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Abstract

In this thesis we consider quantum protocols for secure delegated storage of classical
data. Specifically, we propose protocols that achieve information-theoretic security,
and use a key that is shorter than the data itself. First we define our problem and
security definitions, and give an overview of relevant work in the literature of quantum
cryptography. Then, after explaining in detail the formalism that we use, we describe
two protocols that achieve secure delegated storage. They each use a different ap-
proach, and we analyze their security in different ways. However, for both protocols
we prove composable, information-theoretic security. We discuss the key lengths that
can be achieved for both protocols, and proceed with a general discussion, pointing out
directions for further research.
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1 Introduction

1.1 Motivation

In this thesis we consider the problem of delegated storage: How to let an untrusted party
keep your message for some time without that party managing to learn anything about it?
One approach is to simply encrypt the whole message with a secret key, and sending the
resulting ciphertext to the server. When you want access to the message again, ask back
the ciphertext and decrypt it with the key. Such approaches are currently used for example
by cloud based storage services using end-to-end encryption.

Typically, an encryption scheme is used that requires only a short key, which is easily stored
locally. The security of such a scheme however relies on computational assumptions. While
such security conditions are strong enough in most practical cases, and indeed widely consid-
ered acceptable, we are here interested in obtaining information-theoretic (or unconditional)
security, meaning that the security cannot be compromised by potential technological or
theoretical developments in the future.

Classically, information-theoretically secure encryption schemes require a key that is at least
as long as the plaintext. Such a key is not practical for delegated storage, since it requires
the client to store at least as many bits as the length of the message. Now the problem
of storing your data is replaced by the problem of storing your keys. Information-theoretic
security does hence not seem possible if keys are kept short.

Quantum information theory provides more flexibility. One of the properties that sets
quantum information apart from classical information is that, in general, it cannot be cloned.
This uncloneability provides, together with a suitable (secret) encoding of classical data in a
quantum state, a way of tamper-detection: the ability to check whether someone interacted
with a quantum state. This then opens up a new kind of security, which could be called
evident security: If the state passes some tamper check, you know that the adversary has not
learned anything about the data, but when the state fails the check, you cannot necesarily
say anything about security. Perhaps surprisingly, this kind of approach can be achieved
with information-theoretic guarantees, but with keys shorter than the data itself.

1.2 Problem statement

We will here make our goal more precise. We consider a client, hereafter called Alice, who
has some data as a bitstring of length `. We imagine protocols that allow Alice to transform
her data (or message) into a ciphertext, which could be a quantum state. She then sends
this ciphertext to a server called Eve, where it will be stored. At a later point in time, Alice
should be able to ask back the ciphertext and transform it into her original data. In the
box below we list the further requirements that the protocol should satisfy.
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The protocol should

• require Alice to remember only a classical key, which is shorter than `,

• allow Alice, when she has retrieved her ciphertext, to check whether Eve tampered
with the ciphertext,

• guarantee unconditionally that if Alice verifies that Eve has not tampered too
much, her data is authentic and Eve did not learn anything about the data,

• not have to guarantee anything about the authenticity or secrecy of the data if
Alice determines that Eve tampered too much.

We stress that we do not require a full encryption protocol, which should hide the data from
the server in all cases; we have the weaker requirement that the data should be secret only
if we know that Eve did not significantly disturb the state.

It is now important to elaborate what we actually mean by information-theoretic security,
and what we mean by it in the context of secure delegated storage. A cryptosystem or cryp-
tographic protocol is meant to offer some kind of service, typically the hiding of information
from an adversary. To break such a protocol could mean various things. In the context of
delegated storage we use the following definition.

Definition 1. An adversary can break a delegated-storage protocol if he can learn any
information (apart from its length) about the message without causing noticeable disturbance.

Note that the adversary might already have some information about the message before the
protocol begins; he might know it contains natural language or that is always starts with
the same pattern. In this case “breaking” or “learning information” then means that the
adversary obtains new or more information about the message.

Now we can define information-theoretic security for delegated protocols.

Definition 2. A delegated-storage protocol has information-theoretic or unconditional
security if it is impossible to break even if the adversary has unlimited (quantum) computing
power and memory.

Furthermore, composable security of a protocol means that is can be safely used within
another protocol. A common way to prove composable security is to bound the distance
(typically the diamond norm, see Chapter 2) of the protocol to an ideal, perfect version
of it. Such a distance represents the distinguishability between the real and the perfect
protocol.

We note that the above requirements are impossible to meet using a fully classical protocol,
since there is no way to classically detect any tampering by the adversary. In the following
section, we give an introduction to quantum cryptography and results in the literature that
are relevant for solving our problem.

5



1.3 Quantum cryptography

1.3.1 Overview

Although secure quantum (remote) storage has not had much research, and in practice is
not yet feasible, the field of quantum cryptography has gotten quite some attention over
the last couple of decades. Wiesner was one of the first to relate quantum mechanics to
cryptography by proposing a scheme for quantum money [50]; however, the world was not
yet ready for his ideas. In 1984 Bennett and Brassard really started the field of quantum
cryptography by introducing the first algorithm for Quantum Key Distribution (QKD),
later called BB84 after the inventors. Although QKD has been the flagship of the field
as a whole, and has since been widely studied, other ways of exploiting quantum physics
for cryptographic tasks include Quantum Key Recycling (QKR), uncloneable encryption,
oblivious transfer, delegated computing, revocable commitment, proof-of-deletion, quantum
readout of Physically Uncloneable Functions (PUFs) and one-time signatures. (For an
overview of many of the non-QKD topics of quantum cryptography, see [8]).

A fundamental difference that sets quantum cryptography apart from the classical case is
the ability to check if a malicious party has interacted or tampered with some quantum
data. This works roughly as follows. The theory of quantum physics tells us that measuring
a state that is in a superposition yields a non-deterministic result. Therefore, if a classical
bit is encoded in a quantum state using an unknown basis (see Chapter 2), any interaction
with this state—like measuring it, or entangling it with an ancilla—will likely disturb it.
This then leads to disturbance of the classical information inside it, which is called noise.
Furthermore, the no-cloning principle prevents an attacker to make copies of the quantum
state. This means that to try and learn anything about the underlying classical data, the
attacker must interact with (and disturb) the original quantum state. Using the noise level,
or bit error rate (BER), one can get an estimate of the amount of interaction by an attacker,
and hence bound the attacker’s knowledge. 1

Tamper detection is indeed widely used in various quantum cryptographic protocols. In
QKD for example, typically two honest parties—Alice and Bob—exchange secret classical
information with each other by encoding it in quantum states. By checking how much
a potential eavesdropper Eve has tampered with these quantum states, they obtain an
estimate of how much information Eve might have gotten about the classical data. If the
data is determined to still be sufficiently secret, Alice and Bob proceed with extracting a
fully secret shared key from it [5, 30, 34].

QKR uses tamper detection to check whether keys can be used again after earlier uses,
which might have been eavesdropped on [16, 17, 19, 41, 29]. This can lead to lower key
consumption (or higher rate), which is not possible classically. Indeed, the well-known
one-time-pad famously encrypts a message with information-theoretic-security, but is aptly
named because there is no guarantee that is can be re-used safely. If, however, a quantum
scheme is built around it, the amount of secrecy about the key can be established and parts
of the key can safely be re-used.

Uncloneable Encryption has been studied first by Gottesman [22] and later (after having
seen no attention for some time) by Broadbent et al [7]. Gottesman’s ciphertexts are actually
not uncloneable as such, but would merely reveal any tampering by an eavesdropper, which

1Such noise can also be introduced by imperfections of the physical channel. However, since the causes
cannot be distinguished, all noise is assumed to come from a malicious eavesdropper.
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is in fact much like what happens in QKD and QKR. Gottesman’s main result is however
that the message is still secure even if the keys leak afterwards. Broadbent relabelled the
earlier work as tamper-evident encryption and herself considered quantum ciphertexts for
which it is impossible to create two copies that are both decryptable.

In most of the protocols for one of the above topics, one can make a distinction between
a quantum phase and a classical post-processing phase. In QKD and QKR, the classical
result of the quantum phase is typically called a raw key. The honest parties (Alice and
Bob) perform parameter estimation by calculating the noise of the communicated data; as
explained above this is diretly related to an eavesdropper’s tampering. If the noise level is too
high, the protocol aborts. The reason for this is twofold. Firstly, Alice and Bob generally
allow a certain amount of noise (be it due to physical imperfections or an attack), since
otherwise, in practice they will abort almost all of the time. Therefore they perform error-
correction, for example by exchanging a syndrome using a linear error correcting code, such
that Alice and Bob end up with the exact same raw key. If the noise is too high, however,
trying to correct all errors becomes infeasible if not impossible. Secondly, given a high error
rate it cannot be ruled out that an eavesdropper has a considerable amount of information
about the raw key. Depending on the subsequent classical privacy amplification scheme, it
might become impossible to transform the raw key—now too unsecure—into a fully secret
key. For a high noise level, the syndrome must be large as well; therefore its publication also
decreases the raw key’s secrecy considerably. The most common way of performing privacy
amplification is to use a seeded extractor on the raw key. So-called strong extractors have
the (perhaps surprising) property that the output is completely uniform to an attacker even
if the seed is publicly announced, which is indeed what often happens in QKD or QKR
protocols.

1.3.2 Proof techniques

The correctness of quantum cryptographic protocols is often defined in a straightforward
way: for QKD, Alice and Bob must end up with the exact same key, and for any encryption
protocol the message must be perfectly recoverable after encryption and decryption. Error
correction, mentioned before, enables correct executions of the protocol even in the presence
of noise.

The security of such protocols can be seen in multiple ways. For QKD for example, one
way to reason about the security is to check the mutual information I(K;E) between the
generated key K and Eve’s side information E [30, 31, 40]. In the context of quantum
side-information, however, mutual information has been shown not to be a good security
metric [26, 20]. Universally composable security of a protocol guarantees that it is still
secure in any context, for example when it is used as a subprotocol in a bigger scheme.
Universal composability is now the preferred goal for security proofs and has been proven
for various QKD schemes [4, 10, 31, 36, 27, 33, 43].

Universally composable security can be proven in multiple ways. First, the (smooth) min-
entropy, conditoned on (quantum) side-information, of the key or message could be bounded.
More commonly, the concept of distinguishablility is used. If the actual scheme is distin-
guishable from an ideal scheme only with some arbitrarily small probability, the generated
key, and its uses (composition) in any other scheme are likewise distinguishable from a per-
fect key only with small probability. Typically the diamond distance is used to measure the
distance from the real protocol to some ideal version.
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Over the last few decades, many different security proofs for QKD-like protocols have been
produced in the literature. A major technique was introduced by Shor and Preskill [40]
where they argued that the following two processes are equivalent:

• Alice generates a raw key uniformly at random, and encodes the bits as qubits in a
random basis. She sends the qubits to Bob, who measures them in the correct bases
and obtains a copy of Alice’s raw key.

• Alice creates EPR pairs (entangled qubits), and sends half of each pair to Bob. Alice
and Bob measure their halves in random (but the same) bases, and both obtain a copy
of the raw key.

This reasoning implies that for any prepare-and-measure protocol (where the honest parties
only need to prepare and measure quantum states, but not store them or apply operations on
them), we can consider an equivalent entanglement-based protocol. In the latter, we consider
the eavesdropper Eve preparing EPR pairs, and distributing them to Alice and Bob. Now
we directly relate the bit error rate with the noisiness of the EPR pairs that Eve creates.
In general, this gives more power to Eve than in the prepare-and-measure protocol, since
normally she cannot influence Alice’s state; however, security of the entanglement-based
protocol—which is often easier to analyze—directly implies security of the prepare-and-
measure protocol.

Apart from the above technique, which is widely used in many proofs, we identify two main
routes of proving security of a quantum cryptographic protocol. One is based on so-called
entropic uncertainty relations. These relations formalize the intuition that there is a certain
duality between the correlations between Alice and Bob on the one hand and between
Alice and Eve on the other: the lower the noise between Alice and Bob, the higher the
uncertainty of an eavesdropper is about the raw key. By verifying whether this uncertainty
is sufficiently high, one can proceed with privacy amplification. An advantage of this method
is that it is device-independent, and proves security against general attacks (see Chapter 2).
A disadvantage is that it is suitable only when using 4-state encoding, since generalizations
do not appear to be easily made [6].

Another approach is due to Renner [36, 35, 34] and uses the fact that symmetrization of
a quantum state drastically simplifies its analysis. By applying random permutations and
Pauli operations on an n-partite quantum state, it becomes statistically equivalent to a
factorized state consisting of n equivalent substates. This allows us to only consider a single
subsystem for the security analysis. Furthermore, Skoric and others showed [29, 28] that
using 8-state encoding and performing random Pauli operations on each such subsystem
further simplifies the analysis, since only a single parameter remains: the noise.

The rate of QKD is typically written as the ratio `/n between the length ` of the generated
key and the number of quantum systems (qubits) n that were communicated over the
quantum channel. Best known rates are of the form 1 − 2h(β), where β is the bit error
rate (BER) of the quantum channel, and h is the binary entropy function. In practice, the
number of qubits is desired to remain low, since they are expensive to use, and therefore the
rate should be as high as possible. On the other hand, the amount of classical information
that is to be stored or communicated during the protocol, such as the extractor seed or
the basis encoding information, is generally deemed less important to minimize. However,
research has been done on the topic of efficient QKD, where for example a bias in the basis
encoding is used, which not only reduces the required number of qubits, but also decreases
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the classical communication complexity for comparing the measurement bases [31].

1.3.3 Related work

Coiteux-Roy and Wolf considered the question of proving erasure [13], which can in fact be
seen as an extension to our delegated storage. Their idea is to randomly place traps among
some data to check for tampering upon retrieval. However, they also considered the task of
erasing the data: the server should measure all data in the trap basis and prove that he did
so by showing the measurement results of the trap bits.

1.4 Contributions

Inspired by the techniques and results explained above, we introduce two protocols for
delegated storage, meeting the requirements as stated in Section 1.2. We prove information-
theoretic security (according to Definition 2) for the first Protocol, and show that it is
composable by bounding the distance between our protocol and a perfect one. For the
second Protocol, we prove security in the Common Random String(CRS) model, without any
further assumptions. Again we bound its distance to a perfect variant. The two protocols,
Protocol 1 and Protocol 2, are explained in Chapters 3 and 4 respectively.

Both protocols can be seen as a form of Alice (the client) performing QKD with herself in
the future, where the server is the quantum channel, and then using the generated key as
a one-time pad (OTP) to encrypt her message. Tamper detection allows her to verify the
security of the OTP and hence the message. Since the generated key is immediately used
already, and since she only checks for tampering after this use, the protocols are in that
sense similar to QKR.

Regardless of the similarities with QKD and QKR, there are two main subleties that we
need to address for our use case.

• In most schemes for QKD or QKR, privacy amplification is achieved using a pairwise-
independent (or universal) family of hash functions (see Chapter 2). For such families
the well-known Leftover Hash Lemma can be used to bound the distance between the
protocol and an ideal version of it. However, these families are relatively large; a seed
to choose a function from this family needs to be at least as long as the raw key. For
our approach to delegated storage, we need Alice to keep the seed herself, so we cannot
let her keep such a long seed.

• Furthermore, QKD relies on the fact that first the key is established to be secure,
and only then it is used for encryption. In our case, Eve already has access to the
ciphertext at the moment when she is attacking the qubits, which might compromise
security. Indeed, standard applications of the entropic uncertainty relation in proofs
of QKD do not immediately carry over to our scenario, since the extractor output is
now also part of Eve’s side-information. In QKR, this scenario is handled, but often
again with pairwise independent hashing, which is infeasible as explained above.

Protocol 1 solves the problem of long seeds by using a short-seeded quantum-proof ex-
tractor. The raw key is encoded with BB84 (4-state) encoding, and we analyze its security
using entropic uncertainty relations. We deal with the problem of having the ciphertext
already available to the adversary as follows. First we simply assume that the message is
completely uniform, in which case the ciphertext does not provide any information about
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the OTP (one could see the message as a key hiding the OTP). The resulting security (in
terms of diamond distance) is given in Theorem 1. Then, we lift the restriction on the
entropy of the message. In the analysis we use the weak bound that the adversary now has
an extra ` bits of information in the worst case, since we do not necesarily know the exact
amount of information she has. This leads to the number of qubits needing to be roughly
twice as large. The corresponding security is given in Theorem 2.

Protocol 2 instead depends on the assumption that we are in the Common Random String
(CRS) model, which allows us to perform perfect pseudo-random generation of longer keys.
With these longer keys we can perform pairwise-independent hashing. Our proof holds
for uniform messages. The raw key is encoded with 8-state[41]. Furthermore, we apply
symmetrization to simplify our proof. The result (again the diamond distance between the
protocol and an ideal one) is given in Theorem 3.

For both Protocols, the security error can be made exponentially small in the message length,
by simply making the key material longer, which is commonplace—and indeed intuitive—in
cryptographic protocols. However, our restriction that the key length should not exceed
the message length must be taken into account. Sections 3.5 and 4.5 discuss attainable key
lengths for Protocols 1 and 2 respectively.
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2 Formalism

2.1 Mathematical representation of quantum systems

A quantum mechanical system can be described as a Hilbert space H. The state of such a
system is a vector in this space and is denoted using Dirac notation, like |ψ〉. Mixed states
represent uncertainty: if a state has probability px of being the pure state |x〉, we write this
as the density operator ρ =

∑
x px |x〉 〈x|. We denote by D(HA) the set of density operators

on the space HA. We use the shorthand Ex to denote
∑
x px. Subnormalized states are

density operators ρ with tr ρ < 1.

Classical random variables are also denoted as density operators. A random variable X
taking values in X is written as ρX = Ex∈X |x〉 〈x| or simply Ex |x〉 〈x|.

Classical-quantum states (cq-states) consist of a classical part and a quantum part, which
can be correlated with each other, and often appear in quantum cryptographic settings. For
example, there might be a quantum system E that is correlated to the classical variable X,
in which case we can describe the whole system as the cq-state ρXE = Ex |x〉 〈x|⊗ρEx where
ρEx is the quantum state on E given that X takes the value x.

The trace distance between two density states ρ and σ is defined as

‖ρ− σ‖tr =
1

2
‖ρ− σ‖1 =

1

2
tr
[√

(ρ− σ)†(ρ− σ)
]
. (1)

We say that two states ρ and σ are ε-close if their trace distance ‖ρ−σ‖tr is at most ε.

A measurement on a quantum system is generally described as a positive-operator valued
measure (POVM), which is a set of measurement operators Mx that sum to the identity
and are all positive semidefinite.

2.2 Entropies

In cryptographic settings, we often want to reason about the uncertainty about some random
variable ρ. Uncertainty can be modelled using entropies. The Rényi entropy of order α of
a random variable ρ is defined as

Hα(ρ) =
1

1− α
log tr(ρα) (2)

for α ∈ (0, 1)∪ (1,∞). For a classical variable X with distribution px, the above expression
evaluates to 1

1−α log
∑
x p

α
x , and we will simply write Hα(X) instead of Hα(ρX). Taking the

limit α → 1 results in the von Neumann entropy H(ρ) = −ρ tr ρ (or Shannon entropy for
classical variables). Other widely-used values are α = ∞ resulting in the min-entropy and
α = 1/2 for the max-entropy2.

Often, we want to bound the uncertainty of a variable in the case that an attacker has
some side-information about it. This side-information could be a quantum ancillary state
that is correlated to the classical variable. For example, in QKD a raw key X is generated,
about which an eavesdropper E might have some (quantum) side-information. Eve might do

2Sometimes the max-entropy is instead defined as the Rényi entropy of order 0. However, their smooth
versions (see Defintition 6) are equivalent up to terms that are logarithmic in the smoothing parameter [25].
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some arbitrary operation on her quantum state to obtain information about X. To describe
the uncertainty of the eavesdropper about X, given that she has the quantum state ρE ,
conditional entropies are used. In general, one can define the conditional Rényi entropy
Hα(A|B) for quantum states A and B. Setting α = 1 gives the conditional von Neumann
entropy

H(A|B) = H(A)−H(AB) (3)

where H(AB) is the von Neumann entropy of the combined system ρAB .

Generally, given a state ρAB , the min-entropy of A conditioned on B is given by

Hmin(A|B) = − inf
σB
D∞(ρAB‖IA ⊗ σB) (4)

where the infimum ranges over the space B and where the relative entropy D∞ is defined
as D∞(ρ‖σ) = inf{λ ∈ R : ρ ≤ 2λσ}.

We will in the following only consider conditional entropies of a classical variable X given
an arbitrary (quantum) state E. For these, it is much simpler to define the conditional
min-entropy in terms of its operational meaning of the guessing probability[25]:

Definition 3 (See for example [25]). The conditional min-entropy of a classical variable X
given arbitrary side-information E is

Hmin(X|E) = − logPguess(X|E) (5)

where Pguess is the maximum probability that some party Eve holding the quantum side-
information E can guess the values of X, regardless of how clever her attack is.

The conditonal max-entropy can also be written using relative entropies. However, the
max-entropy turns out to be the dual of the min-entropy [25], which can be seen by the
following definition.

Definition 4 (See for example [25]). For a state ρAB, the max-entropy of A conditioned
on B is

Hmax(A|B) = −Hmin(A|C) (6)

for a purification ρABC of ρAB.

The max-entropy also has a simple operational meaning in the context of classical variables.
For a classical variable X and a party Bob holding side-information B, Hmax(X|B) is the
number of extra bits that Bob would need to reconstruct X, given the information he can
already get from B.

Renner introduced smoothed versions of the min- and max-entropies [37, 34].

Definition 5. For a state ρXE, the ε-smooth min-entropy of X conditioned on E is defined
as

Hε
min(X|E)ρ = sup

ρ′
Hmin(X|E)ρ′ (7)

where the supremum ranges over states ρ′ that are ε-close to ρ.
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Definition 6. For a state ρXB, the ε-smooth max-entropy of X conditioned on B is defined
as

Hε
max(X|B)ρ = inf

ρ′
Hmax(X|B)ρ′ (8)

where the infimum ranges over states ρ′ that are ε-close to ρ.

2.3 Quantum operations

An operation on a quantum system is modelled as a completely positive trace-preserving
map (CPTP map). The following Lemma states that it is impossible to better distinguish
two quantum states after processing them in some way.

Lemma 7. For any CPTP map E and any states ρ, σ, [32]

‖E(ρ)− E(σ)‖tr ≤ ‖ρ− σ‖tr . (9)

Furthermore, processing side-information about a random variable cannot decrease the con-
ditional entropy about it.

Lemma 8 (Data-processing inequality [14]). Let X be a classical random variable. For any
CPTP map E that acts on some state Y , and for any ε ≥ 0, the following inequalities hold:

Hε
max(X|Y ) ≤ Hε

max(X|E(Y )) , (10)

Hε
min(X|Y ) ≤ Hε

min(X|E(Y )) . (11)

The diamond distance is a common way to express the distance between some protocol
(expressed as the CPTP map E) and an ideal version F .

Definition 9. The diamond distance between two CPTP maps E and F that both act on a
space HA is

‖E − F‖� = sup
ρAC∈D(HAC)

‖E(ρAC)−F(ρAC)‖tr . (12)

where HC is some auxiliary system that can be considered to have the same dimension as
HA [29].

Definition 10. The operator norm ‖ · ‖∞ is defined as

‖A‖∞ = sup{
√
〈v|A†A |v〉 : v ∈ HA, 〈v|v〉 ≤ 1} . (13)

If A has a complete set of eigenvalues {λi}i, the above expression simplifies to maxi |λi|.

Lemma 11. For projectors P and Q, ‖PQ‖2∞ is given by

‖PQ‖2∞ = sup{〈v|P |v〉 : v ∈ HA, 〈v|v〉 ≤ 1, |v〉 ∈ span{Q}} . (14)

Proof. First note that (PQ)†PQ = QPQ since P is a projector. We are now interested in
which |v〉 results in the largets value for 〈v|QPQ |v〉. Let |w〉 be a vector with 〈w|w〉 = 1 that

13



is not completely within the subspace spanned by Q. Then Q projects |w〉 onto Q |w〉 = a |u〉
with |a|2 < 1 where |u〉 is in the subspace spanned by Q. Then we have

〈w|QPQ |w〉 = |a|2 〈u|P |u〉 . (15)

However, we could then have chosen |u〉 to start with, resulting instead in

〈u|QPQ |u〉 = 〈u|P |u〉 > 〈w|QPQ |w〉 . (16)

So, for any |w〉 not completely in the subspace spanned by Q we can choose a |u〉 that is in
that subspace such that 〈u|QPQ |u〉 > 〈w|QPQ |w〉. This concludes the proof.

2.4 Entropic uncertainty relations

Entropic uncertainty relations can be seen as generalizations to Heisenberg’s uncertainty
principle: the more information you have about one measurement outcome, the less infor-
mation you have about the outcome of an incompatible measurement. Such relations also
work for tripartite settings where various parties have different side-information about some
random variable, and are useful in security proofs [46, 14, 43].

Definition 12. The overlap of two POVMs M = {Mx}x and N = {Ny}y is given by

c(M,N) = max
x,y

∥∥∥√Mx
√
Ny
∥∥∥2

∞
. (17)

We note that other, slightly different, definitions exist for the overlap [14].

Lemma 13 (Entropic uncertainty relation [44], [15]). Let ε ≥ 0. Given any tripartite
state ρABE, for any two POVMs M and M ′ acting on system A with outcomes X and X ′

respectively,

Hε
min(X|E) +Hε

max(X ′|B) ≥ log
1

c(M,M ′)
. (18)

Corollary 14 (See for example [46]). Let ρABE be quantum state where ρA ∈ H⊗n. Let
X be the n-bit classical outcome of a measurment of each subsystem of A in the standard
basis. Let X ′ be the n-bit classical outcome of a measurement of each subsystem of A in the
Hadamard basis. Then, for any ε, we have

Hε
min(X|E) +Hε

max(X ′|B) ≥ n . (19)

Proof. A measurement in the standard basis can be written as the POVM

M = {|x〉 〈x|}x∈{0,1}n , (20)

and a measurement in the Hadamard basis can be written as the POVM

M ′ = {H |y〉 〈y|H}y∈{0,1}n , (21)

where H is to be understood as the n-partite operator H⊗n. Then,

c(M,M ′) = max
x,y

∥∥∥ |x〉 〈x|H |y〉 〈y|H∥∥∥2

∞
. (22)
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By Definition 10,

c(M,M ′) = max
x,y

sup{〈v| |x〉 〈x|H |y〉 〈y|H |v〉 : v ∈ HA, 〈v|v〉 ≤ 1} . (23)

By Lemma 11 we know that the |v〉 that maximizes the above expression must be in the
space spanned by H |y〉 〈y|H. So for each y, set |v〉 = H |y〉. Then,

c(M,M ′) = max
x,y
〈y|H |x〉 〈x|H |y〉 (24)

= 2−n/2 · 2−n/2 . (25)

Substituting this c into Lemma 13 concludes the proof.

The following Lemmas are useful for smoothing out an unlikely event.

Lemma 15 (Lemma 6 from [43]). Let B = (B1, . . . Bn+r) be boolean random variables,
where Bi ∈ {0, 1} for each i, and let S be a subset of B that is chosen uniformly at random
where |S| = r. Then, for any distribution on the Bi, and for any Q, q ≥ 0,

Pr
B,S

[∑
i∈S

bi ≤ rQ ∧
∑
i/∈S

bi ≥ n(Q+ q)
]
≤ e

−2q2nr2

(n+r)(r+1) . (26)

Definition 16. For a classical random variable X taking values in X , an event on X is a
function Ω : X → {0, 1}. This allows us to write Pr [Ω]X = ExpxΩ(x).

Lemma 17 (Lemma 7 in [43]). Let ρXE be a (possibly subnormalized) state where X is
classical, and let Ω be an event on X with probability Pr [Ω]ρ = ε < tr (ρXE). Then there

exists a (possibly subnormalized) state σXE with Pr [Ω]σ = 0 and ‖ρXE − σXE‖tr ≤
√
ε.

2.5 Hash functions and extractors

Hash functions are typically functions that map long strings to shorter ones, and which are
hard to reverse [49]. They can be used for authentication: send a tag containing the hash
of your message along with the message itself, and the receiver can check for authenticity
by calculating the hash of the received message and comparing it to the tag. Hashing is a
form of compression, and can hence also be seen as a form of privacy amplification. Indeed,
hashing is often used to transform a partially secret string into a fully secret string.

One property of hash functions is its collision probability, defined as the probability that the
hash of two different inputs are equal. In the literature, different terms are used to express
various such properties, including universality, two-universality, strong two-universality and
pairwise independence. Here, we use the following definitions.

Definition 18. A family of functions F = {f : {0, 1}n → {0, 1}`} is said to be two-
universal if and only if for a function f chosen uniformly at random from F , and every
two x, x′ ∈ {0, 1}n such that x 6= x′,

Pr
f

[f(x) = f(x′)] = 2−` . (27)
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Definition 19. A family of functions F = {f : {0, 1}n → {0, 1}`} is said to be strongly
two-universal or pairwise independent if and only if for a function f chosen uniformly
at random from F , every two x, x′ ∈ {0, 1}n such that x 6= x′, and for every z, z′ ∈ {0, 1}`
the following two conditions hold:

Pr [f(x) = z] = 2−` , (28)

Pr [f(x) = z ∧ f(x′) = z′] = 2−2` . (29)

The following two corollaries will be useful when analyzing Protocol 2. The Kronecker delta
δx,y is equal to 1 if x = y and 0 otherwise.

Corollary 20. Consider a pairwise-independent family of hash functions F of size 2d. Let
fu be the function in F indexed by some key u ∈ {0, 1}d. Then for every x ∈ {0, 1}n and
z ∈ {0, 1}`,

1

2d

∑
u

δz,fu(x) = 2−` . (30)

Corollary 21. Consider a pairwise-independent family of hash functions F of size 2d. Let
fu be the function in F indexed by some key u ∈ {0, 1}d. Then for every two x, x′ ∈ {0, 1}n
with x 6= x′ and every z ∈ {0, 1}`,

1

2d

∑
u

δz,fu(x)δz,fu(x′) = 2−2` . (31)

Corollary 21 is also a major ingredient in the proof of the Leftover Hash Lemma [23, 45,
2].

Lemma 22 (Leftover Hash Lemma (LHL), see for example [45]). Let F be a pairwise
independent family of functions and let ρXE be a state where X is classical. Let Z ∈ {0, 1}`
be the output of f(X) where f is chosen uniformly at random from F and where µZ is the
uniform distribution over Z. Then,

‖ρZE − µZ ⊗ ρE‖tr ≤
1

2

√
2`−Hmin(X|E) . (32)

The LHL is often used to directly relate Hmin(X|E) (the min-entropy of some raw key X
given side-information E) to the number of securely extractable bits `. In general there
is an error parameter ε involved, and we can at best achieve roughly ` ≈ Hmin(X|E) −
2 log(1/ε).

In QKD and QKR, choosing a function at random means generating a seed u that indexes
the family. This seed, which has length log |F|, then needs to be communicated or stored.
Pairwise-independent families need to have a size of at least 2n [47], meaning that the seed
must be at least as long as the input.

There are also almost (strong) 2-universal families. They are defined similary, but with
some δ instead of 2−`. The seed lengths are however hardly shorter [42, 21].
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Extractors are seeded functions that transform an input X that has a min-entropy of at
least k into an (almost-) uniform output Z. Much work has been done on classical extractors
(see [38] for an overview). The best known parameters are d = log(n−k)+2 log(1/ε)+O(1)
and ` = k + d− 2 log(1/ε)−O(1) [47]. Pairwise independent families of hash functions are
often used to construct extractors, and actually do not have a restriction on the min-entropy
of the input.

Definition 23. A (k, ε)-extractor is a function Ext : {0, 1}d × {0, 1}n → {0, 1}` with the
following property. Given an input X ∈ {0, 1}n with Hmin(X) ≥ k and a uniform seed
U ∈ {0, 1}d, the output Z = Ext(U,X) is ε-close to uniform.

With the introduction of QKD, extractors were needed in the context of quantum side-
information. Pairwise independent hash functions still work because they do not rely on
the min-entropy of the input. For some time it was not clear whether extractors that
worked in the presence of classical side-information still worked in the presence of quantum
side-information. The first such extractor that proved to be secure was based on Trevisan
extractors [18, 39]. Recently, more quantum-proof extractors have been studied [3, 11] and it
turns out that quantum-proof extractors exist with virtually optimal paramters [11].

Definition 24. A (k, ε) quantum-proof extractor is a function Ext : {0, 1}d × {0, 1}n →
{0, 1}` with the following property. Let ρXE be state where X ∈ {0, 1}n is classical, and E
is any quantum state such that Hmin(X|E) ≥ k, and let U ∈ {0, 1}d be chosen uniformly at
random and independently of X and E. Let Z = Ext(U,X) be the output of the extractor.
Then

‖ρZE − µZ ⊗ ρE‖tr ≤ ε . (33)

Lemma 25 (Theorem 1.5 from [11]). For any α ∈ (0, 1), ε > 0, and for any integers n, k
with k ≥ log(n) + log1+α(1/ε), there exists a (k, ε)-extractor Ext that gives an output of
length ` = (1− α)k and that needs a seed of length d = O(log(n/ε)).

Finally, we note that there are also exists the notion of non-malleable extractors [12]. These
are extractors that are secure even when the attacker knows the seed and the extractor
output given another seed. However, these are not relevant for delegated storage.

2.6 Encodings

A classical bit x ∈ {0, 1} can be encoded in a qubit in multiple ways. Here we consider 4-
state (or BB84, or conjugate), 6-state, and 8-state encoding. The encoding of a bit depends
on an encoding key, which is an index into a certain basis set. In the following, we call |0〉
and |1〉 the basis states of the standard basis.

Definition 26. 4-state encoding uses a basis key b ∈ {0, 1}. The encoding of bit x with key
b is Hb |x〉. In other words, x is encoded in the standard basis if b = 0, and in the Hadamard
basis otherwise.

Definition 27. 6-state encoding uses a basis key b ∈ {0, 1, 2}. The encoding of bit x with
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Figure 1: Figure from [41]. The center of the cube is at the center of the Bloch sphere. The
labeled (black) points are the locations of the 4 possible encodings (35) of a bit x = 0. For
each b, the encoding of the bit x = 1 is the unlabelled (colored) point opposite it.

key b is 
|x〉 if b = 0(
|0〉+ (−1)x |1〉

)
/
√

2 if b = 1(
|0〉+ (−1)xi |1〉

)
/
√

2 if b = 2

(34)

In other words, the three bases correspond to the three axes of the Bloch sphere.

Definition 28. 8-state encoding uses a basis key b ∈ {0, 1, 2, 3} written as b = 2u + v for
u, v ∈ {0, 1}. Let α such that cosα = 1/

√
3. The encoding of bit x with key b is [28]

(−
√
i)x cos α2 |x〉+

√
i
1−x

sin α
2 |1− x〉 if b = 0

(−
√
i)x cos α2 |1− x〉+

√
i
1−x

sin α
2 |x〉 if b = 1

√
i
x

cos α2 |x〉 −
√
i
1−x

sin α
2 |1− x〉 if b = 2

√
i
x

cos α2 |1− x〉 −
√
i
1−x

sin α
2 |x〉 if b = 3

(35)

In other words, the bases correspond to the 4 diagonals of a cube on the Bloch sphere. The
points are visualized in Figure 1.

We can speak of an encryption of the classical bit if the qubit does not give any information
about the classical value. In other words, without knowing the encoding key, the mixed state
representing the encoding is equal for all classical values. In that sense, 8-state encoding is
an encryption scheme, but 4-state and 6-state are not.
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2.7 Symmetrisation

A coherent attack is one where we allow the attacker to perform any quantum operation.
In entanglement-based schemes, this could for example mean that the n qubits that Alice
receives are (partly) entangled with each other and not independent. A collective attack
is an attack where the attacker is restricted to treat each qubit individually and equally.
Security against collective attacks is much easier to prove. Renner showed that an n-fold
quantum state that is invariant under permutations can be written as a factorized state [24,
35]. That is, their subsystems are independent. This has applications in the security analysis
of a protocol and has been further developed as the post-selection argument [35].

Definition 29. A quantum map E acting on a space H⊗n is called permutation-symmetric
if for all permutations π on the n subsystems of H⊗n there exists a map Kπ such that
E ◦ π = Kπ ◦ E.

Lemma 30 (Post-selection [9]). Let HABE be a tripartite quantum state, and let d be the
dimension of the AB subsystem. Then for any two permutation-symmetric maps E and F
acting on D(H⊗nABE),

‖E − F‖� ≤ (n+ 1)d
2−1 max

σ∈D(HABE)
‖E(σ⊗n)−F(σ⊗n)‖1 . (36)

We can further simplify the σ states themselves. The singlet state is written as |Ψ−〉 =
1√
2
|0〉A |1〉B −

1√
2
|1〉A |0〉B . Consider giving the A subsystem of this state to Alice and

the B subsystem to Bob. For any basis b they both measure in, the outcomes x for Alice
and y for Bob will always be anticorrelated. Consider now a noisy singlet state, which is
a state σAB such that the probability that Alice and Bob’s measurement outcomes do not
anticorrelate is γ. We state the following Lemma from [36], where |Φ±〉 and |Ψ±〉 are the
Bell states.

Lemma 31. Consider a noisy singlet state σAB with error rate γ. If both Alice and Bob
apply a random (the same) Pauli operator to their subsystems, the resulting state can be
written as [36]

σAB =
(

1− 3

2
γ
)
|Ψ−〉 〈Ψ−|+ γ

2

(
|Φ−〉 〈Φ−|+ |Ψ+〉 〈Ψ+|+ |Φ+〉 〈Φ+|

)
. (37)

We will write the purification E (held by Eve) of a noisy singlet state σAB as

|ΨABE〉 =

√
1− 3

2
γ |Ψ−〉 ⊗ |m0〉 −

√
γ

2

(
|Φ−〉 ⊗ |m1〉+ i |Ψ+〉 ⊗ |m2〉+ |Φ+〉 ⊗ |m3〉

)
(38)

where the |mi〉 form some orthonormal basis in Eve’s space.

Now we consider Alice and Bob measuring such a noisy singlet state in one of the bases b
of 8-state encoding. After a measurement in basis b, giving outcomes x for Alice and y for
Bob, we write Eve’s auxiliary state as σEbxy.
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Define

v(b) =


1√
3
(1, 1, 1) if b = 0

1√
3
(1,−1,−1) if b = 1

1√
3
(−1,−1, 1) if b = 2

1√
3
(−1, 1,−1) if b = 3

(39)

In [29], expressions are given for Eve’s state after a measurment by Alice and Bob, for any
measurement defined as two orthogonal vectors in the Bloch sphere.

Lemma 32 ([29]). Let v = (v1, v2, v3) be a vector on the Bloch sphere, and let |v ·m〉 be the
notation for v1 |m1〉+ v2 |m2〉+ v3 |m3〉. By a measurment in the v-basis we mean that |v〉
stands for 0 and |−v〉 stands for 1. After Alice and Bob measure in the v-basis and obtain

results x and y, Eve’s state can be written as σEbxy = |Ev(b)
xy 〉 〈Ev(b)

xy | where

|Ev01〉 =
1√

1− γ

[√
1− 3

2
γ |m0〉+

√
γ

2
|v ·m〉

]
, (40)

|Ev10〉 =
1√

1− γ

[√
1− 3

2
γ |m0〉 −

√
γ

2
|v ·m〉

]
, (41)

|Ev00〉 =
1√

2(1− v2
3)

[
(−v1v3 − iv2) |m1〉+ (−v2v3 + iv1) |m2〉+ (1− v2

3) |m3〉
]
, (42)

|Ev11〉 =
1√

2(1− v2
3)

[
(−v1v3 + iv2) |m1〉+ (−v2v3 − iv1) |m2〉+ (1− v2

3) |m3〉
]
. (43)

We write x̄ for the opposite value of a bit x. We have

σEbx = γσEbxx + (1− γ)σEbxx̄ . (44)

The following Lemmas will be useful in the proof of Protocol 2. Their proofs can be found
in Appendix B.

Lemma 33. For x ∈ {0, 1},

EbσEbx =
(

1− 3

2
γ
)
|m0〉 〈m0|+

γ

2

3∑
i=1

|mi〉 〈mi| . (45)

Lemma 34. For x ∈ {0, 1},

Eb(σEbx)2 = (1− 5

2
γ +

3

2
γ2) |m0〉 〈m0|+

2γ2 + γ

6

3∑
i=1

|mi〉 〈mi| . (46)

Lemma 35. For x ∈ {0, 1},

EbσEbxσEbx̄ =
(

1− 7

2
γ + 3γ2

)
|m0〉 〈m0|+

2γ2 − γ
6

3∑
i=1

|mi〉 〈mi| . (47)
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3 Protocol 1

We propose a protocol for delegated storage that roughly goes as follows. Alice one-time-
pads her message with a secret key that she extracts from a random raw key. She stores
the resulting classical ciphertext on the server. Furthermore, she encodes the raw key
as a quantum state in which she randomly places additional ‘trap’ states, and stores the
quantum state on the server as well. When retrieving the message, she checks the trap
bits for tampering, and extracts again the one-time-pad for decrypting her message. Below
follows a formal description.

3.1 Parameters

The protocol has the following parameters, which are publicly known:

• message length `′

• augmented message length `

• authentication key length κ

• authentication function MAC : {0, 1}`′ × {0, 1}κ → {0, 1}`−`′

• raw key length n

• number of trap bits r

• extractor seed length d

• quantum-proof extractor Ext : {0, 1}d × {0, 1}n → {0, 1}`

• maximum tolerated trap bit error rate Q

• smoothing parameter q for error rate estimation, 0 < q < 1/2

• error correcting code C using a syndrome function Syn : {0, 1}n → {0, 1}λ, where
λ ≈ nh(Q+ q), so that it can correct up to n(Q+ q) bit errors. We write SynDec for
the corresponding syndrome decoding function.

The number of qubits stored on the server is n+ r.

Alice’s key consists of the following parts:

• trap location key t ∈ {0, 1}n+r stored efficiently as a string of length
log
(
n+r
r

)
≈ p = (n+ r) · h(r/(n+ r))

• extractor seed u ∈ {0, 1}d

• MAC key k ∈ {0, 1}κ

As long as the message is stored on the server, Alice needs to keep the key above, as well
as the following values obtained during the protocol:

• trap value key v ∈ {0, 1}r 3

• raw key syndrome s ∈ {0, 1}λ

3Alice could also forget v and instead remember the syndrome of v and an authentication tag of v, which
need less storage space. When retrieving the message from the server, she should then try to error-correct
v and check the authentication tag. If she does not succeed she should abort.
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3.2 Protocol description

To store (and later retrieve) a message morig ∈ {0, 1}`
′
, Alice performs the following

steps:

• Generate uniformly at random a raw key x ∈ {0, 1}n, a trap value key v ∈ {0, 1}r and
a trap location key t ∈ {0, 1}n+r such that Hamm(t) = r.

• Prepare the quantum state |Ψ〉 = ⊗n+r
i=1 |ψi〉 where for j ranging over all tj that are 0,

|ψj〉 = |xj〉 and for j ranging over all tj that are 1, |ψj〉 = H |vj〉. In other words, the
traps are encoded in the Hadamard basis at locations i where ti = 1, and the raw key
is encoded in the other locations and in the standard basis.

• Generate a seed u ∈ {0, 1}d uniformly at random and compute z = Ext(u, x). Generate
a MAC key k ∈ {0, 1}κ and compute authentication tag mtag = MAC(k,morig). Set
m = morig||mtag, such that m ∈ {0, 1}`.4 Compute the ciphertext c = m ⊕ z. Also,
compute s = Syn(x).

• Send |Ψ〉 and c to the server. Keep v, t, s, k and u as key.

• Retrieve |Ψ′〉 and c′ from the server.

• Measure the qubits i of |Ψ′〉 where ti = 0 in the standard basis to obtain y ∈ {0, 1}n
and measure the other qubits in the Hadamard basis to obtain w ∈ {0, 1}r.

• Abort if Hamm(v ⊕ w) > Qr.

• Perform error correction to obtain an estimator x̂ = y ⊕ SynDec(s⊕ Syn(y)).

• Compute z′ = Ext(u, x̂) and compute m′ = c′ ⊕ z′. Parse m′ = m′orig||m′tag and abort
if MAC(k,m′orig) 6= m′tag.

For the analysis we consider an entanglement-based version of the protocol. In the following,
we address “future Alice” with “Bob”. We let Eve create an arbitrary quantum state

ρABE ∈ D(H⊗(n+r)
ABE ), and send the A subspace to Alice and the B subspace to Bob. Note

that unlike QKD or QKR protocols, Bob receives his quantum state later than Alice, namely
when the ciphertext is retrieved from the server.

Since Bob is the same person as Alice, ‘communication’ of the private key material is im-
plicitly done by just remembering it. The steps of the entanglement-based protocol are
visualized in Figure 2.

4From now on, we will simply use ` for the ‘normal’ message length, since we imagine κ to be a small
constant value.
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Alice Bob (= future Alice)Eve (Server)

ρABE ∈ D(H⊗(n+r)
ABE )

Send ρA

ρBE

Send ρB

Pick random t ∈ {0, 1}n+r, u ∈
{0, 1}d, and k ∈ {0, 1}κ, with
Hamm(t) = r.

Receive ρA ∈ D(H⊗(n+r)).

For each qubit i, if ti = 0, measure
in the standard basis, otherwise in the
Hadamard basis.

x ∈ {0, 1}n = results of measurements
in standard basis.

v ∈ {0, 1}r = results of measurements
in Hadamard basis.

z = Ext(u, x).

m = morig‖MAC(k,morig).

c = m⊕ z.
s = Syn(x).

Remember v, s, u, t, k.
v, s, u, t, k

Send c. c

Forget x, z, c,m.

Receive c′.

Receive ρB ∈ D(H⊗(n+r)).

For each qubit i, if ti = 0, measure
in the standard basis, otherwise in the
Hadamard basis.

y ∈ {0, 1}n = results of measurements
in standard basis.

w ∈ {0, 1}r = results of measurements
in Hadamard basis.

θ = Hamm(v ⊕ w).

f = X if θ ≤ Qr, ∅ otherwise.

If f = ∅, abort.

x̂ = y ⊕ SynDec(s⊕ Syn(y)).

ẑ = Ext(u, x̂).

m′ = c′ ⊕ ẑ = m′orig‖τ .

if MAC(k,m′orig) 6= τ , abort.

m̂orig = m′orig.

Publish f .f

Figure 2: Schematic description of the entanglement-based version of Protocol 1.
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3.3 Security definition

In this section we write out in detail the states that appear during the protocol, and state
the security definition which we then evaluate in the next sections. The intermediate states
written here will in fact not be used in the later analysis, but are shown for completeness.
For these intermediate states we assume that the message is uniform, so that Eve’s state is
independent of the ciphertext. The analyses in Sections 3.4 and 3.6 will make a distinction
between a uniform message and a non-uniform one, respectively.

We model the variables and quantum states during the protocol as density operators. All
classical variables occurring in the protocol are denoted by the capitalization of their letters
as used in the protocol description above. The input state of the protocol consists of
the quantum state ρABE , the message (including the authentication tag) and Alice’s key
material:

ρABEMTU = ρABE ⊗ Em |m〉 〈m| ⊗ Et |t〉 〈t| ⊗ Eu |u〉 〈u| (48)

where the expectation over U is uniform, T is uniform over all choices of t such that
Hamm(t) = r, and where M can have any distribution. (We leave out the MAC key as
we directly work with the augmented message m.)

The protocol can be seen as a CPTP map E that acts on the initial state ρ and outputs a
state ω. This output state is obtained as follows.

The quantum measurements leave ρABE in a state than can be written as

Etxyvwc |xyvw〉 〈xyvw| ⊗ ρEtxyvwc (49)

where the expectations on X,Y, V and W depend on the exact state that Eve prepared. In
particular, they do not have to be uniform, and the correlation between X and Y and the
correlation between V and W are given by an arbitrary amount of noise introduced by Eve.
Eve’s state depends on the ciphertext C. However, in the following we treat C as being
independent of Eve’s state, as discussed above.

We introduce the variable θvw indicating whether the error rate of the traps is low enough
or not:

θvw =

{
1 if Hamm(v ⊕ w) ≤ Qr ,
0 otherwise .

(50)

After the classical post-processing the full state is

ωMTUXY VWEZCSF = Emtu |mtu〉 〈mtu| ⊗ Exyvw |xyvw〉 〈xyvw| ⊗ ρEtxyvw
⊗
∑
z

|z〉 〈z| δz,Ext(u,x) ⊗
∑
c

|c〉 〈c| δc,m⊕z ⊗
∑
s

|s〉 〈s| δs,Syn(x) ⊗
∑
f

|f〉 〈f | δf,θvw . (51)

We make a distinction between intermediate variables and output variables. The output
variables are the information that Eve has (C,E, and F ), as well as M , which Alice wants
to keep secret. We trace out all the intermediate variables and obtain
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ωMCEF = Em |m〉 〈m| ⊗ EtxyvwρEtxyvw ⊗ Eu
∑
c

|c〉 〈c| δm⊕c,Ext(u,x) ⊗
∑
f

|f〉 〈f | δf,θvw .

(52)

Furthermore we define the subnormalized state representing the output conditioned on Alice
not aborting:

ωMCEF
F=X = Em |m〉 〈m| ⊗ EtxyvwθvwρEtxyvw ⊗ Eu

∑
c

|c〉 〈c| δm⊕c,Ext(u,x) ⊗ |F = X〉 〈F = X| .

(53)

We will now define the security of the protocol E by comparing it to an ideal protocol F .
We define F in terms of its output state given the same input state ρ as defined above: if
E would abort, the output state of F is equal to that of E ; if the protocol does not abort,
the output state of F is

ωMCEF
ideal,F=X = Em |m〉 〈m| ⊗ ωCEF , (54)

where

ωCEF = trM

(
ωMCEF
F=X

)
(55)

= EmEtuxyvwθvwρEtxyvw ⊗
∑
c

|c〉 〈c| δm⊕c,Ext(u,x) ⊗ |F = X〉 〈F = X| . (56)

In other words, ωMCEF
ideal,F=X is a state where the message is independent of Eve’s side-

information. The distribution of M must be the same as in the beginning: Eve must
not learn any new information about it, regardless of whether she already had some infor-
mation.

Finally we define the security of our protocol as the diamond distance between E and F .
This is given by

‖E − F‖� = ‖ωMCEF
F=X − ωMCEF

ideal,F=X‖tr (57)

since the output states in case of abort are the same.

Towards the end of the protocol, Bob checks the authentication tag of the retrieved message.
If the tag is correct, he assumes the message is authentic and does not abort. There is
however a small probability that Eve replaced the message with another and still managed
to append a valid tag. Since the length of the MAC key is κ, this probability is 2−κ. For the
analysis, we simply consider a protocol E ′ in which the MAC verification always unerringly
detects if Eve has manipulated the state. This protocol is then 2−κ-close to the actual
protocol. Using the triangle inequality,

‖E − F‖� ≤ ‖E − E ′‖� + ‖E ′ −F‖�
= 2−κ + ‖E ′ −F‖� . (58)

The following section shows the analysis of the second term.
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3.4 Security analysis

Here we analyze the case where the message is uniform. In that case the ciphertext c, which
gets revealed to Eve before she performs an attack using her quantum side-information, is
completely independent of the other variables. In Section 3.6 we consider arbitrary message
distributions.

We write the quantum state ρABE as ρAxAvByBwE where Ax is the subspace of A that Alice
measures in the standard basis (to obtain X), and where Av is the subspace of A that Alice
measures in the Hadamard basis (to obtain V ). By and Bw are defined similarly. Note that
the actual locations of these subsystems depend on the random variable T denoting the trap
location key.

For the analysis we will also consider the hypothetical action of Alice and Bob where they
measure Ax and By in the Hadamard basis instead of the standard basis, obtaining classical
outcomes X ′ and Y ′. In Table 1 we summarize the names of the classical outcomes that
are the results of measuring in a certain basis. (We do not consider measuring Av and Bw
in the standard basis.)

Ax By Av Bw
Standard basis X Y - -
Hadamard basis X ′ Y ′ V W

Table 1: Classical variables resulting from different measurements.

Consider the state ρAxEFY
′

F=X . This state corresponds to the situation where Av, Bw, and By
were all measured in the Hadamard basis, and such that Hamm(V ⊕W ) ≤ Qr, but where
the measurement on Ax has still not been performed. We apply Corollary 14 to this state,
giving us the following entropic uncertainty relation:

Hε
min(X|E,F = X) +Hε

max(X ′|Y ′, F = X) ≥ n . (59)

In the protocol, only output X is generated, not X ′. We can however consider the two
different states σ and τ that would be the result of generating X or X ′ respectively. Let
σ = ρXY VWEF

F=X be the state (observed during the protocol) resulting from measuring Ax
and By in the standard basis, conditioned on F = X, and let τ = ρX

′Y ′VWEF
F=X be the

(hypothetical) state resulting from measuring Ax and By in the Hadamard basis, conditioned
on F = X.

We now prove the following bound on the smooth min-entropy of X given Eve’s side-
information, closely following the approach of [43].

Lemma 36. Let η(q) = e
−q2nr2

(n+r)(r+1) . Then,

H
η(q)
min (X|E,F = X) ≥ n

[
1− h(Q+ q)

]
. (60)

Proof. Consider scenario τ , that is, both Alice and Bob measure all their n + r qubits in
the Hadamard basis, resulting in classical variables X ′, Y ′, V and W . We can also write
all Alice’s outcomes as binary random variables OA1 , . . . O

A
n+r where each OAi ∈ {0, 1} is
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the measurement outcome of the ith qubit. Note that OA ∈ {0, 1}n+r consists exactly of
X ′ and V , where the bits of V are at the locations T = {i | ti = 1}. Similarly we define
OB1 , . . . O

B
n+r as Bob’s measurement outcomes, comprising Y ′ and W .

We now introduce binary random variables B1, . . . Bn+r defined as Bi = OAi ⊕OBi .

Note that Hamm(V ⊕W ) =
∑
i∈T Bi and Hamm(X ′ ⊕ Y ′) =

∑
i/∈T Bi. Finally, since T

is an index subset that was chosen uniformly and independently of the Bi, we can apply
Lemma 15 and obtain

Pr
[
Hamm(V ⊕W ) ≤ rQ ∧Hamm(X ′ ⊕ Y ′) ≥ n(Q+ q)

]
≤ η(q)2 . (61)

Remember that in our scenario we already conditioned on the fact that F = X, meaning
that Hamm(V ⊕W )τ ≤ rQ. We denote by Ω the event that Hamm(X ′ ⊕ Y ′)τ > n(Q+ q).
Then his event has probability Pr[Ω]τ ≤ η(q)2.

By Lemma 17, there exists a state τ ′ that is η(q)-close to τ with Pr[Ω]τ ′ = 0. Now we show
a derivation similar to that in [43], where in the last step we use an inequality that is shown
in [48].

Hmax(X ′|Y ′, F = X)τ ′ = Hmax(X ′|Y ′)τ ′ (62)

≤ max
y′∈{0,1}n

log |{x′ ∈ {0, 1}n : Pr [X ′ = x′ ∧ Y ′ = y′]τ ′ > 0}| (63)

≤ log

n(Q+q)∑
i=0

(
n

i

)
(64)

≤ nh(Q+ q) . (65)

When going from (63) to (64) we use that for a given y′, the possible x′ in the corresponding
set are restricted in having at most n(Q+ q) different bits.

Since τ ′ is η(q)-close to τ , by definition of the smooth max-entropy (Definition 6),

Hη(q)
max(X ′|Y ′, F = X)τ ≤ Hmax(X ′|Y ′, F = X)τ ′ ≤ nh(Q+ q) . (66)

Using the entropic uncertainty relation (59) we obtain the bound

H
η(q)
min (X|E,F = X)σ ≥ n− nh(Q+ q) (67)

for the state σXY VWEF
F=X occuring during the protocol if it does not abort.
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As noted above, we assume that the message is uniform, and hence the ciphertext C is
independent of the extractor output. So,

H
η(q)
min (X|EC,F = X)σ = H

η(q)
min (X|E,F = X)σ ≥ n− nh(Q+ q) . (68)

Now we are ready to bound the trace distance of (57).

Lemma 37. For a suitably chosen (k, ε)-quantum-proof extractor Ext with k = n−nh(Q+q),
and for any 0 < α < 1 and ε > 0 such that n− nh(Q+ q) ≥ log n+ log1+α(1/ε), the output
Z of Ext(X,U) has length (1− α)(n− nh(Q+ q)) and we have

‖σZCEFF=X − µZ ⊗ σCEFF=X‖tr ≤ η(q) + 2−d+logn . (69)

Proof. By definition of the smooth entropy (Definition 5), there exists a state σ′ that is
η(q)-close to σ and for which Hmin(X|EC,F = X)σ′ ≥ n−nh(Q+ q). By Lemma 25, there
exists a (n− nh [Q+ q] , ε) quantum-proof extractor Ext such that for the state σ′, for any
0 < α < 1 and ε > 0 such that n− nh(Q+ q) ≥ log n+ log1+α(1/ε),

‖σ′ZCEFF=X − µZ ⊗ σ′CEFF=X ‖tr ≤ ε (70)

and such that the output Z has length (1− α)(n− nh(Q+ q)).

Since d = O(log(n/ε)), we can set ε = 2−d+logn. Then, since σ′ is η(q)-close to σ, we obtain

‖σZCEFF=X − µZ ⊗ σCEFF=X‖tr ≤ ‖σZCEFF=X − σ′ZCEFF=X ‖tr + ‖σ′ZCEFF=X − µZ ⊗ σ′CEFF=X ‖tr (71)

≤ ‖σXCEFF=X − σ′XCEFF=X ‖tr + ‖σ′ZCEFF=X − µZ ⊗ σ′CEFF=X ‖tr (72)

≤ η(q) + ε (73)

where we used the triangle inequality for the first inequality and Lemma 7 for the second
one.

Finally we state the security of Protocol 1 for a uniform message.

Theorem 1. Let M be a uniform message with length `. Let Q+ q be the maximum
tolerated bit error rate, d the extractor seed length, r the number of traps, and κ the
length of the authentication tag. Furthermore, let n be the length of the raw key and
α > 0 such that n − nh(Q + q) ≥ log n + (d − log n)1+α. Let E be the CPTP map
modeling Protocol 1 and F the ideal version of Protocol 1, as described above.

Then, as long as ` ≤ (1− α)(n− nh(Q+ q)),

‖E − F‖� ≤ e
−q2nr2

(n+r)(r+1) + 2−d+logn + 2−κ . (74)

Proof. We have M = Z ⊕ C. Since M is uniform, and using Lemma 37, we obtain

‖σMCEF
F=X − µM ⊗ σCEFF=X‖tr ≤ η(q) + 2−d+logn (75)

Combining this with our security definition in (58) proves the theorem.

28



3.5 Key length

In this section we consider what values for the key lengths we can use and what they
mean for the security value in Theorem 1. We cannot simply make the diamond distance
arbitrarily small by increasing the key lengths, since we do not want these lengths to exceed
the message length.

Recall that the data that Alice needs to remember consists of

• trap location key t ∈ {0, 1}n+r stored efficiently as a key of length
log
(
n+r
r

)
≈ p = (n+ r) · h(r/(n+ r)),

• extractor seed u ∈ {0, 1}d

• MAC key k ∈ {0, 1}κ

• trap value key v ∈ {0, 1}r,

• raw key syndrome s ∈ {0, 1}λ, where λ ≈ nh(Q+ q)

and that we want their total length to be at most that of the message, that is,

p+ d+ κ+ r + λ < ` . (76)

Since there are so many variables that all contribute somehow to the key length and the
security, it is difficult to get an optimal set of values. However, the dominating term in

Theorem 1 is η(q) = e
−q2nr2

(n+r)(r+1) . Indeed, we can simply set for example κ = 100 and
d = 100 + log n, in which case the authentication tag and seed only contribute an (almost)
constant value in the total key length.

To bound η(q), we need to find suitable values for r and q. A higher value for q implies a
larger λ and higher r implies a higher value for p as well. It turns out the bottleneck in terms
of key length is the syndrome length, that is, λ. Indeed, h(Q+ q) shrinks very slowly when
decreasing Q and q: to get λ = n/1000 for example, we need Q + q . 6.5 · 10−5. Having
such low values for q however also impacts the security due to its presence in η(q).

Below we give an example set of parameters to achieve reasonable key length and security.
Firstly, we set r = γn for some γ ∈ (0, 1).

Then,

e
−q2nr2

(n+r)(r+1) ≈ e
−q2γ2n3

(n+γn)·γn (77)

= e−q
2 γ

1+γ n. (78)

If we set q and γ to small values (one could for example set q = log−1 n and γ to a
small constant), the expression is exponentially small in the number of qubits n, and hence
disappears for large n. Furthermore, we can set d = log n + log(1/ε), and set κ to a small
constant. Then the whole security error disappears for large n.

Meanwhile, with these values the key length becomes

κ+ d+ r + p+ λ = κ+ log n+ log(1/ε) + n
[
γ + (1 + γ)h(

γ

1 + γ
) + h(Q+ q)

]
. (79)
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For large n, the dominating term is nh(Q+ q), and the other terms disappear (for suitable
values for ε, γ and κ). Using ` = (1 − α)n

[
1 − h(Q + q)

]
and setting α close to 0, the

short-key requirement becomes roughly nh(Q+ q) < n
[
1− h(Q+ q)] or

1− 2h(Q+ q) > 0 . (80)

We could hence state that the rate of our protocol is 1− 2h(Q+ q), similar to that of QKD.
However, note that in this context the rate has a slightly different interpretation than for
QKD: the result here is that as long as 1− 2h(Q+ q) > 0, we can keep our key shorter than
the message.

3.6 Non-uniform message

In the analysis of Section 3.4 we assumed that the message was completely uniform. There-
fore, the fact that Eve already has access to the ciphertext while performing her attack was
not relevant in the security proof. Here we consider the case where Eve does have some
information about the message. In fact, the security proof does not change much, except
that we need longer keys.

In Section 3.4, we bounded the min-entropy of X given Eve’s side-information by showing

that H
η(q)
min (X|E,F = X) ≥ n− nh(Q+ q). For a known message, we cannot simply add C

without penalty. In the worst case we obtain

H
η(q)
min (X|EC,F = X) ≥ n− nh(Q+ q)− ` (81)

since C could give at most ` bits of extra information about X.5

This means that now we would need a (k, ε) quantum-proof extractor with k = n−nh(Q+
q) − ` and k ≥ log n + log1+α(1/ε). Furthermore, the output length is now (1 − α)(n −
nh(Q+q)−`). In other words, n must now be roughly ` longer than in the case of a uniform
message.

Theorem 2. Let M be a message with any distribution and length `. Let Q+ q be the
maximum tolerated bit error rate, d the extractor seed length, r the number of traps,
and κ the length of the authentication tag. Furthermore, let n be the length of the raw
key and α > 0 such that n−nh(Q+ q)− ` ≥ log n+ (d− log n)1+α. Let E be the CPTP
map modeling Protocol 1 and F the ideal version of Protocol 1, as described above.

Then, as long as ` ≤ 1−α
2+α (n− nh(Q+ q)),

‖E − F‖� ≤ e
−q2nr2

(n+r)(r+1) + 2−d+logn + 2−κ . (82)

Proof. The same proof as for Theorem 1 applies, except the following values in Lemma 37
need to be updated: k must be n−nh(Q+ q)− ` and the output length ` of Z is (1−α)(n−
nh(Q+ q)− `). Therefore we now need

` ≤ (1− α)(n− nh(Q+ q)− `) (83)

5If we somehow know that Eve can only have s < ` bits of information about the message, than we only
need to substract s.
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which can be written as

` ≤ 1− α
2 + α

(n− nh(Q+ q)) . (84)

Typically we would like to keep α very small, resulting in a rate `/n ≈ 1
2 (1−h(Q+ q)), that

is, half that of the uniform-message case. Furthermore, since n roughly doubles, λ doubles
as well, but p+ r increases slower than doubly. So, compared to the uniform-message case,
the key length is at most twice as long.

The weak bound that we used—that C gives Eve ` bits of information—does not seem very
satisfying, since it represents the extreme situation that Eve completely knows the message,
in which case storage is not relevant anymore in the first place. However, it turns out to
be difficult to reason about how much extra information about X Eve can get out of C.
Knowledge about M gives Eve (by seeing C) knowledge about Z, which in turn could give
information about X. This last step depends on the working on the extractor: given the
output, can one say something about the input? Pairwise-independent hash functions have
the property that we can directly say something about the number of inputs x that map
to a particular output z. However, for our goal to keep keys short, we need short-seeded
extractors, and in general they do not possess this property.

We mention that we also considered applying the entropic uncertainty relation already on the
state ρABCEU , that is, trying to directly bound the min-entropy of the extractor output Z
given EC. For this we model the quantum measurements followed by the classical extractor
application as one POVM, and try to calculate the overlap (according to Definition 12)
between this POVM and one where the quantum states are measured in the opposite bases.
These calculations can be found in Appendix A. Unfortunately, we were only able to obtain
a result of pairwise independent hash functions, but not for short-seeded extractors. This
is exactly due to the fact mentioned above, that we cannot bound the number of inputs x
that give a particular output z.
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4 Protocol 2

We propose another protocol for delegated storage. In this case we prove security in the
Common Random String (CRS) model6. It assumes that there is public uniform randomness
available to all parties. In our scenario we imagine this randomness to be a large table (in
fact, two tables, see below) that has relatively few, long, rows. This allows us to index the
table with a ‘seed’ that has low entropy, resulting in a long uniform string. Essentially, with
this model we assume that we have access to a perfect pseudo-random generator (PRNG),
meaning a PRNG that cannot be attacked in a smarter way than by brute-forcing the
seed.

The protocol is almost equal to Protocol 1, except for two differences:

• Both the raw key and the traps are encoded using 8-state encoding. The basis key
(now consisting of 2(n+ r) bits, 2 bits for each qubit), is obtained by indexing a large
common basis table φ (a common random string) that consists of 2b rows of length
2(n + r). Alice only remembers a uniformly chosen short index key g ∈ {0, 1}b, but
uses the long key φ(g) for encoding her raw key.

• The extractor is now based on a two-universal hash function. The seed has length
2n, but is sampled from a large public seed table ξ (another common random string),
which consists of 2d rows of length 2n. Alice only remembers a uniformly chosen short
index key u ∈ {0, 1}d, but uses the long seed ξ(u) for the extractor.

Below follows a formal description of the protocol. Then, in Sections 4.3 and 4.4 we do the
security analysis, which is quite different from that of Protocol 1.

4.1 Parameters

The protocol has the following parameters, which are publicly known:

• message length `′

• augmented message length `

• authentication key length κ

• authentication function MAC : {0, 1}`′ × {0, 1}κ → {0, 1}`−`′

• raw key length n

• number of trap bits r

• length b of the basis encoding key, (to sample a 2(n+ r)-length encoding key from the
public table φ)

• length d of the extractor key (to sample a seed of length 2n from the public table ξ)

• pairwise indepedent hash function Ext : {0, 1}2n × {0, 1}n → {0, 1}`

• maximum tolerated trap bit error rate Q

• smoothing parameter q for error rate estimation, 0 < q < 1/2

6CRS could also stand for Common Reference String model, where the common string has an arbitrary
distribution. The Common Random String model that we use here is then a special case of the CRS where
the distribution is uniform.
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• error correction scheme C using a syndrome function Syn : {0, 1}n → {0, 1}λ, where
λ ≈ nh(Q+ q), so that it can correct up to n(Q+ q) bit errors. We write SynDec for
the corresponding syndrome decoding function.

The number of qubits stored on the server is n+ r.

Alice’s key consists of the following parts:

• basis encoding key g ∈ {0, 1}b

• trap location key t ∈ {0, 1}n+r stored efficiently as a key of length
log
(
n+r
r

)
≈ p = (n+ r) · h(r/(n+ r))

• extractor seed u ∈ {0, 1}d

• MAC key k ∈ {0, 1}κ

As long as the message is stored on the server, Alice needs to keep the key above, as well
as the following values obtained during the protocol:

• trap data key v ∈ {0, 1}r

• raw key syndrome s ∈ {0, 1}λ

4.2 Protocol description

To store (and later retrieve) a message morig ∈ {0, 1}`
′
, Alice performs the following steps.

We assume that there are public tables φ and ξ available as described above.

• Generate uniformly at random a raw key x ∈ {0, 1}n, a trap key v ∈ {0, 1}r, a trap
location key t ∈ {0, 1}n+r such that Hamm(t) = r and a basis encoding key g ∈ {0, 1}b.

• Compute g′ = φ(g). Let a1, . . . an+r be the string where the traps are placed between
the raw key bit according to t. Prepare the quantum state |Ψ〉 where the ith qubit is
the 8-state encoding of ai according to basis g′i.

• Generate a seed u ∈ {0, 1}d uniformly at random and compute z = Ext(ξ(u), x). Gen-
erate a MAC key k ∈ {0, 1}κ and compute authentication tag mtag = MAC(k,morig).
Set m = morig||mtag, such that m ∈ {0, 1}`.7 Compute the ciphertext c = m ⊕ z.
Also, compute s = Syn(x).

• Send |Ψ〉 and c to the server. Keep v, t, s, k, g and u as key.

• Retrieve |Ψ′〉 and c′ from the server.

• Measure each qubit i in basis φ(g)i to obtain the raw key y ∈ {0, 1}n and trap values
w ∈ {0, 1}r.

• Abort if Hamm(v ⊕ w) > Qr.

• Perform error correction to obtain an estimator x̂ = y ⊕ SynDec(s⊕ Syn(y)).

• Compute z′ = Ext(ξ(u), x̂) and m′ = c′ ⊕ z′. Parse m′ = m′orig||m′tag and abort if and
only if MAC(k,m′orig) 6= m′tag.

7Like for Protocol 1, we will from now on simply use ` for the ‘normal’ message length, since we imagine
κ to be a small constant value.
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For the analysis we consider again an entanglement-based version of the protocol. For
this case, however, we assume Eve prepares singlet states, which means that ‘no noise’
means anticorrelated values for Alice and Bob. This allows us to use the symmetrization
techniques from Chapter 2. ‘Communication’ between Alice and Bob of the private key
material is implicitly done by just remembering it. The steps of the entanglement-based
protocol are visualized in Figure 3.
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Alice Bob (= future Alice)Eve (Server)

ρABE ∈ D(H⊗(n+r)
ABE )

Send ρA

ρBE

Send ρB

(
CRS tables φ and ξ

)

Pick random t ∈ {0, 1}n+r, u ∈
{0, 1}d, g ∈ {0, 1}b, and k ∈ {0, 1}κ,
with Hamm(t) = r.

Receive ρA ∈ D(H⊗(n+r)).

For each qubit i, measure it in basis
φ(g)i.

x ∈ {0, 1}n = results of measurements
of qubits i where ti = 0.

v ∈ {0, 1}r = results of measurements
of qubits i where ti = 1.

z = Ext(ξ(u), x).

m = morig‖MAC(k,morig).

c = m⊕ z.
s = Syn(x).

Remember v, s, u, t, k.
v, s, u, t, k

Send c. c

Forget x, z, c,m.

Receive c′.

Receive ρB ∈ D(H⊗(n+r)).

For each qubit i, measure it in basis
φ(g)i.

y ∈ {0, 1}n = results of measurements
of qubits i where ti = 0.

w ∈ {0, 1}r = results of measurements
of qubits i where ti = 1.

θ = Hamm(v ⊕ w̄).

f = 1 if θ ≤ Qr, 0 otherwise.

If f = 0, abort.

x̂ = y ⊕ SynDec(s⊕ Syn(y)).

ẑ = Ext(ξ(u), x̂).

m′ = c′ ⊕ ẑ = m′orig‖τ .

if MAC(k,m′orig) 6= τ , abort.

m̂orig = m′orig.

Publish f .f

Figure 3: Schematic description of the entanglement-based version of Protocol 2. The CRS tables are
assumed to be accessable for all parties.
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4.3 Security definition

Like for Protocol 1, we first write out the states that occur during the protocol, and define
the security in terms of the diamond distance between the real protocol and an ideal version.
In Section 4.4 we then proceed to calculate this distance. We assume the message to be
uniform. This means that the ciphertext does not give Eve any information, so it can be
decoupled from the rest.

We treat the protocol as a map E that acts on a state ρABE ∈ D(H⊗nABE) and outputs a
state ωMCEF comprising the message M , together with Eve’s side information consisting
of C (the ciphertext), E (her ancilla quantum state) and F (the flag indicating whether
the protocl aborted or not). We will define an ideal protocol F , and calculate the diamond
distance ‖E − F‖�.

The input state of the protocol consists of the quantum state ρABE , the message (including
the authentication tag), Alice’s key material, and the public tables:

ρABEMGTUKΦΞ (85)

= ρABE ⊗ Em |m〉 〈m| ⊗ Eg |g〉 〈g| ⊗ Et |t〉 〈t| ⊗ Eu |u〉 〈u| ⊗ Eφ |φ〉 〈φ| ⊗ Eξ |ξ〉 〈ξ| (86)

where all expectations are uniform.

We use post-selection and noise symmetrization to simplify the state ρABE . First we argue
that the protocol E is permutation-symmetric.

Lemma 38. E is permutation-symmetric.

Proof. Consider a variant E ′ = E ◦ π where Alice and Bob both apply the same random
permutation π on their input qubits. Note that in the prepare-and-measure protocol, the
variables x, v, t, g and φ are all chosen uniformly at random. Therefore, Alice and Bob
could also apply a permutation π′ on all these variables, because they will still be uniform.
However, this is the same as keeping the variables the same but permuting the qubits.
Therefore, E ′ is the same as E , so according to Definition 29 E is permutation-symmetric
(using Kπ equal to the identity).

This allows us to treat ρABE as a factorized state σ⊗n where σ is an element of HABE and
has dimension d = 4 (Eve holds the purification of the 2-dimensional subspace AB). Using
Lemma 30 we obtain

‖E − F‖� ≤ (n+ 1)15 max
σ∈D(HABE)

‖E(σ⊗n)−F(σ⊗n)‖1 (87)

for the ideal version F that we define later.

We can also simplify the state σ itself. Indeed, the protocol does not behave differently if
Alice and Bob would apply random Pauli’s to their qubits before measuring them. This is
because the measurement bases that they use are chosen uniformly at random. This then
means that we can write σ = |ΨABE〉 〈ΨABE | as defined in (38). Note that in general,
Eve’s state also depends on the ciphertext C. However, since we assume the message to be
uniform, C is completely independent of Eve’s state, and hence we do not need a subscript
c in Eve’ state.
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Now we show how the output state ωMCEF is obtained. Define

ρEφ(g)xy =
⊗
i:ti=0

σEφ(g)ixiyi
, (88)

ρEφ(g)vw =
⊗
i:ti=1

σEφ(g)iviwi
. (89)

where σEφ(g)ixiyi
is defined as in Lemma 32.

The measurement results of ρABE can be written as

Eφg |φg〉 〈φg| ⊗ Exy |xy〉 〈xy| ⊗ ρEφ(g)xy ⊗ Evw |vw〉 〈vw| ⊗ ρEφ(g)vw (90)

where the expectations depend on the exact state that Eve prepared. In particular, they do
not have to be uniform, and the correlation between X and Y and the correlation between
V and W are given by an arbitrary amount of noise introduced by Eve.

Note that we were able to split Eve’s side information about xy from her side-information
about vw, because of the factorization of the state ρABE .

Next, define8

θxy =

{
1 if Hamm(x⊕ ȳ) ≤ Qn
0 otherwise .

(91)

This θxy is never explicitly calculated during the protocol. Instead, Bob calculates Hamm(v ⊕ w)
and sets f = θvw. Since the symmetrization made sure that all singlet states σ are identical,
Hamm(v ⊕ w) should be a good estimator of Hamm(x⊕ y). To be precise, the probability
that it is not a good estimator is

Pr
[
Hamm(v ⊕ w̄) ≤ Qr ∧ Hamm(x⊕ ȳ) > (Q+ q)n

]
≤ η(q) (92)

by Lemma 15, and where η(q) is the same as in Lemma 36.

In the following we analyze the security of a protocol E ′ where estimation is always correct,
so we have f = θxy, which will allow us to ignore ρEφ(g)vw. Furthermore, as we did in

Protocol 1, we simply assume that authentication is always correct, by adding the term 2−κ

in the security expression. We have

‖E − F‖� ≤ ‖E − E ′‖� + ‖E ′ −F‖� (93)

= 2−κ + η(q) + ‖E ′ −F‖� . (94)

After the classical post-processing the full state is

8Remember that in case of no noise, we expect anticorrelated outcomes x and y, that is, x = ȳ.
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ωMΦGXY EΞUZCFVW

= Em |m〉 〈m| ⊗ Eφgxy |φgxy〉 〈φgxy| ⊗ ρEφ(g)xy ⊗ Eξu |ξu〉 〈ξu| ⊗
∑
z

|z〉 〈z| δm⊕c,Ext(ξ(u),x)

⊗
∑
c

|c〉 〈c| δc,m⊕z ⊗
∑
f

|f〉 〈f | δf,θxy ⊗ Evw |vw〉 〈vw| ⊗ ρEφ(g)vw . (95)

We make a distinction between intermediate variables and output variables. The output
variables are the information that Eve has (C,E, and F ), as well as M , which Alice wants
to keep secret.

We trace out the internal variables φ, g, ξ, u, z, x, y, v, w, and leave out ρEφ(g)vw since it is
independent of the rest:

ωMCEF = Em |m〉 〈m| ⊗ EφgxyρEφ(g)xy ⊗
∑
f

|f〉 〈f | δf,θxyEξu
∑
z

δm⊕c,Ext(ξ(u),x)

⊗ 2−`
∑
c

2` |c〉 〈c| δc,z (96)

= Emc |mc〉 〈mc| ⊗ EφgxyρEφ(g)xy ⊗
∑
f

⊗ |f〉 〈f | δf,θxy ⊗ Eξu2`δm⊕c,Ext(ξ(u),x) (97)

where in the last expression the expectation over c is uniform.

Now we split the state in a part where Bob does not abort, and one where he does
abort.

ωMCEF = Emc |mc〉 〈mc| ⊗
∑
f

|f〉 〈f |
[
fρEmc,f=1 + (1− f)ρEmc,f=0

]
(98)

where

ρEmc,f=1 = EφgxyξuθxyρEφ(g)xy2`δm⊕c,Ext(ξ(u),x) (99)

ρEmc,f=0 = Eφgxyξu(1− θxy)ρEφ(g)xy2`δm⊕c,Ext(ξ(u),x) . (100)

We define the ideal protocol F as follows. If the input is such that E would abort, output
the same state as E . If E does not abort, let the output state be

ωMCEF
ideal,f=1 = Emc |mc〉 〈mc| ⊗ ρEf=1 (101)
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where

ρEf=1 = EmcρEmc,f=1 (102)

= EmcEφgxyξuθxyρEφ(g)xy2`δm⊕c,Ext(ξ(u),x) (103)

= EφgxyξuθxyρEφ(g)xy

∑
m⊕c

δm⊕c,Ext(ξ(u),x) (104)

= EφgxyθxyρEφ(g)xy . (105)

We have Exy =
∑
x 2−`

∑
y γ

Hamm(x⊕ȳ)(1−γ)Hamm(x⊕y), where γ is the bit error rate (which
is at most Q+ q in case of no abort).

We use the notation

ρEφ(g)x =
∑
y

γHamm(x⊕ȳ)(1− γ)Hamm(x⊕y)ρEφ(g)xy (106)

(107)

so we can write

ρEmc,f=1 = EφgxρEφ(g)xEξu2`δm⊕c,Ext(ξ(u),x) , (108)

ρEf=1 = EφgxρEφ(g)x . (109)

In case of abort, the ideal protocol is the same as the real one. For the security it is therefore
only needed to consider the distance between the output states in case of no abort.

Using (93) we hence define the security of Protocol 2 as

‖E − F‖� = ‖E(σ⊗n)−F(σ⊗n)‖1 (110)

≤ 2−κ + η(q) + ‖E ′(σ⊗n)−F(σ⊗n)‖1 (111)

= 2−κ + η(q) + ‖ωMCEF
f=1 − ωMCEF

ideal,f=1‖1 (112)

= 2−κ + η(q) + ‖Emc |mc〉 〈mc| ⊗ ρEmc,f=1 − Emc |mc〉 〈mc| ⊗ ρEf=1‖1 (113)

= 2−κ + η(q) + Emc‖ρEmc,f=1 − ρEf=1‖1 (114)

where in the last step we used the fact that the mc form an orthonormal basis.

The following section shows the calculation of the last term.
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4.4 Security analysis

D = Emc‖ρEmc,f=1 − ρEf=1‖1 (115)

= Emc‖EφgxρEφ(g)x

[
Eξu2`δm⊕c,Ext(ξ(u),x) − 1

]
‖1 (116)

= Emcφξ‖EgxρEφ(g)x

[
Eu2`δm⊕c,Ext(ξ(u),x) − 1

]
‖1 (117)

= Emcφξtr

√√√√(EgxρEφ(g)x

[
Eu2`δm⊕c,Ext(ξ(u),x) − 1

])2

(118)

= Emcφξtr
√
Egg′Exx′ρEφ(g)xρ

E
φ(g′)x′Euu′(2`δm⊕c,Ext(ξ(u),x) − 1)(2`δm⊕c,Ext(ξ(u′),x′) − 1)

(119)

≤ Emctr
√
Egg′Exx′EφρEφ(g)xρ

E
φ(g′)x′Λ (120)

where Λ = EξEuu′(2`δm⊕c,Ext(ξ(u),x) − 1)(2`δm⊕c,Ext(ξ(u′),x′) − 1).

Let us first simplify Λ. We have

Λ = EξEuu′22`δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u′),x′)

− EξEu2`δm⊕c,Ext(ξ(u),x) − EξEu′2`δm⊕c,Ext(ξ(u′),x′) + 1 (121)

= EξEuu′22`δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u′),x′) − 1− 1 + 1 (122)

where in the last line we used that for any x,

Eξuδm⊕c,Ext(ξ(u),x) = 2−` (123)

because of the properties of pairwise independent hash functions (Definition 19).

Then, using δxx′ which is 1 if x = x′ and 0 otherwise,
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Λ = −1 + 22`−2dEξ

[∑
u

δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u),x′) +
∑

uu′,u6=u

δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u′),x′)

]
(124)

= −1 + 22`−2d

[
Eξ
∑
u

δxx′(δm⊕c,Ext(ξ(u),x))
2 + Eξ

∑
u

(1− δxx′)δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u),x′)

+ Eξ
∑

uu′,u 6=u

δm⊕c,Ext(ξ(u),x)δm⊕c,Ext(ξ(u′),x′)

]
(125)

= −1 + 22`−2d

[∑
u

2−`δxx′ +
∑
u

2−2`(1− δxx′) +
∑

uu′,u6=u

2−2`

]
(126)

= −1 + 2`−dδxx′ + 2−d(1− δxx′) + 2−2d(22d − 2d) (127)

= −1 + 2−d(2` − 1)δxx′ + 2−d + 1− 2−d (128)

=
2` − 1

2d
δxx′ . (129)

In (126) we used the fact that for any u, the uniform expectation over ξ allows us to apply
Corollaries 20 and 21.

Substituting this back into the main formula yields

D ≤
√

2` − 1

2d
· Emctr

√
Egg′Exx′δxx′EφρEφ(g)xρ

E
φ(g′)x′ (130)

=

√
2` − 1

2d
· tr
√

Egg′Exx′δxx′EφρEφ(g)xρ
E
φ(g′)x′ . (131)
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We will now rewrite Egg′Exx′δxx′EφρEφ(g)xρ
E
φ(g′)x′ . Define

M = (1− 3

2
γ) |m0〉 〈m0|+

γ

2

3∑
i=1

|mj〉 〈mj | , (132)

A = c1 |m0〉 〈m0|+ c2

3∑
i=1

|mi〉 〈mi| (133)

(134)

where c1 = (1− 3
2γ)(1− γ) and c2 = 2γ+γ2

6 .

Then,

Egg′Exx′δxx′EφρEφ(g)xρ
E
φ(g′)x′ (135)

= 2−2b
∑

gg′,g 6=g′
Exx′δxx′EφρEφ(g)xρ

E
φ(g′)x′ + 2−2b

∑
g

Exx′δxx′EφρEφ(g)xρ
E
φ(g)x′ (136)

= 2−2b
∑

gg′,g 6=g′
2−2n

∑
x

EφρEφ(g)xρ
E
φ(g′)x + 2−2b

∑
g

2−2n
∑
x

EφρEφ(g)xρ
E
φ(g)x (137)

= 2−2b(22b − 2b) · 2−2n
∑
x

(M⊗n)2 + 2−b · 2−2n
∑
x

A⊗n (138)

= 2−n
[
(1− 2−b)(M⊗n)2 + 2−bA⊗n

]
. (139)

In (138) we used Lemmas 33 and 34.

Finally, we obtain

D ≤
√

2−n+` − 2−n)

2d
tr
√

(1− 2−b)(M⊗n)2 + 2−bA⊗n (140)

≤
√

2−n+` − 2−n)

2d

[(
1− 2−b

)
tr
√

(M⊗n)2 + 2−btr
√
A⊗n

]
(141)

=

√
2−n+` − 2−n)

2d

[(
1− 2−b

)
+ 2−b(

√
c1 + 3

√
c2)n

]
. (142)

We use the bound
√
c1 + 3

√
c2 ≤ 1 + γ1/3. Then, as long as d < `/2,

D ≤
√

2`−n−d − 2d−n ·
[
(1− 2−b) + 2−b · (1 + γ1/3)n

]
(143)

≤
√

2`−n−d ·
[
1 + 2−b+n log(1+γ1/3)

]
(144)

= 2
1
2 (`−n−d) + 2

1
2 (`−

[
1−2 log(1+γ1/3)

]
n−d−2b) . (145)

Finally we state the security of the actual protocol.
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Theorem 3. Let M be a uniform message with length `. Let d be the extractor
seed length, b be the basis key length, r the number of traps, and κ the length of the
authentication tag. Furthermore, let γ = Q+ q be the tolerated bit error rate. Let E be
the CPTP map modeling Protocol 2 and F the ideal version of Protocol 2, as described
above. Then,

‖E − F‖� ≤ 2−κ + e
−q2nr2

(n+r)(r+1) + 2
1
2 (`−n−d) + 2

1
2 (`−

[
1−2 log(1+γ1/3)

]
n−d−2b) . (146)

Proof. The distance Emc‖ρEmc,f=1 − ρEf=1‖1 is given by (145). Combining this with (114)
proves the theorem.

4.5 Key length

In this section we consider what values for the key lengths we can use and what they mean
for the security.

Recall the key material that Alice needs to remember. It is similar to that of Protocol 1,
except that Alice now also needs to remember the basis encoding key:

• basis encoding key g ∈ {0, 1}b,

• trap location key t ∈ {0, 1}n+r stored efficiently as a key of length
log
(
n+r
r

)
≈ p = (n+ r) · h(r/(n+ r)),

• extractor seed u ∈ {0, 1}d

• MAC key k ∈ {0, 1}κ

• trap data key v ∈ {0, 1}r

• raw key syndrome s ∈ {0, 1}λ, where λ ≈ nh(Q+ q)

Again, we want their total length to remain smaller than `:

b+ p+ d+ κ+ r + λ < ` . (147)

In the security error there are two terms that are the same as in Protocol 1: 2−κ and

η(q) = e
−q2nr2

(n+r)(r+1) . The other two terms are different, and in fact look more like standard
security expressions for QKD or QKR. Indeed, it is clear to see that larger values for n and
the key length result in lower security errors, and that these values depend (partly) on the
bit error rate γ. Assuming d and b are constants, the last term in Theorem 3 reveals a “rate”
of 1 − 2 log(1 + γ1/3). This means that the maximum tolerated error rate is roughly 0.07,
since for higher values of γ this rate drops below zero. This is in contrast with Protocol 1,
which does not have a hard bound on the maximum tolerated bit error rate. However, as
we saw in Section 3.5, high tolerated BER values quickly lead to large key material (λ);
for example when setting γ = 0.07, λ becomes h(0.07) ≈ 0.37, meaning that Alice needs to
remember at least a fraction 0.37 of the message length herself. Using a much lower tolerated
γ we can get similar concrete values for key length and security as in Section 3.5.
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We note that working in the CRS model might not be very useful; it is a somewhat strange
assumption. However, we did show that our protocol is secure given such a perfect pseudo-
random generator (PRG), if it exists. Therefore, the security of an instantiation of our
protocol using a real-world PRG really depends on the security of that PRG. In other words,
the security of our protocol is independent of how the PRG is actually implemented.

Furthermore, the pseudorandom generation of longer keys might seem like cheating, and one
could ask if we could not simply use existing classical encryptions based on pseudorandom
generation. We note however that our quantum protocol still has the special ability of
checking Eve’s tampering, which is classicaly not possible. Therefore, a classical protocol
for delegated storage based on the CRS model is not possible, since Eve can brute-force the
ciphertext without Alice noticing.
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5 Discussion

5.1 Relevancy of the results

The results of the previous sections can be seen both from a theoretical and a practical
viewpoint.

Theorem 2 (and Theorem 1 as a special case) is interesting from a theoretical viewpoint since
it shows that we can have a form of information-theoretic security, while using keys that
are shorter than the plaintext. In most cases, information-theoretic security is associated
with longer keys. On the other hand, Theorem 3 states the same, but relies on the CRS
model assumption. Therefore the result is perhaps somewhat less special, because CRS can
be used to ‘explain’ the shorter keys.

Furthermore, Theorem 1 proves the possibility of information-theoretic security for unknown
plaintexts. This has implications for QKD, as follows. For a uniform plaintext, the cipher-
text in Protocol 1 is independent of the raw key quantum state. Therefore, ignoring the
message completely, the protocol can really be seen as Alice performing QKD with ‘herself
in the future’, where the server is the quantum channel that Eve listens on. If we swap out
‘future Alice’ for Bob, and let Eve be a ‘normal’ quantum channel again, Theorem 1 is now
a result for QKD: namely that Alice and Bob can establish a key, while having to exchange
(‘remember’ in delegated storage) fewer bits than the length of the established key.

Finally, the composability of our protocols implies that we can chain together a sequence of
these protocols. A relatively short key can be used for secure delegated storage of a longer
key, which is used for the delegated storage for an even longer key, and so on. Finally, the last
key can be used to actually one-time pad the plaintext. In this way, it is in theory possible
to securely store an arbitrarily long plaintext using a short key of fixed length.

Practically, one could argue that the results are not particularly relevant, at least not at
the moment. Quantum memory is currently a very difficult technological challenge, with
attainable storage times of typically fractions of a second. (Storage times of serveral hours
have been shown in some circumstances [1].) Refreshing techniques—used for example with
DRAM—where the memory value is periodically read and rewritten, cannot be used because
of the uncloneable nature of the quantum memory. The act of reading it (before rewriting)
will destroy the original value.

While the amount of key material is shorter than the message length, it is not significantly
shorter, except when only very little noise is tolerated. We saw that the bottleneck here is
the error correction syndrome. If we want to let the syndrome be at most 1% of the message
length, we can only tolerate an error rate of roughly 0.00087 (since h(0.00087) ≈ 0.01). If we
tolerate 2% noise, the syndrome has length roughly nh(0.02) ≈ 0.14n. If we want to store
1 TB, it is not clear if we are satisfied in having to store at least 140 GB of key material
ourselves. In theory, we could use the chaining technique as mentioned above. However, this
would require (many) more operations for storing and retrieving the data, namely wrapping
and unwrapping each ‘layer’ of delegated storage.
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5.2 Protocol design

The two protocols proposed in this thesis have the same structure. They rely on trap qubits
distributed among the raw-key qubits. The idea is that checking the values of the traps after
retrieval gives a straight-forward way to estimate the amount of tampering: simply count
the number of bit flips. The use of trap qubits has its origin in earlier work on Provable
Deletion by Coiteux-Roy [13], where deliberate measurement of the traps results in the
destruction of the message qubits. Furthermore, the concept of additional qubits that are
purely used for tamper checking, is well known in BB84. Therefore, we were comfortable in
using traps for our protocols as well.

However, we can simplify their use somewhat compared to what we did in Protocols 1 and 2.
First of all, as hinted in the description of Protocol 1, it it not necessary to remember the
trap values. Instead we can simply rember a MAC of the trap values as well as their
syndrome. After retrieval, we try to error correct the traps. By checking the MAC of the
result, Alice knows whether error correction succeeded or not. If we assume that the error
correcting code that we used can only correct up to, say, s bit flips (except with negligible
probability), the correct MAC tag then means that there were at most s errors in the traps.
Since a MAC tag is typically only of constant length, we reduce the total key length by
roughly r (the number of traps).

So far we have considered traps that are additional qubits, separate from the raw-key qubits.
We could also let the trap values themselves be part of the raw key. One could imagine
a protocol that is similar to Protocol 1, with the following changes. Alice encodes most
of her raw key bits in the standard basis, and the other bits in the Hadamard basis. She
remembers separately the MAC and syndrome of the qubits in the standard basis and the
MAC and syndrome of the qubits in the Hadamard basis. After retrieval, she tries to error
correct both parts and checks their MAC tags. In this way she can bound the number of
bit flips in each part. For both parts, we can apply the entropic uncertainty relation to
estimate the min-entropy of the other part. The sums of these min-entropies then gives us
a bound on Eve’s knowledge about the full raw key.

We used 4-state (or BB84 encoding) for Protocol 1 and 8-state for Protocol 2. It is worth
consdering how 6-state could be used for delegated storage, but we do not see immediate
uses. The entropic relations that we use for the analysis of Protocol 1 make use of a certain
duality between two incompatible bases; a third basis would not help much. Indeed, there
exist entropic relations for more than two sets of bases, but their bounds are not tight
enough [14]. In Protocol 2 we used the property of 8-state encoding that it is an encryption.
Averaged over all basis keys, the quantum state is fully mixed. This allowed us to simplify
the expression for the diamond distance. 6-state does not give us this property.

5.3 Further work

There are still directions in which one could invest more research.

One direction is to investigate how we can reduce the key length that Alice needs to remem-
ber. We mentioned the ‘chaining’ technique, where the key itself is also stored on a server,
for which Alice only needs to remember even shorter keys, and so on. It is worth investi-
gating the security that is lost at each such iteration and whether it is worth it compared
to the key size that it saves.
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It might also be worth investigating if we can just store parts of the key on the server.
Perhaps it is possible to do a form of ‘chaining’ on only the syndrome: store the syndrome
on the server, encoded in some way, and remember locally a shorter syndrome such that the
orignal syndrome itself can be error-corrected. Furthermore, we argued that the extractor
seed should not be stored on the server since Eve might use it to perform a better attack.
It is not clear however how much her having the seed compromises the security, and indeed
it might still be possible to store the seed on the server, perhaps with a suitable quantum
encoding. Futhermore, it could be interesting to see whether it is useful to quantum-encode
the ciphertext (the one-time pad of the message) as well.

We should also mention Gottesman’s work about Uncloneable Encryption, in which he
uses a form of privacy amplification in which the parties do not need to remember the
seed. It is based on error correcting codes, and much different than extractor-based privacy
amplification like we studied in this thesis. However, the fact that the generated seed can be
forgotten by Alice after its use might make it suitable for delegated storage with short keys.
It is not clear however if Gottesman’s form of privacy amplification also yields composable
security.

Apart from looking for ways to shorten the key, we can think about different techniques for
analyzing the security.

For the analysis of Protocol 1 we tried, without result, to immediately bound the min-entropy
of the extractor output by modeling measurement and post-processing as one POVM. Using
this we could have bounded the min-entropy of the message, given Eve’s side-information.
Although such a result about the min-entropy is weaker than the diamond distance that
we did use in this thesis, it is still a composable security measure, and worth investigating
more. The problem that we faced was that short-seeded extractors typically do not have
properties that allow us to calculate the number of inputs that give a certain output. It is
worth investigating whether there are short-seeded extractors that do have these properties,
to hopefully get better bounds when we try to model extraction as a POVM.

We faced the issue that a non-uniform message gives a ciphertext that Eve can use to her
advantage while performing her attack. One idea to tackle this issue is to use a raw key x
such that the message m is the output of applying an extractor on x with seed u. In this
way, there is no ciphertext c needed and hence it is not observed by Eve. Alice would need
to compute the inverse of the extractor to find a suitable such x.

Finally, it would be interesting to revisit the topic of Provable Deletion [13], and see if it
can be incorporated with the protocols from this thesis.
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6 Conlusion

In this thesis we set out to find quantum protocols for secure delegated storage of classical
messages. These protocols should work with a key shorter than the message itself, but
should still prevent an adversary to learn anything about the message without noticeable
tampering of the quantum state, with information-theoretic guarantee. We proposed two
protocols that achieve this. Protocol 1 uses BB84-encoding of a raw key, out of which a one-
time pad for the message is extracted. Privacy amplification is done with a short-seeded
quantum-proof extractor. The security analysis relies on entropic uncertainty relations.
Protocol 2 is similar but uses 8-state encoding instead, and relies on the assumption of the
CRS model. It uses a pairwise indepenent hash function for extraction. For both protocols,
the bottleneck in terms of key length is the raw-key syndrome that needs to be remembered
in order to perform error correction. Although the required key length in both cases is
relatively long—roughly linear in the message length—the fact that we can still obtain
information-theoretic security is an interesting result.
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Appendices

A Quantum measurement and extraction as one POVM

Measure subsystem UCA of ρUCA,UCB,CE with either POVM P0 = {Mm
0 | m ∈ {0, 1}`} or

POVM P1 = {Mm
1 | m ∈ {0, 1}`} with

Mm
0 =

∑
u

|u〉 〈u| ⊗
∑
c

|c〉 〈c| ⊗
∑
x

|x〉 〈x| δmcux (148)

Mm
1 =

∑
u

|u〉 〈u| ⊗
∑
c

|c〉 〈c| ⊗
∑
x

H |x〉 〈x|Hδmcux (149)

(150)

for each m, and where δmcux is a shorthand for δm⊕c,Ext(u,x).

Then the overlap c(P0, P1) is

c(P0, P1) = max
m,m′

‖Mm
0 (Mm′

1 )†‖2∞ = max
v
{〈v|Mm

0 M
m′

1 Mm
0 |v〉 : |v〉 ∈ HU ⊗HC ⊗HA}

(151)

To upper bound the overlap, we need to find the eigenvector |v〉 that has the largest eigen-
value. We note that this eigenvector must be in the subspace spanned by the projector Mm

0 ,
according to Lemma 11.

Now we can evaluate ‖Mm
0 (Mm′

1 )†‖2∞. Let |v〉 =
∑
ucx δmcuxλucx |u〉⊗|c〉⊗|x〉 for eigenvalues

λucx. Then

max
v
{〈v|Mm

0 M
m′

1 Mm
0 |v〉 : |v〉} = max

v
{〈v|Mm

0 M
m′

1 Mm
0 |v〉 : |v〉 =

∑
ucx

δmcuxλucx |u〉 ⊗ |c〉 ⊗ |x〉}

= max
v
{〈v|Mm′

1 |v〉 : |v〉 =
∑
ucx

δmcuxλucx |u〉 ⊗ |c〉 ⊗ |x〉}

(152)

We have

Mm′

1 =
∑
u

|u〉 〈u| ⊗
∑
c

|c〉 〈c| ⊗
∑
x

H |x〉 〈x|Hδm′cux

=
∑
u

|u〉 〈u| ⊗
∑
c

|c〉 〈c| ⊗
∑
x

2−n/2
∑
x′

(−1)x·x
′
|x′〉 · 2−n/2

∑
x̂

(−1)x·x̂ 〈x̂| δm′cux

= 2−n
∑
ucxx′x̂

δm′cux |uc〉 〈uc| ⊗ (−1)x·(x
′⊕x̂) |x′〉 〈x̂| (153)
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Substituting this into (152) yields

c(P0, P1) = max
v

2−n
∑
ucxx′x̂

δm′cux(−1)x(x′⊕x̂) 〈v|ucx′〉 〈ucx̂|v〉

= max
λ

2−n
∑
ucxx′x̂

δm′cuxδmcux′δmcux̂(−1)x(x′⊕x̂)λ∗cux′λcux̂

≤ max
λ

2−n
∑
ucxx′x̂

δm′cuxδmcux′δmcux̂λ
∗
ucx′λucx̂ (154)

where the λ to maximize over is the vector of eigenvalues of |v〉.

A.1 Min-entropy bound for pairwise independent extractor

We will now calculate c(P0, P1) for a pairwise independent extractor, and use it in an entropic
uncertainty relation.

Let Γm be the number of (u, c, x)-combinations that give Ext(u, x) = m ⊕ c. That is,
Γm =

∑
ucx δmcux. We have for all x and for all z,

∑
u Pr [Ext(u, x) = z] = 2d−`, so for all

m, Γm =
∑
c 2d+n−` = 2d+n.

Let λucx = 2(−d−n)/2 for all u, c, x. Note that then

〈v|v〉 =
∑
ucx

δmcux2−d−n = Γm2−d−n = 1 (155)

so |v〉 is a valid vector. We conjecture that these λucx, an equal spread over all (u, c, x)-
combinations, gives us the smallest value for c(P0, P1). We do not prove this conjecture
here.

Substituting this into (154) gives

c(P0, P1) ≤ 2−n
∑
xx′x̂

∑
uc

δm′cuxδmcux′δmcux̂2−d−n

= 2−2n−d
[∑
xx′

∑
uc

δm′cuxδmcux′ +
∑

xx′x̂,x′ 6=x̂

∑
mc

δm′cuxδmcux′δmcux̂

]
= 2−2n−d

[∑
xx′

2d+`2−2` +
∑

xx′x̂,x′ 6=x̂

2d+`2−3`
]

= 2−2n−d
[
22n+d−2` + (23n − 22n)2d−3`

]
= 2−` + 2n−2` − 2−2` . (156)

Consider now the output Z which is the result of POVM P0 and Z ′ which is the result of
POVM P1. Combining the above result with Lemma 13, we can now state

Hε
min(Z|EC) +Hε

max(Z ′|BU) ≥ log
1

c(P0, P1)
(157)

which is non-negative only if n < 2`.

The result is hence that as long as n < 2`, we can use an entropic uncertainty relation on
the POVM representing “measurement followed by pairwise independent hashing”, which
then gives us a non-negative lower bound on the min-entropy of the extractor output, given
Eve’s side-information (including the ciphertext).
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B Proof of Lemmas 33, 34 and 35

We repeat the expressions for Eve’s state |Evxy〉 for outcomes x for Alice and y for Bob.
Note that we are considering singlet states, meaning that no noise results in anticorrelated
results.

|Ev01〉 =
1√

1− γ

[√
1− 3

2
γ |m0〉+

√
γ

2
|v ·m〉

]
(158)

|Ev10〉 =
1√

1− γ

[√
1− 3

2
γ |m0〉 −

√
γ

2
|v ·m〉

]
(159)

|Ev00〉 =
1√

2(1− v2
3)

[
(−v1v3 − iv2) |m1〉+ (−v2v3 + iv1) |m2〉+ (1− v2

3) |m3〉
]

(160)

|Ev11〉 =
1√

2(1− v2
3)

[
(−v1v3 + iv2) |m1〉+ (−v2v3 − iv1) |m2〉+ (1− v2

3) |m3〉
]

(161)

(162)

Below are given the expressions for the corresponding projectors.

|Ev01〉 〈Ev01| =
1

1− γ

[
(1− 3

2
γ) |m0〉 〈m0|+

√
γ

2
− 3

4
γ2 |m0〉 〈v ·m| (163)

+

√
γ

2
− 3

4
γ2 |v ·m〉 〈m0|+

γ

2
|v ·m〉 〈v ·m|

]

|Ev10〉 〈Ev10| =
1

1− γ

[
(1− 3

2
γ) |m0〉 〈m0| −

√
γ

2
− 3

4
γ2 |m0〉 〈v ·m| (164)

−
√
γ

2
− 3

4
γ2 |v ·m〉 〈m0|+

γ

2
|v ·m〉 〈v ·m|

]

|Ev00〉 〈Ev00| =
1

2

3∑
i=1

|mi〉 〈mi| −
1

2
|v ·m〉 〈v ·m|+ i

2

3∑
ijp=1

εjkpvj |mk〉 〈mp| (165)

|Ev11〉 〈Ev11| = |E−v00 〉 〈E
−v
00 | =

1

2

3∑
i=1

|mi〉 〈mi| −
1

2
|−v ·m〉 〈−v ·m| − i

2

3∑
ijp=1

εjkpvj |mk〉 〈mp|

(166)

Now we consider Eve’s state given a certain outcome x for Alice. Bob’s outcome depends
on x according to the noise paramater γ.
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We have

ρEv,x=0 = (1− γ) |Ev01〉 〈Ev01|+ γ |Ev00〉 〈Ev00| (167)

= (1− 3

2
γ) |m0〉 〈m0|+

γ

2

3∑
i=1

|mi〉 〈mi| (168)

+

√
γ

2
− 3

4
γ2 |m0〉 〈v ·m|+

√
γ

2
− 3

4
γ2 |v ·m〉 〈m0|+

iγ

2

3∑
ijp=1

εjkpvj |mk〉 〈mp|

(169)

and

ρEv,x=1 = (1− γ) |Ev10〉 〈Ev10|+ γ |Ev11〉 〈Ev11| (170)

= (1− 3

2
γ) |m0〉 〈m0|+

γ

2

3∑
i=1

|mi〉 〈mi| (171)

−
√
γ

2
− 3

4
γ2 |m0〉 〈v ·m| −

√
γ

2
− 3

4
γ2 |v ·m〉 〈m0| −

iγ

2

3∑
ijp=1

εjkpvj |mk〉 〈mp| .

(172)

Proof of Lemma 33. Using the above expressions, we can take the uniform expectation over
all 4 possible bases b of eight-state encoding. Let v(b) be the corresponding vector according
to (39).

EbρEb,x=0 = EbρEb,x=1 (173)

=
1

4

[
ρEv(0),x=0 + ρEv(1),x=0 + ρEv(2),x=0 + ρEv(3),x=0

]
(174)

= (1− 3

2
γ) |m0〉 〈m0|+

γ

2

3∑
i=1

|mi〉 〈mi| (175)
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Now we will calculate Ebρv(b),xρv(b),y for all values x, y. We have

ρv,x=0ρv,x=0 = (1− γ)2 |Ev01〉 〈Ev01|+ γ2 |Ev00〉 〈Ev00| (176)

= (1− 5

2
γ +

3

2
γ2) |m0〉 〈m0|+

γ2

2

3∑
i=1

|mi〉 〈mi| (177)

+
γ − γ2

2
|v ·m〉 〈v ·m| (178)

+ (1− γ)

√
γ

2
− 3

4
γ2 |m0〉 〈v ·m|+ (1− γ)

√
γ

2
− 3

4
γ2 |v ·m〉 〈m0| (179)

+
iγ2

2

3∑
ijp=1

εjkpvj |mk〉 〈mp| . (180)

ρv,x=1ρv,x=1 = (1− γ)2 |Ev10〉 〈Ev10|+ γ2 |Ev11〉 〈Ev11| (181)

= (1− 5

2
γ +

3

2
γ2) |m0〉 〈m0|+

γ2

2

3∑
i=1

|mi〉 〈mi| (182)

+
γ − γ2

2
|v ·m〉 〈v ·m| (183)

− (1− γ)

√
γ

2
− 3

4
γ2 |m0〉 〈v ·m| − (1− γ)

√
γ

2
− 3

4
γ2 |v ·m〉 〈m0| (184)

− iγ2

2

3∑
ijp=1

εjkpvj |mk〉 〈mp| (185)

ρv,x=0ρv,x=1 =
[
(1− γ) |Ev01〉 〈Ev01|+ γ |Ev00〉 〈Ev00|

]
·
[
(1− γ) |Ev10〉 〈Ev10|+ γ |Ev11〉 〈Ev11|

]
(186)

= (1− γ)(1− 2γ) |Ev01〉 〈Ev10| (187)

ρv,x=1ρv,x=0 =
[
(1− γ) |Ev10〉 〈Ev10|+ γ |Ev11〉 〈Ev11|

]
·
[
(1− γ) |Ev01〉 〈Ev01|+ γ |Ev00〉 〈Ev00|

]
(188)

= (1− γ)(1− 2γ) |Ev10〉 〈Ev01| (189)

Proof of Lemmas 34 and 35. Using the above expressions, we can again take the uniform
expectation over all 4 possible bases b of eight-state encoding. Let v(b) be the corresponding
vector according to (39).
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Ebρb0ρb0 = Ebρb1ρb1 (190)

=
1

4

[
ρEv(0),x=0ρ

E
v(0),x=0 + ρEv(1),x=0ρ

E
v(1),x=0 + ρEv(2),x=0ρ

E
v(2),x=0 + ρEv(3),x=0ρ

E
v(3),x=0

]
(191)

= (1− 5

2
γ +

3

2
γ2) |m0〉 〈m0|+

2γ2 + γ

6

3∑
i=1

|mi〉 〈mi| (192)

Ebρb0ρb1 = Ebρb1ρb0 (193)

=
1

4

[
ρEv(0),x=0ρ

E
v(0),x=1 + ρEv(1),x=0ρ

E
v(1),x=1 + ρEv(2),x=0ρ

E
v(2),x=1 + ρEv(3),x=0ρ

E
v(3),x=1

]
(194)

=
(

1− 7

2
γ + 3γ2

)
|m0〉 〈m0|+

2γ2 − γ
6

3∑
i=1

|mi〉 〈mi| (195)
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[7] Anne Broadbent and Sébastien Lord. “Uncloneable Quantum Encryption via Random
Oracles”. In: arXiv preprint arXiv:1903.00130 (2019).

[8] Anne Broadbent and Christian Schaffner. “Quantum cryptography beyond quantum
key distribution”. In: Designs, Codes and Cryptography 78.1 (2016), pp. 351–382.

[9] Matthias Christandl, Robert König, and Renato Renner. “Postselection technique for
quantum channels with applications to quantum cryptography”. In: Physical review
letters 102.2 (2009), p. 020504.

[10] Matthias Christandl, Renato Renner, and Artur Ekert. “A generic security proof for
quantum key distribution”. In: arXiv preprint quant-ph/0402131 (2004).

[11] Kai-Min Chung et al. “Quantum-Proof Extractors: Optimal up to Constant Factors”.
In: arXiv (2016).

[12] Gil Cohen, Ran Raz, and Gil Segev. “Nonmalleable extractors with short seeds and
applications to privacy amplification”. In: SIAM Journal on Computing 43.2 (2014),
pp. 450–476.

[13] Xavier Coiteux-Roy and Stefan Wolf. “Proving Erasure”. In: arXiv preprint arXiv:1902.06656
(2019).

[14] Patrick J Coles et al. “Entropic uncertainty relations and their applications”. In:
Reviews of Modern Physics 89.1 (2017), p. 015002.

[15] Patrick J Coles et al. “Uncertainty relations from simple entropic properties”. In:
Physical review letters 108.21 (2012), p. 210405.

[16] Ivan Damg̊ard, Thomas Brochmann Pedersen, and Louis Salvail. “A Quantum Ci-
pher with Near Optimal Key-recycling”. In: Proceedings of the 25th Annual Interna-
tional Conference on Advances in Cryptology. CRYPTO’05. Santa Barbara, Califor-
nia: Springer-Verlag, 2005, pp. 494–510. isbn: 3-540-28114-2, 978-3-540-28114-6. doi:
10.1007/11535218_30. url: http://dx.doi.org/10.1007/11535218_30.

[17] Ivan Damg̊ard, Thomas Brochmann Pedersen, and Louis Salvail. “How to Re-use a
One-time Pad Safely and Almost Optimally Even if P = NP”. In: 13.4 (Dec. 2014),
pp. 469–486. issn: 1567-7818. doi: 10 . 1007 / s11047 - 014 - 9454 - 5. url: http :

//dx.doi.org/10.1007/s11047-014-9454-5.
[18] Anindya De et al. “Trevisan’s extractor in the presence of quantum side information”.

In: SIAM Journal on Computing 41.4 (2012), pp. 915–940.

55



[19] Serge Fehr and Louis Salvail. “Quantum authentication and encryption with key recy-
cling”. In: Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer. 2017, pp. 311–338.

[20] Dmitry Gavinsky et al. “Exponential separations for one-way quantum communication
complexity, with applications to cryptography”. In: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing. 2007, pp. 516–525.

[21] Pete Gemmell and Moni Naor. “Codes for interactive authentication”. In: Annual
International Cryptology Conference. Springer. 1993, pp. 355–367.

[22] Daniel Gottesman. “Uncloneable encryption”. In: arXiv preprint quant-ph/0210062
(2002).

[23] Russell Impagliazzo, Leonid A Levin, and Michael Luby. “Pseudo-random generation
from one-way functions”. In: Proceedings of the twenty-first annual ACM symposium
on Theory of computing. ACM. 1989, pp. 12–24.

[24] Robert König and Renato Renner. “A de Finetti representation for finite symmetric
quantum states”. In: Journal of Mathematical physics 46.12 (2005), p. 122108.

[25] Robert Konig, Renato Renner, and Christian Schaffner. “The operational meaning
of min-and max-entropy”. In: IEEE Transactions on Information theory 55.9 (2009),
pp. 4337–4347.

[26] Robert König et al. “Small accessible quantum information does not imply security”.
In: Physical Review Letters 98.14 (2007), p. 140502.

[27] Barbara Kraus, Nicolas Gisin, and Renato Renner. “Lower and upper bounds on
the secret-key rate for quantum key distribution protocols using one-way classical
communication”. In: Physical review letters 95.8 (2005), p. 080501.

[28] Daan Leermakers and Boris Skoric. “Optimal Attacks on Qubit-based Quantum Key
Recycling”. In: Quantum Information Processing 17.3 (Mar. 2018), pp. 1–31. issn:
1570-0755. doi: 10.1007/s11128-018-1819-8. url: https://doi.org/10.1007/
s11128-018-1819-8.

[29] Daan Leermakers and Boris Skoric. “Security proof for Quantum Key Recycling with
noise.” In: IACR Cryptology ePrint Archive 2018 (2018), p. 264.

[30] Hoi-Kwong Lo and Hoi Fung Chau. “Unconditional security of quantum key distribu-
tion over arbitrarily long distances”. In: science 283.5410 (1999), pp. 2050–2056.

[31] Hoi-Kwong Lo, Hoi Fung Chau, and Mohammed Ardehali. “Efficient quantum key dis-
tribution scheme and a proof of its unconditional security”. In: Journal of Cryptology
18.2 (2005), pp. 133–165.

[32] Michael A Nielsen and Isaac L Chuang. “Quantum information and quantum compu-
tation”. In: Cambridge: Cambridge University Press 2.8 (2000), p. 23.

[33] Christopher Portmann and Renato Renner. “Cryptographic security of quantum key
distribution”. In: arXiv preprint arXiv:1409.3525 (2014).

[34] Renato Renner. “Security of quantum key distribution”. In: International Journal of
Quantum Information 6.01 (2008), pp. 1–127.

[35] Renato Renner. “Symmetry of large physical systems implies independence of subsys-
tems”. In: Nature Physics 3.9 (2007), p. 645.

[36] Renato Renner, Nicolas Gisin, and Barbara Kraus. “Information-theoretic security
proof for quantum-key-distribution protocols”. In: Physical Review A 72.1 (2005),
p. 012332.

[37] Renato Renner and Stefan Wolf. “Simple and tight bounds for information recon-
ciliation and privacy amplification”. In: International conference on the theory and
application of cryptology and information security. Springer. 2005, pp. 199–216.

56



[38] Ronen Shaltiel. “Recent developments in explicit constructions of extractors”. In: Cur-
rent Trends in Theoretical Computer Science: The Challenge of the New Century Vol
1: Algorithms and Complexity Vol 2: Formal Models and Semantics. World Scientific,
2004, pp. 189–228.

[39] Amnon Ta-Shma. “Short Seed Extractors Against Quantum Storage”. In: SIAM J.
Comput. 40.3 (June 2011), pp. 664–677. issn: 0097-5397. doi: 10.1137/09076787X.
url: http://dx.doi.org/10.1137/09076787X.

[40] Peter W Shor and John Preskill. “Simple proof of security of the BB84 quantum key
distribution protocol”. In: Physical review letters 85.2 (2000), p. 441.
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