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Abstract

In 2025, the Large Hadron Collider (LHC) at CERN would be upgraded to be a High-Luminosity
Large Hadron Collider (HL-LHC). It would result in increased frequency and intensity of particle
collisions at the centre of various experiment detectors located along the circumference of the HL-
LHC. This master thesis gives a brief background about the LHC, the CMS experiment, the CMS
data acquisition network (CMS-DAQ) and the Phase-II upgrade on the CMS-DAQ network. The
upgrade of electronics in the CMS-DAQ would see the introduction of around 1000 Xilinx Zynq
UltraScale+ MPSoC (Multi-Processor System-on-Chip) based customised embedded controllers
in the CMS data acquisition network.

All these newly introduced MPSoC would require a customised operating system for their
hardware platforms. To this end, this master thesis elaborates upon the important Linux boot
components and the process of booting Linux on the Xilinx Zynq UltraScale+ MPSoC. This
thesis document demonstrates the process of building a customised Linux distribution for the
Zynq UltraScale+ MPSoC using Petalinux Tools. This thesis document presents a qualitative
comparison between the Petalinux Tools and the Yocto Project so that developers can choose a
tool-chain better suited to their requirements. To ensure support for the hardware platforms and
because of existing expertise at CERN to support the CentOS Linux distribution, this thesis doc-
ument demonstrates the process of porting a mainstream CentOS 8 kernel 4.18 and the building of
CentOS 8 root file system for the Zynq UltraScale+ based ZCU102 evaluation board. To recom-
mend an easy-to-maintain, modifiable and manageable booting mechanism, this thesis document
also presents a qualitative and quantitative analysis of different booting configurations and root
file system storage mechanisms along with read-write performances of different root file system
storage mechanisms (SD Card and NFS server). Based on these findings, this thesis document
recommends a particular boot configuration as well as a root file system storage mechanism for
the Zynq UltraScale+ based embedded controllers in the CMS data acquisition network. This
thesis document demonstrates the process to implement an automated network boot process of
embedded Linux on the Xilinx ZCU102 Evaluation board and also explains the ways in which
challenges associated with the network boot can be dealt with.

Once these systems are installed in the CMS-DAQ network, it is important to administer
software updates or install software on the CentOS 8 root file system of the different Zynq UltraS-
cale+ based hardware platforms that are running the CentOS 8 kernel 4.18. This master thesis
demonstrates two different methods of administration of software updates to the CentOS 8 root
file system. This thesis document also elaborates upon the qualitative distinctions between these
two software update methods and recommends use cases for these two different methods in the
CMS data acquisition network.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN would be upgraded to be a High-Luminosity LHC
(HL-LHC) in 2025 in the Phase-II upgrade. The HL-LHC would increase the frequency and
intensity of the particle collisions that occur at the center of the detectors of experiments like
CMS located along the LHC [5]. This upgrade would also entail the upgrade of the detector front-
end sensors, the read-out electronics and the data acquisition hardware that contribute to the
data-taking of the experiment. It is called the Phase-II upgrade and it would see the introduction
of embedded controllers using Xilinx Zynq UltraScale + MPSoC in the CMS data acquisition
network (CMS-DAQ). These embedded controllers would require their own operating system with
their own root file system, software packages, kernel drivers and services which would allow them
to do the computing tasks that they are designed for.

1.1 Problem Statement

Multiple experiment groups working on their own hardware platforms can build their own Linux
distributions, however the experiment groups do not have the expertise. The CERN system
administrators do not have enough manpower and resources to manage multiple, distinct Linux
distributions whose kernels may also have security vulnerabilities. The CentOS Linux distribution
is centrally supported and maintained by the system administrators at CMS and CERN IT, who
provide security-tested kernel drivers and software packages for it. Previous work on building a
CentOS 7 Linux distribution using the CentOS 7 root file system and the Xilinx Linux kernel had
happened at the ATLAS experiment and the Electronic Systems and Experiments (ESE) group
at CERN. However, there was no CentOS Linux distribution for 64-bit ARM processors like Zynq
UltraScale+ MPSoC which would provide a mainstream CentOS 8 kernel (4.18) and a CentOS 8
root file system. This master thesis seeks to address this void arising out of the needs of the CMS
experiment and demonstrates the porting of the CentOS kernel 4.18 for Zynq UltraScale+ and a
method to build a CentOS 8 distribution for the Zynq UltraScale+ MPSoC.

There has been previous work at the CMS-DAQ group to build a Linux distribution for the
32-bit Xilinx Zyng-7000 SoC with the help of the Yocto Project. However, the work did not
cover the automated Linux network boot, which is crucial for the CMS data acquisition network.
This master thesis demonstrates how to build a Linux distribution using Petalinux Tools that
boots over the network without manual intervention and presents the components necessary for
configuring and implementing an automated network boot of the CentOS 8 Linux distribution.




CHAPTER 1. INTRODUCTION

There are multiple ways to boot Linux on the Zynq UltraScale+ MPSoC and multiple methods
to store the CentOS 8 root file system. Previous work at the CMS DAQ group has focused on
a full SD card boot (see Chapter 6) and has not conducted studies to recommended a particular
boot method and root file system storage mechanism for the data acquisition hardware in the CMS
experiment network. This master thesis addresses this void by doing qualitative and quantitative
analysis of different boot methods and root file system storage mechanisms and recommends one
solution for each of those requirements.

The previous work at the CMS-DAQ group also did not cover the administration of software
updates to the root file system of the Linux distribution. This master thesis demonstrates two
methods of administering software updates to the 64-bit ARM version of CentOS 8 root file system
and presents qualitative differences between the two methods to recommend uses for these two
methods in the CMS data acquisition network.

1.2 Thesis Contributions

The thesis aims at making the following contributions:

1. Demonstrate the process of building a Linux distribution with the help of PetaLinux Tools.
This thesis also offers a qualitative comparison of the PetalLinux Tools and Yocto Project to
help readers make an informed choice of the tool chain they need to build a Linux distribu-
tion.

2. Demonstrate porting of a CentOS 8 Linux kernel 4.18 for the Xilinx Zynq UltraScale+
MPSoC as well as building of CentOS 8 root file system for 64-bit ARM processors.

3. Demonstrate the implementation of CentOS 8 automated network boot on the ZCU102
board, the setup of the network boot infrastructure and the solving of the challenges asso-
ciated with the network boot. The thesis also investigates and answers questions pertaining
to the setting, acquiring and updating of the Ethernet MAC address by the U-Boot and the
Linux kernel during the Linux boot process on Zynq UltraScale+.

4. Present a quantitative and qualitative analysis of different boot methods and the root file
system storage methods to recommend a particular solution for both aspects in the context
of the CMS data acquisition network.

5. Demonstrate different methods of administering software updates to the CentOS 8 root file
system and compare the methods to recommend use cases for these two software update
methods in the CMS data acquisition network.

The remainder of this thesis is organized in the following chapters. Chapter 2 informs readers
about the background of the LHC, the CMS experiment, the CMS-DAQ and the Phase-IT upgrade.
In Chapter 3, information about the Xilinx Zynq UltraScale+ MPSoC and the ZCU102 Evaluation
board is provided along with the Linux boot elements and the Linux boot process on the Xilinx
Zynq UltraScale+. Chapter 4 covers the Yocto Project, the process of building a Linux distribution
using PetaLinux Tools, the process of porting and building the CentOS 8 kernel 4.18 as well as
the process to build the CentOS 8 root file system. Chapter 5 explains the Linux network boot in
detail whereas Chapter 6 consists of the qualitative and quantitative comparisons of the different
boot methods and root file system storage mechanisms. Chapter 7 talks about the methods to
administer software updates to the CentOS 8 root file system and Chapter 8 concludes this master
thesis.




Chapter 2

Background

This master thesis project aims at developing an Embedded Linux distribution for thwe embedded
systems that would be installed in the data acquisition network of the Compact Muon Solenoid
(CMS) experiment as a part of the Phase-II upgrade of the CMS experiment. In order to un-
derstand this document better, this chapter intends to give the reader a brief background about
the Large Hadron Collider (LHC), the CMS experiment, the data acquisition network and the
Phase-II upgrade.

2.1 The Large Hadron Collider

Particle accelerator experiments are developed for accelerating atomic and sub-atomic particle
to very high kinetic energies before colliding them with each other to analyse the byproducts of
these collisions and answer the fundamental questions about physical matter. The Large Hadron
Collider (LHC) [6] is one such particle accelerator. It was commissioned in 2008 and since then
the discovery of Higgs-Boson have been achieved using the LHC. A series of pre-accelerators are
used to accelerate the particles (protons) close to the speed of light [7] before they enter the LHC.
The LHC has a circumference of 27 km [8] which is divided into eight sections, each consisting
of curved and straight subsections. The curved sections bend the particle beam on its trajectory
which is achieved by keeping magnetic dipoles at superconducting temperatures of 1.9 K [8]. The
particles collide at the centre of the CMS detector at a rate of 40 MHz [9]. Detectors like that of
the CMS are installed around the crossing points of the LHC beams to detect collisions, record
data, track the collision byproducts and to reconstruct the collision to conduct physics research.
ALICE, ATLAS, CMS and LHCD are some main detector experiments associated with LHC. Since
the focus of this master thesis is on development of an embedded Linux for the data acquisition
hardware of the CMS data acquisition system, the CMS experiment is explained in more detail in
a later section.

The energy of the particles and the number of particle collisions per cross-sectional area which
is known as instantaneous luminosity [9], are increased regularly during the lifetime of the LHC
and would continue to increase till 2038. The Phase-II upgrade explained in later sections is a
result of one such exercise which would be completed in 2025. Higher collision energies and higher
luminosity are necessary to increase the probability of discovering new properties related to the
fundamentals of physical matter and are necessary to confirm various other theories from the
Standard Model of Physics. The Phase-II upgrade [8] would result in an upgrade of the CMS
detector as well as the electronics in its data-acquisition network [5]. The LHC will transition into
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its High Luminosity phase known as the High Luminosity LHC (HL-LHC) in 2025. [8].
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Figure 2.1: The LHC accelerator complex [1]

Figure 2.1 shows the LHC accelerator complex. The big dark-blue coloured ring at the centre
is the main accelerator with different experiment detectors located along the ring, denoted by
yellow dots. The CMS experiment is located at Point 5 of the LHC, seen at the top end of
the blue ring. In Figure 2.1, below the big ring, a host of small pre-accelerators like Proton
Synchrotron, Super Proton Synchrotron and Linear Accelerator (LINAC) are shown. They are
used to accelerate protons before they enter the LHC. The particles travel in opposite directions
resulting in collisions at the centre of experiment detectors. The arrows in the figure are serving
two purposes: they show the motion of the particles within the accelerator as well as they are
colour coded to denote different particles. The light grey is for the proton, orange for neutrons,
blue for neutrinos and brown for electrons.

2.2 The Compact Muon Solenoid Experiment

The CMS (Compact Muon Solenoid) experiment [10][11][12] at CERN has the following goals:
e To detect muons, electrons and photos to study their properties through high precision
measurements.

e To take high precision measurements of different daughter particles being generated post
collision at the centre of the detector.

e To reconstruct the particle collisions to study the fundamental properties of particle physics
and properties of various daughter particles after collision.
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The CMS detector consists of a superconducting solenoid that provides an axial and uniform
magnetic field of 3.8 Tesla [10].The solenoid holds the Hadron Calorimeter (HCAL) [10] which in
turn holds the Electromagnetic Calorimeter (ECAL) within itself. A silicon pixel Inner Tracker
(IT) and a silicon microstrip Outer Tracker (OT) are situated within the ECAL [10]. The forward
calorimeters ensure the angular coverage of the magnetic field. The solenoid’s magnetic yoke made
of iron is scattered with gaseous chambers to detect muons.

2.2.1 How the CMS Detector Detects Particles

After the collision of particles at the centre of the CMS detector, the particles travel outwards
where they encounter the tracking system [10], which consists of the silicon pixel Inner Tracker
(IT) and silicon microstrip Outer Tracker (OT) as mentioned above. These are used to measure
the positions of particles passing through them and help in reconstructing their tracks. The
principle that is applied here is quite simple: charged particles will always follow curved paths
in the magnetic field and the curvature of their tracks will allow calculation of their individual
momentum. The CMS tracker system measures trajectories of the charged particles and helps in
generating three-dimensional reconstruction of their tracks.

The calorimeters are used to measure the energies of the particles that pass through the
tracker. Electrons and photons interact with the electromagnetic force, as a result their energies
are measured using the Electromagnetic Calorimeter (ECAL) [10]. Protons and Neutrons are
types of hadrons and the Hadronic Calorimeter (HCAL) is used to measure the energies of these
hadrons [10]. Due to the higher particle presence in the forward regions of the CMS detector, the
HCAL Forward Calorimeter (HF) is constructed with radiation hardened components in order to
prevent damage or malfunctioning due to heavy ionizing radiation in this region [10].

Since muons are heavier than the electrons, they have a higher momentum which allows them
to punch through the HCAL along with the neutrinos, which do not interact much with their
surroundings. The gaseous ionisation chambers are used to detect the muons and their momentum
is measured from the curvature in their paths due to the CMS magnetic field. Neutrinos rarely
interact with their surroundings and it is difficult to detect them.

2.3 The Trigger and Data Acquisition System of the CMS
Experiment

The CMS experiment has a two-level trigger system [5][13][14] consisting of the Level 1 Trigger
and the High Level Trigger (HLT). The trigger system of the CMS detector acts as a filtration and
selection system which ensures that only the data of certain interesting events after the particle
collision are selected. This is done for the following reasons:

e A small minority of the events after the particle collision are of interest to the physicists to
advance their research.

e These processes occur at a very small rate.

e There are constraints associated with the data acquisition network’s bandwidth and storage
space to store the experiment data. As a result, the data of all of the events occurring at
the centre of the CMS detector cannot be transported and stored for physics research.

e Due to the above three reasons, the trigger system is used select and filter the event data
which the data acquisition network transfers for further analysis and storage.
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2.3.1 The CMS Level 1 Trigger

The CMS Level 1 Trigger which is made of custom electronics is responsible for performing online
selection of physical processes occurring at the center of the CMS detector. Level 1 Trigger in its
current form reduces the event rate from 40 MHz to 100 kHz [13] and has a latency of less than 4
micro-seconds [14].

The L1 Trigger receives the information coming from the electromagnetic and hadronic calor-
imeters as well as from the muon chambers. A global accept or reject decision is taken on the
basis of energy concentrations associated with particles such as photons, electrons, muons and
jets [13][14]. The CMS Level 1 trigger will be upgraded further as a part of the Phase-II upgrade
to improve the performance when the particle collision intensity increases [5] at the center of the
CMS detector in HL-LHC.

2.3.2 The CMS High Level Trigger

The High Level Trigger (HLT) is essentially a processor farm of commercial computers using over
26,000 CPU cores [12] and doing the same filtration and selection process as L1 Trigger. The
HLT is running software algorithms for down sampling the event rate from 100 kHz to about
1 kHz [5][14]. Unlike the L1 Trigger, the HLT is asynchronous with respect to the collisions,
receiving the data after a significant delay through the data acquisition pipeline system, with
collisions being processed potentially out of order. The average processing time of the HLT in
2012 was about 200 milliseconds per event [14]. For the Phase-2 upgrade, however, this time is
estimated to be of the order of one second but a latency of 2 minutes is allowed [5]. The HLT
receives complete detector information about L1 selected collisions, after being passed through
the Data Acquisition event building system comprised of the following modules:

e The Readout Units (RU) which collect data from individual Front-End Detectors (FED)
and partially build/assemble the data from a single collision.

e The Builder Units (BU) which collect data from all RUs and finish to build the complete
detector data for each collision before feeding them to the HLT.

e The RUs and BUs are on high performance data networks for the transfer of the event data
(FED builder and Event builder networks). The HLT is made up of Filter Units (FUs) which
are it’s processing and selection elements (individual compute elements).

The Worldwide LHC Computing Grid (WLCG) is a distributed cloud storage and processing
infrastructure that performs offline processing of events that pass the HLT selection process [10].

2.4 The Current CMS Data Acquisition System

The main purpose of the CMS Data Acquisition (CMS-DAQ) system is to provide a data pipeline
and decoupling between the L1 trigger and the HLT. The DAQ system [4][15][16][17][18][19] acts
as a bridge between the L1 Trigger and the High-Level Trigger, from the moment the L1 trigger
selects the data of a particular interesting event to be sent to the High-Level Trigger for further
selection. The DAQ-HLT interface exchanges data in the form of files, which helps in decoupling
the DAQ pipeline and HLT farm. For data concentration, 10/40 Gigabit Ethernet connection is
used whereas a 56 Gigabit Infiniband network is used for the event-builders [18]. The CMS DAQ
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for the Run 2 between 2015-2018 was designed to assemble event data at a rate of 100 kHz with
event size of 2 MB [5] and a readout bandwidth of 200 GB/s [5][16].

The DAQ for the CMS Run-2 [4][15][16][17][18][19] consists of high-performance computing
nodes which are configured to accept data for different scenarios. The trigger data is received by
a separate section of back-end electronics for distribution to the Level 1 trigger processors, which
essentially instruct the front-end read out units to start reading data when an interesting event has
been detected by front-end electronics. The DAQ takes in data from more than 600 customised
Front-End Detectors (FEDs) and these FEDs send data fragments of size 12 kB to the Front-End
Readout Links (FEROL) [18]. The FEROL sends the data from each FED as TCP/IP packets
over optical 10 Gigabit Ethernet links to one of the 72 readout units (RU) computers. A series of
network switches is used to concentrate the data from the FEROLs into super-fragments using a
10/40 Gigabit Ethernet network. The super-fragments are then sent over the event-builder switch
to one of the 62 builder units (BU) machines which assemble the super-fragments into complete
event data. Each builder unit (BU) has a 250 GB RAM disk and a 2 TB magnetic disk. Finally,
the BU writes the event data to files residing on a local RAM disk which is then exported to filter
units (FUs) which run the high-level trigger code for further selection.

Level 1 Detector Frontend
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Figure 2.2: The CMS data acquisition system for run-2 [2]

Figure 2.2 displays the block diagram of the CMS data acquisition system for Run-2. It also
displays the conceptual diagram of the interaction between the L1 and High-Level Triggers with
the data acquisition pipeline. The detector front-ends detect the interesting events after particle
collision and the data is then kept in front-end buffers till an accept signal is received from the
L1 Trigger. Then the data passes through the data acquisition pipeline over to reach the HLT
where further selection takes place. On the right side of the figure, we can see how the L1 and
HLT triggers help in bringing down the event data rate from 40 MHz to 100 kHz.

2.4.1 Timing and Control Distribution System

The CMS Run-2 Trigger Control and Distribution System (TCDS) [5] is a culmination of three
systems that were used in Run-1. They were:

e The Trigger Control System (TCS)

e The Trigger Timing and Control (TTC) system
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e The Trigger Throttling System (TTS)

The TCDS is responsible for managing the data taking operations by the data acquisition
pipeline based on the trigger conditions and the data acquisition system’s readiness. It acts as a
mediator between the trigger and the data acquisition system readiness to accept more data. The
TCDS controls distribution of L1 Trigger accepts (TCS) and timing signals to the back-end and
front-end electronics of all CMS sub-detectors and collects the information about the readiness of
all sub-detectors (TTS) in the CMS main detector. These two tasks are useful in generating a
signal that stops triggers when readout buffers are full or out of sync with the event. The clock
that is distributed as reference is synchronous with the particles in the LHC and this clock helps
in keeping the data-taking synchronous across all the sub-detectors of the CMS main detector.

2.5 The Phase-I1I DAQ Upgrade

In 2025, the upgrade of LHC (Large Hadron Collider) to HL-LHC (High Luminosity LHC) [20],
would result in increased particle collisions at the centre of the detectors situated along the LHC.
This increase in particle collision would present an opportunity to detect and measure more inter-
esting events and also help in increasing the precision with which the data is captured. To ensure
that this opportunity is completely utilised, the CMS detector along with its detector front-end
electronics, calorimeters, sub-detectors and data acquisition system (DAQ) would be upgraded.
This upgrade of the DAQ is referred to as the “DAQ Phase-II Upgrade” [5]. Once the Phase-II
upgrade is complete, the detector will be designed to read out data at a rate of up to 44 Th/s
whereas the event sampling rate would increase to up to 750 kHz [5]. This sampling rate would
be further reduced by HLT to 7.5 kHz [5] for offline processing and analysis. For CMS Run-2,
the parameters were 2 Th/s data rate, 100 kHz event rate, and an event storage rate of 1 kHz.
The Phase-II upgrade of the DAQ would see an event size of up to 7.4 MB and an event network
throughput of 44 Th/s (up from 2 Th/s during Run-2) [5].

2.5.1 The DAQ and TCDS Hub (DTH)

The DAQ Phase-IT upgrade would see the introduction of DAQ and TCDS Hub (DTH) [5] in the
CMS data acquisition network which will integrate the TCDS with the data acquisition systems
read-out functionality. The DAQ and TCDS Hub (DTH) will combine the following functionality:

e Data read-out from front-end electronics

e Data aggregation for efficient usage of data acquisition network’s bandwidth.

e Translation of data to packets of a standard protocol like TCP /IP.

e Distribution of Timing and Control Signals to each individual back-end board in the crate.

e Collection and pre-processing of the individual board status for faster monitoring and stat-
istic collection.

The DTH would aggregate input data from each individual back-end board and provide
output links to the surface. The timing and control signals would be received by the DTH from
the TCDS over an optical link and distributed to all node slots in the crate holding the data
acquisition hardware. The nodes would send their TTS status and monitoring data to the DTH
through the backplane of the crate. This would help the DTH generate trigger controlling and
throttling signals as and when required.
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Embedded Linux for Xilinx Zynq
Ultrascale+ MPSoC

The Phase-II upgrade of the Compact Muon Solenoid (CMS) experiment at CERN would see
the introduction of the Xilinx Zyngq UltraScale+ MPSoC (Multi-Processor System-on-Chip) as
an embedded controller for the new data acquisition hardware. They would be used for read-out
monitoring and control of the data acquisition hardware in the CMS data acquisition network.
Many sub-groups associated with the CMS experiment would design their customized hardware
platforms using the Zynq UltraScale+ MPSoC. These devices tightly integrate the Programmable
Logic (PL) with the ARM core Processing System (PS) which allows them to run even a desktop-
grade Linux distribution on the Zynq UltraScale+. This chapter aims at introducing the Xilinx
Zynq UltraScale+ MPSoC and explaining the embedded Linux boot on Zynq UltraScale+ in
detail.

3.1 The Xilinx Zynq UltraScale+ MPSoC

Processing System (PS)
ARM Cortex A53

Core 1 Core 2 Core 3 Core 4

Real-Time Platform
Processing Management
Unit(RPU) Unit(PMU)
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Figure 3.1: Block diagram of Xilinx Zynq UltraScale+ MPSoC
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Figure 3.1 shows the block diagram of the Zynq UltraScale+ MPSoC. The Zynq UltraScale+
MPSoC has multiple processing units like the ARM Cortex A53 Application Processing Unit
(APU) with 4 cores, the Real-Time Processing Unit (RPU) and the Platform Management Unit
(PMU). The figure shows the interfacing between the processing system (PS) and programmable
logic (PL). The PL has multiple blocks like GPIO, Block RAM and high connectivity block for
implementing designs to communicate with peripherals like Ethernet and PCI Express.

The Xilinx Zynq UltraScale+ MPSoC (Multi-Processor System-on-Chip) is an advanced
System-on-Chip. It includes ARM Cortex-A53 Application Processing Unit (APU), an ARM
Mali-400 based Graphics Processing Unit (GPU) and an ARM Cortex-R5 dual-core Real-Time
Processing Unit (RPU) [21]. In this thesis, our work deals with the Application Processing Unit
(APU), which would be hosting the Embedded Linux distribution. The ARM Cortex-A53 APU
has the following features [21]:

e Quad-Core processing system

e CPU Frequency: 1.5 GHz

Support for 32/64-bit operating modes
e CPU Memory: 4 GB

e 32 KB Level-1 cache

e 1 MB Level-2 cache

In addition to the aboe features of the APU, the Zynq UltraScale+ Processing System (PS) also
has other important features such as [21]:

e A Configuration and Security Unit (CSU)
e A Platform Management Unit (PMU)

e 256 KB On-Chip Memory (OCM)

e Gigabit Ethernet Support

e USB 3.0 support

12C/SPI peripheral support
High-Speed UART support up to 1 Mb/s

e Support for Ultra-High Speed Mode of SD cards

The programmable logic (PL) of the Xilinx Zynq UltraScale+ MPSoC is the UltraScale+ FPGA
series produced by Xilinx. It has the following features [21]:

e Configurable Logic Blocks
e 36 KB Block RAM
e Support for PCI Express
e Support for up to 100 Gigabit Ethernet
Due to the features mentioned above and many other such features, the Xilinx Zynq UltraScale+

would be used by many experiment sub-groups in the CMS DAQ Phase-II upgrade. More can be
read about the Xilinx Zynq UltraScale+ MPSoC by reading the device data-sheet [21].
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3.2 Xilinx ZCU102 Evaluation Kit

Figure 3.2: The Xilinx ZCU102 board with the TTL NUC5 desktop.

Figure 3.2 shows the development and testing setup with the Xilinx ZCU102 Evaluation Kit
and the TTL NUC5 desktop. The ZCU102 hosts the Zynq UltraScale+ MPSoC at the centre
(under the black cooling fan) and has all the peripherals on the board that are supported by the
chipset. This helps developers test out various hardware-software designs before initiating final
production. The TTL NUC5 desktop is used to communicate with the ZCU102 over UART, for
development of the Linux distribution and also for testing. More has been elaborated upon the
testing infrastructure in Chapter 6, section 6.1.1.

For this master thesis, the Xilinx ZCU102 Evaluation Kit has been used for development and
testing of the Embedded Linux distribution on Xilinx Zynq UltraScale+ MPSoC. The evaluation
kit utilizes the Zynq UltraScale+ MPSoC Processing System (PS) for processing and Program-
mable Logic (PL) for implementation of the programmable logic on the UltraScale+ FPGA. The
Xilinx ZCU102 Evaluation Kit has the following features [22]:

e SD card interface

USB-UART interface

PCI Express root port slot

HDMTI Output/Input ports

Gigabit Ethernet port 1 Gigabit connections

11
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More can be read about the Xilinx ZCU102 Evaluation Kit by reading the device data-sheet
referred to in the bibliography [22].

3.3 The Need for an Embedded Linux at CMS DAQ

An embedded system is a computing system that is installed or “embedded” in a machine or a
network to control a function or a range of functions. Usually such embedded systems are installed
to monitor critical processes such as the engine combustion cycle as a part of the Engine Control
Unit (ECU) in a car or as a part of the radiation monitoring system at a Nuclear Power plant.
These embedded systems are installed at locations where regular sized desktops and computers
cannot be installed and unlike general-purpose computers, they have constraints in terms of their
size, memory, power consumption and processing speed.

The customised hardware designed by the experiment sub-groups at CMS using the Xilinx
Zynq UltraScale+ are also such embedded systems which would perform critical control and mon-
itoring tasks of the data acquisition hardware in the CMS experiment. The hardware designed
by the sub-groups would have to be compatible with the ATCA (Advanced Telecommunication
Computing Architecture) crates and would have to comply with the dimensions, power and the
networking standards being adopted by the CMS experiment group members. The hardware
would come from 15-20 different sub-groups and the hardware of each group could have unique
functionalities, unique hardware peripherals, unique software applications and unique driver re-
quirements.

The Xilinx Zynq UltraScale+ MPSoC has a powerful processing system and with the help
of its APU, GPU and support for various peripherals such as SATA (Serial AT Attachment),
Gigabit Ethernet and HDMI (High-Definition Media Interface) Video output, it can be used as
a platform to run a desktop grade Linux distribution like Ubuntu or CentOS. Even though the
experiment groups at CMS would not use the hardware as a desktop, the features of Xilinx Zynq
UltraScale+ MPSoC ensure that a 64-bit ARM Linux kernel with Long-Term Support (LTS) can
be deployed on the hardware to run a distribution like CentOS. The Zynq UltraScale+ MPSoC
presents the hardware developers an opportunity to design more compact hardware platforms
whereas the Linux distribution for the Zynq UltraScale+ MPSoC allows experiment groups to
directly communicate with their hardware and remotely update, configure and manage the system.

The Linux distributions compatible with the 64-bit ARM processors are not vastly different
from their Intel x86 counterparts except that the kernel has to be ported for the 64-bit ARM
processor and it should support the userspace by providing drivers and services for the hardware
being driven by the ARM processor. Additionally, the root file system must contain software
packages, libraries and files that are executable on the 64-bit ARM processor. The booting of the
Linux kernel on the ARM processors also varies slightly compared to the booting of the kernel on
the Intel x86 processors, which will be explained in later sections.

3.4 Linux for ARM Processors

A Linux based Operating System is offered as a Linux distribution to the users and it is a collection
of software packages, libraries and utilities along with its own Linux kernel variant which is adopted
or modified for a given processor architecture. Linux distributions are sometimes developed for
specific use cases. The RedHat Entreprise Linux from which CentOS has been derived is a Linux
distribution for enterprises and large scale server deployment.

12
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In order to boot a Linux operating system on the ARM processor, the following components
are essential:
e A Bootloader
e A Device-tree

e A Linux kernel

An “init” process

A root file system

The bootloader is responsible for initializing the underlying hardware, memories, registers
and clocks before loading the Linux kernel in the processor memory. The Linux kernel is informed
about the underlying hardware through the device-tree. The kernel activates various services
and processes for which the kernel is configured and mounts the root file system. The root file
system contains all crucial files necessary for the operating system operations and installed user
applications.

3.4.1 The Bootloader

The bootloader [23] is a software which is executed when the system is powered on and it is
responsible for loading an operating system for the hardware. The bootloader is responsible for
loading the kernel, the hardware information, initialising the hardware peripherals and optionally
loading the bitstream in the FPGA if the Zynq UltraScale+ PL is being used [3]. The principles
behind the Linux boot process on any processor remain the same even if the underlying hardware
may differ. For the Zynq UltraScale+ MPSoC, the bootloader should be present on the first parti-
tion of the booting medium, in our case SD Card and it should be a FAT16/FAT32 partition [24].
There can be a single bootloader stage or it can be divided in multiple stages [25][23][26].

The bootloader has to be loaded from disk into processor memory before its execution. U-
Boot is used to load the Linux kernel on Zynq UltraScale+ [3]. For the Zynq UltraScale+, the
bootloading stage is divided in two stages: the FSBL and the U-Boot stage [24][3].

The First Stage Bootloader (FSBL) can be imagined as a software piece similar to BIOS
(Basic Input/Output System). Both the FSBL and BIOS are responsible for initialising and and
testing the system hardware before loading the second stage bootloader (in our case U-Boot for
Zynq UltraScale+) from a storage device.

The U-Boot is similar to GRUB found on x86 computers. The U-Boot is responsible for
loading the kernel into the processor memory which boots the operating system on the hardware
platform.

3.4.2 The Device-Tree

&eeprom  {
#address—cells = <1>;
#size —cells = <1>;

board_sn: board—sn@0 {
reg = <0x0 0x14>;

}s
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eth_mac: eth—mac@20 {
reg = <0x20 0x6>;

}s

board_name: board—name@d0 {
reg = <0xd0 0x6>;
s

board_revision: board—revision@e0 {
reg = <0xe0 0x3>;

¥
};

Listing 3.1: A snapshot of the ZCU102 device-tree showing the contents of the I2C EEPROM
chip.

Listing 3.1 shows the information of the I2C EEPROM node of the device-tree of the Xilinx
ZCU102 board. It shows the addresses in the I2C EEPROM where the the board serial number,
Ethernet MAC addresses, board name and board revision number are stored.

The Linux kernel needs to know the information about the processor on which it is executing,
the peripherals that are associated with the processor, their interfacing with the processor and
their physical addresses. In order to initialize the drivers and the services associated with these
peripherals, the kernel also needs to check if the functionalities that have been activated in its
configuration are actually supported by the hardware that it is controlling. This information
could be about clocks and registers of the hardware or about any peripheral associated with the
hardware such as the external memory, Ethernet, I2C and HDMI output.

One way of passing such information about the hardware to the kernel is by hard-coding this
information with the device-driver header files in the bootloader and hard-coding the same inform-
ation in the device-driver header files of the kernel itself [26]. However, this would mean that each
piece of hardware would require special bootloader and kernel device-drive header files depending
on the specialised hardware design. This approach does not scale well as the Linux developers
would not be able to generalise their bootloader and kernel for a wide range of devices using pro-
cessors with similar architectures and similar functionalities but differing hardware designs [26].

Another method implemented in modern PCs is to request a particular communication bus
(PCI, USB, SPI) in the computer hardware to inform the kernel about the different devices and
peripherals interfaced to the bus. This process is called enumeration. The Zynq UltraScale+ does
not support passage of device-information in this manner.

The Zynq UltraScale+ uses the device-tree [3][24] to pass the device and peripheral inform-
ation such as physical addresses of devices, I/O register addresses, memory address space and
interrupt information to the kernel during boot time.

The device-tree is represented in textual format in a file with the extension “.dts”. This
is a source text file that describes the information of devices and interconnecting buses present
interfaced with a computing hardware. It is organized in the form of “nodes” that have a root
location represented by “/” just like in the Linux root file system. Every node has a name which
represents a device or a bus interfaced with the processor and the node consists of “properties”.
Each parent node for a particular peripheral or bus may contain “child” nodes for devices that
are interfaced with that peripheral or bus. Values of the properties can be strings, lists of strings
or they could be empty if the absence or presence of the value conveys a Boolean logic to the
kernel. The device-tree source file is compiled into a device-tree blob (.dtb) with the help of “dtc”
compiler.
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3.4.3 The Linux Kernel

The primary functions of the Linux kernel [25][27] are as follows:

e Scheduling of processes and setting up an environment for their execution.

e Allocating memory to a process and protect the memory used by a process from other
processes.

e Manage the computer resources and the access to these resources.

e Control the device I/O, networking and other hardware peripherals as well as the access to
these peripherals and their services requested by the userspace.

e Manage inter-process communication to ensures efficient execution of processes.

e Ensure the integrity of the system when the computer system has multiple users authorised
with modifications to the root file system and software packages.

The bootloader loads the device-tree and the kernel into the processor DRAM [23] and
provides the kernel with the address of the device-tree before the kernel starts executing. The
kernel then sequentially checks all the hardware peripherals, clocks and memories that have been
initialized by the FSBL and then activates all the services and functionalities that are associated
with the underlying hardware and have been activated in the kernel configuration. Once the kernel
is finished with these tasks, it mounts the root file system and executes the “init” process which
allows the user to enter the userspace.

Depending on the bootloader configuration, different file formats can be used to load the
kernel. The Zynq UltraScale+ processors can load the kernel through the “Image” format or
through “image.ub” file which packs the kernel Image, the device-tree blob and a compressed root
file system CPIO archive together in one FIT (Flattened Image Tree) format file [24].

3.4.4 The “init” Process

The “init” [25] process is the first user space process initiated by kernel and it is responsible for
initializing the system management services before allowing the users to login. Multiple versions
of init process exist. System V was the system manager and the init process used in CentOS
before CentOS7 switched to systemd. systemd is the init process that executes in CentOS 7 and
later versions after the root file system has been mounted. The run-levels and the init process
may vary across different Linux distributions. All the software services that have been installed
in the root file system and enabled in the userspace are executed by the “init” process before the
users login to the system.

3.4.5 The Linux Root File System

The Linux root file system [23][25][26] contains all the binary executable files, device information,
process logs, software packages and libraries which are required by the user in its userspace to
efficiently use the Linux operating system. The file system on the disk is organised into directories.
The root file system is mounted at the “/” directory of the file system marking the top of the root
file system hierarchy. Some of the main directories in the root file system are described below:
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e /bin: This directory contains the binary utilities which can be executed by all users, including
superuser, administrator and a general user. The directory may contain hard links and
symbolic links to other executable binaries.

e /boot: The bootloader files, configuration files and the kernel Image are present in this
directory.

e /dev: This directory contains the list of the devices which are connected to the hardware.

e /etc: This directory contains system configuration files such as the TETP, NFS and DHCP
server configuration files.

e /lib: This directory contains the shared libraries and kernel modules.

e /media: This directory points to removeable media attached to the computer.

e /mnt: This directory contains temporary file systems mounted from external devices.
e /opt: The user added application softwares can be placed here.

e /var: This directory contains temporary, variable data and logs of various processes being
executed during system operation.

e /root: Home directory for the root or superuser.
e /home: Home directory for other non-root users. Contains sub-directories for different users.

e /proc: This directory contains temporary, variables files and data information about the
computer hardware such as CPU performance and cache memory.

The Extended (EXT) file system is the file system of choice to boot Linux for Zynq UltraS-
cale+ [24]. During this thesis project, we also use the Network File System (NFS) protocol to
mount an externally located root file system over the network.

3.5 The Zynq UltraScale+ Linux Boot Process

In order to boot Linux on the Zyng UltraScale+, the boot image (BOOT.BIN) needs to be
present on the booting medium as per the boot mode selected by the user [3]. The ZCU102 board
supports booting via JTAG, Quad-SPI Flash, SD Card and NAND Flash Drive [22]. For this
thesis project, we boot the Linux from the SD Card and thus the BOOT.BIN file must be present
on the FAT32 partition of the SD Card. The BOOT.BIN file has been configured to contain the
Platform Management Unit Firmware (PMUFW), the FSBL and the U-Boot executable files which
is the recommended configuration for the Zynq UltraScale+ [24]. The BOOT.BIN can optionally
contain the FPGA bitstream as well to program the Programmable Logic (PL). For a complete
boot over SD Card, the kernel image (Image) and the device-tree blob (“project_Name.dtb”)
should be present on the FAT32 partition as well. The root file system must be present on the
EXT4 partition of the SD Card. The kernel image and the device-tree can be packed together in
the “image.ub” file and placed on the FAT32 partition instead of being placed as separate files.
The automated Network boot is explained in Chapter 4 and Chapter 5 in more detail.

The booting of Linux on the Xilinx Zynq UltraScale+ can be divided into four stages which
are as follows:

e The Boot Setup Stage
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e The Bootloader Stage
e The Kernel Booting Stage

e The “init” Stage

3.5.1 The Boot Setup Stage

The Platform Management Unit (PMU) and the Configuration Security Unit (CSU) are respons-
ible for setting up the Zynq UltraScale+ MPSoC before the Linux can be booted on the PS [3].

The boot setup stage can be divided into 3 stages [3] which are as follows:

e Pre-configuration Stage: The PMU consists of a MicroBlaze processor which loads
executable software from PMU ROM. The PMU ROM is already loaded with the PMU
bootROM (PBR) code which configures the power state of the device, initialize the RAMs,
test memories and registers. After the PBR code has been executed, it hands over system
control to the configuration security unit (CSU). The important steps of the pre-configuration
stage [3] are listed below:

Initialize the System Monitor.
Initialize the Phase Locked Loops (PLL) for clocks.

Clear PMU RAM.
Initialize the Dynamic Random Access Memory (DRAM).

O W =

Release the CSU or enter error state.

Configuration Stage: The CSU executes the CSU bootROM from CSU ROM and per-
forms the following tasks [3]:

1. Initialize the On-Chip Memory (OCM).

2. Determine the boot-mode by capturing the boot-switch configuration of the board at
Power-On-Reset (POR).

3. Load the FSBL in the OCM as well as the PMU Firmware (PMUFW) in the PMU
RAM.

The PMUFW initializes the PMU hardware and service modules for the PMU. After PMUFW
begins executing, it enters the sleep mode. It wakes up only for servicing interrupts from
the PMU hardware and I/O devices to perform platform management services.

Post-configuration Stage: Once the FSBL begins executing, the Zynq UltraScale+ MPSoC
boot enters the post-configuration stage.

3.5.2 The Bootloader Stage

First Stage Bootloader

The First Stage Bootloader (FSBL) is the Secondary Program Loader (SPL) in the terminology
of generic ARM processor booting process [23]. The FSBL performs the following tasks [23][3]:
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Lookup the FAT32 Boot partition of the SD card to find the PL Bitstream and the second
stage bootloader i.e the U-Boot.

Initialize the PS hardware, I/O devices, memory and clocks as per the configuration defined
by the hardware design specified in the Xilinx Vivado design suite.

Optionally, program the PL with the FPGA bitstream.

Loads the ARM Trusted Firmware (ATF) and the U-Boot in the APU processor memory [3].

U-Boot

The U-Boot [23][26] is the Second Stage Bootloader (SSBL) for the Xilinx Zynq UltraScale+
MPSoC or the Tertiary Program Loader (TPL) in the terminology of the generic ARM boot
process [23]. When the processor is powered on, the processor memory does not contain an
operating system, so a bootloader is required to load the Linux Kernel and the device-tree into
the processor memory from the storage space. The U-Boot helps to fulfill this function. There
is no necessity of using multiple stages of bootloaders and even one bootloader like the FSBL
is sufficient to load the Linux kernel into the memory. However, the U-Boot with its command
terminal helps users and system administrators in debugging the boot process, making tests to
validate device initialization and modify the boot process if necessary. It has its own commands,
environment variables and scripting definitions. The U-Boot can load the kernel and device-tree
over the network using Ethernet, over JTAG, from the SD card, Quad-SPI flash and from NAND
flash drive. The Zynq UltraScale+ follows a two stage bootloading process and uses both FSBL
and U-Boot.

Release Power
EMU ( Ccsu X Monitoring )
csu Load Tamper

FSBL Monitoring

RPU \ FSBL
APU \? ATF XU-Bool X Linux
13

[ Time

S e 3

Figure 3.3: The Xilinx Zynq UltraScale+ MPSoC boot flow [3]

Figure 3.3 shows the progress of the Linux boot flow on the Zynq UltraScale+. It shows
the role of the different units of Zynq UltraScale+ in booting the Linux operating system on the
hardware. The PMU can be seen to release the CSU, which loads the FSBL. The FSBL then loads
the ATF and the U-Boot. The U-Boot is then responsible for booting the Linux on the hardware.

3.5.3 Boot Flow

The Zynq UltraScale+ MPSoC can boot in two modes: secure and non-secure modes [3]. The
boot flows have been explained below.
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Non-Secure Boot Flow

In this boot mode, the PMU releases the CSU and enters the service mode where it monitors the
platform. The CSU loads the FSBL in the APU’s On-Chip Memory (OCM) and the PMUFW in
the PMU RAM. The PMUFW executes in parallel to the FSBL execution and executes until the
Linux has been booted on the Zynq UltraScale+ MPSoC. The FSBL initializes the peripherals,
I/0O devices, memories, clocks and hands off to the ATF which then hands-off to the U-Boot. The
U-Boot then loads the Linux Kernel in the APU processor memory.

Secure Boot Flow

The secure boot flow differs from the non-secure boot flow just in a few extra authentication and
decryption steps executed by the CSU [3] which are as follows:

e Check if the FSBL requires authentication.

e If the FSBL requires an authentication check, proceed only if the check has been passed and
check if the FSBL has been encrypted.

e Decrypt the FSBL image and load the FSBL in the OCM.

The FSBL also checks the authentication and decryption of any files it tries to load and they
are only loaded upon successful authentication and decryption. The boot flow explained above is
applicable to all different ways of booting Linux whether all the necessary boot files such as the
device-tree blob and kernel image are present on an SD Card, the Quad-SPI Flash or the TFTP
server.

For this master thesis, we use the non-secure boot flow as the computers inside the CERN
and CMS network are secured behind the CERN firewall and there is router-level security which
prevent unauthorised access to the network boot infrastructure within CERN. Thus, the Linux
boot files for the Zynq UltraScale+ hardware cannot be tampered with and do not require extra
authentication and decryption.

3.5.4 The Kernel Booting Stage

The U-Boot is responsible for loading the kernel Image and the device-tree into the APU processor
memory and handing over the control to the kernel. The kernel is also provided with the address
of the device-tree blob which informs the kernel about the hardware peripherals, I/O devices,
memories and clocks. On the basis of this information, the kernel begins booting and activates
the drivers and services for which the kernel has been configured. Once the booting of the kernel
is over, it proceeds to mount the root file system as per the boot arguments passed to the kernel.
Depending on the boot argument passed to the kernel, the kernel mounts the root file system over
NFS or from the SD card or any other permanent storage location.

3.5.5 The “init” Stage

Once the root file system has been mounted, the kernel looks for the executable of the init process
specified for the Linux distribution. Once the kernel locates the init process, it executes the init
process and hands over control to the init process. The init process then proceeds to activate
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all the system management and other background services which have been installed in the root
file system and enabled in the userspace. At the end of the activation of these services, the init
process starts the user-login process which allows the user to enter the userspace.

3.6 The Userspace

Users enter the userspace after the login. The userspace allows the user to use different software
utilities and libraries installed in the root file system and utilise the functionalities provided by
them to efficiently do computing tasks supported by the computer hardware. The userspace refers
to the user processes which are running in an operating system which interact with the the Linux
kernel in order to efficiently use the computing hardware. The userspace provides an interface to
the user to interact with the kernel and the underlying hardware.

3.7 Summary

This chapter gave the reader an overview of the Xilinx Zynq UltraScale+ MPSoC and the Xilinx
7ZCU102 Evaluation Board as well as informed the reader about the various components and the
steps invovled in booting Linux on the Zynq UltraScale+ MPSoC.
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Chapter 4

Building the CentOS 8 Linux
Distribution

In this chapter, the focus is on explaining the tools required to build a customised CentOS 8
Linux distribution and the method followed to build one. An overview of the Yocto Project is
presented as a background to the PetaLinux Tools. The process of building a Linux distribution
using PetaLinux Tools is explained. Additionally, the process of porting a CentOS 8 4.18 kernel
and building a CentOS 8 root file system for the Zynq UltraScale+ MPSoC is explained in detail.
Finally, a qualitative comparison between the PetaLinux Tools and the Yocto Project has been
presented at the end of this chapter to help readers choose a tool-chain as per their requirements.

4.1 The Yocto Project

This section is based on the collective finding of me and my former colleague Awais bin Zahid
who also worked briefly on the Yocto Project. The work with Yocto Project forms the basis of the
exploration of building a Linux distribution with the help of the PetaLinux Tools. The PetaLinux
Tools is a tool chain released by Xilinx which helps developers to build and customise a Linux
distribution for processors developed by Xilinx. The Petalinux Tools utilise the Yocto Project
build process to build the Linux distribution while hiding the underlying complexities that are
associated with direct usage of the Yocto Project. The PetaLinux Tools provide an easy-to-use
command line interface to help developers configure and build the FSBL, U-Boot, the kernel
and the root file-system. In order to appreciate the PetaLinux build process, it is important to
understand certain key concepts associated with the Yocto Project and they have been presented
in this section.

The Yocto Project is an open source project that helps developers to build customised Linux
distributions for their embedded systems and it supports different processor architectures. The
Yocto Project helps in building customised components like FSBL, U-Boot, device-tree and kernel
Image for booting Linux on these embedded systems. The Yocto Project utilised a layered devel-
opment model allowing users flexibility to make layer specific modifications that are related to the
hardware board support package (BSP), the kernel, the device-tree, the root file system and the
U-Boot.
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4.1.1 The Layer Model

Yocto layers or meta-data layers are repositories of configuration scripts and build scripts along
with build specifications (BitBake recipes) which instruct the Yocto build system (OpenEmbedded
Build System) about how to build a customised Linux distribution. These layers may be hardware
specific or may be flexible enough to customise them for other architectures as well.

Layers can be used to separate or combine certain build tasks depending upon how much
complexity the developer wants to associate with a certain layer. Increasing the build tasks
associated with a certain layer increases the complexity associated with the layer and makes it
difficult for the developers and maintainers for customization, maintenance and reuse of these layers
in the future. The Yocto source directory contains different layers for different layers associated
with a Linux distribution (hardware, U-Boot, kernel, root file system) and these layers have the
prefix “meta-” associated with the name of all different layers.

The contents of the “bblayers.conf” file in the “yocto” folder of PetaLinux Tools can be seen in
Listing 4.1:

LCONF_VERSION = "7 7”

BBPATH = 7 ${TOPDIR}”
SDKBASEMETAPATH = ” ${TOPDIR}”
BBLAYERS := * \
$ {SDKBASEMETAPATH} /layers /core /meta \
${SDKBASEMETAPATH} /layers /core /meta—poky \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—perl \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—python \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—filesystems \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—gnome \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—multimedia \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—networking \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—webserver \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—xfce \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—initramfs \
$ {SDKBASEMETAPATH} /layers /meta—openembedded /meta—oe \
$ {SDKBASEMETAPATH} /layers /meta—browser \
$ {SDKBASEMETAPATH} /layers /meta—qt5 \
$ {SDKBASEMETAPATH} /layers /meta—xilinx /meta—xilinx —bsp \
$ {SDKBASEMETAPATH} /layers /meta—xilinx /meta—xilinx —contrib \
$ {SDKBASEMETAPATH} /layers /meta—xilinx —tools \
$ {SDKBASEMETAPATH} /layers /meta—petalinux \
$ {SDKBASEMETAPATH} /layers /meta—virtualization \
$ {SDKBASEMETAPATH} /layers /meta—openamp \
$ {SDKBASEMETAPATH} / workspace \

Listing 4.1: Contents of bblayers.conf configuration file in the Yocto source directory

Listing 4.1 shows the “bblayer.conf” file of PetaLinux Tools. It shows multiple meta-data
layers such as the meta-poky, meta-openembedded, meta-xilinx and meta-petalinux layers as well
as a few other layers used by PetalLinux to create a Linux distribution. The meta-openembedded
layer specifies metadata for configuring the build scripts in the OpenEmbedded build system
used by Yocto. The meta-xilinx layer has all the information pertaining to Xilinx processors and
Linux distributions for them. The meta-petalinux layer is a PetalLinux specific layer configuring
the PetaLinux build scripts. meta-poky layer is used to create a basic minimal Linux distribution
which is then customised by the PetaLinux Tools as per the hardware design, U-Boot configuration
and kernel configuration.
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4.1.2 Poky

Poky is a reference distribution used by the Yocto Project to create customised Linux distributions.
It contains the OpenEmbedded Build System along with the metadata to help the build system
build a minimal Linux distribution. The “core” directory of the “yocto” folder in the PetaLinux
installation directory contains the meta-poky layer along with the BitBake and OpenEmbedded-
Core scripts which the OpenEmbedded Build System uses to build the Linux distribution. The
basic minimal Linux distribution created with the help of Poky is customised using additional
meta-layers such as the meta-xilinx and meta-petalinux layers to customise the Linux image for
Xilinx processors. Metadata is essentially configuration scripts and BitBake recipe files that are
explained in the following sub-section.

4.1.3 BitBake Engine

BitBake is a build engine used by the Yocto Project to build a Linux distribution and it is a
part of the OpenEmbedded Build System. It can be imagined as being similar to Linux kernel
in its function since it manages the execution, scheduling and parallel management of different
tasks described in the OpenEmbedded build scripts and ensures that each tasks has the requisite
resources necessary for execution. To manage these tasks, the BitBake engine uses scripts knows
as BitBake recipes with the extension “.bb”.

There are different types of files parsed by the BitBake Engine. They are as follows:

1. Recipes: The recipes provide details about which particular pieces of software should used
and where to get them from. They mention whether the software needs to be downloaded
from a particular web repository, which patches to apply to the software, the tools to be
used, the configuration to be used while compiling the software and the output format of the
compiled code. A recipe also contains the information about the recipe version, the license
of the software package and the web-link or path to the source repository. Modifications
to a given recipe can be specified through files with the same recipe name but with the
extensions “.bbprepend” and “.bbappend”. Prepend files are specified by developers before
the configuration process and append files are specified by the BitBake engine itself after
the distribution configuration process. They are used so that basic behaviour of the original
BitBake recipe is not altered.

2. Class Data: Class files have the extension “.bbclass” and they are used to share information
between BitBake recipe files. For example, the xilinx-platform-init class in Listing 4.2,
which specifies common files and headers that are necessary to initialise the Zynq and Zynq
UltraScale+ platforms.

<

3. Configuration Data: The configuration files with the extension “.conf” are used to define
environment variables, file paths, machine settings, software versions and all other con-
figuration variables that are necessary to govern the OpenEmbedded build process. The
“bblayers.conf” file in Listing 4.1 defines the different meta-layers to be used for building a
PetaLinux distribution.

The “xilinx-platform-init.bbclass” file describing the platform initialisation files for Zynq and
Zynq UltraScale+ platforms:

# This class should be included by any recipe that wants to access or provide
# the platform init source files which are used to initialize a Zynq or ZyngMP

# SoC.
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# Define the path to the xilinx platform init code/headers

PLATFORM.INITDIR ?= 7 /usr/src/xilinx —platform—init”
PLATFORM_INIT_STAGEDIR = 7 ${STAGING_DIR_-HOST} $ {PLATFORM_INIT_DIR }”

# Target files use for platform init

PLATFORM.INIT_FILES ?= "7

PLATFORM_INIT_FILES zynq = " ps7_init_gpl.c ps7_init_gpl.h”
PLATFORM_INIT_FILES_zyngmp = ” psu_init_gpl.c psu-init_gpl.h”

Listing 4.2: Contents of xilinx-platform-init.bbclass class file in the Yocto source directory.

Listing 4.2 shows the “xilinx-platform-init.bbclass” file. We can see the paths for the Xilinx
platform initialisation source code and header files specified in the “xilinx-platform-init.bbclass”.
This informs the build recipe files where to find the platform initialisation files for Zynq and Zynq
UltraScale+.

The “u-boot-xInx-2019.1.bb” BitBake recipe used by PetaLinux 2019.1 to build the U-Boot
for Xilinx platforms:

UBOOT_VERSION = "v2019.01”
XILINX_RELEASE_VERSION = "v2019.17”

UBRANCH ?= " master”
SRCREV ?= ”d895ac5e94815d4b45dcf09d4752c5¢c2334a51db”

include u—boot—xInx.inc
include u—boot—spl—zynq—init .inc

SRC_URI_append_kc705—microblazeel = 7 \

file://microblaze—kc705—Convert—microblaze—generic—to—k.patch”

LICENSE = "GPLv2+”
LIC_FILES_.CHKSUM = 7\
file://README; beginline=1;endline =4;md5=744e¢7e¢3bb0c94b4b9f6b3db3bf893897”

# u—boot—xInx has support for these

HAS_ PLATFORM_INIT ?= 7 \
zynq-microzed_config \
zynq-zed_config \
zynq-zc702_config \
zynq-zc706 _config \
zynq-zybo_config \
xilinx_zynqmp_zcul02_revl_0_config \
xilinx_zynqmp_zcul06_revA_config
xilinx_zynqmp_zcul04_revC_config
xilinx_zynqmp_-zcul00O_revC_config
xilinx_zyngqmp_zculll_revA _config
xilinx_zynqmp_zcl275_revA_config
xilinx_zynqmp-zcl1275_revB_config
xilinx_zynqmp_zc1254 _revA _config

= =

Listing 4.3: Contents of u-boot-xlnx-2019.1.bb BitBake recipe file in the Yocto source directory.

Listing 4.3 shows the file “u-boot-xlnx-2019.1.bb”, which is a BitBake recipe for U-Boot. It
mentions the version of the U-Boot, the branch of the Git repository, the paths to a patch file that
would be applied to the U-Boot source code, the license version and names of various configuration
files which the BitBake recipe supports.
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4.1.4 OpenEmbedded Build System

The OpenEmbedded Build System consists of two important compoents: the BitBake task execu-
tion engine and the OpenEmbedded core. It is a customized build system developed for the Yocto
Project, and it was originally derived from the OpenEmbedded Project. The meta-openembedded
layer is the layer for the OpenEmbedded Build system and it specifies the recipes, classes and
configuration files for building the kernel, file systems, adding software packages to the root file
systems and adding driver and software support to the U-Boot and kernel modules.

The following points describe a brief summary of the Yocto workflow:

1. Developers download the Yocto project version of their choice and different meta-layers that
they wish to use to configure their customised Linux distribution.

2. Machine type, architecture, kernel and U-Boot configurations, patches, recipe modifications
and amendments are specified by the developers in the prepend, append and configuration
files.

3. The build system downloads or fetches the source code from the specified repositories or
paths and clones it in a working directory.

4. Patches are applied to the source code and then the source code is compiled as per the
configuration provided.

5. The compiled software is then packaged into an executable binary format specified by the
developers and then the final Linux boot images are created.

More can be read about the Yocto Project on the following weblink:

https://www.yoctoproject.org/docs/

The process of configuring, fine-tuning and debugging the build process of Yocto Project
to build a customised Linux distribution can be time consuming. Keeping this in mind, Xilinx
developed the PetaLinux Tools, to accelerate the development process for Xilinx platforms by
providing an easy-to-use command line interface and hiding the underlying complexities of the
Yocto build process. A qualitative comparison of both the tool chains has been presented at the
end of the chapter.

4.2 Developing a Distribution with PetaLinux Tools

The PetaLinux Tools is a tool chain designed to help hardware developers develop a Linux distri-
bution for platforms using the Xilinx processors. In order to get the distribution built, there are
certain pre-requisites that are necessary and they are as follows [24]:

1. For hardware developers developing a custom Linux distribution, Xilinx Vivado Design Suite
to generate the hardware description file (HDF) and the board-support packages (BSP).

2. A computer running a 64-bit operating system with a minimum of 8 GB RAM, 2 GHz
processing speed and storage space of at least 10 GB [24].
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3. Software dependencies necessary to help PetaLinux Tools/Yocto execute different tasks spe-
cified in the build scripts. The packages necessary for the PetaLinux Tools 2019.1 can be
found in the PetaLinux 2019.1 user guide [24].

The Vivado Design Suite and PetaLinux Tools version should be the same otherwise it could
take some time to modify PetaLinux Tools’ scripts for allowing HDF files from an older or newer
Vivado version. It is recommended to not make modifications to the PetaLinux Tools’ build scripts
without understanding the whole build hierarchy as it may break other build processes.

Xilinx Vivado Design Suite can be downloaded from the following weblink:
https://www.xilinx.com/support/download.html
PetaLinux Tools can be downloaded from the following weblink:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/
embedded-design-tools.html

4.2.1 Minimal Vivado Design for Zynq UltraScale+

Hardware developers designing their platforms using Zynq UltraScale+ need to have certain basic
configurations activated in their FPGA design in order to build a working Linux distribution for
the Zynq UltraScale+ processing system. The minimal design must contain [24]:

1. External memory with at least 64 MB of memory.
2. UART for serial console.
3. Optional non-volatile memory for Quad SPI Flash or SD card.

4. Optional Ethernet which can be essential for network access and network booting.

Alternatively, developers using Xilinx evaluation boards can use the board support packages
(BSPs) offered by Xilinx for these evaluation boards. These BSPs contain the hardware description
describing all the different peripherals that are connected to the Zynq UltraScale+ programmable
logic array and a bitstream to program the programmable logic. These BSPs are eventually parsed
by the underlying OpenEmbedded Build Sytem recipes of PetalLinux Tools to generate a device-
tree as well as the kernel and U-Boot configuration. During this project, the BSP provided by
Xilinx for the ZCU102 board was used.

The Zynq UltraScale+ BSPs can be downloaded from the following weblink:

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/
embedded-design-tools.html

4.2.2 Installing the PetaLinux Tools

Once the PetaLinux Tools have been downloaded, the following bash script must be executed to
install the tool chain at the desired location.
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The script to install the PetaLinux Tools on your Linux system is as follows:

#!/bin/bash
HOME=/home /kmor

#Install all software dependencies for PetaLinux Tools

sudo yum install gawk make wget tar bzip2 gzip python unzip perl patch diffutils \

diffstat git cpp gcc gcc—ct++ glibc—devel texinfo chrpath socat perl—Data—Dumper \

perl—Text—ParseWords perlThread—Queue python34—pip xz which SDL—devel xterm \
autoconf libtool zlib—devel automake glib2—devel zlib ncurses—devel \

openssl—devel dos2unix flex bison glibc.i686 screen pax glibcdevel.i686 \

compat—libstdc+—33.i686 libstdc+.i686

#Make a directory for PetalLinux Installation at your home directory
mkdir $HOME/petalinux —2019.1

#Install PetaLinux 2019.1 in the directory created above

cd “/Downloads

./ petalinux—v2019.1—final—installer .run $HOME/petalinux —2019.1

Listing 4.4: Script for installing the PetaLinux Tools

Listing 4.4 presents the script to install PetaLinux Tools in a Red Hat Linux environment
like CentOS. The HOME variable specifies the path to the installation directory and should be
modified as required. The script also installs PetaLinux Tools dependencies as mentioned in the
user guide [24]. The script makes a directory for PetalLinux installation in the path mentioned
by variable HOME and finally, executes the installation with the help of installation binary.

4.2.3 Creating a PetaLinux Project

Once the Petaliinx Tools have been installed, it is time to import the environment variables to
have correct settings configured in the shell.

The following script helps in creation of the project.

The script to create a PetaLinux project:

#!/bin/bash

HOME=/home /kmor

PROJECT=PetalLinux

BSP="/Downloads/xilinx —zcul02—v2019.1—final . bsp
#Change to the PetalLinux installation directory
cd $HOME/ petalinux —2019.1/2019.1

#Import the system settings from settings.sh
source settings.sh

#Create a PetalLinux project

petalinux—create —t project —n $PROJECT —s $BSP

Listing 4.5: Script for creating a PetaLinux Project
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Listing 4.5 presents the script to create a PetaLinux project. The PROJECT variable can be
changed to the name that user wants. BSP points to the path where the hardware design’s board
support package is located. The script then sources the environment with “source settings.sh” to
setup the PetaLinux build environment. The “-t” option specifies the project type (in this case
project), “n” option specifies the name of the project and “-s” option specifies the source path
for the board support package [24].

Hardware developers can create the board support packages for their design in the Vivado
design suite or leave this field blank to specify a path to the hardware design file during configura-
tion stage. The command for that is “petalinux-config —get-hw-description”. This command helps
PetaLinux configure the Linux distribution as per the Hardware Description File (HDF) provided.
The configuration step has been explained in the next section. The passing of the path to the
BSP helps in generating the configuration for building the correct device-tree, FSBL, U-Boot and
kernel drivers necessary to boot the Linux on the Xilinx platform.

4.2.4 Configuring the PetaLinux Project

misc/config System Configuration —
Arrow keys navigate the menu. <Enter> selects submenus --->
(or empty submenus ----). Highlighted letters are hotkeys.

Pressing <Y= includes, <N= excludes, <M= modularizes features.
Press <Esc»<Esc> to exit, <?> for Help, </> for Search.

-§- ZYNQMP cConfiguration

Linux Components Selection ---=
Auto Config Settings --->
-¥- Subsystem AUTO Hardware Settings ---=
DTG Settings --->
ARM Trusted Firmware Compilation Configuration ---=
[ ] FPower Management kernel configuration
FPGA Manager ---=
u-boot Configuration ---=
Image Packaging Configuration ---=
Firmware Version Configuration --->
Yocto Settings --->

< Exit > < Help > < Save > < Load >

Figure 4.1: The Menuconfig home screen for configuring the PetaLinux project.

Figure 4.1 shows the Menuconfig screen which is generated after the petalinux-command
parses the Kconfig files generated after the petalinux-create command. This Menuconfig is suffi-
cient to configure the whole project. However, developers can make individual configurations to
boot components as well, with similar Menuconfig interface. Individual component configurations
were often required to do complex configurations in order to implement an automated network
boot.

Once the project has been created, it is important to pass the correct configuration to the
PetaLinux build scripts to build various Linux boot components. The PetaLinux project creation
results in the generation of a basic intermediate Kconfig file with the help of the hardware design
and it is located in the “build/misc/config” directory of the created project. This intermediate
Kconfig is offered to the developer in the form of a Menuconfig window during the initial high-level
configuration initiated by the developer.

This high-level configuration is used to generate the final “config” and “rootfs_config” files
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which are used to configure the U-Boot, the kernel, the device-tree and the root file system. This
configuration is done with the help of “make” and it consumes a lot of time as it is used to
generate certain meta-layers like the “meta-plnx-generated” and ”meta-user” layers which contain
some newly created BitBake recipes and BitBake appends for different Linux boot components.
Additional configurations for the U-Boot, kernel, device-tree and root file system are possible with
a special commands such as:

e “petalinux-config -c u-boot” - Config U-Boot

e “petalinux-config -c kernel” - Config kernel

e “petalinux-config -c device-tree” - Config device-tree

e “petalinux-config -c¢ rootfs” - Config root file system
However, unless additional features are required (eg. features for netwotk boot), it is not necessary
to configure each of these components. Passing the BSP during the PetaLinux project creation is
sufficient to configure the basic, minimal configuration necessary to boot Linux on the hardware.

Each of these commands generate a Menuconfig screen by parsing their respective Kconfig file
hierarchy.

#!/bin/bash
HOME=/home /kmor
PROJECT=PetaLinux

#Uncomment the following line to specify path to Hardware Description File

#AIDF=<Path—To—HDE>

#Change to the PetalLinux installation directory
cd $HOME/ petalinux —2019.1/2019.1

#Import the system settings from settings.sh
source settings.sh

#Change to the PetaLinux project directory

cd $PROJECT

#Global configuration for the PetaLinux project. Append —c with options: u—boot or
kernel or device—tree or rootfs whichever you wish to configure individually.

petalinux—config

#Uncomment the following line to generation configuration from HDF
#petalinux—config —get—hw—description=HDF

Listing 4.6: Script to configure Petalinux project

Listing 4.6 shows the script to configure a Petaliinux project. The script enters the pro-
ject location, sources the PetaLinux environment settings and then enters the project directory
and executes petalinux-config command to configure the project. Options for configuring the u-
boot, kernel, device-tree and root file system can be appended to the command to configure boot
components individually.

During the initial global configuration, it is important to specify the IP address configuration,
the kernel boot arguments, the source code path for the kernel and the U-Boot and the type of
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the root file system in order to ensure that the correct configuration is passed to the U-Boot

and kernel. This configuration is important to implement a network boot of Linux on the Zynq
UltraScale+.

The specification of the root file system type is critical as it decides which kind of file system
support is activated in the kernel configuration and also the driver modules which are necessary
to mount the root file system. The following set of images illustrate the different configurations
specified in the menu-config window for configuring a PetaLinux distribution.

Ethernet Settings q
Arrow keys navigate the menu. <Enter> selects submenus ---=
(or empty submenus ----). Highlighted letters are hotkeys.
Pressing <Y= includes, <N=> excludes, <M= modularizes
features. Press <Esc><Esc> to exit, <?= for Help, </> for

I Primary Ethernet (psu_ethernet 3) --->
[ 1 Randomise MAC address
(08:80:30:7T4:03:37) Ethernet MAC address
[#] Obtain IP address automatically

< Exit > < Help > < Save > < Load >

Figure 4.2: Menuconfig to activate automatic IP address assignment.

Figure 4.2 shows the options to configure the Ethernet properties in the Menuconfig. Here
users can choose their primary Ethernet interface, MAC address (optional) for the U-Boot envir-
onment and whether the Ethernet acquires IP address automatically or not.

Image Packaging Configuration q
Arrow keys navigate the menu. <Enter> selects submenus
---= (or empty submenus ----). Highlighted letters are
hotkeys. Pressing <Y= includes, =N= excludes, <M=
modularizes features. Press <Esc»<Esc> to exit, <?= for

|| _Root filesystem type (NFS) ---3

() Location of NFS root directory

() NFS Server IP address

(image.ub) name for bootable kernel image
(Bx18600) DTB padding size

[#] Copy final images to tftpboot

() tftpboot directory

< Exit > < Help > < Save > < Load >

Figure 4.3: Menuconfig to specify root file system type.

Figure 4.3 shows the options to choose the root file system type, location of NFS (Network
File System) root directory (optional, obtained from DHCP (Dynamic Host Configuration Pro-
tocol) server automatically), NFS server IP address (static, not recommended to activate if using
automatic IP address assignment from DHCP server) and path to the TETP (Trivial File Transfer
Protocol) server directory (optional, obtained from DHCP server automatically).
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All the above configurations of the root file system, the Ethernet, the support for TFTP
are necessary for the network boot of Linux on the ZCU102 board but they are not sufficient to
execute an automated network boot. There are many challenges while implementing the network
boot which need to be tackled. One such challenge was to configure the correct NFS version
on both server and client side. This was realised after numerous failed attempts of NFS mount
and it was found that the server is configured for NFSv4 whereas the kernel has been configured
automatically for NFSv2. The NFS server and kernel configuration had to be changed to NFSv3
for ensuring the NFS mount.

Above all, it is also important that the firewall on the NFS and TFTP servers are configured
properly to allow the requests from the U-Boot and the kernel. It is even a bit more complex in
a big network like CERN where multiple computers are connected to the network. The firewall
had to be configured properly to allow requests for these services on specific ports and all other
unnecessary services and ports were closed. Before doing this, the TFTP and the NFS requests
from the U-Boot and the kernel kept getting rejected. The scripts for TFTP and NFS server
configuration along with the firewall setup are presented in the Appendix B.

Other challenge faced during the implementation of the network boot was the failure of the
kernel to acquire IP address from the DHCP server. After careful investigations of the DHCP
server configurations and the kernel boot arguments option it was found that the PetaLinux con-
figuration is not sufficient to get the right boot arguments and one must specify the boot arguments
explicitly either in U-Boot environment or during Petalinux configuration so that kernel makes
a successful DHCP request. A significant time was spent in understanding that the PetalLinux
configuration is not setting the correct boot arguments for kernel to make a DHCP request. Ul-
timately, the boot argument setting for the kernel had to be studied. The default boot argument
generated automatically by PetalLinux was “earlycon console=ttyPS0,115200 clk_ignore_unused
root=/dev/mmcblkOp2 rw rootwait”. The automatic boot argument setting had to be disabled
and manually the kernel boot arguments had to be specified. The new kernel boot arguments for
network boot were “earlycon console=ttyPS0,115200 clk_ignore_unused root=/dev/nfs ip=dhcp
rw”. In both the boot arguments, the “root” option points to the root file system mount point.
The new option “ip” specifies whether the IP address is static or provided automatically by DHCP
server. The “console” option configures the kernel to print the boot debug over the UART port
ttyPS0 on ZCU102 board. This port is chosen as per the hardware information provided by the
BSP.

There was another challenge faced with the DHCP request made by the U-Boot where the
U-Boot was unable to save the TFTP server IP address provided by the DHCP server. This
basically derailed the whole automated network boot as boot files could not be downloaded from
the TFTP server. This issue had to be addressed by modifying the PetaLinux build scripts which
were blocking the setting of the TFTP server IP address in the U-Boot environment by the DHCP
server. This has been elaborated upon in detail in Chapter 5.

4.2.5 Building a PetalLinux Project

Once the configuration is taken care of and the necessary configuration files and recipes have
been generated, it is time to build the distribution. That is done through a simple command -
“petalinux-build”. Although it is a small command, it is responsible for many tasks and takes
the longest time to complete. The petalinux-build command is responsible for building the PMU
Firmware (PMUFW) and the First Stage Bootloader (FSBL) which are the pieces of software
executed before loading the U-Boot. The petalinux-build command is also responsible for down-
loading or copying the U-Boot and kernel source codes in the PetaLinux project “build” directory
and applying patches to the source code before beginning to compile the source code with the help
of make and GCC compiler. This is the same process which is carried out with Yocto Project or
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standalone compilation of U-Boot or kernel with the help of make and GCC.

Once the kernel has been compiled, the petalinux-build script proceeds to build the device-tree
as per the HDF and the driver configuration of the kernel such that the drivers for a given hardware
can find the information about the hardware at the relevant node in the device-tree and can also
physically locate the hardware that they are supposed to drive. The petalinux-build command is
also responsible for building a generic root file system for the PetaLinux distribution as per the
kernel configuration and the metadata present in the layers specified in the “bblayers.conf” file
in Listing 4.1. The petalinux-build command can do all the tasks mentioned above. However,
developers can go step-by-step by specifying options for the command such as:

e “petalinux-build -¢ pmufw” - Build PMU Firware
e “petalinux-build -c¢ fsbl” - Build FSBL

e “petalinux-build -c¢ u-boot” - Build U-Boot

e “petalinux-build -c kernel” - Build Kernel

e “petalinux-build -c device-tree” - Build device-tree

e “petalinux-build -c¢ rootfs” - Build root file system

4.2.6 Packaging the Boot Image

The petalinux-build command generates various images for the PMUFW, FSBL, U-Boot and
Kernel while also generating the device-tree blob (.dtb) file and the root file system archive which
is compressed in multiple formats like TAR, CPIO and GZIP. The command also generates a
Flattened Image Tree (FIT) image with the name “image.ub”. This is an image format readable
by the U-Boot and packs the kernel image, the device-tree and the INITRAMFS root file system
archive in one package.

In order to obtain uniformity across the different hardware platforms designed by different
experiment groups, it was decided to have a U-Boot and a kernel which tries to fulfill the minimum
requirements of most of the experiment groups whereas the FSBL and device-tree can vary from
experiment group to experiment group. Keeping this focus in mind, the boot process has been
made modular and that is the boot process explained in Chapter 5.

Isolating the FSBL and the device-tree from the rest of the Linux boot modules also helps
in delineating the roles of the hardware developers and the system administrators. While the
hardware developers can be made responsible for generating the FSBL using Vivado using their
HDF files, the system administrators can use the unique HDF/BSP provided by hardware de-
velopers to generate the device-tree. This allows the system administrators to centrally maintain
the BOOT.BIN, U-Boot, kernel and the root file system for all the experiment groups whereas the
experiment groups are just responsible for providing the correct FSBL, HDF/BSP and bitstream
file. It must be noted that with each change in the HDF file - the FSBL, device-tree and the bit-
stream files also change and the updated HDF/BSP along with the bitstream file must be made
available to the system administrators to ensure error-free booting of Linux on their hardware.

Keeping this in mind, it is important to package the PMUFW, FSBL and U-Boot (optionally
the bitstream) in the BOOT.BIN as it is responsible for loading the PMUFW, the FSBL and the
U-Boot in the Zynq UltraScale+ PS and programming the programmable logic with the bitstream.
This is achieved with the command “petalinux-package”.

The script for building and packaging boot images is shown in the listing below:
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#!/bin/bash

HOME=/home /kmor

PROJECT=PetaLinux

#Change to the PetalLinux installation directory

cd $HOME/ petalinux —2019.1/2019.1

#Import the system settings from settings.sh

source settings.sh

#Change to the PetalLinux project directory

cd $PROJECT

#Building all the images for the PetaLinux project
petalinux—build

#Change to the images/linux directory

cd images/linux

#Package the PMUFW, FSBL, U-Boot and bitstream in the BOOT.BIN
petalinux —package —boot —format BIN —fsbl zynqmp_fsbl.elf \
—u—boot u—boot.elf \

——pmufw pmufw. elf \
—fpga system . bit —force

Listing 4.7: Script to build and package PetaLinux images

Listing 4.7 shows the script to build and package the PetalLinux images. The script enters the
PetaLinux installation directory, sources the Petalinux environment settings and enters the project
directory. Then it proceeds with a full build to build all PetaLinux images and then packages the
images into BOOT.BIN. The BOOT.BIN is responsible for loading the PMU Firmware (PMUFW),
FSBL, U-Boot and optionally the bitstream in the Zynq UltraScale+ MPSoC.

4.3 Conclusion of the PetaLinux Build Process
The following conclusions can be drawn from the PetaLinux build process:

e PetaLinux Tools are easy to use for beginners looking to develop a Linux distribution for
their Xilinx embedded systems and understanding the Linux build process.

e PetaLinux Tools provide a one tool solution to build the PMUFW, FSBL, U-Boot and Linux
kernel all of which require separate tools to build each of them.

e All the Xilinx SoC platforms are supported by PetaLinux, reducing the development cycle
of Linux development for platforms using these SoCs.

e The PetaLinux Tools can can be easily customised to use an external kernel and U-Boot
source code.

e The PetalLinux Tools abstracts the complexity associated with the Yocto build process and
also reduces the time spent in understanding the build process.
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e The PetaLinux Tools might be easy to use, but in case of errors associated with Linux dis-
tribution, customisation’s and modifications to the build process, configurations and recipes
may take significant time.

e The PetaLinux Tools are aimed at Xilinx processors and it is very time-consuming and
challenging to modify the PetaLinux build scripts and recipes to build a Linux distribution
for non-Xilinx processors.

4.4 Porting the CentOS 8 Kernel for Zynq UltraScale+

PetaLinux Tools download the kernel source code from the Git repository of Xilinx. Each version
of PetaLinux downloads the kernel source code from a pre-configured branch in the Git repository.
The same procedure applies to the U-Boot source code. While the kernel provided by Xilinx is
tailored for the Zynq and Microblaze series of processors, the developers at different groups are
recommended not to use the Xilinx kernel and instead use a kernel for which expertise already
exists at CERN i.e the CentOS 8 kernel. This is because the CERN IT already has vast experience
with the CentOS 8 kernel and they are capable of providing a security-tested kernel to different
groups along with secure updates to the CentOS 8 kernel. There are other reasons why the CentOS
8 kernel is preferred over the kernel provided by Xilinx and they are as follows:

1. The kernel version downloaded by the PetalLinux Tools might change with the change in
the PetaLinux Tools version [24]. As a result, if system administrators were providing
support and maintenance to a few experiment groups for kernel version 4.19 that came with
PetaLiinux Tools 2019.1, they might have to provide support to some other groups using
kernel version 4.20 that comes with Petalinux Tools 2019.2. The system administrators have
to provide support to machines commissioned in CMS for at least 10-15 years. Continuous
changes in the kernel version complicates the task for system administrators.

2. CentOS mainstream kernels come with Long-Term support (LTS) and this ensures that
security patches, secure software updates and other support can be provided by the CentOS
community as well as the CERN IT for a long period of time during which the machines are
commissioned in the CMS experiment network.

3. The kernel source obtained from the Git repository of Xilinx is an open source collaboration
with many people uploading patches to the repository to improve the code. This code may
or may not be tested for security vulnerabilities by the Xilinx developers. Usage of such
kernels for the phase-II upgrade hardware could expose the hardware and the experiment
networks to security threats from outside of CERN.

4. If such kernel are used, it may necessitate the isolation of such nodes running those kernels
to protect the experiment network.

5. Software updates to such systems would be difficult due to the isolation of their systems or
due to the restricted access provided to the them.

Keeping the above factors in mind, most of the experiment groups have agreed to the usage
of the latest CentOS 8 kernel (in this case 4.18) during the CMS SoC Workshop conducted in
June 2019.
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4.4.1 Reasons to Port the CentOS 8 Kernel 4.18 for Zynq UltraScale+

The CentOS 8 kernel supports the 64-bit ARM processors like the Zynq UltraScale+. However, the
CentOS 8 kernel Image without proper configuration cannot boot as-it-is on the Zynq UltraScale+.
This is because the the CentOS 8 kernel needs to be informed about the platform that it is booting
upon, the hardware that is interfaced with it and the drivers that are required to boot on that
hardware. Each processor has certain peripherals and their drivers that are essential to boot the
Linux kernel on the processor. The CentOS 8 kernel 4.18 needs to be configured properly for the
Zynq UltraScale+ by having the Kconfig files properly populated with Zynq UltraScale+ specific
features which the developers can activate to boot Linux on Zynq UltraScale+. Once the CentOS
8 kernel 4.18 has been properly configured, it would require the Xilinx and Zynq UltraScale+
specific drivers to be ported to the CentOS 8 source code so that they are available when the
kernel build begins as per the kernel configuration. Not all the configuration files, features, drivers
and Makefiles necessary to boot Linux on Zynq UltraScale+ come with the original CentOS 8
kernel 4.18’s source code. Thus, these things had to be added to it and hence the porting of the
CentOS 8 kernel 4.18 for Zynq UltraScale+ MPSoC is important.

4.4.2 Fetching and Patching the CentOS 8 Kernel 4.18 Source RPM

Before porting the CentOS 8 kernel 4.18, it should be fetched from the CentOS repository and
should be patched with the patches provided in the source RPM package. To achieve this “rpm-
utils” and “rpm-build” packages must be present in the CentOS userspace. It must be noted that
the kernel 4.18 source rpm cannot be extracted and patched in a system running on a lower kernel
version as the userspace might contain older, outdated software packages. As a result, a CentOS
8 distribution was installed on a desktop machine to extract and patch the CentOS 8 kernel 4.18.
The kernel should be extracted from the CentOS repository and for this project, it was extracted
from the following weblink:

http://vault.centos.org/8.0.1905/Base0S/Source/SPackages/

The extraction and patching of the source RPM results in the kernel source code which can
finally be used to port it for Zynq UltraScale+. A detailed script for extracting and patching the
CentOS 8 kernel 4.18 has been provided in the Appendix A.

4.4.3 Getting the Right Kernel Configuration

There is a configuration file called the “defconfig” file present in the path “arch/arm64/configs”
of the CentOS 8 kernel 4.18 source code. This file contains the default configuration which is
necessary to build a CentOS 8 kernel. On the other hand, there is a “xilinx_zynqmp_defconfig” file
present in the same path of the Xilinx kernel 4.19 source code. This has the default configuration
to boot a kernel on the Zynq UltraScale+ MPSoC. In order to get the right kernel configuration,
we need to find differences between the two defconfig files and add the Zynq UltraScale+ specific
differences to the defconfig file present in the CentOS 8 kernel. This can be done by simply using
the Linux utilities “diff” and “patch” as can be seen in the following script:

#Find differences in kernel default configuration
diff —u defconfig xilinx_zyngmp_defconfig > defconfig.patch

#Patch the CentOS 8 default configuration with Zyngq UltraScale4+ features
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patch —p0 < defconfig.patch

Listing 4.8: Script to add Zynq UltraScale+ features to CentOS 8 kernel 4.18 default configuration

Listing 4.8 shows the method to find differences between the two default kernel configurations
and patching the Zynq UltraScale+ specific differences to the CentOS 8 kernel 4.18 default con-
figuration. It needs to be investigated which features really need to be added in the default kernel
configuration as adding certain features could make the new CentOS 8 kernel 4.18 less secure
compared to the default CentOS 8 kernel 4.18. There needs to be a complete understanding of
which features are being ported and only the necessary features need to be ported. A simple idea
is to add those missing features in CentOS 8 kernel 4.18 default configuration, which are obviously
related to Xilinx and Zynq UltraScale+ or the hardware peripherals on the hardware platform
that uses Zynq UltraScale4+. They can be easily identified by the feature names. A snapshot of
differences between the CentOS 8 kernel 4.18 default configuration and Xilinx kernel 4.19’s Zynq
UltraScale+ default configuration has been presented in the Appendix A.

Without proper kernel configuration and Zynq UltraScale+ features in the kernel configura-
tion, the CentOS 8 kernel 4.18 would not boot on the Zynq UltraScale4. Once the appropriate
additions are made to the CentOS 8 kernel 4.18 defconfig file, it has the features which are present
in the default configuration of Xilinx kernel source code. It helps in generating a correct “config”
file with the help of different Kconfig files in different sub directories of the CentOS 8 kernel 4.18
source code. A correct “config” file helps the Makefile in the kernel source code to build the
modules and drivers necessary to boot the kernel on Zynq UltraScale+.

Alternatively, the easiest way to configure a kernel for the Zynq UltraScale+ is to directly use
the “xilinx_zyngmp_defconfig” file as this configuration is also used by the PetaLinux Tools and
guarantees that a kernel configured with this file would boot on the Zynq UltraScale+. However,
this configuration could be vastly different from the CentOS 8 kernel 4.18 or any other mainstream
LTS kernel configuration and could have features which expose the kernel to security and functional
vulnerabilities which are not desirable. Hence, using the CentOS 8 kernel defconfig file with
addition of differences from the “xilinx_zynqmp_defconfig” file is the best way to configure the
kernel.

4.4.4 Challenges in Getting the Right Kernel Configuration

As seen with PetaLinux, kernel configuration process is the most crucial process in building a
kernel. A wrong configuration can build the kernel with insufficient or deficient support for the
peripherals and the services required by the user, stall the boot of the kernel on the Zynq Ul-
traScale+ or even add introduce security vulnerabilities in the system. As a result, a significant
time was consumed in getting the right kernel configuration for the CentOS 8 kernel 4.18. For
configuring the kernel, “make” was used instead of PetalLinux Tools to speed up the configuration
process. In PetaLinux Tools, the kernel configuration process takes long since additional tasks
like generation of BitBake appends and configuration files are also carried out along with quality
assurance checks along the configuration process. Make was used to generated a kernel config file
and a Makefile in the kernel build directory as per the default Kernel configuration (Kconfig) and
Makefile present in the central directory of the CentOS 8 kernel 4.18 source code. The Makefile
and the Kconfig file in the kernel source code’s central directory are instrumental in generating
the config and the Makefile needed to build the kernel for a given architecture. They must not be
modified.

Keeping this in mind, the kernel build was executed. However, when the kernel began booting
on the ZCU102 board, it didn’t proceed to mount the root file system and complained of missing
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drivers such as the Zynq GPIO, SD card clock, Ethernet clock, Xilinx DMA drivers, Quad-SPI
drivers and Cadence Ethernet driver. After going through multiple cycles of addition of driver
sources and their dependencies in the kernel source code and testing the images of those kernels,
it was established that there is a problem with the config file which is being generated during the
kernel configuration. Apart from these missing drivers, other drivers and services had not been
activated in the CentOS 8 kernel 4.18 default kernel configuration.

As a result different Kconfig files in the Xilinx and the CentOS 8 kernel 4.18 were compared.
It was found out that the Kconfig.platforms file in the “arch/arm64” path of the CentOS 8 kernel
has no configuration settings to activate support for the Zynq UltraScale+ processor pins, firmware
and peripherals.

File Edit View Search Terminal Help

[kmor@pcepcmd64 kernel-4.18.0-80.7.1.el8 0]4% diff linux-4.18.0-80.7.1.el8.x86 64
Jarch/armé4/Kconfig.platforms ../petalinux/2019.1/PetaLinux Autoboot/components/
ext sources/kernel-source/arch/armé4/Kconfig.platforms
73a74,80
> config ARCH K3
= bool "Texas Instruments Inc. K3 multicore SoC architecture"
select PM_GENERIC DOMAINS if PM
help
This enables support for Texas Instruments' K3 multicore SoC
architecture.

VOV OV VW

153al6l

= select PM

263a272

= select RESET CONTROLLER

2945304, 3006

= select PINCTRL

= select PINCTRL_ZYNQMP

= select ZYNQMP_ FIRMWARE

[kmor@pcepcmd64 kernel-4.18.08-80.7.1.e18 014 JJ

Figure 4.4: Difference in Kconfig.platforms files of Xilinx kernel 4.19 and CentOS 8 kernel 4.18
source code before changes.

Figure 4.4 shows the difference between the Kconfig.platforms files of the Xilinx kernel 4.19
and CentOS 8 kernel 4.18 source code. It can be seen that the CentOS 8 kernel 4.18’s Kcon-
fig.platforms does not have the options of PINCTRL, PINCTRL_ZYNQMP and ZYNQMP_FIRMWARE
features (shown by angle brackets). Absence of these three features in CentOS 8 kernel’s Kcon-
fig.plattforms prevent some important Zynq UltraScale+ specific features and drivers from getting
activated in the default kernel configuration, leading to a deficient kernel build. Significant time
was spent in solving this problem as there was no clear documentation available from CentOS or
Xilinx to help in dealing with this problem. Adding those settings to the Kconfig.platforms file
in the CentOS 8 kernel source code enabled representation of Zynq UltraScale+ specific driver
and feature options in the kernel configuration Menuconfig screen. It also helped in activating the
Zynq UltraScale+ specific options in the CentOS 8 kernel 4.18 kernel configuration and ultimately
helped in compiling the necessary kernel drivers that boot Linux on the ZCU102 hardware.

4.4.5 Importance of Makefiles and Kconfig Files

Makefiles and Kconfig files are instrumental in configuring and building the Linux kernel. These
are also used in PetalLinux Tools and Yocto project explained before. The Kconfig files help
in specifying configuration options and features, such that the Menuconfig screen presents those
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options to the developer and help him/her configure the Linux kernel properly. Many Kconfig
files are present in the kernel source code in different directories. They form a hierarchal structure
which is presented to the developer in a simplified manner in the Menuconfig screen. The Makefile
is a script which is used to automate certain tasks while configuring and building a kernel source
code such that the developers don’t have to do them manually every time they build the kernel
source. The Makefile to build a kernel source code often comes with the source code and resides
in its central directory. It must not be modified. Other Makefiles are present in the kernel source
code sub-directories and they specify all the different targets (object files) which need to be built
by the GCC compiler as per the kernel configuration provided. These targets essentially specify
building of object files of drivers and features that would be included eventually in the kernel.
When porting the CentOS 8 kernel 4.18 to Zynq UltraScale+ MPSoC, sometimes the contents of
the Kconfig and Makefiles needed to be added from the Xilinx kernel 4.19 source code to their
corresponding Kconfig and Makefiles in the CentOS 8 kernel 4.18 source code. At times the whole
Kconfig and Makefile needed to be ported from the Xilinx kernel source code to the CentOS 8
kernel 4.18 source code if there was no similar file or no file specifying similar rules/features.

# SPDX—License—Identifier: GPL—2.0
# Makefile for Xilinx firmwares

obj—$ (CONFIGZYNQMP_FIRMWARE) += zynqmp.o zynqmp—ggs .o
obj—$ (CONFIGZYNQMP FIRMWARE DEBUG) += zynqmp—debug.o
obj—$ (CONFIG_ZYNQMP FIRMWARE SECURE) += zyngmp—secure .o

Listing 4.9: Makefile to build Zynq UltraScale+ firmware.

Listing 4.9 shows a Makefile specifying rules for the GCC compiler to build Zynq UltraScale+
firmware if those options are activated in the kernel configuration.

# SPDX—License—Identifier: GPL—2.0

# Kconfig for Xilinx firmwares

menu ”Zynq MPSoC Firmware Drivers”

depends on ARCHZYNQMP

config ZYNQMPFIRMWARE

bool ”Enable Xilinx Zynq MPSoC firmware interface”

select MFD_CORE

help
Firmware interface driver is used by different
drivers to communicate with the firmware for
various platform management services.
Say yes to enable ZyngMP firmware interface driver.
If in doubt, say N.

config ZYNQMP FIRMWARE DEBUG
bool ”Enable Xilinx Zynq MPSoC firmware debug APIs”
depends on ZYNQMPFIRMWARE && DEBUG_FS
help
Say yes to enable ZyngMP firmware interface debug APIs.
If in doubt, say N.

config ZYNQMP_FIRMWARE_ SECURE
bool ”Enable Xilinx Zynqg MPSoC secure firmware loading APIs”
help
Say yes to enable ZyngMP secure firmware loading APIs.
In doubt, say N

endmenu

Listing 4.10: Kconfig file to specify Zynq UltraScale+ firmware options.

Listing 4.10 shows a Kconfig file that offers developers the option to activate Zynq UltraS-
cale+ firmware in kernel configuration. Developers don’t see these options until they add the three
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options shown in Figure 4.4 to CentOS 8 kernel 4.18 Kconfig.platforms file and activate the Zynq
UltraScale+ platform in the kernel configuration.

In simple words, the kernel Menuconfig screen parses the central and other Kconfig files in the
kernel source code sub-directories help the developers in configuring the kernel whereas the central
Makefile along with other Makefiles in the kernel source-code sub-directories help the developers
in building the kernel as per the kernel configuration provided. The central Makefile and Kconfig
files sit at the top of the build and configuration hierarchy respectively.

4.4.6 Porting the Drivers from Xilinx Kernel 4.19 to CentOS 8 Kernel
4.18

The CentOS 8 mainstream kernel 4.18 supports the 64-bit ARM architectures but has little support
for the drivers required to boot the Linux kernel on a Zynq UltraScale+ ARM processing system.
Thus, the drivers need to be ported from the Xilinx kernel 4.19 to CentOS 8 kernel 4.18.

.962612] zyng-gpio ff@a@@0@.gpio: input clock not found.
.968220] xilinx-zyngmp-dma fd500000.dma: main clock not found.
.974197] xilinx-zyngmp-dma Td510800.dma: main clock not found.
.980252] xilinx-zyngmp-dma fd520800.dma: main clock not found.
.986308] xilinx-zyngmp-dma fd530800.dma: main clock not found.
.992364] xilinx-zyngmp-dma fd540800.dma: main clock not found.
.998419] xilinx-zyngmp-dma fd550000.dma: main clock not found.
.004473] xilinx-zyngmp-dma Td560800.dma: main clock not found.
.810530] xilinx-zyngmp-dma fd570800.dma: main clock not found.
.816585] xilinx-zyngmp-dma ffageee®.dma: main clock not found.
.822639] xilinx-zyngmp-dma ffa90800.dma: main clock not found.
.028695] xilinx-zyngmp-dma ffaa®@@®.dma: main clock not found.
.834751] xilinx-zyngmp-dma ffaboee®.dma: main clock not found.
.840807] xilinx-zyngmp-dma ffac0ee®.dma: main clock not found.
.846862] xilinx-zyngmp-dma ffadeee®.dma: main clock not found.
.052920] xilinx-zyngmp-dma ffae@@OO®.dma: main clock not found.
.058975] xilinx-zyngmp-dma ffaf@@e®.dma: main clock not found.
.B865187] zyngmp-qspi ffefeeee.spi: pclk clock not found.
.070672] xilinx can ff@70000.can: Device clock not found.
.076296] mach ffoeoe0@.ethernet: failed to get mach clk (4294966779)
.082964] cdns-i2c TfO20000.i2c: input clock not found.
.888272] cdns-i2c Tf030000.1i2c: input clock not found.
.0893628] cdns-wdt fd4deeee.watchdog: input clock not found
.0899346] cdns-wdt ffl150000.watchdog: input clock not found
.185112] sdhci-arasan ff17ee00.mmc: clk ahb clock not found.

bbbk AR RARRELEREREREEE R B WWWWLWWW

Figure 4.5: Missing Xilinx and Zynq specific drivers in CentOS 8 kernel 4.18.

Figure 4.5 shows the bootlog of a failed CentOS 8 kernel boot on the ZCU102 board. It shows
which drivers are missing and which drivers need to be ported. However, apart from the drivers
that are being shown to be missing in the failed kernel bootlog, there could be many other drivers
that are missing in the CentOS 8 kernel 4.18 and they need to be ported as well.

In order to find the missing drivers, one can search for the missing drivers in the source code
directory of the Xilinx kernel 4.19 or can simply pass Zynq UltraScale+ specific features in the
default configuration such that it boots Linux on Zynq UltraScale+ as shown in the previous
sub-section. During this project, the second approach was adopted. Passing the correct kernel
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configuration with Zynq UltraScale+ features helped the make tool to prompt an error when a
certain driver or source code to be built was missing and that was added during compile time as
the build of the kernel progressed. This ensured that only minimal changes are made to the kernel
without affecting or breaking the directory hierarchy of the CentOS 8 kernel 4.18.

Replacement of Driver Kconfig and Makefiles

To ensure that all Xilinx and Zynq UltraScale+ related drivers are ported to the CentOS 8 kernel
4.18 from the Xilinx kernel 4.19, the following steps were taken:

e Only the necessary source files were added to the the CentOS 8 kernel 4.18 source code. These
files are source code files which are present in the Xilinx kernel 4.19 but not in CentOS 8
kernel 4.18. These files were informed about whenever the make tool prompted a missing
target error during the kernel code compilation.

e Any missing dependency in terms of missing function declarations/definitions, variable de-
clarations/definitions and macro declarations/definitions were treated on case-by-case basis.
Only the parts of the missing code were added to the header or source files of the CentOS
8 kernel 4.18 source code, from where the error was originating. These pieces of code were
also obtained from the Xilinx kernel 4.19 source code. These errors were also pointed by the
make tool during the compilation process.

To efficiently identify all the missing drivers specific to Zynq UltraScale+ and Xilinx, it was
decided to identify all the relevant Makefile and Kconfig files in the Xilinx kernel 4.19 source code
that are related to these particular driver files. It was done since it would be important to add
them or their contents to the right Makefile and Kconfig file to the right sub-directory of the
CentOS 8 kernel 4.18 source code when the kernel is built. This served two purposes, which were
as follows:

e It helped present the options in kernel Menuconfig to activate drivers during the CentOS 8
kernel configuration process.

e Helped the make tool point to missing target files and missing code dependencies during
the compilation process. This helped in adding the missing file and their missing code
dependencies to the CentOS 8 kernel 4.18 source code during the build process.

In this way, only the missing drivers, Makefiles and Kconfig files where added to the CentOS
8 kernel 4.18 source code to port the necessary drivers and features to boot Linux on the Zynq
UltraScale+.

4.4.7 Building the CentOS 8 Kernel 4.18

GCC and make were used to build the CentOS 8 kernel 4.18 Image. This is similar to the
underlying tool-chain implemented by PetalLinux Tools and Yocto Project to build the U-Boot
and kernel images. The compilation of the kernel source code for 64-bit ARM processors has the
same tool dependencies as mentioned in the PetaLinux 2019.1 User Guide [24] and in Listing 4.4.
Additionally, the GCC compiler for 64-bit ARM Linux (gcc-aarch64-linux-gnu) should be installed
on x86/x86_64 machines to ensure cross-compilation for the 64-bit ARM processors. Alternatively,
the compilation can also be carried out on a machine using a 64-bit ARM processor. GCC version
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4.8.5 was used for compilation of CentOS 8 kernel 4.18 on an x86 PC. However, higher versions
of GCC can also be used since PetaLinux uses GCC 8.2.0. GCC version 4.8.5 was used as it is
the highest GCC version for 64-bit ARM Linux available for CentOS 7 on which the build was
carried out. The build was also carried out on the Xilinx Zynq UltraScale+ in a 64-bit CentOS
8 environment and and also with PetaLinux Tools, both with the help of GCC 8.2.0. This was
done to verify if the build is dependent on any particular GCC version. All the three build
methods mentioned above were successful. The build with make and GCC for ARM is carried out
by executing the following command in the directory where the kernel configuration file has be
written:

make ARCH=arm64 CROSS_.COMPILE=aarch64—linux—gnu— Image dtbs

Listing 4.11: Command to build the CentOS 8 kernel 4.18.

Listing 4.11 shows the CentOS 8 kernel 4.18 build commad using make and GCC compiler
for 64-bit ARM processors. “Image” option directs the GCC to package the kernel image to the
Image format and the “dtbs” option directs the kernel to build the device-tree binary as per the
device-tree source files present in the “/arch/arm64/boot/dts/xilinx” path of the CentOS 8 kernel
4.18.

The same kernel can be compiled and built in the PetaLinux Tools by using the “ext-local-src”
option in the Menuconfig window that is generated by the “petalinux-config” command.

Linux Components Selection q
Arrow keys navigate the menu. <Enter> selects submenus ---> (or
empty submenus ----). Highlighted letters are hotkeys. Pressing
=<¥> includes, <N= excludes, <M= modularizes features. Press
<Esc=<Esc> to exit, <?> for Help, </> for Search. Legend: [*]

[g] First Stage Bootloader
[*] Auto update ps_init
[*] PMU Firmware

u-boot (ext-local-src) ---=

External u-boot local source settings ---=
arm-trusted-firmware (arm-trusted-firmware) ---=
Linux-kernel (ext-local-src}) ---=

External linux-kernel local source settings ---=

< Exit > < Help > < Save > < Load >

Figure 4.6: PetaLinux Menuconfig to specify source of the U-Boot and the kernel

Figure 4.6 shows the Menuconfig screen for the PetaLinux Tools to choose source of the U-
Boot and the kernel. Here developers can point to a local repository, a remote repository on the
web or the default Xilinx source options on GitHub.

4.4.8 Debugging the Build Process

Once the Makefile and Kconfig files have been ported and the build of the kernel has begun
executing, the make tool and the GCC compiler prompt an error in the following cases:
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e When the target .c or .h file is missing.

e Certain data structures or properties within data structures have not been declared or
defined.

e Certain variables, macros or functions have not been declared or defined.

In order to debug these errors, careful investigation was carried out to find the origin of the
error. Only the data structures, data structure elements, variable or functions that have not been
defined or declared were added to the CentOS 4.18 kernel source code from the Xilinx Linux kernel
4.19. In this way, all the drivers were ported successfully to the CentOS 8 kernel. If any particular
file was reported missing by the make tool, the file was added at the directory path required by
the make tool.

A detailed script of how to configure and build the CentOS 8 kernel 4.18 has been presented in
the Appendix A. However, these scripts do not ensure an error free build and the errors mentioned
above do occur which require careful addition of the missing codes without affecting the build
hierarchy. A patched and built CentOS 8 kernel 4.18 for Zynq UltraScale+ is available at the
Gitlab repository weblink specified in Appendix A.

4.5 Lessons from the Porting of the CentOS 8 Kernel 4.18
for Zynq UltraScale+

4.5.1 Lessons from the Kernel Source Extraction and Patching the
Source Code

The kernel source RPM for the CentOS 8 kernel 4.18 should be extracted in the userspace en-
vironment having the up-to-date “rpm-utils” and “rpmbuild” packages. Older versions from the
CentOS 7 environment do not help in extracting the kernel source RPMs.

4.5.2 Lessons for Setting up the Build Tool-Chain

Make and GCC are two important tools necessary for configuring and compiling the CentOS 8
kernel. However, there are many other software dependencies which the developer might have to
install in the userspace to ensure successful configuration and compilations. Developers may not
be aware of the exact tool-chain setup and could be prompted with errors by make or GCC during
the configuration and compilation process. A good way to know all the build dependencies can
be to find the build dependencies mentioned for Yocto or the latest PetaLinux Tools. Another
way is to install all kernel build dependencies in a 64-bit ARM CentOS environment with the
help of the command “sudo yum-builddep kernel”. This command helps in downloading all the
utilities required while building a kernel version same as the kernel version released with the
CentOS version in use by the developer. The above mentioned command can be used even in x86
environments but developers may need to download the 64-bit ARM GCC compiler and 64-bit
ARM binary utilities (binutils) as an extra to compensate for the lack of those build utilities in
the x86 environment.
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4.5.3 Lessons from Kernel Configuration

While porting the CentOS 8 kernel 4.18 for a given hardware, the following points must be always
remembered while configuring the kernel:

e The defconfig file of the CentOS 8 kernel 4.18 should be used for configuring and building the
kernel since it is provided by the CentOS 8 distribution maintainers and represents the most
secure and functionally sound kernel configuration. Necessary additions to the defconfig file
should be made by identifying the necessary differences between the defconfig file of CentOS
and the defconfig file coming from the official Xilinx Linux kernel.

e The Kconfig.platforms file is very crucial in giving users the options to activate platform
specific features. If the options to activate a given platform or a platform’s peripherals are
missing in the Kconfig.platforms file of the CentOS 8 kernel 4.18, the right kernel config-
uration would not be generated and the kernel won’t boot properly on the given platform.
Attempts should be made to identify the missing platform options and should be added to
the Kconfig.platforms file of the CentOS 8 kernel 4.18 source code.

e While porting the CentOS 8 kernel 4.18 for a given platform, the Kconfig and Makefiles or
their contents pointing to Zynq UltraScale+ specific drivers should be added to the CentOS
8 kernel 4.18 source code or its Kconfig and Makefiles respectively. The Kconfig files allow
the Menuconfig screen to present developers with the options to activate Zynq UltraScale+
specific drivers in the kernel configuration. The Makefiles allow the make tool and GCC to
identify and build the drivers selected in the kernel configuration.

4.5.4 Lessons from Driver Porting and the Build Process

The following points are important to remember while building the CentOS 8 kernel 4.18:

e PetaLinux Tools and the Yocto Project can be used to compile and build the kernel image,
however due to their internal processes of cloning the source code and doing quality-assurance
checks on the compiled code, the process of compiling the kernel takes too long. To speed
up the compilation process, the make and the GCC compiler are two sufficient tools along
with their software dependencies.

e While porting the Xilinx and Zynq UltraScale+ specific drivers and building the CentOS 8
kernel 4.18 images, only the driver source and header files should be added directly to the
kernel source-code. There should not be replacement of other files in the CentOS 8 kernel
4.18 source code.

e As the build progresses, the GCC throws errors about missing pieces of code like functions,
data structures, variables and macros when the drivers are being compiled. In such instances,
the missing pieces of code should be found in the Xilinx kernel source code and these pieces
of code should be added to the relevant source or header files of CentOS 8 kernel 4.18. There
should not be mass replacement of files from one kernel source to another kernel source as it
could give rise to more errors, break the build process and delay kernel development cycle.

e When the make tool complains of missing target files, the target files should be found in the
Xilinx kernel source and added to the CentOS 8 kernel source code. Usually, these errors
are limited to the “drivers” or the “include” folders in the CentOS 8 kernel source code.
It is harmless to add these missing target files expected by the make tool as long as no
replacement of files is being done. This is because replacement of files could give rise to
more errors and break the building of the kernel images.
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4.6 Building a CentOS 8 Root File System

4.6.1 Reason for a CentOS 8 Root File System

Even though PetaLinux distribution creates a generic root file system, it is not recommended for
the experiment groups. Additionally, the usage of a unique root file system not used by other
groups would mean a separate NFS file server for the experiment group which would require
special maintenance. It has several drawbacks such as:

1. The PetaLinux root file system may not contain updated software packages which are ne-
cessary for the functioning of certain applications that are unique to the group.

2. Software packages in the PetaLinux root file system may introduce security vulnerabilities
through the packages that are present in the root file system and have not been tested and
verified by the CERN IT and system administrators.

3. Due to the above mentioned security vulnerability, CERN IT or CMS administrators may
provide them with restricted or isolated networks to secure the rest of the experiment net-
work.

Given the security concerns mentioned above and threat from external cyber-attacks on a
publicly funded organisation like CERN, it is recommended to have a centrally managed single
root file system which can be managed by the CERN IT and system administrators. CentOS
also has a large list of security-tested software packages and applications which are available in its
repositories which would present the experiment groups with a wide choice of packages to choose
from.

As mentioned previously, there is a lot of knowledge and experience at CERN to maintain
the CentOS distribution. The system administrators test and verify all software packages and
updates for security vulnerabilities on test nodes before releasing them for CERN wide use. This
also allows the experiment groups to have their hardware connected to the all other nodes in the
experiment network and within CERN. As a result, a common CentOS 8 root file system has been
chosen for this project.

Keeping the above factors in mind, most of the experiment groups have agreed to the usage
of a common CentOS root file system during the CMS SoC Workshop conducted in June 2019.

4.6.2 Procedure of Building a CentOS 8 Root File System

This sub-section explains the tasks executed by the root file system build script presented in Ap-
pendix A. This sub-section derives its knowledge from the work conducted by my former colleague
Panagiotis Papageorgiou who worked under the supervision of Dr. Ralf Spiwoks of the EP-ESE
group. His work in turn is derived from the work of Matthias Wittgen of the Stanford Linear
Accelerator (SLAC) Laboratory who wrote a script for building a root file system for a given pro-
cessor architecture with the help of the “DNF” installer in the CentOS environment. Panagiotis
Papageorgiou worked on the building of CentOS 7 root file system and the script modified by him
for building a CentOS 7 root file system was referenced to create a script for building a CentOS
8 root file system. The script with the appropriate credits can be found in the Appendix A. The
script builds the CentOS 8 root file system for 64-bit ARM processors by cross-installing software
packages for 64-bit ARM processors on an x86 PC.
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The following tasks are executed to build the CentOS 8 root file system for 64-bit ARM
processors on x86 machines:

e Download a pre-compiled binary of the QEMU emulator for 64-bit ARM processors and
copy it to the “/usr/local/bin” folder of the directory which would host the CentOS 8 root
file system for 64-bit ARM processors on the x86 PC.

e Inform the binfmt_misc service of the x86 machine to use the ARM 64-bit QEMU emulator
when a ARM 64-bit processor environment needs to be emulated. (see the explanation below
and in section 4.6.3).

e To aid the cross-build of the CentOS 8 root file system for 64-bit ARM processors, a
“dnf.conf” file is written informing the build script about the CentOS 8 repository loca-
tion to use while building the packages for the root file system. The “dnf.conf” and the
build script are presented in Appendix A.

e The build script defines a function “run_dnf” which forms the heart of the script and controls
the execution of the DNF package installer as per the arguments passed to it.

e A set of instructions in the script parse the arguments passed to the build script such as the
path to the root file system build directory, the architecture and also any other parameters
that have been passed to the script.

e Depending upon the argument for the processor architecture, the QEMU emulator is selected
and the “run_dnf” function is called to do a minimal install of the CentOS 8 root file system
packages for 64-bit ARM architectures.

e The script then proceeds to set the password for the root user and exits.

The scripts developed by Matthias Wittgen and Panagiotis Papageorgiou were studied and
modified to build a CentOS 8 root file system. A CentOS 8 specific “dnf.conf” file was written
to point the DNF installer to CentOS 8 repositories on the web to install software packages
for 64-bit ARM processors. To write the “dnf.conf” configuration file, the CentOS 8 repostiory
structure was studied thoroughly to decide which software repositories are needed to be added in
the configuration file. After the root file system was built, it was noticed that after the kernel
mounts the root file system, the init process does not reach the login stage and fails in between
where the boot hangs. The documentation provided by Papageorgiou was not clear about how
to debug root file system build errors. After careful investigation of the build process and trying
different build configurations, it was found that the QEMU emulator is essential in cross installing
software packages for 64-bit ARM processors on an x86 environment. Without it, many CentOS
8 RPM packages are not installed properly, leaving the CentOS 8 root file system with missing
packages essential to initialise the userspace properly.

:gemu—aarch64 :M::\ x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\
xb7\x00:\ xff\ xff\ xff\ xff\ xff\ xff\ xff\x00\ xff\ xff\ xff\ xff\ xff\ xff\xff\xff\xfe)
xff\xff\xff:/usr/local/bin/gemu—aarch64—static:

Listing 4.12: Contents of gemu-aarch64.conf in the /etc/binfmt.d path of CentOS 7 root file system

Listing 4.12 shows the contents of gemu-aarch64.conf file in the /etc/binfmt.d path of the
CentOS 7 root file system on an x86 machine. This file points the binfmt_misc service to the
64-bit ARM QEMU emulator whenever there is a need to emulate a 64-bit ARM environment on
the x86 machine while building of the CentOS 8 root file system.
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4.6.3 The Need for QEMU Emulator

QEMU (Quick EMulator) emulates hardware and creates a virtual hardware environment for
developers to quickly test the software for those hardware platforms and architectures, which the
developers may not currently have or when the developers want to prevent damage to the hardware
while testing. For building the CentOS 8 root file system on an x86 machine, a QEMU for 64-bit
ARM architectures is required to cross-install packages for the 64-bit ARM architecture on the
x86 desktop. This is because RPM packages, which are required for installation of packages in
Red Hat distribution variants like CentOS, might have pre-install and post-install scripts which
need to run an executable for 64-bit architectures on x86 machines. The binfmt_misc service
in CentOS 8 allows processes to call executables for different architectures using emulators like
QEMU, provided the configuration is present in the “etc/binfmt.d” path of the host root file
system as shown in Listing 4.12.

Once the CentOS 8 root file system is built, the CentOS 8 Linux distribution for the Zynq
UltraScale+ MPSoC is ready. The PetaLinux Tools were used to build the FSBL, U-Boot and
device-tree for the Zynq UltraScale+. The CentOS 8 kernel 4.18 was ported for Zynq UltraScale+
and built using make tools and GCC compiler. With all the important components for booting
Linux on Zynq UltraScale+, an automated network boot of CentOS 8 Linux distribution on Zynq
UltraScale+ was carried out. This has been explained in Chapter 5.

4.7 Differences between PetaLinux Tools and Yocto Project

The following bullet points describe some qualitative differences between PetaLinux Tools and
Yocto Project:

e Ease of Use: The PetaLinux Tools are better in terms of the ease of use for developers due
to its high-level command line interface. Developers do not have to configure the metadata
layers, the tool chain and the build environment by hand when they are using Petalinux
Tools unlike Yocto where they have to setup the different metadata layers, configuration files
and sometimes recipes by hand to build their desired distribution.

e Flexibility: The PetaLinux Tools are not as flexible as the Yocto Project. If developers
want to make a distribution for a non-Xilinx processor using PetalLinux, they have to add
the respective metadata layers, necessary recipes and build scripts in the PetaLinux Tools
build hierarchy. Despite these changes, it might take a lot of changes to the PetaLinux build
system before the correct tool chain can be setup to produce the desired Linux distribution.

On the other hand, developers can just directly use the Yocto project and configure the
Yocto Tool chain to produce a Linux distribution for that processor in the same amount of
time.

e Version Conflicts: The Petalinux Tools expect the Hardware Description File (HDF) or
the Board Support Package (BSP) to be provided from the Xilinx Vivado version mirroring
the PetaLinux Tools version. This is highly inflexible as changes are required to be made
in the metadata recipes and PetaLinux build scripts to ensure that a correct FSBL and
device-tree is generated based on the hardware design provided from a new Vivado version.

The Yocto Project does not have any such version restrictions and it generates a working
Linux distribution as per the hardware design or board support package provided to it.
Similarly, commands from older Petalinux version sometimes are not compatible in the
newer PetaLinux versions [24].
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e Transparency: The PetaLinux Tools are user friendly but not very transparent. There are
many scripts and tasks being executed behind the simple user-interface commands and in
order to debug a problem associated with the Linux boot components build or execution,
developers have to dig deep to pinpoint where the problem is originating from. This is very
time consuming. This was experienced while fixing the U-Boot processing of DHCP response
which is explained in Chapterb5.

The Yocto Project on the other hand is far more transparent as it is user configured and
users are far more equipped to pin-point the source of the problem than they would be while
using PetaLinux Tools. It is also quicker to find source of the problem, since there is a steep
learning curve associated with the Yocto Project after which the developers are well-trained
to quickly point the source of the problem.

e Learning Curve: As mentioned above, the Yocto Project has a steeper learning curve
compared to the PetaLinux Tools as far as basic usage is concerned. However, to gain
mastery in understanding of both the tool chains, similar efforts and time is required.

As a conclusion of these differences, PetaLinux Tools can be recommended for beginners
wanting to know more about the Yocto Project and also for developers developing Linux specifically
for Xilinx platforms.

The Yocto Project on the other hand is a bit more complex and has a steep learning curve.
However, it is recommended for developers looking to develop a Linux distribution for processors
apart from and including Xilinx and also wanting to gain a mastery in developing, testing and
debugging the Linux distributions.

4.8 Summary

In this chapter, the important components of the Yocto Project were explained. The process
to build a Linux distribution with PetalLinux Tools has been explained in detail to the reader.
The process of porting a CentOS 8 kernel 4.18 for the Xilinx Zynq UltraScale+ and the lessons
associated with porting of the kernel have been explained to reader in detail. The process of
building a CentOS 8 root file system and the challenges associated with it have been presented to
the reader. At the end of the chapter, the PetaLinux Tools and Yocto Project have been compared
for better understanding of the reader.
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Chapter 5

The Embedded Linux Network
Boot

This chapter focuses on the fully automated network boot of Embedded Linux on the Xilinx Zynq
UltraScale+ MPSoC. In this chapter, the infrastructure and the procedure required to execute a
fully automated network boot have been explained in detail.

5.1 Important Stages of the Embedded Linux Network Boot

The basic principles of booting Linux apply to the network boot as well. However, there are
some additional stages associated with the embedded Linux network boot that were executed or
examined for this thesis project which need to be presented to the reader. These are as follows:

Acquiring IP address and network information from the DHCP server.

Downloading the U-Boot environment, device-tree blob and kernel image from the TFTP
server.

Modification of the Ethernet MAC address in the environment, EEPROM and device-tree.

Acquisition of the Ethernet MAC address by the U-Boot and Linux Kernel.

Mounting the root file system from the NFS server.

5.2 Acquisition of Network Information from the DHCP
Server

Enabling the Ethernet IP core in the Zynq UltraScale+ MPSoC is an essential part of the design
and for successful execution of the Linux network boot. The Ethernet connection of the Zynq
UltraScale+ MPSoC helps the U-Boot in downloading important files from the TFTP server,
helps the kernel in acquiring network information from the DHCP server and mounting the root
file system from the NFS server. However, before all these tasks are executed, it is important
that the U-Boot acquires an IP address for the Ethernet interface and that is possible if there is
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a DHCP server in the network which is assigning network configuration to different nodes in the
network. There is no DHCP server configured by PetaLinux Tools by default. As a result, a local
DHCP server was configured on a TTL NUC5 desktop (see Figure 3.2 and Chapter 6, section
6.1.1) for serving the ZCU102 board.

DHCP stands for Dynamic Host Configuration Protocol. It is defined by the RFC 1541
standard [28]. DHCP can be used for both IPv4 and IPv6 [28]. The DHCP server is used to
provided network configuration to the clients in a big network. The DHCP server is deployed in
large networks like the CMS data acquisition network where multiple devices need to be configured
dynamically but can also be used in small sized local networks as it has been used for testing
during this project. DHCP assigns static or dynamic IP address and other network configuration
parameters (such as TFTP server IP, NFS root directory, NFS server IP, boot file name) to the
devices. In the absence of a DHCP server, system administrators have to configure each device
manually, which can be challenging and time consuming in huge networks such as the CMS data
acquisition network. Additionally, an automated Linux network boot without the DHCP server

can be difficult to implement.
Q
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Figure 5.1: DHCP client-server interaction [4]

Figure 5.1 shows DHCP client-server interactions. The client first makes a server discovery
request and the closest, available DHCP server responds. The DHCP client then makes a DHCP
request for network configuration and the DHCP server acknowledges the request by providing
network configuration. The client remains configured for the lease time before requesting for a
renewal of IP address assignment.

The DHCP server configuration can be such that a static IP is assigned to the device based on
its MAC address each time or an IP address can be offered from the range or pool of IP addresses
defined by the system administrator while configuring the server [28]. Additionally, a lease time
and other parameters such as boot filename, NFS server root filepath, NFS server IP, TFTP server
IP maybe assigned to the client provided they are defined in the DHCP server configuration. More
can be found out about the DHCP protocol by reading through the RFC 1541 standard [28].

In our test cases the DHCP server has been configured to assign the Zynq UltraScale+ MPSoC
Ethernet interface with an IP address, assign the U-Boot environment variables for the boot
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filename and the TFTP server IP address. The DHCP is also configured to inform the U-Boot
about the kernel boot arguments, the NFS server IP address and NFS root filepath. The DHCP
server configuration has been presented in Appendix B.

5.3 Download Boot Files from the TFTP server

During this project, the TFTP protocol is used to download the boot files from the TFTP server.
TFTP stands for Trivial File Transfer Protocol and it is defined by the RFC 1350 standard [29].
It is a simple protocol and users cannot add, delete, modify the contents of the server as it is
a simple protocol and does not have features like user authentication. TFTP uses UDP as its
default transport protocol and the port 69 for communication [29] which is the configuration that
has been maintained for this project. More can be read about TFTP by reading through the
RFC1350 standard [29].

A TFTP transfer is initiated by the client issuing a request to read or write a particular file
on the server. Once the server has granted the request, the file is sent in fixed blocks sizes of 512
bytes [29]. Each block transfer requires acknowledgment of reception before the retransmission of
the next block of data. If a packet gets lost in the network, the client timeouts and retransmits
the last packet that it received in order to prompt the sender to retransmit the packet that was
lost. A data packet of less than 512 bytes at the end signals termination of transaction. Both the
server and the client are considered senders and receivers.

The U-Boot had to be configured for supporting the TFTP protocol so that boot files could
be downloaded from the TETP server to initate a Linux boot. For this project, the environment
variables “uEnv.txt”, the device-tree blob and the kernel Image were downloaded from the TFTP
server to implement a Linux network boot. The PetaLinux Tools does not configure TF'TP server
and the TFTP server for the ZCU102 client board was configured on a TTL NUC 5 desktop (see
Figure 3.2 and Chapter 6, section 6.1.1). Scripts for TFTP server configuration are presented in
Appendix B.

5.3.1 Fixing the U-Boot Processing of DHCP Response

In order to fix the issues related to the U-Boot DHCP request, the Petalinux configuration script
“u-boot_bsp.tcl” and the U-Boot source code was thoroughly studied to present readers the source
of the problem and the method to solve the problem. A snapshot of the “u-boot_bsp.tcl” script
has been presented in Appendix B.

After the FSBL loads the U-Boot into the processor DRAM, the U-Boot must acquire an IP
address for its Ethernet interface as well as the TFTP server IP address from the DHCP server.

However, over multiple tests it was noticed that the U-Boot is not able to acquire the TFTP
server IP address from the DHCP server, while it was able to obtain other information like the
boot file path. This means that the DHCP request was working but the ZCU102 Ethernet interface
was not able to acquire the TFTP server IP address. This meant that the Linux network boot
is not completely automated and still requires manual intervention, which is not the goal of the
project. The Xilinx U-Boot BOOTP source code [30] implements the DHCP communication for
the U-Boot and when it was examined in detail it was noticed that the definition of the property
CONFIG_BOOTP_SERVERIP in U-Boot configuration was in fact hindering the acquisition of
the TFTP server IP address and setting of the “serverip” variable in the U-Boot environment,
which points to the TFTP server IP address during TFTP download requests.
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Careful investigation of the Xilinx U-Boot documentation [31] and BOOTP source code was
done to find that the property CONFIG_BOOTP_SERVERIP should be activated in the U-Boot
configuration only if the developer has already configured a “serverip” variable pointing to a static
TETP server IP address and wants to use that variable instead of a dynamic TFTP IP address
offered by the DHCP server. This cannot work in the CMS data acquisition network as the TEFTP
server IP address might be changed any time and system administrators at CMS cannot set new
“serverip” variable in the U-Boot environment of 1000 Zynq UltraScale+ devices installed in the
CMS network. Thus, this problem needed to be solved else no automated network boot could be
implemented.

The investigation of the Xilinx U-Boot documentation and BOOTP source code was done
only after spending a lot of time in modifying the U-Boot configuration using PetaLinux Tools
to enable automatic acquisition of TFTP server IP address. After finding out about the CON-
FIG.BOOTP_SERVERIP property, it was found that there is no option in the PetaLinux Tools’
U-Boot configuration to deactivate this property from the Menuconfig screen. As a result, the set-
ting of the CONFIG_BOOTP_SERVERIP was searched for in the PetaLinux Tools’ configuration
and build scripts and it was found that it is being activated by the “u-boot_bsp.tcl” script used
by Petalinux Tools to configure the U-Boot.

In order to fix the problem, it was decided that CONFIG_BOOTP_SERVERIP should not
be set in the “u-boot_bsp.tcl” script which is responsible for helping PetaLinux Tools configure
the U-Boot. This is the default TCL script provided by Xilinx in order to configure the U-Boot
boot arguments, environment variables and other functional properties. The other way to fix the
problem is to modify the BOOTP source code in the Xilinx U-Boot such that it allows setting
of the “serverip” environment variable in the U-Boot if CONFIG_.BOOTP_SERVERIP is defined
in the U-Boot configuration. However, that alters the basic behaviour of the BOOTP driver of
the U-Boot and defeats the purpose for which the property has been defined. As a solution for
the future, Xilinx can provide users with the opportunity to deactivate this property in U-Boot
configuration through PetaLinux Tools’” Menuconfig interface.

5.4 Importance of the Ethernet MAC Address

The knowledge of setting, acquisition and modification of the Ethernet MAC address is important
for the system administrators at the CMS experiment because they need it for identification of
the devices in the CMS experiment network and to facilitate their network configuration and their
management in the network. The Ethernet MAC address is also something without which the
device cannot obtain network configuration from the DHCP server and communicate with the rest
of the network. In the context of the embedded systems and the Linux distribution envisaged for
the CMS DAQ Phase-II upgrade, following points regarding Ethernet MAC address are important:

e Ensuring that all the hardware developers agree on one method of MAC address storage (eg.
EEPROM).

e The interfacing of the MAC address storage with the Zynq UltraScale+ MPSoC is uniform
across different hardware platforms and the representation of this interfacing in the device-
tree in terms of their individuals physical addresses is also presented in a uniform manner.

e The method of setting, modifying and acquiring this MAC address should be accepted and
followed by every hardware developing group.

e Ethernet MAC address of each individual board in the CMS data acquisition network is
unique.
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The above mentioned points are important in order to facilitate building of a common Linux
distribution for the embedded systems in the CMS network and ensure ease of management for
the system administrators. This is especially important since the hardware description file (HDF)
and the FSBL would be sourced from the hardware developers. The HDF file is a file generated
by Xilinx Vivado Design Suite to describe the hardware designed by the hardware developers and
it is essential in generating the correct device-tree for the Linux kernel [24]. It is also important
that the hardware developers acquire appropriate MAC address values for their devices from the
CERN IT MAC address database so that the MAC address obtained for their device is unique
within the CERN network.

5.4.1 Reason to Study the Setting, Modification and Acqusition of Eth-
ernet MAC Address during Linux Boot on Zynq UltraScale+

The documentation provided by Xilinx is not clear about how the Ethernet MAC address is set in
the Zynq UltraScale+ hardware, how it is modified and how it is acquired during the Linux boot
process. Also the U-Boot and kernel source code documentation does not explain these concepts
in detail to help developers and system-administrators understand these process. Since this is an
important point of concern for the system administrators at the CMS experiment, considerable
time was spent to study the U-Boot and Kernel source code to understand the procedures for
setting, modifying and acquiring the Ethernet MAC address during the Linux boot on Zynq
UltraScale+. There was a need expressed by developers and system administrators at CMS to
better understand this process. Hence, the study of setting, updating and acquiring the Ethernet
MAC address during Linux boot on Zynq UltraScale+ was done so that developers and system
administrators in the future do not have to spend time in understanding these processes.

5.4.2 Default MAC Address Configuration for Zynq UltraScale+

For this project, the BSP of Xilinx ZCU102 Evaluation Kit was used to generate the U-Boot
configuration, kernel configuration, the device-tree blob and the First Stage Bootloader. As per
the device-tree generated with the help of this BSP, the ZCU102 board has means to store the
Ethernet MAC address in the EEPROM chip as shown by the EEPROM node in the device-tree
in Listing 3.1.

On the other hand, the “petalinux-config” command explained in the previous chapter allows
the user to specify the Ethernet MAC address in U-Boot environment and along with the primary
choice of the Ethernet interface in the Menuconfig screen as seen in Figure 4.2. When configuring
and compiling the U-Boot independently using make and GCC, Ethernet MAC address environ-
ment variable can be specified in the Menuconfig screen during the U-Boot configuration process
which is similar to the kernel configuration process. Setting of the MAC address in the U-Boot
environment does not automatically set the Ethernet MAC address in the EEPROM of the hard-
ware platform in use. Users can write U-Boot scripts to modify the Ethernet MAC address in the
EEPROM and device-tree, if required (explained in section 5.6).

5.5 Setting of the MAC address in the Ethernet Hardware

The process of setting the MAC address was studied thoroughly in detail by going through the
U-Boot Ethernet source code [32]. To help hardware developers and system administrators gain
an easier understanding of the process, a flowchart was developed, which is a contribution of the
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thesis and can be seen in Appendix B.

When the FSBL loads in the U-Boot in the processor DRAM of the Zynq UltraScale+ MPSoC
and the U-Boot starts executing, it imports the environment variables from the SPI flash memory
in to the U-Boot environment. Once the environment has been imported, the following steps are
performed by the U-Boot to set the MAC address in the Ethernet hardware:

1. Check if the variable “ethaddr” is defined in the U-Boot environment and if it is defined,
compare its value with the MAC address in the I2C EEPROM device. If the values are
different, print a warning that the MAC address values are different and continue using the
value in “ethaddr”. If the values are similar, continue using the value in “ethaddr” without
a warning message.

2. If the variable “ethaddr” is not defined in the environment, check if the MAC address is
defined in the I2C EEPROM device. If it has been defined in the EEPROM device, set the
value of “ethaddr” to the value present in the EEPROM device and continue using the value
in “ethaddr” variable.

3. If the MAC address is not present in either the environment or the 12C EEPROM device,
check if CONFIG.INET_RANDOM_ETHADDR has been defined in U-Boot configuration
and if it has been defined, generate a random MAC address and assign it to the “ethaddr”
variable. If the property has not been defined, print a warning that MAC address is not set.

4. Once the value in the variable “ethaddr” is set, check if the variable “ethmacskip” has been
set in the U-Boot environment. If it has been set, the MAC address value is not written to
the Ethernet hardware so long as the variable is set.

5. If “ethmacskip” is not set, check if the MAC address value is valid (not all zeros, not a
multicast address and not FF:FF:FF:FF:FF:FF). If the value is invalid, print a warning that
the MAC address value is illegal and the MAC address is not written to the hardware.

6. If the MAC address value is valid, the value is written to the Ethernet hardware.

This procedure has been outlined in a flowchart that can be seen in Appendix B.

5.6 The U-Boot Environment “uEnv.txt” File

The U-Boot HUSH environment is similar to the BASH environment present in Linux systems
and it has its own environment variables which assist the boot process and also helps in debugging
the Linux boot process. The U-Boot supports loading and modification of U-Boot environment
during run-time with the help of a uEnv.txt file. This file is generated by PetaLinux Tools while
building the U-Boot. Usually this file is kept on SD card to important some environment variables
required by the developers. This file is not a static file and it can contain additional environment
variables specified by the developers. This file also acts as a model file for developers to write
HUSH shell scripts and environment variables for future use.

The U-Boot environment variables are loaded by the U-Boot in the SPI Flash memory when
the FSBL loads the U-Boot in the processor DRAM. These environment variables are essentially
HUSH shell scripts which utilise the U-Boot binary utilities and drivers to fulfill certain tasks.
Some of these environment variables are configured by default during the U-Boot configuration
and are a part of the U-Boot image. Developers can also specify additional environment vari-
ables during the configuration process before compiling the U-Boot. Otherwise, developers using
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PetaLinux can specify variables in the “u-boot_bsp.tcl” script to introduce new variables in the
U-Boot environment. The default storage for environment variables for the ZCU102 kit is the
SPI Flash memory, however, users can specify other storage locations in U-Boot configuration
provided they have that type of memory in their hardware.

However, both the above methods are compile time mechanisms. In a network like the
CMS data acquisition network, there could be a need to modify or add new variables in the
U-Boot environment during run-time for debugging some U-Boot or hardware (ex. wrong MAC
address in EEPROM) configuration errors. Otherwise, there could be a need to specify new kernel
boot arguments, boot commands and TFTP server file path if the U-Boot configuration is not
satisfactory or if a new TFTP server needs to be tested. The uEnv.txt file can then be used to
load the variables from a local memory or from the TFTP server in to the U-Boot environment.

System-administrators can do the following configuration tasks with the uEnv.txt file sitting
on the TFTP server:

e Remotely configure U-Boot environment variables without re-compiling the U-Boot.

e Modify path to kernel Image, device-tree, BOOT.BIN present on the TFTP server if there is
modification in their paths, without changing the SD card contents or U-Boot configuration.
(testing of new images or new TFTP server paths on the machine)

e Specify scripts to modify Ethernet MAC address in the environment, EEPROM and in the
device-tree, without re-configuring the U-Boot or the device-tree.

e Specify new load addresses in processor memory for kernel Image and device-tree if required.

e Specify “preboot” environment variable to execute some debug sequences before the user
can interrupt the U-Boot.

e Specify variables to load/download kernel Image and device-tree from different media, in
case of a failed network boot (see future work in Chapter 8).

e Specify different “default_bootecmd” types to execute full SD card boot, partial network boot
and full network boot (explained in Chapter 8).

e Specify any other environment variables or scripts that the system-administrators desire.

During this project, this file was kept on the TFTP server. The presence of the “uEnv.txt”
file on the TFTP server is crucial for future modifications and customisations of the network boot,
which is not so easy when storing the uEnv.txt file on the local board storage. The uEnv.txt file
on local storage like SD card is static in the sense that it cannot be modified immediately with
ease when the U-Boot environment or the hardware like EEPROM are not configured properly.
The placing of uEnv.txt file on the TFTP server made it easy for dynamically loading new en-
vironment variables in the U-Boot environment, without re-configuring or rebuilding the U-Boot.
This setting helped immensely in testing different boot methods and modifying the Ethernet MAC
address in EEPROM and device-tree on-the-go which helped in investigating the setting, acquiring
and modifying of the Ethernet MAC address during the Linux boot on Zynq UltraScale+. The
uEnv.txt file on the TFTP server was also helpful in pointing to test kernel Images, device-tree
blobs and TFTP servers without the need to reconfigure the DHCP server and the information
that it offered. The uEnv.txt file sitting on the TFTP server is the most flexible way to configure
U-Boot behaviour and some of the underlying hardware properties (eg. MAC address) without
rebuilding the U-Boot. The uEnv.txt file on the TFTP server is extremely useful for the CMS sys-
tem administrators due to its versatile nature and this configuration is an important contribution
of this master thesis.
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5.6.1 The Variables in the “uEnv.txt” File

In this section, the variables present in the “uEnv.txt” file during the course of this project are
elaborated upon. This file is not a static file and system-administrators can make modifications to
the file on TFTP server even when the embedded systems are deployed in the CMS DAQ network.

The following variables are essential to execute a completely automated network Linux net-
work boot on Zynq UltraScale+:

#Address to load the kernel Image
netstart=0x1000b000

#Address to load the device—tree blob
clobstart=0x10000000

#Address to load the uEnv.txt file
loadbootenv_addr=0x00100000

#VIAC Address
mac="08:00:30:14:03:37”

#Path to the bootfile on TFTP server (in this case uEnv.txt, can be kernel Image or
the device—tree as well)

bootfile=zcul02/uEnv. txt

#Variable to specify whether DHCP request downloads the bootfile or not. In this
case, it does not.
autoload=no

#Path on TFTP server to load the device—tree blob from
dtb_img=zcul02/system .dtb

#Path on TFTP server to load the kernel Image from
kernel_img=zcul02/Image

#Path on TFTP server to load the uEnv.txt file from
bootenv=zcul02/uEnv. txt

#Variable to specify the tasks executed before the U-Boot begins booting
preboot=echo U-BOOT for xilinx—zcul02—-2019_1;setenv autoload noj;echo U-BOOT for
CERN CMS; setenv ethmacskip;setenv ethlmacskip

#Variable to select the I2C bus connecting to the EEPROM storing the Ethernet MAC
address and modifying the 6—bytes of MAC address

update_ethaddr=i2c dev 5;i2c mw 54 20.1 08;i2¢ mw 54 21.1 00;i2c mw 54 22.1 30;i2c
mw 54 23.1 f4;i2c mw 54 24.1 03;i2c mw 54 25.1 37

#Variable to download the device—tree blob from the TFTP server

download_fdt=tftpboot ${clobstart} ${dtb_img};

#Variable to download the kernel Image from the TFTP server
download_kernel=tftpboot ${netstart} ${kernel_img};

#Variable to update the Ethernet MAC address in the device—tree
update_fdt=fdt addr ${clobstart};fdt set ethernet0 local-—mac—address ${mac}

#Variable to load the kernel Image from the SD card to processor DRAM
cp-kernel2ram=mmcinfo && fatload mmc ${sdbootdev} ${netstart} ${kernel_img}

#Variable to load the device—tree blob from the SD card to processor DRAM
cp-dtb2ram=mmcinfo && fatload mmc ${sdbootdev} ${clobstart} ${dtb_img}

#Variable to execute a Linux Boot
netbooti=booti ${netstart} — ${clobstart}
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#Variable to download uEnv.txt from the TFTP server and save it in the SPI flash
memory

tftpimportbootenv=echo Importing environment from TFIP Server; tftpboot ${
loadbootenv_addr} ${bootenv}; env import —t ${loadbootenv_addr} $filesize

#Variable to execute a fully automated network boot (depending on the kernel
configuration and boot arguments.)

default_bootcmd=dhcp;run tftpimportbootenv;run download_fdt;run download_kernel;run
netbooti

#Variable to execute a full SD card or partial network boot. Uncomment the
following line to execute either of the boots (depending on kernel
configuration and boot arguments.)

#default _bootcmd=run tftpimportbootenv;run cp_dtb2ram;run cp_kernel2ram; run
netbooti

Listing 5.1: The uEnv.txt file on the TFTP server

Listing 5.1 presents different variables/scripts used during the course of the project. Their
role has been explained below:

e netstart, clobstart and loadbootenv_addr: These variables specify the addresses in
the processor memory where the device-tree blob, kernel Image and the uEnv.txt file are
downloaded by the U-Boot.

e mac: This variable specifies the MAC address that would be used to replace the MAC
address in the device-tree if required. This variable was defined and used during the in-
vestigation of how U-Boot interacts with the device-tree and the Ethernet MAC address
stored in it. However, after conclusion of the investigation, the need to use this variable was
not felt. The explanation of interaction between U-Boot, MAC address and device-tree is
presented in section 5.7.

e autoload: This is a default U-Boot environment variable which decides whether or not
the DHCP request automatically downloads the boot file specified by the DHCP server
configuration from the TFTP server. The value of this variable is required by the U-Boot
source code while processing DHCP requests.

e dtb_img, kernel_img and bootenv: These variables specify the path to the device-tree
blob, the kernel Image and the uEnv.txt file’s location respectively on the TFTP server.

e preboot: This variable command is the default command executed by U-Boot before the
user is allowed to interrupt the boot process. The command can be modified to suit the user
needs. In our uEnv.txt file the preboot command is used to print a few messages on the
terminal and remove certain environment variables like ethmacskip that might have been
set during any previous U-Boot session. Since U-Boot saves the updated environment in the
SPI Flash on user demand and loads this same environment during the next U-Boot session,
it is important to remove certain unwanted variables before the booting begins. This is
done so that the ethmacskip variable is not set to allow the writing of the MAC address
to the Ethernet hardware (used to investigate U-Boot interaction with Ethernet hardware
mentioned in section 5.5).

By default, the PetalLinux configures U-Boot such that the preboot command is deleted
after its execution. The default preboot configuration given by Petalinux is “echo U-BOOT
for ${hostname};setenv preboot;dhep”. The “setenv preboot” command deletes the preboot
variable. This was modified for this project as the preboot variable was useful in debugging
the U-Boot execution before users can interrupt the boot process.
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e update_ethaddr: This variable is essentially a string of HUSH shell commands and was
defined to execute the U-Boot I12C driver “i2¢” to modify the MAC address in the 12C
EEPROM. As per the device-tree information displayed in Listing 3.1, the variable then
updates the Ethernet MAC address at the address pointed by the property “eth-mac@20”
in the “eeprom@>54” device-tree node. This variable is not a default boot command as it has
to be executed by the user if the need arises. This variable is not generated by the U-Boot
and is user-defined. It can be used in cases where wrong MAC address has been entered in
the EEPROM chip of the hardware. It was used to modify the default boot address that
ships with the ZCU102 board and replace it with the MAC address assigned to it by CERN
IT. This prevented any redesign of hardware to modify the chip content.

e download_fdt, download _kernel, cp_kernel2ram, cp_dtb2ram: download_fdt and down-
load _kernel were defined to download the device-tree blob and the kernel Image from the
TFTP server at the specified netstart and clobstart addresses respectively, with the help of
the U-Boot binary command “tftpboot”. cp_kernel2ram and cp_dtb2ram are similar com-
mands which perform the operation of loading the kernel Image and the device-tree files
respectively from the SD card. Except cp_kernel2ram, all other variables were specially
defined for this project to implement an automated network boot.

e update_fdt: This variable uses the same principles as the update_mac_address and was
defined to modify the MAC address in “ethernet0” device-tree node. This is executed using
the U-Boot binary utility “fdt” which is used to view, modify and update the device-tree.
This variable was used during the investigation of how U-Boot interacts with the device-tree
and the Ethernet MAC address. However, after conclusion of the investigation, the need to
use this variable was not felt. The explanation of interaction between U-Boot, MAC address
and device-tree is presented in section 5.7.

e netbooti: This variable uses the U-Boot binary command “booti” to boot the kernel image
format “Image” assisted by the device-tree blob. The processor memory addresses of the
device-tree blob and the kernel Image file are passed to the “booti” command. This variable
is also a part of our default_bootcmd and was defined to implement an automated network
boot.

e tftpimportbootenv: This variable was defined to download the uEnv.txt file using the
tftpboot command, import the updated variables in the U-Boot environment and save the
environment in the SPI Flash memory. This is the first variable executed when the de-
fault_bootcmd is executed.

e default_bootcmd: This variable is executed by the U-Boot if the user does not interrupt
the boot process by initiating a keyboard interrupt. It is pre-defined by U-Boot but can
be modified by users. It first makes a DHCP request and then the updated environment
is downloaded from the TFTP server which then points to the path of the device-tree blob
and the kernel Image and then these boot files are downloaded from the TFTP server and
the booting of the kernel image is carried out. Modification of the default_bootcmd was
important in implementing the automated network boot.

The default_bootemd provided by Petaliinux is “run uenvboot; run cp_kernel2ram && bootm
${netstart}”. The “uenvboot” command loads a uEnv.txt file from the SD card if any and
the “bootm” command executes the boot of “image.ub” FIT image from the memory address
pointed by the “netstart”. Even if the PetaLinux is configured properly and the CentOS 8
kernel is built with the Zynq UltraScale+ drivers, the automated Linux boot cannot happen
if the default_bootcmd is not configured properly to automate the network boot. The default
boot command can be defined in the “u-boot_bsp.tcl” script of the PetaLinux Tools if the
user wants a predefined default_bootcmd. Otherwise the default_bootcmd can be modified
even during the U-Boot run-time and imported from the uEnv.txt file on the TFTP server.
This helped in testing different boot methods such as full SD card boot, partial network
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boot and full network boot without rebuilding the U-Boot. The command for full SD card
boot and partial network boot is presented at the bottom of Listing 5.1 (both method load
boot files from the SD card).

5.6.2 Using the uEnv.txt File

Once the system adminsitrators and the developers have decided to use a uEnv.txt file on TFTP
server to help them in configuring the U-Boot behaviour and the Linux boot, they need to do the
following things:

e Usually, the DHCP server offers the kernel Image path on TFTP server to the U-Boot.
This information is stored in the variable “filename” in DHCP server configuration (see
Appendix B). This information is stored by the U-Boot in the variable “bootfile”. The
system-administrators need to modify the path in “filename” to the path of uEnv.txt file
on TFTP server. The U-Boot does not care about the file type as it only downloads the
uEnv.txt file to a predefined address (loadbootenv_addr, this can also be modified). Thus, if
the “filename” points to the uEnv.txt file on TFTP server, “bootfile” in U-Boot environment
will also point to the same path on TFTP server. This helps the U-Boot in downloading the
environment variables from the TFTP server without any manual intervention during the
execution of the default_bootcmd presented in Listing 5.1.

This could raise an error only if the U-Boot is told to treat the uEnv.txt file as a kernel
Image file and made to boot it with commands like “bootm” , “booti” (see in Listing 5.1),
which expect only kernel Image and device-tree blob files and no other file. Apart from this
U-Boot does not raise an error and care should be taken that “autostart” variable in not set
in the U-Boot, as it can automatically start the boot process with the uEnv.txt file which
will raise an error (usually not set by default in U-Boot environment).

e The default boot command (default_bootcmd) should be modified in the U-Boot configur-
ation such that it always downloads and saves new environment variables from the TFTP
server before loading the boot files. Care should be taken that the uEnv.txt file contains the
TFTP server path for the kernel Image and device-tree blob which the system-administrators
want the U-Boot to download.

Once all of this is set, the U-Boot receives the uEnv.txt file path from the DHCP server,
downloads the new environment variables and then proceeds to download the kernel Image
and device-tree blob from the paths specified by the uEnv.txt file to boot Linux on the Zynq
UltraScale+ MPSoC.

5.7 MAC Address Setting in the Device-Tree by U-Boot

The process of the setting the MAC address by the U-Boot in the device-tree was thoroughly
understood by studying the Xilinx U-Boot source codes [33][34][35][36]. This investigation can be
understood by the readers by going through the flowchart presented in Appendix B, which is a
contribution of this thesis to give better understanding of this process to hardware developers and
system-administrators.

During the testing of the Linux network boot process, it was noticed that the kernel does not
always acquire the MAC address from the Ethernet hardware registers every time it is booting.
In some cases, the MAC address was acquired from the device-tree. On further investigation,
it was found that U-Boot is actually modifying the MAC address in the device-tree. Since it is
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important for the system administrators to know where the MAC address is being set, modified
and acquired from in order to ensure uniformity of hardware behaviour, a considerable time was
spent in understanding thoroughly how the U-Boot is modifying the MAC address in the device-
tree. The Xilinx U-Boot documentation was not explicit enough in this regard. The following
points explain how the U-Boot modifies the MAC address in the device-tree of Zynq UltraScale+
MPSoC:

e The U-Boot checks if the property CONFIG_OF_LIBFDT is defined in the U-Boot con-
figuration in order to pass the hardware information to the kernel through the flattened
device-tree blob. If it has not been defined, the boot hangs.

e If the property has been defined, the U-Boot checks if there is a node named “aliases” in
the device-tree. The “aliases” node holds the information of nodes describing the properties
of the hardware such as Ethernet, 12C, SPI and other peripherals activated in the design. If
there is no node named “aliases”, the U-Boot does not update the device-tree.

e If there is a node named “aliases”, the U-Boot proceeds to add or replace property called
“mac-address” in the Ethernet device-node and assigns the value of the MAC address stored
in the “ethaddr” environment variable to the property.

e The U-Boot then adds or replaces a property called “local-mac-address” in the Ethernet
device-node and assigns the value of the MAC address stored in the “ethaddr” environment
variable to the property.

This procedure can be seen in a flowchart in the Appendix B.

5.8 Acquisition of the MAC address by the Linux Kernel

The process of acquisition of the MAC address by the Linux kernel in the device-tree was thor-
oughly understood by studying the source codes of the Cadence Ethernet driver [37][38]. The
code was studied since Cadence Ethernet hardware interfacing is used for the Zynq UltraScale+
on ZCU102 board and there was not sufficient documentation available from CentOS or Xilinx to
understand this process. This investigation can be understood by the readers by going through
the flowchart presented in Appendix B, which is a contribution of this thesis to give better under-
standing of this process to hardware developers and system-administrators.

The following points explain how the kernel acquires the MAC address:

e The “mach” Ethernet driver by Cadence is initialised by the kernel and it checks if the
property “mac-address” in the Ethernet device-tree node has a valid MAC address value
assigned to it. If it has a valid MAC address value, the kernel uses this MAC address to
obtain network information from the DHCP server.

e If there is no property “mac-address” in the Ethernet device-tree node or if it does not have a
valid MAC address value assigned to it, the kernel checks if the property “local-mac-address”
has a valid MAC address value assigned to it. If it has a valid MAC address value assigned to
it, the kernel uses this MAC address to obtain network information from the DHCP server.

e If there is no property “local-mac-address” in the Ethernet device-tree node or if it does not
have a valid MAC address value assigned to it, the kernel checks if the property “address”
in the Ethernet device-tree node has a valid MAC address value assigned to it. If it has a
valid MAC address value assigned to it, the kernel uses this MAC address to obtain network
information from the DHCP server.
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e If there is no property “address” in the Ethernet device-tree node or if it does not have a
valid MAC address value assigned to it, the kernel checks if there is valid MAC address value
stored in the Ethernet hardware registers. If there is valid MAC address value stored in the
Ethernet hardware registers, the kernel uses this value to obtain network information from
the DHCP server.

e If there is no valid MAC address value stored in the Ethernet hardware registers, the kernel
generates a random MAC address and tries to obtain network configuration from the DHCP
server.

This procedure can be seen in a flowchart in the Appendix B.

5.9 Mounting the Root File System from the NFS server

The kernel before mounting the root file system sends a request to the DHCP server for obtaining
the NFS server IP address and the NFS root file system path. Once the information has been
obtained from the DHCP server, the root file system is mounted and the “init” process is launched
to enter the Linux userspace.

5.9.1 Network File System Server

The Network File System (NFS) is a file system protocol which allows the Linux kernel to mount
file systems over a network as if the file system is on a local disk. NFS has multiple versions
such as NFSv2, NFSv3 [39] and the latest NFSv4 [40][41]. NFSv3 is most commonly used NFS
protocol even today and we have also utilised NFSv3 during the testing of this project. NFSv 2
uses UDP/IP for communication between the client and the server but from NFSv3 the support
for TCP/IP was also added. NFS uses Remote Procedure Calls (RPCs) to route requests between
clients and servers. The access to the network mounted file system depends on the permissions
assigned to the client user (which is defined in the NFS server configuration).

During initiation of NFS request, transport protocol is negotiated between the client and the
server. The first protocol that is supported by both the client and the server is the default choice
otherwise another transport protocol is chosen on the second attempt. The NFS protocol version
is given precedence over the choice of the transport protocol. As a result it may happen that
NFSv4 with TCP/IP would be given precedence over NFSv3 configured for UDP /TP (both should
support the common transport protocol version). The client must know the NFS root file system
path and NF'S server’s IP address to request a mount of the root file system. The server must also
have a configuration which clearly defines that devices with certain IP addresses, devices having
an IP address within a given range or devices with any IP address are allowed to mount the root
file system.

The client requests the mount port number from the portmap service running on the NFS
server and if that request is granted, the port number is used to see if the mount service is running
on the server. Once that has been confirmed, the client then makes a mount request. The NFS
server refers to its configuration file, “/etc/exports”, to determine whether the client is allowed to
access any of the exported file systems. Once that has been determined, the client is allowed or
denied permission to mount the root file system.

The NFS server configuration script has been presented in Appendix B.
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5.10 Overview of the Automated Linux Network Boot

In the previous sections, different topics related to the Linux network boot have been explained in
detail. The following steps give an overview of the Linux network boot flow on a Zynq UltraScale+
(For the steps taking place before the FSBL is loaded in the On-Chip Memory, please refer to
Chapter 3, sub-section 3.5.1):

1. The FSBL initializes the PS hardware, I/O devices, memories and clocks as per the config-
uration defined in the HDF file provided by the hardware developers. The FSBL then loads
the U-Boot in the processor DRAM of the APU.

2. The U-Boot loads the environment from the SPI flash memory, writes the MAC address to
the Ethernet hardware and requests IP address assignment and other information such as
boot file name, boot file path, kernel boot arguments and TEFTP server IP address from the
DHCP server.

3. Once the information is obtained from the DHCP server, the U-Boot waits for a pre-
configured time to allow user interrupts and in the absence of a user interrupt, executes
the default_bootcmd environment variable to download a new environment from the TFTP
server, save the new environment, download the device-tree blob and the kernel Image file
from the TFTP server as per the file paths provided by the new environment.

4. Once the device-tree blob and kernel Image have been downloaded and loaded in the pro-
cessor memory, the U-Boot hands over the control to the kernel and the “booti” command
starts booting the kernel.

5. The kernel with the assistance of the device-tree blob initialises the services and the drivers
that have been configured in the kernel configuration and at the end of this process, requests
the DHCP server for IP address assignment, NFS server IP address and NF'S root file system
path.

6. Once this information has been obtained, the kernel makes a mount request to the NFS
server and the root file system is mounted. The init process is executed as the first process
after mounting of the root file system and various services within the root file system are
initialized to start the operating system.

7. At the end of the init process, the user can log-in.

Model: ZyngMP ZCU10@2Z Revl.®

Board: Xilinx ZyngMP

Net: ZYNQ GEM: ffoe@o0@, phyaddr ¢, interface rgmii-id
eth@: ethernet@ffes00pe

U-BOOT for xilinx-zcul02-2019 1

U-BOOT for CERN CMS

ethernet@ffoe0@e00 Waiting for PHY auto negotiation to complete........ done
BOOTP broadcast 1

BOOTP broadcast 2

DHCP client bound to address 128.141.174.218 (251 ms)
Hit any key to stop autoboot: @&

Figure 5.2: DHCP request by the U-Boot

Figure 5.2 shows the U-Boot making the DHCP request and acquiring an IP address for the
Ethernet interface.
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Using ethernet@ffoed0dd device

TFTP from server 128.141.174.229; our IP address is 128.141.174.218

Filename 'zcul@2/system.dtb'.

Load address: 0x19000000

Loading: ###
4.9 MiB/s

done

Bytes transferred = 41312 (al6® hex)

Using ethernet@ffoed0od device

TETP from server 128.141.174.229; our IP address is 128.141.174.218

Filename 'zcul@2/Image’.

Load address: @x10eobeoo

Loading: ##E##E#FEEH#EHEHREFHEHHHRRHREHREHRHHREHHT R EER R R HHRHHRREEE
R R
B B o e G e
R R R R

R R R R A R R R
B G e
H R R R R R R A R R R R

B G i g T G e e
B B e i
B e i s e

9.6 MiB/s

done

Bytes transferred = 18010624 (112d200 hex)

## Flattened Device Tree blob at 19000000
Booting using the fdt blob at Ox10000080

Figure 5.3: Loading of kernel Image and device-tree from the TFTP server

Figure 5.3 shows the loading of the boot files likes kernel Image and device tree from the
TFTP server. It can be seen that the files are loaded at a predefined address in the processor
memory.
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683573] IPv6: ADDRCONF(NETDEV UP): eth@: link is not ready

704487] mmcO: new high speed SDHC card at address 8087

710472] mmcblk@: mmcO:0007 SD32G 29.0 GiB

717164] mmcblke: pl p2

949565] [drm] Cannot find any crtc or sizes

725902] macb ffee@o@0.ethernet ethe: link up (1080/Full)

731578] IPv6: ADDRCONF(NETDEV CHANGE): eth@: link becomes ready

749625] Sending DHCP requests ., OK

769356] IP-Config: Got DHCP answer from 192.168.100.1, my address is 128.141.174.218
777442] IP-Config: Complete:

791176] host=128.141.174.218, domain=, nis-domain=(none)

797264] nameserver@=192.168.100.1

812967] cfg80211: Loading compiled-in X.509 certificates for regulatory database
952062] cfg80211: Loaded X.509 cert 'sforshee: 00b28ddf47aef9cea7’

958595] clk: Not disabling unused clocks

962863] ALSA device list:

965826] #0: DisplayPort monitor

969824] platform regulatory.@: Direct firmware load for regulatory.db failed with error -2
978437] cfgB80211: failed to load regulatory.db

994577] VFS: Mounted root (nfs filesystem) on device ©:16.

000822] devtmpfs: mounted

003968] Freeing unused kernel memory: 832K

021535] Run /sbin/init as init process

W W W oo DD EIEOCI GO CHCOCDCICDCH 00D ON0WLILLIL WL

780666] device=eth®, hwaddr=08:00:30:f4:03:37, ipaddr=128.141.174.218, mask=255.255.255.0, gw=128.141.174.1

797261] bootserver=128.141.174.229, rootserver=128.141.174.229, rootpath=/home/kmor/nfs/zcule2_vanilla_centos8/,tcp,v3

Figure 5.4: Mounting the CentOS 8 root file system from the NFS server

Figure 5.4 shows the DHCP request by the kernel and the mounting of the CentOS 8 root
file system from the NFS server by the kernel. At the bottom of the figure, it can be seen that

the kernel executes the “init” process after mounting the root file system.

Cent0S Linux 8 (Core)
Kernel 4.18.8 on an aarché4

128 login: root

Password:

Last login: Tue Jan 7 11:42:30 on ttyPsSe
[root@l2s ~]1# 1ls /

bin dev home 1ib64 mnt proc run SIrv
boot etc 1lib media opt root sbin sys

Figure 5.5: User login into the CentOS 8 root file system

tmp wvar
usr

Figure 5.5 shows the login of the user in the CentOS 8 root file system at the end of the init

process. The root file system contents are also visible in the figure.

5.11 Summary

In this chapter the readers were informed about the work undertaken in this thesis to fix the
issues with the U-Boot’s processing of the DHCP response and how the setting, modification
and acquisition of Ethernet MAC address takes place during the Linux boot process on Zynq
UltraScale+. This chapter informs the reader about importance of the “uEnv.txt” file for remotely
configuring the Linux network boot on the Zynq UltraScale+. This chapter also explains the reader
about the DHCP, TFTP and NFS servers and their functioning along with the steps followed

during automated Linux network boot.
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Chapter 6

Performance of Boot Methods and
Root File System Locations

In this chapter, performance of different boot mechanisms and performance of SD card and NFS
root file system storage types is presented. A qualitative comparison between the SD card and
network storage method for boot files and root file system has also been presented to arrive at a
choice of boot mechanism and root file system storage type for the CMS data acquisition network.

The CentOS 8 Linux distribution can be booted on the Xilinx Zynq UltraScale+ MPSoC
in multiple ways. During this project, we have tried to boot Linux on the Zynq UltraScale+
by implementing a full SD card boot, a partial network boot and a full network boot. All the
methods have their advantages and disadvantages and can be used in the CMS data acquisition
network. However, in order to recommend a boot method for the hardware platforms that would
be installed as a part of the CMS DAQ Phase-1T upgrade, tests were conducted to determine the
performance of the different boot mechanisms. These have been presented in the following section.

6.1 Linux Boot Time Tests

For testing the boot performance reported in the following sub-sections, 3 different testing config-
uration were used. They are as follows:

e Full SD card boot: BOOT.BIN, device-tree blob, kernel Image and CentOS 8 root file
system are kept on the SD card.

¢ Partial network boot: BOOT.BIN, device-tree blob, kernel Image are kept on the SD
card and while the CentOS 8 root file-system is on the NF'S server.

e Full network boot: BOOT.BIN is kept on the SD card, whereas the device-tree blob,
kernel Image are on the TFTP server and the CentOS 8 root file-system is on the NFS
server.

6.1.1 Test Infrastructure and Scripts

The following equipment was used for conducting the tests:
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e Kingston Canvas React 32 GB (Class 10 UHS-1 U3 A1 V30) SD card [42] in UHS (Ultra-High
Speed) mode to determine boot timings and read-write speeds of the boot files and root file
system.

e TTL TECKNOPACK NUC5 i5MYHE desktop computer [43] as NFS and TFTP server
having features such as a 64-bit Intel i5 5th Generation Dual Core Processor with a 250 GB
SSD storage, 16 GB RAM and support for 1 Gigabit Ethernet. The desktop has no RAID
cards for redundant disks. The uncached disk read speed measured for the TTL NUC5 Solid
State Storage Disk (SSD) was around 400 MB/s whereas the sequential write speed of small
files (1000 1 MB files) to the disk was about 283 MB/s and that of big files (1 GB) was
around 400 MB/s. All these speeds are of course limited by the 1 Gigabit Ethernet interface
over which the ZCU102 client communicated with the TFTP and NFS servers running on
the device.

e 1 Gigabit Ethernet network to compare with the SD card UHS class read speed of 104
MB/s [44] and also since it is supported by both the ZCU102 board and the NUC5 desktop.

A total of 10 test samples each were taken for the different boot methods and also for different
read-write performance tests associated with different root file system types. The tests were done
using only the ZCU102 evaluation board with 1 TFTP server, 1 NFS server and 1 DHCP server.
The aforementioned servers were located on the TTL NUC5 desktop.

6.1.2 Boot Files Read Speeds

Boot File Read Speeds (Megabytes/second)

Kernel Image Device-Tree

Statistics Kingston  SD | 1 Gigabit Eth- | Kingston  SD | 1 Gigabit Eth-
card ernet card ernet
Mean 15.06 10.07 2.16 4.13
Minimum 14.84 9.78 2.16 4.13
First Quartile 15.05 10.00 2.16 4.13
Median 15.08 10.11 2.16 4.13
Third Quartile 15.08 10.17 2.16 4.13
Maximum 15.21 10.28 2.16 4.13
Std. Deviation | 0.11 0.14 0.00 0.00

Table 6.1: Statistics of 10 samples for boot file read speeds from the SD card and the boot network.

Table 6.1 shows the statistics of 10 samples of the boot file read speeds from the SD card and
over the 1 Gigabit Ethernet network from the TFTP server. The standard deviation of loading the
kernel Image from the Kingston SD card was 0.11 Megabytes/second whereas that of downloading
over the 1 Gigabit Ethernet was 0.14 Megabytes/second. Standard deviation to load device-tree
from either of the mediums was zero as the read speeds for loading the device-tree were consistent
and varied only in their 3rd and 4th decimal places. All the values in Table 6.1 are corrected to
fit 2 decimal places.

The size of the device-tree blob (system.dtb) used during the tests is 41.3 KB where as the
size of the kernel Image was 18 MB. For this test, the Kingston SD card is used in the UHS mode.

As can be seen from Table 6.1, Ethernet network downloaded the device-tree blob at an
average speed of 4.13 MB/s whereas the SD card loaded it at 2.16 MB/s. But the SD card loaded
the kernel Image file at an average speed of 15.06 MB/s whereas the Ethernet network loaded
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the kernel Image at an average speed of 10.07 MB/s. Both the mediums perform significantly
lower compared to their maximum read speed capacity and thus, this test did not give us accurate
understanding of the read-write speeds to and from the SD card and the TFTP server.

Average Read Speeds for Boot Files
EKingston SD Card ™1 Gigabit Ethernet
16

15.06

14

12
g
= 10.07
o 10
wu
@
)
2 8
[
(=]
8]
2 6
k5
g 4.13
w 4

2.16
2
0
Kernel Image Device-Tree

Boot Files

Figure 6.1: Boot File Read Speeds

Figure 6.1 shows average read speeds for reading boot files from the Kingston SD card and
over 1 Gigabit Ethernet network. It can be seen that the Kingston SD card is faster than 1 Gigabit
Ethernet network in terms of reading the kernel Image but slower than the Ethernet network while
loading the device-tree blob file.

6.1.3 Average Boot Times

In order to establish which medium is better when it comes to booting the Linux, the average
boot timings were tested with the Kingston SD card and 1 Gigabit Ethernet network in 3 different
boot methods: full SD card, partial network boot and full network boot. 10 samples for each boot
method were taken.

Statistics for Full SD Card Boot Times (seconds)
Statistics Pre-Boot Kernel Load | Device-Tree Kernel Boot | Userspace
Phase Phase Load Phase

Mean 10.15 1.20 0.02 6.73 16.39
Minimum 10.04 1.19 0.02 6.46 15.95
First Quartile 10.08 1.20 0.02 6.56 16.04
Median 10.16 1.20 0.02 6.61 16.16
Third Quartile | 10.23 1.21 0.02 6.85 16.55
Maximum 10.27 1.22 0.02 7.50 17.43

Std. Deviation | 0.09 0.01 0.00 0.31 0.52

Table 6.2: Statistics of 10 samples for boot timings for the full SD card boot.
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Table 6.2 shows the statistics for the 10 samples of the timing of full SD card boot. In it,
statistics of different phases of the Linux boot process are also presented. In Table 6.2, it can be
seen that the standard deviation of the time spent in the different boot phases before the kernel
boot phase is very low. This is because the values of the time spent in different boot phases before
the kernel boot was fairly consistent across the 10 different samples and the variations usually
lay in the 3rd or 4th decimal place and beyond. In full SD card boot, files like kernel Image and
device-tree are loaded from the SD card before mounting the root file system from the SD card.
The standard deviation values of the time spent in the kernel boot and userspace phase are slightly
higher than other standard deviation values as the time spent in these phases varies depending on
how fast the processor executes the kernel boot process, how fast the kernel mounts the root file
system and how fast the “init” process initialises the system management services as the Linux
boot enters the CentOS 8 userspace. No manual intervention was involved during the Linux boot
process.

Statistics for Partial Network Boot Times (seconds)
Statistics Pre-Boot Kernel Im- | Device-Tree Kernel Boot | Userspace
Phase age Loading | Loading

Mean 10.11 1.20 0.02 9.33 17.74
Minimum 9.90 1.19 0.02 9.19 16.82
First Quartile 10.03 1.20 0.02 9.19 17.39
Median 10.15 1.20 0.02 9.22 17.80
Third Quartile | 10.21 1.20 0.02 9.26 18.05
Maximum 10.25 1.22 0.02 10.26 18.74

Std. Deviation | 0.12 0.01 0.00 0.33 0.53

Table 6.3: Statistics of 10 samples for boot timings of the partial network boot.

In Table 6.3, the statistics for the 10 samples of the timing of partial network boot are
presented. In Table 6.3, statistics of different phases of the Linux boot process are also presented.
In Table 6.3, it can be seen that the standard deviation of the time spent in the different boot
phases before the kernel boot is very low. This is because the values of the time spent in different
boot phases before the kernel boot was fairly consistent across the 10 different samples and they
are quite similar to the values seen In Table 6.2. This is because in the partial network boot, boot
files are also loaded from the SD card before the root file system is mounted from the NFS server.
The standard deviation values of the time spent in the kernel boot and userspace phase are slightly
higher than other standard deviation values as the time spent in this phase varies depending on
how fast the processor executes the kernel boot process, how fast the kernel mounts the root file
system from the NFS server and how fast the “init” process initialises the system management
services as the Linux boot enters the CentOS 8 userspace. No manual intervention was involved
during the Linux boot process.

Statistics for Full Network Boot Times (seconds)
Statistics Pre-Boot Kernel Im- | Device-Tree Kernel Boot | Userspace
Phase age Loading | Loading

Mean 10.10 1.79 0.01 9.24 17.53
Minimum 9.91 1.76 0.01 9.18 17.12
First Quartile 10.07 1.78 0.01 9.19 17.27
Median 10.16 1.79 0.01 9.20 17.57
Third Quartile | 10.18 1.81 0.01 9.20 17.80
Maximum 10.21 1.85 0.01 9.61 17.85

Std. Deviation | 0.10 0.03 0.00 0.13 0.28

Table 6.4: Statistics of 10 samples for boot timings for the full network boot.
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In Table 6.4, the statistics for the 10 samples of timing of the full network boot are presented.
In Table 6.4, statistics of different phases of the Linux boot process are also presented. In Table
6.4, it can be seen that the standard deviation of the time spent in the different boot phases before
the userspace phase is very low. This is because the values of the time spent in different boot
phases including the kernel boot phase was fairly consistent and varied only in their 3rd and 4th
decimal places and beyond. The standard deviation of the time spent in the CentOS 8 userspace
is slightly lower than the standard deviation for the time spent in the same phase for the other
two boot methods. As mentioned previously, the time spent in this phase depends on how fast the
“init” process initialises the system management services. No manual intervention was involved
during the Linux boot process. The contents and services initialised in the CentOS 8 root file
system were consistent for all the three boot methods.

In all the three tables, Table 6.2, Table 6.3 and Table 6.4, it can be seen that the time spent
in the pre-boot phase and the standard deviation for the time spent in the pre-boot phase for
different boot methods was fairly consistent and varied only slightly. This is because this phase is
entirely dependent on the internal boot setup process followed by the Zynq UltraScale+ (explained
in Chapter 3) and no manual intervention is possible in this phase till the user interrupts the U-
Boot. Additionally, the time spent in loading the kernel Image and the device-tree for different
boot methods is fairly consistent for that particular boot method. This is because the speed of
loading these boot files from the storage medium does not vary a lot as seen in Table 6.1.

Average Boot Times for different Boot Methods
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Figure 6.2: Average Linux boot times for the three boot methods

Figure 6.2 depicts average boot times for different boot methods like full SD card boot, partial
network boot and full network boot. It was found out that the full SD card boot was faster than
partial network boot and full network boot by an average of about 4 seconds. The explanation for
this phenomenon has been explained along with the explanation of the graph presented in Figure
6.3. As seen in Figure 6.2, the full SD card boot had an average boot timing of 34.39 seconds, the
partial network boot had an average boot timing of 38.4 seconds and the full network boot was
slightly slower than partial network boot and required 38.67 seconds for complete boot. This data
alone is not conclusive enough for saying that the full SD card boot is better than the network
boot. In order to understand where the differences in the boot timing is coming from, tests were
carried out to find the breakup of the boot timing in terms of time spent in loading the U-Boot,
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time spent to download the boot files, time spent in booting the kernel and the time spent in
CentOS 8 userspace initialisation. The statistics of these values have been presented in Table 6.2,
Table 6.3 and Table 6.4.

The time spent in the pre-boot phase was obtained with the help of a digital stop watch, for
the lack of any other method which could be used to measure that timing. The time spent in
loading the kernel Image and device-tree was calculated from the boot file read speeds reported
in the U-Boot terminal (an example of which seen is Figure 5.3) and as per the data presented
in Table 6.1. The time spent in the kernel boot phase and the CentOS 8 userspace was measured
with the help of an internal CentOS 8 tool called “systemd-analyze” which accurately reports the
time spent in the kernel boot phase and the CentOS 8 userspace phase.
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Figure 6.3: Average Linux boot time breakup for the three different boot methods

Figure 6.3 depicts the average boot time breakup for different boot methods like full SD card
boot, partial network boot and full network boot. The breakup consists of time spent in pre-boot
phase, loading the boot files, the time spent in booting the kernel and the time spent in user-space
after execution of the init process.

In Figure 6.3, it can be seen that the average time spent in the pre-boot phase (loading the
FSBL and U-Boot) is 10.15 seconds for full SD card boot, 10.11 seconds for partial network boot
and 10.10 seconds for full network boot. It can be seen that this timing is quite similar for all boot
methods. This is because this part of the boot process is entirely dependent on the performance
of the PMU bootROM, PMU firmware, CSU bootROM and the speed at which the FSBL and U-
Boot are loaded in the Zynq UltraScale+(explained in Chapter 3). There is no human intervention
possible here.

In Table 6.2, Table 6.3 and Table 6.4 it can be seen that the average time spent in loading
the device-tree is too small (between 0.01 and 0.02 seconds) and on the scale of the graph shown
in Figure 6.3, their share in the boot process would not visible as the time required is insignificant
in context of the larger boot process. Hence, those values are not included in the graph. The
average time spent in loading the kernel Image is 1.20 seconds for both the full SD card boot and
the partial network boot since both methods load the device-tree and kernel Image from the SD
card and as seen in Table 6.1, there is very little variation in the load speeds of kernel Image and
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device-tree from the SD card and the TFTP server. The average time spent in loading the kernel
Image for the full network boot is slightly higher at 1.79 seconds. This slightly slow timing can be
attributed to the time spent in the request, grant and acknowledgement transactions associated
with the TEFTP server. The time spent in loading the boot files also depends on the size of the
boot files. If the hardware description in the device-tree is longer or if more features are activated
in the kernel, the size of the device-tree and the kernel Image would increase and as such the time
spent in loading these files would also increase.

In Figure 6.3, it can be seen that for the full SD card boot, the average time spent in booting
the kernel Image is 6.73 seconds, for a partial network boot the value is 9.33 seconds and for
a full network boot the value is 9.24 seconds. When the kernel is booting, it is looking for the
hardware addresses of different peripherals for which drivers and services have been activated in
the kernel to support the hardware. Upon finding the location of these hardware peripherals, the
kernel enables and tests these drivers and services in parallel. This booting of the kernel is not
subject to manual intervention and this timing may increase or decrease depending on how fast
the processor executes the kernel boot process. The difference in kernel boot timing between the
full SD card and the other two boot methods is around 2.50 seconds. This difference is due to
the time spent by partial network boot and full network boot in activating the Ethernet interface,
making a DHCP request for the NFS server IP address and root file system path as well as the
time spent in mounting the root file system from the NFS server. The full SD card boot method
does not have to make a DHCP request and thus is able to mount the root file system directly
from the SD card’s EXT4 partition, saving some time in kernel booting.

As can be seen from Figure 6.3, there is no significant difference between the different boot
methods as far as the average time spent in the CentOS 8 userspace is concerned. Once the root
file system is mounted, the full SD card boot spent 16.39 seconds in userspace on an average, the
partial network boot spent 17.74 seconds and the full network boot spent 17.53 seconds in the
userspace on an average. The full SD card boot is slightly faster in this context possibly because of
faster read reads of small executable system initialisation files from the SD card compared to the
read speeds of these files from NFS over 1 Gigabit Ethernet (tests presented in later sections). The
time spent in the userspace depends on how fast the processor executes the “systemd” initialisation
and other system management services which are activated in the kernel as well as enabled in the
CentOS 8 root file system. If more services are activated in the kernel and the userspace, the time
spent in the userspace during the Linux boot also increases.

From the test results presented above, it was clear that that the full SD card boot is faster
for boot files and root file systems of similar sizes. However, it needed to be investigated if the SD
card performs as well as the 1 Gigabit Ethernet network with SSD storage on NF'S servers when
it comes to the read-write speeds to the root file system.

6.2 Performance of Root File System Types

The most frequent operations executed by the the Zynq UltraScale+ based embedded controllers
in the CMS data acquisition network would be to read files from and write files to the CentOS
8 root file system to perform their computation tasks. These operation could involve copying a
big application file and its libraries measuring in Gigabytes (GB) in to the processor RAM and
executing the application. These operations could also involve reading small binary utility files
required in execution of a script by the Zynq UltraScale+ processor or the reading and execution
of small files during the CentOS 8 userspace initialisation phase of the Linux boot process.

On the other hand, Zynq UltraScale+ based embedded controllers might want to write per-
formance or error logs to the root file system. Privileged users of these controller platforms might
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want to install a large software packages of a few hundred Megabytes or a Gigabyte on the root file
systems (explained in Chapter 7), which could also involve reading and writing many small files
and small install scripts to and from the root file system. Thus, considering all these different use
cases, it is important to study the read-write performance of two different root file system types
namely: the SD card storage and the storage on the NFS servers.

The tests were conducted using the same equipment mentioned in section 6.1.1. The read-
write tests were automated with the help of a script presented in Appendix C. The script helps
in creating files and folders to store the files, clearing the cache, copying the files to and from the
processor RAM disk and deleting the files at the end of the tests.

6.2.1 Average Read Speeds from Root File System

For measuring the read speed from the root file system, 2 different types of files were used: 1 big
file of 1 GB and 1000 small files of 1 MB. These files mirror the kind of files that would be read by
the Zynq UltraScale+ processor from the root file system for its operations. The files were copied
from the root file system on the SD card and the NFS server and written to the Zynq UltraScale+
PS RAM disk, mirroring the operations that would be carried out when the embedded systems are
deployed in the CMS DAQ network. The Kingston SD card was tested in the HS (High-Speed)
and the UHS (Ultra-High Speed) mode. The Kingston SD card supports 25 MB/s read speed
in HS mode and 104 MB/s read speed in UHS mode [42]. The NFS server was running on the
TTL NUCS5 server and was communicating over 1 Gigabit Ethernet network. The SSD of the
TTL NUCS5 server gave uncached disk read speeds of up to 400 MB/s when it was tested using
the command “hdparm -tT /dev/sda”, where hdparm tests cached and uncached disk read speeds
and /dev/sda points to the disk mount point. These are read-speeds which are largely in access of
the theoretical speed limit of 125 MB/s associated with 1 Gigabit Ethernet network, over which
the ZCU102 client communicated with the NFS server.
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Figure 6.4: Average read speeds from root file system (writes to RAM disk)
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Figure 6.4 shows the average read speeds from the root file system for the HS and UHS mode
of SD card as well as the read speeds over 1 Gigabit Ethernet from the NFS server. As can be
seen in Figure 6.4, it was observed that the UHS mode of the SD card and the 1 Gigabit Ethernet
have similar average read speeds for big files. The read speed of 1000 1 MB files from UHS SD
card was slightly faster (69.94 MB/s) than reading 1000 1 MB files over 1 Gigabit Ethernet from
the NFS server (60.81 MB/s). The HS mode of the SD card reads big files and small files at an
average speed which is 3-4 times less than the average read speeds from the UHS SD card and
the NFS server respectively for either of the file size types. The cache memory was cleared before
every test so that the data would not be reused from the cache during the tests, so as to ensure
accurate test results.

Statistics for Read Speed Tests from the Root File System (Megabytes/second)

Big File (One 1 GB file) Small Files (1000 1MB files)

Statistics From HS | From From From HS | From From
SD card UHS SD | NFS SD card UHS SD | NFS

card server card server
Mean 21.71 73.95 73.63 21.58 69.94 60.81
Minimum 20.53 73.35 73.20 21.51 69.78 57.05
First Quartile 21.81 73.68 73.35 21.57 69.89 59.22
Median 21.82 73.83 73.54 21.59 69.95 61.65
Third Quartile 21.84 73.88 73.88 21.60 70.03 62.38
Maximum 21.99 75.91 74.26 21.62 70.03 62.93

Standard Deviation | 0.42 0.71 0.37 0.03 0.09 2.11

Table 6.5: Statistics of 10 samples for read speed tests from the root file system storage types

In Table 6.5, the statistics of the 10 samples of read speed tests for reading big and small
files from the root file system are presented. Here we can see that the standard deviation in the
read speed values is under 1 MB/s except for the read speeds of small files from the NFS server,
where the standard deviation is 2.11 MB/s. This is because the read speeds of small files from
the NFS server vary between 57 MB/s and 63 MB/s whereas other read speeds do not show this
kind of large variation. It is evident from the differences present between the first quartile, median
and third quartile values of read speeds of small files from the NFS server that the read speed
values are spread across the range between minimum and maximum read speeds of 57.05 MB/s
and 62.93 MB/s respectively. This fluctuation in small file read speeds from the NFS server can
be attributed to the network latency and possible congestion in the CERN network during the
time of the testing.

Thus from Figure 6.1 and Table 6.5, it can be seen that the UHS mode of the SD card and the
1 Gigabit Ethernet perform equally well while reading big files from the root file system and the
UHS SD card is slightly faster than 1 Gigabit Ethernet while reading small files from the root file
system. For the storage types, reading of 1000 1 MB files is slower than a 1 GB file because of the
overhead associated with searching the path of each small file, finding it and writing it individually
to the processor RAM disk. While the performance does not get affected for one 1 MB file, the
performance gets affected when searching for 1000 1 MB files individually before writing them to
the processor RAM disk. On the other hand, the 1 GB file is searched for only once and written
to the processor RAM disk. Thus, reads of big files are faster than reading small files.

72



CHAPTER 6. PERFORMANCE OF BOOT METHODS AND ROOT FILE SYSTEM
LOCATIONS

6.3 Average Write Speeds to Root File System

Just like the reading tests, to measure the write speeds to the root file system, 2 different types of
files were used: 1 big file of 1 GB and 1000 small files of 1 MB. The files were read from processor
RAM disk and written to the root file system storage locations. The SD card was tested in the
HS and the UHS mode. The cache memory was cleared before every test so the data should not
be reused from the cache during the tests, so as to ensure accurate test results. The Kingston SD
card supports write-speeds up to 70 MB/s [42].

Statistics for Write Speed Tests to the Root File System (Megabytes/second)

Big File (One 1 GB file) Small Files (1000 1MB files)

Statistics ToHSSD | To UHS | To NFS | ToHSSD | To UHS | To NFS

card SD card server card SD card server
Mean 13.04 34.22 104.41 13.20 37.59 36.72
Minimum 12.20 31.60 99.81 12.50 36.79 35.26
First Quartile 13.02 32.13 103.57 13.13 36.90 35.55
Median 13.17 34.45 105.35 13.31 37.81 35.68
Third Quartile 13.22 36.01 106.14 13.39 38.21 35.81
Maximum 13.29 37.65 107.11 13.43 38.33 41.81
Standard Deviation | 0.33 2.20 2.58 0.29 0.66 2.39

Table 6.6: Statistics of 10 samples for write speed tests to the root file system storage types

In Table 6.6, statistics for the write speed tests are presented for SD card and NFS root file
system. Here it can be seen that the standard deviation of write speeds of writing big files to
UHS SD card and NFS server is high along with the standard deviation of write speeds of writing
small files to the NFS server. The standard deviation for these cases is high due to a bigger
difference between maximum and minimum values compared to other cases as well as values being
spread across the range of these values. It is evident from the differences present between the first
quartile, median and third quartile values of write speeds of big files to the UHS SD card and
NFS server and write speeds of small files to the NFS server. This fluctuation in write speed to
the NFS server can be attributed to the network latency and possible congestion in the CERN
network along with the varying performance of write speeds to the SSD on the NFS server.

Figure 6.5 (seen on Page 74) shows the average write speeds to the root file system stored
on the SD card in the HS and UHS mode as well as the write speeds to the NFS over 1 Gigabit
Ethernet network. As can be seen in Figure 6.5, it was observed that the average write speeds of
writing big files to the NFS are 10 times higher than the SD card in HS mode and three times
higher than the SD card in UHS mode. The average write speeds of writing small files to the
NFS server and UHS mode of the SD card are almost equivalent at 36.72 MB/s and 37.59 MB/s
respectively which is three times higher than the write speeds of small files to the SD card in HS
mode (13.2 MB/s). Thus, it can be seen that write speeds to NFS are faster than the SD card for
big files and equivalent to the UHS mode of the SD card when small files are being written.

The writes of small files to the SD card or the SSD storage on the NFS server is very slow.
For writing a big file to the NFS server, the write-speeds obtained were close to the theoretical
speed of 1 Gigabit Ethernet. It must be understood that write speeds to the disk (either SD card
or SSD) are slower compared to read speeds since they are limited not only by their interfacing
with the processor, but also by the scheduling of the writes to the disk by the Linux kernel and
the time spent in finding the data to be read, reading the data, finding a free space on disk to to
write the data and finally writing the data. As a result, the small file write speeds to the NFS
server are considerably slower than writing a big file of 1 GB on the NF'S since small file writes
have to be done 1000 times for 1 MB files and the process is repeated for each file. The SD card
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Figure 6.5: Average write speeds to root file system (reads from RAM disk)

interface in UHS mode can theoretically do a maximum of 104 MB/s [44], however that is not
achieved even during the SD card reads as seen in section 6.2. The Kingston SD card used for
testing promises only 70 MB/s write speeds [42] and that is further limited by scheduling of the
writes by the kernel and the write procedure followed (as explained above). As a result, writes
of big and small files both are slow when it comes to the HS and UHS mode of the Kingston SD
card.

6.3.1 Comparing SD Cards and Network Storage

In this section, we compare a Kingston 32 GB Canvas React (Class 10 UHS-I U3 A1 V30) SD
card [42], a Kingston 32 GB High Endurance (Class 10 UHS-I) SD card [45] and a Samsung 32
GB Pro Endurance (Class 10 UHS-I) SD card [46] with an Intel D3-S4510 960 GB Solid State
Storage Disks (SSDs) [47] that comes with the Dell R440 [48]server machines that would host the
TFTP and NF'S server in the CMS data acquisition network. A 32 GB SD card is considered since
most of the experiment groups at CMS do not require root file systems which occupy more than
32 GB of space on the disk.

e Costing: A 1000 hardware platforms with Zynq UltraScale+ MPSoC would be installed
in the CMS data acquisition network for a period of 10 to 15 years. Some of these boards
would be designed using high-end FPGA (Field Programmable Gate Array) and the cost of
each of these boards would be around $15-20,000. A fraction of the new hardware platforms
would use very high-end FPGAs and the cost of such boards would be around $40,000.

Both the Kingston 32 GB Canvas React and Kingston 32 GB High Endurance SD card cost
around $15 (costs for 2020 as seen on Kingston online retail store). Thus, a thousand 32
GB SD cards of either type would cost around $15000. The Kingston High Endurance 32
GB SD cards promise 5000 hours of continuous reading without interruptions [45]. It means
that continuous read operations can be carried out from these SD cards for up to 6 months
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without damages to the SD cards. The Samsung 32 GB Pro Endurance SD cards promise
continuous reads for up to 17,520 hours i.e 2 years for a marginally higher cost of $25 for
one SD card. For similar number of continuous read hours, we would need up to 3 Kingston
High Endurance SD cards. Assuming just continuous read-operations from SD cards for 2
years, in the best case scenario the Samsung Pro Endurance cards would need to be replaced
every 2 years and at least 5 to 7 such replacements would be needed over the life time of
Zynq UltraScale+ embedded controllers. Even then, the cost of these SD cards (considering
even 5 to 7 replacements) would be less than 1 % ($125 to $175) of the cost of the actual
hardware boards with the Zynq UltraScale+ based controllers.

However, it can be safely assumed that there would be no cases of exclusive reads from the
SD cards for 2 years at a stretch and the usage of the SD would be mostly for reading boot
files and certain important files from the root file system interspersed with occasional writes
to the SD cards. Thus, it is assumed that SD card would not require frequent replacements
and would only be discarded when their performance goes down due to aging. Thus, it is
assumed that maybe 4 rounds of SD card replacements would be required.

As compared to this, the R440 server with 4, 960 GB Intel D3-S4510 SSDs can host root file
systems of 40-50 hardware platforms. The R440 server machines bought by CMS cost $2000
each, the SSDs cost around $560 each and 4 such SSDs will cost around $2240. Since there
would be 1000 such hardware platforms, around 20-25 R440 servers with 4 SSDs each would
be required. Thus, the total cost of such a network configuration can go up to $106,000.
These servers come with RAID (Redundant Array of Independent Disks) cards which ensure
that if one of the SSDs of the NFS server fails, a redundant SSD with replicated data is
always ready to serve the client. If the RAID cards and the R440 servers malfunction, the
manufacturer guarantees free-of-cost replacement of the server. Thus, the R440 servers and
the SSDs that come with it are redundant and reliable, guaranteed by the manufacturer.
These servers would be replaced every 5 years over a period of 10 to 15 years (three times).
Thus, this server configuration would cost around $300 per Zynq UltraScale+ device for a
period of 10 to 15 years which is around 1.5% of the cost of the actual hardware boards with
the Zynq UltraScale+ based controllers.

Thus, the SD card storage and TFTP /NFS server storage for a period of 10 to 15 years would
cost less than 2% of the Zynq UltraScale+ hardware platform. But the TFTP and NFS server
storage promises redundancy, reliability and ease-of-maintenance (explained later) that is not
associated with the SD card storage.

Speeds: The Kingston 32 GB Canvas React SD card promises read speeds up to 100
MB/s and write-speeds up to 70 MB/s [42]. The Kingston 32 GB High Endurance SD card
promises read speeds of up to 95 MB/s and write speeds of 30 MB/s [45]. The Samsung 32
GB Pro Endurance SD cards promise read speeds of up to 100 MB/s and write speeds of
up to 30 MB/s [46]. Even for more expensive cards like the Lexar 1 TB SD card [49], the
write speeds don’t improve even though they can cost up to $400 (costs for 2020 as seen on
Amazon online store). All these cards are bound by the UHS-I class read-write speeds and
the Zynq UltraScale4+ hardware platforms would only be able to support the UHS-I class
speeds due to hardware limitations of the Zynq UltraScale+ SD card interface [21].

The Intel D3-S4510 SSDs that come with the the Dell R440 support bus-speeds of up to
6Gbps or 750 MB/s [47]. It supports sequential read speeds up to 560 MB/s and sequential
write speeds 510 MB/s [47]. All these values are for peak performance and could be lower
for reading and writing smaller files. Thus, some tests were conducted by the CERN system-
administrators on these disk with RAID cards to check the real read-write speeds of these
disks. The read-speeds for a RAID array of 4 SSDs was found to be 2.09 GB/s for a 1.6 GB
file i.e 536 MB/s for each SSD. The write-speeds with the RAID arrangement were found
to be 972 MB/s for 10,000 1 MB files i.e 243 MB/s to each SSD. Cache data was emptied
before each test. Thus, it can be seen that read-write speeds of the SSD are significantly
higher than that of the UHS SD cards.
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Since one R440 server would be serving 40-50 boards and all of these boards would be sharing
the common root file system, most of their reads would be cached reads, as they would be
reading common files. Thus, the read-speeds experienced by the Zynq UltraScale+ platforms
would not be affected by the simultaneous reads being carried out by 50 other similar boards.
The write speeds to the NF'S server for simultaneous writes by 50 boards would drop to about
20 MB/s (dividing the write speeds of small files explained in the paragraph above by 50)
which is close to the write speeds observed in Figure 6.5. However, it is not expected that
50 devices would simultaneously write a huge number of files to the NFS servers and better
write speeds to the NFS server can be expected.

e Ease of maintenance: Making modifications to the files on the SD card or replacing the
SD card requires one to go to the experiment site (Point 5 of CERN) and replace it. It also
involves taking the hardware platform out of service at least for sometime. This implies high
operational costs in terms of time and money.

The storage of files on a server is far more flexible and easy to maintain as boot files on
TETP server and root file systems on the NFS server can be easily modified, replaced or
backed-up whenever necessary.

e Redundancy: If the SD card storing the root file system malfunctions, the SD card has to
be replaced with another SD card. However, there is no way of reliable, regular backing up
of the data on the SD card if the SD card malfunctions. Additionally, the system experiences
downtime till the SD card is replaced. If the data is not backed up, it is lost.

In that context as well, network storage of root file system and boot files is far more beneficial
than storing everything on the SD card. The root file system on the NFS servers and the
boot files on the TFTP servers are backed up regularly at multiple server locations to provide
much needed redundancy for similar costs as the SD cards (over a period of 10 to 15 years).
Additionally the RAID cards on the R440 servers ensure that if one disk fails, the other
disks with replicated data are always ready to serve the Zynq UltraScale+ devices.

e Reliability and Availability: The R440 servers are used with RAID (Redundant Array
of Independent Disks) cards making them more reliable in case of disk failure as data is
duplicated across identical, independent disks for no additional cost.

The hardware platforms do not have such sophisticated RAID configurations for SD cards
and thus the reliability of such SD cards is low as compared to the network storage even
though the SD card storage configuration costs are similar as the network storage of boot
files and root file system (over a period of 10 to 15 years) when compared with the cost of
the Zynq UltraScale+ hardware platforms.

From all the points mentioned above, it is quite evident that the method to store boot files
and root file system on the network storage does not cost very different from the SD card storage
method and costs only a fraction of the cost of Zynq UltraScale4+ based embedded controllers.
Despite this, the network storage involving the Dell R440 server and Intel D3-S4510 SSDs of-
fers much higher read-write speeds, ease-of-maintenance, reliability, availability and flexibility as
compared to the SD card storage method, irrespective of the UHS-I SD card type in use.

6.4 Summary

From the performance of different booting mechanisms, root file system storage methods and
comparison between the SD card and network storage method, the following inferences can be
drawn:
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e The full SD card boot is faster than the partial network boot and full network boot, but
that is only due to the fact that the full SD card boot does not spend time in making a
DHCP request and root file system mount from the NFS server. Otherwise, all the boot
methods perform equally well, where the full network boot offers more flexibility, reliability
and ease-of-maintenance when looked at from the perspective of the CMS data acquisition
network. In addition, the difference in the boot timing of full SD card boot and full network
boot is less than 10%.

e The reads speeds of reading big and small files are similar for the root file system on the
Kingston 32 GB SD card in UHS mode and for the root file system on the NFS server
hosted by the TTL NUC5 desktop. The write speeds of big files to NFS server over 1
Gigabit Ethernet are higher than the write speeds of big files to the SD card in UHS mode
but the write speeds of small files to the NFS server is equivalent to the write speeds of small
files to the SD card in UHS mode. However, during the final deployment Dell R440 servers
with Intel D3-S4510 SSDs and RAID cards would be used to operate the NFS server in the
CMS data acquisition network. This would significantly improve the read-write performance
of the network storage, but it will still be limited by the 1 Gigabit per second performance
of the client’s network interface.

e Buying expensive SD card with bigger storage capacity like the Lexar 1 TB SD card does not
improve the read-write performance of the SD card even in the UHS mode. The maximum
read speeds of the SD card in the UHS mode is 104 MB/s [44] and this is still a fraction
of the read-write speeds offered by the Intel D3-S4510 SSDs as seen in the previous section.
However, High Endurance SD cards are still required for storing the BOOT.BIN file for
loading the FSBL and U-Boot in the Zynq UltraScale+. Usage of High Endurance SD cards
ensures minimal replacements of SD cards.

e The cost of the SD card storage and network storage of bootfiles and root file system for 1000
Zynq UltraScale+ devices in the CMS data acquisition network is less than 2% when seen
in comparison to the cost of the Zynq UltraScale+ hardware. Considering this low-cost and
additional benefits like read-write performance, ease-of-maintenance, reliability, availability
and redundancy, the network storage of boot files (TFTP) and root file system (NFS) seems
the better option for the CMS data acquisition network.

After considering the points mentioned above in the summary, a full network boot with a
NFS storage of the root file system is recommended for the Zynq UltraScale+ based embedded
controllers in the CMS data acquisition network.
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Chapter 7

Installing and Administering
Software Updates

In this chapter, two different methods of installing and administering software updates on the
CentOS 8 root filesystem are demonstrated. The features of the two methods are presented to
the reader before discussing use-cases for the software update methods for better understanding
of the reader.

7.1 Administering Software Updates

Two methods are described in this chapter which use the “DNF” package manager (see section
7.1.1) for installing software updates on the CentOS 8 root file system. The methods adopted are
as follows:

1. Client side updates: Initiating software updates by executing package manager commands
on the running client. The package manager will read from and write to the root file system
of the client over NFS.

2. NFS server side updates: Initiating software updates by executing package manager
commands on the NFS server. The package manager will read from and write directly to
root file systems of individual clients, which are stored on a local disk of the machine hosting
the NF'S server.

The NFS server side updates are essentially installing software updates on the root file systems
of different Zynq UltraScale+ devices that are stored on the local disk of the NFS server. The
updates are initiated from the userspace of the same machine that hosts the NFS server. Here the
software packages for the CentOS 8 root file system are downloaded by the machine and written
directly to the individual CentOS 8 root file systems belonging to different Zynq UltraScale+
devices. This is similar to the building of the CentOS 8 root file system demonstrated in Chapter
4.

On the other hand, client side updates are initiated from the userspace of the Zynq UltraS-
cale+ hardware platforms, where the software update is written only to their own CentOS 8 root
file system located on the NFS server.
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7.1.1 DNF Package Manager

Dandified YUM (DNF) is a package manager for RPM (Red Hat Package Manager)-based Linux
distributions like CentOS. It helps in installing, updating and removing RPM packages on the
CentOS Linux distribution. In the CentOS 8 Linux distribution, both yum and dnf are the same
binaries used interchangeably and use the same software package repositories. The repository
configuration files for DNF are nothing but a collection of text files which point to different software
package directories on the CentOS 8 repository mirror running locally in CERN or on a dedicated
server on the web from where computers can download RPM packages for installation (shown in
Appendix D). The “dnf.conf” file in the “/etc/dnf’ path of the root file system configures the
general behaviour of the package manager and is configured by the package manager itself during
building of the CentOS 8 root file system. Developers can edit this configuration if they want
some additional features in their DNF configuration.

[main]

cachedir=/var/cache/dnf/$basearch/3releasever

keepcache=0

debuglevel=2

logfile=/var/log/dnf.log

exactarch=1

obsoletes=1

gpgcheck=1

plugins=1

installonly_limit=5

bugtracker_url=http://bugs.centos.org/set_project.php?project_-id=23&ref=http://bugs
.centos.org/bug_report_page.php?category=yum

Listing 7.1: Configuration for DNF Package manager

In Listing 7.1, a sample configuration of the DNF package manager is presented. In the
listing, all options equal to 1 are enabled and the options equal to 0 are disabled. The “cachedir”
option points to the directory where the RPM packages are cached. “$basearch” refers to the
architecture of the processor and “$releasever” refers to the version of CentOS. The “keepcache”
option decides whether to store or delete the RPM packages downloaded during the previous
installation. “debuglevel” can have value from 0 to 10 and the higher the value, the higher is
the debug level or the details printed during installation. “logfile” refers to the temporary log
file where the installation logs are stored. “exactarch” specifies to consider only the architecture
for which the install is being done. “obsoletes” allows replacement of obsolete packages when an
updated package is available, which is important during updates. “gpgcheck” specifies whether the
CentOS key should be authenticated or not during the installation process. “plugins” activates or
disables the global repositories to be used. Alternatively, individual repositories can be disabled in
repository configuration files by using the option “enabled=0" (sample repository configuration in
Appendix D). “install_only” points to how many version of the same packages can be installed at
the same time. “bugtracker_url” points to the web-link where bugs encountered during installation
are reported.

7.1.2 How Installation Works with DNF

The following steps are followed by DNF during package installation and update:

e The user specifies the packages to be installed or the user asks for a global update of packages
on the system (“dnf install $package” or “dnf upgrade”).

e If an installation command has been received, the package manager checks if the package
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is already installed. If it is installed, the user is informed. Otherwise, the repositories are
searched for the package.

e If an update command has been received, the package manager checks all packages that
have been installed and compares them with the packages available in the repository. The
version specifications of these packages are compared and only if there are updated packages
available, the user is informed.

e In both the cases mentioned above, the user is asked whether he/she wishes to continue with
installation (unless the “-y” option is added as an argument to the command which implies
yes to all questions from the package manager).

e Once the user approves the installation, the packages are downloaded and the obsolete
packages are updated.

7.1.3 NFS Server Side Software Updates

The CentOS 8 root file system is exported to the Zynq UltraScale+ hardware via NFS. If the
installation or update to this root file system (meant for 64-bit ARM processor) is done from an
x86 machine hosting the NF'S server, the NFS server side update can also be called a server side
cross-installation of software updates.

Software updates can be done on the CentOS 8 root file system located on NF'S server disk
with the help of DNF package manager. The DNF configuration file used in building a CentOS 8
root file system for Zynq UltraScale+ is used for configuring the repositories for the DNF package
manager. It can be seen in Appendix A. This file points the DNF package manager of the machine
hosting the NFS server to the CentOS 8 repositories for 64-bit ARM processors. The NFS server
side installation of software updates was done on the TTL NUC5 desktop (Intel Core i5 processor
with 16 GB RAM) which hosted NFS server. The specifications for this machine is given in
Chapter 6.

The process of NFS server side installation of software updates on the root file system is
similar to the process explained in section 7.1.2. There is a need for a QEMU emulator in the
“usr/local/bin” path of the CentOS 8 root file system for 64-bit ARM processors, if the software
update is being done to that root file system on an x86 machine hosting the NFS server. The
reason to use the QEMU emulator for this kind of installation of software updates on the CentOS
8 root file system is provided in the section 4.6.3 in Chapter 4.

The following command is used to administer software updates to the CentOS 8 root file
system for 64-bit ARM architectures located on an NFS server:

sudo dnf —y —c /home/kmor/CentOS8/etc/dnf/dnf.conf \
——skip—broken —releasever=8 \

—forcearch=aarch64 \

—repo=armb64—epel ,centos—base ,centos—updates,\
centos—extras ,centos—appstream ,\

centos—powertools ,centos—centosplus \
—installroot=/home/kmor/CentOS8 \

update

Listing 7.2: Command for installing server side software updates
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Listing 7.2 shows the command to install NFS server side software updates on the CentOS 8
root file systems of individual Zynq UltraScale4+ hardware platforms located on the NFS server.
In Listing 7.2, the option “releasver” specifies the release version of CentOS, “forcearch” specifies
the 64-bit ARM architectures, “repo” points to the CentOS repositories to be used, “-¢” points to
the “dnf.conf” file belonging to the target CentOS 8 root file system and “install-root” points to
the directory where the root file system is present. Spaces have been added between the lines in
the listing to improve readability. Spaces between the dnf options should be removed when using
the command.

The terminal output from this command is presented in Appendix D.

7.1.4 Zynq UltraScale+ Client Side Software Updates

The Zynq UltraScale+ devices in the CMS data acquisition network can also connect to the
CentOS 8 software package repositories after obtaining an IP address from the DHCP server.
Thus, software updates to their individual CentOS 8 root file systems on the NFS server disks
can be initiated from the userspace of Zynq UltraScale+ clients in the CMS data acquisition
network. DNF package manager can be used for this update method. Before initiating this kind
of software update, users must verify if they have the right DNF configuration file in their root
file system (path: /etc/dnf/dnf.conf) and if the repositories for this DNF package manager have
been configured properly during the build of the CentOS 8 root file system. An example of the
root file system’s DNF' configuration is Listing 7.1 and an example repository configuration file
has been given in Appendix D.

7dnf upgrade” command is used to initiate client side software updates on the hardware
platform. Its terminal output is presented in Appendix D.

7.1.5 Features of NFS Server Side Software Updates

e This installation of software updates can be commissioned directly by system-administrators
without having an additional process running on the hardware platforms or direct involve-
ment of the hardware platform.

e [t is fairly easy to configure scripts that can be executed to update multiple CentOS 8 root
file systems on the NFS server (each dedicated to one hardware platform) simultaneously or
in phases to efficiently use the network bandwidth.

e A common read-only root file system (see future work in Chapter 8) can be updated simultan-
eously for multiple hardware platforms, allowing the updates to be in sync for all hardware
platforms and also avoid separate update of every individual root file system.

e There is a need for QEMU, if the software update to a CentOS 8 root file system for 64-bit
ARM processors is being carried out on an x86 machine hosting the NFS server.

7.1.6 Features of Client Side Software Updates

e Once the repositories and package managers are configured, it is comparatively simpler. An
emulator like QEMU is not required.

e It can be initiated by the privileged user of the hardware at any time such that only his/her
root file system is updated.
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e The root file system location is not important. It could be on NFS or on the SD card and
it would still install the updates.

e If the root file system is on the NFS, then the hardware platform is simultaneously down-
loading the packages in its processor memory and writing them to the root file system over
the same Ethernet interface. This makes the updates process slow. Compared to this, server
side software update downloads and installs the packages on the same machine, which is
comparatively faster.

e When multiple hardware platforms have initiated the software update on the same NFS
server, the software update latency increases. This latency is potentially higher in a large
network like that of the CMS experiment.

The reader should consider the points mentioned above when deciding upon the methods to
administer software updates to the root file system.

7.1.7 Comparison of the Two Software Update Methods

A disadvantage of having two different software installation methods for the same root file system
is that there can be problems if both the system administrator and the privileged user are trying
to install packages on the root file system from the server side and the client side respectively
and then there is a clash of these two methods. In such a situation, either of them can be
prevented from installing the updates for some time while the other has a transaction lock. System
administrators at CMS can avoid the problem by informing users in advance about an upcoming
software update/installation session of the root file systems and that their hardware platforms
would be temporarily disconnected for some time.

However, each of the above two methods have their own use cases. Only system administrat-
ors at CMS are allowed access to the NFS servers hosting the root file system and only they are
authorised to make software updates to the CentOS 8 root file systems. Thus, they can initiate
centralised updates to multiple root file systems on the NFS server such that they are all syn-
chronised in terms of their content. Privileged users on the other hand are allowed to install a
single or a bunch of packages they need in their userspace.

A use case for the client side installation is that the users do not always have to approach
system administrators to do a server side installation or update of a single software package. If it is
a just a single package, they can initiate its install or update from the client side. However, update
or install of a large chunk of software packages has to be done on the server side as the client side
software update/install method can be quite slow compared to server side software update. If
multiple users initiate client side updates at the same time, it can result in large latency in the
software installation. Here it would be of help if there is a common read-only root file system which
can be updated centrally for many client platforms and only single software package installation
or update is done on the read-write, board specific overlay file system (see future work in Chapter
8).

Client side software updates can be used if the network is fast enough and the number of
nodes in the network is small. Centralised server side software updates are much more efficient
and easy to configure for administering software updates to root file system of devices in a large
network like the CMS data acquisition network.
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7.2 Summary

In this chapter, two different methods were demonstrated for administering software updates to
the CentOS 8 root file system situated on the NFS server. Different features of these methods
were presented to the reader along with the use cases for the two software updated methods to
help readers choose a software update method for their networks.
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Chapter 8

Conclusion

8.1 Summary

This master thesis demonstrates the process of building a CentOS 8 Linux distribution for the
Zynq UltraScale+ MPSoC and demonstrates how an automated network boot of CentOS 8 Linux
distribution can be implemented for the Zynq UltraScale+ embedded controllers installed in the
CMS data acquisition network. To this end, the process of building a Zynq UltraScale+ specific
Linux distribution with PetalLinux Tools has been demonstrated to the reader along with the
process to port the CentOS 8 mainstream kernel 4.18 for the Zyq UltraScale+ MPSoC on Xilinx
ZCU102 board. This thesis also explains the process of building a CentOS 8 root file system for
64-bit ARM processors and demonstrates different methods of administering software updates to
the CentOS 8 root file system when the Zynq UltraScale+ based embedded controllers would be
installed in the CMS data acquisition network. This thesis also presents a comparative study of
different Linux boot methods and root file system storage types to recommend a full network boot
with an NFS root file system for the Zynq UltraScale+ based embedded controllers in the CMS
data acquisition network.

This thesis explains the different components involved in booting Linux on the Zynq UltraS-
cale+ and the Linux boot sequence followed by the Zynq UltraScale+. This thesis explains the
Yocto Project with its underlying components and presents a qualitative comparison between the
Yocto Project and the PetaLinux Tools to help the readers choose a tool-chain to build a Linux
distribution as per their requirements.

This thesis demonstrates the process of configuring and building a Linux distribution with
the help of PetaLinux Tools. It also elaborates upon the various modifications that were made to
the PetaLinux configuration and build process (eg. setting the correct NFS version, assigning the
correct kernel boot arguments and fixing the processing of DHCP response by U-Boot) to help the
Linux distribution to boot completely over the network. This thesis demonstrates how the CentOS
8 kernel 4.18 was configured for Zynq UltraScale+ and how Xilinx and Zynq UltraScale+ specific
drivers were added to the CentOS 8 kernel 4.18 while porting the kernel for Zynq UltraScale+
MPSoC. To have a CentOS 8 Linux distribution, it is necessary to have CentOS 8 root file system
and this thesis explains the process of building a CentOS 8 root file system for 64-bit ARM
processors.

For the automated network boot of CentOS 8 Linux distribution on Zynq UltraScale+, this
thesis demonstrates how the DHCP, NFS and TFTP servers were configured and explains how
the error associated with U-Boot’s processing of the DHCP server response was fixed. To answer
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the questions of system administrators and hardware developers at CERN relating to the setting,
acquiring and modifying of the Ethernet MAC address during the Linux boot on Zynq UltraScale+,
this thesis presents flowcharts of these processes (in the Appendix B) obtained after a thorough
study of Xilinx U-Boot and Ethernet driver source codes. The “uEnv.txt” file is used during this
project for remotely configuring the Linux boot process and for investigating the setting, acquiring
and modifying of the Ethernet MAC address during the Linux boot process. The thesis explains
the importance of the uEnv.txt file and demonstrates it’s use cases to help the reader exploit the
versatility of this file while implementing an automated network boot.

A qualitative and quantitative analysis of different Linux boot methods for Zynq UltraScale+
has been presented in this thesis to recommend a full network boot for the Zynq UltraScale+
based embedded controllers in the CMS data acquisition network. A qualitative and quantitative
analysis of SD card storage and network storage of boot files and root file system for the CentOS
8 Linux distribution has been presented in this thesis to recommend a TFTP server for boot files
and NFS server for the root file system of Zynq UltraScale+ based embedded controllers in the
CMS data acquisition network.

In this thesis, two different software update methods for the CentOS 8 root file sytem (NFS
server side updates and Zynq UltraScale+ client side updates), using the DNF package manager
have been demonstrated to the reader. Their features and use cases have also been presented
to help the reader choose an appropriate software update for their CentOS 8 root file systems
depending upon the size of their network.

Over the course of the work involved in the preparation of this master thesis, posters related
to different stages of the work progress were presented at the Topical Workshop on Electronics
for Particle Physics (TWEEP) 2019 Conference and International Conference on Computing in
High Energy and Nuclear Physics (CHEP) 2019 Conference. These two posters are presented in
Appendix D.

8.2 Future Work

As a continuation of the work presented in this thesis, a few topics can be further researched as
an extension of this project. These tasks are related to the implementation of a unique overlay
root file system which is unique to a board and the development of a reliable, fault-tolerant Linux
boot process.

8.2.1 Implementation of Reliable, Fault-Tolerant Linux Boot

During the boot process in the CMS network, if any board fails to boot properly, the system
administrators at CMS would need to debug each case separately which can be both constraining
and time-consuming. This would delay getting these boards operational. As a result, it is import-
ant to develop a reliable and fault-tolerant boot process wherein these boards can be booted to
a known state such that the board is always accessible to the system-administrators for remotely
debugging, analysing and resolving the problems.

There are multiple ways in which the reliable, fault-tolerant boot process can be implemented.
It can be implemented in the pre-boot stage, during the loading of the boot files and also when
the kernel is booting. Here are a few ways in which the fault-tolerant, reliable boot can be
implemented:
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1. During the pre-boot stage, if the the U-Boot is unable to get network configuration from
the DHCP server for any reason, it would obscure the TFTP server IP address from the
U-Boot. If the problem is pertaining to the Ethernet hardware, developers can implement a
U-Boot HUSH script which would look for backup device-tree blob and kernel Image in the
local storage like QSPI flash memory or SD card. This can be stored in a uEnv.txt file (see
Chapter 5, section 5.6) on the local storage from where the U-Boot can import these scripts.

2. If there is a boot failure due to corrupted device-tree blob and kernel Image files or due
to U-Boot’s inability to load these files in the processor DRAM for hardware or software
reasons, developers can develop U-Boot HUSH scripts which would be executed upon such
boot failures to look for backup boot files in the TEFTP server or on the local storage like
QSPI flash or SD card. This can be stored in a uEnv.txt file (see Chapter 5, section 5.6) on
the local storage or the TFTP server from where the U-Boot can import these scripts.

3. The kernel boot could fail for two reasons: errors in the kernel boot due to improper config-
uration or due to bugs in the kernel source code. For this scenario, developers can configure
the Watchdog Timer kernel driver such that when the kernel panics after the boot failure,
the Watchdog Timer can reset the hardware and begin the boot process from the scratch.
This kernel driver should also add a U-Boot environment variable in the SPI flash memory
for counting the number of successive boot failures. If this number becomes equal to a preset
value (eg. five), for the next boot cycle U-Boot can fall back to another boot mechanism
(eg. load a tested kernel Image and device-tree from TFTP server or local storage). Upon
a successful boot, this counter can be reset to the value zero.

4. If there are failures during mounting of the root file system due to missing root file system
in the specified storage or NFS path, the Watchdog Timer kernel driver mentioned in the
point above can be utilised in this case as well.

8.2.2 Development of an Overlay File System

Around 1000 different boards using the Xilinx Zynq UltraScale+ MPSoC would be installed in
the data acquisition network of the CMS experiment. Some of these boards would be individual
installations by different experiment groups whereas some would be a part of a group of hardware
platforms designed by other experiment groups. Each of these boards would require a Linux
distribution with their own root file system that hosts the libraries, software packages and files
that their hardware platforms would require for computing. However, an increased number of
hardware platforms in the data acquisition network would demand a linear increase in the number
of root file systems which will increase the amount of disk space occupied by the root file systems
on the NFS servers.

One way to reduce the occupied disk space by these root file systems would be to implement
an Overlay File System (OFS) [50]. An OFS allows users to have one or multiple layers of read-
write file systems sitting on a common read-only file system. If the userspace of individual boards
in the CMS network makes changes to a file in the common root file system, this file is stored in
the OFS of that particular board. These overlay file systems are like backups for the files modified
by individual boards and works in conjunction with the original common root file system. All
these overlay file systems contain directories, software packages and files to which a particular
board has previously made changes and is permitted to make changes in the future.

This is extremely useful in the context of the CMS Phase-II upgrade since multiple boards
would have common requirements in terms of the read-only libraries, software packages, binary
utilities etc. that should be present in their root file system. At the same time, the owners of
individual boards or software in the userspace of these boards might need to make changes to
certain files in the root file system for their individual needs and these changes can be stored in
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the OFS. It would also help in having a common server side software update for different hardware
platforms whereas clients can install software packages or updates to software packages to their
individual Overlay file systems.
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Appendix A

Script for Extracting, Patching, Configuring and Building
the CentOS 8 Kernel 4.18

#!/bin/bash

nsure you are in a CentOS environmen o insta 1e correc I utilities an
E i CentOS 8 i t to install tl t RPM utiliti d
extract the kernel source.

#Make sure you have enough space in the directory where this script in executed.
User home directory 1is recommended.

cd /home/kmor

mkdir CentOS8

#Following variable specifies path to store the CentOS kernel build.
KERNEL=/home/kmor /CentOS8

sudo yum install yum—utils rpm—build

#Download the CentOS kernel 4.18 source RPM. Make sure you are downloading the
desired version by modifying the following variable value.

VERSION=kernel —4.18.0—-80.1.2.¢el8_0.src.rpm

sudo wget wget http://vault.centos.org/8.0.1905/BaseOS/Source/SPackages/$VERSION

#Download the kernel's build dependencies before it is extracted and patched.
Alternatively , refer to build dependencies of PetalLinux Tools and install them
manually .

sudo yum—builddep kernel

#0Once the kernel source has been downloaded, it needs to be extracted and patched.

rpm —ivh ./$VERSION

#The RPM is extracted by default to the rpmbuild /SOURCES directory in the user home
folder. Change to the rpmbuild /SPECS directory .

cd rpmbuild /SPECS
#Patch the source code as per the kernel.spec file specifications
sudo rpmbuild —bp kernel.spec

#The source code is patched and can be seen in the rpmbuild/BUILD directory .
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cd ../BUILD

# Now its time to configure and build the kernel. Install the binutils and GCC
compiler for 64—bit ARM architectures.

sudo yum install binutils —aarch64—linux—gnu gcc—aarch64—linux—gnu
cd kernel —4.18.0—-80.1.2.¢el8_0

# Configure the kernel and specify the output directory. A muneconfig screen shall
appear. Choose the platform and features that you desire.

make ARCH=arm64 O=$KERNEL defconfig menuconfig

#0nce the configuration is over, time to build the kernel Image and device—tree
blob as per chosen platform.

cd $SKERNEL
make ARCH=arm64 CROSS_COMPILE=aarch64—linux—gnu— Image dtbs

echo Build Over

Listing A.1: Script to extract, patch, configure and build a CentOS 8 kernel 4.18

Git Repository Links
The following web-link points to the GitLab repository of CERN holding the CentOS 8 4.18 kernel
source and build images:

https://gitlab.cern.ch/hardware/zynqg/centos8/kernel

The following web-link points to the GitLab repository of CERN holding the important Linux
network boot files as well as instructions to replicate a network-boot:

https://gitlab.cern.ch/hardware/zynqg/petalinux/network-boot

Scripts to Configure DNF Repositories (dnf.conf) and Build
CentOS 8 Root File System

[arm64—epel]

name=Epel rebuild for arm64
baseurl=https://dl.fedoraproject.org/pub/epel/$releasever /Everything/aarch64/
enabled=1

gpgcheck=0

[arm—epel |

name=Epel rebuild for armhfp
baseurl=https://armv7.dev.centos.org/repodir/epel—pass—1/
enabled=1

gpgcheck=0

[centos—base]
name=CentOS—$releasever — Base
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baseurl=http://mirror.centos.org/centos/$releasever /BaseOS/$basearch/os/
gpgcheck=0
enabled=1

[centos—updates]

name=CentOS—$releasever — Updates
baseurl=http://mirror.centos.org/centos/$releasever /BaseOS/$basearch/os/
gpgcheck=0

enabled=1

[centos—extras|

name=CentOS—$releasever — Extras

baseurl=http:// mirror.centos.org/centos/8%releasever/extras/$basearch/os/
gpgcheck=0

enabled=1

[centos—appstream]

name=CentOS—$releasever — AppStream
baseurl=http://mirror.centos.org/centos/8$releasever /AppStream/$basearch/os/
gpgcheck=0

enabled=1

[centos—powertools]

name=CentOS—$releasever — PowerTools
baseurl=http://mirror.centos.org/centos/S$releasever /PowerTools/$basearch/os/
gpgcheck=0

enabled=1

[centos—centosplus|

name=CentOS—$releasever — centosplus

baseurl=http:// mirror.centos.org/centos/8releasever/centosplus/$basearch/os/
gpgcheck=0

enabled=1

[l1ct—yocto]

name=l1ct —yocto
baseurl=file:///home/ppapageo/yocto/rocko/poky/build /tmp/deploy /rpm/aarch64/
gpgcheck=0

enabled=1

Listing A.2: Configuration of repositories in dnf.conf for sourcing CentOS 8 packages for the
CentOS 8 root file system build script

7t 7t 7T 7T ia 7T F 7 7t 7t 7T 7t 8 7t F
## Script based on original script written by Matthias Wittgen ##

71 77 7 7 7t F 7 7t 77 7t 77 i 7t 7 7t

import os

import sys

import subprocess
import logging
import shutil
import argparse
import crypt
import augeas

dirname, filename = os.path.split(os.path.abspath(__file__))

dnf_conf=dirname+'/dnf.conf"'
print (dnf_conf)
gemu_bins=dirname
etc=dirname

def run_dnf(rootfs ,inst ,what):
cmd=[ 7dnf”, ”—y”, "—skip—broken” , 7?—c¢” ,dnf_conf, "—releasever=8", "—
forcearch="+4arch, "—repo=centos—base ,centos—updates,centos—extras ,”’+epel ,”
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—verbose” , "—installroot="4rootfs , inst ] 4+ what
print (cmd)

try:
process=subprocess.Popen(cmd, stdout=subprocess .PIPE, shell=False)
while process.poll() is None:
output process.stdout.readline ()
if output:
print (output.strip ().decode('utf—8"))
except:
return
parser = argparse.ArgumentParser(description='Tool to build a root filesystem for

Centos Linux ARM')

FORMAT = '%(levelname)s : %(message)s'

parser .add_argument ('-v','—verbose ' ,action="'store_true ',
help='verbose output')
parser .add_argument ('-r','—root ', ,nargs=1,
help='directory of new rootfs')
parser.add_argument ('—a','——arch ' nargs=1,
help='architecture of target')
parser.add_argument ('—e','—extra ', nargs=1,
help="'file with a list of extra packages to be installed')
args = vars(parser.parse_args ())

if args['verbose']:
logging . basicConfig (format=FORMAT, stream=sys .stdout , level=logging .DEBUG)

if args['root'] is not None:
rootdir=args|['root'][0]
print (rootdir)
else:
print (?Use —root=<dir> to set new rootfs directory”)
exit (—1)
if args['arch'] is not None:
arch=args [ 'arch'][0]
print (? Building for 7 ,arch)

else:
print (?Use —arch=<arch> to specify build architecture”)
exit(—1)
if arch not in [7armv7hl” ,”aarch64”]:
print (?Invalid CPU architecture”)
exit (—1)

if args['extra'] is not None:
text_file = open(args|'extra'][0],”r”)

lines =[]
for x in text_file:
x=x.replace(”\n”, 7")

lines .append (x)

text-file.close ()
if (os.getuid ()!=0):
print (”Program must to run as superuser”)

print (”Relaunching as: sudo ”,” ”.join(sys.argv))
os.execvp (7sudo” ||
» sudo” ,

"PATH="4o0s . getenv ("PATH" ) ,

”"LD_LIBRARY PATH="4o0s . getenv ("LD_LIBRARY_PATH" ) ,
"PYTHONPATIHE="40s . getenv ("PYTHONPATH” ) ,
|+sys.argv)

exit (0)
if arch = 7armv7hl”:
print (”Using gemu—arm—static”)
elif arch =— 7aarch64”:
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print (”Using gemu—aarch64—static”)

if arch == "7aarch64”:
epel="arm64—epel”
elif arch =— 7armv7hl”:

epel="arm—epel”

run_dnf(rootdir ,” clean” ,[” all”])
run_dnf(rootdir ,” update” ,[7 7])
print (”Running dnf: group install”)
run_dnf(rootdir ,” groupinstall” ,[ 'Minimal Install'])
if args['extra'] is not None:
print (”Installing user defined packages...”)
run_dnf(rootdir ,”install” ;lines)

rootpwd=crypt.crypt(”centos8forcms”, crypt.mksalt(crypt.METHOD_SHA512))
aug=augeas . Augeas (root=rootdir)
aug.set (7 /files /etc/shadow/root /password” ,rootpwd)
aug.set (7 /files /etc/sysconfig/selinux /SELINUX” ;” disabled”)
aug.save ()
aug. close ()
if arch="armv7hl”:
os.remove(rootdir+” /etc/yum.repos.d/CentOS—armhfp—kernel .repo”)

Listing A.3: Script to build the CentOS 8 root file system with the help of repositories pointed by
the dnf.conf file

Differences in CentOS 8 kernel 4.18 default kernel config-
uration and Xilinx kernel 4.19’s Zynq UltraScale+ default
kernel configuration

—— defconfig 2019-11-15 11:35:27.808712000 40100
+++ xilinx_zyngqmp_defconfig 2019—-10—-09 18:51:21.125276000 40200
@@ -1,686 +1,399 @Q
CONFIG_SYSVIPC=y
CONFIG_POSIX MQUEUE=y
CONFIG_AUDIT=y
—CONFIG.NO_HZ_IDLE=y
+CONFIGNO_HZ=y
CONFIG_HIGH_RES_TIMERS=y
—CONFIGIRQ-TIME_ACCOUNTING=y
CONFIG_BSD_PROCESS_ACCT=y
—CONFIG_BSD_PROCESS_ACCT_V3=y
CONFIG_TASKSTATS=y
CONFIG.TASK DELAY_ACCT=y
CONFIG_TASK XACCT=y
CONFIG.TASK I0_ACCOUNTING=y
CONFIGIKCONFIG=y
CONFIGIKCONFIG_PROC=y
—CONFIG.NUMA BALANCING=y
—CONFIGMEMCG=y
—CONFIGMEMCG_SWAP=y
—CONFIGBLK_CGROUP=y
—CONFIG_CGROUP_PIDS=y
—CONFIG.CGROUP_HUGETLB=y
—CONFIG_CPUSETS=y
—CONFIG_CGROUP_DEVICE=y
—CONFIG_CGROUP_CPUACCT=y
—CONFIG_.CGROUP_PERF=y
—CONFIG_USER_NS=y
—CONFIG_SCHED_AUTOGROUP=y
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+CONFIG_LOG_BUF_SHIFT=16
+CONFIG_.CGROUPS=y
CONFIG_BLK_DEV_INITRD=y
—CONFIG_KALLSYMS_ALL=y
+CONFIG_EMBEDDED=y
# CONFIG.COMPATBRK is not set
+CONFIG_SLAB=y
CONFIG_PROFILING=y
—CONFIG_JUMP_LABEL=y
—CONFIG.MODULES=y
—CONFIG.MODULE_UNLOAD=y
—CONFIG_ARCH_SUNXI=y
—CONFIG_ARCH_ALPINE=y
—CONFIG_ARCH_BCM2835=y
—CONFIG_ARCH_BCM_IPROC=y
—CONFIG_ARCH_BERLIN=y
—CONFIG_ARCH BRCMSTB=y
—CONFIG_ARCH_EXYNOS=y
—CONFIG_ARCH_LAYERSCAPE=y
—CONFIG_ARCH_LG1K=y
—CONFIG_ARCH_HISI=y
—CONFIG_ARCH_MEDIATEK=y
—CONFIG_ARCH_-MESON=y
—CONFIG_.ARCH_MVEBU=y
—CONFIG_ARCH-QCOM=y
—CONFIG_ARCH_ROCKCHIP=y
—CONFIG_ARCH_SEATTLE=y
—CONFIG_ ARCH_SYNQUACER=y
—CONFIG_ARCH_RENESAS=y
—CONFIG_ARCH_R8AT7795=y
—CONFIG_ARCH_R8AT7796=y
—CONFIG_ARCH_R8AT77965=y
—CONFIG_ARCH_R8AT77970=y
—CONFIG_ARCH_R8AT77980=y
—CONFIG_ARCH_R8A77990=y
—CONFIG_ARCH_R8AT77995=y
—CONFIG_ARCH_STRATIX10=y
—CONFIG_ARCH.TEGRA=y
—CONFIG_ARCH_SPRD=y
—CONFIG_ARCH.THUNDER=y
—CONFIG_ARCH.THUNDER2=y
—CONFIG_ARCH_UNIPHIER=y
—CONFIG_ARCH_VEXPRESS=y
—CONFIG-ARCH XGENE=y
—CONFIG_ARCH_ZX=y
CONFIG_ARCH ZYNQMP=y
CONFIG_PCl=y
—CONFIG_PCI_.IOV=y
—CONFIG_HOTPLUG_PCl=y
—CONFIG_HOTPLUG_PCI_ACPI=y
—CONFIG_PCI_L AARDVARK=y
—CONFIG_PCI.TEGRA=y
—CONFIG_PCIE_RCAR=y
—CONFIG_PCI_.HOST_GENERIC=y
—CONFIG_PCI_XGENE=y
—CONFIG_PCI.HOST_-THUNDER_PEM=y
—CONFIG_PCI.LHOST_-THUNDER_ECAM=y
—CONFIG_PCIE_ROCKCHIP_HOST=m
—CONFIG_PCI.LAYERSCAPE=y
—CONFIG_PCI_HISI=y
—CONFIG_PCIE_.QCOM=y
—CONFIG_PCIE_ARMADA 8K=y
—CONFIG_PCIE_KIRIN=y
—CONFIG_PCIE_HISI_.STB=y
—CONFIG_ARMG64_VA _BITS_48=y
—CONFIG_SCHED MC=y
—CONFIG NUMA=y
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—CONFIG_PREEMPT=y

—CONFIG_KSM=y

—CONFIGMEMORY FAILURE=y

—CONFIG.TRANSPARENT HUGEPAGE=y

—CONFIG_.CMA=y

—CONFIG_SECCOMP=y

—CONFIGKEXEC=y

—CONFIG_.CRASH DUMP=y

—CONFIG_XEN=y

—# CONFIG_CORE_DUMP_DEFAULT_ELF HEADERS is not set

+CONFIG_PCIE_XILINX NWL=y

+CONFIG_NR_CPUS=8

+# CONFIG.DMI is not set
CONFIG.COMPAT=y

—CONFIG_HIBERNATION=y

—CONFIG.-WQ_POWER. EFFICIENT DEFAULT=y

+CONFIG_CPU_IDLE=y
CONFIG_ARM_CPUIDLE=y
CONFIG_CPU_FREQ=y

—CONFIG_.CPU_FREQ-STAT=y

—CONFIG_CPUFREQ-GOV_ POWERSAVE=m

—CONFIG_CPU_FREQ_-GOV_USERSPACE=y

—CONFIG_CPU_FREQ-GOV_ONDEMAND=y

—CONFIG_CPU_FREQ_GOV_CONSERVATIVE=m

—CONFIG_CPU_FREQ-GOV_SCHEDUTIL=y

+CONFIG_CPU_FREQ DEFAULT GOV _USERSPACE=y
CONFIG_CPUFREQ DT=y

—CONFIG_ACPI.CPPC_CPUFREQ=m

—CONFIG_ ARM_ARMADA 37XX_CPUFREQ=y

—CONFIG_ARM BIG_LITTLE_CPUFREQ=y

—CONFIG_ARM_SCPI_CPUFREQ=y

—CONFIG_ARM_TEGRA186_CPUFREQ=y

Listing A.4:  Snapshot of differences between CentOS 8 kernel 4.18 defconfig and
xilinx_zynqmp_defconfig

W

Here refers to the properties present in the original CentOS 8 kernel 4.18 default config-
uration. Similarly, “+” refers to the properties present in the original Zynq UltraScale+ default
kernel configuration obtained from Xilinx.
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Appendix B

DHCP Server Configuration

DHCP Server Configuration file.
see /usr/share/doc/dhcpx/dhcpd.conf.example
see dhcpd.conf(5) man page

dhepd . conf

FHFHFFHFHFFHE

# Sample configuration file for ISC dhcpd

3k

ignore unknown—clients;
default —lease —time 600;
max—lease —time 7200;
log—facility localT7;

# A slightly different configuration for an internal subnet.
subnet 128.141.174.0 netmask 255.255.255.0 {

default —lease —time 86400;

max—lease —time 86400;

option routers 128.141.174.1;

option broadcast—address 128.141.174.255;

option subnet—mask 255.255.255.0;

interface ”"enp0s257;

}

host daqlab40—zcul02—-01 {
hardware ethernet 08:00:30:F4:03:37;
fixed —address 128.141.174.218;
next—server 128.141.174.229;
server—name 7 128.141.174.2297;
filename ”"zcul02/uEnv.txt”;
option root—path 7128.141.174.229:/home/kmor/nfs/zcul02_vanilla_centos8/,tcp,v3”;

Listing B.1: DHCP server configuration in the file dhcpd.conf in the path /etc/dhcp

Here, the "filename” points to the “uEnv.txt” file explained in section 5.6 of Chapter 5.
“default-lease-time” is the default lease time (in seconds) of network configuration given to the
client by the DHCP server. “interface” points to the Ethernet interface to be used on the machine
hosting the DHCP server. “fixed-address” is the fixed IP address provided to the client with
a particular “ethernet” MAC address. “server-name” points to the TFTP server IP address.
“root-path” points to the NFS root file system server path on the NFS server with IP address
128.141.174.229.
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TFTP Server Configuration

# default: off
# description: The tftp server serves files using the trivial file transfer \
# protocol. The tftp protocol is often used to boot diskless \
# workstations , download configuration files to network—aware printers , \
# and to start the installation process for some operating systems.
service tftp
{

socket_type = dgram

protocol = udp

wait = yes

user = root

server = /usr/sbin/in. tftpd

server_args = —c —s /home/kmor/tftp

disable = no

per_source =11

cps = 100 2

flags = IPv4

Listing B.2: TFTP server configuration in the file tftp in the path /etc/xinetd.d

# default: off

# description: The tftp server serves files using the trivial file transfer \
# protocol. The tftp protocol is often used to boot diskless \

# workstations , download configuration files to network—aware printers, \

# and to start the installation process for some operating systems.

service tftp

[Unit]

Description=Tftp Server
Requires=tftp .socket
Documentation=man: in . tftpd

[Service]
ExecStart=/usr/sbin/in.tftpd —c —s /home/kmor/tftp
StandardInput=socket

[Install]
Also=tftp .socket
WantedBy=multi—user . target

}

Listing B.3: TETP service configuration in the file tftp.service in the path
/usr/lib/systemd /system

#!/bin/bash

#Make a directory to store the files on TFTP server
TFTP=/home/kmor/tftp

mkdir $TFTP

#Install the necessary packages

sudo yum install tftp tftp—server xinetd

#Configure the TFTP server and service as per the Listing 5 and Listing 6. Once the
configuration is done, run the following commands

#Make the directory read—writable for everyone
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sudo mkdir chmod —R 777 $TFTP

#Make exceptions in firewall

sudo firewall —cmd —zone=public —permanent —add—port=69/udp
sudo firewall —cmd —zone=public —add—service=tftp —permanent
sudo firewall —cmd —reload

#Enable the TFTIP server, service and Firewall
sudo systemctl enable tftp xinetd firewalld
#Restart the TFTP server , service and Firewall

sudo systemctl restart tftp xinetd firewalld

echo All done

Listing B.4: Script to setup the TFTP server

Snapshot of “u-boot_bsp.tcl” Script of PetaLinux Tools Show-
ing the BOOTP/DHCP Options

proc uboot_.common {fid kconfig_-fid} {
global kconfig_dict target_cpu
set cpu.-arch [get_sw_proc_arch $target_cpu]
# TODO: check if nor flash present in the system
# spi only — define CONFIG_-SYS.NO_FLASH

»

set data

/* BOOTP options x/

/+ #define CONFIG.BOOTP_SERVERIP x/
#define CONFIG.BOOTP_BOOTFILESIZE
#define CONFIG.BOOTPBOOTPATH
#define CONFIGBOOTP.GATEWAY
#define CONFIG.BOOTPHOSTNAME
#define CONFIG.BOOTP_MAY _FAIL
#define CONFIG.BOOTP_DNS

#define CONFIG.BOOTP_SUBNETMASK
#define CONFIGBOOTP_PXE

/+*Command line configuration.x/
#define CONFIG.CMDLINE_EDITING
#define CONFIGLAUTO_COMPLETE

#define CONFIGIMAGEFORMAT_LEGACY
#define CONFIG.SUPPORT_RAW_INITRD

/+* Miscellaneous configurable options x/
#define CONFIG_SYS_CBSIZE 2048/% Console I/O Buffer Size */
#define CONFIG_SYS_PBSIZE (CONFIG_SYS_CBSIZE +\
sizeof (CONFIG.SYS PROMPT) + 16)
#define CONFIG.SYS_BARGSIZE CONFIG_SYS_CBSIZE

/% Use the HUSH parser =/
#define CONFIGSYS.PROMPT HUSHPS2 \”> \”

#define CONFIG.EENV_VARS_.UBOOT_CONFIG
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#define CONFIGENV.OVERWRITE /x Allow to overwrite the u—boot environment
variables x*/

#define CONFIGLMB

/#* FDT support x*/
#define CONFIG_DISPLAY_BOARDINFO_LATE

”»

uboot_set_kconfig_value $kconfig_fid "BOOTARGS” ”n”
uboot_set_kconfig_value $kconfig_fid "USEBOOTARGS” 7n”
if {[string equal —nocase $cpu_arch ”microblaze”] = 1} {
append data ”
/+ architecture dependent code =/
#define CONFIG_SYS_USR_EXCEP /* user exception x*/
#define CONFIG_SYS_HZ 1000

/* Boot Argument Buffer Size x/
#define CONFIG_SYS.MAXARGS 32 /% max number of command args */
#define CONFIG-SYS_LONGHELP

’»

} elseif {[string equal —nocase $cpu_arch 7armv7’] = 1} {
append data ”
/% architecture dependent code x/
#define CONFIG_SYS_HZ 1000

/+ Boot Argument Buffer Size x/
#define CONFIGSYS.MAXARGS 32 /* max number of command args */
#define CONFIG.SYS_LONGHELP

Listing B.5: Snapshot of u-boot_bsp.tcl script used by PetaLinux Tools to configure the U-Boot

NFS Server Configuration

#!/bin/bash

#Make a directory to store the files on NFS server
NFS=/home/kmor /nfs

mkdir $NFS

#Install the necessary packages

sudo yum install nfs—utils

#Make the directory read—writable for everyone

sudo mkdir chmod —R 777 $NFS
#Make exceptions in firewall

sudo firewall —emd —permanent —zone=public —add—port=111/udp —add—port=111/tcp
—add—port=2049/udp —add—port=2049/tcp

sudo firewall —cmd —zone=public —add—service=nfs —add—service=mountd —add—
service=rpc—bind —permanent
sudo firewall —cmmd —reload

#Enable the NFS server, services and Firewall

sudo systemctl enable nfs—server nfs—lock nfs—idmap mountd rpcbind
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#Restart the NFS server, service and Firewall
sudo systemctl restart nfs—server nfs—lock nfs—idmap mountd firewalld rpcbind

echo All done

Listing B.6: Script to setup the NF'S server

Once the server has been configured, populate the NFS export in the file “exports” in the path
/ete.

/home/kmor/nfs *(rw,sync,no_-root_-squash ,no_all_squash)
/home /kmor/CentOS8 *(rw,sync,no_root_squash ,no_all_squash)

Listing B.7: Contents of exports file exporting the NF'S file system

Default U-Boot Environment

ZyngMP> run tftpimportbootenv

Importing environment from TFTP Server

Using ethernet@ff0e0000 device

TFTP from server 128.141.174.229; our IP address is 128.141.174.218
Filename 'zculO2/uEnv.txt'.

Load address: 0x100000

Loading: #
75.2 KiB/s
done
Bytes transferred = 1779 (6f3 hex)
Saving Environment to SPI Flash ... SF: Detected n25q512a with page size 512 Bytes,

erase size 128 KiB, total 128 MiB

Erasing SPI flash ... Writing to SPI flash ... done

OK

ZyngMP> printenv

arch=arm

autoload=no

baudrate=115200

board=zynqmp

board_name=zyngmp

boot_img=BOOT.BIN

boot_targets=mmc0

bootcmd=run default_bootcmd

bootdelay=4

bootenv=zcul02/uEnv. txt

bootenvsize=0x40000

bootenvstart=0x1e00000

bootfile=zcul02/uEnv. txt

clobstart=0x10000000

console=console=ttyPS0,115200

cp-dtb2ram=mmcinfo && fatload mmc ${sdbootdev} ${clobstart} ${dtb_img}

cp-kernel2ram=mmcinfo && fatload mmc ${sdbootdev} ${netstart} ${kernel_img}

cpu=armv8

default _bootcmd=dhcp;run tftpimportbootenv; run download_fdt;run download_kernel;
run netbooti

dfu_mmc_info=set dfu_alt_info ${kernel_image} fat 0 1\\;dfuummc=run dfu_mmc_info &&
dfu 0 mmc 0

dfu_ram=run dfu_ram_info && dfu 0 ram 0

dfu_ram_info=setenv dfu_alt_info image.ub ram $netstart 0x1e00000

download_fdt=tftpboot ${clobstart} ${dtb_img};

download_kernel=tftpboot ${netstart} ${kernel_img};

download_kernel_package=tftpboot ${netstart} ${kernel_package};

dtb_img=system .dtb

dtb_img_2=zcul02/PetaLinux_Basic/system.dtb
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dtbnetstart=0x23fff000

eraseenv=sf probe 0 && sf erase ${bootenvstart} ${bootenvsize}

ethact=ethernet@ff0e0000

ethaddr=08:00:30:f4:03:37

fault=echo ${img} image size is greater than allocated place — partition ${img} is
NOT UPDATED

fdtcontroladdr=7dd9ec88

fdtfile=xilinx /zyngmp—zcul02—revl.0.dtb

fileaddr=100000

filesize =609

gatewayip=128.141.174.1

importbootenv=echo ”Importing environment from SD ...”; env import —t ${
loadbootenv_addr} $filesize

initrd_high=79000000

install_boot=mmcinfo && fatwrite mmc ${sdbootdev} ${clobstart} ${boot_.img} ${
filesize}

install_jffs2=sf probe 0 && sf erase ${jffs2start} ${jffs2size} && sf write ${
clobstart} ${jffs2start} ${filesize}

install_kernel=mmcinfo && fatwrite mmc ${sdbootdev} ${clobstart} ${kernel_img} ${
filesize}

ipaddr=128.141.174.218

jffs2_img=rootfs. jffs2

kernel_img=Image

kernel_package=zcul02/PetaLinux_Basic/image.ub

load_boot=tftpboot ${clobstart} ${boot_img}

load_dtb=tftpboot ${clobstart} ${dtb_img}

load_jffs2=tftpboot ${clobstart} ${jffs2_img}

load_kernel=tftpboot ${clobstart} ${kernel_img}

loadaddr=0x10000000

loadbootenv=load mmc $sdbootdev:$partid ${loadbootenv_addr} ${bootenv}

loadbootenv_addr=0x00100000

mac_addr_testing=run tftpimportbootenv;run download_kernel;run download_fdt;run
update_fdt;fdt print ethernetO;print ethaddr;run netbooti

modeboot=sdboot

nc=setenv stdout nc;setenv stdin nc;

netboot=tftpboot ${netstart} ${kernel_img} && bootm

netbooti=booti ${netstart} — ${clobstart}

netbootm=bootm ${netstart}

netmask=255.255.255.0

netstart=0x1000b000

preboot=echo U-BOOT for xilinx—zcul02—-2019_1;setenv autoload no;echo UBOOT for
CERN CMS; setenv ethmacskip;setenv ethlmacskip

psserial0=setenv stdout ttyPSO;setenv stdin ttyPSO

reset_reason=SOFT

rootpath=128.141.174.229:/home/kmor/nfs/zcul02_vanilla_centos8/,tcp,v3

sd_uEnvtxt_existence_test=test —e mmc $sdbootdev:$partid /uEnv.txt

sd_update_.dtb=echo Updating dtb from SD; mmcinfo && fatload mmc ${sdbootdev}:1 ${
clobstart} ${dtb_img} && run install_dtb

sd_update_jffs2=echo Updating jffs2 from SD; mmcinfo && fatload mmc ${sdbootdev}:1
${clobstart} ${jffs2_img} && run install_jffs2

sdbootdev=0

serial=setenv stdout serial;setenv stdin serial

serverip=128.141.174.229

soc=zynqmp

stderr=serial@ff000000

stdin=serial@ff000000

stdout=serial@ff000000

test_crc=if imi ${clobstart}; then run test_img; else echo ${img} Bad CRC — ${img}
is NOT UPDATED; fi

test_img=setenv var ”if test ${filesize} —gt ${psize}; then run fault; else run ${
installemd }; fi”; run var; setenv var

tftpimportbootenv=echo Importing environment from TFTP Server; tftpboot ${
loadbootenv_addr} ${bootenv}; env import —t ${loadbootenv_addr} $filesize;
saveenv

thor_mmec=run dfu_mmec_info && thordown 0 mmc 0

thor_.ram=run dfu_ram_info && thordown 0 ram 0
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uenvboot=if run sd_uEnvtxt_existence_test; then run loadbootenv; echo Loaded
environment from ${bootenv}; run importbootenv; fi; if test —n $uenvecmd; then

echo Running uenvemd ...; run uenvemd; fi

update_boot=setenv img boot; setenv psize ${bootsize}; setenv installcmd
install _boot”; run load_boot ${installcmd}; setenv img; setenv psize; setenv
installcmd

update_dtb=setenv img dtb; setenv psize ${dtbsize}; setenv installecmd ”install_dtb”
; run load_dtb test_img; setenv img; setenv psize; setenv installcmd

update_ethaddr=i2c dev 5;i2c mw 54 20.1 08;i2c mw 54 21.1 00;i2c mw 54 22.1 30;i2c
mw 54 23.1 f4;i2c mw 54 24.1 03;i2¢ mw 54 25.1 37

update_fdt=fdt addr ${clobstart };fdt set ethernetO0 local-—mac—address 708:00:30:f4
:03:377;fdt rm /amba/mmc@ff170000 no—1-8—v;

update_jffs2=setenv img jffs2; setenv psize ${jffs2size }; setenv installecmd ”

install_jffs2”; run load_jffs2 test-img; setenv img; setenv psize; setenv
installcmd

update_kernel=setenv img kernel; setenv psize ${kernelsize }; setenv installcmd
install_kernel”; run load_kernel ${installcmd }; setenv img; setenv psize;

setenv installcmd
vendor=xilinx

Listing B.8: The U-Boot environment variables after loading the uEnv.txt from the TFTP
server(see Listing B.1 for information offered by DHCP server)
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Setting of MAC Address in the Ethernet Hardware

Check if variable ethaddr
holding MAC address
is defined in the environment?

Check if MAC address is
present in the 12C EEPROM?

Check if CONFIG_NET RANDOM_ETHADDR
is defined in U-Boot config
to generate random MAC address?

Check if the MAC address
in 12C EEPROM is the same?

Setting environment variable ethaddr
with MAC address from EEPROM

’ Generating Random MAC address

No

Print warning that MAC address
Print warning that MAC address is not set

in environment and EEPROM are different

Yes

Check if variable ethmacskip
is defined in U-Boot environment
to prevent writes to the hardware?

Check if MAC address
has a valid value?

’ MAC address written to the Ethernet Hardware

Print warning that
MAC address has illegal value

Figure B.1: Process to set MAC address in the Ethernet Hardware

In Figure B.1, readers can follow the procedure of setting of the MAC address in the Ether-
net hardware which has been mentioned in the bullet points of the section 5.5 of Chapter 5 to

understand how the Ethernet MAC address is set in the Ethernet hardware.
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Setting of the MAC Address in the Device-Tree

Kernel boot command is initiated in the U-Boot

Check if CONFIG_OF_LIBFDT is defined
in U-Boot config to pass firmware settings
through device-tree
and device-tree length is greater than zero?

Check if there is
a path '/aliases' in
the device-tree?

Boot hangs

Assign MAC address to device-tree variable mac-address
if mac-address variable defined in device-tree

Cannot update device-tree

Add or Replace the device-tree variable local-mac-address
and assign MAC address value to it

Continue to boot the kernel

Figure B.2: Modification of MAC address in the device-tree by the U-Boot

In Figure B.2, readers can follow the procedure of setting of the MAC address in the device-tree
mentioned in the bullet points of the section 5.7 of Chapter 5 to understand how the Ethernet
MAC address is set in the device-tree.

107



Acquisition of the MAC Address by the Linux Kernel

Kernel begins booting

Y

Kernel ethernet driver macb by Cadence initialised

Check if variable mac-address
in the device-tree
has a valid MAC address?

Check if variable local-mac-address
in the device-tree
has a valid MAC address?

Check if variable address
in the device-tree
has a valid MAC address?

Check if there is valid
MAC address in the
Ethernet hardware registers?

Use MAC address from the device-tree

Generate random MAC address

Continue booting the kernel

Figure B.3: Acquisition of MAC address by the Linux Kernel
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In Figure B.3, readers can follow the procedure of acquisition of the MAC address by the Linux
kernel mentioned in the bullet points of the section 5.8 of Chapter 5 to understand how the
Ethernet MAC address is acquired by the kernel.
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Appendix C

Script to Test Read-Write Speeds of the Root File System
Types

#!/bin/bash
#Delete any old test files and folders created during previous tests

echo Deleting old test folders
PATH=/home /kmor

sudo rm —r $PATH/bigFiles $PATH/smallFiles $PATH/smallRamFiles $PATH/bigRamFiles
#Create new directories for storing test files

echo Creating new directories
mkdir —p $PATH/smallFiles $PATH/smallRamFiles $PATH/bigFiles $PATH/bigRamFiles

#Create one 1 GB file for writing to the RAM disk
echo Creating One Big file of 1GB

#Use the /dev/zero funtionality in the kernel to generate a file full of zeros
dd if=/dev/zero of=8PATH/bigFiles/file.txt bs=1048576 count=1024 conv=fsync

#Take 10 samples of the timing to read a 1 GB file from the root filesystem and
write to the RAM disk

#Clear the cached data before sampling

for value in {1..10}
do
sudo rm —rf /dev/shm/x
echo Timing the copy of 1GB file from Root FS to RAM disk
sync; echo 3 > /proc/sys/vm/drop-_caches
time sh —c 'cp $PATH/bigFiles/file.txt /dev/shm; sync'
done

#Take 10 samples of the timing to read a 1 GB file from the RAM disk and write to
the root filesystem
#Clear the cached data before sampling

for value in {1..10}
do
sudo rm —rf $PATH/bigRamFiles/x
echo Timing the copy of 1GB file from RAM disk to Root FS
sync; echo 3 > /proc/sys/vm/drop-_caches
time sh —c 'cp /dev/shm/file.txt $SPATH/bigRamFiles; sync'
done

#Clear the RAM disk for further tests due to limited space in RAM disk
echo Deleting the big file from RAM disk
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sudo rm —rf /dev/shm/x
#Create 1000 1 MB files for testing read—write speeds for small files
echo Creating 1000 files of 1 MB

for value in {1..1000}
do
dd if=/dev/zero of=3PATH/smallFiles/file_$value.txt bs=1024 count=1024 conv=
fsync
done

#Take 10 samples of the timing to read 1000 1 MB files from the root file system
and write to the RAM disk
#Clear the cached data before sampling

mkdir —p /dev/shm/smallFiles

for value in {1..10}
do
sudo rm —rf /dev/shm/smallFiles /x
sync; echo 3 > /proc/sys/vm/drop_caches
echo Timing the copy of 1000 IMB files from Root FS to RAM disk
time sh —c 'cp —a $PATH/smallFiles /. /dev/shm/smallFiles/; sync'
done

#Take 10 samples of the timing to read 1000 1 MB files from the root file system
and write to the RAM disk
#Clear the cached data before sampling

for value in {1..10}
do
sudo rm —rf $PATH/smallRamFiles/x
sync; echo 3 > /proc/sys/vm/drop_caches
echo Timing the copy of 1000 1IMB files from RAM disk to Root FS
time sh —c 'cp —a /dev/shm/smallFiles /. $PATH/smallRamFiles/; sync'
done

sudo rm —rf /dev/shm/x

exit

Listing C.1: Script used to do read-write tests on the root file system kept on SD card as well as
NFS server
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Appendix D

Terminal Output of Update via NFS Server Side Installation

Last metadata expiration check: 1:09:05 ago on Wed 11 Dec 2019 03:36:40 PM CET.
Dependencies resolved.

Package Arch Version Repository Size
Upgrading:

dracut aarch64 049—10.git20190115.¢e18_0.1 centos—updates 358 k
dracut—network aarch64 049-10.git20190115.e18_.0.1 <centos—updates 96 k
dracut—squash aarch64 049-10.git20190115.el8_0.1 centos—updates 52 k
glibc aarch64 2.28—-42.el8.1 centos—updates 3.5 M
glibc —common aarch64 2.28—-42.¢l18.1 centos—updates 750 k
glibc—devel aarch64 2.28 —-42.el8.1 centos—updates 1.0 M
glibc —headers aarch64 2.28-42.el8.1 centos—updates 456 k

Transaction Summary

Upgrade 9 Packages
Total download size: 31 M
Downloading Packages:

(1/9): dracut—metwork —049—10.git20190115.¢18_0.1.aarch64 .rpm

350 kB/s | 96 kB 00:00
(2/9): dracut—config—rescue —049—10.git20190115.¢l18_0.1.aarch64.rpm

154 kB/s | 51 kB 00:00
(3/9): dracut—squash —049—10.git20190115.¢e18_0.1.aarch64 .rpm

455 kB/s | 52 kB 00:00
(4/9): dracut —049—10.git20190115.¢el8_0.1.aarch64.rpm

769 kB/s | 358 kB 00:00
(5/9): glibc —common—2.28—42.¢l8 .1.aarch64 .rpm

4.6 MB/s | 750 kB 00:00
(6/9): glibc—devel —2.28 —42.¢l8 .1. aarch64 .rpm

798 kB/s | 1.0 MB 00:01
(7/9): glibc—headers —2.28—42.¢e18 .1.aarch64 .rpm

4.6 MB/s | 456 kB 00:00
(8/9): glibc —2.28—-42.¢l18 .1.aarch64.rpm

910 kB/s | 3.5 MB 00:03
(9/9): glibc—all—langpacks —2.28 —42.¢el8 .1. aarch64 .rpm

3.2 MB/s | 25 MB 00:07
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Total

3.8 MB/s | 31 MB
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction

00:08

Preparing
1/1

Upgrading glibc —all —langpacks —2.28 —42.¢el8 .1. aarch64
1/18

Upgrading glibc —common—2.28 —42.e18 . 1. aarch64
2/18

Running scriptlet: glibc —2.28—42.el18 .1.aarch64
3/18

Upgrading glibc —2.28-42.el18 .1. aarch64
3/18

Running scriptlet: glibc —2.28—-42.el18 .1.aarch64
3/18

Upgrading dracut —049—10.git20190115.¢el8_0.1.aarch64
4/18

Running scriptlet: glibc—headers —2.28—-42.¢l8 .1.aarch64
5/18

Upgrading glibc —headers —2.28 —42.¢el8 .1. aarch64
5/18

Upgrading glibc—devel —2.28—-42.e18 .1. aarch64
6/18

Running scriptlet: glibc—devel —2.28—42.¢18 .1.aarch64
6/18

Upgrading dracut—config—rescue —049—10.git20190115.¢€l8_0.1. aarch64
7/18

Upgrading dracut—network —049—10.git20190115.el18_0.1.aarch64
8/18

Upgrading dracut—squash —049—10.git20190115.¢el18_.0.1.aarch64
9/18

Running scriptlet: glibc—devel —2.28—-42.e18_0.1.aarch64
10/18

Cleanup glibc—devel —2.28 —42.¢18_0.1. aarch64
10/18

Cleanup glibc—headers —2.28 —42.e18_0 .1. aarch64
11/18

Cleanup dracut—squash —049—-10.git20190115 . el8 .aarch64
12/18

Cleanup dracut—network —049—10.git20190115 . el8 . aarch64
13/18
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Cleanup

14/18
Cleanup

15/18
Cleanup

16/18
Cleanup

17/18
Running scriptlet:

17/18
Cleanup

18/18
Running scriptlet:

18/18
Verifying

1/18
Verifying

2/18
Verifying

3/18
Verifying

4/18
Verifying

5/18
Verifying

6/18
Verifying

7/18
Verifying

8/18
Verifying

9/18
Verifying

10/18
Verifying

11/18
Verifying

12/18
Verifying

13/18
Verifying

14/18
Verifying

15/18

dracut—config—rescue —049—10.git20190115.¢el8 . aarch64

dracut —049—10.git20190115 . el8 . aarch64

glibc —common—2.28 —42.el18_0.1. aarch64

glibc—all —langpacks —2.28 —42.e18_0 .1. aarch64

glibc—all —langpacks —2.28 —42.e18_0 .1. aarch64

glibc —2.28 —-42.¢18_0 .1.aarch64

glibc—all —langpacks —2.28 —42.¢el8 .1. aarch64

dracut —049—10.git20190115.¢el8_0.1.aarch64

dracut —049—10.git20190115.el8 . aarch64

dracut—config—rescue —049—10.git20190115.¢el8_0.1.aarch64

dracut—config—rescue —049—-10.git20190115.¢el8 . aarch64

dracut—network —049—10.git20190115.el18_0.1.aarch64

dracut—network —049—10.git20190115.el8 . aarch64

dracut—squash —049—-10.git20190115.¢el8_0.1. aarch64

dracut—squash —049—10.git20190115 . el8 . aarch64

glibc —2.28-42.el18 .1. aarch64

glibc —2.28 —42.¢18_0.1. aarch64

glibc—all —langpacks —2.28 —42.¢el8 . 1. aarch64

glibc—all —langpacks —2.28 —42.el18_0 .1. aarch64

glibc —common—2.28 —42.¢el18 .1. aarch64

glibc —common—2.28 —42.¢18_0.1. aarch64

glibc—devel —2.28 —-42.el18 .1. aarch64
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Verifying : glibc—devel —2.28-42.¢18_0.1. aarch64

16/18
Verifying : glibc—headers —2.28 —42.¢el8 .1. aarch64

17/18
Verifying : glibc—headers —2.28 —42.el18_0.1. aarch64

18/18

Upgraded :
dracut —049—-10.git20190115.¢e18_0 .1. aarch64
dracut—config—rescue —049—10.git20190115.el8_0.1.aarch64
dracut—network —049—10.git20190115.el18_0.1. aarch64
dracut—squash —049—-10.git20190115.el8_0.1.aarch64
glibc —2.28 —42.¢18 .1. aarch64
glibc—all —langpacks —2.28 —42.¢el8 .1. aarch64
glibc —common—2.28 —42.¢18 .1. aarch64
glibc—devel —2.28 —42.¢l8 .1. aarch64
glibc —headers —2.28 —42.¢l8 .1. aarch64

Complete!
[kmor@pcepcmd64 centos8—rootfs]$

Listing D.1: Output on the terminal while updating the CentOS 8 root file system from the NFS
server side

CentOS 8 DNF Respository Configuration

# CentOS—Base.repo

#

# The mirror system uses the connecting IP address of the client and the
# update status of each mirror to pick mirrors that are updated to and

# geographically close to the client. You should use this for CentOS updates
# unless you are manually picking other mirrors.

#

# If the mirrorlist= does not work for you, as a fall back you can try the
# remarked out baseurl= line instead.

#

#

# CentOS 8 uses local repositories at http://mirror.centos.org

#

[BaseOS]

name=CentOS—$releasever — BaseOS
baseurl=http://mirror.centos.org/centos/S$releasever /BaseOS/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPG-KEY-centosofficial

#Extra Packages for Entreprise Linux for CentOS8

[epel]

name=Extra Packages for Enterprise Linux 8 — $basearch
baseurl=http://linuxsoft.cern.ch/epel/8/Everything/$basearch/
enabled=1

gpgcheck=0

#released updates (currently no update repository available on the CentOS 8 mirror)
[updates]

name=CentOS—$releasever — Updates
baseurl=http://mirror.centos.org/centos/S$releasever /BaseOS/$basearch/os
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gpgcheck=0
enabled=1
gpgkey=file:///etc/pki/rpm—gpg/RPM-GPGKEY-centosofficial

#additional packages that may be useful

[extras]

name=CentOS—$releasever — Extras

baseurl=http:// mirror.centos.org/centos/8releasever/extras/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPGKEY-centosofficial

#additional packages that extend functionality of existing packages

[centosplus]

name=CentOS—$releasever — Plus
baseurl=http://mirror.centos.org/centos/S$releasever/centosplus/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPG-KEY-centosofficial

AppStream packages

[AppStream |

name=CentOS—$releasever — AppStream
baseurl=http://mirror.centos.org/centos/S$releasever /AppStream/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPG-KEY-centosofficial

#PowerTools packages

[PowerTools]

name=CentOS—$releasever — PowerTools
baseurl=http://mirror.centos.org/centos/S$releasever /PowerTools/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPGKEY-centosofficial

#CR packages

ler]
name=CentOS—$releasever — cr

baseurl=http:// mirror.centos.org/centos/8$releasever/cr/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPGKEY—-centosofficial

[fasttrack]

name=CentOS—$releasever — fasttrack
baseurl=http://mirror.centos.org/centos/S$releasever/fasttrack/$basearch/os
gpgcheck=0

enabled=1

gpgkey=file:///etc/pki/rpm—gpg/RPM-GPG-KEY—centosofficial

Listing D.2: CentOS base repository configuration for DNF package manager in CentOS 8 root
file system

Terminal Output for Client Side Software Update

[root@128 ~]|# dnf upgrade —best —allowerasing
Last metadata expiration check: 1 day, 22:33:14 ago on Sat Jan 11 21:17:38 2020.
Dependencies resolved.

116



Package Architecture Version Repository Size

Upgrading:

openjpeg?2 aarch64 2.3.1—-1.el8 cr 145 k
openjpeg2—tools aarch64 2.3.1—1.el8 cr 79 k
turbojpeg aarch64 1.5.3—-10.el8 cr 135 k

Removing dependent packages:

openjpeg2—devel aarch64 2.3.0—-8.¢l8 @PowerTools 68 k
turbojpeg—devel aarch64 1.5.3-7.¢el8 @PowerTools 64 k

Transaction Summary

Upgrade 3 Packages

Remove 2 Packages

Total download size: 1.6 M

Is this ok [y/N]: y

Downloading Packages:

(1/3): openjpeg2—tools —2.3.1—1.el8.aarch64.rpm 346 kB/s | 79 kB 00:00

(2/3): openjpeg2 —2.3.1—1.¢el8.aarch64.rpm 603 kB/s | 145 kB 00:00

(3/3): turbojpeg —1.5.3—10.¢el8.aarch64.rpm 2.6 MB/s | 135 kB 00:00

Total 4.8 MB/s | 0.4 MB 00:00

Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction
Preparing 1/1
Upgrading openjpeg2 —2.3.1—1.el8 .aarch64 1/7
Upgrading openjpeg2—tools —2.3.1—1.¢el8.aarch64 2/7
Upgrading turbojpeg —1.5.3—10.el8 . aarch64 3/7
Erasing turbojpeg—devel —1.5.3-7.¢el8 .aarch64 4/7
Cleanup openjpeg2—tools —2.3.0—8.¢el8.aarch64 5/7
Cleanup openjpeg2 —2.3.0—8.el8 .aarch64 6/7
Cleanup turbojpeg —1.5.3—7.el8 . aarch64 7]
Verifying openjpeg2 —2.3.1—1.el8 .aarch64 1/8
Verifying openjpeg2 —2.3.0—8.¢el8 .aarch64 2/8
Verifying openjpeg2—tools —2.3.1—1.el8 .aarch64 3/8
Verifying openjpeg2—tools —2.3.0—-8.¢el8.aarch64 4/8
Verifying turbojpeg —1.5.3—-10.¢el8 . aarch64 5/8
Verifying turbojpeg —1.5.3 -7.¢el8 . aarch64 6/8
Verifying openjpeg2—devel —2.3.0—-8.¢l8 . aarch64 7/8
Verifying turbojpeg—devel —1.5.3—7.¢el8 .aarch64 8/8

Upgraded:

openjpeg2 —2.3.1—-1.¢l8 .aarch64

turbojpeg —1.5.3—10.el8 . aarch64

Removed :

openjpeg2—devel —2.3.0—-8.el8 .aarch64

openjpeg2—tools —2.3.1—1.¢el8.aarch64

turbojpeg—devel —1.5.3 —7.€el8 .aarch64

Listing D.3: Terminal output for client side software update
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