comes with significantly
more information loss compared to Jenks. This is because equal interval uses a human-centric
approach to data classification [33] and ignores the characteristics of the data itself, resulting in
significant information loss. On the contrary, Jenks is a far more data-centric since it uses the
characteristics of the data (in-class variance) to create a classification. In this research, we want
to lower information loss to lessen judgement errors during analysis.

Jenks Natural Breaks is better suited as method to subdivide performance information into distinct
classes. In the next section, Jenks Natural Breaks is explained in more detail.

Figure 5.4: Equal interval classification Figure 5.5: Jenks natural breaks
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5.4 Jenks Natural Breaks Optimization

This section explains the execution of Jenks Natural Breaks Optimisation [20, 34]. Jenks is a one
dimensional data clustering algorithm. It divides a dataset (set of numbers) into several classes
by iteratively breaking up the data using different breakpoints.

Breakpoints are defined as follows. We want to subdivided dataset Q into n groups. For every
subdivision of Q, called Qi, a pair of breakpoints is created such that, for every breakpoint com-
bination (bpi, bpi+1), it holds for every x ∈ Qi, that bpi ≤ x < bpi+1. For example, to divide
Q = [1, 2, 5, 6, 10, 12] into groups Q1, Q2, Q3, which are [1, 2], [5, 6], [10, 12] respectively, the set of
breakpoints are [1, 5, 10, 12].

After choosing a randomly selected set of breakpoints to start with, Jenks repeats the following
steps, to discover the set of breakpoints with the highest sum of squared deviations for class means
(SDCM):

Step 1: Calculate sum of squared deviations for array mean (SDAM) of dataset Q:

By calculating
∑N

i=1(Qi − µ)2, where µ = Q

Step 2: Calculate the sum of squared deviations between classes (SDBC) for every class Qbp:

By calculating
∑N

i=1(Qbpi
− µ)2, where µ = Qbp for every Qbp ∈ Q

Step 3: Calculate the sum of squared deviations for class means (SDCM):
By calculating SDAM - SDBC

Step 4: Repeat steps 1 - 3 for every possible breakpoint combination, and choose the combination
with the highest SDCM.

We supply Jenks with a set of numbers Q and the desired number of classes n, it will return a set
of n + 1 breakpoints bp. Jenks makes sure that every possible breakpoint combination is tested,
this ensures that the division where the in-class variance is minimized, is always found. To provide
better understanding of how Jenks works, an in-depth example is discussed in Section 5.4.1

5.4.1 Jenks Example

We use this section to provide an in-depth example of Jenks in the context of performance in-
formation. This is to provide a clear picture of the execution of the algorithm. In Section 5.2,
we discussed how we separated cases based on which segments they hold. An example of segment
extraction on an event log can be seen in Table 5.6.

Segment Case ID Time interval

Receive invoice → Check received invoice Case 1 7600
Case 2 3480
Case 14 220
Case 17 500
Case 25 1500
Case 39 1700

Table 5.6: Segments with cases their time intervals in seconds

Jenks starts with a list of the time intervals seen in Table 5.6, namely: Q = [7600, 3480, 120, 600, 10000, 12000].
The algorithm tries to create an optimal division of these number into a predetermined number
of classes. For this example, we want to divide this data into three different classes. What follows
are the steps Jenks takes to accomplish this:
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Step 1: Sort the numbers and choose any arbitrary breakpoint combination of Q

Sorted Q : [220, 500, 1500, 1700, 3480, 7600]
breaks up into Qbp : [220], [500, 1500, 1700, 3480], [7600]

Step 2: Calculate SDAM1 of Q:∑N
i=1(Qi − µ)2, where µ = mean(Q) =⇒

(220−2500)2+(600−2500)2+(1500−2500)2+(1700−2500)2+(3480−2500)2+(7600−
2500)2 = 5198400 + 4000000 + 1000000 + 640000 + 960400 + 26010000 = 37808800

Step 3: Calculate the SDBC2 for every class generated from Qbp

For every Qbp ∈ Q, do
∑N

i=1(Qbpi − µ)2, where µ = mean(Qbp) =⇒

[220] = (220− 220)2 = 0
[500, 1500, 1700, 3480] = (500− 1795)2 + (1500− 1795)2 + ...= 4612300
[7600] = (7600− 7600)2 = 0 +

4612300

Step 4: For every class generated from the breakpoints, calculate the SDCM3 by
subtracting the SDBC from the SDAM

SDCM of [220], [500, 1500, 1700, 3480], [7600] = SDAM−SDBC = 37808800−4612300 =
33196500

Step 5: Repeat steps 2 - 4 for every possible breakpoint combination, and choose the
combination with the highest SDCM.

SDCM of [220,500,1500],[1700],[3480,7600] = 37808800− 9392800 = 28416000
SDCM of [220,500],[1500,1700],[3480,7600] = 37808800− 8546400 = 29262400
SDCM of [220],[500,1500,1700,3480],[7600] = 37808800− 4612300 = 33196500
SDCM of [220,500],[1500,1700,3480],[7600] = 37808800− 2415466 = 35393334
SDCM of ..............................
SDCM of [220,500,1500,1700],[3480],[7600] = 37808800− 1596800 = 36212000

Classification with the highest SDCM results in:
Class 1: [Case 14, Case 17, Case 25, Case 39]
Class 2: [Case 2]
Class 3: [Case 1]

These steps show how to the Jenks algorithm splits up a set of numbers, into a predetermined
number of ’natural’ classes. We can use this functionality to split our (multimodal) time interval
measurements into distinct classes automatically. Since these (multimodal) time intervals are as-
sociated with cases, we are now able to separate cases into distinct classes.

5.4.2 How to approximate the optimal number of classes?

In Section 5.4.1, we showed how Jenks splits up time interval (and therefore, cases) into several
distinct classes. We know that Jenks requires the number of classes, to split the dataset into,
as an input parameter. In this section, we explore how we can automatically approximate an
optimal number of classes. We do not know how many parts (if any) the multimodal distribution
of a segment consists of beforehand. This means we do not know what number of classes we
should provide Jenks with. We need to find a way how to use Jenks to approximate the number
sub-distributions a segment consists of. This section elaborates how Jenks can be used, such that

1Sum of squared deviations for array mean
2Sum of squared deviations between classes
3Sum of squared deviations for class means
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an optimal number of classes is approximated.

Alongside breakpoints, Jenks also supplies the user with a Goodness of Variance Fit (GVF) meas-
ure. This measure is used to signify classification accuracy, where a GVF of 0 implies no fit and
a GVF of 1 implies a perfect fit. GVF is calculated using the following calculation: (SDAM -
SCDM) / SDAM. The idea behind this calculation is as follows: If the summed variance of each
group (SDCM) is low, compared to the total variance of the dataset (SDAM), the GVF will be
high, and the fit will be better. Simply put, the cumulative variance the groups should be smaller
than variance of the original dataset. In Table 5.7, an overview is given of the GVF number, when
increasing the number of classes.

Intuitively, dividing Q into three or four classes makes the most sense, since the values which lie
close together, are grouped. However, this is not directly reflected by the GVF test. We can
see that, due to the nature of the test, increasing the number of classes will always (to varying
degrees) increase the GVF number. Therefore, simply maximizing the GVF will always create a
classification where the number of classes equals the size of the input. Alternatively, we can look
at the rate at which the GVF changes, In Table 5.8.

We can see that the first increase from two to three classes makes the GVF number ’improve’
by 15.9%. When we increase the classes from three to four, the GVF number only improves by
0.040%, meaning that adding new classes is only significantly beneficial up to a certain point. This
is why we want to calculate an additional measure, namely the Rate of Goodness-of-Variance-Fit
Change (RGVFC). The RGVFC denotes the increase in classification accuracy, when classifying a
dataset with an additional class. We calculate this measure by first supplying Jenks with dataset
Q and a number n desired classes. Jenks returns a set of breakpoints and a GV Fn. Subsequently,
we supply Jenks with the same dataset Q, but with n + 1 desired classes. Jenks returns a set of
breakpoints and a GV Fn+1. The RGVFC is calculated as (GV Fn+1 − GV Fn) / GV Fn, which is
a positive value since it always holds that GV Fn+1 > GV Fn. In summary, the RGVFC denotes
the rate of change between GV Fn and GV Fn+1.

We introduce a new parameter for our algorithm, the RGVFC threshold. This parameter de-
notes the minimum RGVFC every additional class needs to have, before progressing. What follows
is a motivation on how we determined the value for this parameter.

Determining a proper RGVFC threshold Jenks is able to subdivide any set of n numbers
into anywhere from two to n− 1 classes. We have two major considerations to take into account
when deciding a RGVFC threshold value. First, we want Jenks to find and separate as many peaks
as possible. We know that the multimodal distributions can come in many different forms, with
most of them containing more than two distinct peaks. While we can never be fully certain we
have found every distinct peak, we can give Jenks enough freedom to discover a significant portion
of them. Secondly, we have to take into consideration that the classification made by Jenks will
ultimately have to be shown to an analyst. Research has been done on the limit of human mental

# of Classes Optimal Classification GVF

1 [220, 500, 1500, 1700, 3480, 7600] 0
2 [220, 500, 1500, 1700, 3480], [7600] 0.826
3 [220, 500, 1500, 1700], [3480], [7600] 0.958
4 [220, 500], [1500, 1700], [3480], [7600] 0.998
5 [220], [500], [1500, 1700], [3480], [7600] 0.999
6 [220], [500], [1500], [1700], [3480], [7600] 1

Table 5.7: Jenks classification on Q, with calculated GVF
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storage capacity when it comes to short-term memory. Miller [35] displayed evidence that people
can remember about seven chucks in short-term memory tasks. Later, Cowan [36] suggested that
seven is only a rough estimate, and that the limit is actually closer to four chunks. There is a
clear limit on this short term memory capacity a human has. Therefore, the quality of the type
of analysis presented in this thesis is influenced by the number of classes an analyst gets exposed
to at a single time.

To summarize, we want Jenks to have enough freedom to discover as many peaks as possible, while
simultaneously limiting the number of classes generated by Jenks to consider for human limita-
tions. To be able to discover which threshold satisfies both these conditions, extensive testing on
BPI 2012, 2014, 2015, 2017, 2018 and 2019 [25, 26, 27, 22, 24, 28] as well as internal ProcessGold
datasets has been done. Table 5.9 shows the number of classes generated by Jenks when varying
the RGVFC threshold, per dataset (non-aggregated test results can be found in Appendix A).

These tests show us a number of things. First, when looking at the average number of classes
generated, we see that a threshold of anything higher than 0.5% results in the number of classes
generated falling within the mental storage capacity limit of four to seven items, as suggested by
Miller and Cowan [35, 36]. Furthermore, it gives enough freedom to Jenks to generate at least 6
classes (if so many peaks are present within the data). However, when looking at the distributions
of the number of classes generated in Appendix A, when setting the threshold at 0.5%, significant
portions of segments are classified into more than five/six groups. This threshold causes around 20
to 40 percent of segments to be classified into more than seven classes. The chance that segments
get classified into more than seven groups is too high, since we still have no knowledge on the form
of multimodal distributions found in event logs. We like to err on the side of caution, therefore, a
safer option is a threshold in the range of between 2.5%, and 10%, since this range will result in a
maximum of five to seven classes. We suggest that setting the threshold within this range allows
Jenks enough room to detect (at least) the most obvious peaks, while simultaneously keeping the
number of classes low enough to allow for proper analysis by an analyst.

Limitations of the RGVFC threshold It is important to note that this approach is vul-
nerable to localized maximums. When taking an arbitrary set of numbers, the change from (for
example) three to four classes can be smaller than the RGVFC threshold, but there is no reason a
change from four to five classes would not a RGVFC that is greater than the RGVFC threshold.
However, we have not encountered a single occurrence of this happening during our testing.

# of Classes GVF Increase Percentage

2 0.826 - -
3 0.958 +0.132 +15.90%
4 0.998 +0.040 +0.040%
5 0.999 +0.001 +0.001%
6 1 +0.001 +0.001%

Table 5.8: Jenks classification on Q, with GVF change
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Dataset
Threshold

0.1% 0.5% 1% 2.5% 5% 10% 25%

BPI2012 (avg) 9.5 6.05 4.98 3.94 3.36 2.88 2.37
BPI2017 (avg) 8.3 5.51 4.62 3.66 3.2 2.69 2.29
BPI2018 (avg) 7.74 5.35 4.46 3.68 3.07 2.65 2.26
BPI2019 (avg) 9.87 6.48 5.33 4.23 3.51 2.96 2.37
PG Internal (avg) 9.56 6.23 5.21 4.12 3.45 2.9 2.32
BPI2012 (max) 19 11 9 7 5 4 3
BPI2017 (max) 18 11 9 7 5 5 3
BPI2018 (max) 20 12 10 7 5 4 3
BPI2019 (max) 16 10 8 7 5 4 3
PG Internal (max) 18 11 9 6 6 4 3

Table 5.9: Number of classes generated by Jenks when varying RGVFC threshold

5.5 Segment classification output

Now that we have a method for classifying performance information into distinct groups, we want
to demonstrate how our method works on a real event log. Additionally we want to evaluate
whether the returned classes from this real event log are meaningful. The following example is
based on segment data found in the BPI2017 [22] event log. The segment which we analyze is
the segment W Call after offers+schedule → W Call after offers+withdraw. Every case in the
event log that contains this segment is recorded, which results in 2010 different cases passing
through this segment. For every case, the segment time interval data was recorded (as explained
in Section 2.3). After applying the methods explained in Section 5.4 on the segment performance
information, the output consists of four classes. Each class consists of 772, 675, 402 and 161 cases,
respectively. In Table 5.10, we see that every class consists of a set of measures (i,e, Min, Max,
Median, Average, Size etc.). Due to the nature of Jenks, the following statement is always true:
max(Classi−1) < min(Classi) and max(Classi) < min(Classi+1) where i is the class number.
In the same table, we can see that the time intervals of (cases in) class 1 are, on average, consid-
erably lower than the time intervals of (cases in) class four (i.e. class 1 goes significantly faster
through this segment than cases in Class 4). Another way to visualize the classes is using a distri-
bution plot. In Figure 5.6, we show the distribution plot. This figure gives an indication of how
the segment time intervals are distributed. The vertical blue lines indicate the breaks that Jenks
computed. We can see that (high) peak in the distribution was captured in a separate class.

This classification already allows for several interesting business questions to be asked, namely:

1. What is the average difference in time interval, between quick and slow cases? (Is this
difference reflected in our design of the process, or is this unexpected?)

2. What is the ratio of quick to slow cases? (Do our KPIs allow for this many cases to be
slow, or do we not regard these cases to be slow at all?)

3. What activity/case attributes makes the quick cases differ from the slow cases? (What
specific attributes makes a case slow, can we adapt our process to accommodate for
this?)

4. How does performance in a segment, relate to the performance of the entire case? (If a
case is slow in a segment, is the throughput time of the entire case also slow?)

Such questions can be explored for every segment in a dataset. Being able to answer these ques-
tions can provide significant insight into the workings of a business process, since it allows to
analyze a process piece-by-piece. Eventually, our goal is to provide business analysts with a jump
start in process analysis by extracting information from them a priori, and automatically. Having
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this information supports identification of bottlenecks (i.e. discovering segments which have a high
probability of being a bottleneck). Up until now, our solution does not yet allow for segments
to be compared to each other. If we want to be able to identify which parts of a process most
likely to be bottlenecks automatically, we need to extend our current classification. This problem
is expanded upon in Chapter 6. By observing the results of Table 5.10 and Figure 5.6, we demon-
strated that we solved RQ 1: Can performance information, extracted from event log segments,
be (automatically) subdivided into different performance classes which each represent a part of the
variability in performance?

Class Median Avg Min Max stdev Size

1
2 days
4:30:26

2 days
2:43:00

0:30:16
4 days
0:59:00

1 day
1:35:52

772

2
5 days
3:42:26

5 days
7:14:00

4 days
1:04:41

8 days
0:57:52

1 day
1:37:13

675

3
10 days
3:07:05

10 days
8:32:12

8 days
1:01:50

15 days
1:14:57

1 day
19:48:23

402

4
18 days
5:43:57

19 days
3:46:34

15 days
1:30:55

27 days
1:00:28

3 days
3:39:50

161

Table 5.10: Overview of classes with their performance measures

Figure 5.6: Segment time interval distribution, with breaks computed by Jenks
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Chapter 6

Extension, analysis, and
classification of performance
classes

In Chapter 5, we obtained performance classes from each segment within an event log. We dedicate
Chapter 6 to answering RQ 2: Can a set of analyses be created, as to discover similarities/dif-
ferences within and between the performance classes?

To answer this question, in Section 6.1, we extend the current segment classification by including
overall performance classes, we explain how overall performance classes can be generated from the
cases in a segment. In Section 6.2, we formulate several measures of performance classes. For each
measure, we explain how and why these measures can be used to identify bottlenecks in segments.
Additionally, in the same section, we create algorithmic solutions to obtain these measures from
segments automatically. Finally, in Section 6.3, we explain how we create a ranking based on the
magnitude of each measure, and use this ranking as starting point of our visualization.

6.1 Overall process performance classes

Ultimately, we want to be able to evaluate every segment within an event log, and determine which
segment(s) have the highest probability of being bottlenecks (with respect to the entire process).
Currently, we have no way of directly comparing segments to each other. Simply comparing per-
formance and distributions between segments provides no valuable information, because cases in
a segment do not necessarily have any overlap with cases from other segments. We can, however,
discover how a segment relates to the overall process it is part of. Take, for example, the (sub)set
of cases presented in Table 6.1. These cases all contain the segment B → C. To recall, in Chapter
5, we calculate the segment performance classes, by determining to which segment performance
class each case belongs, using Jenks, the outcome of this is shown in Figure 6.2. We see that this
set of cases was divided into four distinct performance classes. Additionally, we see the distribu-
tion of each segment performance class using boxplots.

When we combine the traces in Table 6.1, we can see that these combined traces make up a larger
process, displayed in Figure 6.1. We can see that a segment is part of a larger overall process. We
would like to understand how the performance a case has in a segment relates to the performance
that same case has overall. We can gain insight on the relation of this segment to the entire process
relatively simply. To determine the overall performance classes, we keep the same division of cases
(i.e., Case 1 and 2 belong to class 1, Case 3 belongs to class 2, etc.), but instead of using the seg-
ment time, we now use the total time of each case. Table 6.1 has a column which displays the total
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Case ID Trace Segment time
Segment

performance class
Total time

1 A → B → C → D 10 1 100
2 A → B → C → F 12 1 110
3 E → B → C → D 30 2 180
4 E → B → C → F 80 4 280
... ... ... ...

Table 6.1: Overview of cases, with their respective traces, segment time, and total time

time of each case. For each class, we gather the total time of each case contained in the class. We
make a boxplot of the new overall performance classes, the outcome of which is shown in Figure 6.1.

Discovering how this segment relates to its overall process provides insight into a segment on a
higher level. It shows what the contribution of that segment is towards the process overall (i.e.,
“to what degree is this segment responsible for the overall performance of cases?”). In Figure 6.2
and 6.3, we see that both segment classes and the overall classes are increasing, meaning that the
average throughput time of a class is larger than its previous class(es). From this observation, we
can claim that there is a correlation between performance of a segment, and performance of the
overall process. We observe that cases for which performance is slow in this segment, also perform
slowly in their overall process, which could be an indicator that this segment causes a bottleneck.
Many such correlations can be found between performance classes. Instead of relying on manual
analysis of figures such as Figure 6.2 and 6.3, we would like to automate the analysis of perform-
ance classes, as to determine what characteristics performance classes have, and how they relate
to each other. In Section 6.2, we explore several different statistical measures for determining the
characteristics of performance classes.

Figure 6.1: Segment and Overall processes

Figure 6.2: Segment performance classes
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Figure 6.3: Overall performance classes

6.2 Analysis of performance classes

In the previous section we expanded our segment classification by adding overall performance
information. However, analyzing every segment in-depth requires a significant amount of work.
Therefore, We would like to know which segments we should focus our process optimization efforts
on, by first discovering a set of measures which quantify segment characteristics. Additionally,
these measures can be used to identify whether a segment contains a bottleneck. We approach
this problem by first setting up a list of questions we want to answer:

Measures within segment/overall performance classes:

1. Do the performance classes have significant overlap, or not? (Effect size)

2. What is the time difference between the slowest and fastest classes? (Potential lost time)

Measures between segment/overall performance classes:

3. What is the influence of the segment time, with respect to the total time? (Total weighted
impact)

We are looking for methods to find answers to these questions automatically. Therefore, sections
6.2.1, 6.2.2, and 6.2.3 are dedicated to finding algorithmic solutions which answer these questions
automatically.

6.2.1 Effect size

The purpose of this section is to create a method to answer the question: “Do the classes have
significant overlap, or not?”. When classes do not have significant overlap, there is a higher chance
that a class holds information that is not present in the others. To give an idea of what we mean
by that, consider Figures 6.4 and 6.5.

The classes from Figure 6.4 have significantly more overlap in the 25th to 75th percentile than the
classes of Figure 6.5. Essentially, Figure 6.4 gives us only rudimentary information (i.e., “There is
no difference in throughput time between classes”) information. Alternatively, Figure 6.5 shows a
clear distinction between every class. This distinction gives reason to analyze the causes for the
differences between these classes (i.e. bottleneck analysis). The difference between these classes
can be quantified as the effect size.

In statistics, effect size is a quantitative measure that measures the difference between 2 classes.
In this research, we are looking for a non-parametric approach to calculating effect size. A widely
used non-parametric effect size technique that tries to quantify the difference between two groups
is the Cohen′s d method [23] (Hereafter denoted as Cohen’s). This method is chosen because it
is non-parametric, works with numeric data, and handles groups that are of different sizes.
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Figure 6.4: Classification with (relatively) small effect size

Figure 6.5: Classification with (relatively) large effect size

Cohensd(X1, X2) is determined as follows:

d =
x̄1 − x̄2

s
=
µ1 − µ2

s

where s is defined as the pooled standard deviation,
n1 is the size of X1, and n2 is the size of X2:

s =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
,

where the variance for both groups (s21 and s22) are defined as

s21 =
1

n1 − 1

n1∑
i=1

(x1,i − x̄1)2

and

s22 =
1

n2 − 1

n2∑
i=1

(x2,i − x̄2)2.

A Cohensd of 1 implies that two groups differ by 1 standard deviation, a d of 2 indicates they
differ by 2 standard deviations, and so on. These are equivalent to z-scores.

Cohen’s method can only calculate the effect size between two groups at a time. However, we can
have more than two classes be discovered by Jenks. For our purposes, we calculate an effect size for
the segment/overall performance classes, by averaging the effect size between every combination
of performance classes. To obtain the average Cohen’s d for segment performance classes, or for
overall performance classes, we apply the following steps:

1. Select segment/overall performance classes T, which hold N classes.

2. Find every pair of classes (Ti, Tj) where i < j and i, j ≤ N
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3. Calculate for every pair (Ti, Tj) Cohen’s d

4. Divide the sum of these by the total number of pairs

Recall in Section 6.1, we determined that correlations exist between the segment performance
classes, and the overall performance classes. Now that we know these correlations exist, we need
to determine whether the measures of our performance classes give ground for analysis, by being
significantly ’different’ from one another. For two groups to become statistically significantly dif-
ferent, Cohen [23] suggested that a d of 0.2 can be considered a ’small effect size’, a d of 0.5 can
be considered a ’medium effect size’ and, a d of 0.8 can be considered a ’large effect size’. These
values are expanded upon by Sawilowsky [37], who added, that a d of 1.2 can be considered a
’very large effect size’ and a d of 2.0 can be considered a ’huge effect size’

Using this method on the segment classification is not useful. We already know that every Jenks
classification has a high effect size, since it has the property where max(Ti−1) < min(Ti) and
max(Ti) < min(Ti+1) where i is the class number. Due to this property, none of the classes have
any overlap, which means an effect size which is always significantly larger than 2.

However, the overall performance classes do have overlap. This means we are able to measure
the effect size of these classes using Cohensd. Discovering whether an overall performance class is
significantly different from the other classes makes that class an interesting candidate for deeper
analysis. We want to spend our analysis time efficiently, and therefore need to make a decision what
segments to analyze. For the purposes of this research, we decide that performance classes with
an average Cohen’s d of atleast 0.5 (medium effect size) are considered significantly interesting.
When a segment has a high effect size, it indicates that a bottleneck might be present in the
segment, as well as in the overall process. However, a segment can still be interesting if it has a
low effect size, if the other measures (detailed in following sections) are substantially high. If this
is the case, the segment in question may still be a bottleneck, albeit a local one.

6.2.2 Potential lost time

The purpose of this section is to create a method to answer the question: “What is the time
difference between the slowest and the faster classes?”. We calculate the Potential lost time, using
only the segment performance classes. Potential lost time is calculated as follows:

1. For every class Ci in the segment performance classes, where i is the class number,
calculate median(Ci)

2. Take median(C1) as optimal time
(Due to the nature of Jenks, we know Class 1 always has the lowest (i.e., fastest) median)

3. For every class Ci, calculate Ci lost time = (median(Ci)− optimaltime) ∗ size(Ci)

4. Calculate
∑N

i=1 Ci lost time, where N is the total number of segment performance classes.

It is important to note that we have classes which are not necessarily of equal size. This means
that we cannot simply take the sum of time intervals of Class 1 (fastest class), and compare that
to the other classes, to calculate lost time. Instead, we use the median of each class. We use the
median for two reasons: First, due to the nature of Jenks (discussed in Section 5.4), we know the
that the median(C1) will always be the lowest median compared to the other classes. Second, we
use the median of a class, because it is less skewed by imbalanced data, than using the average of
a class.

Using this method, we can calculate the potential lost time for each segment. This measure depicts
the magnitude at which cases are slower than the fastest possible time in that segment. It provides
an answer to the question; ”What is the highest (theoretical) performance gain our process can
have, when using only information from the event log?” This measure is designed to gain general
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Class Size
Segment

time
median

Optimal
time

Potential lost time

A1 1000 10 10 1000 ∗ (10− 10) = 0

A2 800 40 10 800 ∗ (40− 10) = 2400

A3 400 120 10 400 ∗ (120− 10) = 44000

A4 200 3000 10 200 ∗ (3000− 10) = 598000

644400

B1 1000 500 500 1000 ∗ (500− 500) = 0

B2 800 1000 500 800 ∗ (1000− 500) = 400000

B3 400 1500 500 400 ∗ (1500− 500) = 400000

B4 200 1800 500 200 ∗ (1800− 500) = 260000

1060000

Table 6.2: Lost time calculations for segments A and B

insight into the segment performance of an event log, without having knowledge on the specific
details of the business process. It also provides a guideline for deciding whether the segment is
worth improving. If segment A has a relative small lost time compared to another segment B,
this indicates that it is more profitable to focus on improving the latter segment.

To give an impression on the calculation of the Potential lost time, we present segment A and B,
both classified using Jenks into classes A1, A2, A3, and A4 and B1, B2, B3, and B4, respectively,
in Table 6.2. Assume all cases go over both segment A and segment B. Therefore, both the sizes
of each class and the overall performance is equal in both segments. Where they differ is the
performance difference between their performance classes. In the example, we see that the lost
time of segment B is higher than the lost time of segment A. This gives an indication that, if we
have to choose between focusing improvement efforts on segment A or B, focusing on segment B
first may be more beneficial since there is theoretically more performance improvement to gain.

6.2.3 Total weighted impact

The purpose of this section is to create a method to answer the question: “What is the influence of
the segment time, with respect to the total time?”. First, this measure determines the magnitude
of impact a segment has on its overall performance. Additionally, the measure can be used to
determine where improvement efforts should be focused on, when a company wants to improve
their overall process throughput, but only has the time and resources to improve parts of the
process. To make sure that the company focuses their improvement efforts efficiently, it is helpful
if they are able to recognize whether a segment is worth improving or not (the least amount of
effort for maximal amount of gain).

We introduce a new measure, named Total Weighted Impact (TWI). The measure calculates what
percentage of the overall performance (of cases) is caused by the segment performance (of cases).
We define the Total weighted impact for segment S as follows:

TWI(S) =

C∑
i=1

SP (Si)

OP (Si)

|Si|
|S|

where

40 Guided bottleneck identification in business process event logs



CHAPTER 6. EXTENSION, ANALYSIS, AND CLASSIFICATION OF PERFORMANCE
CLASSES

C = Number of classes in segment S,

SP (Si) = Segment performance of segment Si,

and

OP (Si) = Overall performance of segment Si.

To give an impression on the calculation of the Total weighted impact, we present segment A and
B, both classified using Jenks into classes A1, A2, A3, and A4 and B1, B2, B3, and B4, respect-
ively, in Table 6.3.

Assume all cases go over both segment A and segment B. Therefore, both the sizes of each class
and the overall performance is equal in both segments. Where they differ is the performance of the
segment itself. In segment A, cases in class A1 are, on average, 300 times faster than cases in class
A4. On first sight, this would mean that this segment is a good candidate to focus improvement
efforts on (Section 6.2.2 explained how lost time is calculated). However, we can also see that that
particular segment is only a fraction of the overall process, since it only accounts for around 6.25%
of the total throughput time. While focusing improvement efforts on this segment may improve
local performance, it does not have a significant impact on the overall process (i.e., while there
may be a bottleneck in the segment itself, the slow performance in the overall process could be
caused by another segment in the same overall process). Alternatively, in the same table, we see
that segment performance in B is a significantly large portion of the overall performance (41.15%
in total). This means that focusing our improvement efforts on this segment will not only benefit
local performance, but overall performance too.

Class Size
Segment

Performance
Overall

Performance
Weighted
Impact

A1 1000 10 minutes 1000 minutes 0.42%
A2 800 40 minutes 4000 minutes 0.34%
A3 400 120 minutes 3000 minutes 0.67%
A4 200 3000 minutes 4000 minutes 6.25%

7.68%

B1 1000 500 minutes 1000 minutes 20.80%
B2 800 1000 minutes 4000 minutes 8.30%
B3 400 1500 minutes 3000 minutes 8.30%
B4 200 1800 minutes 4000 minutes 3.75%

41.15%

Table 6.3: TWI calculations for segments A and B

6.3 Ranking of segments

In the previous sections, we discussed several methods for measuring different aspects of a perform-
ance classes. Every aspect contributes to deciding whether a segment holds a potential bottleneck,
and therefore is worth looking at in-depth. To give a quick overview, we first recall what the meas-
ures are, and what they do.

1. Effect size (Section 6.2.1), quantifies the average overlap performance classes have.
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2. Lost time (Section 6.2.2), quantifies how much the throughput time of a segment could
(potentially) be improved.

3. Total weighted impact (Section 6.2.3), quantifies the impact of segment performance, on the
overall throughput time.

These measures cannot be compared directly, because they quantify different aspects of a segment.
When a segment has a high lost time and a low effect size, it does not mean that the segment is
more/less likely to be a bottleneck compared to a segment which has a low lost time and a high
effect size. However, the measures can be used to form an opinion on whether a segment is more
interesting to analyze relative to other segments. We do this by creating a ranking based on the
magnitude of each of the measures. To provide an understanding of how this ranking works, we
provide the following example. In this example we analyze a synthetic event log, with the flow
model displayed in Figure 6.6.

We run every segment through our algorithm, and display the results in Table 6.4. Subsequently,
we compare the value of each measure to each other, and develop a ranking. Segment A→ B has
the highest effect size of 1.44, so this segment will get the highest ranking number of 7 (in this
example, there are 7 segments in total), with respect to the effect size. Segment C → D has the
second highest effect size of 1.21, so this segment will get the second highest ranking number of
6, etc. For lost time and weighted impact, we apply the same rules, resulting in a ranking, also
displayed in Table 6.4.

Now that we have ranked each measure individually, we can calculate a cumulative ranking for
each segment. This cumulative ranking is simply a summation of the ranking of the three meas-
ures. The cumulative ranking determines how segments are more/less likely to contain bottlenecks,
relative to each other, i.e., the segment with the highest cumulative ranking is the most likely to
contain a bottleneck, and the segment with the lowest cumulative ranking is the least likely to
contain a bottleneck.

In this chapter, we extended the segment performance classes, with overall performance classes.
Additionally, we created several measures, each of which quantify different characteristics of per-
formance classes. By observing the results of Section 6.2.1, 6.2.2, and 6.2.3, we demonstrated
that we solved RQ 2: Can a set of analyses be created, as to discover similarities/differences
within and between the performance classes?. The ranking was created to give a first direction for
identifying bottlenecks. Now, we need to develop a way to present these findings to an analyst in
a complete and comprehensible way. This is addressed in chapter 7.

Figure 6.6: Synthetic log flow model
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Segment
Effect
size

Lost
time

Weighted
impact

Effect
size

ranking

Lost
time

ranking

Weighted
impact
ranking

Cumulative
ranking

A→ B 1.44 10000 82% 7 7 6 20

B → C 0.59 400 85% 2 2 7 11

C → D 1.21 8000 13% 6 1 2 9

A→ C 0.95 2000 4% 5 6 1 12

C → E 0.51 500 45% 1 3 4 8

D → E 0.73 250 20% 3 1 3 7

B → E 0.85 4000 69% 4 5 5 14

Table 6.4: Example ranking of segments for synthetic event log
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Visualization in the ProcessGold
Platform

In Chapter 5, we obtained performance classes from each segment within event logs. In Chapter
6, we provided a measure-based ranking for each of these segments. We dedicate Chapter 7 to
answering RQ 3: Can the outcome of the performance class analysis be aggregated and visualized
in such a way, as to support bottleneck identification?

To answer this question, we propose several dashboards that each visualize different parts of the
process mining perspectives. In Section 7.1 and 7.2, we address the time perspective of process
mining by visualizing the outcome of our segment analysis. In Section 7.3, we address the case
perspective by implementing and visualizing case attribute frequency analysis for performance
classes. In Section 7.4, we address the organization perspective by visualizing event attribute
distributions, for different segment types. Finally, in Section 7.5, we address the control-flow
perspective by visualizing and comparing process flows between classes.

7.1 Segment Overview

We start our visualization by visualizing the time perspective. The time perspective is concerned
with the timing and frequency of events [6]. Timing information can be used to discover (perform-
ance) bottlenecks, measure service levels, etc. From the limitations explained in Section 3.1, we
can see that our approach is essentially a new way of representing performance related informa-
tion. Therefore, to visualize the time perspective, we present the user (i.e. business analyst) with
the outcome of our segment analysis described in Chapter 6.

First, we present an overview of each segment, and its measures, to the user. The first dashboard
a user will see is the Segment Overview dashboard shown in Figure 7.1. This dashboard has two
regions. Region (1) shows an overview of each segment, and its attributes. In Figure 7.2, we zoom
in on the first row of the overview. From left to right, the row consists of the following attributes:
(a) Name of the segment, (b) Number of cases in that segment, (c) Number of classes in that
segment, (d) Effect size ranking, (e) Lost time ranking, (f) Weighted impact ranking, (g) Total
cumulative ranking, and finally (h) Inspection Button. The ordering of this overview is based on
the arguments made in Section 6.3, where the segment with the highest Total ranking is placed
at the top. The user is able to sort based on each of the attributes (a) to (g). Additionally, when
hovering over (h), the user is shown the real numeric value of the measure, on which the ranking
is based. In region (2), we show an information symbol. When the user hovers over the i symbol,
they will see the popup shown in Figure 7.3. This popup explains how each segment measure is
calculated.
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The user can drill-down into deeper analysis of a segment by clicking on the name of the segment.
The application will navigate to the next dashboard named Segment Information. This dashboard
is elaborated upon in the next section.

Figure 7.1: Dashboard which shows Segments Overview. Region (1) shows a table with
an overview of each segment, including their attributes. Region (2) shows the buttons
which (when hovered over) explain the segment measures.

Figure 7.2: First row of segment overview

Figure 7.3: Measure information popup

7.2 Segment Information

In Figure 7.4, we show the dashboard Segment Information. This dashboard is the continuation
of the dashboard described in Section 7.1. This dashboard shows the user an in-depth view of a
segment. In this particular example, the segment we are inspecting the segment Final check of
invoice → Final check of invoice. Furthermore, the segment consists of three classes, where class
1, 2, and 3 contain 9797, 2871, and 305 cases, respectively. This dashboard consists of four regions.

In region (1), we show a selector, where the user can see which segment they are currently in-
specting. Additionally, the user can choose to select a different segment to inspect, if they wish
to do so. This allows the user to quickly navigate from the analysis of one segment, to the next.

In region (2), we show an overview of the segment the user is currently inspecting. The overview
shows a stacked bar, where each section represents the value of each measure. This gives the user
the ability to quickly check how this segment was ranked, relative to other segments. This allows
the user to gain general insight on the segment. Additionally, it gives the user an idea of where to
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start their analysis. For example, if effect size ranking is high, and the lost time ranking is low,
it may be interesting to analyze the distributions presented in region (3) and (4) in-depth, to get
insight into reason why.

In region (3), we show the distribution of the total throughput time for each case, per class. It
essentially shows the distribution of each class in the overall performance class type. This region
is designed to allow the user to compare the classes visually, which creates an understanding of
the overall performance of each class.

In region (4), we show the median throughput time of each class, and how this throughput time
is subdivided. Additionally, we show a subdivision of the cases. This subdivision consists of three
parts: Region (4a) shows Elapsed time (from the start of a case until the segment is reached),
Region (4b) shows Segment time (time the case spent in the segment), and Region (4a) shows
Remaining time (time the case spent between exiting the segment, and the end of the case). In
this particular example, the elapsed time is 23 hours, the segment time is 2.6 hours, and the
remaining time is 4 days. This region essentially visualizes the weighted impact factor measure,
as it shows how the segment performance relates to the overall performance. This provides the
user with insight on the impact a segment has has, on the process as a whole. Additionally, each
column shows the performance of a class, relative to other classes. This allows the analyst to
visually compare classes, and create insights on the relative performance of each class.
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Figure 7.4: Dashboard which shows Segment Information - Region (1) shows the segment
selector. Region (2) shows the measures of a segment. Region (3) shows the distribution
of case throughput times. Region (4) shows a distribution of Elapsed (4a), Segment
(4b), and Remaining time (4c), for each class
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7.3 Case Attributes

We show the Case Attribute dashboard in Figure 7.6. This dashboard is dedicated to the analysis
of case attributes, present within our segments. The reasoning behind this dashboard are as fol-
lows. First, it provides the user with the ability to compare the case attributes of different classes.
It allows the user to, for example, see if there are discrepancies between the case attributes of
slowest performance class, compared to the fastest performance classes. The case attributes may
reveal why there is discrepancy in performance.

However, the performance classes are not necessarily of equal size. Also, the distribution of at-
tributes over a set of cases is always relative to the size of the segment (i.e., 40% of cases in this
class contain the case attribute A). Due to these factors, it is difficult for a user to judge whether
a class contains significantly deviating attribute frequencies, compared to other classes. This is
where the power of frequency analysis [15] comes into play. The frequency analysis provides a
objective statistical basis for judging whether the attributes frequency of a class is significantly
deviates from other classes.

In region (1), we show two selectors. The user can use selector Segment Name to select which
segment the user wants to analyze. Additionally, the user can use selector Select Class to select
which (set of) class(es) they want to analyze.

In region (2), we show two thing, first, selector Case Attribute, where the user can select which
case attribute they want to perform frequency analyses on. Additionally, a button Only show
significant, which, when enabled, only shows those attributes that are significantly different than
expected, based on research done by Verhoef [15].

In region (3), we show a chart, where the black line denotes what the expected frequency of the
selected case attribute. The blue bar shows what the observed frequency of the selected case
attribute is.

In region (4), we show a table, which depicts how the selected Case attribute is distributed over
all classes. In the same region, the user can use the Percentage/Count selector to switch between
displaying the distribution as percentage, or as number.

In this particular example, we have selected the segment ’Checked and approved → Pay invoice’,
and class 1. Additionally, we have selected ’Case Type’ to be the attribute we want to perform
frequency analysis on. We can see in region (3) of Figure 7.6 that case ’Case Type’ has four variants.
Namely, Partner, Small invoice, Medium invoice, and Preferred supplier. After enabling the Only
show significant button, we can see (in Figure 7.5) that the attribute ’Partner’ which appears
statistically more frequently in class 1 (61% instead of 43.24%) than expected. Additionally,
attribute ’Preferred supplier’ appears statistically less frequently in class 1 (25% instead of 43.24%)
than expected.

Figure 7.5: Frequency analysis, only showing significantly different attribute frequencies
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Figure 7.6: Dashboard which shows Frequency Analysis - Region (1) shows the segment selector.
Region (2) shows which case attribute the user is currently inspecting, including a button which
activates significance filtering. Region (3) shows the expected and observed frequencies of case
attributes. Region (4) shows the distribution of the case attribute over all classes
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7.4 Event Attributes

We show the Event attributes dashboard in Figure 7.4. This dashboard is dedicated to visualizing
the organizational perspective of process mining. The organization perspective focuses on resource,
i.e., which actors (e.g., people, systems, roles, and departments) are involved and how are they
related. Nearly all process mining tools consider resource information as plain data elements [6].
Therefore, we can visualize this perspective by providing the analyst with tools to analyze case
and event attributes. We already created a visualization for analyzing case attributes in Section
7.3. We extend analysis by adding a visualization for event attributes in Section 7.4. We do this by
adding a dashboard that allows for the comparison of event attribute frequency between classes.
In region (1), we show a selector, where the user can see which segment they are currently in-
specting. Additionally, the user can choose to select a different segment to inspect, if they wish
to do so. This allows the user to quickly navigate from the analysis of one segment, to the next.

In region (2), we show two selectors, the first of which is Event Attribute. Using this selector, the
user can select which event attribute they want to analyze. The second selector is Percentage/-
Count, where the user can select whether to show distribution of values a percentage, or as a total
count of events. This allows for flexibility in analyzing frequencies.

In region (3), we show a table, where the distribution of the selected event attribute is shown, per
class, based on the segment activity. If ’percentage’ is selected, every row sums to 100%. This
allows the user to inspect the event attribute frequencies of the segment process, and allows them
to compare these between different classes.

Region (4), is functionally the same as region (3), albeit using the event attribute frequencies of
the overall process, not just the segment itself. This allows the user to inspect the frequencies of
the event attributes in the overall process, allows them to compare these between different classes.

In this particular example, we have selected the segment Check received invoice → Final check
of invoice. We have selected ’Country’ as event attribute to inspect. We see in region (3) of
7.7 that this event attribute has 7 variants, namely ’Austria’, ’France’, ’Germany’, ’Netherlands’,
Switzerland’, ’UK’, and ’US’. Additionally, we see that ’Austria’ seems to be frequently present
when in the slower classes 4 and 5. Therefore, in this example, ’Austria’ could be an identifier
for performance bottlenecks in this dataset. Finally, region (4) shows the distribution of event
attributes in the overall process associated with this segment.
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Figure 7.7: Dashboard which shows Event Attributes - Region (1) shows the segment selector.
Region (2) shows which event attribute the user is currently inspecting, also a selector where
the user can switch between percentage and counts. Region (3) shows the distribution of event
attributes in the segment. Region (4) shows the distribution of event attributes in the overall
process
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7.5 Process Flow Analysis

Finally, we show the Compare Process Flow dashboard in Figure 7.8. This dashboard is dedic-
ated to visualizing the control-flow perspective. More specifically, this dashboard can be used to
discover if the are differences between the flow of one class, with respect to other classes. The
control-flow perspective focuses on the control-flow, i.e., the ordering of activities [6]. The goal of
this perspective is to get an understanding of the process-flow a process. We want to compare the
process-flow of one class, directly to other classes. This assists in bottleneck identification by al-
lowing analysis between, for example, the fastest class and the slowest class. Significant deviations
in process-flow could be the cause of performance loss. ProcessGold already provides process-flow
analysis capabilities in the form of a process graph viewer, as discussed in Section 2.5. Therefore,
we extended the existing process viewer to work with segment classes, and develop a dashboard
accordingly. The dashboard consists of several regions.

In region (1), we show a selector, where the user can see which segment they are currently in-
specting. Additionally, the user can choose to select a different segment to inspect, if they wish
to do so. This allows the user to quickly navigate from the analysis of one segment, to the next.

In region (2a,b and c), we show a process flow analysis tool, in region (2a), we show a selector
Process A, where the user can select which class(es) to inspect. In region (2b), we show the process
flow of the selected class(es). Additionally, every edge show what percentage of cases that traverse
it. In region (2c), we show the legend which explains the process utilization rate, number of cases
in the flow, and has user adjustable slides, which sets the threshold for hiding/showing infrequent
activities and edges.

In region (3a, b, and c), we also show process flow analysis tool, This region is functionally the
same as region (2). The only difference is that it shows the classes selected in region (3a) Process
B, instead of the classes selected in region (2a) Process A.

In region (4), we show two buttons, where the user can select between showing the process as a
Side-by-Side view, or a Combined. The Combined view is shown in Figure 7.9. Here, the applica-
tion shows combines the cases selected in Process A and Process B, and builds a new process flow.
The orange numbers and activities are associated with Process A, and the green numbers and
activities are associated with Process B. In this view, it is possible to view additional statistics on
the edges, such as average throughput times, which is shown in Figure 7.10.

In this particular example, we have selected the segment Final check of invoice → Final check of
invoice. Additionally, we have selected Class 1 as input for Process A, and Class 2 + 3 for Process
B. If we inspect the combined view in Figure 7.9 we can see that for most edges, the percentage
of cases that traverse the edge are equal. However, the edge between Check received invoice and
Final check invoice show that the edge traversal rate of Process A is significantly higher than that
of Process B (99% vs 53%). Instead, a significant portion of the cases in Process B execute the
activities Request data and Check contract conditions. Remember that Class 1 contains the cases
that passed the segment quickest. Therefore, in this case, traversing Request data has significant
impact on the performance of the segment Final check of invoice → Final check of invoice. Users
can use this view to discover whether there are discrepancies between the flows of quicker classes
with respect to slower classes, which in turn supports root cause analysis.
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Figure 7.8: Dashboard which shows Compare Process Flow - Region (1) shows the segment selector.
Region (2) shows the process flow analysis of the classes selected in region (2a). Region (3) shows
the process flow analysis of the classes selected in region (3a). Region (4) shows two buttons,
which the user can use to switch between Side-by-side and Combined views
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Figure 7.9: Compare Process Flow -
Combined - Edge traversal rate

Figure 7.10: Compare Process Flow -
Combined - Average throughput time
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Chapter 8

Evaluation

The main goal of this research is to support bottleneck identification by automating analysis
of previously unexplored parts of process mining, namely, segment analysis. In Chapter 7, we
proposed several dashboards which each visualize a different perspective of process mining. In
this chapter, we explore the understandability, usefulness, and correctness of our segment analysis,
and how it supports bottleneck identification through these dashboard. To do this, we set up two
distinct evaluations of our developed techniques. In Section 8.1, we evaluate the correctness of
our approach, by applying it on BPIC datasets, and comparing our findings, with those of the
BPIC reports. In Section 8.2, we evaluate the understandability and usefulness of our approach
by performing validation tests with ProcessGold analysts. These tests also show whether it is
possible for analysts to analyze an event log, quicker, and more thorough, compared to when they
use contemporary process mining tools.

8.1 BPI Challenge and Report

The International Conference on Business Process Management (BPM) [16] is the premier confer-
ence for researchers and practitioners in the field of Business Process Management and by exten-
sion, process mining. For these conferences, Business Process Intelligence Challenges (BPIC) are
created. These challenges consist of real life event logs, which participants are allowed to analyze
for several weeks. These participants can choose to focus on a specific aspect of interest and
analyze this in great detail. Examples include the creation of control-flow models, performance
models, predictive models, etc. Alternatively, participants can choose to focus on a broader range
of subjects, albeit in less detail. The participants have a set amount of time to analyze the event
log, whereafter they hand in a report containing their findings. A jury consisting of field experts
judge the reports on correctness, usefulness and completeness of analysis. Finally, one or more
reports are selected to be the winner of that BPIC. For our evaluation, we use BPIC 2017 [22]
dataset.

In this thesis, we evaluate whether an analyst using our approach is able to discover similar points
of interest (e.g., bottlenecks) as those detailed in the reports of the BPICs. The challenges are
generally taken on by process analysts and academics, where each teams consists of upwards of
five participants. Compared to the teams who participate in the BPICs, we have far less time,
resources, and domain knowledge to use for analysis. Therefore, it is reasonable to expect that our
analysis will not be as thorough as the BPIC submissions. To offset this discrepancy, we will use
the conclusions of the winning submissions, and analyze whether we come to similar conclusions
when using our approach.

Limitations of evaluation through BPIC It is very important to note however, that the
BPIC reports mainly focus on process discovery, understanding, and analysis. The reports focus
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on discovering trends, distributions, and irregularities in the event logs as a whole. This is signi-
ficantly different from our approach, which mainly focuses on the discovery of performance related
bottlenecks, by providing analysts with a preprocessed segment analysis, and tools to explore this
analysis. Additionally, our approach analyzes smaller subsets of event logs (segments) and bases
analysis on these subsets. We try to overcome this difference by comparing our approach only to
performance related discoveries described the reports. Additionally, it is important to note that
we lack the necessary domain knowledge to fully understand the processes described in the BPIC
reports. Therefore, we are not be able to declare that we found a bottleneck, we can only speculate
that certain segments, activities, or attributes show signs of causing bottlenecks.

8.1.1 BPIC 2017

BPIC 2017 consist of an event log provided by a Dutch financial institution. The event log con-
tains data on a loan application process, which has seen an significant increase in cases since the
financial crisis of 2008. The event log consists of 31,509 cases, 1,202,267 events, 26 activities1 and
149 users. Additionally, the log contains various non-standard case and event attributes, such
as, case outcome, Loan reason, Application type and Customer type. The submission consisted of
three categories: Student, Professional and Academic.

The Financial institution was particularly interested in answering the following questions:

1. What are the throughput times per part of the process?

2. What is the influence on the frequency of incompleteness to the final outcome?

3. How many clients ask for more than one offer?

For this evaluation, we compare our approach to the winners of the professional and academic cat-
egories. In the professional category, the winners were analysts from KPMG Technology Advisory,
Belgium [38]. In the academic category, the winners were analysts from Pontif́ıcia Universidade
[39].

Preprocessing:

The BPIC 2017 dataset has lifecycle information in it. The lifecycles are Start, Suspended, Re-
sume, Ate abort, Withdraw, and Complete. As stated Section 5.1, this information can be used to
enrich the event log with more information. Normally, we recommend this step, as it allows an
analyst to see whether a segment counts as waiting time or processing time, which adds valuable
process information. However, when examining the winning reports of BPIC 2017, we noticed two
things. First, the report from Pontif́ıcia Universidade [39] do not contain any analysis based on the
lifecycles, and their findings reflect that. Secondly, the report from KPMG Technology Advisory
[38] does utilize the lifecycle information, both with respect to process discovery (i.e. discovering
process models) and when describing their findings when doing a time analysis. Therefore, we do
not use a converted dataset which uses lifecycle information, when comparing our findings to the
report of Pontif́ıcia Universidade. The base event log still has a Case ID, activity, and timestamp,
and is, therefore, still usable. Alternatively, we do use a converted dataset which uses lifecycle
information, when comparing our findings to the report of KPMG Technology Advisory.

Additionally, it is important to note that our analysis changes slightly based on the value of user
parameters. We tweak these parameters on the type of dataset we encounter, to allow for better
analysis. The parameters we adjust are as follows:

1. (Minimum segment frequency = 1000 ), this parameter denotes the number of times a seg-
ment must occur in a dataset, before it is selected for analysis. The motivation behind this

166 activities if lifecycles are converted
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Figure 8.1: Top 10 ranked segments, BPIC 2017 with lifecycle information

Figure 8.2: Top 10 ranked segments, BPIC 2017 without lifecycle information

parameter is twofold; First, a dataset with n distinct activities can potentially consist of n2

different segments. This dataset in particular is quite large, and can theoretically consist
of 484 segments. To prevent the number of segments growing too large for an analyst to
properly analyze, we use this parameter to limit the number of segments that are eligible for
analysis. Secondly, more frequent segments can be considered more important, since they
are of higher business value/impact. Companies are more likely to focus on high impact
improvements.

2. (RGVFC threshold = 7.5%), as stated in Section 5.4.2, we suggested selecting a RGVFC threshold
between 2.5% and 10%. After running some tests, we found that a threshold of 7.5% did not
overfit (i.e., some classes have more than seven groups), nor underfit (i.e., every class only
has two groups) the data, and resulted in every class consisting of two to six classes.

We applied our segment analysis, with the above discussed parameters. Figure 8.1 shows the top
10 ranked segments, when analysing the BPIC 2017 dataset with lifecycle information. Addition-
ally, Figure 8.2 shows the top 10 ranked segments, when analysing the BPIC 2017 dataset without
lifecycle information. The full tables of ranked segments can be found in Appendix B

Comparison to the report of KPMG Technology Advisory:

Comparison 1: In section 4.2.2, the report [38] shows the average throughput time of each activ-
ity, based on the lifecycle information of each activity. Furthermore, the reports determine for
each activity, what the item duration (i.e. time that the activity takes in total) and user duration
(i.e., time that an employee actively works on the activity) is. In the first and second conclusion
of section 4.2.3, the report notes that the activity W Call after offers and W Call incomplete files
are very time consuming activities, where there is a large discrepancy between item duration and
user duration. This means that most of the duration of the activity is spent on waiting for the
client to respond. It is important to note that the analysts had to go through several non-trivial
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calculation and filtering steps, before being able to reach these conclusions.

In our segment analysis approach, these findings are directly visualized by our ranking displayed
in Figure 8.1. In this Figure, we see that the top 3 ranked transition all contain W Call after
offers. Segment 1 is W Call after offers+suspend → A Cancelled+complete, which denotes that
the client has been called atleast once, but did not accept the offer, either on the phone, or by not
responding. Segment 2 is W Call after offers+suspend → W Call after offers+ate abort, which
denotes the that client has been called atleast once, and at some point the client accepted the
offer. Segment 3 is W Call after offers+suspend → W Call after offers+withdraw, which denotes
the that client was scheduled to be called, but the client accepted the offer before the first call was
made. These 3 segments ranking the highest reflect directly the suggestion made by the report,
that the financial institution should call the client quicker / more often. Additionally, in the same
section, the report states that both the activity W Validate application and W Validate applica-
tion. Both of these activities appear atleast once in the top 10 in Figure 8.1.

Comparison 2: In the third conclusion of section 4.2.3 Customer behaviour analysis [38], the
report states, while assess personal fraud is very time consuming for cases that have home im-
provement as loan goal. However, this activity only occurs in 1% of cases, and, therefore, does not
warrant further analysis. We note that the analysts had to compare processes between different
loan goals, and calculate the average total and user duration for each goal. These are several
non-trivial data combination, calculation and analysis steps to be able to reach this conclusion

This is directly reflected in our segment overview, by the fact that this activity does not occur in
any of the segments we have detected. This is because the parameter Minimum segment frequency
filters infrequent behaviour, so this activity was not analyzed due to its relative low occurrence
rate. This parameter could easily be adjust based on the wishes of the analyst.

Comparison 3: In the fifth conclusion of section 4.2.3 Customer behaviour analysis [38], the
report states that the activities such as handle leads, complete application, and shortened comple-
tion do not seem to cause problems for the company. We note that the analysts had to compare
processes between different loans goals, and calculate the average total and user duration for each
goal. These are several non-trivial data combination, calculation and analysis steps to be able to
this conclusion

This is directly reflected in our analysis. Shortened completion does not occur in any of our
segments. Additionally, both handle leads and complete application are only present in a few
segments, and on average rank very low. This is due to them simply not showing any interesting
performance characteristics.

Any other conclusions made by the report are not performance based, and we therefore do not
compare them to our approach. we conclude that our approach is able discover the same conclu-
sions as the report made, regarding performance. We note that the analysts had to perform several
non-trivial analysis steps to obtain these conclusions. Alternatively, using our approach, we were
able to reach the same conclusions much faster, because they were discovered automatically using
only the first board of our visualization. Furthermore, these conclusions could easily be expanded
upon, if the rest of our visualization had been used.

Comparison to the report of Pontif́ıcia Universidade

Comparison 1: In the introduction of the report, the report states the following: ”In our
diagnostic analysis we show that most bottlenecks are associated with a delay by the applicant to
perform an action (e.g., providing documents to the bank).” [39]. According to the details provided
by the financial institution, and statements in both winning submissions, activities ’performed by
the client’ are as follows:
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1. W Call after Offers, where the bank worker calls, after the offer is sent, to check whether
the client has received it, and asks whether the client is planning to accept it

2. W Call incomplete files, where the bank worker calls to ask for documents

3. O Sent (mail and online), where the bank send an email with the offer the client, any
time after this is the bank waiting for the client to acknowledge that they received to offer

In Figure 8.2, we see a top 10 of the ranked segments of the BPIC 2017 without lifecycles. We see
that the four highest ranked segments each contain one of the activities mentioned before. Seg-
ments 1 and 3 contain the activity W Call after Offers, this activity means that the bank already
called the client, inquiring whether they want to accept the offer. The bank is now waiting for
the client to call back with their answer. Segment 2 contains the activity W Call incomplete files,
this activity means that the company has inquired the user to provide the correct documentation,
and is waiting on the client to provide these. Finally, segment 4 contains O Sent (mail and on-
line)+complete, this activity means that the company just sent the client an offer, and is waiting
for them to respond. Every activity which the report denotes as being ’performed by the client’
is present in highest ranked segments. Therefore, we can safely conclude the our approach is able
to detect the same performance bottlenecks as the analysts.

Comparison 2: In section 5.1, the report [38] states: ”After the application is created, it passes
through the A Submitted state if it was submitted online, usually by the client itself. As we can
see, the client sends most of the applications (20,338 applications, or 64.8%), with a success rate
of 50%”. The success rate is measured by the percentage of cases reaching activity A Pending.
Cases that are created online are cases that pass through the segment A Create Application →
A Submitted.

The same conclusion can be obtain using our approach. If we select the segment A Create Application
→ A Submitted, and go to our case attribute board (detailed in Section 7.3), and select Outcome
as attribute, to table in Figure 8.3 is shown. This figure shows the distribution of attribute out-
come for every case that goes through A Create Application → A Submitted, per class. We see
that class 1 and 2, 50% of cases have an the outcome Pending, class 3 is not counted since it only
holds one case.

Additionally, our approach adds valuable performance related information. In Figure 8.3, we see
that the distributions of outcome are very similar for both class 1 and class 2. Since we know that
class 2 is a slower class than class 1, we can conclude that performance has no direct influence on
the outcome of a case. This finding is corroborated by the report [38].

Comparison 3: In chapter 6, the report [38] states that in order to perform process analysis,
the analysts had to append each duplicated activity with a number, which indicated their relative
order. For example, O Create Offer1 and O Create Offer2. The analysts base quite a signific-
ant part of their analysis on this change. Currently, our segment analysis does not include loop
depth. So, for example, if a case encounters the segment A Create Application → A Submitted
more than once, only the first occurrences of this segment is counted (The reasoning behind this is
explained in Section 9.2. This means there are no distinct activity depths counted. This problem
can be overcome by rewriting the event log, and annotate each activity with its respective loop

Figure 8.3: Percentage-wise outcome overview for segment A Create Application → A Submitted
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depth. In that case, our segment analysis will view A Create Application1 → A Submitted1, and
A Create Application2 → A Submitted2 as separate entities. In this case, we are confident the
conclusions reached by the report can easily be discovered, since most of the analysis of in chapter
6 of the report is superficial.

Any other conclusions made by the report were not performance based, and we therefore do not
compare them to our approach. we conclude that our approach is able discover the same con-
clusions as the report made, regarding performance. We note that the analysts had to perform
several non-trivial analysis step to obtain these conclusions, which were not needed when using
our approach.

8.2 Validation tests with analysts

The second part of our evaluation are validation tests with ProcessGold analysts/consultants (par-
ticipants). These tests are designed to gauge the usefulness and understandability of our segment
analysis, by comparing the techniques and tools participants currently use to identify bottlenecks,
to the techniques and tools we have developed in this thesis.

The tests were set up in the following way: Four participants were given two 45-minute tests each.
The first test was to analyze a BPIC dataset, the same as they would do with any other client
dataset, using the standard ProcessGold AppOne application. The participants were tasked with
doing a top-level analysis of the provided dataset, to try and identify (performance) bottlenecks,
within a given time frame. If there was time left after the initial identifying step, the participant
was tasked to try and find root-causes for the identified bottlenecks. The second test was the same
as the first, however, the participants now had to use our segment analysis approach, alongside
the visualization we discussed in Chapter 7. None of the participants were familiar with the BPIC
2017 and 2018 datasets, and these were therefore chosen to base our tests upon. We divided the
datasets over the two tests, making sure that each participant did not see the same dataset twice.
So, when a participant used BPIC 2017 for the first test, the second tests was done with BPIC
2018, and vice versa. This resulted in the test division presented in Table 8.1. Each test was
recorded, using both sound and video. To understand their thought process while analysing a
dataset, we asked each participant to explain each step they took while doing their analysis. The
tests were designed to evaluate the following questions:

Question 1: Do the participants understand the segment analysis approach?

Question 2: Do the participants understand the visualization?

Question 3: Does the analysis behaviour of the participants change, depending on whether
they use our solution, or not?

Question 4: What interesting things (i.e., potential bottlenecks) did the analysts find? Do
they find the same bottlenecks when not using our solution?

Question 5: How do participants experience using our segment analysis, and our visualiz-

BPIC 2017
standard

BPIC 2017
our solution

BPIC 2018
standard

BPIC 2018
our solution

Participant 1 X X
Participant 2 X X
Participant 3 X X
Participant 4 X X

Table 8.1: Division of tests, per participant
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ation, compared to the standard AppOne application?

Answering question 1 and 2: Before the start of the tests, we gave each participant a 10
minute presentation in which we explained our segment analysis approach. Additionally, we spent
5 minutes explaining the visualization. Finally, we spent a few minutes explaining frequency
analysis of Section 7.3, since it utilizes a non-standard approach to case attribute analysis. We
asked the participant afterwards whether they understood our approach and visualizations. Each
participant acknowledged that they understood the general idea of segment analysis. Furthermore,
that each board of the visualization was self explanatory, and that the frequency analysis was
understandable after a few examples were given.

Answering question 3: We did not expect the participants to find deeply hidden bottlenecks,
or root-causes within the 45 minute time limit. Proper analysis of processes takes days, if not
weeks. However, we did notice a significant difference between the analysis behaviour of the
participants when using our approach. The biggest difference was the start of analysis. When
using our approach, the participants had a list of potentially interesting segments ranked before
they even started. This gave the participants something tangible to start their analysis with.
Most participants noted the overwhelming amount of process information they have to go through
when using standard process mining tools. Without having a process/domain expert sitting next
to them to communicate with, they struggled to get going when using the standard application.
It is important to note that the participants were given the option to stop their analysis if they
felt like they would not be able to discover new bottlenecks. Out of the four tests performed with
the standard application, three decided to stop earlier. Alternatively, every test performed using
our segment analysis approach was still going when the 45 minute limit was reached.

Answering question 4: Regarding the BPIC 2017 [22] dataset, every participant that used our
solution noted that the case attribute remaining debt home appeared significantly more frequently
in the slower classes. This conclusion was found on average around five to ten minutes into the
test. Alternatively, this conclusion was also found by the analysts using the standard applica-
tion, however, this was usually around 25 to 30 minutes into the test. This discrepancy had two
reasons. First, the analysts spent a significant portion of their time trying to look for interesting
things in the variants overview of the standard application. However, BPI 2017 has an extremely
high number of different variants. This resulted in the analysts getting lost in the variants view,
and finally ending up empty handed. The second reason is that our solution provided the case
attribute overview in one simple visualization. This Analysts using the standard application had
to first manually combine several attributes into one view, before being able to see the same thing.

Additionally, every participant using our solution also noted that the activity W Call after offers
was a problem, since it appeared in a large numbers of the top ranking segments (albeit with
different lifecycles). However, this was not detected when the analyst was using the standard
application. The main reason for this is that the activity appears as four different variant due to
its lifecycle attribute. This meant that in the timing overview, the four variants of W Call after
offers were all completely average (around 5 days), which did not stand out against the other
activities.

Regarding the BPIC 2018 [24] dataset, every participant using our solution noted that, if the value
from case attribute area was relatively high, the case would be handled quicker (i.e., cases in Class
1 would have, on average, significantly larger values for area). This conclusion was not reached by
any of the participants using the standard application. The main reason for this discrepancy was
the high number of different case attributes in BPIC 2018, making comparison in the standard
application was too time consuming, due to analyst not knowing which attributes to combine.
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Answering question 5: After the participant was done with both tests, they where asked how
they experienced using our segment analysis, and our visualization, compared to the standard
AppOne application. The following paragraphs denote their answers.

All of the participants noted of the following statement (albeit not in exactly the same words):
There is currently (using standard AppOne) no easy way of comparing cases with different through-
put times in the same segments. Additionally, seeing the effect of these differences, with respect
to other metrics, such as case attributes, event attributes and process flows is almost impossible
in the standard AppOne application. According to the participants, currently, no dashboard exist
that have this functionality. The dashboards need to made custom per client, which is very time
consuming and inconvenient. They noted that our approach and visualization is able to add this
exact functionally to contemporary process mining tools. One participant told us: “Even if the
standard application would be able to make the same type of comparisons, the analysts would
have no way of knowing what to compare. Your solution does make it possible for an analyst to
know what to compare, since it pre-processes data based on performance.”

Both participant 1 and 3 noted that the big advantage of our approach and visualization, compared
to contemporary solutions, is that our approach provides a starting point from which to analyze
your data. Contemporary solutions just show you which transition is slow (e.g. by making an
edge red, or thick), but there is no further analysis than that. Our visualization not only displays
the potential bottleneck, it also displays the distribution of performance in that transition, and
provides tools to analyze this distribution further. The same participants also noted that, if an
analyst did not have access to our approach and visualization, it would take an analyst multiple
days of work to reach the same conclusions.

There is a significant amount of domain knowledge needed to understand processes, but this do-
main knowledge is not always easily available to the analyst. Our approach pre-processes as much
information from the event logs as possible, without having access to this domain knowledge. All
analysts agreed that our solution allows them to present list of interesting findings and questions
to the client, which significantly reduces the time needed to understand the process and the time
to discover initial bottlenecks.

8.2.1 Discussion and conclusions

Based on the evaluations discussed in the previous sections, we acknowledged that identifying
and detecting root causes for bottlenecks still require a significant amount of work. However, our
solution is able to pre-process data, and provide a set of tools which analysts can use to aid them
in analyzing processes.

We evaluated the correctness of our approach by applying it on BPIC datasets, and compared
our findings, with those of the BPIC reports. We found that our approach is able to discover the
same performance related conclusions as presented in the reports. For most of these conclusions,
our approach is able to discover them without the analyst having to manually perform any pro-
cessing, calculation and aggregation steps. Additionally, the approach proved flexible enough to
handle different input datasets, and still report similar conclusions. We also note that for most
conclusions, we did not have to go further than our first board, meaning that there is a potential
to expand on the conclusion even further.

We evaluated the usefulness and understandability of our approach by performing several val-
idation tests with ProcessGold analysts. The participants acknowledged that the approach and
corresponding visualization were understandable. Additionally, every participants noted that our
approach added new and useful functionally to their existing process mining analysis toolset.
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CHAPTER 8. EVALUATION

We conclude that segment analysis supports the user in identifying and analysing bottlenecks. By
observing the proposed dashboards of Section 7.1 to 7.5, and the conclusions of our evaluation
in Chapter 8, we demonstrated that we solved RQ 3: Can the outcome of the performance class
analysis be aggregated and visualized in such a way, as to support bottleneck identification?
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Chapter 9

Conclusions

In the final chapter of this thesis, we elaborate on the results of this research. In Section 9.1, we
discuss the development and results of our solution, with respect to research questions discussed
in Chapter 3. Finally, in Section 9.2, we discuss limitations of our approach, and present several
possibilities for future work.

9.1 Guided bottleneck identification

In the introduction, we discussed the importance of the time perspective of process mining. Fur-
thermore, we discussed the research done by Fahland et al. [11], in which the authors highlighted
that contemporary process mining techniques provide only limited insight into performance data,
and that variability in performance exists within event logs. Additionally, we discussed that the
(automatic) extraction of performance information and analysis of the variability in performance
had not been researched thus far. Therefore, this thesis aimed to answer the following research
question: Can variability in performance be automatically discovered, analyzed, and visualized to
facilitate bottleneck identification?

To answer this research question, we divided our research into three subjects: Variability Dis-
covery, Variability Analysis, and Variability Visualization. To address Variability Discovery, we
developed an algorithm which extracts segment information from event logs, according to the
methods described by Fahland et al. [11]. Additionally, we proposed several techniques to en-
hance common, but nonstandard event log variants (i.e., event logs with start times, or lifecycle
information). Using research done by Fahland et al. [11], we confirmed that variability in per-
formance is present within event log segments. These segments consist of time intervals, which
have multimodal distributions. To separate these multimodal distributions, we reviewed the lit-
erature to discover an appropriate technique for classifying multimodal performance data. We
found Jenks Natural Breaks (Jenks) to be a fitting classification technique. This technique separ-
ates performance data by minimizing the variance within each class. The number of classes Jenks
generates is a parameter. We developed an approach for automatically setting this parameter, to
approximating an optimal number of classes, in which to classify performance data. Finally, we
applied the algorithm on a Business Process Intelligence Challenge 2017 dataset, which showed
that the technique was able to separate the multimodal performance data into distinct perform-
ance classes, which resulted in each segment being separated into a minimum of two groups, and
a maximum of seven groups, which, according to our research, is sufficient.

To address Variability Analysis, we extended the segment performance classes by including overall
performance classes. We generate the overall performance classes, by calculating, for each class
in the segment performance classes, the throughput time of each case in the class, and aggregate
this information. Additionally, to judge whether a segment contains a potential bottleneck, and
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to be able to automatically analyze performance classes, we formulated several analysis questions,
and proposed several measures, which each characterize a different part of the performance classes
(i.e., size, overlap, throughput etc.). To answer these questions, we developed three algorithmic
solutions, named effect size, lost time, and total weighted impact, which automatically answer these
questions, called measures. These measures were developed either, by using techniques from liter-
ature, or developed custom. Finally, since we cannot compare measures directly to each other, we
developed a ranking which compares segments relative to other segment, which ranks the segments
based on likelihood of containing bottlenecks, from highest to lowest.

To address Variability Visualization, we set out to visualize the outcome of the Variability Analysis
in the ProcessGold platform. To support bottleneck identification, we analyzed process mining
literature, and found that process mining analysis consists of four perspectives, namely time, case,
organization, and control-flow. To capture the time perspective, we created a dashboard which
shows the performance characteristics of each segment. To capture the case perspective, we imple-
mented case attribute frequency analysis research by Verhoef [15]. To capture the organizational
perspective, we developed a dashboard to analyze event attribute frequency between each per-
formance class. To capture the control-flow perspective, we developed a dashboard to analyze
process-flows between performance classes. The combination of these dashboard gives the analyst
a complete set of tools to analyze the performance classes, and assist in root-cause bottleneck
analysis.

Finally, to validate our approach, we evaluated the understandability, usefulness, and correctness
of our segment analysis. The correctness was evaluated by comparing the outcome of our segment
analysis to the findings discovered by the winners of the Business Process Intelligence Challenge
2017. We found that most performance related findings were able to be recreated using our ap-
proach. Furthermore, we noted that most of these findings could be recreated using only the
starting dashboard of our visualization. The understandability and usefulness of our approach
was evaluated by conducting validation tests with ProcessGold analysts. Participants were un-
animously positive on the functionality our segment analysis added to their process mining tool
set.

9.2 Limitations and future work

One limitation of our approach is the presence of user parameters, such as RGVFC threshold (dis-
cussed in Section 5.4.2) and Minimum segment frequency (discussed in Section 8.1.1). Setting
these parameters correctly is a non-trivial task, and may require the user several tries before get-
ting a satisfactory result. For the RGVFC threshold, we gave a range of safe options to choose
from in Section 5.4.2. However, for minimal segment frequency, we currently cannot give a safe
range for, since it is very dependant on the characteristics of the event log. Future work could
include creating an approach to automate fine-tuning of these parameters.

Another limitation of our approach is the fact that, if a segment occurs more than once, only
the first occurrences of this segment is counted in our analysis. We made this decision because
we wanted all our observations to be independent of one another. For example, if a segment oc-
curred many times within a case, the overall performance class would hold multiple instances of
the same case, which would skew the averages of the overall class towards that case. Therefore,
we recommend to keep in mind that analyzing event logs where a high percentage of transitions
are loops (i.e., transitions from an activity to the same activity) may result in misleading and/or
wrong results.

A limitation of our evaluation approach regarding the BPIC reports, is that we lack the necessary
domain knowledge to fully understand the processes in BPIC 2017. This means that we were only
able to verify whether a bottleneck that was found by the analysts of the BPIC reports, could also

Guided bottleneck identification in business process event logs 65



CHAPTER 9. CONCLUSIONS

be found using our approach. We were not able to definitively conclude that we identified more
bottlenecks, or than we identified bottlenecks quicker, compared to the BPIC reports. While we
do see many signs that our approach does assist analysts in identifying bottlenecks, this limitation
makes it currently impossible to definitively conclude that our approach is an improvement on
standard analysis techniques.

Another limitation (which is also a candidate for future work), is that the Event Attribute visual-
ization does not contain on option to check the hand over of event attributes. Hand over denotes
the difference in event attribute values/frequencies, when a case goes from one activity, to the
next. This could be a very powerful tool which fits perfectly with our segment based analysis. We
we not able to implement this functionality successfully in our visualization (mainly due to time
limitations, not technical ones).

Additionally, we recommend a possible future extension which is useful for future practical ap-
plication. Recall the performance class discussed in Section 6.2. In this section we explained how
we extended the segment performance classes, by calculating their overall performance classes.
During this research, we calculated two additional performance classes, namely, elapsed time per-
formance classes, and remaining time performance classes. For the elapsed time performance
classes, we calculate for every class in the segment, the time between the start time of the case,
and the beginning of the segment. For the remaining time performance classes, we calculate for
every class in the segment, the time between the end time of the segment, and the end of the case.
Figure 9.1 shows an extended version of Figure 6.3, which shows where in the process, the perform-
ance classes are located. Each of the new performance classes have their own set of characteristics
and correlations. To give an example, during our research, we noted that one segment had elapsed
time performance classes which where decreasing. This meant that whether more time was spend
on the activities before the segment occurred, the less time was spent in the segment itself. These
additional performance classes hold a wealth of analysis opportunities. Possible future work could
include creating a set of performance class measures, just like we did for the segment and overall
classes.

Finally, the algorithms are currently implemented in Python, with the visualizations being separ-
ately implemented in the ProcessGold platform. Future work could include combining both into
a plugin for the widely used open-source process mining software ProM. [40].

Figure 9.1: Segment and Overall processes, extended with Elapsed time performance classes and
Remaining time performance classes
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RGVFC Threshold experiments
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APPENDIX A. RGVFC THRESHOLD EXPERIMENTS

A.1 0.1% tests

Figure A.1: 0.1% tests, BPIC 2012 Figure A.2: 0.1% tests, BPIC 2017

Figure A.3: 0.1% tests, BPIC 2018 Figure A.4: 0.1% tests, BPIC 2019

Figure A.5: 0.1% tests, PG Internal
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A.2 0.5% tests

Figure A.6: 0.5% tests, BPIC 2012 Figure A.7: 0.5% tests, BPIC 2017

Figure A.8: 0.5% tests, BPIC 2018 Figure A.9: 0.5% tests, BPIC 2019

Figure A.10: 0.5% tests, PG Internal
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A.3 1.0% tests

Figure A.11: 1.0% tests, BPIC 2012 Figure A.12: 1.0% tests, BPIC 2017

Figure A.13: 1.0% tests, BPIC 2018 Figure A.14: 1.0% tests, BPIC 2019

Figure A.15: 1.0% tests, PG Internal
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A.4 2.5% tests

Figure A.16: 2.5% tests, BPIC 2012 Figure A.17: 2.5% tests, BPIC 2017

Figure A.18: 2.5% tests, BPIC 2018 Figure A.19: 2.5% tests, BPIC 2019

Figure A.20: 2.5% tests, PG Internal
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A.5 5.0% tests

Figure A.21: 5.0% tests, BPIC 2012 Figure A.22: 5.0% tests, BPIC 2017

Figure A.23: 5.0% tests, BPIC 2018 Figure A.24: 5.0% tests, BPIC 2019

Figure A.25: 5.0% tests, PG Internal
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A.6 10.0% tests

Figure A.26: 10.0% tests, BPIC 2012 Figure A.27: 10.0% tests, BPIC 2017

Figure A.28: 10.0% tests, BPIC 2018 Figure A.29: 10.0% tests, BPIC 2019

Figure A.30: 10.0% tests, PG Internal
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A.7 25.0% tests

Figure A.31: 25.0% tests, BPIC 2012 Figure A.32: 25.0% tests, BPIC 2017

Figure A.33: 25.0% tests, BPIC 2018 Figure A.34: 25.0% tests, BPIC 2019

Figure A.35: 25.0% tests, PG Internal
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BPI Challenge 2017
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APPENDIX B. BPI CHALLENGE 2017

Figure B.1: Ranked segments, BPIC 2017 with lifecycle information
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Figure B.2: Ranked segments, BPIC 2017 without lifecycle information
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