
 Eindhoven University of Technology

MASTER

Strategies for Multi-Robot Motion Planning for Unlabeled Discs

van der Heijden, K.P.L.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/820cc2a4-450e-448a-96a4-61c7f5d15459

Strategies for Multi-Robot
Motion Planning for

Unlabeled Discs

Master Thesis

Koen van der Heijden

Department of Mathematics and Computer Science
Applied Algorithms Research Group

Supervisors:
Kevin Buchin

Irina Kostitsyna

Committee members:
Kevin Buchin

Irina Kostitsyna
Marcel Roeloffzen

Eindhoven, January 2020

Abstract

Recently, studies in multi-robot motion planning more and more often consider the unlabeled
variant of the problem. Efficient algorithms that solve the unlabeled multi-robot motion planning
problem have already been explored.

Most recently, Adler et al. considered the case of unlabeled multi-robot motion planning within
a simple polygon workspace. They show that under certain conditions, a motion schedule can be
computed efficiently. In this thesis, we investigate their algorithm experimentally and aim to
extend it in two directions.

Firstly, we consider the case of non-simple workspace polygons. We show that, if we allow
infinitely small holes, simultaneous movement of robots might be necessary.

Secondly, we aim to improve the quality of the motion schedule in terms of quality metrics
like the lengths of the paths traversed by the robots or how often they need to be activated. To
compute improved schedules, we present an alternative approach to solving the pebble motion
problem on graphs. We compare the resulting motion schedules experimentally.

Contents

1 Introduction 1
1.1 Related work . 2
1.2 Problem description . 3
1.3 Results . 3
1.4 Outline . 4

2 Preliminaries 5
2.1 Spaces . 5
2.2 Directed interference forest . 6
2.3 Motion graphs . 7
2.4 Algorithm . 7

3 Polygons with holes 9

4 Computing efficient schedules 11
4.1 Spanning trees . 11
4.2 Strategies for moving pebbles . 12

4.2.1 Purple tree . 13
4.3 Solutions without a spanning tree . 15

5 Experimental evaluation 17
5.1 Inputs . 19
5.2 Results . 23
5.3 Conclusions . 33

6 Conclusions 37
6.1 Future work . 37

Bibliography 39

Strategies for Multi-Robot Motion Planning for Unlabeled Discs iii

Chapter 1

Introduction

Motion planning is a fundamental problem in robotics that is concerned with the planning of
movements for autonomous objects in a workspace. In its most generic form, the goal of motion
planning is to find a path in a workspace for a robot from a given starting position to some
designated target position such that it does not collide with any obstacle in the workspace. There
are many variants of the motion planning problem. A natural extension of the motion planning
problem is the multi-robot motion planning problem [1]. In multi-robot motion planning, multiple
robots have to move through a common workspace without colliding with an obstacle in the
workspace or each other.

In cases where multiple robots move through a common workspace (i.e. multi-robot motion
planning), the robots are often indistinguishable and thus interchangeable [2]. This setting of
the problem is called unlabeled multi-robot motion planning (or in short, unlabeled planning).
Given a set of identical robots inside a common workspace and a set of the same size consisting
of destination positions, the goal is to find a motion plan such that every destination position is
occupied by some robot. This is in contrast with the labeled variant (see Figure 1.1) of the multi-
robot motion planning problem, in which every robot would have a designated, non-interchangeable
destination position.

It is obvious that the (multi-robot) motion planning problem is relevant in robotics. How-
ever, the problem has various other applications, such as in computer game design [3] and crowd
simulation [4]. Labeled planning has been studied for a longer time now (i.e. one of the first
occurrences was by Schwartz and Sharir in 1983), while the unlabeled version has been looked at
more recently [2].

When the number of robots is no longer constant, but rather variable, e.g. m, the problem
becomes hard. This version with a variable number of robots is already shown to be PSPACE-hard
in the relatively simple setting with m rectangular robots in a rectangular workspace [6] . The
more general (labeled) multi-robot motion planning problem is already proven to be strongly NP-
hard for disc robots (with varying radii) in a simple polygon workspace [7]. However, by adding
constraints to the setting of the multi-robot motion planning problem, more efficient algorithms
can be created, such as the algorithm described by Adler et al. [1], which we will discuss in more
detail in Chapter 2.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 1

CHAPTER 1. INTRODUCTION

S1

T2

T1

S2

(a) Unlabeled, the robot starting at S1

moves to T2 and the robot starting at S2

moves to T1

S1

T2

T1

S2

(b) labeled, the robot starting at Si has to
move to the corresponding target configur-
ation Ti

Figure 1.1: The 2 variants of multi-robot motion planning.

1.1 Related work
Schwartz and Sharir were one of the first authors to study multi-robot motion planning from the
geometric point of view in their series of papers Piano Movers’ Problem in 1983 [5], [8]. The
particular variant studied by Schwartz and Sharir was the labeled variant, which is described in
[5] as follows: Given a collection of bodies B, which may be hinged, and given a region bounded
by a collection of polyhedral or other simple walls, decide whether or not there exists a continuous
motion connecting two given positions and orientations of the whole collection of bodies. Later,
Schwartz and Sharir showed that the problem can be solved in O(n3) for the case where B contains
2 circular bodies in a 2D workspace, where n is the number of walls in the workspace. However,
the algorithm was still exponential in the number of moving bodies [8]. Later, Yap [9] managed to
create an algorithm using the retraction method, which has an improved complexity of O(n2) for
two robots and O(n3) for three robots. Several years after that, Sharir and Sifrony [10] created
an algorithm based on cell decomposition that has less constraints on the robot shapes and has a
running time of O(n2) (again for 2 robots).

Different approaches have been developed to solve the multi-robot motion planning problem.
Decoupled techniques (e.g. [1], [11]) try to partition the problem into multiple, easier to solve
sub-problems. Centralized techniques (e.g. [10], [12]), however, work in the original configuration
space, in which the number of degrees of freedom is normally higher. Therefore, the centralized
techniques tend to be less efficient than the decoupled techniques, but centralized techniques often
come with stronger guarantees [13].

Multi-robot motion planning is a continuous problem, however it can be transformed into a
discrete problem on a so-called motion graph [14]. Robots can be represented as pebbles that are
placed on the vertices of the graph. Movements of robots are done along the edges in the graph.
The labeled setting for the discrete problem on a graph is shown to be testable for feasibility in
linear time [15], and actual complete planners also show to be efficient [14], [16]. For the discrete
problem in the unlabeled setting, complete and efficient planners have already been made which
are able to generate the optimal solution [17]. While there are significant differences between the
continuous motion planning problem and the discrete version, several continuous techniques make
use of concepts from the discrete domain [1], [18].

The unlabeled setting of the problem for disc robots in a 2D polygonal workspace is solved for
different assumptions and goals [1], [19]. Adler et al. [1] showed that the unlabeled setting can be
transformed into a discrete motion planning problem on a graph. They show that if a solution
to the motion planning problem exists, then such motion plan can be generated by solving the

2 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 1. INTRODUCTION

discrete motion planning problem on the graph. Specifically, a motion along an edge in the graph
is translated to a movement of a robot in the 2D workspace. The algorithm by Adler et al.,
however, only works under the assumptions that the workspace is a single polygon, the robots are
unit discs and all source and destination positions for the robots are separated by at least 4 units.
Also, the solution for the motion planning problem given by Adler et al. is not optimized. Solovey
et al. [20] introduced an algorithm that computes a solution which minimizes the sum of lengths
of the individual paths in the motion plan. They even show that the total length of the resulting
motion plan is at most OPT +4m where OPT is the optimal solution cost, and can be computed
in O(m4 +m2n2) time [20]. However, their algorithm has one more assumption compared to the
algorithm by Adler et al., namely that the center of every robot needs to be at least separated by√
5 units from any obstacle.

1.2 Problem description

The problem that we will look at in this thesis, the multi-robot motion planning problem for
unlabeled unit disc robots, can formally be described as follows:

Definition 1. Let W be a simple workspace polygon with complexity n. Let S be a set of starting
positions of size m and let T be a set of target positions of size m. For every pair u, v ∈ S

⋃
T

such that u 6= v it holds that |u − v| ≥ 4. Determine whether a collision free motion schedule
exists in which unit disc robots from a given starting position s ∈ S towards any unoccupied target
position t ∈ T , and if such motion schedule exists, find it.

Solutions to this problem have already been studied (see [1]) and efficient algorithms for it
have been discovered. However, these algorithms are often not optimized for the quality of the
motion schedule, or they are more constrained on the input. Adler et al. [1] show an algorithm
that can verify whether a valid motion schedule exist for the problem defined in Definition 1 in
O((m + n) log n) time, and if such schedule exist, it can be computed in O(n log n +mn +m2)
time.

In this thesis, we will look at strategies to solve the given problem when some constraints are
loosened or removed. We will also try to discover strategies for improving the quality of the motion
schedule.

Research questions In this thesis, we will address the following research questions related
to the algorithms described by Adler et al. [1]: Can the algorithm be extended to the case of
workspace polygons with holes? Can the resulting motion schedule be improved by using the
motion graph differently? How does the algorithm perform experimentally?

1.3 Results

Adler et al. [1] considered the multi-robot motion planning problem for unlabeled unit-disc robots
in a simple workspace polygon. They showed that under certain conditions, a motion schedule
can be computed efficiently.

We first consider the algorithm they discussed in the case of non-simple polygons. In Chapter 3
we show if we allow infinitely small holes, simultaneous movement of robots might be necessary.
We also conjecture that if holes in the workspace polygon are not infinitely small, there is a solution
in which no simultaneous movement is necessary.

We also aim to improve the quality of the motion schedule in terms of quality metrics such as
the lengths of the paths use by the robots, or how often robots need to be activated. In Chapter 4
we discuss a way of solving the motion graph using purple trees (Lemma 1). This algorithm shows
that every robot needs to be activated at most once. Due to the robots activating only once, and
thus moving towards their destination in one direct movement, the paths covered by the robots
are also shorter on average when using purple trees.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 3

CHAPTER 1. INTRODUCTION

The different parts of the algorithm are evaluated separately in Chapter 5. We will see that it
is inefficient to compute the motion graph completely. However, we will see that the other parts
of the algorithm seem to agree with their corresponding theoretical time complexity.

1.4 Outline
In Chapter 2 the preliminaries for this thesis will be described. Chapter 3 contains a discussion
about how the algorithm performs when we drop the assumption that the workspace is a simply
polygon but rather a polygon with holes. In Chapter 4, we discuss quality metrics of the algorithm
and its output. We also discuss how the quality of the motion schedule can be improved. Chapter 5
contains an experimental evaluation of the different approaches of computing a motion schedule,
based on different input data sets. Finally, we conclude with a discussion in Chapter 6.

4 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

Chapter 2

Preliminaries

Consider the multi robot motion planning withm unit disc robots and a simple workspace polygon
W ⊂ R2 of complexity n, and consider a starting position Si and destination position Ti of these
m robots. In the unlabeled variant of multi robot motion planning, the question then is how to
move every robot from its starting position Si to its target position Ti such that no robot collides
with the workspace W or with any other robot.

This problem is given more formally in Definition 1.

2.1 Spaces
Define the spatial pose of a robot, i.e. the coordinates of a predefined anchor point of a robot and
the rotation in every euclidean plane, as its configuration. For a 2D workspace, the configuration
of a robot can thus be described by the x and y coordinates of an anchor point and the rotation
of the robot in the xy plane. For a 3D workspace, the configuration of a robot would be described
by the x, y and z coordinates and the rotation of the robot in the xy, yz and zx planes. The
configuration space of a workspace can be described as the set of all possible configurations, i.e. all
possible combinations of coordinates and angles of rotation in the workspace. Since the problem
as described in Section 1.2 considers unit disc robots in a simple 2D workspace, a configuration
can be simplified to just the x and y coordinates of a robot, where the anchor point is the center
of the robot, since any rotation of a disc around its center does not change the spatial pose of the
disc. Therefore, we can define the configuration space as C = R2.

The configuration space can now be split into two subsets: the free space and the obstacle
space. Define Dr(x) for every x ∈ R2 as the disc or radius r around x. Then, the free space
can be defined as all configuration c in the configuration space C such that D1(c) (which is the
spatial location of the robot) does not collide with the workspace W . More formally, F = {c ∈
C|D1(c)

⋂
W = D1(c)} where F is the free space, C is the configuration space and W is the

workspace. The obstacle space can be defined as the exact complement of the free space, i.e.
O = {c ∈ C|D1(c)

⋂
W 6= D1(c)} where O is the obstacle space, C is the configuration space and

W is the workspace.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 5

CHAPTER 2. PRELIMINARIES

Figure 2.1: A 2D simple polygon in the euclidean space (i.e. the configuration space). Inside the
gray workspace, the light blue area shows the free space.

2.2 Directed interference forest
The algorithm described by Adler et al. [1] considers all robots and their destinations to be well
separated. The set of starting configurations of the robots in the algorithm is called S ⊆ F and the
set of target configurations is called T ⊆ F . We define 2 configurations c1, c2 ∈ S

⋃
T to be well

separated if ||c1 − c2|| ≥ 4. The distance between two robots in the workspace at configuration c1
and c2 would then be at least 2.

The free space F can be split into different simply connected components Fi ∈ F . It is known
that a robot that is at configuration ci ∈ Fi cannot move to a configuration cj ∈ Fj if Fi 6= Fj

because there would be a configuration cx on the path from ci to cj which is not in F . Thus, such
cx would be in O, and by definition, it would then collide with the workspace W . Therefore, it is
clear that every free space component Fi ∈ F can be solved as an independent subproblem.

However, it is possible that a robot at a configuration ci ∈ Fi does interfere with another free
space component Fj . Let the disc around a configuration c, defined by D2(c), be the collision disc
of c. If a robot at configuration cj is inside of the collision disc of ci, D2(ci), then ||ci − cj || ≤ 2.
This would by definition imply that the robots at these configurations collide. Figure 2.1 shows
an example in which the robot in one free space component interferes with the another free space
component.

Such interference can be counteracted by solving specific free space components before others.
To determine in which order free space components are solved, a directed interference forest is
created. This is a directed, acyclic graph in which every vertex vi refers to a free space com-
ponent Fi. Let G be a directed interference forest. There exists an edge from vertex vi ∈ G to
vertex vj ∈ G if either there is a configuration s ∈ Fi that is in S such that D2(s)

⋂
Fj 6= ∅

(see Figure 2.1) or there is a configuration t ∈ Fj that is in T such that D2(t)
⋂
Fi 6= ∅. Then, the

free space components can be solved with respect to the topological ordering of G. This ensures
that whenever a free space component Fi is selected for solving, every other free space component
Fj that has a starting configuration interfering with Fi is already solved (i.e. the robot at that
configuration is already moved away from it) and every other free space component Fj that has
a target configuration interfering with Fi is not yet solved (i.e. the robot that will finish at that
configuration is not yet moved towards it). Adler et al. [1] also show that G is indeed an acyclic
graph if the workspace is a simple polygon.

6 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 2. PRELIMINARIES

Figure 2.2: On the left, a workspace (in gray) with the corresponding free space (in light blue)
and a set of robots at their start configurations S and target configurations T . The circle around
a robot represent its collision disc D2(c). Since the D2(S3) overlaps with the left free space
component, the interference forest on the right contains an edge from the right vertex to the left
vertex. In the vertices of the interference forest, a motion graph is shown.

2.3 Motion graphs
Solving a single free space component is done by means of a motion graph. A motion graph Gi

is an undirected graph in which vertices represent configurations c ∈ Fi in S
⋃
T . An edge from

vi ∈ Gi to vj ∈ Gi exists if there is a path from the configuration ci represented by vi to cj
represented by vj such that this path does not collide with the workspace or any collision disc of
a configuration in S

⋃
T . This means that such edge exists if a path from one configuration in

U = S
⋃
T to another configuration U exists without colliding with any D2(u) for all u ∈ U .

2.4 Algorithm by Adler et al.

Adler et al. [1] showed that a motion graph Gi can be solved by determining a spanning tree of
Gi and solving this using the pebble motion problem (described in more detail in Section 4.1).
The pebble motion problem can be visualized as having a physical copy of a graph, and putting
a pebble on every starting configuration. Then, select a leaf in the spanning tree that represents
a destination in the original problem. From there, do a breadth first search to find the closest
vertex in the tree containing a pebble, and move that pebble to the leaf. This represents a robot
moving from a configuration (where the pebble was) towards a destination. If no leaf exists in the
spanning tree that represents a destination in the original problem, select a random leaf and move
the pebble on this leaf to the closest available empty vertex. After that, remove the previously
selected leaf from the spanning tree. The movement made by the pebble is to be saved as a step
in the motion plan. When all pebbles are moved to a destination configuration, the motion plan
is done.

However, no claims are given about the efficiency of the resulting motion plan based on the
spanning tree that is used.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 7

Chapter 3

Polygons with holes

One of the preconditions of the previously described algorithm is that the workspace is a simple
polygon. This requirement ensures that the directed interference forest is indeed a directed forest
(see Lemma 3 and Lemma 4 in [1]).

Let G = (V,E) be a directed interference forest representing workspaceW and sets of start and
target configurations S and T , respectively. If W is not a simple polygon, we cannot guarantee
that E does not contain both (vi, vj) and (vj , vi) for any pair of vertices vi, vj ∈ V such that
vi 6= vj . We can also not guarantee that G does not contain an undirected cycle. Thus, we should
no longer call G a directed interference forest, but rather a directed interference graph in this case.

Figure 3.1 shows an example of a workspace polygon W containing multiple holes. The cor-
responding interference graph (N.B.: This is no longer a forest) is also given.

We can see that the algorithm can no longer determine an ordering in which the free space
components can be solved, because there is no topological ordering possible in this graph. There is
no valid root in the directed interference graph (i.e. every vertex has at least one incoming edge).
However, the algorithm could be extended in such way that this example is still solvable. Let
Fi, Fj ∈ F be two distinct free space components such that the corresponding vertices Gi, Gj ∈ G
are connected by an edge (Gi, Gj). Then there is either a starting configuration s ∈ Fi such that
D2(s)

⋂
Fj 6= ∅ or a target configuration t ∈ Fj such that D2(t)

⋂
Fi 6= ∅.

For the former case, let c ∈ Fi be a configuration which such that there exists a path πsc from s
to c. If for every configuration p ∈ πsc, D2(p) does not overlap with any other free space component
Fk ∈ F \ (Fi

⋃
Fj), then the robot that is initially at s can freely move to c without interfering

with another free space component. For the latter case, a configuration c can be determined in
the same way.

G1 G2

G3

G1

G2

G3

Figure 3.1: A polygon with 3 holes and its corresponding directed interference graph containing
directed cycles. Starting configurations are shown in green and target configurations are shown in
purple.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 9

CHAPTER 3. POLYGONS WITH HOLES

Figure 3.2: A workspace polygon with an infinitely small hole. The free space components are
shown with a blue outline. Starting and target configurations for the robots are given using a
green and purple outline, respectively.

In Figure 3.1, such configuration is given for every interfering configuration using a orange
dashed circle. We can solve this example by replacing every starting or target configuration
u ∈ S

⋃
T with its corresponding non-interfering configuration u∗. We know that there is a path

between u and u∗ which does not interfere with other free space components. Thus, to solve the
example, we first have to move every robot from the starting configuration s ∈ S to its non-
interfering counterpart s∗. Then we can solve the adapted version of the original problem in
which every starting configuration s ∈ S is replaced with s∗ and every target configuration t ∈ T
is replace with t∗. Finally, we have to move every robot at its adapted target configuration t∗ to
the actual target configuration t ∈ T .

Point holes However, there are cases in which there is no configuration c ∈ Fi for some Fi ∈ F
such that D2(c)

⋂
Fj 6= ∅ for some Fj ∈ F , Fi 6= Fj . Figure 3.2 shows such case, containing

two free space components, shown using a blue outline. For every configuration c in the bottom
free space component Fbottom it holds that D2(c)

⋂
Ftop 6= ∅. This example is even stricter: For

any c ∈ Fbottom it holds that |Ftop \D2(c)| > 1, i.e. F ∗top is always split into multiple connected
components by a robot at any configuration c ∈ Fbottom.

Thus, there is no configuration c in either free space component such that the cycle in the inter-
ference graph is removed for the example given in Figure 3.2. In fact, this example is not solvable
by the presented algorithm. The only way for the robot in the top free space component to move
from its starting configuration to its target configuration is by crossing the robot in the bottom
free space configuration. However, to cross the robot in the bottom free space configuration, both
robots have to rotate around the zero-width hole simultaneously. N.B.: Simultaneous movement
cannot be represented in a motion schedule, not even by adding intermediate configurations.

Conjecture However, let us point out that, if the size of the hole in the given example would
not be arbitrary small, then it should be possible for a robot to move an amount proportional to
the size of the hole if there would be a robot on the other side of the hole. Thus, if a hole is not
arbitrary small, the solution of the problem would be described using a motion schedule (in which
no simultaneous movement takes place). Therefore, we conjecture that the algorithm is adaptable
such that it can solve cases containing holes with a size that is not arbitrary small.

10 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

Chapter 4

Computing efficient schedules

As previously described in Chapter 2, solving a motion graph can be done using a pebble game.
A pebble game is a mathematical game in which “pebbles” are moved in a graph. There are many
different types of pebble games. In the variant that we are looking at, pebbles can only be moved
to neighbouring nodes. At any point during a pebble game, every node should have at most one
pebble on it.

To use a pebble game to solve a motion graph, every robot is represented by a pebble. Initially,
every node in the motion graph that represents a starting configuration should contain a pebble.
The target is to move all pebbles to a node in the motion graph representing a target configuration.

A large part of solving the pebble game is about selecting which node can be processed. This
can be done using a spanning tree. Solving the pebble game using a spanning tree is done by
selecting a leaf and processing that, after which it can be removed (i.e. it will no longer be used in
the next steps). The node that is selected for processing should not invalidate the motion graph
(i.e. disconnect the motion graph such that the disconnected components can no longer be solved).

Determining how efficient a given motion schedule is is done based on different criteria. Effi-
ciency can mean multiple things: efficiency of the algorithm itself (i.e. time complexity or space
complexity), or quality of the resulting motion schedule (i.e. size of the motion schedule, sum of
the length of the paths in the motion schedule, etc.).

4.1 Spanning trees
Generating spanning trees can be done in different ways. A minimum spanning tree, a spanning
tree in which the edge weight is minimised, can be computed by using e.g. Kruskal’s algorithm [21]
or Prim’s algorithm [22].

The definition of a minimum spanning tree is based on the edge weight. Different values as
edge weight in a motion graph can be used, e.g. Euclidean distance, shortest path length in the
free space component, or even a constant distance (i.e. an arbitrary spanning tree). Schedules can
differ based on the edge weight chosen to generate the spanning tree, since different edges from
the motion graph are used to create such spanning tree.

Adler et al. [1] do not actually compute a full motion graph, but rather compute a part of the
motion graph. Figure 4.1 shows how the part of the motion graph is created using their method.
Note that they do not create a spanning tree, but rather a sparse motion graph. However, to
determine the effect of different edge weights, we choose to compute the full motion graph so no
edges are left out when determining the minimum spanning tree.

The (minimum) spanning trees are used to compute efficient paths between different configur-
ations. Since a spanning tree is connected, every vertex in it is reachable from every other vertex.
The result of removing a leaf from a spanning tree is still a spanning tree. Therefore, selecting
leafs from a minimum spanning tree to process alters the spanning tree in such way that it remains
solvable by the algorithm.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 11

CHAPTER 4. COMPUTING EFFICIENT SCHEDULES

Figure 4.1: An example of how a free space component would be transformed into the relevant
part of a motion graph using the method described by Adler et al. [1]. The boundary positions
of F 3 consist of B3 = {s2, t1, t2, t4}, while the hole positions consist of H3 = {s3, s4}. For every
x ∈ H3 a ray is shot upwards to determine its boundary representative β3(x). If a boundary
representative β3(x) lies on the boundary of F 3, it is connected as if x was positioned at β3(x).
If a boundary representative lies on the boundary of another D2(y) for some y ∈ S

⋃
T , then an

edge between x and y is added to the motion graph.

4.2 Strategies for moving pebbles

The strategy to solve the pebble game described by Adler et al. [1] finds a leaf, which preferably
represents a target configuration. If such vertex exists, the closest pebble can be moved towards
it, and that leaf can be removed from the spanning tree since the pebble on that leaf will never
have to move away from it.

If such vertex does not exist, an arbitrary leaf (which will thus represent a start configuration)
will be selected. If this leaf contains no pebble, it can be removed from the spanning tree since
no pebble will ever have to move past it to go to a target configuration. If this leaf does contain
a pebble, the algorithm finds the closest empty node in the spanning tree and moves all pebbles
on the path to that node one step towards it, and the leaf can then be removed (since it now is
an empty starting configuration).

This algorithm creates a motion schedule which makes robots move multiple times. Figure 4.2
shows an example in which the pebble which is initially placed on S5 moves forward and backward
up to O(n) times before being placed on its target position. Let Bi be the branch of the tree
which initially has Si as leaf. Let S1 be the leaf selected for processing (note that there are no
blue leaves). The closest blue node would be in branch B4. This can be done three times (i.e. by
selecting the leaf from B1) before two possible closest empty nodes are available. The fourth time
a leaf l from B1 is selected, the distance between l is ||l − Si||+ 4

In the worst case, the fourth time we select a leaf from branch B1, the closest empty node
that is found is thus in branch B2. This would move the pebble which was initially at Sj towards
Sk. Note that at this point, the distance from Sl to the closest empty node in B2 is 2, while the
distance from Sl to the closest empty node in B4 is 7. Thus, we can select a leaf from B3 and
process it 5 times before we get another pair of nodes which are tied closest.

Again, in the worst case, the next time we select a leaf from branch B3, the closest empty that
is found is in branch B4. This would push the pebble which started at Sj , which was currently at
Sk, back to Sj . At this point, the distance from the Si to the closest node in B4 is 5, while the

12 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 4. COMPUTING EFFICIENT SCHEDULES

distance from Si to the closest node in B2 is 10.
Using this method, every time after the first time we switch from selecting a leaf from branch

B1 to selecting a leaf from branch B3 or vice versa, the difference between the distance of the
closest in branch B2 and branch B4 is 5. This implies that a total of 6 nodes have to be selected
to get a new pair of tied closest nodes. In the worst case scenario, every time such node is found,
the pebble starting at Sj is moved one place. However, the direction of this push is swapped every
time this occurs. Therefor, the pebble starting at Sj will, in the worst case, move O(n) times,
while it could be placed only a constant distance away from its initial position. Thus, it might
be significantly more efficient to determine a movement schedule in which only start and target
configurations are linked, without any intermediate movements.

S1 S3

S2

S4

SjSi Sk Sl

Figure 4.2: A motion graph, in which start configurations are colored red and target configurations
are colored blue. The dashed lines between two vertices of the same color represent an arbitrary
amount of vertices of the same color between them. Since an arbitrary red leaf is selected when
solving a motion graph, there are cases in which the pebble at Sj or at Sk moves forward and
backwards up to O(n) times before being placed on its final position.

4.2.1 Purple tree

When selecting a leaf from the spanning tree which represents a target configuration, the closest
pebble moves towards it before removing the leaf from the spanning tree. This implies it is the last
move a pebble makes before being removed from the spanning tree. Also, when a leaf representing
a starting configuration is selected which does not longer have a pebble it is removed without
moving any pebble. Thus, if all leafs that are ever selected either represent target configurations
or represent starting configurations which no longer have a pebble, every move of a pebble will be
its last (and thus only) move. To formally use this property, we will first define a purple tree as
follows:

Definition 2 (Purple tree). A purple tree T = (V,E) is a colored tree in which every vertex v ∈ V
is colored blue, red or purple, and the number of blue vertices is equal to the number of red vertices.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 13

CHAPTER 4. COMPUTING EFFICIENT SCHEDULES

The spanning tree has four different types of nodes: one type represents a target configuration
and has a pebble, one type represents a target configuration and has no pebble, one type represents
a starting configuration and has a pebble and the last one represents a starting configuration and
has no pebble. Then, we know that initially the tree has only starting configurations with pebbles
and target configurations without pebble. Let the color of a starting configuration containing a
pebble be red, and the color of a target configuration not containing a pebble blue. Both other
types of configurations are represented by purple vertices. Then, initially the spanning tree is a
purple tree with 0 purple vertices.

If the spanning tree has a blue leaf n, select it for processing. During processing, the closest
pebble in the spanning tree can be moved to n [1]. After moving that pebble, n is a blue leaf
containing a pebble. However, there is another red node somewhere in the spanning tree containing
no pebble now. Since the blue leaf can be removed from the spanning tree (as it is processed),
the spanning tree now has one more red leaf compared to the amount of blue leafs. To counteract
this, the red node containing no pebble can be colored purple.

If the spanning tree has no blue leafs, but it has a purple leaf n, leaf n can just be removed
from the spanning tree. Since leaf n is purple, the remaining spanning tree is still a purple tree
according to Definition 2.

If the spanning tree has neither blue leafs nor purple leafs, Lemma 1 can be used to split the
purple tree into two smaller purple trees.

Lemma 1. A purple tree T = (V,E) with only red-colored leafs contains an edge e ∈ E such that
(V,E \ e) has 2 connected components, which are both purple trees.

Proof. Let T = (V,E) be a purple tree with only red leafs and a red root r. Note that r can also
be a leaf. Define the value of a vertex v ∈ V as the number of red vertices minus the number of
blue vertices in the sub tree with root v.

Let C = children(r) be the set of children of w. We know that value(r) = 0, since T is a
purple tree. Since color(r) = red, we know that

∑
c∈C value(c) = −1. This implies that there

exists at least one c ∈ C with value(c) < 0 and c can be any color, i.e. red, blue or purple.
Let w ∈ V be an arbitrary vertex with value(w) < 0. Let C = children(w) be the set of

children of w. Then, if w is a blue vertex,
∑

c∈C value(c) ≤ 0. This implies that either all c ∈ C
have value(c) = 0 or there exists at least one c ∈ C with value(c) < 0. If w is a red vertex,
then

∑
c∈C value(c) < −1, which also implies

∑
c∈C value(c) < 0. If w is a purple vertex, then

value(w) =
∑

c∈C value(c) which implies
∑

c∈C value(c) < 0.
We now know that there must be some c ∈ children(r) such that value(c) < 0, and that for

every v ∈ V with value(v) < 0 there exists some c ∈ children(v) with either value(c) = 0 or
value(c) < 0. Since, by definition all leafs l ∈ V are colored red, we know that value(l) = 1.
Therefor, we know that there must be a sub tree with root s ∈ V with value(s) = 0 in T .

We can then remove (parent(s), s) ∈ E from T , resulting in 2 connected components. Let
S = (Vs, Es) be the sub tree of T with root s. Then we know that S is a purple tree, since
value(s) = 0. Let m be the number of blue vertices in Vs. Then the number of red vertices in Vs is
by definition also m. Let n be the number of blue vertices in V . Then the number of red vertices
in V is by definition also n. Let R = (V \ Vs, E \ {Es ∪ (parent(s), s)}. Then the number of blue
vertices in V \ Vs is n−m and the number of red vertices in V \ Vs is also n−m. Therefore, R is
also a purple tree.

Figure 4.3 shows an example of a purple tree which has only red leaves and a red root. The
edges which can be removed according to Lemma 1 such that the resulting trees are also purple
trees.

Using Lemma 1, any purple tree with only read leafs can be split into two purple trees. It is
possible that the resulting purple trees still do not have a blue leaf of course. However, then the
purple tree can split into two smaller purple trees again. At some point, such purple tree contains
only two leafs and by definition of a purple tree, it then contains exactly one red and one blue
leaf. Thus, the smallest possible purple tree by definition has a blue leaf. Lemma 4.2.1 directly
translates into an algorithm to solve the pebble motion problem.

14 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 4. COMPUTING EFFICIENT SCHEDULES

11

1

1 1

00

0 −1

−1

−1

0

−1

11

1

0

Figure 4.3: A purple tree with 8 red nodes, 8 blue nodes and 1 purple node. The edges which can
be removed from the purple tree such that the resulting components are still purple trees are cut
with a green line. The corresponding value of every node is also shown.

When applying this algorithm to the example in Figure 4.2, the first step would be to cut either
S2 or S4 and its connected blue node from the rest of the tree. After this, one of the resulting
trees contains two nodes, i.e S2 or S4 and its corresponding blue node. The other tree now also
has a blue leaf, and can thus be solved by moving the closest pebble towards it.

4.3 Solutions without a spanning tree
Another option to solve the motion graph could not use a spanning tree. However, selecting the
correct node to process in the motion graph is significantly harder than selecting a node from the
spanning tree. The nice property of a leaf in a tree is that it will never disconnect the tree when
removed. Though, there is a good chance that a motion graph does not have any leafs.

It is possible to select a node n ∈ G such that G disconnects into more connected components.
Though, this is only allowed when every connected component is still solvable (i.e. there are as
many pebbles as target configurations in it). Thus, it is significantly easier to ensure no multiple
connected components appear. This means that the selected node n should preferably not be a
bridge. A bridge is a node n ∈ G, where G is a connected graph, such that G\n is still a connected
graph.

For future work, a possible way to go would be finding an algorithm that is able to select
either a node n ∈ G such that n is not a bridge, or find a node n ∈ G such that every connected
component in G \ n is still solvable. The former solution looks easier to solve, however, the latter
solution might be more efficient.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 15

Chapter 5

Experimental evaluation

In this chapter, we present an experimental evalution of the algorithms discussed in this thesis.
The goal for these experiments is to find out how the algorithm performs on inputs of different
sizes and shapes. We perform experiments to test the scalability of the algorithm, and the quality
of its output.

To determine how well the algorithm scales, the running times of different parts of the algorithm
are compared for a variable number of points in the input workspace and a variable number of
robots. To properly test the effects of the workspace complexity and the number of robots on the
algorithm, these amounts are varied independently (i.e. one is kept constant, while the other is
variable).

Quality metrics The quality of the output of the algorithm can be described in different ways.
The quality metrics we are looking at here are:

• The sum of the lengths of the paths of all robots according to the motion schedule. This
provides an easy way to quantify how well the motion was planned.

• The total number of times a robot has to be activated (i.e. has to start moving). This metric
is useful for cases where activating a robot would impose some sort of cost.

The algorithm consists of multiple components, which are all evaluated separately. First, the
workspace is converted into the set of free space components. The free space is not necessarily a
single component (see for example Figure 2.1). When a corridor in the workspace is smaller than
the diameter of a robot, robots can not move through it, thus disconnecting the components at both
sides of the corridor. Generating the free space components is done using the approximated inset
algorithm provided by CGAL [23]. The next step is to transform every free space component into
a corresponding motion graph. Then, the motion graphs are connected in a directed interference
forest. Finally, the motion graphs are solved independently according to a topological ordering of
the interference forest.

Edge weights for the motion graph The scalability tests are performed to determine the
quality of the algorithm and the implementation. The output quality tests are performed to
determine the quality of the algorithm. Specifically, different ways of solving the motion graph are
compared. All versions make use of a spanning tree, but generating the spanning tree is done using
different parameters. The spanning trees are generated using Kruskal’s algorithm [21]. However,
there are different ways of determining the edge weights, which change the resulting (minimum)
spanning tree. The compared edge weights used are:

Constant. A constant edge weight is used to generate an arbitrary spanning tree. Computing a
constant edge weight takes no time.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 17

CHAPTER 5. EXPERIMENTAL EVALUATION

Euclidean distance. A Euclidean edge weight is relatively easy to compute (only constant time per
edge). However, the results will most likely neither be optimal time-wise, nor in terms of
the quality of the output. Though, Euclidean edge weights might be a good compromise.

Geodesic distance. Computing the geodesic distance takes relatively long. However, the resulting
edge weight actually corresponds to the length of the path a robot has to move along.

Computing the geodesic edge weight is done using Dijkstra’s shortest path algorithm on a
triangulation of the free space components. The size of the triangulation scales linearly with
the complexity of the workspace polygon, and also linearly with the number of robots. The
time complexity of Dijkstra’s algorithm is O(V log(V)), where V is the number of vertices in the
triangulation. To compute all edge weights, Dijkstra’s algorithm is ran for every vertex in the
motion graph (note that Dijkstra’s algorithm computes the shortest paths to all nodes starting
from a single source node). This implies that the time complexity of computing all geodesic edge
weights is O(m · (m+ n) log (m+ n)).

Adler et al. [1] used an arbitrary spanning tree to solve the motion planning problem. Therefor,
we decided to keep the arbitrary spanning tree (i.e. minimum spanning tree with constant edge
weight) as reference in our comparison. For efficiency reasons instead of using the Euclidean
distance, we will use the squared Euclidean distance. The minimum spanning trees for these
distances are the same, but the squared Euclidean distance avoids computing square roots. We
expect that the (squared) Euclidean distance will on average perform better then constant edge
weights. The geodesic distance edge weight should perform significantly better than the other
edge weights, however we expect the cost of computing the geodesic distance between every pair
of configurations to be very high.

Also, note that, in the worst case, a single motion graph for any given data set can be a complete
graph. This means that the number of edges in the motion graph can go up to |E| = |V |·(|V |−1)

2
where |V | is the number of vertices in the graph. This implies |E| = O(|V |2) for complete motion
graphs. Note that the number of vertices in the motion graph is equal to 2 ·m = O(m), where m
is the number of robots in the data set. Thus, the number of edges for which the weight has to
be computed can go up to O(m2).

Solving the motion graph We also evaluate the algorithm described in Chapter 4, which
made use of purple trees (Definition 2), as opposed to the algorithm to solve the motion graph as
described by Adler et al. [1].

These different version of the algorithm will most likely show significant differences in running
time and output quality. We expect that the algorithm based on purple trees will provide a higher
output quality at the cost of higher running time. However, we hope that the increase of running
time will be relatively small to the output quality improves significantly.

Size of the interference forest We are also interested in the effect of the size of the inter-
ference forest on the running time of the algorithm. One can think of different cases in which
the interference forest would contain one singular motion graph, or many smaller motion graphs,
based on the width of some corridor in the workspace. We expect many smaller motion graphs
(and thus a bigger interference forest) to be easier to solve due to the worse than linear complexity
of the algorithm.

Specification All described tests are performed on an HP EliteBook 8560w with an Intel
Core i7-2670QM processor. For geometric functions in the algorithm, the CGAL library (ver-
sion 4.14.3 [24]) is used. For graph functions, the Boost Graph Library (version 1.65.1 [25]) is
used.

18 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

5.1 Inputs
In this section we will look at the different experimental settings that were used to evaluate the
algorithm and the implementation. Every data set is discussed, as well as its purpose and expected
results.

Random workspace polygon To evaluate the effect of the number of robots in the input on
the running time of the implementation, we look at a random polygon consisting of 1000 points (i.e.
n = 1000). We generated 1000 random points inside a square using a point generator provided by
Castro et al. [26]. These 1000 points are then used to construct a simple polygon using a function
also provided by Castro et al. [26]. We ensured that the free space corresponding to this polygon
consisted of a single component, such that comparing different data sets is easier.

The generated polygon is kept unaltered between tests while varying the number of robots.
This ensures that an arbitrary feature that this polygon may have (i.e. a single versus multiple
corresponding free space components) does not influence the test results.

The number of robots is varied between the values m = {1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100}.
These values are chosen to give a decent view of the scalability of the program with respect to the
number of robots in the input.

Square workspace polygon with robots in a grid Since a random polygon can still have
features which bias certain parts of the algorithm or different edge weights, we will also look at
varying the number of robots inside a square workspace polygon, such that the robots and their
target configurations are ordered in a grid. It is clear that specific parts of the algorithm will be
very efficient as n is very low (i.e. generating the free space components, which does not depend
on m).

Due to the separation distance being at least 4, a path between any pair of configurations
ui, uj ∈ S

⋃
T exists. This implies that the motion graph will be relatively large, even though

there will be only one single motion graph. We look at the differences between the results seen in
this paragraph compared to the results that were seen in Section 5.1

To compute the length of the sides of the square workspace polygon, we computed the square
root of two times the number of robots, rounded up. Figure 5.1 shows an example in which two
times the number of robots (2·50 = 100) has a nice square root. However, when this is not the case
(e.g. 100 robots, thus 2 · 100 = 200), the grid containing start and target configurations will have
some empty spaces (see for example Figure 5.2). These empty spaces are located in the middle of
the workspace, between the set of starting configurations and the set of target configurations.

Figure 5.1: A grid setting with 50 start and target configuration (thus, a total of 100 configura-
tions). With a separation distance of 4 units in mind, these configurations all fit in a square with
sides of 40 units long.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 19

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.2: A grid setting with 100 start and target configuration (thus, a total of 200 configura-
tions). With a separation distance of 4 units in mind, these configurations all fit in a square with
sides of 60 units long.

Workspace polygon containing zig-zags To determine the effect of the complexity of the
workspace polygon on the scalability of the algorithm, we consider a polygon with a fixed number
of robots. The robots are again positioned like the robots in the grid (i.e. the starting config-
urations are at one side of the workspace, and the target configurations are at the other side of
the workspace). However, as visible in Figure 5.3, the start and target configurations are now
separated by a number of zig-zags in the workspace polygons.

If we define one zig-zag to be one cove on both sides of the workspace polygon, and one such
cove consists of 3 points, then the complexity of the workspace can be defined as n = 6 ·z+6 (mind
the 6 workspace points that are not part of a cove), where z is the number of zigzags. The number
of zigzags is varied between the values z = {4, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99}. This means that
the workspace complexity is varied between n = {30, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600}.

This setting is used to determine the scalability of the algorithm with respect to the complexity
of the workspace polygon. We expect to see this effect specifically on generating the free space
components.

Figure 5.3: A zig-zag setting with 100 start and target configurations, which contains 4 zig-zags.
The workspace complexity n is thus 6 · 4 + 6 = 30.

20 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

Comb-shaped workspace polygon As previously mentioned, there are multiple ways of de-
termining the spanning tree used to solve the motion graph. The setting given in Figure 5.4 is
used to show the worst case effect of choosing a bad edge weight (and thus a bad spanning tree).

Assume the following setting: Let h be the height of a tooth of the comb (i.e. from the top
of the comb to the bottom of the tooth). Let e be the distance between two teeth of the comb.
Let w be the width of a tooth, which is equal to the height of the base. The value of w should be
at least 6 units, so every robot can pass another robot independently of the position of the other
robot relative to the workspace. If w would be smaller than 6 units, since the diameter of a robot
is 2 units, then (w − 2)/2 < 2. This means that a robot could position itself in the middle of a
corridor such that no robot would be able to pass it. Finally, let h be significantly larger than e
(such that w + e < h holds).

We can now look at the different minimum spanning trees created according to the different
edge weights described in Chapter 5. The constant edge weight would still give us an arbitrary
spanning tree, on which we cannot base the results too much. The Euclidean edge weight will give
us a minimum spanning tree in which all configurations in the bottom of the teeth of the comb are
connected. Note that w+ e < h implies that the Euclidean distance between these configurations
in smaller than the Euclidean distance between two vertically aligned configurations. Also note
that these edges are in the motion graph because there exists a path between those configurations
since w ≥ 6. The two connected components containing configurations that are created this way
are finally connected by one single edge of length h − w. This results in a long detour for every
robot, as they have to move along this single path connecting the start and target configurations.
We will see that this is also a problem for the squared Euclidean edge weight, since (w+ e)2 < h2

also holds because w, e and h are all positive numbers.
Finally, the geodesic edge weight will give us a minimum spanning tree that correctly identifies

the comb structure and the edge weights between two configurations inside the teeth. This results
in a minimum spanning tree in which every pair of start and target configuration which is vertically
aligned (see Figure 5.4) is connected. All configurations in the base of the comb will also be
connected pairwise to form a single minimum spanning tree.

Figure 5.4: A comb setting with 10 teeth, and thus 10 starting and target configurations. Both
the workspace complexity and the number of robots scale with the number of teeth the comb has.

The number of teeth in different tests is varied between t = {1, 2, 3, 5, 8, 10, 20, 30, 50, 80, 100}.
The complexity of the workspace is n = 4 · t and the number of robots m is equal to t in this
setting.

Corridor-shaped workspace polygon with small windows Finally, the last experimental
setting is used to determine the effect of one large motion graph versus many small motion graphs
on the running time of the algorithm. To test this, we look at the setting described in Figure 5.5.

Here, the polygon is shaped like a rectangle in which robots cannot pass each other (i.e. the
width of the polygon is smaller than 4). At certain points, after a number of starting configurations
followed by the same number of target configuration, a small window is placed in the workspace
polygon. Two different versions of the workspace polygon are considered, namely one version in
which the robots can pass through the windows and one version in which the robots cannot pass
through the windows. When robots are not able to pass through the windows, multiple smaller
free space components will be generated in the first step of the algorithm. When robots are able
to pass through the windows, a single bigger free space component will be generated.

We generated the corridor workspace by starting at one end of the corridor. Here we placed mi

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 21

CHAPTER 5. EXPERIMENTAL EVALUATION

starting configuration in a line, followed by mi target configurations in a line. These configuration
are all separated by 4 units. Then, a window is introduced in the workspace polygon (as visible in
Figure 5.5). This process can then be repeated for mi+1, starting from the previously introduced
window. We generated this data set for mi ∈ {2, 5, 9, 10, 4, 3, 7}. This means that the complexity
of the workspace polygon is n = 40, and the number of robots is m = 40. This experiment was
done using only this data set.

We expect to see the algorithm performing better when the free space consists of multiple
components. Since the workspace complexity does not differ between the two versions of this
setting, generating the free space components should be equivalent for both cases in terms of
efficiency. However, the resulting free space consists of one component when the robots can move
through the windows, while the free space consists of multiple components when the windows are
too small. When the free space is split into multiple components like this, the complexity of every
free space component is smaller. We suspect the running time of the algorithm to be worse than
linear in the complexity of the free space components. Thus, we expect that running the algorithm
on one free space component with a complexity of f is less efficient than running the algorithm
on multiple free space components with a summed complexity f in most cases.

The test case used here is one long corridor containing small windows. When these windows
are less than 2 units wide, robots can no longer pass through them. In the case of one long
corridor, this will result in multiple motion graphs. These motion graphs will be connected in
one line in the interference forest. However, this example could also be made with corners and
junctions such that the interference forest would be a tree in which some nodes have more than
1 child node. Generating examples for such case would be harder, and solving the interference
forest would be equally fast. This is due to the number of vertices and edges in the interference
forest not changing. A handmade example of such setting is shown in Figure 5.6.

Figure 5.5: One end of a small corridor in which robots cannot move alongside each other. A few
small windows are introduced in the workspace polygon. In this case, these windows are just too
small for a robot to move through (e.g. 1.8 units wide). Another case would contain windows
which are just big enough for robots to move through (e.g. 2.2 units wide). Note that since robots
cannot move alongside each other, there is only one way to solve this setting, independent of the
size of the windows.

22 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

G0

G1 G2 G3

G4 G5 G6 G7
G0

G1

G2 G3

G4

G5

G6

G7

Figure 5.6: A floorplan-like setting where robots can not move from one room to another. The
corresponding interference forest is given on the right. This example can be modified such that
all doors are “open”, and robots can actually move between rooms. In this case, the interference
forest would contain one single motion graph.

5.2 Results
This section contains the results of the conducted tests on all test cases. For every test case, the
interesting results will be shown and explained.

Random workspace polygon The time complexity for generating the free space components
only depends on the size and the shape of the workspace polygon. Therefore, there is no relation
between the number of robots and the time it takes to generate the free space components.

Figure 5.7 shows us the time it takes to generate all motion graphs and combine them into a
directed interference forest. The time complexity of this part of the algorithm looks to be worse
than linear with respect to the number of robots. Also, note that the absolute time in seconds
used by this part of the algorithm is significant compared to other parts of the algorithm.

20 40 60 80 100
of robots

0

25

50

75

100

125

150

175

Ti
m

e
[s

]

Figure 5.7: Time needed in seconds to generate all motion graphs and the directed interference
forest in the random workspace polygon data set.

As expected, Figure 5.8a shows us that computing geodesic edge weights scales significantly
worse than all the other methods of computing edge weights with respect to the number of robots.
The complexity of computing all geodesic edge weights is, as previously discussed, O(m · (m +
n) log (m+ n)) which can be simplified to O(m2 logm) since n is constant. However, it is hard

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 23

CHAPTER 5. EXPERIMENTAL EVALUATION

to see the time complexity of computing the constant and Euclidean edge weights. According to
Figure 5.8b it looks like both the constant and Euclidean edge weights can be computed in O(m2)
time, albeit with a different constant factor. This can be explained by the fact that the number
of edges in the motion graph is |E| = O(|V |2) and the number of vertices is |V | = O(m).

20 40 60 80 100
of robots

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
[s

]

Constant
Euclidean
Geodesic

(a)

20 40 60 80 100
of robots

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Ti
m

e
[s

]

Constant
Euclidean

(b)

Figure 5.8: Time needed in seconds to compute the weights for all edges in every motion graph in
the random workspace polygon data set.

However, Figure 5.9 shows us that choosing more sophisticated edge weights gives better run-
ning times for solving the motion graphs with respect to the number of robots. The running times
of the part of the algorithm concerned with computing the edge weights are, however, more signi-
ficant than the running times of this part of the algorithm. Thus, the combination of the running
time needed to compute the edge weight with the running time needed to solve the interference
forest still scales better for less sophisticated edge weight functions. Also note that the algorithm
using the purple tree performs, in terms of scalability with respect to the number of robots, as
good as the original algorithm.

20 40 60 80 100
of robots

0.0

0.2

0.4

0.6

0.8

Ti
m

e
[s

]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.9: Time needed in seconds to solve every motion graph in topological ordering of the
directed interference forest in the random workspace polygon data set.

In Figure 5.10, we can see that a significant part of the scalability of the implementation is
influenced by the part which is concerned with generating the interference forest. Due to there
only being one motion graph in this setting, and the interference forest is thus small, we can expect
that generating the motion graph is the bottleneck in the scalability of the implementation.

Figure 5.11 shows a global trend in the sum of the distance covered by each robot for the
different algorithms and edge weights. We can see that constant edge weights perform worse

24 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

than an Euclidean edge weight function. Furthermore, the geodesic edge weight function performs
better than its Euclidean counterpart.

The pebble motion algorithm as described by Adler et al. [1] produces a path along all con-
figurations through which a pebble moves. Thus, the total distance covered by this algorithm is
the sum of the distances of every segment on the path. Since this is not the shortest path, unless
every starting configuration is directly connected to its corresponding target configuration in the
spanning tree, the algorithm that uses purple trees to solve the motion graphs will report shorter
total distances. Thus, the average distance covered per robot will also be smaller when using the
algorithm that uses purple trees.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 25

CHAPTER 5. EXPERIMENTAL EVALUATION

20 40 60 80 100
of robots

0

25

50

75

100

125

150

175

200

Ti
m

e
[s

]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.10: Time needed in seconds to run the complete algorithm on the random workspace
polygon data set.

20 40 60 80 100
of robots

0

10000

20000

30000

40000

50000

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.11: The average distance covered in units per robot in the random workspace polygon
data set.

Square workspace polygon with robots in a grid The square workspace polygon with
robots in a grid setting is used to show the relation between the number of robots and the time-
complexity of the algorithm and the implementation. This data set has a workspace polygon which
only consists of 4 points.

As previously mentioned, the time complexity of generating the free space components only
depends on the complexity of the workspace polygon. Therefore, there is again no relation between
the different data sets in this setting and the time it takes to generate the free space components.

Figure 5.12 shows the time it takes to generate all motion graphs, and connect them in a
directed interference forest. Here, we can see a non-linear relation between the number of robots
and the time it takes to generate the interference forest. This relation was not visible in the
previous data set, because the size of the workspace polygon, which was significantly larger in the
previous data set, influences the time it takes to generate the interference forest.

Figure 5.13 and Figure 5.14 show results that are comparable with the previous data set.
The time complexity seems to scale in the same way as was the case with the random polygon.
However, the rate with which they scale differ. This is due to a different complexity of the
workspace polygon.

26 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

20 40 60 80 100
of robots

0

2

4

6

8

10

12

14

16

Ti
m

e
[s

]

Figure 5.12: Time needed in seconds to generate all motion graphs and the directed interference
forest in the grid data set.

20 40 60 80 100
of robots

0.00

0.02

0.04

0.06

0.08

Ti
m

e
[s

]

Constant
Euclidean
Geodesic

20 40 60 80 100
of robots

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Ti
m

e
[s

]

Constant
Euclidean

Figure 5.13: Time needed in seconds to compute the weight for all edges in every motion graph
in the grid data set.

20 40 60 80 100
of robots

0.0

0.2

0.4

0.6

0.8

Ti
m

e
[s

]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.14: Time needed in seconds to solve every motion graph in topological ordering of the
directed interference forest in the grid data set.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 27

CHAPTER 5. EXPERIMENTAL EVALUATION

In Figure 5.15, we can see that the quality of the output schedule is the worse when using a
geodesic or Euclidean edge weight function (note that geodesic distance inside a square polygon is
equal to the Euclidean distance). This can be explained by reasoning on the set of start and target
configurations. Due to the grid formation of all configurations, there are only a few locations on
the grid where a starting configuration is positioned next to a target configuration. Moreover,
there are cases in which there is no position in which a starting and a target configuration are
located next to each other. Such example can be seen in Figure 5.2.

This example shows how the geodesic and Euclidean edge weight would ensure that the min-
imum spanning tree contains only one edge that connects a starting configuration with a target
configuration. Though, when using constant edge weight, random edges are selected to be put in
the minimum spanning tree. Thus, it is very likely that more than 1 edge exists which connects a
starting configuration with a target configuration.

20 40 60 80 100
of robots

0

20

40

60

80

100

120

140

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.15: The average distance covered in units per robot in the grid data set.

Workspace polygon containing zig-zags This data set is used to show the relation between
the number of points in the workspace polygon and the complexity of the algorithm and the
implementation, while the number of robots is kept constant.

According to Adler et al. [1], the free space components can be computed in O(n log n) time.
In Figure 5.16, we can see the time it took to generate the free space components. The scaling
that we see in this figure is indeed a bit worse than linear.

100 200 300 400 500 600
of workspace points

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
[s

]

Figure 5.16: Time needed in seconds to generate the free space components in the zig-zag polygon
data set.

Figure 5.17 shows that the time complexity of generating the motion graph scales a bit worse

28 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

than linear with respect to the complexity of the workspace polygon. However, the time needed
to generate the interference forest again shows to be significantly larger than other components of
the algorithm.

100 200 300 400 500 600
of workspace points

50

100

150

200

250

Ti
m

e
[s

]

Figure 5.17: Time needed in seconds to generate all motion graphs and the directed interference
forest in the zig-zag polygon data set.

The time needed to compute the edge weights for all edges in the motion graphs is shown in
Figure 5.18. Since the number of vertices in the motion graph does not scale with the complexity
of the workspace polygon, and the number of edges still being |E| = O(|V |2) in this data set, the
number of times the edge weights are computed also does not scale with the complexity of the
workspace polygon. This implies that the constant and Euclidean edge weights can be computed in
constant time with respect to the complexity of the workspace. However, computing the geodesic
edge weights still has a time complexity of O(n log n) where n is the complexity of the workspace
polygon.

100 200 300 400 500 600
of workspace points

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
[s

]

Constant
Euclidean
Geodesic

100 200 300 400 500 600
of workspace points

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ti
m

e
[s

]

Constant
Euclidean

Figure 5.18: Time needed in seconds to compute the weights for all edges in every motion graph
in the zig-zag polygon data set.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 29

CHAPTER 5. EXPERIMENTAL EVALUATION

After computing the edge weights (or in the case of constant or Euclidean edge weights, after
generating the interference forest), the workspace polygon is no longer used. Also, the size of
the motion graphs or the interference forest is not influenced by the complexity of the workspace
polygon. Therefore, the time it takes to solve the motion graphs in order according to the directed
interference forest is not influenced by the complexity of the workspace polygon.

The absolute time needed to generate the interference forest is again significant with respect
to the time needed for different components of the algorithm. Moreover, in this data set, due to
the shape of the zig-zag polygon, the total distance covered by all robots is also heavily influenced
by the number of zig-zags the workspace polygon contains.

Comb-shaped workspace polygon The results of the comb-shaped workspace polygon setting
are given with respect to the number of teeth the comb has. In every tooth, one start configuration
and one target configuration is placed, and the workspace complexity is increased by 4 per tooth.
This means that the complexity of the workspace polygon is n = O(t) and the number of starting
and target configurations is m = O(t), where t is the number of teeth in the comb.

Since the number of points in the workspace scales linearly with the number of teeth, the time
complexity of generating the free space components, which can be seen in Figure 5.19, is equivalent
to the complexity that we have seen in the previous paragraph.

20 40 60 80 100
of teeth

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Ti
m

e
[s

]

Figure 5.19: Time needed in seconds to generate the free space components in the comb-shaped
workspace polygon.

Because the number of teeth in this data set scales linearly with the number of robots, we can
expect a worse than linear scaling of the time complexity of generating the interference forest with
respect to the number of teeth. This worse than linear scaling is visible in Figure 5.20.

Figure 5.21 shows the time needed to compute the edge weights for all edges in the motion
graph. Since both the complexity of the workspace polygon and the number of starting and
target configurations scale linearly with the number of teeth in this data set, the time complexity
of computing all geodesic edge weights is O(t · (t + t) log (t+ t)) = O(t · t log t) = O(t2 log t).
Computing the constant and Euclidean edge weights again takes O(1) time for every edge in the
motion graph. Since m = O(t), the number of edges in the motion graph can be given as O(t2) in
this data set. Thus, the complexity of computing all edge weights for the constant and Euclidean
cases are O(t2).

The comb-shaped workspace polygon is engineered to show an example in which the geodesic
edge weights show a significant improvement in terms of distance covered over the other edge
weight functions. Figure 5.22 and Figure 5.23 show how the geodesic edge weights indeed perform
better in terms of time needed to solve the interference forest as well as the total distance covered
by all robots, respectively. Also note that, in this case, the Euclidean edge weights perform worse
than the constant edge weights.

30 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

20 40 60 80 100
of teeth

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ti
m

e
[s

]

Figure 5.20: Time needed in seconds to generate all motion graphs and the directed interference
forest.

20 40 60 80 100
of teeth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
[s

]

Constant
Euclidean
Geodesic

(a)

20 40 60 80 100
of teeth

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ti
m

e
[s

]

Constant
Euclidean

(b)

Figure 5.21: Time needed in seconds to compute the weights for all edges in every motion graph
in the comb-shaped polygon data set.

20 40 60 80 100
of teeth

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
[s

]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.22: Time needed in seconds to solve all motion graphs in topological ordering of the
directed interference forest in the comb-shaped polygon data set.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 31

CHAPTER 5. EXPERIMENTAL EVALUATION

20 40 60 80 100
of teeth

0

200

400

600

800

1000

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

Figure 5.23: The average distance covered in units per robot in the comb-shaped workspace
polygon data set.

Corridor-shaped workspace polygon with small windows The results of the corridor-
shaped workspace polygon data set are compared in a different way. The bars with labeled “Single”
represent results for the case in which the workspace polygon had windows through which robots
are able to move. This means that a single free space component is generated in the first step of
the algorithm. The bars with labeled “Multi” represent results for the case in which the workspace
polygon had windows through which robots are not able to move. This means that multiple free
space components are generated in the first step of the algorithm. Since the complexity of the
workspace polygons is equal for both the “Single” and “Multi” case, there is no difference in time
complexity for generating the free space components. In the different settings, the number of
robots and the complexity of the workspace polygon remain the same.

In Figure 5.24, we can see that generating the motion graphs and the interference forest is
faster when considering multiple smaller free space components than when considering one big
free space component, knowing that the total number of vertices in the motion graphs in both
cases is equal. In the previous data sets, we have seen that the time complexity of generating
the motion graphs and interference forest scaled worse than linear with respect to the number of
robots. Note that the number of robots in a free space component corresponds with the number
of vertices in the corresponding motion graph. This means that the result that we see here was
expected.

Single Multi
0

1

2

3

4

5

6

Ti
m

e
[s

]

Figure 5.24: Total time needed in seconds to generate all motion graphs and the directed interfer-
ence forest in the corridor-shaped workspace data set.

32 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

CHAPTER 5. EXPERIMENTAL EVALUATION

Single Multi
0

1

2

3

4

5

6

Ti
m

e
[s

]

Figure 5.25: Time needed in seconds to solve all motion graphs in order according to the directed
interference forest in the corridor-shaped workspace data set.

Single Multi
0

1

2

3

4

5

6

Ti
m

e
[s

]

Figure 5.26: Time needed in seconds to run the complete algorithm in the corridor-shaped work-
space data set.

As we can see in Figure 5.25, solving the multiple smaller motion graphs according to the
directed interference forest is faster than solving the single bigger motion graph.

In Figure 5.26 we can again see that generating the motion graphs and the interference forest
takes the most significant amount of time.

5.3 Conclusions

Adler et al. [1] stated that generating the free space components takes O(n log n) time, where n
is the complexity of the workspace. This means that this part of the algorithm does not scale in
terms of the number of robots, as we discussed in the random workspace polygon data set. The
results that we are shown in Figure 5.16 (from the zig-zag data set) and Figure 5.19 (from the
comb-shaped workspace data set) agree with a worse than linear scaling in terms of the complexity
of the workspace polygon. However, it is hard to exactly determine the time complexity based on
the results.

Generating the interference forest showed to be the part of the algorithm which scales the
worst. In Figure 5.17 (from the zig-zag data set), a worse than linear scaling with respect to the
complexity of the workspace polygon is shown. However, the scaling seems to be even worse in
terms of the number of robots, as seen in Figure 5.12 (from the grid data set). We have seen that
the scaling in Figure 5.7 (from the random workspace data set) is different from the scaling in

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 33

CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.12 (from the grid data set), even with the same number of robots. However, because the
complexity of the workspace polygon differs between those data sets, we can combine these results
to conclude that there is also a factor in the time complexity of this part of the algorithm which
depends on both the complexity of the workspace and the number of robots.

The time complexity of computing the edge weights is different per function used. The constant
and Euclidean edge weight functions take a constant amount of time per edge for which the weight
is computed. The motion graphs that were used in our examples were complete graphs. This means
that the number of edges in these motion graphs is |E| = O(|V |2). Since our examples had only
one motion graph, the number of vertices in this motion graph was |V | = O(m), where m is the
number of robots in the data set. Thus, computing the constant and Euclidean edge weights for
our motion graphs took O(m2) time. Note that the constant edge weights can be computed a
constant factor faster than the Euclidean edge weights.

Computing the geodesic edge weights took more time, and was depending on both the com-
plexity of the workspace and the number of robots. The results that are shown in Section 5.2 seem
to agree with the time complexity that we discussed in the beginning of this chapter.

Adler et al. show that a solution for a single motion graph G with a vertex set S
⋃
T where

|S| = |T | can be found in O(|S|2) time. Again, note that the cases we discussed all consist of a
single motion graph G, which implies that all m starting configurations and target configurations
are represented in G. Thus |S| = |T | = m, and a solution for G can be found in O(m2) time. The
results that we have seen in Section 5.2 seem to agree with a quadratic time complexity. Though,
the different edge weights have an effect on the rate at which the running time grows.

Unfortunately, a big part of the total running time was used to generate the interference forest.
This showed in every data set.

Bottleneck The bottleneck in the implementation of this algorithm is generating the motion
graphs and the interference forest. This part of the algorithm takes a significant amount of time
compared to all other steps of the algorithm. However, Adler et al. show that the full motion
graph does not have to be computed first. Their method is described in Section 4.1 in detail.

We wanted to discover results for different spanning trees. Using the method by Adler et al.,
we were not able to generate the spanning trees that we wanted to evaluate. Thus, we decided to
compute the whole motion graph, which turned out to take a significant amount of time compared
to other parts of the algorithm.

Purple tree In our experiments, the algorithm which uses purple trees performs better than
the original solution for the pebble motion problem in terms of the covered distance per robot.

The covered distance per robot is often better when using the purple tree algorithm than when
using the original algorithm. Figure 5.27 shows the difference in total covered distance. In every
different setting, the purple tree algorithm shows to have a lower total covered distance. This is
mostly due to the way the motion schedule is generated. Using the original algorithm, the motion
schedule contains a path through many configurations for every robots. However, the purple tree
algorithm generates a motion schedule in which every robot is activated once, and moves towards
its target configuration in the shortest possible way.

In terms of the number of times a robot has to be activated, the algorithm which uses purple
trees is indeed optimal. This is visible in Table 5.1, which shows the total times any robot becomes
activated in the motion schedule for the random polygon data set. These results correspond with
results for all different data sets.

34 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

20 40 60 80 100
of robots

0

500000

1000000

1500000

2000000

2500000

3000000

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

(a) The average distance covered in units per robot
in the random polygon data set.

20 40 60 80 100
of robots

0

2000

4000

6000

8000

10000

12000

14000

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

(b) The average distance covered in units per robot
in the square polygon data set.

20 40 60 80 100
of teeth

0

20000

40000

60000

80000

100000

Di
st

an
ce

 [u
ni

ts
]

Original / Constant
Original / Euclidean
Original / Geodesic
Purple Tree / Constant
Purple Tree / Euclidean
Purple Tree / Geodesic

(c) The average distance covered in units per robot
in the comb polygon data set.

Figure 5.27: A comparison between different data sets on the covered distance in units per robot.

Original Purple Tree
Constant Euclidean Geodesic Constant Euclidean Geodesic

m

1 1 1 1 1 1 1
2 4 3 2 2 2 2
3 9 3 4 3 3 3
5 12 7 7 5 5 5
8 29 22 24 8 8 8
10 36 18 23 10 10 10
20 55 65 73 20 20 20
30 79 96 90 30 30 30
50 121 255 150 50 50 50
80 182 654 445 80 80 80
100 223 349 336 100 100 100

Table 5.1: Total number of times a robot is activated in the random polygon data set

Chapter 6

Conclusions

In this thesis, we studied strategies of improving the algorithm devised by Adler et al. [1] in different
ways. Adler et al. showed that, under certain conditions, the multi-robot motion planning problem
can be solved efficiently in terms of running time. We discussed a way of extending the algorithm
to the case of workspace polygons with holes. We also devised an algorithm to solve the pebble
motion problem using purple trees. Finally, we evaluated the algorithm and its implementation
experimentally, by making use of different ways of using the motion graph.

First, in Chapter 3, we have shown that, if we allow infinitely small holes, simultaneous move-
ment of robots might be necessary. We also conjectured that, if holes in the workspace polygon are
not infinitely small, there is a solution in which no simultaneous movement of robots is necessary.

The algorithm by Adler et al. is not optimized in terms of the quality of the motion schedule.
One clear way of optimizing the quality of the motion schedule that this algorithm produces, is by
optimizing the spanning tree that is used to solve the motion graphs. However, we have seen in
Chapter 5 that there is no perfect solution for every setting, and that computing the whole motion
graph is inefficient. Adler et al. described a method in which the motion graph is not computed
explicitly, but this method was not optimal, nor was it easy to optimize. In general, using the
geodesic distance is a good way of optimizing the distance covered by the robots when moving
according to the motion schedule. Computing the Euclidean edge weights is only a constant factor
slower than using constant edge weights, and generally performs better than the constant edge
weights. However, the data set shown in Figure 5.1 made clear that there exist cases in which an
arbitrary spanning tree performs better.

Another improvement to the algorithm can be made in the way of solving the motion graph.
The way of solving this motion graph was originally done by using the pebble motion problem.
However, we have seen a different solution using purples trees (Lemma 1). This solution optim-
izes the number of times a robot needs to be activated. Chapter 5 showed us that often, the
total covered distance is also smaller using this solution. This is due to every robot taking the
shortest possible path from its corresponding starting configuration to its corresponding target
configuration, without moving to intermediary configurations.

We experimentally evaluated the algorithm and its implementation in Chapter 5. The time
complexity that we have seen in these experiments seems to agree with the theoretical complexity
that Adler et al. discussed.

6.1 Future work

We looked at workspace polygons that contained holes. We proposed an idea to solve the multi-
robot motion planning problem for such workspace polygons by adding intermediate configurations
which do not interfere with other free space components. However, it was also discussed that this
idea would not work when holes have an area of zero units. The conjecture given in Chapter 3
might be an interesting idea to explore further.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 37

CHAPTER 6. CONCLUSIONS

Since free space components in our setting contained circular arcs (due to the robots being
discs), the free space components also contained circular arcs on their boundaries. To compute
the geodesic distance between two points in such free space components, the circular arcs on the
boundary of a free space component were approximated. The resulting approximated free space
component was then used to determine the geodesic distance. This could be improved to use the
exact geodesic distance, which could also take into account other robots instead of only the free
space component.

Finally, in Chapter 4 we discussed an idea to solve the problem without using (minimum)
spanning trees. It might be possible to find an algorithm which is able to efficiently find a vertex
v ∈ Vi in a motion graph Gi = (Vi, Ei) such that either removing v does not disconnect Gi, or
removing v splits Gi into multiple smaller motion graphs which are still solvable.

38 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

Bibliography

[1] A. Adler, M. De Berg, D. Halperin and K. Solovey, ‘Efficient multi-robot motion planning
for unlabeled discs in simple polygons’, in Algorithmic Foundations of Robotics XI, Springer,
2015, pp. 1–17.

[2] K. Solovey and D. Halperin, ‘On the hardness of unlabeled multi-robot motion planning’,
The International Journal of Robotics Research, vol. 35, no. 14, pp. 1750–1759, 2016.

[3] G. Bottesi, J.-P. Laumond and S. Fleury, ‘A motion planning based video game’, Technical
Report 04576, LAAS-CNRS, 2004.

[4] D. Thalmann, H. Grillon, J. Maim and B. Yersin, ‘Challenges in crowd simulation’, in 2009
International Conference on CyberWorlds, IEEE, 2009, pp. 1–12.

[5] J. T. Schwartz and M. Sharir, ‘On the “piano movers” problem. ii. general techniques for com-
puting topological properties of real algebraic manifolds’, Advances in applied Mathematics,
vol. 4, no. 3, pp. 298–351, 1983.

[6] J. E. Hopcroft, J. T. Schwartz and M. Sharir, ‘On the complexity of motion planning for
multiple independent objects; pspace-hardness of the" warehouseman’s problem"’, The In-
ternational Journal of Robotics Research, vol. 3, no. 4, pp. 76–88, 1984.

[7] P. Spirakis and C. K. Yap, ‘Strong np-hardness of moving many discs’, Information Pro-
cessing Letters, vol. 19, no. 1, pp. 55–59, 1984.

[8] J. T. Schwartz and M. Sharir, ‘On the piano movers’ problem: Iii. coordinating the motion
of several independent bodies: The special case of circular bodies moving amidst polygonal
barriers’, The International Journal of Robotics Research, vol. 2, no. 3, pp. 46–75, 1983.

[9] C. Yap, Coordinating the motion of several discs, English (US), ser. Robotics Report 16.
Department of Computer Science, New York University, Feb. 1984.

[10] M. Sharir and S. Sifrony, ‘Coordinated motion planning for two independent robots’, Annals
of Mathematics and Artificial Intelligence, vol. 3, no. 1, pp. 107–130, 1991.

[11] M. Erdmann and T. Lozano-Perez, ‘On multiple moving objects’, Algorithmica, vol. 2, no. 1-
4, p. 477, 1987.

[12] B. Aronov, M. de Berg, A. F. van der Stappen, P. Švestka and J. Vleugels, ‘Motion planning
for multiple robots’, Discrete & Computational Geometry, vol. 22, no. 4, pp. 505–525, 1999.

[13] K. Solovey, ‘Multi-robot motion planning: Theory and practice’, PhD dissertation, Tel Aviv
University, 2018.

[14] D. Kornhauser, G. Miller and P. Spiralris, ‘Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications’, 1984.

[15] V. Auletta, A. Monti, M. Parente and P. Persiano, ‘A linear-time algorithm for the feasibility
of pebble motion on trees’, Algorithmica, vol. 23, no. 3, pp. 223–245, 1999.

[16] R. Luna and K. E. Bekris, ‘An efficient and complete approach for cooperative path-finding’,
in Twenty-fifth AAAI conference on artificial intelligence, 2011.

[17] J. Yu and S. M. LaValle, ‘Planning optimal paths for multiple robots on graphs’, in 2013
IEEE International Conference on Robotics and Automation, IEEE, 2013, pp. 3612–3617.

Strategies for Multi-Robot Motion Planning for Unlabeled Discs 39

BIBLIOGRAPHY

[18] K. Solovey and D. Halperin, ‘K-color multi-robot motion planning’, The International Journal
of Robotics Research, vol. 33, no. 1, pp. 82–97, 2014.

[19] M. Turpin, N. Michael and V. Kumar, ‘Concurrent assignment and planning of trajector-
ies for large teams of interchangeable robots’, in 2013 IEEE International Conference on
Robotics and Automation, IEEE, 2013, pp. 842–848.

[20] K. Solovey, J. Yu, O. Zamir and D. Halperin, ‘Motion planning for unlabeled discs with
optimality guarantees’, arXiv preprint arXiv:1504.05218, 2015.

[21] J. B. Kruskal, ‘On the shortest spanning subtree of a graph and the traveling salesman
problem’, Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48–50, 1956.

[22] R. C. Prim, ‘Shortest connection networks and some generalizations’, The Bell System Tech-
nical Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[23] R. Wein, A. Baram, E. Flato, E. Fogel, M. Hemmer and S. Morr, ‘2D minkowski sums’, in
CGAL User and Reference Manual, 4.14, CGAL Editorial Board, 2019. [Online]. Available:
https://doc.cgal.org/4.14/Manual/packages.html#PkgMinkowskiSum2.

[24] The CGAL Project, CGAL User and Reference Manual, 4.14. CGAL Editorial Board, 2019.
[Online]. Available: https://doc.cgal.org/4.14/Manual/packages.html.

[25] J. G. Siek, L.-Q. Lee and A. Lumsdaine, Boost Graph Library, The: User Guide and Refer-
ence Manual. Addison-Wesley Professional, 2001. [Online]. Available: https://www.boost.
org/doc/libs/1_65_1/libs/graph.

[26] P. M. M. de Castro, O. Devillers, S. Hert, M. Hoffmann, L. Kettner, S. Schönherr, A. Tifrea
and M. Gimeno, ‘Geometric object generators’, in CGAL User and Reference Manual, 4.14,
CGAL Editorial Board, 2019. [Online]. Available: https://doc.cgal.org/4.14/Manual/
packages.html#PkgGenerators.

40 Strategies for Multi-Robot Motion Planning for Unlabeled Discs

https://doc.cgal.org/4.14/Manual/packages.html#PkgMinkowskiSum2
https://doc.cgal.org/4.14/Manual/packages.html
https://www.boost.org/doc/libs/1_65_1/libs/graph
https://www.boost.org/doc/libs/1_65_1/libs/graph
https://doc.cgal.org/4.14/Manual/packages.html#PkgGenerators
https://doc.cgal.org/4.14/Manual/packages.html#PkgGenerators

	Introduction
	Related work
	Problem description
	Results
	Outline

	Preliminaries
	Spaces
	Directed interference forest
	Motion graphs
	Algorithm

	Polygons with holes
	Computing efficient schedules
	Spanning trees
	Strategies for moving pebbles
	Purple tree

	Solutions without a spanning tree

	Experimental evaluation
	Inputs
	Results
	Conclusions

	Conclusions
	Future work

	Bibliography

