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Abstract

RDF [29] is the W3C standard for representing directed, labeled graph data. We research various
approaches to validate RDF graphs, in particular, the SPARQL query language for RDF [20]
and constraint language SHACL [23]. The problem of SHACL is that its semantics has been
defined informally using textual definitions and SPARQL queries, and that recursion, its most
distinguishing feature, remains explicitly undefined. We propose practical solutions to efficiently
validate SHACL, using the formal semantics for recursive SHACL proposed in [11].

First, we study the theoretical aspects to validating SHACL. It has been shown in previous
research that validation of the core of SHACL is intractable. Intractability stems from the ability to
validate constraints using arbitrary negation and recursion. This property still holds for constraints
with stratified negation and just basic operators. We identify a new tractable recursive fragment
with strictly stratified negation and additional native operators for universal quantification and
disjunction. It is more expressive than the previously identified tractable recursive fragments [10,
11], allowing for additional constraints to be expressed using strictly stratified negation and native
operators to express universal quantification and disjunction without the use of negation.

Validation of recursive schemas is based on a minimal fixed-point assignment. The formal
semantics is based on partial assignments, leaving the possibility to assign neither shape nor
its negation to nodes. We provide a complete proof of tractability for the fragments that have
previously been characterized as tractable, and show that this property still holds for our newly
defined fragment. We show that if the minimal fixed-point assignment, which can be computed
in polynomial time, does not assign the negated shape to a node targeted by this shape, that
there must exist another constraint satisfying assignment that successfully assigns the shape to
this node. This implies that a node is valid against a shape if and only if the minimal fixed-point
assignment does not assign the negated shape.

Moving on to the practical side, we study the validation complexity of non-referencing con-
straints, constraints whose validation does not depend on shapes, using a native implementation
and by means of a SPARQL query. We identify a few constraint types that may benefit from a
native implementation as their analysis showed fewer index lookups or scanned triples compared
to their related SPARQL query plans.

We propose a new native algorithm to validate non-recursive SHACL. The validation against
referencing constraints is based on the nested validation of nodes against referenced shapes. This
recursion may be infinite when the referenced shape is recursive and the node part of a cycle.
Connecting previous pieces, we propose a new native hybrid algorithm to validate recursive SHACL
and mitigate this problem by extending the algorithm for non-recursive SHACL with a minimal
fixed-point algorithm handling validation against recursive shapes. It is sound and complete for
all tractable fragments identified so far. Both algorithms run in polynomial time, use the concrete
SHACL language, and generate SHACL-like validation reports.

In order to understand how our approach performs in practice, we perform an experimental
study of the performance and scalability of both algorithms. Our experiments demonstrate that
the validation of large real-world data sets against complex SHACL schemas can be performed
efficiently, in the order of seconds. Even selectively adding recursion did not have a significant
impact on validation time; our experiments only showed an increase of 3%. This demonstrates
the effectiveness of our pruning strategies and minimal overhead by running punctual fixed-point
iterations.
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Chapter 1

Introduction

1.1 Motivation

Graph databases are typically used when the interconnectivity or topology of data is of importance
[1]. Data is presented in the form of the graph data model where: data is represented by graphs or
by data structures generalizing the notion of graphs; data manipulations are expressed by graph
transformations or by operations whose main primitives are on graph features [5]. Examples are
social networks [34, 8], information networks representing information flows [26, 3], biological
networks [4, 7, 16], and Knowledge Graphs [31]. Resource Description Framework (RDF)[29] is
such a graph data model that is standardized, widely used, and supported by a large community.

Graph data is typically semi-structured in nature, which is often explained as schemaless or
self-describing [2]. There is no separate description of the structure of data. Instead, data is
structured following an implicit and often partial schema. Such schemas are not strictly defined or
enforced as is the case with relational data. This flexibility leads to higher levels of heterogeneity
which may cause issues in conceptually understanding what a data set represents or contains,
how its structured, and how it evolves. This complicates working with such data as no schema is
defined or enforced, while the structure may mutate over time.

A high-level description capturing the structural properties of the graph and the types and
distributions of data facilitates communication, understanding, analysis, data integration, and
allows for appropriate integrity constraints to be expressed over the graph structure. It can be
used to optimize query evaluation, improve data partitioning and replication, construct indices,
and most importantly, to enforce data integrity with the use of constraints [2]. The need for
structure increases as graph data is becoming more popular and constantly growing in terms of
volume and variety.

1.2 Problem Description

Various constraint languages and validation approaches exist to express constraints and validate
the adherence of RDF graphs against these constraints [20, 22, 14, 35, 33, 23]. These languages
typically differ in the purpose they were designed for, expressivity of constraints, and complexity
of validation.

SPARQL Protocol and RDF Query Language (SPARQL)[20] is a standardized and widely ad-
opted query language for data represented as RDF. This makes SPARQL and the SPARQL-based
constraint language SPARQL Inferencing Notation (SPIN)[22] interesting choices for constraint
validation. However, using a query-based approach for validation limits the expressivity and per-
formance to that of the query endpoint. The exact performance implications of using query-based
validation instead of a native implementation to validate constraints are currently unclear.

The constraint languages Shape Expressions (ShEx)[33] and Shapes Constraint Language
(SHACL)[23] have been explicitly designed for constraint checking. ShEx development started
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under the W3C Data Shapes Working Group with the goal of forming a W3C Recommenda-
tion for describing structural constraints and validating RDF instance data against those. The
group became divided between the two views, validation as schema recognition and as constraint
checking, the ShEx and SHACL group, respectively. The ShEx group split to form the ShEx Com-
munity Group [18]. The W3C Data Shapes Working Group later produced SHACL, a language for
defining structural constraints on RDF graphs. It successfully became a W3C Recommendation
in 2017. SHACL can be seen as the most prominent language for constraint validation due to
its standardization, support for recursion, and ability to validate and declare high-level reusable
components of arbitrary SPARQL-based constraints.

The problem of SHACL is that its semantics has been defined informally using textual defini-
tions and SPARQL queries, and that recursion, its most distinguishing feature, remains explicitly
undefined. The study of [11] proposes formal semantics for recursive SHACL and shows that
validation is already intractable for a severely limited fragment. Features such as recursion and
arbitrary negation make efficiently validating SHACL a non-trivial task. It is currently unclear how
to efficiently validate RDF graphs against a rich fragment of SHACL, while pragmatic algorithms
remain unknown.

1.3 Research Question

In our study, we aim to provide an answer to the following research question:

How can RDF graphs be efficiently validated against a rich fragment of
SHACL that includes recursion?

Therefore, we investigate the following sub-questions:

• What are the differences between SPARQL-based validation and validation by means of a
native implementation in terms of performance?

• What is the complexity of validation of SHACL and how is it affected by specific features?

• How to efficiently validate (recursive) SHACL?

1.4 Contributions

Our contributions are:

• We review existing validation approaches and constraint languages for RDF graphs.

• We propose a new tractable and more expressive recursive SHACL fragment, called strictly
stratified L+. It requires strictly stratified negation, supports all SHACL Core operators,
and has additional native operators for universal quantification and disjunction.

• We prove that validation of all tractable recursive SHACL fragments identified so far, in
particular strictly stratified L+, is indeed tractable.

• We study the differences between SPARQL-based validation and a native implementation
by studying generated query plans for available SPARQL definitions of SHACL constraints
and their potential native implementations. We assess validation performance by reasoning
about the number of index lookups and scanned triples, and by doing so, identify a few
constraint types that may benefit from a native implementation.

• We propose a new native algorithm for validating non-recursive SHACL. It runs in polyno-
mial time, uses the concrete SHACL language, and generates SHACL-compliant validation
reports.
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• We propose a new native hybrid algorithm for validating recursive SHACL by extending
the algorithm for non-recursive SHACL with a minimal fixed-point algorithm. It is sound
and complete for all tractable fragments identified so far, runs in polynomial time, uses the
concrete SHACL language, and generates SHACL-like validation reports.

• We provide an implementation of the new native hybrid algorithm in TopBraid’s SHACL
API. The source code has been made publicly available at https://github.com/ChrisLahaye/
shacl to contribute to the open-source and academic community.

• We perform an experimental study of the performance and scalability of both algorithms,
demonstrating that the validation of large real-world data sets against complex SHACL
schemas can be performed efficiently, in the order of seconds, as well as the marginal cost
of handling recursion, effectiveness of pruning strategies, and minimal overhead by running
punctual fixed-point iterations.

1.5 Organization

Chapter 2 summarizes preliminary knowledge for the remainder of this thesis, in particular, on
RDF and SPARQL. Chapter 3 provides a brief overview of existing validation approaches and
constraint languages for RDF. In Chapter 4 we focus on the constraint language SHACL. We
first introduce the basic concepts of SHACL, provide an overview of constraints, and discuss the
abstract syntax, semantics, complexity, and tractable fragments. In Chapter 5 we study the dif-
ferences between SPARQL-based validation and a native implementation to validate constraints.
Chapter 6 describes practical solutions to validating SHACL. We propose algorithms to validate
non-recursive and recursive SHACL. In Chapter 7 we discuss the experimental study of the per-
formance and scalability of both algorithms. We also compare our results with another study that
takes a different approach to validating SHACL. Lastly, Chapter 8 presents concluding remarks
and future work.
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Chapter 2

Preliminaries

2.1 Resource Description Framework

Introduction Resource Description Framework (RDF)[29] is a metadata model for representing
data by defining the relationships between things. These things are called resources and can be
anything, for instance, physical objects, abstract concepts, or values. Resources are denoted by
an Internationalized Resource Identifier (IRI ⊃ URI ⊃ URL). Values such as strings and numbers
are denoted by so-called literals.

RDF defines an abstract syntax that is used to link with all RDF-based languages and spe-
cifications such as concrete RDF syntaxes or query languages. Its core data structure is the RDF
graph which is a set of triples, each consisting of a subject, predicate, and object. Each triple ex-
presses that some relationship, indicated by the predicate, holds between the resources denoted by
the subject and object. Relationships can be expressed about resources without explicitly naming
them by using so-called blank nodes as subject or object. Blank nodes can have local identifiers
in concrete RDF syntaxes but are limited in scope to a particular graph.

Formally, an RDF triple is a triple of the form (subject, predicate, object) such that:

• subject is an IRI or blank node;

• predicate (also known as property) is an IRI;

• object is an IRI, literal, or blank node.

An RDF graph can be visualized as a node and directed-arc diagram (see Example 1) by
drawing the subjects and objects of triples as nodes, and then connecting them by drawing an arc
for each triple directed from the subject to the object node with the predicate as label. Nodes for
resources are drawn as circles and literals as rectangles.

Namespaces An RDF vocabulary is a collection of IRIs used to describe things. The IRIs in a
vocabulary usually start with a common substring called the namespace IRI. Namespace IRIs are
often abbreviated by convention into a shorter string, called the namespace prefix. Within this
thesis, the following namespaces are used:

Namespace prefix Namespace IRI

ex: http://example.com/ns#

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

spin: http://spinrdf.org/spin#

sp: https://spinrdf.org/sp#

sh: http://www.w3.org/ns/shacl#

dbo: http://dbpedia.org/ontology/
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Example 1. The data that James likes Mary and that both have British nationality can be modeled
as an RDF graph with the triples:

• (ex:James, ex:likes, ex:Mary)

• (ex:James, ex:nationality, ”British”)

• (ex:Mary, ex:nationality, ”British”)

where ex:James and ex:Mary are IRIs denoting James and Mary, respectively, ex:likes and ex:nationality
are IRIs denoting relationships, and ”British” is a literal denoting the value British. Figure 2.1
visualizes this RDF graph as a node and directed-arc diagram.

ex:James ex:Mary

”British”

ex:likes

ex:nationality ex:nationality

Figure 2.1: A basic RDF graph visualized as a node and directed-arc diagram.

4

Terminology The nodes of an RDF graph are the subjects and objects of its triples. RDF
terms are any IRI, literal, or blank node.

Definition 2.1.1. (Property values) The values of a property p for a node v are the objects of
triples with v as subject and p as predicate.

Example 2. The nodes of the RDF graph of Example 1 are: ex:James, ex:Mary, and ”British”.
The value of the property ex:nationality for node ex:James and ex:Mary is ”British”. 4

RDF Vocabulary Description Schema (RDFS)[14] in an extension of RDF and provides mech-
anisms to describe groups of related resources and the relationships between them. Resources can
be assigned to one or more groups, called classes. Resources can declare to be a member of a class
using the predicate rdf:type. RDFS comes with a set of inference rules allowing to derive new facts
from an RDF graph. For instance, if a class is a subclass of another class, then every member of
this class is also a member of the other class. Classes can declare to be a subclass of another class
using the predicate rdfs:subClassOf.

Definition 2.1.2. (Class instance) A node v is an instance of class C if and only if there exists
a triple (v, rdf:type, C ′) such that C ′ = C or C ′ is a subclass of C, i.e., there exists a sequence
of triples (C1, rdfs:subClassOf, C2), (C2, rdfs:subClassOf, C3), ... such that the subject of the first
triple is C ′, all subsequent triples are connected by using the object of the previous triple as
subject, and the object of the last triple is C.

Example 3. We extend the RDF graph of Example 1 with the data that James is a male and
Mary a female by declaring the corresponding resources a member of class ex:Male and ex:Female,
respectively. We add the triples:

• (ex:James, rdf:type, ex:Male)

• (ex:Mary, rdf:type, ex:Female)
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We model that all males and females are human by declaring class ex:Male and ex:Female a
subclass of class ex:Human. We add the triples:

• (ex:Male, rdfs:subClassOf, ex:Human)

• (ex:Female, rdfs:subClassOf, ex:Human)

The node ex:James is now an instance of class ex:Male and ex:Human, and node ex:Mary an
instance of class ex:Female and ex:Human. Figure 2.2 visualizes this RDF graph.

ex:James ex:Mary

”British”

ex:likes

ex:nationality ex:nationality

ex:Male ex:Female

ex:Human

rdf:type rdf:type

rdfs:subClassOf rdfs:subClassOfrdf:type rdf:type

Figure 2.2: An RDF graph using the RDFS vocabulary. Dashed edges represent triples implied
by the RDFS inference rules.

4
An RDF collection is a group of things represented as a list structure. The list structure

consists of the properties rdf:first and rdf:rest. The property rdf:first denotes the element and
rdf:rest the remainder of the list. The resource rdf:nil represents an empty list and can be used
as value for property rdf:rest to denote the end of the list.

Example 4. An RDF collection with elements ex:James and ex:Mary is denoted by the triples:

• ( :b1, rdf:first, ex:James)

• ( :b1, rdf:rest, :b2)

• ( :b2, rdf:first, ex:Mary)

• ( :b2, rdf:rest, rdf:nil)

where :b1, :b2 are two distinguished blank nodes. 4

Definition 2.1.3. (List element) A node v is an element of list l, denoted by v ∈ l, if and only
if there exists a triple (l, rdf:first, v) or a sequence of triples (l1, rdf:rest, l2), (l2, rdf:rest, l3), ... such
that the subject of the first triple is l, all subsequent triples are connected by using the object of
the previous triple as subject, and the object of the last triple has v as value for property rdf:first.
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Notation In the remainder of this thesis, we write RDF using the concrete RDF syntax Turtle[15]
in which triples are written by writing their elements, separated by a white space and terminated
by a dot symbol. The subject of the previous triple can be repeated by terminating the triple with
a colon symbol. The keyword a as predicate is an alternative for rdf:type. We omit the mapping
from namespace prefix to IRI for readability.

Example 5. The extended RDF graph of Example 3 can be written as follows:

1 ex:James

2 a ex:Male ;

3 ex:likes ex:Mary ;

4 ex:nationality "British" .

5

6 ex:Male rdfs:subClassOf ex:Human .

7

8 ex:Mary

9 a ex:Female ;

10 ex:nationality "British" .

11

12 ex:Female rdfs:subClassOf ex:Human .

4
Blank nodes are written as :x where x is a label. A blank node with multiple properties can

be written using the [ p1 o1 ; pi oi ; pn on ] syntax such that pi is a property and oi its value.
Each property results in a triple ( :b1, pi, oi) where :b1 is the blank node. Collections are written
using the syntax (a b c) where a, b, and c are its elements.

Example 6. The statement that James likes some female with Dutch nationality is denoted by the
triples:

• (ex:James, ex:likes, :b1)

• ( :b1, rdf:type, ex:Female)

• ( :b1, ex:nationality, ”Dutch”)

where :b1 is a fresh blank node.
This can be written as follows:

1 ex:James ex:likes [

2 a ex:Female ;

3 ex:nationality "Dutch"

4 ] .

4

2.2 SPARQL Query Language for RDF

Introduction The SPARQL Query Language for RDF [20] is a query language for data rep-
resented as RDF. A SPARQL query consists of a set of graph patterns in which each element
can be a variable, potentially shared among patterns. Solutions to these variables are then found
by matching these graph patterns to RDF triples in the data set. Variables are prefixed with a
question mark and can be statically bound using the keyword BIND or VALUES.

SPARQL has four types of queries:

• ASK returns a boolean indicating whether there exists a solution,

• SELECT returns variable bindings of solutions,

• CONSTRUCT returns an RDF graph constructed by substituting the variables in the graph
patterns with solutions, and
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• DESCRIBE returns an RDF graph providing context (e.g., the neighborhood) for matched
resources.

We omit the mapping from namespace prefix to IRI for readability.

Example 7. The question of which females are liked by James can be answered by finding solutions
to the x variable in the graph patterns:

• (ex:James, ex:likes, ?x)

• (?x, rdf:type, ex:Female)

This translates into the following query:

1 SELECT ?x

2 WHERE {

3 ex:James ex:likes ?x . ?x a ex:Female

4 }

Evaluating this query on the RDF graph of Examples 3 and 5 results in the solutions:

x

ex:Mary

The question of whether such a female exists can be answered by means of the ASK query
obtained by replacing the first two lines with ASK {. Evaluating this query on the RDF graph
results in the boolean value true. 4

Combining Graph Patterns The graph patterns A and B can be combined by means of a
conjunction A . B, joining together the results of A and B by matching the shared variables. An
optional graph pattern A OPTIONAL { B } joins the results of A with B when possible, but keeps
the solutions of A even if there is no match with B. The disjunction A UNION { B } includes both
the results of A and B. The negation A MINUS { B } includes the results of A that do not match
with B.

Example 8. We continue with Example 7. When we are also interested in knowing which (first)
thing other than potentially James himself is liked by these females (liked by James), but without
requiring that such a thing exists, we add an optional graph pattern with negation. This translates
into the following query:

1 SELECT ?x ?y

2 WHERE {

3 ex:James ex:likes ?x . ?x a ex:Female

4 OPTIONAL { ?x ex:likes ?y MINUS { ?x ex:likes ex:James } }

5 }

Suppose Mary likes James, cycling, and reading, and that we add this data to the RDF graph,
then evaluating this query on the extended RDF graph results in the solutions:

x y

ex:Mary ”cycling”

4

Filters The keyword FILTER restricts solutions to those for which an expression evaluates to
true. Expressions may include standard mathematical and logical operators. Filters on the (non-)
existence of triple patterns can be made using FILTER EXISTS and FILTER NOT EXISTS.
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Example 9. Suppose our graph also stores someone’s age, and that we are interested in knowing
which females are liked by James that are older than 35 and do not like James back. This translates
into the following query:

1 SELECT ?x

2 WHERE {

3 ex:James ex:likes ?x . ?x a ex:Female . ?x ex:age ?y

4 FILTER(?y > 35) FILTER NOT EXISTS { ?x ex:likes ex:James }

5 }

4

Solutions Sequence Modifiers Solutions sequence modifiers are applied on the unordered
collection of solutions generated by query patterns to create another, user desired, collection of
solutions. The modifiers that we are using in the remainder of this thesis are: ORDER BY to put
the solutions in a specific order, and DISTINCT to ensure solutions are unique.

Aggregates Aggregates apply expressions over groups of solutions. They are used to generate
a result computed over a group of solutions, instead of a single solution. The GROUP BY clause
is used to group the solutions for which an aggregated value (e.g., COUNT or SUM) is calculated.
The clause HAVING filters grouped solution sets.

Example 10. The question of which females, sorted by their nationality, like more than one male
can be answered by the following query:

1 SELECT ?x

2 WHERE {

3 ?x a ex:Female . ?x ex:nationality ?y .

4 ?x ex:likes ?z . ?z a ex:Male

5 }

6 GROUP BY ?x

7 HAVING(COUNT(?z) > 1)

8 ORDER BY ?y

4

Terminology A property path is a possible route through a graph between two nodes. A trivial
case is a property path of length 1. Property paths allow for more concise expression of basic
graph patterns.

Example 11. The nationalities of things liked by James can be determined by finding solutions to
the o variable in the (basic) graph patterns:

• (ex:James, ex:likes, ?x)

• (?x, ex:nationality, ?o)

These basic graph patterns can be translated into a sequence path of IRI ex:likes followed by
ex:nationality. This translates into the following query:

1 SELECT ?o

2 WHERE {

3 ex:James ex:likes/ex:nationality ?o

4 }

Evaluating this query on the RDF graph of Examples 1, 3 and 5 results in the solutions:

o

”British”

4
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Definition 2.2.1. (Property path values) The values of a property path p for a node v are the
solutions to variable o in the result of the query SELECT ?o WHERE { ?s p ?o } such that p is
substituted and variable s bound or substituted with v.

Example 12. The values of property path ex:likes/ex:nationality for node ex:James in the RDF
graph of Examples 1, 3 and 5, i.e. the solutions to variable o in the result of the query in Example 9,
is the set consisting of a single value ”British”. 4
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Chapter 3

Validation Approaches and
Constraint Languages

3.1 Introduction

Constraint validation approaches for graphs differ in the languages used to express constraints and
in how these languages are implemented. Validation approaches using constraint languages can be
categorized into rule languages, query-based constraint languages, and grammar-based constraint
languages, and their implementations into hard-coded systems, reasoners, and query endpoints.

Validation approaches without any constraint language are implemented by a hard-coded sys-
tem that implements both the description and validation of constraints. They typically perform
well, allow for optimization, but lack in customization as constraints cannot be expressed in a
declarative manner.

Rule-based approaches define constraints using vocabularies and ontologies which are validated
using a reasoner or query endpoint. Examples are RDFS [14] and Ontology Language (OWL)[35].

Query-based approaches allow constraints to be expressed in the form of queries or by means
of a high-level language and are validated using a query endpoint. They allow customization by
defining additional queries or constructs in the language. Examples are SPARQL [20], SPIN [22],
and SHACL [23].

Grammar-based approaches define a domain specific language to declare constraints which are
validated using a query endpoint or hard-coded system. They allow customization by defining
additional constructs in the language. High-level constraint languages are comparatively easy to
understand and constraints can be formulated concisely. Examples are ShEx [33] and SHACL
[23].

We briefly discuss some of these approaches in the following sections.

3.2 Rule-based Reasoner

Introduction A rule-based reasoner is a system that receives a set of facts and rules in the
form of if-then statements and produces new facts by inference. There are two main strategies
for reasoning, forward and backward chaining. Forward chaining starts with the known facts, and
infers all possible facts. Backward chaining starts with the consequent and performs backwards to
infer the needed antecedent. Implementations may differ in supported logics, built-in functions,
strategies, and features (e.g., proof explanation and tracing). Support for expressive built-ins are
needed as validation often deals with string comparisons and mathematical calculations [6].

Constraints can be expressed in the form of rules in the supported logic, or implicitly by using
vocabularies and ontologies like RDFS [14] and OWL [35]. These vocabularies come with their
own interpretation that indicate how a statement should be interpreted and which new facts can
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be derived. Under the right semantics, this can be used to construct rules that infer constraint
violations.

Rule-based reasoners generate logic proofs stating how a new fact representing a constraint
violation was inferred. They support adding inferencing steps by adding custom rules, hereby
allowing customization. They only need a single system to declare the constraints and the set of
inferencing rules.

Semantics Validation and inference typically assume different semantics that may lead to dif-
ferent results depending on the type of constraint. Reasoning requires presence of Open World
Assumption (OWA) and absence of Unique Name Assumption (UNA), whereas validation typic-
ally depends on Closed World Assumption (CWA) and presence of UNA [9, 18]. As a consequence,
efforts have been made into combining both OWA and CWA [19, 30], allowing parts of the world
to be explicitly closed. This is called Local Closed World Reasoning. An alternative approach to
using reasoners for constraint validation is to support Scoped Negation as Failure (SNAF) instead
of CWA and predicates to compare URIs and literals instead of UNA [6]. The Open World As-
sumption (OWA) is the assumption that the truth value of a statement may be true irrespective
whether it is known to be true. This in contrast to a Closed World Assumption (CWA) where fail-
ure to infer a statement implies it to be false and its negation to be true. Example 13 demonstrates
the difference between validating a constraint with OWA and CWA.

Example 13. Consider the constraint that every human must have a father and assume there
exists a human without father. Under OWA this constraint is not violated as there may exist an
unknown father for this human. So, under OWA a constraint is only violated if there exists a
contradiction. 4

The Unique Name Assumption (UNA) is the assumption that different names always refer to
different entities, meaning that two different URIs could refer to the same entity. The absence of
UNA may lead to non-intuitive inference and validation as shown in Example 14.

Example 14. Consider the constraint that limits the cardinality of a property to one. If a resource
has two different values for this property, then this is not a violation as they could refer to the
same entity. As result, a reasoner will infer that the two resources are the same while this may
not necessarily be the case. 4

3.3 SPARQL-based Constraint Validation

SPARQL can be used for constraint validation by expressing constraints as ASK queries. The
expressivity of SPARQL is equivalent to that of relation algebra and the complexity of query
evaluation is PSPACE [27]. These properties and its wide adoption as standard query language
make SPARQL an interesting choice for constraint validation. However, queries can become quite
complex and long as SPARQL does not allow any reusable high-level constructs. SPARQL does
not support recursive constraints, unless the recursive SPARQL extension introduced in [28] is
used.

Example 15. The following query determines whether there exists a violation to the constraint
that every human must have a father:

1 ASK {

2 ?x a ex:Human

3 FILTER NOT EXISTS { ?x ex:father ?y }

4 }

4
Various work exists that propose RDF vocabularies to express constraints and then validate

these constraints by mapping them into SPARQL queries [17, 25]. In [17] they propose an RDF
vocabulary to express basic RDF constraints and a mapping to validate these constraints using
SPARQL. In [25] they map relational data to RDF while preserving the primary and foreign
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key constraints in a dedicated vocabulary. They provide mappings from these key constraints to
SPARQL queries for validation.

3.4 SPARQL Inferencing Notation

SPARQL Inferencing Notation (SPIN)[22] is a SPARQL-based rule and constraint language for
RDF graphs. It can be used for various purposes like making automatic calculations, performing
constraint validation with closed world semantics, and to isolate rules under specific conditions.

Rules are implemented using SPARQL CONSTRUCT queries or DELETE/INSERT update
operations, and constraints using SPARQL ASK/CONSTRUCT queries or SPIN templates. Tem-
plates are parameterized and reusable high-level constructs of SPARQL queries.

The properties spin:rule and spin:constraint are used to link rules and constraints, respectively,
to a class such that it is applied to each instance of this class. Each ASK query defines a constraint
and is evaluated for each instance of the linked class. A node violates the constraint if the ASK
query evaluates to true.

Example 16. The constraint that every human must have a father can be expressed in SPIN as
follows:

1 ex:Human spin:constraint [

2 a sp:Ask ;

3 rdfs:comment "must have a father" ;

4 sp:where ([

5 a sp:NotExists ;

6 sp:elements ([

7 sp:subject spin:_this ;

8 sp:predicate ex:father ;

9 sp:object [ sp:varName "y" ]

10 ])

11 ])

12 ] .

4
The SPIN documentation [24] refers to the Shapes Constraint Language (SHACL)[23] as its

legitimate successor, stating that every SPIN feature is supported and improved by the constraint
language SHACL. Chapter 4 discusses SHACL in detail.
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Chapter 4

Shapes Constraint Language

4.1 Introduction

Shapes Constraint Language (SHACL)[23] is an RDF-based schema language to constrain, val-
idate, and infer RDF graphs. It became a W3C recommendation in 2017 and consists of two
parts:

1. SHACL Core describes a core RDF vocabulary to define shapes and constraints; and

2. SHACL-SPARQL extends SHACL Core with SPARQL-based constraints and an extension
mechanism to declare new reusable components.

Our focus is primarily on SHACL Core. SHACL Core evolves around three concepts: shapes,
focus nodes, and constraints. Simply stated, focus nodes are RDF terms being validated against
shapes with respect to the constraints they declare.

A shape is a node-centric collection of constraints. In line with this idea, SHACL Core defined
two types of shapes: node and property shapes. Node shapes declare constraints that specify
requirements on the focus node itself, whereas property shapes specify requirements on the values
of a particular property or path for the focus node.

The nodes that must meet the requirements are called value nodes. The value nodes for
constraints declared by a node shape is the set with as only element the focus node, and for a
property shape the set of nodes reachable from the focus node with the declared property or path.

The syntax of SHACL is RDF. Shapes and other constructs can be expressed in the form of an
RDF graph. These graphs are called shapes graphs and contain zero or more shapes. The RDF
graphs that are validated against a shapes graph are called data graphs.

Example 17. The following shapes graph expresses that every human must have a father:

1 ex:HumanShape

2 a sh:NodeShape ;

3 sh:targetClass ex:Human ;

4 sh:property [

5 sh:path ex:father ;

6 sh:minCount 1

7 ] .

This shapes graph declares the node shape ex:HumanShape. This shape targets instances of
class ex:Human, requiring each instance to be valid against this shape. Each instance is validated
as focus node against the constraints declared by the shape.

The node shape declares a property constraint as it has a value for its mandatory parameter, the
property sh:property. The property constraint requires that the value nodes for a given focus node
(an instance of ex:Human) is valid against the property shape given as value for this parameter.
The property constraint has been declared by a node shape, therefore, the set of value nodes is
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the set with as only element the given focus node. Each value node is validated as focus node
against the constraints declared by the property shape.

The property shape declares a minimum cardinality constraint as it has a value for its mandat-
ory parameter, the property sh:minCount. The minimum cardinality constraint requires that the
number of value nodes for the given focus node is greater than the number given as value for this
parameter. As the minimum cardinality constraint has been declared by a property shape, the set
of value nodes are the nodes reachable from the given focus node over the declared property or
path (the value of property sh:path for the property shape).

An RDF graph that is valid with respect to the shapes graph is the following:

ex:James ex:John

ex:Human

ex:father

a

4
Shapes can declare targets that identify focus nodes. SHACL Core includes the following kinds

of targets: node targets that target specific nodes identified by fixed IRIs, class-based targets that
target instances of a specific class (see Example 17), implicit class targets that target instances of
the shape as class, subjects-of targets that target the subjects of triples with a specific predicate,
and objects-of targets that target the objects of triples with a specific predicate. Shapes that
declare one or more target are called target-declaring and their target is the union of all focus
nodes identified by each target declaration.

Terminology With the values of (property) path p we mean the values of SPARQL property
path p′ such that SHACL property path p maps to SPARQL property path p′ per the rules defined
in [23]. With a list and its members we mean an RDF collection and its elements.

Example 18. The following shapes graph expresses that every human must have a grandfather:

1 ex:HumanShape

2 a sh:NodeShape ;

3 sh:targetClass ex:Human ;

4 sh:property [

5 sh:path ( ex:father ex:father ) ;

6 sh:minCount 1

7 ] .

We make the graph of Example 17 valid by adding Robert, the grandfather of James, as father
of James’ father John, i.e. we add the triple (ex:John, ex:father, ex:Robert):
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ex:James ex:John ex:Robert

ex:Human

ex:father ex:father

a

The values of (SHACL) property path ( ex:father ex:father ) for node ex:James are the values
of the mapped SPARQL sequence path ex:father/ex:father for node ex:James, i.e. ex:Robert. 4

Definition 4.1.1. [23](Shape) A shape is an IRI or blank node s that satisfies at least one of the
following conditions:

1. s is an instance of class sh:NodeShape or sh:PropertyShape.

2. s is the subject of a triple with predicate sh:targetClass, sh:targetNode, sh:targetObjectsOf,
or sh:targetSubjectsOf.

3. s is the subject of a triple with a constraint parameter as predicate (see Section 4.2).

4. s is a value of a shape-expecting non-list-taking parameter, or a member of a shape-expecting
list-taking parameter (see Sections 4.2 and 4.3).

Example 19. The shapes graph of Example 18 declares a shape ex:HumanShape as this IRI satisfies
condition 1, 2, and 3, and another shape denoted by the blank node which satisfies condition 3
and 4. 4

Definition 4.1.2. [23](Property shape) A shape s is a property shape if and only if it has a
SHACL property path (per the rules defined in [23]) as only value for the property sh:path. Note
that it is not required, but recommended, for s to be an instance of class sh:PropertyShape.

Example 20. The shape ex:HumanShape in the shapes graph of Example 18 is a node shape since
it has no value for the property sh:path. The shape denoted by the blank node is a property shape
as it has a SHACL property path as only value for the property sh:path. 4

4.2 Constraints

Shapes can declare constraints using the parameters of constraint components. Constraints are
instances of constraint components and provide values for their mandatory and potentially op-
tional parameters. Each constraint component is identified by an IRI in the SHACL namespace.
In the remainder of this thesis, we omit the sh: namespace prefix, for instance, we write ClassCon-
straintComponent instead of sh:ClassConstraintComponent.

SHACL Core supports the following type of constraints:

• value type constraints which restrict the type of value nodes (e.g., to be an instance of class
ex:Human);

• cardinality constraints which restrict the number of values nodes (e.g., to be greater than
1);

• value range constraints which specify range conditions on the value nodes (e.g., being greater
than the number 18);
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• string-based constraints which specify conditions on the string representation of value nodes
(e.g., having at most 2 characters);

• property pair constraints which specify conditions on the sets of value nodes in relation to
other properties (e.g., being disjoint with the values of property ex:dislikes);

• logical constraints implement common logical operators on shapes (e.g., conjunction);

• shape-based constraints specify complex conditions by validating the value nodes against
shapes (e.g., being valid against the node shape ex:HumanShape);

• closed shapes which require properties of value nodes to be explicitly enumerated; and

• non-validating constraints (e.g., providing human-readable labels).

The validation of both logical and shape-based constraint components is defined with respect to
the validity of value nodes against shapes. Let them be called referencing constraint components.

Definition 4.2.1. (Referencing constraint components) The set of referencing constraint com-
ponents is the union of logical and shape-based constraint components.

Each constraint component belongs to one of the following types:

1. referencing constraint component requiring validation,

2. referencing constraint component requiring conformance checking, or

3. non-referencing constraint component.

Both referencing constraint components requiring validation and conformance checking have
exactly one mandatory parameter that receives a shape or list of shapes as value. The validation
against these constraint components is defined with respect to the validity of value nodes against
these shapes, i.e. on the nested validation. However, the validation results of validating value
nodes against referencing constraint components requiring validation are the results of validating
these nodes against the referenced shapes, whereas the validation results of validating against
referencing constraint components requiring conformance checking are based on whether these
nodes conform to the referenced shapes, i.e. whether the nested validation results are empty.

Example 21. The node shape ex:HumanShape in the shapes graph of Example 18 declares a con-
straint of kind PropertyConstraintComponent as it has a value for its mandatory parameter, the
property sh:property. This is a referencing constraint component requiring validation. The prop-
erty shape denoted by the blank node declares a constraint of kind MinCountConstraintComponent
as it has a value for its mandatory parameter, the property sh:minCount. This is a non-referencing
constraint component. 4

The following paragraphs describe the constraint components used in the remainder of this
thesis, as well as their type, parameters, and validation results. Table 4.1 describes all SHACL
Core constraint components with their parameters and type.

DisjointConstraintComponent Restricts the set of value nodes to be disjoint with the set
of nodes that have the focus node as subject and the value of the given property (the value of
mandatory parameter sh:disjoint) as predicate. If a value node exists as a value of the given
property, there is a validation result with the value node as value. This is a non-referencing
constraint component.

EqualsConstraintComponent Restricts the set of value nodes to equal the set of nodes that
have the focus node as subject and the value of the given property (the value of mandatory
parameter sh:equals) as predicate. If a value node does not exist as a value of the given property,
there is a validation result with the value node as value. If a value of the given property is not
a value node, there exists a validation result with the value as value. This is a non-referencing
constraint component.
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HasValueConstraintComponent Restricts that one of the value nodes is the given RDF node
(the value of mandatory parameter sh:hasValue). If such value node does not exists, there is a
validation result. This is a non-referencing constraint component.

LessThanConstraintComponent Restricts every value node to be smaller than all nodes
that have the focus node as subject and the value of the given property (the value of mandatory
parameter sh:lessThan) as predicate. This is a non-referencing constraint component.

LessThanOrEqualsConstraintComponent Restricts every value node to be smaller or equal
than all nodes that have the focus node as subject and the value of the given property (the value
of mandatory parameter sh:lessThanOrEquals) as predicate. This is a non-referencing constraint
component.

MaxCountConstraintComponent Restricts the maximum number of value nodes. If the
number of value nodes is greater than the given maximum number (the value of mandatory para-
meter sh:maxCount), there is a validation result. This is a non-referencing constraint component.

MinCountConstraintComponent Restricts the minimum number of value nodes. If the num-
ber of value nodes is less than the given minimum number (the value of mandatory parameter
sh:minCount), there is a validation result. This is a non-referencing constraint component.

NodeConstraintComponent Restricts the set of value nodes to conform to the given node
shape (the value of mandatory parameter sh:node). If a value node does not conform to the
given node shape, there is a validation result with the value node as value. This is a referencing
constraint component requiring conformance checking.

PropertyConstraintComponent Restricts the set of value nodes to have the given property
shape (the value of mandatory parameter sh:property). The validation results are the results
of validating the set of value nodes as focus nodes against the given property shape. This is a
referencing constraint component requiring validation.

QualifiedMinCountConstraintComponent Restricts the minimum number of value nodes
that conform to the given shape (the value of mandatory parameter sh:qualifiedValueShape). If
the number of value nodes that conform to the given shape is less than the given minimum number
(the value of mandatory parameter sh:qualifiedMinCount), there is a validation result. This is a
referencing constraint component requiring conformance checking.

Table 4.1: List of all SHACL Core constraint components with their parameters and type

The first column lists a short name to uniquely identify the constraint component. This name
corresponds to the IRI of the constraint component in the SHACL namespace (e.g., MinCount
corresponds to sh:MinCountConstraintComponent). The second column lists a description of
the constraint component and its parameters. All constraint parameters are mandatory unless
explicitly stated otherwise.

Component Descriptions and Constraint Parameters

Non-referencing constraint components

Class
Restricts each value node to be an instance of the given class.
sh:class - The class IRI
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Closed
Restricts each value node’s properties to be explicitly enumerated by
one of the property shapes declared as value of property sh:property.
sh:closed - Boolean indicating whether to close the shape
sh:ignoredProperties - Optional list of IRIs to permit besides those
explicitly enumerated

DataType
Restricts each value node to be of the given data type.
sh:datatype - The data type IRI

Disjoint
Restricts set of value nodes to be disjoint with the set of values of
the given property.
sh:disjoint - The property IRI

Equals
Restricts the set of value nodes to equal the set of values of the given
property.
sh:equals - The property IRI

HasValue
Restricts the given value node to exist.
sh:hasValue - The RDF term

In
Restricts each value node to be explicitly given.
sh:hasValue - List of RDF terms

LanguageIn
Restricts each value node’s language tag to be explicitly given.
sh:languageIn - List of strings

LessThan
Restricts each value node to be arithmetically strictly smaller than
all values of the given property.
sh:lessThan - The property IRI

LessThanOrEquals
Restricts each value node to be arithmetically smaller than all values
of the given property.
sh:lessThanOrEquals - The property IRI

MaxCount
Restricts the maximum number of value nodes to the given number.
sh:maxCount - The maximum cardinality

MaxExclusive
Restricts each value node to be arithmetically strictly greater than
the given number.
sh:maxExclusive - The number

MaxInclusive
Restricts each value node to be arithmetically non-strictly greater
than the given number.
sh:maxInclusive - The number

MaxLength
Restricts the maximum string length of each value node to the given
length.
sh:maxLength - The maximum string length

MinCount
Restricts the minimum number of value nodes to the given number.
sh:minCount - The minimum cardinality

MinExclusive
Restricts each value node to be arithmetically strictly smaller than
the given number.
sh:minExclusive - The number

MinInclusive
Restricts each value node to be arithmetically non-strictly smaller
than the given number.
sh:minInclusive - The number

MinLength
Restricts the minimum string length of each value node to the given
length.
sh:minLength - The minimum string length

NodeKind
Restricts each value node to be of the given node kind.
sh:nodeKind - The node kind IRI
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Pattern
Restricts each value node to match the given regular expression.
sh:pattern - The regular expression string
sh:flags - Optional flags string

UniqueLang
Restricts each value node to have a unique language tag.
sh:uniqueLang - Boolean indicating whether to require unique lan-
guage tags

SPARQL
Restricts the solutions in the result of executing the given SELECT
query for each value node to have the variable failure bound to true.
sh:sparql - IRI or blank node with a single value for property sh:select

Referencing constraint components requiring conformance checking

And
Restricts each value node to conform to all given shapes.
sh:and - List of shapes

Node
Restricts each value node to conform to the given node shape.
sh:node - The node shape

Not
Restricts each value node to not conform to the given shape.
sh:not - The shape

Or
Restricts each value node to conform to at least one of the given
shapes.
sh:or - List of shapes

Xone
Restricts each value node to conform to exactly one of the given
shapes.
sh:xone - List of shapes

QualifiedMaxCount

Restricts the maximum number of value nodes that conform to the
given shape to the given number.
sh:qualifiedMaxCount - The maximum number
sh:qualifiedValueShape - The shape
sh:qualifiedValueShapesDisjoint - Optional boolean indicating
whether only value nodes that do not conform to sibling shapes1 are
counted

QualifiedMinCount

Restricts the minimum number of value nodes that conform to the
given shape to the given number.
sh:qualifiedMinCount - The minimum number
sh:qualifiedValueShape - The shape
sh:qualifiedValueShapesDisjoint - Optional boolean indicating
whether only value nodes that do not conform to sibling shapes2 are
counted

Referencing constraint components requiring validation

Property
Restricts each value node to have the given property shape.
sh:property - The property shape

1In the context of QualifiedMaxCountConstraintComponent and QualifiedMinCountConstraintComponent, the
set of sibling shapes is the set of all values of the SPARQL property path sh:property/sh:qualifiedValueShape
for any shape with the constraint-declaring shape as value of property sh:property, minus the value of property
sh:qualifiedValueShape for the constraint-declaring shape itself.

2See footnote 1
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4.3 Shape References

Shapes can reference other shapes such that a node is validated against that shape without being
targeted directly by that specific shape. A shape’s references are the values of shape-expecting non-
list-taking constraint parameters (i.e. sh:not, sh:property, sh:qualifiedValueShape, and sh:node) and
members of lists that are values of shape-expecting list-taking constraint parameters (i.e. sh:and,
sh:or, and sh:xone). These are parameters of the referencing constraint components. Recursion
refers to a reference cycle such that a shape references itself, directly or via other shapes.

If a shape s1 references a shape s2, then we write s1 −→ s2. If this reference is negated (i.e.

a value of constraint parameter sh:not), then we write s1
−−→ s2, else s1

+−→ s2. With s1 −→→ s2

we denote that s2 is referenced by s1, directly or via other shapes. Similarly for s1
−−→→ s2 and

s1
+−→→ s2, but then with only negated and non-negated references, respectively.

Definition 4.3.1. (References) The set of referenced node shapes R(G, s) of a shape s in shapes
graph G is the union of the values of shape-expecting non-list-taking constraint parameters and
members of lists that are values of shape-expecting list-taking constraint parameters. Let R(G, s)
be defined as:

R(G, s) ={s +−→ s′ | (s, p, l) ∈ G ∧ p ∈ {sh:and, sh:or, sh:xone} ∧ s′ ∈ l}

∪ {s +−→ s′ | (s, p, s′) ∈ G ∧ p ∈ {sh:qualifiedValueShape, sh:node, sh:property}}

∪ {s −−→ s′ | (s, sh:not, s′) ∈ G}

such that s′ ∈ l if and only if l is an RDF collection of which s′ is an element.

Example 22. The following shapes graph G expresses the requirements:

1. Every human must (line 4) have a father (line 10).

2. Every human must not (line 5) have been bitten by a vampire (lines 15 and 16).

3. A vampire has (line 20) been bitten by a vampire (lines 15 and 16) and has (line 21) a father
(line 10).

1 ex:HumanShape

2 a sh:NodeShape ;

3 sh:targetClass ex:Human ;

4 sh:property ex:FatherShape ;

5 sh:not ex:BittenShape .

6

7 ex:FatherShape

8 a sh:PropertyShape ;

9 sh:path ex:father ;

10 sh:minCount 1 .

11

12 ex:BittenShape

13 a sh:PropertyShape ;

14 sh:path ex:bitten ;

15 sh:qualifiedValueShape ex:VampireShape ;

16 sh:qualifiedMinCount 1 .

17

18 ex:VampireShape

19 a sh:NodeShape ;

20 sh:property ex:BittenShape ;

21 sh:property ex:FatherShape .
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The references of shapes in this shapes graph are:

R(G, ex:HumanShape) =

{
ex:HumanShape

+−→ ex:FatherShape,

ex:HumanShape
−−→ ex:BittenShape

}
R(G, ex:FatherShape) = ∅

R(G, ex:BittenShape) = {ex:BittenShape
+−→ ex:VampireShape}

R(G, ex:VampireShape) =

{
ex:VampireShape

+−→ ex:BittenShape,

ex:VampireShape
+−→ ex:FatherShape

}

4

Definition 4.3.2. (Dependency graph) The dependency graph PS of a set of shapes S is the
labeled graph whose nodes are the shapes in S with a directed edge for each shape reference
labeled with its parity. For each s1, s2 ∈ S:

• If s1
+−→ s2, then there is a directed edge from s1 to s2 with label + (called a positive edge).

• If s1
−−→ s2, then there is a directed edge from s1 to s2 with label − (called a negative edge).

The dependency graph can be constructed in O(|V |+ |E|) time.

Example 23. The dependency graph of the shapes in shapes graphG of Example 22 is the following:

ex:Human
Shape

ex:Father
Shape

+

ex:Bitten
Shape

ex:Vampire
Shape

-

+

+

+

4

Definition 4.3.3. (Positive contracted dependency graph) The positive contracted dependency
graph PSSC+

S of a set of shapes S is the dependency graph PS with each strongly connected
component consisting of only positives edges contracted into a single node.

Several algorithms (e.g., Kosaraju’s algorithm and Tarjan’s strongly connected components
algorithm) based on Depth First Search (DFS) compute strongly connected components in O(|V |+
|E|) time.
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Example 24. The subgraph of the dependency graph of Example 23 consisting of node ex:BittenShape
and ex:VampireShape (and the edges between those nodes) is the only non-trivial strongly con-
nected component consisting of only positive edges. We retract this subgraph into a single node.
The positive contracted dependency graph of the shapes in shapes graph G of Example 22 is the
following:

ex:Human
Shape

ex:Father
Shape

+

ex:Bitten
Shape

-

+

4

4.4 Abstract Syntax and Semantics

4.4.1 Introduction

The SHACL syntax and semantics have been informally defined in [23]. The specification consists
of SPARQL queries and textual definitions, even though SPARQL is not required for the imple-
mentation of SHACL Core. The semantics of validation with recursive shapes is left explicitly
undefined.

Corman, Reutter and Savković describe a formal semantics in [11] for the core constraint
components of SHACL including recursion. Validation of recursive shapes is based on assignments
where nodes are assigned positive or negated shape labels indicating whether nodes conforms to
those shapes or not.

They illustrate that when using non-stratified constraints, constraints with recursive references
in the scope of negation, a total assignment where every shape must be assigned positively or
negatively may render certain graphs invalid. This is the case for any set of shapes containing
a reference cycle, and such that an odd number of references in this cycle are in the scope of
a negation [11]. Therefore, they propose semantics based on partial assignments such that its
possible to neither assign a shape nor its negation. The proposed semantics support arbitrary
recursion and negation, can handle simultaneous validation of multiple targets, and is compliant
with the standard in the non-recursive case.

Definition 4.4.1. (Stratification) A set of shapes S is stratified if there is a total function α :
S −→ N such that:

i If s2
+−→ s1, then α(s1) ≤ α(s2).

ii If s2
−−→ s1, then α(s1) < α(s2).
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Example 25. The shapes in shapes graph G of Example 22 are stratified as the mapping:

α = {ex:BittenShape→ 0, ex:VampireShape→ 0, ex:FatherShape→ 0, ex:HumanShape→ 1}

satisfies condition (i) and (ii), i.e. is a solution to the system:

α(ex:FatherShape) ≤ α(ex:HumanShape)

α(ex:BittenShape) < α(ex:HumanShape)

α(ex:BittenShape) ≤ α(ex:VampireShape)

α(ex:VampireShape) ≤ α(ex:BittenShape)

α(ex:VampireShape) ≤ α(ex:FatherShape)

4

Lemma 1. Let S be a stratified set of shapes with mapping α and PS as its dependency graph. If
there exists a path from s1 to s2 in PS of only positive edges, then α(s2) ≤ α(s1); and if there is
a path from s1 to s2 in PS containing some negative edge, then α(s2) < α(s1).

Proof. If there exists a path from s1 to s2 in PS of only positive edges, then by Definition 4.3.2,

s1
+−→→ s2, then α(s2) ≤ α(s1) by Definition 4.4.1 and transitivity. Similarly for a path with a

negative edge.

The dependency graph can be used to determine if a set of shapes is stratified.

Proposition 4.4.1. A set of shapes S is stratified if and only if its dependency graph has no cycle
containing a negative edge.

Proof. Suppose the set of shapes S is stratified. In order to derive a contradiction, suppose its
dependency graph has a cycle s1, ..., sm, s1 with a negative edge from sm to s1. Then by Lemma 1,
α(s1) < α(s1). This is a contradiction, so a cycle containing a negative edge cannot exist if S
is stratified. Suppose the dependency graph has no cycle containing a negative edge. In order
to derive a contradiction, suppose the set of shapes S is not stratified. Then by Definition 4.4.1,

s1 −→→ sm
−−→ s1. Then by Definition 4.3.2, the dependency graph has a cycle s1, ..., sm, s1 with a

negative edge from sm to s1. This is a contradiction, so S must be stratified if the dependency
graph has no cycle containing a negative edge.

DFS can be used to detect a cycle in the dependency graph. Thus, determining if a set of
shapes S is stratified can be performed in O(|V |+ |E|) time.

4.4.2 Abstract Syntax

We work with a logical abstraction of SHACL Core as defined in [11]. It uses a fragment of
first-order logic to define constraints. This fragment is called L and is defined by the grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name; I is an IRI; r, r1, and r2 are property paths; and n ∈ N+. The fragment
abstracts away from constraints on IRIs and literals (e.g., regular expression, datatype, value
comparison).

Informally: > always validates; s validates if the shape s is assigned to the target node; φ1∧φ2
validates if both φ1 and φ2 validate; I validates if the target node’s IRI matches I; ¬φ validates
when φ does not; ≥n r.φ validates when more than n nodes, each reachable via r, validate φ;
EQ(r1, r2) validates when the set of subject-object pairs for property r1 and r2 are identical.

The abstract syntax does not capture the target of shapes, which instead, will be specified
orthogonally. We refer to [11] for the mapping between SHACL and the abstract syntax.
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Example 26. The shapes graph of Example 22 written in the abstract syntax is:

φHumanShape = ≥1 ex:father.> ∧ ¬(≥1 ex:bitten.VampireShape)

φVampireShape = ≥1 ex:father.>∧ ≥1 ex:bitten.VampireShape

We denote shapes with a name instead of an IRI or blank node, and φs is the constraint asso-
ciated with shape s. For each node shape, we introduced a constraint defined as the conjunction
of constraints declared by this shape, written in the abstract syntax. 4

4.4.3 Semantics

We borrow the notation introduced in [11]. The evaluation JφKv,G,σ of constraint formula φ at
node v in graph G given assignment σ is defined in Table 4.2. It uses a 3-valued logic in which 0
and 1 represent true and false, respectively, and 0.5 an unknown truth value.

If r is a property path and G a graph, then r(G) denotes the evaluation of r, which consists of
all pairs (v, v′) of nodes in G such that there is a path from v to v′ satisfying r, i.e. (v, r, v′) ∈ G.
We use |X| to denote the size of structure X.

Definition 4.4.2. [11](Assignment) Let N be the set of shape names. An assignment σ is a total
function mapping nodes to subsets of N ∪{¬s | s ∈ N} such that s and ¬s cannot be both in σ(v)
for any node v.

Table 4.2: Inductive evaluation of constraint formula φ at node v in graph G given assignment σ
[11]

J>Kv,G,σ = 1

J¬φKv,G,σ = 1− JφKv,G,σ

Jφ1 ∧ φ2Kv,G,σ = min{Jφ1Kv,G,σ, Jφ2Kv,G,σ}

Jr1 = r2Kv,G,σ =

{
1 if {v′ | (v, v′) ∈ r1(G)} = {v′ | (v, v′) ∈ r2(G)}
0 otherwise

JIKv,G,σ =

{
1 if v is the IRI I

0 otherwise

JsKv,G,σ =


1 if s ∈ σ(v)

0 if ¬s ∈ σ(v)

0.5 otherwise

J≥n r.φKv,G,σ =


1 if |{v′ | (v, v′) ∈ r(G) and JφKv

′,G,σ = 1}| ≥ n
0 if |{v′ | (v, v′) ∈ r(G)}|

−|{v′ | (v, v′) ∈ r(G) and JφKv
′,G,σ = 0}| < n

0.5 otherwise

Let
∑G,S

be the set of all assignments for graph G and set of shapes S. The ”immediate
evaluation” operator TTTG,S for G and S takes an assignment σ and returns the assignment TTTG,S(σ)
obtained by evaluating the constraint formula φs for each shape s ∈ S at each node of G. We
write TTT instead of TTTG,S when G and S are clear from the context.

Definition 4.4.3. [11](Immediate evaluation operator TTTG,S) The immediate evaluation operator

is a function TTTG,S :
∑G,S −→

∑G,S
defined by s ∈ TTTG,S(φ)(v) if and only if JφsKv,G,σ = 1, and

s /∈ TTTG,S(φ)(v) if and only if JφsKv,G,σ = 0.
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Let the preorder � over
∑G,S

be defined as follows: σ1 � σ2 if and only if σ1(v) ⊆ σ2(v)
for all v in G. It is defined based on set inclusion, and, therefore, is reflexive, transitive, and
antisymmetric. Then 〈

∑G,S
,�〉 is a meet-semilattice as every two elements have a greatest lower

bound, the intersection of the two assignments. The immediate evaluation operator is monotonic
with respect to � as it preserves set inclusion, i.e. if σ1 � σ2 then TTTG,S(σ1) � TTTG,S(σ2). Then

TTTG,S emits a (unique) least fixed point over
∑G,S

[11], which follows from a weaker version of the
Knaster-Tarski theorem [32].

4.4.4 Algorithm

Corman, Reutter and Savković propose a sound approximation algorithm in [11] to decide whether
a graph is valid against a set of shapes. The algorithm is parametized by an integer parameter
k which limits the Breadth First Search (BFS) depth. If k is bound, then the algorithm is not
complete but runs in time polynomial in the size of the graph. If k is unbound, then the algorithm
is complete but may run in time exponential in the size of the graph.

The algorithm consists of two steps, the first step consists of computing an assignment matching
all constraints enforced by the graph regardless of the target. This is done by computing the least
fixed point σminFix of the immediate evaluation operator TTTG,S . If the validity of some target node
v0 against shape s cannot be concluded, i.e. if s /∈ σminFix(v0) and ¬s /∈ σminFix(v0), then σminFix

is extended by assigning s to v0 and an attempt is made to propagate constraints from v0 to its
successors, in order for it to satisfy the constraint. In this second step, a constraint satisfying
assignment is searched by means of BFS and backtracking.

Example 27. Consider the stratified set of shapes and data graph in Figure 4.1. Suppose one tries
to validate v0 against s0, hereby requiring a constraint satisfying assignment such that shape s0
is assigned to v0. We apply step one of the algorithm in [11].

φs0 = ≥1 P.s1

φs1 = ≥1 Q.>
(4.1)

v0 v1 v2
P Q

Figure 4.1: A set of shapes and data graph conclusive by TTT

Initialize σ = ∅

Apply TTT
Evaluate φs0

J≥1 P.s1Kv0,G,σ = 0.5 as {v′ | (v0, v′) ∈ P (G)} = {v1} and ¬s1, s1 /∈ σ(v1)

J≥1 P.s1Kv1,G,σ = 0 as {v′ | (v1, v′) ∈ P (G)} = ∅
J≥1 P.s1Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ P (G)} = ∅

Evaluate φs1

J≥1 Q.>Kv0,G,σ = 0 as {v′ | (v0, v′) ∈ Q(G)} = ∅
J≥1 Q.>Kv1,G,σ = 1 as {v′ | (v1, v′) ∈ Q(G)} = {v2} and v2 validates >
J≥1 Q.>Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ Q(G)} = ∅

Set σ = {v0 −→ {¬s1}, v1 −→ {¬s0, s1}, v2 −→ {¬s0,¬s1}}

Apply TTT
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Evaluate φs0

J≥1 P.s1Kv0,G,σ = 1 as {v′ | (v0, v′) ∈ P (G)} = {v1} and s1 ∈ σ(v1)

J≥1 P.s1Kv1,G,σ = 0 as {v′ | (v1, v′) ∈ P (G)} = ∅
J≥1 P.s1Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ P (G)} = ∅

Evaluate φs1

J≥1 Q.>Kv0,G,σ = 0 as {v′ | (v0, v′) ∈ Q(G)} = ∅
J≥1 Q.>Kv1,G,σ = 1 as {v′ | (v1, v′) ∈ Q(G)} = {v2} and v2 validates >
J≥1 Q.>Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ Q(G)} = ∅

Set σ = {v0 −→ {s0,¬s1}, v1 −→ {¬s0, s1}, v2 −→ {¬s0,¬s1}}

Apply TTT
Evaluate φs0

J≥1 P.s1Kv0,G,σ = 1 as {v′ | (v0, v′) ∈ P (G)} = {v1} and s1 ∈ σ(v1)

J≥1 P.s1Kv1,G,σ = 0 as {v′ | (v1, v′) ∈ P (G)} = ∅
J≥1 P.s1Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ P (G)} = ∅

Evaluate φs1

J≥1 Q.>Kv0,G,σ = 0 as {v′ | (v0, v′) ∈ Q(G)} = ∅
J≥1 Q.>Kv1,G,σ = 1 as {v′ | (v1, v′) ∈ Q(G)} = {v2} and v2 validates >
J≥1 Q.>Kv2,G,σ = 0 as {v′ | (v2, v′) ∈ Q(G)} = ∅

Set σ = {v0 −→ {s0,¬s1}, v1 −→ {¬s0, s1}, v2 −→ {¬s0,¬s1}}

Fixed point reached and s0 ∈ σ(v0). 4
Example 28. Consider the stratified set of shapes and data graph in Figure 4.2. Suppose one tries
to validate v0 against s0, hereby requiring a constraint satisfying assignment such that shape s0
is assigned to v0. We apply step one of the algorithm in [11].

φs0 = ≥1 P.s0 (4.2)
v0 v1

P P

Figure 4.2: A set of shapes and data graph inconclusive by TTT

Initialize σ = ∅

Apply TTT
Evaluate φs0

J≥1 P.s0Kv0,G,σ = 0.5 as {v′ | (v0, v′) ∈ P (G)} = {v1} and ¬s0, s0 /∈ σ(v1)

J≥1 P.s0Kv1,G,σ = 0.5 as {v′ | (v1, v′) ∈ P (G)} = {v1} and ¬s0, s0 /∈ σ(v1)

Set σ = ∅

Apply TTT
Evaluate φs0

J≥1 P.s0Kv0,G,σ = 0.5 as {v′ | (v0, v′) ∈ P (G)} = {v1} and ¬s0, s0 /∈ σ(v1)

J≥1 P.s0Kv1,G,σ = 0.5 as {v′ | (v1, v′) ∈ P (G)} = {v1} and ¬s0, s0 /∈ σ(v1)

Set σ = ∅

Fixed point reached and inconclusive. The algorithm would now continue with step two. 4
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4.4.5 Complexity

Corman, Reutter and Savković study the computational complexity in [11] of the validation prob-
lem for various fragments of SHACL Core. They also study the complexity for a fixed set of shapes
and a fixed graph separately, called the data complexity and constraint complexity, respectively.

They show that validation of the fragment L (SHACL Core) is NP-complete in combined
complexity and that this bound is tight for data and graph complexity, even when using stratified
negation and just basic operators (≥1,¬,∧). It is the fragment of L without property path,
counting, and path equality. This fragment is called stratified L≥1,¬,∧ and is defined by the
grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥1 p.φ

where p is an IRI.

Example 29. Consider the stratified set of shapes, its dependency graph, and the data graph in
Figure 4.3. Suppose one tries to validate v0 against s0, hereby requiring a constraint satisfying
assignment such that shape s0 is assigned to v0.

φs0 = ≥1 P.s1∧ ≥1 P.s2

φs1 = ¬ ≥1 P.s2

φs2 = ≥1 P.s2 s0

s1

s2

+
−

+ +
v0

v1

v2

P

P

P P

Figure 4.3: A stratified set of shapes, its dependency graph, and a data graph

Note that the set of shapes is stratified, and suppose it has the following mapping: α = {s2 −→
0, s0 −→ 1, s1 −→ 1}. Now S can be partitioned into the following distinct but semantically equival-
ent stratifications (ordered sequence of strata): 〈{s2}, {s0, s1}〉, 〈{s2}, {s0}, {s1}〉, 〈{s2}, {s1}, {s0}〉.
Starting at the lowest strata ensures that negated shapes are processed before the shapes that ref-
erence them.

Utilizing this, we start with the stratum {s2}. We evaluate φs2 at each node, requiring a node
to reach a node satisfying s2 over P . Shape s2 can clearly be assigned to v1 and v2 due to self
loops and then to v0. Now we reach the stratum {s0, s1}. We evaluate φs0 at each node, requiring
a node to reach a node satisfying s1 and a node to reach a node satisfying s2 over P . Shape s1
requires a node to not reach a node satisfying s2 over P . It is clear that s1 cannot be assigned to
any node as v1 and v2 assign s2. Now one needs to backtrack and undo the assignment of s2 to v1
or v2. This backtracking behavior is in the worst case exponential in the size of the graph. Hence
the intractability. 4

4.4.6 Towards Tractability

State of the Art

Corman, Reutter and Savković show in [11] that allowing disjunction as a native operator, i.e.
writing φ1 ∨φ2 instead of ¬(¬φ1 ∧¬φ2), and disallowing negation is sufficient to gain tractability.
This fragment is called L≥n,∧,∨,r,EQ and is defined by the grammar:

φ ::= > | s | I | φ1 ∧ φ2 | φ1 ∨ φ2 | ≥n r.φ | EQ(r1, r2)

They also show that validation of the sub-fragment L≥n,∧,∨ of L≥n,∧,∨,r,EQ without property
path and path equality is P-hard in combined complexity. Therefore, validation of L≥n,∧,∨,r,EQ is
P-complete in combined complexity [11].

An alternative approach to gain tractability, while supporting all SHACL Core operators, is to
strengthen the stratification condition, called strict stratification [10]. Let this fragment be called
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strictly stratified L. Its validation is P-complete in data complexity [13] and in P in combined
complexity [10], and, therefore, P-complete in combined complexity.

Definition 4.4.4. [10](Strict stratification) A set of shapes S is strictly stratified if, for any pair
(s1, s2) of nodes in its positive contracted dependency graph, either:

i there is at most one path from s1 to s2, or

ii all paths from s1 to s2 are positive.

Remark. If there exists a negative path from s1 to s2, then this is the only path from s1 to s2.

Example 30. The shapes in shapes graph G of Example 22 are not strictly stratified as its pos-
itive contracted dependency graph (see Example 24) has two paths from ex:HumanShape to
ex:FatherShape of which one path is negative. 4

Proposition 4.4.2. A strictly stratified set of shapes S is stratified.

Proof. Suppose we have a strictly stratified set of shapes S. By Definition 4.3.3, no negative cycle
exists in the positive contracted dependency graph. In order to derive a contradiction, suppose S
is not stratified. Then by Proposition 4.4.1, the dependency graph contains a cycle containing a
negative edge. By Definition 4.3.3, this negative cycle exists in the positive contracted dependency
graph as only strongly connected components consisting of only positives edges are contracted.
This is a contradiction, so S must be stratified if it is strictly stratified.

Intractability does not hold for strictly stratified shapes, which intuitively guarantees that no
backtracking is needed. In that case, step two of the algorithm in [11] is not needed and the validity
can be determined in polynomial time in |G| + |S|. We consider a shape s with a single target
node v0. If s ∈ σminFix(v0), then the graph is valid as we found a minimal fixed-point assignment
assigning s to v0. If ¬s ∈ σminFix(v0), then the graph is invalid as we found a minimal fixed-point
assignment assigning ¬s to v0. Due to monotonicity of TTT, every other fixed point must extend it,
hence no fixed-point assignment for TTT exists assigning s to v0. Else, i.e. ¬s, s /∈ σminFix(v0), then
a constraint satisfying assignment σ′ must exist, meaning that s ∈ σ′(v) implies JsKv,G,σ

′
= 1 and

¬s ∈ σ′(v) implies JsKv,G,σ
′

= 0, such that s ∈ σ′(v0), hence the graph is valid.

A New Tractable Fragment

Allowing disjunction and universal quantification as a native operator, i.e. writing φ1 ∨ φ2 and
∀r.φ instead of ¬(¬φ1 ∧ ¬φ2) and ¬(≥1 r.¬φ), respectively, results in a more expressive fragment
by allowing universal quantification and disjunction to be expressed without the use of negation.
This implies that their use is not constrained by the strict stratification restrictions. We call this
new fragment strictly stratified L+ and it is defined by the grammar:

φ ::= > | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2) | φ1 ∨ φ2 | ∀r.φ

The mapping from this grammar to SHACL is an extension on the mapping from L to SHACL
[11] in which:

• φs = ∀r.φ maps to a node shape s which declares a constraint of kind PropertyConstraint-
Component with as value (for mandatory property sh:property) a property shape that has
SPARQL property path r mapped to a SHACL property path r′ as value for sh:path,
and a constraint of kind NodeConstraintComponent with as value (for mandatory property
sh:node) constraint φ mapped to node shape s′:

1 s

2 a sh:NodeShape ;

3 sh:property [

4 sh:path r′ ;

5 sh:node s′

6 ] .
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• φs = φ1 ∨φ2 maps to a node shape s which declares a constraint of kind OrConstraintCom-
ponent with as value (for mandatory property sh:or) a list with the constraint φ1 and φ2
mapped to node shape s′1 and s′2, respectively, as its members:

1 s

2 a sh:NodeShape ;

3 sh:or ( s′1 s′2 ) .

We show that the fragments L≥n,∧,∨,r,EQ and strictly stratified L are included in strictly
stratified L+.

Theorem 1. Every set of shapes defined in L≥n,∧,∨,r,EQ and strictly stratified L can be defined
in strictly stratified L+.

Proof. All operators of L≥n,∧,∨,r,EQ and strictly stratified L are natively supported in strictly
stratified L+. So any set of shapes defined in these fragments can be defined in the grammar of
strictly stratified L+. It remains to show that the set of shapes is strictly stratified.

By definition, any set of shapes defined in strictly stratified L must be strictly stratified.
The fragment L≥n,∧,∨,r,EQ has no negation operator, so every path in the positive contracted
dependency graph for a set of shapes defined in this fragment must be positive. So any set of
shapes defined in L≥n,∧,∨,r,EQ must also be strictly stratified.

The validation of strictly stratified L+ remains in P in combined complexity and is P-hard
due to inclusion of L≥n,∧,∨ (used for showing P-hardness in [11]), and, therefore, is P-complete
in combined complexity.

Theorem 2. If ¬s /∈ σminFix(v0) for a set of shapes defined in strictly stratified L+, then an
assignment σ exists such that (a) s ∈ σ(v0) and (b) σ � TTT(σ).

Proof. 1 We abuse notation by writing s(v) ∈ σ instead of s ∈ σ(v) (similarly for ¬s). The premise
results in two cases, either s(v0) ∈ σminFix, and then σminFix trivially satisfies condition (a) and
(b), or {¬s(v0), s(v0)}∩σminFix = ∅, for which we prove the existence of σ satisfying condition (a)
and (b).

Let S be the set of shapes defined in strictly stratified L+ that is normalized, i.e. constraint
definitions without nested expressions. A normalized set of shapes can be obtained by introducing
a fresh shape for each subexpression. This transformation can be performed in polynomial time
and results in an equivalent set of shapes whose constraints contain at most one operator [11].

Let PS be the dependency graph of S, then S can be partitioned in a stratification 〈S1, ..., Sn〉
such that:

i If s1, s2 ∈ Si, then there is no negative path in PS between s1 and s2.

ii If s1 ∈ Si and s2 ∈ Si+1, then there is at most one negative path in PS from s2 to s1 and no
other path between s1 and s2.

iii Else, i.e. s1 ∈ Si and s2 ∈ Sj with i 6= j, i 6= j + 1, and j 6= i+ 1, there exists no path in PS
between s1 and s2.

Let A1, ..., An be the corresponding set of atoms of the form s(v) where s(v) ∈ Ai if and only
if: s ∈ Si, v ∈ G, and s(v) has no value assigned, i.e. {¬s(v), s(v)} ∩ σminFix = ∅.

For each 1 ≤ i ≤ n we show there must exist two assignments σ+
i and σ−i such that:

i σ+
i and σ−i satisfy condition (b).

ii for each s(v) ∈ Ai, s(v) ∈ σ+
i .

iii for each s(v) ∈ Ai, ¬s(v) ∈ σ−i .

1I would like to thank Julien Corman for his help with this proof
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In particular, let 1 ≤ k ≤ n be the index of the stratum Sk containing the target, i.e. s0(v0) ∈
Ak. Then assignment σ+

k satisfies condition (b) by (i) and condition (a) by (ii) since s0(v0) ∈ Ak
and thus s0(v0) ∈ σ+

k .
We define σ+

i and σ−i inductively as follows:

σ+
1 = σminFix ∪A1

σ+
i = σ−i−1 ∪Ai

σ−1 = σminFix ∪ {¬s(v) | s(v) ∈ A1}
σ−i = σ+

i−1 ∪ {¬s(v) | s(v) ∈ Ai}

By construction (ii) and (iii) are satisfied, it remains to show that (i) is satisfied, i.e. that the
two assignments satisfy condition (b). We apply proof by induction on i for σ+

i while leaving out
the identical proof for σ−i .

• Base case i = 1: σ+
1 ⊆ TTT(σ+

1 )

We have:

i σminFix ⊆ TTT(σminFix) because σminFix is a fixed-point of TTT.

ii σminFix ⊆ σ+
1 from the definition.

iii TTT(σminFix) ⊆ TTT(σ+
1 ) from (ii) and the monotonicity of TTT.

iv σminFix ⊆ TTT(σ+
1 ) from (i) and (iii).

By the definitions, for any s(v) or ¬s(v) ∈ σ+
1 , either:

1 s(v) ∈ σminFix: by (iv), s(v) ∈ TTT(σ+
1 ).

2 ¬s(v) ∈ σminFix: by (iv), ¬s(v) ∈ TTT(σ+
1 ).

3 s(v) ∈ A1: we show that s(v) ∈ TTT(σ+
1 ), i.e. JφsKv,G,σ

+
1 = 1, where φs is the constraint

associated with s.

We consider all possible syntactic forms of φs:

– φs = >.
For any assignment σ, J>Kv,G,σ = 1 must hold.

In particular, J>Kv,G,σ
+
1 = 1 must hold.

Therefore JφsKv,G,σ
+
1 = 1.

– φs = s′.
From the definition of A1, {s(v),¬s(v)} ∩ σminFix = ∅.
So JsKv,G,σminFix = 0.5.
Then because σminFix is a fixed-point of TTT, σminFix = TTT(σminFix) must hold.
So from the definition of TTT, JφsKv,G,σminFix = JsKv,G,σminFix .
Therefore JφsKv,G,σminFix = 0.5 must hold.
Then because φs = s′, Js′Kv,G,σminFix = 0.5 must hold.
So:

{¬s′(v), s′(v)} ∩ σminFix = ∅ (4.3)

In addition, because S is stratified and s ∈ S1, s′ ∈ S1 must hold.
So from 4.3:

s′(v) ∈ A1 (4.4)

So from 4.3, 4.4, and the definition of σ+
1 , s′(v) ∈ σ+

1 .

Therefore Js′Kv,G,σ
+
1 = 1.

So JφsKv,G,σ
+
1 = Js′Kv,G,σ

+
1 = 1.
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– φs = s1 ∧ s2.
Similarly to the proof for φs = s′, Js1 ∧ s2Kv,G,σminFix = 0.5 must hold.
Then either:

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = ∅ (4.5)

In addition, because S is stratified and s ∈ S1, s1, s2 ∈ S1 must hold.
So from 4.5:

s1(v) ∈ A1 and s2(v) ∈ A1 (4.6)

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = {s1(v)}

Similarly to the first case:

s1(v) ∈ σminFix and s2(v) ∈ A1 (4.7)

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = {s2(v)}

Similarly to the first case:

s1(v) ∈ A1 and s2(v) ∈ σminFix (4.8)

So for any case, from 4.6, 4.7, or 4.8, and the definition of σ+
1 , s1(v), s2(v) ∈ σ+

1 .

Therefore Js1Kv,G,σ
+
1 = Js2Kv,G,σ

+
1 = 1.

So JφsKv,G,σ
+
1 = Js1 ∧ s2Kv,G,σ

+
1 = 1.

– φs = s1 ∨ s2.
Similarly to the proof for φs = s′, Js1 ∨ s2Kv,G,σminFix = J¬(¬s1 ∧¬s2)Kv,G,σminFix =
0.5 must hold.
Then either:

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = ∅ (4.9)

In addition, because S is stratified and s ∈ S1, s1, s2 ∈ S1 must hold.
So from 4.9:

s1(v) ∈ A1 and s2(v) ∈ A1 (4.10)

So from 4.9, 4.10, and the definition of σ+
1 , s1(v), s2(v) ∈ σ+

1 .

Therefore Js1Kv,G,σ
+
1 = Js2Kv,G,σ

+
1 = 1.

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = {¬s1(v)} (4.11)

Similarly to the first case:

¬s1(v) ∈ σminFix and s2(v) ∈ A1 (4.12)

So from 4.11, 4.12, and the definition of σ+
1 , ¬s1(v), s2(v) ∈ σ+

1 .

Therefore Js1Kv,G,σ
+
1 = 0 and Js2Kv,G,σ

+
1 = 1.

∗
{¬s1(v), s1(v),¬s2(v), s2(v)} ∩ σminFix = {¬s2(v)}

This proof is almost identical to the previous case.

So for any case, JφsKv,G,σ
+
1 = Js1 ∨ s2Kv,G,σ

+
1 = J¬(¬s1 ∧ ¬s2)Kv,G,σ

+
1 = 1.
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– φs = ≥n r.s′.
Similarly to the proof for φs = s′, J≥n r.s′Kv,G,σminFix = 0.5 must hold.
So there must be {v1, .., vn} such that:

(v, r, vj) ∈ G for each j ∈ {1..n} (4.13)

¬s′(vj) /∈ σminFix for each j ∈ {1..n} (4.14)

s′(vj) /∈ σminFix for some j ∈ {1..n}

Then either, for each j ∈ {1..n}:
∗

{¬s′(vj), s′(vj)} ∩ σminFix = ∅ (4.15)

In addition, because S is stratified and s ∈ S1, s′ ∈ S1 must hold.
So from 4.15:

s′(vj) ∈ A1 (4.16)

∗
{¬s′(vj), s′(vj)} ∩ σminFix = {s′(vj)} (4.17)

So from 4.17:
s′(vj) ∈ σminFix (4.18)

So for any case, from 4.16 or 4.18, and the definition of σ+
1 , for each j ∈ {1..n}:

s′(vj) ∈ σ+
1 (4.19)

Therefore from 4.13 and 4.19, J≥n r.s′Kv,G,σ
+
1 = 1.

So JφsKv,G,σ
+
1 = J≥n r.s′Kv,G,σ

+
1 = 1.

– φs = ∀r.s′.
Similarly to the proof for φs = s′, J∀r.s′Kv,G,σminFix = J¬(≥1 r.¬s′)Kv,G,σminFix = 0.5
must hold.
So there must be {v1, .., vn} for n = |{v′ | (v, v′) ∈ r(G)}| such that:

(v, r, vj) ∈ G for all j ∈ {1..n} (4.20)

¬s′(vj) /∈ σminFix for all j ∈ {1..n} (4.21)

s′(vj) /∈ σminFix for some j ∈ {1..n}

Similarly to the proof for φs = ≥n r.s′, for each j ∈ {1..n}:

s′(vj) ∈ σ+
1 (4.22)

Therefore from 4.20 and 4.22, J≥1 r.¬s′Kv,G,σ
+
1 = 0.

So JφsKv,G,σ
+
1 = J∀r.s′Kv,G,σ

+
1 = J¬(≥1 r.¬s′)Kv,G,σ

+
1 = 1.

The operator ¬ cannot occur because S is stratified and i = 1. The other operators
cannot occur as they are independent of σ, therefore JsKv,G,σminFix 6= 0.5, so s(v) /∈ A1.

• Inductive case i > 1: σ+
i ⊆ TTT(σ+

i )

We have:

i σ−i−1 ⊆ TTT(σ−i−1) by the induction hypothesis.

ii σ−i−1 ⊆ σ
+
i from the definition.

iii TTT(σ−i−1) ⊆ TTT(σ+
i ) from (ii) and the monotonicity of TTT.

iv σ−i−1 ⊆ TTT(σ+
i ) from (i) and (iii).

By the definitions, for any s(v) or ¬s(v) ∈ σ+
i , either:
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1 s(v) ∈ σ−i−1: by (iv), s(v) ∈ TTT(σ+
i ).

2 ¬s(v) ∈ σ−i−1: by (iv), ¬s(v) ∈ TTT(σ+
i ).

3 s(v) ∈ Ai: we show that s(v) ∈ TTT(σ+
i ), i.e. JφsKv,G,σ

+
i = 1, where φs is the constraint

associated with s.

We consider all possible syntactic forms of φs:

– φs = >.
This proof is identical to the base case proof.

– φs = ¬s′.
Similarly to the base case proof for φs = s′, J¬s′Kv,G,σminFix = 0.5 must hold.
So:

{s′(v),¬s′(v)} ∩ σminFix = ∅ (4.23)

In addition, because S is stratified and s ∈ Si, s′ ∈ Si−1 must hold.
So from 4.23:

s′(v) ∈ Ai−1 (4.24)

So from 4.23, 4.24, and the definition of σ−i−1:

¬s′(v) ∈ σ−i−1 (4.25)

So from 4.23, 4.25 and the definition of σ+
i , ¬s′(v) ∈ σ+

i .

Therefore Js′Kv,G,σ
+
i = 0.

So JφsKv,G,σ
+
i = J¬s′Kv,G,σ

+
i = 1.

– φs = s′.
Similarly to the base case proof, Js′Kv,G,σminFix = 0.5 must hold.
So:

{¬s′(v), s′(v)} ∩ σminFix = ∅ (4.26)

In addition, because S is stratified and s ∈ Si, s′ ∈ Si must hold.
So from 4.26:

s′(v) ∈ Ai (4.27)

So from 4.26, 4.27, and the definition of σ+
i , s′(v) ∈ σ+

i .

Therefore Js′Kv,G,σ
+
i = 1.

So JφsKv,G,σ
+
i = Js′Kv,G,σ

+
i = 1.

– φs = s1 ∧ s2.
This proof is almost identical to the base case proof.

– φs = s1 ∨ s2.
This proof is almost identical to the base case proof.

– φs = ≥n r.s′.
This proof is almost identical to the base case proof.

– φs = ∀r.s′.
This proof is almost identical to the base case proof.

The other operators cannot occur as they are independent of σ, therefore JsKv,G,σminFix 6=
0.5, so s(v) /∈ Ai. Proofs that are almost identical to the base case proof use Ai instead
of A1 and σ+

i instead of σ+
1 .
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Example 31. We continue with Example 29 and provide an example to Theorem 2. Firstly, we
show that the stratified set of shapes is not strictly stratified, secondly, we make the set of shapes
strictly stratified, thirdly, we argue that executing the fixed-point algorithm on the given data
graph remains inconclusive, and lastly, we show the existence of a constraint satisfying assignment
that successfully assigns the shape. Hereby concluding the graph’s validity with respect to the
strictly stratified set of shapes.

φs0 = ≥1 P.s1∧ ≥1 P.s2

φs1 = ¬ ≥1 P.s2

φs2 = ≥1 P.s2 s0

s1

s2

+
−

+

Figure 4.4: A stratified set of shapes and its positive contracted dependency graph

The strict stratification conditions do not hold as there exist two paths from node s0 to s2 of
which one is negative (see Figure 4.4). We make the set of shapes strictly stratified by removing
the direct dependency of s0 on s2 (see Figure 4.5). Note that the stratified and strictly stratified
set of shapes are not equivalent.

φs0 = ≥1 P.s1

φs1 = ¬ ≥1 P.s2

φs2 = ≥1 P.s2 s0

s1

s2

+
−

+
v0

v1

v2

P

P

P P

Figure 4.5: A strictly stratified set of shapes, its dependency graph, and a data graph

All constraints depend on shape s2, therefore, by the semantics of J≥n r.φKv,G,σ, no true value
can be assigned unless s2 is assigned. A false value won’t be assigned either as each node has
at least one path with label P . So the unknown value will be assigned, hence the fixed-point
algorithm remains inconclusive (see Example 28 for a detailed example).

By Theorem 2, we conclude that the data graph is valid with respect to the strictly stratified
set of shapes. We now show the existence of a constraint satisfying assignment assigning s0 to
target node v0.

We partition S according to the strict stratification conditions into the following stratification:
〈{s2}, {s0, s1}〉. Now (i) is satisfied as no negative paths exist between the nodes of each stratum;
(ii) is satisfied as (at most) one negative path exists from node s0 to s2 and s1 to s2, and no other
paths between each node pair; and lastly, (iii) is trivially satisfied.

We calculate σ+
2 because s0 ∈ S2, using the definitions in the proof for Theorem 2:

σ−1 =∅ ∪ {¬s2(v0),¬s2(v1),¬s2(v2)}
σ+
2 ={¬s2(v0),¬s2(v1),¬s2(v2)}
∪ {s0(v0), s0(v1), s0(v2), s1(v0), s1(v1), s1(v2)}

The assignment σ+
2 successfully assigns s0 to v0. It remains to show that σ+

2 � TTT(σ+
2 ):
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Apply TTT
Evaluate φs0

J≥1 P.s1Kv0,G,σ
+
2 = 1 as {v′ | (v0, v′) ∈ P (G)} = {v1, v2} and s1(v1) ∈ σ+

2

J≥1 P.s1Kv1,G,σ
+
2 = 1 as {v′ | (v1, v′) ∈ P (G)} = {v1} and s1(v1) ∈ σ+

2

J≥1 P.s1Kv2,G,σ
+
2 = 1 as {v′ | (v2, v′) ∈ P (G)} = {v2} and s1(v2) ∈ σ+

2

(4.28)

Evaluate φs1

J¬ ≥1 P.s2Kv0,G,σ
+
2 = 1 as {v′ | (v0, v′) ∈ P (G)} = {v1, v2} and ¬s2(v1) ∈ σ+

2

J¬ ≥1 P.s2Kv1,G,σ
+
2 = 1 as {v′ | (v1, v′) ∈ P (G)} = {v1} and ¬s2(v1) ∈ σ+

2

J¬ ≥1 P.s2Kv2,G,σ
+
2 = 1 as {v′ | (v2, v′) ∈ P (G)} = {v2} and ¬s2(v2) ∈ σ+

2

(4.29)

Evaluate φs2

J≥1 P.s2Kv0,G,σ
+
2 = 0 as {v′ | (v0, v′) ∈ P (G)} = {v1, v2} and ¬s2(v1) ∈ σ+

2

J≥1 P.s2Kv1,G,σ
+
2 = 0 as {v′ | (v1, v′) ∈ P (G)} = {v1} and ¬s2(v1) ∈ σ+

2

J≥1 P.s2Kv2,G,σ
+
2 = 0 as {v′ | (v2, v′) ∈ P (G)} = {v2} and ¬s2(v2) ∈ σ+

2

(4.30)

So TTT(σ+
2 ) = {s0(v0), s0(v1), s0(v2), s1(v0), s1(v1), s1(v2),¬s2(v0),¬s2(v1),¬s2(v2)}.

Thus, σ+
2 = TTT(σ+

2 ). 4

4.5 Conclusions

Shapes are RDF resources that declare constraints using the parameters of constraint components.
Shapes can reference other shapes by means of referencing constraints which validate nodes against
other shapes without being targeted directly by them. The dependency graph is the labeled graph
with a directed edge for each shape reference labeled with its parity. Stratification and strict
stratification impose restrictions on the cycles and parities of edges in the dependency graph. A
shape is recursive if the dependency graph contains a cycle of which this shape is part of.

The validation of recursive SHACL is based on a minimal fixed-point assignment. The as-
signment is partial such that it is possible to neither assign a shape nor its negation to a node.
Validation of L (SHACL Core) is intractable, even when using the severely limited fragment strat-
ified L≥1,¬,∧ with stratified negation and just basic operators. Table 4.3 summarizes all identified
recursive SHACL fragments.

Table 4.3: Combined complexity of validation and supported operators of identified recursive
SHACL fragments

The operators >, s, I are supported by any fragment. The columns r and p denote support for
property and predicate path, respectively. -c stands for complete.

Fragment Complexity ≥n ≥1 ¬ ∧ ∨ r p EQ ∀
L (SHACL Core) NP-c X X X X X X X
stratified L≥1,¬,∧ NP-c X X X X
L≥n,∧,∨,r,EQ P-c X X X X X X X
strictly stratified L P-c X X X X X X X
strictly stratified L+ P-c X X X X X X X X X
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So far three tractable recursive SHACL fragments have been identified: L≥n,∧,∨,r,EQ which has
an additional native operator for disjunction but disallows negation, introduced in [11]; strictly
stratified L with strictly stratified negation, introduced in [10]; and strictly stratified L+ with
strictly stratified negation and additional native operators for universal quantification and dis-
junction, introduced in this thesis.

Our new fragment strictly stratified L+ includes L≥n,∧,∨,r,EQ and strictly stratified L, and
allows for additional constraints to be expressed using native operators to express universal quan-
tification and disjunction without the use of negation. This implies that use of such constraints is
not constrained by the strict stratification restrictions.

Validation of these fragments is tractable as a polynomial procedure exists deciding whether
an assignment σ verifying s ∈ σ(v0) and σ � TTT(σ) exists, e.g. computing the least fixed point
σminFix of the immediate evaluation operator TTT. Then, a target node v0 is valid with respect to a
shape s if and only if ¬s /∈ σ(v0). We formally proved this property for our new fragment strictly
stratified L+, hereby proving that validation of all tractable recursive fragments identified so far
is in P in combined complexity.
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Chapter 5

SPARQL-based Validation vs.
Native Implementation

5.1 Introduction

The previous chapter discusses the theoretical aspects to validating SHACL and how validation
is based on the validity of nodes against shapes. Shapes declare constraints and a node is valid
against a shape if it is valid against the constraints declared by this shape. This chapter takes a
practical view towards validating non-referencing constraints, i.e. the constraints whose validation
does not depend on other shapes, and focuses on the differences between SPARQL-based validation
and a native implementation for validating these constraints.

The DASH Data Shapes Vocabulary (DASH)[21] is a collection of reusable extensions to
SHACL. It adds additional SHACL constraint and target types, components for representing
test cases, suggestions to fix constraint violations, and an extended validation results vocabulary.
DASH serves as a reference implementation of SHACL by providing default validators in SPARQL
and JavaScript code.

We focus on the SHACL constraint components that have a SPARQL-based constraint val-
idator defined in the DASH namespace. These are all non-referencing constraint components.
In order to understand SPARQL-based evaluation, we investigate the SPARQL queries used to
validate these constraints by diving into query plans generated by Amazon Neptune1 for sample
instances. We would like to clarify that the goal is purely to understand and assess SPARQL-based
validation and not the engine itself. The generated query plans may differ among data sets and
engine versions.

Based on the intended semantics and query plans we come up with a potential native imple-
mentation using a repository API in pseudo code. The repository API follows an iterator pattern
and offers a developer-friendly access point to RDF repositories with methods to create and read
RDF graphs. Various repository implementations may exist, for example database-specific imple-
mentations, or more generically, HTTP-based proxys or just simple SPARQL endpoints.

In order to compare the characteristics of SPARQL-based query plans and a native imple-
mentation over such a repository API, we assess validation performance by reasoning about the
number of index lookups and scanned triples. We only use trivial property paths, i.e. predicate
paths, and assume an indexing strategy that stores all six permutations of subject (S), predicate
(P), and object (O).

We use a basic repository API that is similar to the interfaces commonly exposed by triplestores.
We assume a function getStatements that receives three ordered arguments, subject, predicate, and
object, for which the value null denotes a wildcard. The function returns an iterator over matching
triples using one of the indices that starts with the parameters that do not have a wildcard as
argument, e.g. if only subject receives a wildcard, then POS or OPS, if only predicate receives a

1https://aws.amazon.com/neptune/
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wildcard, then SOP or OSP, or if both subject and object receives a wildcard, then POS or PSO.
The iterator has a function hasNext which determines if there is a next triple and a function next
which returns a structure with the properties subject, predicate, and object containing the next
triple. We assume a function registerViolationIf that receives a predicate in first-order logic, and
registers a violation if the predicate evaluates to true. We abstract away from any details, e.g.
the violating node or cause of violation. Given the assumption that all six index permutations are
available, this API provides us with an unbiased, perfect lookup for all triple patterns [36].

5.2 Query Plan Operators

A query plan in Amazon Neptune is a pipeline of operators. The first operator always is the
SolutionInjection which injects static solutions. Each subsequent operator receives a set of incom-
ing solutions and produces a new set of solutions that acts as input for the next operator in the
pipeline. A solution can be understood as a relational table, whose column names are the variables
introduced by preceding operators and whose values are possible assignments to these variables.
The last operator, typically a TermResolution preceded by a Projection, defines the result of the
query. We briefly explain some basic operators2 in the Amazon Neptune query plans.

SolutionInjection Derives and injects static solutions from the query by combining various
sources of static bindings (e.g., VALUES and BIND functions). If no solution can be derived, the
universal solution is injected. All query plans start with this operator.

Distinct Computes the distinct projection on a subset of the variables specified by the vars
argument, eliminating duplicates.

Filter Filters incoming solutions based on the filter condition defined by the condition argument.

Projection Projects over a subset of the variables specified by the vars argument. The operator
has two modes that either retain or drop the specified variables.

PipelineJoin Joins each incoming solution against the tuple pattern defined by the pattern
argument. The joinProjectionVars argument specifies the set of distinct projection variables when
distinct is used. The joinType argument specifies one of the following join types to be performed:
join, requires a join partner; optional, does not require a join partner; minus, requires that no join
partner exists; and existence check, determines whether a join partner exists and binds the result
to the existenceCheckResultVar variable.

HashIndexBuild Builds a hash index on the incoming solutions with as key the bindings for
the variables specified by the joinVars argument and as value a list of the remaining bindings for
each solution mapping to this key. When the joinVars argument is empty, all incoming solutions
are mapped to the empty key. Outputs a distinct projection over the variables specified by the
joinVars argument, i.e. the hash index keys. Subsequent operators can use this hash index solution
set, i.e. its incoming solutions, referring it by its name specified by the solutionSet argument.

HashIndexJoin Joins the hash index solution set, referred to by the solutionSet argument,
against the incoming solutions. The joinType and existenceCheckResultVar arguments have the
same meaning as in the PipelineJoin operator.

TermResolution Translates between internal ID values and RDF terms of variables specified
by the vars argument. The operator has two modes, value2id and id2value, that specify the
mapping direction. Query plans typically end with this operator in id2value mode.

2https://docs.aws.amazon.com/neptune/latest/userguide/sparql-explain-operators.html
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5.3 Constraint Components

EqualsConstraintComponent We start out with an example showing the query defined in
the DASH namespace for validating constraints of kind EqualsConstraintComponent. We inject
the static bindings used for generating its query plan.

1 SELECT DISTINCT ?this ?value

2 WHERE {

3 {

4 ?this ?PATH ?value .

5 MINUS {

6 ?this ?equals ?value .

7 }

8 }

9 UNION

10 {

11 ?this ?equals ?value .

12 MINUS {

13 ?this ?PATH ?value .

14 }

15 }

16 VALUES (?this ?PATH ?equals) {

17 (ex:v0 ex:P ex:Q)

18 }

19 }

The variables this, PATH, and equals are bound to the focus node, path property, and equals
property, respectively. The goal is to extract subjects reachable from the focus node with either
the value of the path or equals property as predicate, but not by both. This translates into to the
union of terms reachable via the path but not equals property and terms reachable via the equals
but not path property.

This is clearly visible in the query plan (Figure 5.1). The union on line 9 results in two similar
branches where we focus on the left branch corresponding to line 3 to 8. The first PipelineJoin
operator joins the initial solution against the pattern on line 4. This corresponds to extract-
ing the subjects reachable via the path property. The MINUS function on line 5 results in a
HashIndexBuild operator which builds a hash index on the variables shared between the incoming
solutions and the pattern on line 6. The second PipelineJoin operator joins the hash index keys
against the pattern defined on line 6. This corresponds to extracting the subjects reachable via the
equals property that are also reachable via path property. Finally, the HashIndexJoin operator
joins the hash index solution set against the incoming solutions, only outputting a hash index
solution if no join partner exists. This corresponds to taking all subjects reachable via the path
property, and subtracting a subset that is reachable via the equals (and path) property.

Having discussed the SPARQL-based query plan, we now turn towards a proposal for a native
implementation:

1 result = getStatements($this, $PATH, null)

2

3 foreach (statement in result)

4 subResult = getStatements($this, $equals, statement.object)

5

6 registerViolationIf (subResult.hasNext)

7

8 result = getStatements($this, $equals, null)

9

10 foreach (statement in result)

11 subResult = getStatements($this, $PATH, statement.object)

12

13 registerViolationIf (subResult.hasNext)
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SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?equals → ex:Q }]

Copyduplicate

Copyforward

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

HashIndexBuild
solutionSet solutionSet2

joinVars [?this, ?equals, ?value]

sourceType pipeline

PipelineJoin
pattern distinct(?this [ex:v0], ?equals [ex:Q], ?value)

joinType join

joinProjectionVars [?value]

HashIndexJoin
solutionSet solutionSet2

joinType minus

Copyforward

PipelineJoin
pattern distinct(?this [ex:v0], ?equals [ex:Q], ?value)

joinType join

joinProjectionVars [?value]

HashIndexBuild
solutionSet solutionSet1

joinVars [?this, ?PATH, ?value]

sourceType pipeline

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

HashIndexJoin
solutionSet solutionSet1

joinType minusCopyforward

Distinct
vars [?this, ?value]

Projectionretain

vars [?this, ?value]

TermResolutionid2value

vars [?this, ?value]

Figure 5.1: Query plan for EqualsConstraintComponent

Both the query plan and native implementation perform 2 SP lookups, scanning all n and m
values, followed by exactly n+m SPO lookups, each scanning at most 1 value.

HasValueConstraintComponent

1 SELECT ?this

2 WHERE {

3 FILTER NOT EXISTS {

4 ?this ?PATH ?hasValue

5 }

6 VALUES (this ?PATH ?hasValue) {

7 (ex:v0 ex:P ex:v1)

8 }

9 }

The variables this, PATH, and hasValue are bound to the focus node, path property, and value
node, respectively. The goal is to extract the focus node if and only the value node is not reachable
with the value of the path property as predicate.

This is clearly visible in the query plan (Figure 5.2). The FILTER NOT EXISTS function
on line 3 results in a HashIndexBuild operator which builds a hash index on the variables shared
between the initial solution and the pattern on line 6. Trivially, this results in a hash index of
one key. The PipelineJoin operator joins the hash index key against the pattern defined on line 6.
This corresponds to extracting the value node reachable via the path property. The HashIndexJoin
operator joins the hash index solution against the incoming solution, adding a variable indicating
whether a join partner exists, i.e. whether the value node is reachable. Finally, the Filter operator
filters the incoming solution based on this variable.

Native implementation:

1 result = getStatements($this, $PATH, $hasValue)

2

3 registerViolationIf (result.hasNext)
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SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?hasValue → ex:v1 }]

HashIndexBuild
solutionSet solutionSet1

joinVars [?this, ?PATH, ?hasValue]

sourceType pipeline

PipelineJoin
pattern distinct(?this, ?PATH, ?hasValue)

joinType join

joinProjectionVars [?this, ?PATH, ?hasValue]

cutoffLimit 1

HashIndexJoin
solutionSet solutionSet1

joinType existence check

existenceCheckResultVar ? internalVar1

ConditionalRouting
condition needsMaterialization(!(? internalVar1))

TermResolutionid2value

vars [? internalVar1]

Filter
condition !(? internalVar1)

Projectiondrop

vars [? internalVar1]

Projectionretain

vars [?this]

TermResolutionid2value

vars [?this]

Figure 5.2: Query plan for HasValueConstraintComponent

Both the query plan and native implementation perform 1 SPO lookup, scanning at most 1
value.

LessThanConstraintComponent

1 SELECT ?this ?value

2 WHERE {

3 ?this ?PATH ?value .

4 ?this ?lessThan ?otherValue .

5 BIND (?value < ?otherValue AS ?result) .

6 FILTER (!bound(?result) || !(?result)) .

7 VALUES (?this ?PATH ?lessThan) {

8 (ex:v0 ex:P ex:Q)

9 }

10 }

The variables this, PATH, and lessThan are bound to the focus node, path property, and less
than property, respectively. The goal is to extract subjects reachable from the focus node with
the value of the path property as predicate for which a subject exists that is reachable with the
value of less than property as predicate and incomparable or not arithmetically greater.

This is clearly visible in the query plan (Figure 5.7). The first PipelineJoin operator joins the
initial solution against the pattern on line 3. This corresponds to extracting the subjects reachable
via the path property. The second PipelineJoin operator joins these against the pattern on line 4.
This corresponds to extracting the cartesian product of subjects reachable via the path property
and less than property. The BIND function on line 5 results in a Filter operator. This corresponds
to comparing the subjects and binding the result to a variable. When incomparable, the variables
remains unbound. Finally, the FILTER function on line 6 results in a Filter operator, filtering
the incoming solutions based on this variable.
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SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?lessThan → ex:Q }]

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

PipelineJoin
pattern distinct(?this [ex:v0], ?lessThan [ex:Q], ?otherValue)

joinType join

joinProjectionVars [?otherValue]

ConditionalRouting
condition needsMaterialization((?value < ?otherValue))

TermResolutionid2value

vars [?value, ?otherValue]

Filter
condition BIND((?value < ?otherValue) AS ?result)

ConditionalRouting
condition needsMaterialization((!(bound(?result)) ‖ !(?result)))

TermResolutionid2value

vars [?result]

Filter
condition (!(bound(?result)) ‖ !(?result))

Projectionretain

vars [?this, ?value]

TermResolutionid2value

vars [?this, ?value]

Figure 5.3: Query plan for LessThanConstraintComponent

Native implementation:

1 result1 = getStatements($this, $PATH, null)

2 result2 = getStatements($this, $lessThan, null)

3

4 foreach (statement1 in result1)

5 foreach (statement2 in result2)

6 registerViolationIf(statement1.object < result2.object)

The query plan performs 1 SP lookup, scanning all n values, followed by exactly n SP lookups,
each scanning all m values. The native implementation performs 2 SP lookups but still scans nm
values.

The native complexity can be reduced from quadratic to linear by returning a non-compliant
validation report. When one is not interested in the exact value causing the failure, the inner loop
can be moved outside the outer loop. Hereby reducing the number of scanned values from nm to
n+m.

Native implementation:

1 result = getStatements($this, $lessThan, null)

2 minimum = null

3

4 foreach(statement in result)

5 if (minimum == null)

6 minimum = statement.object

7 else

8 minimum = min(minimum, statement.object)

9

10 if (minimum != null)

11 result = getStatements($this, $PATH, null)
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12

13 foreach (statement in result)

14 registerViolationIf (statement.object < minimum)

LessThanOrEqualsConstraintComponent The query, query plan, and native implement-
ation are identical to those of LessThanConstraintComponent but with operator >= instead of
>.

MaxCountConstraintComponent

1 SELECT ?this

2 WHERE {

3 ?this ?PATH ?value .

4 VALUES (?this ?PATH ?maxCount) {

5 (ex:v0 ex:P 1)

6 }

7 }

8 GROUP BY ?this

9 HAVING (COUNT(DISTINCT ?value) > ?maxCount)

The variables this, PATH, and maxCount are bound to the focus node, path property, and
maximum number, respectively. The goal is to extract the focus node if and only if the number of
subjects reachable with the value of the path property as predicate is greater than the maximum
number.

This is clearly visible in the query plan (Figure 5.4). The PipelineJoin operator joins the initial
solution against the pattern on line 3. This corresponds to extracting the subjects reachable via
the path property. The GROUP BY and HAVING functions on line 8 and 9 result in a Aggregate
operator, outputting a solution if and only if the number of distinct subjects is greater than
the maximum number. Unintentionally, the maxCount variable remains unbound in the having
argument as it is not part of the groupBy argument. The semantics of Apache Jena differ with
Amazon Neptune and Blazegraph. The intended semantics can be acquired by substituting the
variable with the maximum number or by adding the variable to the groupBy argument.

SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?maxCount → 1 }]

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

TermResolutionid2value

vars [?maxCount]

Aggregate
groupBy [?this]

aggregates [?this]

having [(COUNT(DISTINCT ?value) > ?maxCount)]

Projectionretain

vars [?this]

TermResolutionid2value

vars [?this]

Figure 5.4: Query plan for MaxCountConstraintComponent
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Native implementation:

1 result = getStatements($this, $PATH, null)

2 count = 0

3

4 while (result.next and count < $maxCount + 1)

5 count = count + 1

6

7 registerViolationIf (count <= $maxCount)

The query plan performs 1 SP lookup, scanning all n values. The native implementation
performs 1 SP lookup, scanning min(n,maxCount+ 1) values.

MinCountConstraintComponent

1 SELECT ?this

2 WHERE {

3 OPTIONAL {

4 ?this ?PATH ?value .

5 }

6 VALUES (?this ?PATH ?minCount) {

7 (ex:v0 ex:P 1)

8 }

9 }

10 GROUP BY ?this

11 HAVING (COUNT(DISTINCT ?value) < ?minCount)

The variables this, PATH, and minCount are bound to the focus node, path property, and
minimum number, respectively. The goal is to extract the focus node if and only if the number of
subjects reachable with the value of the path property as predicate is smaller than the minimum
number.

This is clearly visible in the query plan (Figure 5.5). The PipelineJoin operator joins the initial
solution against the pattern on line 4. This corresponds to extracting the subjects reachable via the
path property. The GROUP BY and HAVING functions on line 10 and 11 result in a Aggregate
operator, outputting a solution if and only if the number of distinct subjects is smaller than the
smaller number. Unintentionally, the minCount variable remains unbound in the having argument
as it is not part of the groupBy argument. The semantics of Apache Jena differ with Amazon
Neptune and Blazegraph. The intended semantics can be acquired by substituting the variable
with the minimum number or by adding the variable to the groupBy argument.

SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?minCount → 1 }]

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType optional

joinProjectionVars [?this, ?PATH, ?value]

TermResolutionid2value

vars [?minCount]

Aggregate
groupBy [?this]

aggregates [?this]

having [(COUNT(DISTINCT ?value) < ?minCount)]

Projectionretain

vars [?this]

TermResolutionid2value

vars [?this]

Figure 5.5: Query plan for MinCountConstraintComponent
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Native implementation:

1 result = getStatements($this, $PATH, null)

2 count = 0

3

4 while (result.next && count < $minCount)

5 count = count + 1

6

7 registerViolationIf (count == $minCount)

The query plan performs 1 SP lookup, scanning all n values. The native implementation
performs 1 SP lookup, scanning min(n,minCount) values.

DisjointConstraintComponent

1 ASK {

2 FILTER NOT EXISTS {

3 ?this ?disjoint ?value .

4 }

5 }

ASK queries simply return a boolean indicating whether a solution exists. In order to find
and report the value nodes causing a violation, ASK queries must be transformed into SELECT
queries. We use the procedure implemented in TopBraid’s SHACL API. TopBraid’s SHACL API
is a SHACL validator based on the DASH namespace and will be discussed in detail in Section 6.1.
The query is transformed into the following query:

1 SELECT DISTINCT ?this ?value

2 WHERE {

3 ?this ?PATH ?value .

4 FILTER NOT EXISTS {

5 FILTER NOT EXISTS {

6 ?this ?disjoint ?value .

7 }

8 }

9 VALUES (?this ?PATH ?disjoint) {

10 (ex:v0 ex:P ex:Q)

11 }

12 }

The variables this, PATH, and disjoint are bound to the focus node, path property, and disjoint
property, respectively. The goal is to extract subjects reachable from the focus node with the value
of the path property as predicate that are also reachable with the value of the disjoint property
as predicate.

This query results in a query plan of 18 stages (Figure 5.6). The FILTER NOT EXISTS
function on line 4 and 5 result in two HashIndexBuild operators that build a hash index on the
variables shared between their inner and outer scopes. There are no shared viables as the variables
on line 3 are not used in the first FILTER NOT EXISTS function, Therefore they do not carry over
to the second function. As result the joinVars argument remains empty. When the join variables
differ from the projection variables, the variables needed inside, i.e. disjoint and this, the operator
shows alternative semantics. In this case the operator does not output the distinct projection over
the join variables, but the incoming solutions instead, followed by a Distinct operator. In the
second FILTER NOT EXISTS function, both the join and projection variables empty, hence it
outputs the empty projection over the join variables, i.e. the empty solution. All variables in the
pattern of the next PipelineJoin operator incorrectly remain unbound. The semantics in Amazon
Neptune and Blazegraph are incorrect as results differ from the results obtained by evaluating in
the SPARQL algebra.
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SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?disjoint → ex:Q }]

HashIndexBuild
solutionSet solutionSet1

joinVars []

sourceType pipeline

Distinct
vars [?disjoint, ?this]

HashIndexBuild
solutionSet solutionSet2

joinVars []

sourceType pipeline

PipelineJoin
pattern distinct(?this, ?disjoint, ?value)

joinType join

joinProjectionVars [?this, ?disjoint, ?value]

cutoffLimit 1

HashIndexJoin
solutionSet solutionSet2

joinType existence check

existenceCheckResultVar ? internalVar2

ConditionalRouting
condition needsMaterialization(!(? internalVar2))

TermResolutionid2value

vars [? internalVar2]

Filter
condition !(? internalVar2)

Projectiondrop

vars [? internalVar2]

HashIndexJoin
solutionSet solutionSet1

joinType existence check

existenceCheckResultVar ? internalVar1

ConditionalRouting
condition needsMaterialization(!(? internalVar1))

TermResolutionid2value

vars [? internalVar1]

Filter
condition !(? internalVar1)

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

Projectiondrop

vars [? internalVar1]

Distinct
vars [?this, ?value]

Projectionretain

vars [?this, ?value]

TermResolutionid2value

vars [?this, ?value]

Figure 5.6: Query plan 1 for DisjointConstraintComponent
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The query above can actually be simplified to a join between the subjects reachable via the
path property against its counterpart, these subjects reachable via the disjoint property:

1 SELECT DISTINCT ?this ?value

2 WHERE {

3 ?this ?PATH ?value .

4 ?this ?disjoint ?value .

5 VALUES (?this ?PATH ?disjoint) {

6 (ex:v0 ex:P ex:Q)

7 }

8 }

The variables this, PATH, and disjoint are bound to the focus node, path property, and disjoint
property, respectively.

This query results in a query plan of 6 stages (Figure 5.7) that clearly corresponds to the
intended semantics. The first PipelineJoin operator joins the initial solution against the pattern
on line 3. This corresponds to extracting the subjects reachable via the path property. The second
PipelineJoin operator joins these against the pattern on line 4. This corresponds to extracting
the subjects reachable via the path property that are also reachable by the disjoint property.

SolutionInjection
solutions [{ ?this → ex:v0, ?PATH → ex:P, ?disjoint → ex:Q }]

PipelineJoin
pattern distinct(?this [ex:v0], ?PATH [ex:P], ?value)

joinType join

joinProjectionVars [?value]

PipelineJoin
pattern distinct(?this [ex:v0], ?disjoint [ex:Q], ?value)

joinType join

joinProjectionVars [?value]

Distinct
vars [?this, ?value]

Projectionretain

vars [?this, ?value]

TermResolutionid2value

vars [?this, ?value]

Figure 5.7: Query plan 2 for DisjointConstraintComponent

Native implementation:

1 result = getStatements($this, $PATH, null)

2

3 foreach (statement in result)

4 subResult = getStatements($this, $disjoint, statement.object)

5

6 registerViolationIf (!subResult.hasNext)

Both the query plan and native implementation perform 1 SP lookup, scanning all n values,
followed by exactly n SPO lookups, each scanning at most 1 value.

5.4 Conclusions

For the constraint components EqualsConstraintComponent, HasValueConstraintComponent, and
DisjointConstraintComponent we found no difference between native and SPARQL-based val-
idation using Amazon Neptune in terms of the number of index lookups and scanned triples.
The LessThanConstraintComponent and LessThanOrEqualsConstraintComponent have a con-
stant number of index lookups in the native implementation compared to a linear number for
SPARQL-based validation. Both however, scan the same number of triples in total.
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A native implementation allows control over the iterator which can be used to limit the num-
ber of scanned triples (e.g., early termination). This is done for MinCountConstraintComponent
and MaxCountConstraintComponent when it is certain that the constraint has been satisfied
or violated, i.e. when the minimum or maximum cardinality has been exceeded, respectively.
SPARQL-based validation using Amazon Neptune scans and then aggregates all the triples. The
scan operator in Amazon Neptune, PipelineJoin, has an argument cutoffLimit that can be used to
limit the number of extracted join partners3, i.e. the number of scanned triples. The query plan
generator can be modified to recognize minimum and maximum cardinality constraint patterns,
and for these cases apply an appropriate cutoffLimit to achieve the same advantage that the native
implementation currently has over SPARQL-based validation.

In general, a native implementation is more likely to use less memory compared to SPARQL-
based validation as it does not use large intermediate result sets that could significantly increase
in size due to join operations. The constraints we have looked at are relatively simple and not
complex, and may therefore benefit from avoiding the overhead induced by parsing and optimizing
SPARQL queries.

3https://docs.aws.amazon.com/neptune/latest/userguide/sparql-explain-operators.html
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Chapter 6

A Practical Algorithm for
Validating SHACL

6.1 TopQuadrant’s SHACL API

TopQuadrant maintained DASH [21], developed SPIN [22], and played an important role in the
development of SHACL [23]. TopQuadrant’s SHACL API1 is based on Apache Jena2 and the
DASH validators. Apache Jena is an open-source Java framework for building Semantic Web and
Linked Data applications. It offers an RDF API to interact with the core API to create and
read RDF graphs, a SPARQL engine called ARQ for querying, triple stores, and an ontology and
inference API.

Algorithm Validation of a data graph against a shapes graph in TopQuadrant’s SHACL API
can be described as follows:

1. (Inference) The first step prior to validation is an inferencing step. The goal is to pro-
duce a data graph containing all triples inferred by the entailment regime specified by the
sh:entailment property. The inferencing is performed by Apache Jena.

2. (Construction of root shapes) Then a set of non-deactivated root shapes is constructed.
These are subjects of triples that have sh:targetClass, sh:targetNode, sh:targetObjectsOf or
sh:targetSubjectsOf as predicate.

3. For each root shape s:

(a) (Construction of constraints) The set of constraints is constructed by iterating over a
shape’s properties and then looking up, for each property, the related constraint com-
ponent (having the property as parameter) in the SHACL namespace. If the constraint
component has a single parameter, then each value for the property becomes a con-
straint, else the constraint is constructed only when the shape declares values for all
mandatory parameters.

(b) (Execution of constraint executors) Lastly, the tool validates each constraint against
the shape’s focus nodes by means of a dedicated constraint component executor.

Constraint Executors Constraint executors execute the validation of a set of focus nodes
against a constraint. TopQuadrant’s SHACL API has dedicated constraint executors for the
constraint components PropertyConstraintComponent, JsConstraintComponent, SparqlConstraint-
Component, and ExpressionConstraintComponent. Other constraint components are handled by

1https://github.com/TopQuadrant/shacl
2https://jena.apache.org/
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the SPARQLComponentExecutor or JSComponentExecutor executors that operate by means of
the validators defined in the DASH namespace. The latest version of TopQuadrant’s SHACL,
starting from version 1.3.0, provides dedicated constraint executors for all SHACL constraint
components.

The SPARQLComponentExecutor executor validates constraints, using the SPARQL queries
discussed in detail in the previous chapter. For a constraint c of kind C, the tool looks for
triples of the form (C, p, ?v) where p is sh:propertyValidator if c is declared by a property shape
or sh:nodeValidator if c is declared by a node shape. Based on whether v is an instance of class
sh:SPARQLSelectValidator or sh:SPARQLAskValidator the value of property sh:select or sh:ask is
used as SELECT or ASK query, respectively. ASK queries are transformed into SELECT queries
according to the following pattern:

1 SELECT DISTINCT ?this ?value

2 WHERE {

3 ?this ?PATH ?value

4 FILTER NOT EXISTS { %QUERY PATTERN% }

5 }

for which the query pattern of the ASK query is substituted.
Each query binds the variable this to the focus node, as well as any variables that represent

the parameters of the constraint component. Constraints declared by property shapes bind or
substitute the PATH variable according to the SHACL property path, i.e. the value of sh:path for
the shape. If the value is an IRI, i.e. predicate path, then the value can be bound, else the value
is a blank node, i.e. sequence, alternative, inverse, zero-or-more, one-or-more, or zero-or-one path,
and the SPARQL equivalent is substituted.

These queries retrieve the witnesses violating the constraint for a specific focus node. If a
solution exists, then the focus node is not valid against the constraint.

References DASH does not support references or nested shapes, which implies that Example 27
cannot be validated solely using DASH. TopQuadrant’s SHACL API solves this limitation by regis-
tering a custom SPARQL Value Function. Such functions are registered in ARQ’s function registry
(a mapping from URI to a factory class for functions) and executed during query evaluation.

The TopBraid Data Shapes Library (TOSH) namespace defines a validator for the NodeCon-
straintComponent. The SPARQL query uses the registered tosh:hasShape function which validates
a focus node against a shape. This allows for references as demonstrated by Example 32.

Recursion TopQuadrant’s SHACL API does not support recursion. It implements a recursion
guard to avoid infinite recursion. More precisely, it avoids recursive calls to the tosh:hashShape
function (used to handle references) by keeping track of the focus nodes and shapes currently
being recursed.
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Example 32. We validate the following data and shapes graph, requiring that everything liked by
James has a nationality and that he likes at least one such thing:

1 ex:JamesShape

2 a sh:NodeShape ;

3 sh:targetNode ex:James ;

4 sh:property ex:LikesShape .

5

6 ex:LikesShape

7 a sh:PropertyShape ;

8 sh:path ex:likes ;

9 sh:minCount 1 ;

10 sh:node ex:ThingShape .

11

12 ex:ThingShape

13 a sh:NodeShape ;

14 sh:property ex:NationalityShape .

15

16 ex:NationalityShape

17 a sh:PropertyShape ;

18 sh:path ex:nationality ;

19 sh:minCount 1 .

Shapes graph

1 ex:James ex:likes ex:Mary .

2 ex:Mary ex:nationality "British" .

Data graph

The set of root shapes only consists of the shape ex:JamesShape as the other shapes do not
declare any target. The root shape ex:JamesShapes has the property sh:property which is a para-
meter of constraint component PropertyConstraintComponent. The validator validates each focus
node in the target of the shape against the validators of constraints declared by the shape. This
results in the validation of focus node ex:James against the validator of PropertyConstraintCom-
ponent. The validator of PropertyConstraintComponent validates each value node against the
given property shape, i.e. the value of sh:property. This results in the validation of focus node
ex:James against the shape ex:LikesShape.

The shape ex:LikesShape has the properties sh:minCount and sh:node which are parameters
of constraint components MinCountConstraintComponent and NodeCountConstraintComponent,
respectively. The validator validates each focus node against the constraints declared by the shape.
This results in the validation of focus node ex:James against a constraint of kind MinCountCon-
straintComponent and NodeCountConstraintComponent.

The validator of MinCountConstraintComponent uses the following SPARQL query (Sec-
tion 5.3):

1 SELECT ?this

2 WHERE {

3 OPTIONAL {

4 ?this ?PATH ?value .

5 }

6 VALUES (?this ?PATH ?minCount) {

7 (ex:James ex:likes 1)

8 }

9 }

10 GROUP BY ?this

11 HAVING (COUNT(DISTINCT ?value) < ?minCount)

which requires at least one value node to exist. The focus node ex:James conforms to this
constraint as it has ex:Mary as value for sh:likes, i.e. there is no solution to the query.
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The validator of NodeConstraintComponent uses the following SPARQL query (Section 5.3):

1 SELECT DISTINCT ?this ?value ?failure

2 WHERE {

3 ?this ?PATH ?value

4 BIND(tosh:hasShape(?value, ?node) AS ?hasShape)

5 BIND(( ! bound(?hasShape) ) AS ?failure)

6 FILTER ( ?failure || ( ! ?hasShape ) )

7 VALUES (?this ?PATH ?node) {

8 (ex:James ex:likes ex:ThingShape)

9 }

10 }

which requires all value nodes to conform to ex:ThingShape. Evaluation of the query invokes
the tosh:hasShape function registered in the ARQ function registry. It receives the parameter
value ex:ThingShape and a single value node ex:Mary. This results in the validation of value node
ex:Mary as focus node against the shape ex:ThingShape.

The shape ex:ThingShape has the property sh:property which is a parameter of constraint com-
ponent PropertyConstraintComponent. This results in the validation of focus node ex:Mary against
the shape ex:NationalityShape. The shape ex:NationalityShape has the property sh:minCount
which is a parameter of constraint component MinCountConstraintComponent. The focus node
ex:Mary conforms to this constraint as it has ”British” as value for sh:nationality. We conclude
that focus node ex:Mary conforms to the shape ex:NationalityShape as it conforms to the min-
imum cardinality constraint. Then value node ex:Mary conforms to the shape ex:ThingShape as
it conforms to the property constraint.

We conclude that focus node ex:James conforms to the constraint of kind NodeConstraint-
Component, i.e. there is no solution to the query. Then value value node ex:James conforms to
the shape ex:LikesShape as it conforms to both declared constraints. We conclude that focus node
ex:James conforms to the shape ex:JamesShape as it conforms to the property constraint. So the
data graph is valid with respect to the shapes graph. 4

6.2 Recursive SHACL API

6.2.1 Introduction

Immediate validation of referencing constraints (see Section 4.3) leads to nested validation of value
nodes against the referenced shapes. If the constraint-declaring shape is a property shapes then
the value nodes are the nodes reachable from the focus nodes by the property path. Immediate
validation of these constraints may lead to infinite recursion when the declaring shape is recursive
and the value node part of a cycle in the data graph.

We propose a new native algorithm in Section 6.2.2 for validating non-recursive SHACL using
immediate constraint validation. The algorithm is based on SHACL’s definitions of validation [23].

We also propose a new native hybrid algorithm in Section 6.2.3 to validate recursive SHACL
and mitigate the infinite recursion problem by extending the algorithm for non-recursive SHACL
with a minimal fixed-point algorithm handling validation against recursive shapes. The fixed-
point algorithm produces a minimal fixed-point assignment σminFix as defined in Section 4.4. The
validation against recursive shapes is based on Theorem 2, which states that a node v0 is valid
against a shape s if and only if ¬s /∈ σminFix(v0). The hybrid algorithm is sound and complete for
all tractable fragments, including the non-recursive SHACL fragment.

We improve the original fixed-point algorithm [10] by:

1. avoiding redundant validations using monotonicity and constraint deactivation,

2. minimizing the number of shapes to be assigned using the reference closure of recursive
shapes,
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3. minimizing the number of nodes getting shapes assigned by calculating all value nodes for
each shape,

4. minimizing the number of inconclusive answers by adding an explicit ordering to the valid-
ation against shapes, and

5. adding the ability to generate SHACL-like validation reports indicating the cause of viola-
tions.

Notation The variable R is the set of validation results, GS a shapes graph, GD a data graph,
and GV the nodes of graph G.

Abstractions We abstract away from failures, i.e. the handling of exceptions, and from the
deactivation of shapes that exclude a shape from the validation context. We assume a function
getV alueNodes that receives a data graph, shapes graph, shape, and focus node, and returns the
value nodes for the given focus node and any constraint declared by the given shape.

6.2.2 Algorithm for Immediate Constraint Evaluation

Validation is a mapping from an input (i.e., data graph and shapes graph, data graph and shape,
focus node and shape, or focus node and constraint) to validations results. The validation results
of a data graph against a shapes graph is the union of validation results of the data graph against
all shapes in the shapes graph. The validation results of a data graph against a shape are the
union of validation results of all focus nodes that are in the target of the shape. The validation
results of a focus node against a shape is the union of validation results of the focus node against
all constraints declared by the shape. Unless the shape has been deactivated, in that case the
validation results are empty. [23]

Since the validation results against any constraint declared by a deactivated shape is empty, and
because nothing besides the validation against a shape triggers the validation against a constraint,
we can move up the condition to produce empty validation results if the shape has been deactivated
to the validation against a shape.

Similarly for the validation of a data graph. The validation of a data graph against a shape
consists of the validation of all focus nodes that are in the target of the shape. The validation
results may only be non-empty if the shape declares a target and is non-deactivated. So we can
redefine the validation of a data graph against a shapes graph as follows:

Definition 6.2.1. (Validation of a data graph against a shapes graph) The validation results of
a data graph against a shapes graph is the union of validation results of the data graph against
all target-declaring non-deactivated shapes in the shapes graph.

We assume a function getRootShapes that receives a shapes graph and returns the set of target-
declaring non-deactivated shapes in the given shapes graph. The validation of a data graph against
a shapes graph (Definition 6.2.1) is given by Algorithm 1.

Algorithm 1 Validation of a data graph against a shapes graph

1: procedure validateDataGraphAgainstShapesGraph(GD, GS)
2: R← ∅
3: for all s ∈ getRootShapes(GS) do
4: R← R ∪ validateDataGraphAgainstShape(GD, GS , s)
5: end for
6: return R
7: end procedure

We redefine the validation of a data graph against a shape and the validation of a focus node
against a shape to consider a set of focus nodes instead of a single focus node. We now avoid
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invoking the algorithm for validating against a shape for each focus node, instead it is being
invoked once for a set of focus nodes, hereby limiting the call stack and overhead induced by
initialization (e.g., retrieving the constraints declared by the shape).

Definition 6.2.2. (Validation of a data graph against a shape) The validation results of a data
graph against a shape are the validation results of the set of focus nodes that are in the target of
the shape.

Definition 6.2.3. (Validation of a set of focus nodes against a shape) The validation results of
a set of focus nodes against a shape is the union of validation results of the set of focus nodes
against all constraints declared by the shape.

We assume a function getTarget that receives a data graph, shapes graph, and shape, and
returns the focus nodes in the given data graph identified by one or more target declarations
of the given shape in the given shapes graph. The validation of a data graph against a shape
(Definition 6.2.2) is given by Algorithm 2.

Algorithm 2 Validation of a data graph against a shape

1: procedure validateDataGraphAgainstShape(GD, GS , s)
2: Vfocus ← getTarget(GD, GS , s)
3: if |Vfocus| > 0 then
4: return validateNodesAgainstShape(GD, GS , Vfocus, s)
5: end if
6: return ∅
7: end procedure

We further assume a function getConstraints that receives a shapes graph and shape, and
returns all constraints declared by the given shape in the given shapes graph. We represent con-
straints by a tuple (s, C, P ) where s is the constraint-declaring shape, C the constraint component
IRI, and P a mapping from mandatory parameters to their values. The validation of a set of focus
nodes against a shape (Definition 6.2.3) is given by Algorithm 3.

Algorithm 3 Validation of a set of focus nodes against a shape

1: procedure validateNodesAgainstShape(GD, GS , Vfocus, s)
2: R← ∅
3: for all c ∈ getConstraints(GS , s) do
4: R← R ∪ validateNodesAgainstConstraint(GD, GS , Vfocus, c)
5: end for
6: return R
7: end procedure

A focus node conforms to a shape if and only if the validation results of the focus node against
the shape is empty and no failure has been reported by it [23]. Most referencing constraint
components rely on conformance checking. The validation results used to determine the outcome
of conformance checking are separated from the surrounding validation process.

The validation results of a focus node against a constraint of kind C is defined by the validator
of the constraint component C [23]. We redefine the validation of a focus node against a constraint,
for similar reasons as before, to consider a set of focus nodes instead of a single focus node:

Definition 6.2.4. (Validation of a set of focus nodes against a constraint) The validation results
of a set of focus nodes against a constraint of kind C is defined by the validator of the constraint
component C.
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We assume a function F that maps a constraint component IRI to its validator. A validator
of constraint component C receives a data graph, shapes graph, set of focus nodes, and constraint
of kind C, and returns the validation results of the set of focus nodes against the constraint of
kind C. The validation of a set of focus nodes against a constraint (Definition 6.2.4) is given by
Algorithm 4.

Algorithm 4 Validation of a set of focus nodes against a constraint

1: procedure validateNodesAgainstConstraint(GD, GS , Vfocus, c)
2: (s, C, P )← c
3: return F(C)(GD, GS , Vfocus, c)
4: end procedure

Figure 6.2 visualizes the interaction between algorithms, i.e. how Algorithms 1 to 4 are related.

validateDataGraphAgainstShapesGraph

validateDataGraphAgainstShape

validateNodesAgainstShape

validateNodesAgainstConstraint

constraint component validator

for each root shape

for each constraint

Figure 6.2: Interaction between algorithms

Constraint Components The validator of a constraint component C validates a set of focus
nodes against constraints of kind C. Value nodes for each focus node are retrieved and validated
with regards to their adherence to the requirements specified by the constraint.

The validation results of a set of focus nodes against referencing constraint components requir-
ing validation (i.e., PropertyConstraintComponent) is defined as the nested validation of the set of
value nodes as focus nodes against the referenced shapes. The validation against referencing con-
straints components requiring conformance checking (e.g., NodeConstraintComponent) produces
validation results based on whether value nodes conform to the referenced shapes, i.e. whether
the nested validation results are empty. Lastly, the validation results against non-referencing
constraint components (e.g., EqualsConstraintComponent) do not result in nested validation, but
instead, is solely based on the value nodes.

Appendix 1.2 describes and provides algorithms for the validation of one constraint component
of each type for non-recursive SHACL.

6.2.3 Algorithm for Recursive SHACL

We extend the algorithm for non-recursive SHACL, introduced in previous section, with a min-
imal fixed-point algorithm handling validation against recursive shapes. The validation against
recursive shapes consists of two steps. In the first step a fixed-point algorithms attempts to assign
shapes to the focus nodes and their value nodes. The shapes to be assigned and the nodes getting
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these shapes assigned are referred to as fixed-point shapes and nodes, respectively. In the second
step the validation results of the non-conforming focus nodes against the shape are generated using
the minimal fixed-point assignment of the previous step.

In contrast to immediate constraint evaluation, validation against referencing constraints does
not result in nested validation against the referenced shapes, but instead, uses the assignment.
This is similar to the inductive evaluation of a constraint formula presented in Section 4.4.3. The
3-valued logic, i.e. the introduction of an unknown truth value, prevents deciding conformance by
simply checking if validation results are empty. Instead, one needs to be able to distinguish between
all three values. Therefore, we informally introduce a dedicated vocabulary with namespace IRI
rsh: for referencing constraints to propagate conformance to the surrounding validation process.
The vocabulary has the properties rsh:true, rsh:false, and rsh:unknown to declare the conformance
of focus nodes to the constraint-declaring shape.

We extend the validation against a constraint with two additional parameters:

• an optional assignment σ whose presence indicates that referencing constraints should not
perform nested validation, but use the assignment instead; and

• an optional boolean flag b that indicates whether referencing constraints must produce con-
formance results, i.e. when the validation is invoked by the fixed-point algorithm.

Improvements The original algorithm [10] attempts to assign all shapes to all nodes in the
graph, regardless of their targets. We minimize the set of fixed-point shapes as we only use the
fixed-point algorithm for the validation against recursive shapes, and the set of fixed-point nodes
by calculating their value nodes:

• Fixed-point shapes: Only shapes needed to decide the conformance against the recursive
shape need to be assigned, i.e. all shapes reachable from the recursive shape in the de-
pendency graph, the reference closure. The reference closure of a recursive shape can be
determined using standard DFS with cycle detection on the dependency graph.

• Fixed-point nodes: A fixed-point shape only needs to be assigned to nodes that become value
nodes in the validation against referencing constraints referencing this fixed-point shape.
These nodes can be determined by a modified version of DFS with cycle detection that
considers node-shape pairs instead of just a node. The idea is to explore the data graph
starting from each focus node with the recursive shape as shape, keep track of explored
node-shape pairs, and when a shape has references, i.e. declares referencing constraints,
explore each value node for each referenced shape.

The function getFixedPointNodes builds such a mapping from (fixed-point) shape to a set
of fixed-point nodes and is given by Algorithm 5, while abusing notation by writing v(s) ∈ ζ
instead of v ∈ ζ(s) (similarly for ¬s).

We limit inconclusive answers, i.e. an unknown truth value, by processing referenced shapes
before the shapes that reference them. Such a topological ordering can be determined by using a
modified version of DFS with cycle detection on the dependency graph that adds the node to a
stack after having explored its adjacent nodes. This can be done in the same pass in which the
reference closure of a recursive shape is determined.

The effective set of fixed-point nodes for a fixed-point shape is non-strictly decreasing as the
assignment is preserved over consecutive iterations due to monotonicity. Therefore, fixed-point
shapes only need to be assigned to fixed-point nodes that do not have the shape or its negation
assigned.

We deactivate non-referencing constraints after the first iteration as the validation results of the
set of effective fixed-point nodes against non-referencing constraints in subsequent iterations can
only be empty. The validation of non-referencing constraints does not depend on the assignment.
So after the first iteration, any effective fixed-point node must be valid against non-referencing
constraints, else a violation would have occurred in the first iteration, causing the node to be
excluded from the effective fixed-point nodes set.
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Algorithm 5 Determining the set of fixed-point nodes

1: procedure getFixedPointNodes(GD, GS , s, Vfocus)
2: ζ ← ∅ . Mutated by applications of DfsWalk
3: for all vfocus ∈ Vfocus do
4: if vfocus(s) /∈ ζ then
5: DfsWalk(GD, GS , s, vfocus, ζ)
6: end if
7: end for
8: return ζ
9: end procedure

10: procedure DfsWalk(GD, GS , s, vfocus, ζ)
11: ζ ← ζ ∪ {vfocus(s)}
12: if |R(GS , s)| > 0 then
13: for all vvalue ∈ getValueNodes(GD, GS , s, vfocus) do
14: for all sref ∈ R(GS , s) do
15: if vvalue(sref) /∈ ζ then
16: DfsWalk(GD, GS , sref, vvalue, ζ)
17: end if
18: end for
19: end for
20: end if
21: end procedure

Algorithm We assume a function isRecursive that receives a shapes graph and shape, and
returns true if and only if the shape is recursive, i.e. if there is a path from and to that shape in the
dependency graph. This can be determined by means of reachability query using a modified version
of DFS that attempts to find the respective node. We assume a function getFixedPointShapes that
receives a shapes graph and shape, and returns the reference closure of the given shape, i.e. all
the shapes reachable from the recursive shape in the dependency graph. We assume a function
isReferencing that receives a constraint component IRI and returns a boolean indicating whether
the constraint component is a referencing constraint component.

The algorithm is given by Algorithm 6.

Step 1: Fixed-point Algorithm We extend the validation of a set of focus nodes against
a shape (Algorithm 6) to use the fixed-point algorithm if (line 2) the shape is recursive. The
set of effective fixed-point nodes is determined on line 10, and line 15 excludes non-referencing
constraints after the first iteration.

A fixed-point node vfp is non-conforming to a fixed-point shape sfp if (line 20) the validation
results of vfp against the constraints of sfp contain an erroneous validation result (by a non-
referencing constraint) or a false conforming result (by a referencing constraint) for vfp. If it
is not non-conforming and the validation results contain an unknown conforming result then the
conformance is unknown. Else (line 22) it must be conforming as all non-referencing constraints are
satisfied and all referencing constraints (potentially none) declare conformance. This corresponds
to the semantics in Table 4.2, in particular to the ∧ operator, as shapes can be considered a
conjunction of constraints.

Step 2: Generating Validation Results The validation results are generated by perform-
ing a final validation (line 34) of the non-conforming focus nodes (line 30) against the recursive
shape. The validation is performed with the minimal fixed-point assignment σ of the previous
step and without the boolean flag b, indicating that referencing constraints should avoid nested
validation, and instead, use the assignment to produce validation results.
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Algorithm 6 Validation of a set of focus nodes against a recursive shape

1: procedure validateNodesAgainstShape(GD, GS , Vfocus, s, σ = null)
2: if σ = null ∧ isRecursive(Gs, s) then
3: σ ← ∅
4: ζ ← getFixedPointNodes(GD, GS , s, Vfocus)
5: Sfp ← getFixedPointShapes(GS , s)
6: bfp ← True
7: do
8: σ′ = σ
9: for all sfp ∈ Sfp do

10: Vfp ← {vfp | vfp ∈ ζ(sfp) ∧ sfp(vfp) /∈ σ′ ∧ ¬sfp(vfp) /∈ σ′}
11: if |Vfp| > 0 then
12: R← ∅
13: for all c ∈ getConstraints(GS , sfp) do
14: (s′, C, P )← c
15: if bfp ∨ isReferencing(c2) then
16: R← R ∪ validateNodesAgainstConstraint(GD, GS , Vfp, c, σ,True)
17: end if
18: end for
19: for all vfp ∈ Vfp do

20: if

∣∣∣∣{r ∣∣∣∣ (r, rdf:type, sh:ValidationResult) ∈ R
∧ (r, sh:focusNode, vfp) ∈ R

}∣∣∣∣ > 0 ∨ (sfp, rsh:false, vfp) ∈ R then

21: σ = σ ∪ ¬sfp(vfp)
22: else if (sfp, rsh:unknown, vfp) /∈ R then
23: σ = σ ∪ sfp(vfp)
24: end if
25: end for
26: end if
27: end for
28: bfp ← False
29: while σ 6= σ′

30: Vfocus ← {vfocus | vfocus ∈ Vfocus ∧ ¬s(vfocus) ∈ σ}
31: end if
32: R← ∅
33: for all c ∈ getConstraints(GS , s) do
34: R← R ∪ validateNodesAgainstConstraint(GD, GS , Vfocus, c, σ)
35: end for
36: return R
37: end procedure

Constraint Components The validators of non-referencing constraint components are identical
to those in Section 6.2.2, and therefore, only produce validation results using solely the value nodes.
The validators of referencing constraint components handle three modes:

1. When the validator is called without assignment σ and without boolean flag b (from outside
the fixed-point algorithm), indicating that the constraint-declaring shape is non-recursive
and that the validator must produce validation results, potentially using nested validation.

2. When the validator is called by the fixed-point algorithm with the assignment σ and boolean
flag b true, indicating that the constraint-declaring shape is recursive and that the validator
must produce conformance results by means of the dedicated vocabulary using σ, without
nested validation.

3. When the fixed-point algorithm has reached a fixed point and the validator is called one
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last time in order to generate a SHACL-like validation report. This time only for non-
conforming focus nodes, with the minimal fixed-point assignment σ and without boolean
flag b, indicating that the validator must produce validation results, potentially using σ.

The validation against referencing constraints components requiring conformance checking
(e.g., NodeConstraintComponent) produces validation results based on whether value nodes con-
form to the referenced shapes. In the third mode, the validators of these constraint components
do not perform nested validation, but instead, always use σ.

The validation results of a set of focus nodes against referencing constraint components requir-
ing validation (i.e., PropertyConstraintComponent) is defined as the nested validation of the set
of value nodes as focus nodes against the referenced shapes. So in the third mode, the validators
of these constraint components still have to perform nested validation to produce their own valid-
ation results. For non-trivial patterns, this recursion could still be infinite, even though the focus
node is non-conforming. A necessary condition is that the referenced shape is still recursive when
only considering references by referencing constraint components requiring validation. A minimal
instance is given by Example 33. Therefore, a recursion guard in mode three of the validators of
referencing constraint components requiring validation is still needed to avoid infinite recursion.

Appendix 1.3 describes and provides algorithms for the validation of one constraint component
of each type for recursive SHACL.

Example 33. For the following shapes and data graph, producing the validation results of the non-
conforming target node ex:v0 against shape ex:s0 results in infinite recursion without recursion
guard in mode three of the validator of PropertyConstraintComponent :

1 ex:s0

2 a sh:NodeShape ;

3 sh:targetNode ex:v0 ;

4 sh:property ex:s0P .

5

6 ex:s0P

7 a sh:PropertyShape ;

8 sh:path ex:P ;

9 sh:property ex:s0P ;

10 sh:minCount 1 .

Shapes graph

ex:v0 ex:v1

ex:P

ex:P

Data graph

4
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Chapter 7

Experiments

7.1 Introduction

This chapter describes the performance and scalability experiments of our new native algorithm for
validating non-recursive SHACL, proposed in Section 6.2.2, and our new native hybrid algorithm
for validating recursive SHACL, proposed in Section 6.2.3.

We analyze the validation times of increasing data graphs against fixed recursive and non-
recursive shapes graphs. For recursive shapes graphs, we analyze the time spent generating fixed-
point nodes, assigning fixed-point shapes to nodes, and generating a SHACL-like validation report.
Furthermore, we report the number of violating focus nodes and the number of iterations needed
to reach a fixed point. Validation against non-recursive shapes graphs using the hybrid algorithm
correspond to validation using the algorithm proposed in Section 6.2.2. Averages for each data
and shapes graph are taken over the outcome of ten experiments.

Implementation The hybrid algorithm has been implemented in TopBraid’s SHACL API1

v1.3.0 and uses an in-memory repository by Apache Jena2 v3.11.0. The implementation has
explicitly been left single threaded. The source code has been made publicly available at https:

//github.com/ChrisLahaye/shacl to contribute to the open-source and academic community,
as well as the data and shapes graphs used in our experiments.

The general approach of validation in TopBraid’s SHACL API v1.3.0 corresponds to the al-
gorithm proposed in Section 6.2.2, with the exception of how validation results are exchanged. In
the implementation, constraint executors extend a shared graph with validation results, whereas
our algorithms return the validation results as output.

Setting The experiments have been conducted on an Amazon Linux server (EC2 instance type
r5.4xlarge3) hosted on Amazon Web Services. The server is equipped with 128GB of memory and
16 vCPU (a thread of an Intel Xeon Platinum 8175 processor). OpenJDK v11.0.5 is used as Java
platform. Experiments are ran consecutively by spawning a new process when the previous one
exits.

Data Graphs DBpedia is a project that extracts structured content from Wikipedia4 and rep-
resents it in RDF. We use the English DBpedia 2016-10 data sets5: Instance Types, Labels,
Mappingbased Literals, Mappingbased Objects, and Person data. Links to these data sets have
been included with the source code of the implementation. The complete data set contains roughly

1https://github.com/TopQuadrant/shacl
2https://jena.apache.org/
3https://aws.amazon.com/ec2/instance-types/
4https://en.wikipedia.org/
5https://wiki.dbpedia.org/downloads-2016-10
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61.5 million triples. We validate against the complete data set, referred to by DBP100, and against
random samples of 10, 20, 40, and 80 percent of the triples, referred to by DBP10, DBP20, DBP40,
and DBP80, respectively. Samples are taken once using GNU shuf6 and are reused among exper-
iments.

Shapes Graphs The shapes graphs have been based on the constraint sets of [13]. They are
based on the patterns found in the DBpedia data set and test a variety of SHACL’s features (e.g.,
non-referencing constraints, referencing constraints requiring conformance checking, referencing
constraints requiring validation, and recursion). Firstly, we discuss the shapes in each shapes
graph, secondly, the constraints declared by each shape and how they differ among shapes graphs,
lastly, the applied changes to the original shapes. All shapes graphs have been included with
the source code of the implementation. The dependency graphs of the greatest non-recursive and
recursive shapes graphs (nonRec4 and rec4) have been visualized in Figure 7.1.

ex:Movie
Shape

:b0

:b1

:b2

:b3

:b4

:writer

:musicComposer

:director

:imdbId

:starring

ex:Director
Shape

:b5

:b6

:b7

ˆ:director

:imdbId

:birthPlace

ex:Actor
Shape

:b8

:b9

:b10

:b11

:b12

:birthPlace

:activeYearsStartYear
:occupation

:imdbId

ˆ:starring

ex:Location
Shape

:b13

:b14

:b15

:country

:leaderTitle

:populationDensity

Dashed edges are only present in the recursive shapes graph. All edges are positive edges and have,
instead of their parity, been labeled with the SPARQL property path of the (property) shape that
the edge is pointing to. The namespace IRI http://dbpedia.org/ontology/ is abbreviated by
the prefix : instead of dbo: due to space limitations.

The SPARQL property paths ˆ:director and ˆ:starring are inverse paths. The values of an inverse
path ˆp for a node s and property path p are the nodes that have s as value for property path p.
Simply stated, the values of ˆ:starring for an actor are all the movies that this actor is starring
in.

Figure 7.1: The dependency graphs of rec4 and nonRec4

6https://www.gnu.org/software/coreutils/manual/html_node/shuf-invocation.html
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The constraints have been divided into two sets, a non-recursive (nonRec) and recursive (rec)
set. Each complete set contains the shapes MovieShape, ActorShape, LocationShape, and Dir-
ectorShape, and is further divided into the subsets nonRec2, nonRec3, and nonRec4 (simlarly
for rec) that contain the first two, first three, and all four shapes, respectively. This has been
summarized in Table 7.1.

Table 7.1: Shapes in each shapes graph

Shapes
graph

Movie
Shape

Actor
Shape

Location
Shape

Director
Shape

nonRec2 X X
nonRec3 X X X
nonRec4 X X X X
rec2 X X
rec3 X X X
rec4 X X X X

Having discussed the shapes in each shapes graph, we now discuss the constraints declared by
each shape and how they differ among shapes graphs. The shape MovieShape targets instances
of class dbo:Film and requires nodes to have at least one writer, music composer, director that
conforms to shape DirectorShape (only in nonRec4 and rec4), and star that conforms to shape
ActorShape, and exactly one Internet Movie Database (IMDb) ID. The shape ActorShape requires
nodes to have actor as occupation, at least one active years start year, IMDb ID, and birth place
that conforms to shape LocationShape (only in nonRec3+ and rec3+), and lastly, all nodes having
these actor nodes as star are required to conform to shape MovieShape (only in rec2+). The shape
LocationShape in nonRec3+ and rec3+ requires nodes to have at least one country, leader title,
and population density. The shape DirectorShape in nonRec4 and rec4 requires nodes to have at
least one birth date, active years start year, IMDb ID, and birth place that conforms to shape
LocationShape, and all nodes having these director nodes as director are required to conform to
the shape MovieShape (only in rec4).

The shapes in [13] have been defined in a JSON serialization of the abstract syntax and in
the concrete SHACL language. The recursive set defined in the abstract syntax is not strictly
stratified, unless it is redefined in our new fragment strictly stratified L+. We made the following
changes to the original shapes:

• Constraints of the form ≥n r.s for n ≥ 0, property path r, and shape s were mapped to:

1 [

2 sh:path r ;

3 sh:qualifiedValueShape [ sh:node s ] ;

4 sh:qualifiedMinCount n

5 ] .

For each focus node v, there must exist at least one value node v′ that conforms to the
referenced shape that is used as value for sh:qualifiedValueShape. The referenced shape
declares a constraint of kind NodeConstraintComponent which requires that every value
node for focus node v′ conforms to the shape s. Since the constraint-declaring shape is a
node shape, the set of value nodes is the set with as only member the focus node v′. So a value
node v′ conforms to the referenced shape, when it conforms to shape s. Therefore, a focus
node v conforms to the shape if there exists at least one value node that conforms to shape s.
We can simplify the validation by using shape s directly as value for sh:qualifiedValueShape.

We replace the constraint parameter sh:qualifiedValueShape [ sh:node s ] by the semantic-
ally equivalent parameter sh:qualifiedValueShape s to eliminate redundant shapes.

• Constraints of the form ≥1 r.I for property path r and IRI I were mapped to:
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1 [

2 sh:path r ;

3 sh:qualifiedValueShape [ sh:hasValue I ] ;

4 sh:qualifiedMinCount 1

5 ] .

For each focus node v, there must exist at least one value node v′ that conforms to the
referenced shape that is used as value for sh:qualifiedValueShape. The referenced shape
declares a constraint of kind HasValueConstraintComponent which requires that one of the
value nodes is I. Since the constraint-declaring shape is a node shape, the set of value
nodes is the set with as only member the focus node v′. So a value node v′ conforms to
the referenced shape when v′ is I. Therefore, a focus node v conforms to the shape if there
exists at least one value node that is I. We can simplify the validation by using a constraint
of kind HasValueConstraintComponent.

We replace the constraint of kind QualifiedMinCountConstraintComponent by a semantic-
ally equivalent constraint of kind HasValueConstraintComponent to eliminate unnecessary
referencing constraints. We now have the shape:

1 [

2 sh:path r ;

3 sh:hasValue I

4 ] .

• The original subsets nonRec4 and rec4 introduce the shape DirectorShape. This shape
declares a property constraint with as value a property shape that declares a referencing
constraint referencing the shape LocationShape. However, nonRec4 declares a constraint
of kind NodeConstraintComponent, i.e. ¬(≥1 dbo:birthPlace.¬LocationShape), and rec4 of
kind QualifiedMinCountConstraintComponent, i.e. ≥1 dbo:birthPlace.LocationShape. The
prior requires all value nodes to conform to the shape while the latter only a single value
node. We replace the prior by the latter to align the non-recursive and recursive shapes
graphs.

• Property constraints with as value a property shape that declare a single constraint of kind
MinCountConstraintComponent, i.e. ≥n r.> for some n ≥ 0 and property path r, that were
only present in rec4 but not in nonRec4 have been removed to align the non-recursive and
recursive shapes graphs.

When a new shape is referenced, for example by comparing nonRec2 to nonRec3 or nonRec3
to rec3, then a minimum cardinality constraint is replaced by a referencing constraint (NodeCon-
straintComponent or QualifiedMinCountConstraintComponent) referencing the new shape. So,
each shape now declares the same pairs of property shapes and paths among subsets in which that
shape is present.

Table 7.2 lists, for each data and shapes graph, the number of focus nodes identified for the
validation against each node shape. These number have been determined using Algorithm 5
for the only target-declaring shape MovieShape and the nodes targeted by this shape. This
procedure determines which nodes need to be validated against which shapes in order to conclude
the conformance of the target nodes against the shape MovieShape.
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Table 7.2: Number of focus nodes identified for the validation against each node shape

Node shape DBP10 DBP20 DBP40 DBP80 DBP100

nonRec2

MovieShape 11,233 22,370 44,656 89,677 111,938
ActorShape 2,945 9,552 26,088 61,496 79,438

nonRec3

MovieShape 11,233 22,370 44,656 89,677 111,938
ActorShape 2,945 9,552 26,088 61,496 79,438
LocationShape 427 1,688 5,140 11,915 14,641

nonRec4

MovieShape 11,233 22,370 44,656 89,677 111,938
ActorShape 2,945 9,552 26,088 61,496 79,438
LocationShape 506 1,974 6,012 13,591 16,627
DirectorShape 879 3,121 8,682 21,372 27,583

rec2

MovieShape 20,854 52,380 92,241 123,830 131,195
ActorShape 5,731 20,151 46,632 84,260 99,020

rec3

MovieShape 20,854 52,380 92,241 123,830 131,195
ActorShape 5,731 20,151 46,632 84,260 99,020
LocationShape 720 2,846 7,227 13,886 16,253

rec4

MovieShape 23,528 59,758 102,882 134,761 141,690
ActorShape 6,233 21,626 48,621 85,391 99,357
LocationShape 871 3,379 8,378 15,605 18,188
DirectorShape 1,587 5,769 13,376 25,289 30,090

7.2 Results

Figure 7.2 shows a visualization of the average validation time versus the data graph. Table 7.3
lists the average validation time of validating each data graph against every shapes graph, as well
as the number of violating focus nodes and a breakdown for recursive shapes into the average time
spent generating fixed-point nodes, assigning fixed-point shapes to nodes, generating a SHACL-
like validation report, and the number of iterations needed to reach a fixed point. Figure 7.3 shows
a visualization of the breakdown for recursive shapes graphs.

The general observation is that the total validation time increases with the size of the data
graph (see Figure 7.2) since the number of target, focus, and value nodes increases as the data
graph becomes more complete (see Table 7.2). The validation time against the recursive data
graphs increase faster and take longer in total compared to the non-recursive data graphs due to
the cost of handling recursion.

A second observation is that this trend is less or not present at all when comparing DBP100

to DBP80 for any recursive shapes graph. An increase in the size of the data graph comes with
an increase in the number of fixed-point nodes (see Table 7.2) and time spent generating these
(see Figure 7.3). An increase in fixed-point nodes typically results in an increase in time spent
assigning fixed-point shapes to these nodes. However, this does not necessarily have to be the
case as changes in the number of fixed-point and value nodes could also significantly reduce the
time needed to decide that a constraint has been satisfied or violated. This is the case for DBP100
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compared to DBP80 and any recursive shapes graph, caused by new value nodes causing a violation
against the constraint declared by ex:ActorShape of kind NodeConstraintComponent referencing
ex:MovieShapes, i.e. ∀ d̂bo:starring.MovieShape, to be determined sooner.

The time spent generating a SHACL-like validation report increases with the size of the data
graph (see Figure 7.3) as more target nodes are being identified (see Table 7.2), while a majority
of them still violate the shapes that target them. This happens when the data graph is still not
complete enough or when the shapes graph does not correspond well enough to the patterns in
the data set. In our case its the latter, as validating the complete data set indicates that 11,233
of the 111,938 targeted nodes are still violated.

The final observation is that validating DBP100 against nonRec4 and rec4 take on average 54.8
and 56.4 seconds, respectively. One of the key aspects is that the cost of handling recursion in the
complete data set is only marginal. This demonstrates the effectiveness of our pruning strategies
and minimal overhead by running punctual fixed-point iterations.
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Figure 7.2: Average validation times vs. data graph
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Table 7.3: Average validation times and times spent for Nodes, Assign, Report, and Other

The table below shows, in order, the data graph, shapes graph, average total validation time
(Total), and average time spent generating fixed-point nodes (Nodes), assigning fixed-point shapes
to nodes (Assign), generating a SHACL-like validation report (Report), and doing other work
(Other), i.e. the remaining difference with the total validation time, as well as the number of
violating focus nodes (Viola.) and the number of iterations needed to reach a fixed point (Iter.).
All times are reported in seconds, with the exception of the value not applicable (NA) for Nodes,
Assign, Report, and Other when the shapes graph is non-recursive.

Data
Graph

Shapes
Graph

Total Nodes Assign Report Other Viola. Iter.

DBP10 nonRec2 1.4 NA NA NA NA 11,233 NA
DBP20 nonRec2 3.3 NA NA NA NA 22,370 NA
DBP40 nonRec2 7.8 NA NA NA NA 44,655 NA
DBP80 nonRec2 20.8 NA NA NA NA 89,556 NA
DBP100 nonRec2 24.3 NA NA NA NA 111,113 NA

DBP10 nonRec3 1.5 NA NA NA NA 11,233 NA
DBP20 nonRec3 3.6 NA NA NA NA 22,370 NA
DBP40 nonRec3 10.2 NA NA NA NA 44,656 NA
DBP80 nonRec3 34.6 NA NA NA NA 89,653 NA
DBP100 nonRec3 43.6 NA NA NA NA 111,629 NA

DBP10 nonRec4 1.5 NA NA NA NA 11,233 NA
DBP20 nonRec4 4.2 NA NA NA NA 22,370 NA
DBP40 nonRec4 11.7 NA NA NA NA 44,656 NA
DBP80 nonRec4 42.3 NA NA NA NA 89,675 NA
DBP100 nonRec4 54.8 NA NA NA NA 111,883 NA

DBP10 rec2 3.9 0.7 2.2 0.9 0.1 11,233 3
DBP20 rec2 11.6 3.3 6.2 1.8 0.3 22,370 3
DBP40 rec2 24.2 7.2 12.4 4.2 0.5 44,656 3
DBP80 rec2 43.8 14.5 21.8 6.7 0.8 89,674 4
DBP100 rec2 42.8 16.0 19.5 6.6 0.6 111,919 4

DBP10 rec3 3.8 0.7 2.2 0.8 0.1 11,233 3
DBP20 rec3 11.9 3.5 6.4 1.8 0.3 22,370 3
DBP40 rec3 25.5 7.5 13.3 4.2 0.5 44,656 3
DBP80 rec3 44.9 14.9 22.7 6.5 0.8 89,677 4
DBP100 rec3 44.5 16.0 21.1 6.7 0.7 111,927 4

DBP10 rec4 4.4 1.0 2.4 0.9 0.2 11,233 3
DBP20 rec4 13.6 4.4 6.8 2.1 0.3 22,370 3
DBP40 rec4 29.4 9.6 14.6 4.7 0.6 44,656 3
DBP80 rec4 54.6 19.5 24.6 9.6 0.9 89,677 3
DBP100 rec4 56.4 22.0 23.7 9.9 0.7 111,938 4
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This figure shows the data graph, recursive shapes graph, and the average time spent generating
fixed-point nodes (Nodes), assigning fixed-point shapes to nodes (Assign), generating a SHACL-
like validation report (Report), and doing other work (Other).

Figure 7.3: Average times spent for Nodes, Assign, Report, and Other



7.3 Conclusions

As expected, total validation time increases with the number of shapes in the shapes graph and
the size of the data graph as a greater graph identifies more target, focus, and value nodes.
This correlation is stronger for recursive shapes graphs. The number of target nodes is the most
significant predictor of the validation time for both non-recursive and recursive shapes graphs.
The validation time for non-recursive shapes graphs is more significantly impacted by changes in
the number of shapes compared to recursive shapes graphs. The largest portion of the validation
time for recursive shapes graphs is spent assigning fixed-point shapes to nodes.

For the complete data graph and non-recursive shapes graphs, adding the shape LocationShape
by comparing nonRec3 to nonRec2 results in a 79% increase in validation time. Adding the shape
DirectorShape by comparing nonRec4 to nonRec3 results in another 25% increase. Validation
against nonRec4 takes on average 54.8 seconds. For the complete data graph and recursive shapes
graphs, adding the shape LocationShape by comparing rec3 to rec2 results in a 4% increase in
validation time. Adding the shape DirectorShape by comparing rec4 to rec3 results in another
27% increase. Validation against rec4 takes on average 56.4 seconds.

Our experiments indicate that it is indeed possible to validate large real-world data sets against
complex shapes graphs in short periods of time, in the order of seconds. Even selectively adding
recursion did not have a significant impact on validation time. In fact, our experiments only
showed a 3% increase in total validation time, demonstrating the effectiveness of our pruning
strategies and minimal overhead by running punctual fixed-point iterations.

7.4 Discussion

Corman et al. validated the same data set against a similar non-recursive SHACL schema by
means of a single SPARQL query in 5.3 seconds [13]. This demonstrates that large real-world
data sets can be validated against non-recursive shapes graphs using a single SPARQL query in
an even shorter period of time, without extra in-memory computation. This approach requires
access to a SPARQL endpoint. Using a SPARQL endpoint allows validation to be performed
outside the database engine from an external system. Whereas our approach assumes an in-
memory repository, although this is not required for the taken approach to work. Important to
note is that there are many differences between both approaches making a comparison non-trivial.
Our algorithms have explicitly been left single-threaded, whereas as a SPARQL engine most likely
performs multi-threaded evaluation.

SPARQL does not support recursion unless the recursive SPARQL extension, introduced in
[28], is used. Therefore, only non-recursive schemas can be expressed in SPARQL. Validation of
recursive schemas is based on a minimal fixed-point assignment. Finding such an assignment with
respect to a set of SHACL constraints is the problem solved in our study and in [13]. Our study is
aimed at tractability and takes a more practical view towards validating SHACL, and therefore,
our algorithms use the concrete SHACL language and are only sound and complete for tractable
SHACL fragments; whereas the approach in [13] works for arbitrary SHACL schemas defined in
the abstract syntax, although at the cost of intractable.

The approach in [13] consists of a combination of a SPARQL-based and rule-based approach
to validate recursive SHACL. SPARQL is used to retrieve the target nodes for each shape and all
value nodes needed for a node to satisfy the shape’s constraints. This is similar to the generation
of the fixed-point nodes in our algorithm. The query result is used to generate a set of rules of
the form of the form l0 ∧ ... ∧ ln =⇒ s(v), where li is either si(vi) or ¬si(vi), for some shape
si and node v and vi. Additional rules are add to ensure shapes (the consequent) can only be
assigned if one of the constraints (antecedent) holds and that target nodes can only be assigned
the positive literal. Then solutions to these rules are found using a SAT solver. The problem of
finding a satisfying assignment to these rules has worst-case exponential complexity, hence the
intractability. They also showed that when the fragment is tractable, that the SAT solver can
be replaced with on-the-fly inferencing which runs in polynomial time. This is similar to the
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approach of our algorithm of finding a minimal fixed-point assignment σminFix and determining
that no negative shape label is being assigned.

In our attempt to validate our results with another validator, we observed that the results
obtained by the implementation [12] of the algorithm of [13] were incorrect. The results obtained
by both validators did match when we replaced a universal quantification by an existential quan-
tification. This might be related to the fact that the schema is actually not tractable under
the fragments considered in [13], while their implementation with in-memory inference assumes
a tractable fragment. The schema is only tractable when considering the strictly stratified L+

fragment introduced in this thesis, which may have been done implicitly.
Our algorithm has been implemented in TopQuadrant’s SHACL API, with as result that our

obtained results are impacted by the used functionality of TopQuadrant’s SHACL API (e.g.,
determining the values of a SHACL property path). In order to form a more accurate opinion
about the performance of our algorithm, the algorithm needs to be implemented stand-alone
while revisiting the implementation of critical functionality. Finally, adding multi-threading to
our algorithms would allow for significant performance optimizations, for instance, by validating
constraints concurrently.
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Chapter 8

Conclusions

8.1 Summary

We researched various approaches to validate RDF graphs. Using SPARQL for validation is an
interesting choice due to its wide adoption. Using a grammar-based approach for validation like
SHACL allows constraints to be expressed in a concise and declarative manner, this in contrast
to SPARQL. We mostly focused on the constraint language SHACL as it can be seen as the most
prominent constraint language due to its standardization, support for recursion, and ability to
validate and declare high-level reusable components of arbitrary SPARQL-based constraints.

Validation of SHACL Core (L) is NP-complete. Intractability stems from the ability to validate
constraints using arbitrary negation and recursion. This property still holds for the severely lim-
ited fragment stratified L≥1,¬,∧ with stratified negation and just basic operators. Two tractable
recursive fragments have been identified in previous research: L≥n,∧,∨,r,EQ which has an addi-
tional native operator for disjunction but disallows negation, and strictly stratified L with strictly
stratified negation.

We proposed a new tractable and more expressive recursive SHACL fragment, called strictly
stratified L+, with strictly stratified negation and additional native operators for universal quanti-
fication and disjunction. It includes L≥n,∧,∨,r,EQ and strictly stratified L, and allows for additional
constraints to be expressed using native operators to express universal quantification and disjunc-
tion without the use of negation. This implies that use of such constraints is not constrained by
the strict stratification restrictions. Validation of strictly stratified L+ is P-complete in combined
complexity.

Validation of recursive schemas is based on a minimal fixed-point assignment. We proved that
validation of all tractable recursive fragments identified so far, in particular strictly stratified L+,
is indeed tractable. We showed that if the minimal fixed-point assignment, which can be computed
in polynomial time in |G|+|S|, does not assign the negated shape to a node targeted by this shape,
that there must exist another constraint satisfying assignment that successfully assigns the shape
to this node. Meaning that a node is valid against a recursive shape if and only if the minimal
fixed-point assignment does not assign the negated shape.

We studied the differences between validating non-referencing constraints using a native im-
plementation and by means of a SPARQL query. Evaluation of SPARQL queries is impacted
by the query plan generator and optimizer. The queries analyzed in this study resulting from
mapping SHACL constraints to SPARQL queries are simple queries due to the validation strategy
where each constraint is validated by a single query. Validation of a single constraint is a simple
procedure for which parsing and optimizing queries may not give any additional benefit justifying
the induced overhead. We assessed validation performance by reasoning about the number of
index lookups and scanned triples for SPARQL query plans generated using Amazon Neptune and
potential native implementations. We find that less than property pair constraints may benefit
from a native implementation as our native implementation has a constant number of index look-
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ups compared to a linear number for SPARQL-based validation in Amazon Neptune. Minimum
and maximum cardinality constraints may as well benefit from a native implementation as the
number of scanned triples can be bound based on the cardinality value, whereas SPARQL-based
validation in Amazon Neptune scans all triples. We identified that SPARQL-based validation of
these constraints may achieve that same benefit by limiting the number of extracted join partners.

We proposed a new native algorithm to validate non-recursive SHACL using immediate con-
straint evaluation. Our algorithm runs in polynomial time in |G| + |S|, operates on the concrete
SHACL language, and generates SHACL-compliant validation reports. The validation against
referencing constraints is based on the nested validation of nodes against referenced shapes. This
recursion may be infinite when the referenced shape is recursive and the node part of a cycle.

We propose a new native hybrid algorithm to validate recursive SHACL and mitigate this
problem by extending the algorithm for non-recursive SHACL with a minimal fixed-point algorithm
handling validation against recursive shapes. Our algorithm is sound and complete for all tractable
fragments identified so far, including non-recursive SHACL. It runs in polynomial time in |G|+ |S|,
operates on the concrete SHACL language, and generates SHACL-like validation reports.

Besides using a tractable fragment, our hybrid algorithm employs additional optimizations
techniques to make validation more efficient. The dependency graph of the shapes graph is used
to determine: whether a shape is recursive and which algorithm is needed; the minimal set of
fixed-point shapes that need to be assigned to conclude the conformance against the recursive
shape; and in what order fixed-point shapes should be assigned to minimize inconclusive answers.
For each fixed-point shape, the data graph is iterated and a dedicated set of value nodes is
constructed to which the fixed-point shape needs to be assigned to conclude the conformance
against the recursive shape. Then fixed-point shapes are only assigned to effective fixed-point
nodes, which are fixed-point nodes that do not have the shape or its negation assigned, utilizing
the monotonicity property. Lastly, non-referencing constraints, i.e. constraints independent on
the assignment, are deactivated in subsequent fixed-point iterations, hereby eliminating redundant
validations.

Our experiments of the performance and scalability of both algorithms demonstrate that val-
idation of large real-world data sets against complex SHACL shapes graphs can be performed
efficiently, in the order of seconds. Even selectively adding recursion did not have a significant
impact on validation time; our experiments only showed an increase of 3%. Hereby, demonstrat-
ing the effectiveness of our optimization techniques and minimal overhead by running punctual
fixed-point iterations.

With our study, we advanced the state-of-the-art in graph validation by proposing a new
tractable and more expressive recursive SHACL fragment and an effective method to validate
tractable fragments. Hereby we assist in bringing structure to RDF graphs, a need that only
increases as graph data is becoming more popular and constantly growing in terms of volume and
variety. By doing so, we hope to have a positive impact on the evolution and adoption of graph
database management systems, as well as on the meaningful data analyses that can be performed
using graph data.

8.2 Future Work

Future work may identify new tractable recursive SHACL fragments, potentially by relaxing the
strict stratification restrictions using for instance additional properties of the dependency graph;
as well as new methods to efficiently validate SHACL.

Our algorithms could further be improved by utilizing multi-threading, for example to validate
constraints concurrently. Another interesting future work proposal is to make them incremental.
Hereby avoiding that a complete data set needs to be revalidated when the data set changes,
but instead, only requiring validation of the part affected by the update. For a recursive shape,
it may be possible to use the minimal fixed-point assignment of the latest validation, remove
assignments to nodes affected by the update, and then run the fixed-point algorithm starting with
this assignment.
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Appendix 1

Additional Algorithms for SHACL
Constraint Components

1.1 Introduction

This appendix describes and provides validator implementations for one constraint component of
each type considered in this thesis, i.e. referencing constraint component requiring validation,
referencing constraint component requiring conformance checking, and non-referencing constraint
components.

Abstractions We abstract away from the creation of validation results. Instead, we simply
assume the existence of a function createResult that receives a constraint, focus node, value, and
textual description, and generates the corresponding validation result as defined in [23]. This is
a trivial task as all mandatory properties can easily be determined from the data available in a
constraint validator.

We further assume a recursion guard (see Section 6.2.3) that keeps track of the nodes and
shape being recursed. The function startRec receives a set of nodes and shape, returns the nodes
that are not being recursed for the shape, and then registers them as being recursed. The function
endRec receives a set of (recursed) nodes and shape, and unregisters the nodes for the shape as
being recursed.
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1.2 Immediate Constraint Evaluation

PropertyConstraintComponent Restricts the set of value nodes to have a given property
shape (value of mandatory parameter sh:property). The validation results are the results of val-
idating the set of value nodes as focus nodes against the property shape. This is a referencing
constraint component requiring validation.

Algorithm 7 Validation of a set of focus nodes against a constraint of kind PropertyConstraint-
Component

1: procedure validateNodesAgainstPropertyConstraint(GD, GS , Vfocus, c)
2: (s, C, P )← c
3: sproperty ← P (sh:property)
4: if isNodeShape(s) then
5: return validateNodesAgainstShape(GD, GS , Vfocus, sproperty)
6: else
7: R← ∅
8: for all vfocus ∈ Vfocus do
9: Vvalue ← getValueNodes(GD, GS , s, vfocus)

10: R← R ∪ validateNodesAgainstShape(GD, GS , Vvalue, sproperty)
11: end for
12: return R
13: end if
14: end procedure

Note that the if-statement on line 4 is not required and that the negative branch is sufficient
to handle both cases, when the constraint is declared by a node and property shape. The positive
branch however limits the number of calls to validateNodesAgainstShape when the constraint has
been declared by a node shape. The negative branch would call validateNodesAgainstShape for
each focus node with a single value node as the value nodes for node shapes are the individual
focus nodes forming a set with exactly one member [23], whereas the positive branch would make
a single call with all the focus nodes as value nodes. This corresponds to the redefined definitions
of validation to consider a set of focus nodes instead of a single focus node.
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EqualsConstraintComponent Restricts the set of value nodes to equal the set of nodes
that have the focus node as subject and the value of a given property (value of mandatory para-
meter sh:equals) as predicate . If a value node does not exist as a value of the given property,
there is a validation result with the value node as value. If a value of the given property is not
a value node, there exists a validation result with the value as value. This is a non-referencing
constraint component.

Algorithm 8 Validation of a set of focus nodes against a constraint of kind EqualsConstraint-
Component

1: procedure validateNodesAgainstEqualsConstraint(GD, GS , Vfocus, c)
2: (s, C, P )← c
3: pequals ← P (sh:equals)
4: R← ∅
5: for all vfocus ∈ Vfocus do
6: Vvalue ∈ getValueNodes(GD, GS , s, vfocus)
7: for all vvalue ∈ Vvalue ∧ (vfocus, pequals, vvalue) /∈ GD do
8: R← R ∪ createResult(c, vfocus, vvalue, ”not a value of equals”)
9: end for

10: for all (vfocus, pequals, vvalue) ∈ GS ∧ vvalue /∈ Vvalue do
11: R← R ∪ createResult(c, vfocus, vvalue, ”not a value node”)
12: end for
13: end for
14: return R
15: end procedure

NodeConstraintComponent Restricts the set of value nodes to conform to the given node
shape (value of mandatory parameter sh:node). If a value node does not conform to the node shape,
there is a validation result with the value node as value. This is a referencing constraint component
requiring conformance checking.

Algorithm 9 Validation of a set of focus nodes against a constraint of kind NodeConstraintCom-
ponent

1: procedure validateNodesAgainstNodeConstraint(GD, GS , Vfocus, c)
2: (s, C, P )← c
3: snode ← P (sh:node)
4: R← ∅
5: for all vfocus ∈ Vfocus do
6: for all vvalue ∈ getValueNodes(GD, GS , s, vfocus) do
7: if |validateNodesAgainstShape(GD, GS , {vvalue}, snode)| > 0 then
8: R← R ∪ createResult(c, vfocus, vvalue, ”does not conform to ” + snode)
9: end if

10: end for
11: end for
12: return R
13: end procedure
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1.3 Recursive SHACL

PropertyConstraintComponent Restricts the set of value nodes to have a given property
shape (value of mandatory parameter sh:property). The validation results are the results of val-
idating the set of value nodes as focus nodes against the property shape. This is a referencing
constraint component requiring validation.

Algorithm 10 Validation of a set of focus nodes against a constraint of kind PropertyConstraint-
Component

1: procedure validateNodesAgainstPropertyConstraint(GD, GS , Vfocus, c, σ = null, b =
False)

2: (s, C, P )← c
3: sproperty ← P (sh:property)
4: R← ∅
5: if isNodeShape(s) then
6: if b then
7: for all vfocus ∈ Vfocus do
8: if ¬sproperty(vfocus) ∈ σ then
9: R← R ∪ {(s, rsh:false, vfocus)}

10: else if sproperty(vfocus) /∈ σ then
11: R← R ∪ {(s, rsh:unknown, vfocus)}
12: else
13: R← R ∪ {(s, rsh:true, vfocus)}
14: end if
15: end for
16: else

17: Vvalue ← startRec(

{
vfocus

∣∣∣∣ vfocus ∈ Vfocus∧ (σ = null ∨ ¬sproperty(vfocus) ∈ σ)

}
, sproperty)

18: R← validateNodesAgainstShape(GD, GS , Vvalue, sproperty, σ)
19: endRec(Vvalue, sproperty)
20: end if
21: else
22: for all vfocus ∈ Vfocus do
23: Vvalue ← getValueNodes(GD, GS , s, vfocus)
24: if b then
25: if ∃vvalue∈Vvalue

¬sproperty(vvalue) ∈ σ then
26: R← R ∪ {(s, rsh:false, vfocus)}
27: else if ∃vvalue∈Vvalue

sproperty(vvalue) /∈ σ then
28: R← R ∪ {(s, rsh:unknown, vfocus)}
29: else
30: R← R ∪ {(s, rsh:true, vfocus)}
31: end if
32: else

33: Vvalue ← startRec(

{
vvalue

∣∣∣∣ vvalue ∈ Vvalue∧ (σ = null ∨ ¬sproperty(vvalue) ∈ σ)

}
, sproperty)

34: R← R ∪ validateNodesAgainstShape(GD, GS , Vvalue, sproperty, σ)
35: endRec(Vvalue, sproperty)
36: end if
37: end for
38: end if
39: return R
40: end procedure
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NodeConstraintComponent Restricts the set of value nodes to conform to the given node
shape (value of mandatory parameter sh:node). If a value node does not conform to the node shape,
there is a validation result with the value node as value. This is a referencing constraint component
requiring conformance checking.

Algorithm 11 Validation of a set of focus nodes against a constraint of kind NodeConstraint-
Component

1: procedure validateNodesAgainstNodeConstraint(GD, GS , Vfocus, c, σ = null, b =
False)

2: (s, C, P )← c
3: snode ← P (sh:node)
4: R← ∅
5: for all vfocus ∈ Vfocus do
6: bfalse ← False
7: bunknown ← False
8: for all vvalue ∈ getValueNodes(GD, GS , s, vfocus) ∧ ¬bfalse do
9: if b then

10: if ¬snode(vvalue) ∈ σ then
11: bfalse ← True
12: else if snode(vvalue) /∈ σ then
13: bunknown ← True
14: end if
15: else if (σ 6= null ∧ ¬snode(vvalue) ∈ σ)

∨ (σ = null ∧ |validateNodesAgainstShape(GD, GS , {vvalue}, snode)| > 0) then
16: R← R ∪ createResult(c, vfocus, vvalue, ”does not conform to ” + snode)
17: end if
18: end for
19: if b then
20: if bfalse then
21: R← R ∪ {(s, rsh:false, vfocus)}
22: else if bunknown then
23: R← R ∪ {(s, rsh:unknown, vfocus)}
24: else
25: R← R ∪ {(s, rsh:true, vfocus)}
26: end if
27: end if
28: end for
29: return R
30: end procedure
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AndConstraintComponent Restricts the set of value nodes to conform to all members of
the given list of shapes (value of mandatory parameter sh:and). If a value node does conform
to each member, there is a validation result with the value node as value. This is a referencing
constraint component requiring conformance checking.

Algorithm 12 Validation of a set of focus nodes against a constraint of kind AndConstraintCom-
ponent

1: procedure validateNodesAgainstAndConstraint(GD, GS , Vfocus, c, σ = null, b = False)
2: (s, C, P )← c
3: Sand ← P (sh:and)
4: R← ∅
5: for all vfocus ∈ Vfocus do
6: bfalse ← False
7: bunknown ← False
8: for all vvalue ∈ getValueNodes(GD, GS , s, vfocus) ∧ ¬bfalse do
9: if b then

10: if ∃sand∈Sand
¬sand(vvalue) ∈ σ then

11: bfalse ← True
12: else if ∃sand∈Sand

sand(vvalue) /∈ σ then
13: bunknown ← True
14: end if
15: else if (σ 6= null ∧ ∃sand∈Sand

¬sand(vvalue) ∈ σ)
∨ (σ = null ∧ ∃sand∈Sand

|validateNodesAgainstShape(GD, GS , {vvalue}, sand)| > 0) then
16: R← R ∪ createResult(c, vfocus, vvalue, ”does not conform to all members”)
17: end if
18: end for
19: if b then
20: if bfalse then
21: R← R ∪ {(s, rsh:false, vfocus)}
22: else if bunknown then
23: R← R ∪ {(s, rsh:unknown, vfocus)}
24: else
25: R← R ∪ {(s, rsh:true, vfocus)}
26: end if
27: end if
28: end for
29: return R
30: end procedure
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