
 Eindhoven University of Technology

MASTER

An MPSoC based Autonomous Unmanned Aerial Vehicle

van Esch, G.F.J.E.A.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/7a1ac9c6-b496-4c6f-93f1-bb179f8d047c

An MPSoC based
Autonomous Unmanned

Aerial Vehicle
Master �esis

Gijs van Esch

Department of Electrical Engineering

Electronics Systems Research Group

Supervisors:

Kees Goossens (TU/e)

D. van den Heuvel (Topic Embedded Systems)

Final version

Eindhoven, �ursday 6
th

February, 2020

Abstract

Drones are being used more o�en in various industries for various applications. Drones these days have

the capabilities to e.g. perform image processing and object detection. Many of these industry applica-

tions require increasingly more processing power. �e drone industry could bene�t from a small embed-

ded platform that has all the hardware required for autonomous �ight with extra computational power

available.

�is is where the Xilinx Drone Platform (XDP) platform can be applied. �e XDP platform contains

all the necessary sensors needed to �y. It contains a powerful Multi-Processor System-on-Chip (MPSoC)

with a Field Programmable Gate Array (FPGA), lockstep real time processor, Graphics Processing Unit

(GPU) and, an Application Processing Unit (APU).

In this master thesis di�erent sensors for obstacle avoidance on a drone are investigated and the design

�ow to develop a fully autonomous drone platform is discussed.

Di�erent autopilots are discussed and PX4 is decided most suitable for this project. Di�erent sensors

are available that can be used for obstacle avoidance. �ese are discussed and it is decided which is best

for this project. For the design �ow it is proposed to implement and test each sensor individually in the

form of sprints. Hereby it is important that each component is tested individually and in small steps,

otherwise this could lead to wrong conclusions. �e trade-o�s for di�erent mappings of processes on

the platforms are being discussed and the impact of the decisions are tested. �e implementation of the

obstacle avoidance has been discussed and the connection and reading of sensor has been implemented.

Whether the drone avoids obstacles has not been veri�ed.

As a �nal product a drone with the ability to �y is realised using this platform. All the individual

sensors on the board have been tested and veri�ed whether they work correctly. �is is the case for all

sensors except for the magnetometer. However, it has also been proven that the correctness of the mag-

netometer can not be guaranteed because of the magnetic interference from current leaving the ba�ery.

An MPSoC based autonomous UAV iii

Preface

I would like to thank my TU/e supervisor, Kees Goossens, for providing high-level and critical feedback

and guiding me throughout the entire project.

Furthermore I would like to thank all my colleagues within Topic Embedded Systems, within the

HeCTiC team which showed interest in my project and helped me with the problems that I encountered.

Especially I would like to thank Dirk van den Heuvel for asking critical questions and helping me through-

out the project.

Finally, I would like a special thanks to all my friends and family for supporting me during the project,

especially my girlfriend Kim Roosen.

An MPSoC based autonomous UAV v

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 1

1.2 Problem statement . 1

1.3 Research question . 2

1.4 Approach . 2

1.5 Outline . 2

2 State of the art 3
2.1 Sensors on an FPGA . 3

2.2 Obstacle avoidance in drones . 3

2.3 Autopilots available . 4

2.3.1 Dronecode (PX4) . 4

2.3.2 ArduPilot . 4

2.3.3 Paparazzi project . 5

2.3.4 SLUGS . 5

2.3.5 LibrePilot . 5

2.3.6 ROS (Robot Operating System) . 5

2.3.7 ROS2 . 5

2.3.8 Uaventure . 5

2.3.9 Develop from scratch . 6

2.3.10 License . 6

2.3.11 Conclusion . 6

2.4 ROS on FPGA . 7

2.5 Trade-o�s of techniques for sensors . 7

2.5.1 Camera . 7

2.5.2 Stereo Camera . 7

2.5.3 3D Camera . 7

2.5.4 Radar . 8

2.5.5 Ultrasonic . 8

2.5.6 Infrared Time of Flight . 8

2.5.7 Lidar . 8

2.5.8 Conclusion . 9

2.6 Trade-o�s of sensors for navigation . 10

2.6.1 Stereolabs zed . 10

2.6.2 µSharp . 10

2.6.3 HC-SR04 . 10

An MPSoC based autonomous UAV vii

CONTENTS

2.6.4 LIDAR-Lite v3 . 11

2.6.5 RPLidar A3/S1 . 11

2.6.6 Puck Lite . 11

2.6.7 Conclusion . 12

2.7 Implementing drone-so�ware on an FPGA . 13

2.8 Design �ow . 13

2.9 conclusion . 14

3 Background 15
3.1 �adcopter/Drone . 15

3.2 Autopilot . 16

3.3 Hardware . 16

3.4 XDP . 16

3.5 Real-time . 17

3.6 Build environment . 17

4 Design 19
4.1 Required computation of PX4 . 19

4.1.1 Messaging protocol . 19

4.1.2 Sensors . 19

4.1.3 Local position estimator . 20

4.1.4 Navigator . 20

4.1.5 A�itude estimator q . 20

4.1.6 Mc a� control . 20

4.1.7 Mc pos control . 21

4.1.8 Mixer . 21

4.1.9 Linux pwm out . 21

4.1.10 Land detector . 21

4.1.11 Commander . 21

4.1.12 Conclusion . 22

4.2 Required computation for ROS . 22

4.3 Mapping of the processes . 23

4.3.1 Advantages Real-Time cores . 24

4.3.2 Advantages A53 cores . 24

4.3.3 Advantages FPGA . 24

4.3.4 Advantages of GPU . 25

4.3.5 ROS on real-time processor . 25

4.3.6 Conclusion . 25

4.4 Obstacle avoidance . 26

4.4.1 Connection between PX4 and ROS . 26

4.4.2 Obstacle avoidance in PX4 . 26

4.5 Design �ow . 29

5 Implementation 31
5.1 Connect Processing System and Programmable Logic . 31

5.1.1 Device Driver . 31

5.1.2 Device Tree . 31

5.1.3 Programmable logic . 31

5.2 How to utilize the sensors in PX4? . 32

5.2.1 Reading the sensor data . 32

5.2.2 Publishing the data in PX4 . 33

5.3 PID tuning . 34

5.3.1 Methods found in literature . 34

5.3.2 Methods in drones . 34

viii An MPSoC based autonomous UAV

CONTENTS

5.4 Obstacle avoidance . 36

5.4.1 Reading the sensor in ROS . 36

5.4.2 Converting the data . 36

5.4.3 Connection . 36

6 Experiments & Results 37
6.1 Testing of the sensors . 37

6.1.1 Testing the barometer . 38

6.1.2 Testing the Magnetometer . 40

6.1.3 Testing the IMU . 42

6.1.4 Testing the GPS . 44

6.2 Testing of the motors . 47

6.2.1 Arming and Calibration . 47

6.2.2 Tilt forwards and backwards . 48

6.2.3 Tilt le� and right . 49

6.3 Takeo� . 49

6.4 �e system under load . 50

6.5 First test �ight with GPS . 51

7 Conclusion 55
7.1 Conclusions . 55

7.2 Future works . 56

Bibliography 57

Appendix 65

A Appendix sensors 65
A.1 What currently available sensor can be used to detect obstacles? 65

A.1.1 Stereo camera . 65

A.1.2 Radar . 66

A.1.3 Ultrasonic . 66

A.1.4 Lidar . 67

A.1.5 360 Lidar . 68

A.1.6 Time of Flight LED . 69

A.1.7 Criteria . 70

B Overview image 72

An MPSoC based autonomous UAV ix

List of Figures

2.1 Stereolabs zed [1] . 10

2.2 µSharp [2] . 10

2.3 HC-SR04 [3] . 11

2.4 Lidar-Lite [4] . 11

2.5 RPLidar S1 [5] . 11

2.6 Velodyne Puck Lite [6] . 12

3.1 �adcopter [7] . 15

3.2 �e XDP . 16

3.3 MPSoC overview [8] . 17

4.1 Flight stack overview [9] . 19

4.2 Multicopter position controller [10] . 21

4.3 CPU usage when running ROS with Lidar, processes are highlighted 22

4.4 �e Zynq Ultrascale+ [11] . 23

4.5 Dronecode platform [12] . 24

4.6 �e mapping . 26

4.7 A visual representation of o�board and mission mode . 28

5.1 �e communication between the Processing system and Programmable Logic visualized 32

5.2 �e channels and a�ributes of the Magnetometer . 33

5.3 Default PID controller [13] . 34

5.4 �e roll angle during �rst takeo� . 35

5.5 Roll rate a�er PID tuning . 35

5.6 Output of RPLidar in ROS . 36

6.1 �e Topic gym . 37

6.2 �e barometric sensor data . 38

6.3 Barometric sensor data during takeo� strapped to the ground 38

6.4 Air�ow of a quadcopter with the ground e�ect [14] . 39

6.5 Barometric sensor data during takeo� strapped elevated 39

6.6 Amperage needed to in�uence magnetic �eld at certain distance 40

6.7 Raw magnetic �eld . 41

6.8 Start orientation up . 42

6.9 Pitch Angle . 42

6.10 Roll Angle . 43

6.11 Yaw Angle . 43

6.12 Purple: Gps trajectory, Red: Real trajectory approximated 44

6.13 Statistics for GPS uncertainty near building . 45

6.14 GPS trajectory open environment, purple: GPS trajectory, Read: Real trajectory approx-

imated . 45

6.15 Statistics for GPS uncertainty in open environment . 46

An MPSoC based autonomous UAV xi

LIST OF FIGURES

6.16 �adcopter layout [15] . 47

6.17 Arming of the motors . 47

6.18 �e calibration of the motors . 48

6.19 Tilting forwards (li�ing the back) . 48

6.20 Tilting backwards (li�ing the front) . 48

6.21 Tilting right (li�ing the le�) . 49

6.22 Tilting le� (li�ing the right) . 49

6.23 �e roll angle during �rst takeo� . 50

6.24 �e roll angle a�er PID tuning . 50

6.25 �e roll rate under load . 51

6.26 Altitude estimate during �rst test �ight . 52

6.27 Altitude estimate from the GPS test of section 6.1.4 . 53

6.28 GPS uncertainty during test �ight . 53

6.29 GPS uncertainty during test near topic . 53

6.30 altitude estimate during test near topic . 54

6.31 Log messages . 54

A.1 Intel realsense D435 [16] . 65

A.2 Carnegie Multisense S7 [17] . 65

A.3 Stereolabs zed [1] . 65

A.4 µSharp [2] . 66

A.5 HC-SR04 [3] . 66

A.6 MaxSonar [18] . 66

A.7 Lidar-Lite [4] . 67

A.8 LeddarOne by LeddarTech [19] . 67

A.9 Benewake TF02 [20] . 67

A.10 RPLidar S1 [5] . 68

A.11 Velodyne Puck [6] . 68

A.12 Hokuyo UTM-30LX [21] . 68

A.13 YDLidar G4 [22] . 68

A.14 Ocular Robotics RE05 [23] . 69

A.15 SICK LMS1000 [24] . 69

A.16 TeraRanger Tower Evo [25] . 69

B.1 Black rectangles represent modules, lines indicate messages being communicated with

the blue fonts naming the message . 73

xii An MPSoC based autonomous UAV

List of Tables

2.1 Di�erent autopilot so�ware compared . 6

2.2 Typical sensor characteristics . 9

2.3 Overview of potential sensors . 12

4.1 SET POSITION TARGET LOCAL NED [26] . 27

4.2 TRAJECTORY REPRESENTATION WAYPOINTS [26] . 28

5.1 Comparison Industrial IO and File IO . 32

6.1 Results from magnetometer experiment . 41

A.1 Table of available sensors . 71

An MPSoC based autonomous UAV xiii

Abbreviations

AI Arti�cial Intelligence. 1

APU Application Processing Unit. 23, 24

AXI Advance eXtensible Interface. 31, 32

BEC Ba�ery Elimination Circuit. 36

BSD Berkeley So�ware Distribution. 6

BSP board support package. 24

CPU Central Processing Unit. 3, 7, 31, 50

cReComp creator for Recon�gurable Component. 7

ESCs Electronic Speed Controllers. 1, 36

FIFO First-In First-Out. 7

FPGA Field Programmable Gate Array. 1, 3, 6, 7, 9, 13, 20, 23–25, 31, 32, 36, 56

GNSS Global Navigation Satellite System. 17

GPL GNU General Public License. 6

GPS Global Positioning System. 17, 20, 23, 37, 38, 41, 44, 51, 52

GPU Graphics Processing Unit. 23, 25

IIO Industrial Input/Output. 32, 33

IMO Independently Moving Objects. 4

IMU Inertial Measurement Unit. 4, 16, 17, 20, 23, 37, 41, 42

IO Input/Output. 24, 32

IP Intellectual Property. 31, 32

Lidar LIght Detection And Ranging. 4, 8, 9, 11, 13, 27, 56

MAVLink Micro Air Vehicle Link. 26

MEMS Microelectromechanical systems. 4

MPSoC Multi-Processor System-on-Chip. 1, 2, 6, 14, 17, 23, 26, 55

An MPSoC based autonomous UAV xv

Abbreviations

PC Personal Computer. 3

PID Proportional-Integral-Derivative. 2, 13, 20, 34, 35, 55, 56

PL Programmable Logic. 23

PS Processing System. 23

RISC Reduced Instruction Set Computer. 16

ROS Robot Operating System. 5–7, 10, 13, 17, 22, 24–27, 36, 50, 55

RTOS Real-Time Operating System. 17, 25, 50

SLAM Simultaneous Localization And Mapping. 4, 13

SLUGS Santa Cruz Low-cost UAV GNC System. 5

UART Universal asynchronous receiver-transmi�er. 10, 11, 22

UAV Unmanned Aerial Vehicle. 1–5, 8, 13, 15

UORB micro Object Request Brokers. 19, 33

VTOL Vertical Take-O� and Landing. 5

XDP Xilinx Drone Platform. 15, 16, 23, 37

xvi An MPSoC based autonomous UAV

Chapter 1

Introduction

1.1 Context
�ese days drones are being used increasingly more o�en [27, 28, 29, 30], in di�erent �elds as for in-

stance, precision agriculture [31], emergency services [32, 33], construction inspection [34] and many

more applications.

According to Gartner Research [35] critical components within drones are, Arti�cial Intelligence (AI),

Algorithms, So�ware, and processing. When comparing an FPGA to a micro controller it can be observed

that there are several fundamental di�erences. For instance, in a video processing application, an FPGA

can perform massive parallelism for faster computation compared to a micro controller that needs to pro-

cess each pixel sequentially. �is also holds for processing data from, radar or laser-based systems, which

makes an FPGA more suitable for the timing critical components. Additionally the use of programming

logic on an FPGA makes it possible to control the motors and read sensors at a higher rate compared to

a micro controller.

Topic wants to develop an Unmanned Aerial Vehicle (UAV) using a special MPSoC. �e bene�t of

using an MPSoC, which has an FPGA is that there is much more computing power available. �is can be

used for, video processing, adding more sensors and having higher communication bandwidth.

An important factor in autonomous drone �ight is to avoid the obstacles, which can be achieved

using sensors. �e research of this master thesis will be about, what kind of sensors could be used for

autonomous drone navigation. What are the advantages and disadvantage of each sensor and what would

be a suitable solution using an MPSoC. Since an MPSoC is used, more data can be processed compared

to when using a micro controller. An example of this is the implementation of stereo vision on an FPGA

[36].

�e control of the actuators will be researched. In industry a drone is controlled via Electronic Speed

Controllers (ESCs), the FPGA however can run a dedicated control loop with special hardware to achieve

higher loop rates. It will be interesting to research what design �ows have to be followed in order to

develop an autonomous drone platform on the MPSoC.

1.2 Problem statement
Topic developed a platform which has all the necessary sensors available in order to �y. However, it has

not been proven whether this platform actually has the capabilities to control a drone. A design �ow has

to be developed in order to implement and test so�ware capable of �ying autonomously. �is thesis aims

to give an overview of the design �ow and problems encountered when developing an autonomous UAV

on an MPSoC.

An MPSoC based autonomous UAV 1

CHAPTER 1. INTRODUCTION

1.3 Research question
�e main research question can be formulated as:

• On an MPSoC, what are the design �ows and trade-o�s for di�erent sensors for an autonomous

navigating drone?

�e following sub research questions can be derived from the main question:

• What are the trade-o�s for di�erent mappings of the process on the MPSoC and what would be

most suitable for this project?

• What currently available sensors can be used on a drone to detect obstacles?

• What so�ware is available that o�ers the necessary functionality?

1.4 Approach
�is work explains the research, design, implementation, and testing of an autonomous drone platform

running on a MPSoC. Research will include �nding the correct so�ware to make it work, see how obstacle

avoidance is implemented in other projects and which sensors are most suitable to use for navigation on a

drone. Design will include the workings of the autopilot so�ware and how the processes will be mapped

onto the MPSoC. Implementation will include writing the drivers for the motors and sensors, tuning the

Proportional-Integral-Derivative (PID) control loop and ge�ing obstacle avoidance to work. Experiments

and results will discuss the di�erent tests that have been performed in order to verify the correct working.

�is work gives a good overview of what is necessary to develop and test an autonomous drone on a new

platform.

1.5 Outline
In Chapter 2 publications regarding implementations of UAV on an MPSoC, trade-o�s for di�erent auto-

pilots and sensors and the design �ow will be discussed. Chapter 3 presents the necessary theory used

within this thesis. In Chapter 4 the working of the autopilot and mapping of the processes is discussed.

Chapter 5 describes the implementation of the autopilot and the obstacle avoidance on the MPSoC. In

chapter 6 the experiments and results will be presented. Chapter 7 provides the conclusions and possible

future work related to the thesis.

2 An MPSoC based autonomous UAV

Chapter 2

State of the art

Unmanned aerial vehicles are being used more o�en. In 2017 the UAV market was valued at 18.14 billion

dollars and it is projected to reach 52.30 billion dollars by 2025 [37]. It can therefore be classi�ed as a

rapidly growing market in which increasingly more companies show their interest. Multiple studies have

been performed within the �eld of drones and FPGAs.

2.1 Sensors on an FPGA
An important aspect in developing a UAV are the sensors. �ese should detect the obstacles and per-

form localization in order for the drone to reach its goal without colliding. Multiple studies have been

performed on using an FPGA in collaboration with sensors in terms of processing power.

L. Schä�er et al. [38] talk about combining measurements of di�erent sensors with a Kalman Filter [39]

to achieve sensor fusion on an FPGA. �e usage of an FPGA has been compared to a Central Processing

Unit (CPU) and has proven that it is 358 times faster than the CPU while consuming less power than the

CPU. However, the algorithm on the Personal Computer (PC) was programmed in MATLAB which is not

the most e�cient way to program and was running on an operating system.

�e paper of M.E. Conde et al. [40] is similar to the paper of L. Schä�er et al. [38]. It combines the

data of a sonar sensor and an infrared sensor to get a more reliable result. �is implementation is then

compared with a 32-bit embedded-processor, the NIOS-II. �e paper concluded that an FPGA has an

acceleration factor of 524 times that of an embedded processor.

2.2 Obstacle avoidance in drones
As wri�en in Section 2.1, sensors are an important aspect for this project since the obstacle avoidance

will rely on them. It is researched which sensors are used for obstacle avoidance in drones.

M. Itani et al. [41] talk about the usage of ultrasonic sensors on a drone. It is investigated and tested

whether it would be feasible and some solutions are proposed in the form of an algorithm. �e paper

concluded that using ultrasonic sensors is a cheap and feasible solution. Unfortunately, nothing was

developed and it is thus all theoretical.

�e paper of K. Li et al. [42] talk about a low-cost indoor navigation based on Ultra Wide Band

radio and a 3D laser. �e data of the di�erent sensors is fused with a Kalman �lter in order to achieve

be�er position accuracy. It is concluded that with the data received from the 3D laser, when hovering,

the accuracy of the drone can be considerably increased. However, the problem with their low-cost laser

scanner is that it takes 1 second to measure a certain distance. �e drone has to hover in order to calculate

distances.

An MPSoC based autonomous UAV 3

CHAPTER 2. STATE OF THE ART

C. Cigla et al. [43] propose a forward-looking stereo camera solution fused with an egocentric cyl-

indrical camera. Using the new Gaussian Mixture Models-base disparity image fusion algorithm with an

extension they are able to handle Independently Moving Objects (IMO). �e on-board implementation

provides a visual map at 10Hz. One remark that is immediately clear from this paper is that a lot of

processing power is required to process the stereo images, even at the low resolution of 752x480.

�e paper of N. Gageik et al. [44] uses sensor fusion of ultrasonic and infrared sensors for obstacle

avoidance within drones. Ultrasonic sensors sometimes fail to reliably detect a human. Using the fusion

a low-cost yet reliable obstacle avoidance system can be made. Additionally, there is a remark that a

low-cost laser scanner could replace the infrared sensors to increase the reliability. A big downside is,

that the use of infrared sensors will be much less for �ying outside than inside. �is could be be�er when

using a laser.

R. Li et al. [45] proposes a Simultaneous Localization And Mapping (SLAM) [46] algorithm based on

the LIght Detection And Ranging (Lidar) and Microelectromechanical systems (MEMS) Inertial Measure-

ment Unit (IMU) via a Kalman �lter. Using this there is an autonomous integrated navigation technology.

During the experiments it is found that the proposed algorithm can e�ectively improve Lidar’s environ-

mental feature extraction accuracy and decrease calculation amount of �ltering algorithm.

2.3 Autopilots available
An autopilot is so�ware which is used to �y a drone, there are several autopilots available which are

discussed in this section.

2.3.1 Dronecode (PX4)
Dronecode is a platform that contains everything needed for a complete UAV solution: �ight controller

hardware, autopilot so�ware, ground control station and developer’s API for enhanced and advanced

use cases [47]. Dronecode is structured around an open-source license, open design, development, and

contribution model.

�e main project of Dronecode is PX4. PX4 is an open-source �ight control so�ware for drones and

other unmanned vehicles [48, 49]. It provides a �exible set of tools for drone developers to share techno-

logies to create tailored solutions for drone applications. PX4 originated from the PIXHAWK project [50]

at ETH Zurich. It was speci�cally designed to be a research platform for computer vision-based �ight

control. Currently the PX4 project contains more than 300 global contributors and is used by some of the

world’s biggest companies such as Sony, NXP, and Microso�.

PX4 main features are a modular and extensible architecture both in terms of hardware and so�ware.

https://www.dronecode.org/ https://PX4.io/

2.3.2 ArduPilot
ArduPilot was originally developed by hobbyists to control model aircra� and rovers. It started with an

arduino program, hence the name ArduPilot. Currently it is one of the most advanced, full featured and

reliable open-source autopilot so�ware available [51]. It is installed in over 1 million vehicles world-wide

and is therefore one of the most tested and proven autopilot so�ware. Since ArduPilot is open-source it

is rapidly evolving and always at the cu�ing edge of technology development. Many peripheral supplies

create interfaces for the platform. �e community is as big as that of Dronecode/PX4. �e big di�erence

between ArduPilot and PX4 is the license which will be explained in section 2.3.10.

http://ardupilot.org/

4 An MPSoC based autonomous UAV

https://www.dronecode.org/
https://PX4.io/
http://ardupilot.org/

CHAPTER 2. STATE OF THE ART

2.3.3 Paparazzi project
Paparazzi UAV is an open-source drone hardware and so�ware project which was founded in 2003 [52,

53]. It was designed primarily focused on autonomous �ight. Several core developers are a�liated with

universities and research institutions such as the MAVLAB of TU-Del�. �e community of the Paparazzi

project is much smaller than that of PX4 and ArduPilot. �is can be observed in the di�erence in forum

activity and activity on GitHub. �e license for the Paparazzi project is the same as for ArduPilot.

http://wiki.paparazziuav.org/wiki/Main Page

2.3.4 SLUGS
Santa Cruz Low-cost UAV GNC System (SLUGS) from the University of California Santa Cruz [54]. �e

open-source so�ware suite contains everything needed to let airborne systems �y, although, not fully

autonomous [55]. �e project started in 2009 but unfortunately it is no longer active with the last update

from 30th of August 2009. �e license used is the MIT license which is a similar license as the one used

for Dronecode.

https://slugsuav.soe.ucsc.edu/

2.3.5 LibrePilot
LibrePilot is relatively young compared to ArduPilot. It is founded in July 2015 and it focuses on research

and development of so�ware and hardware to be used in a variety of applications including unmanned

autonomous vehicles [56]. Overall it o�ers roughly the same features as ArduPilot or PX4 but has a much

smaller community. It uses the same license as ArduPilot.

https://www.librepilot.org/

2.3.6 ROS (Robot Operating System)
�e Robot Operating System is a set of so�ware libraries and tools that help to build robot applications

[57, 58]. Robot Operating System (ROS) consists of packages which can be used and communicate with

each other using so-called topics and nodes. �is way each hardware component can be a speci�c package

and work individually from other sources. �ese can thus be combined in order to get a complete working

device. ROS can also communicate with PX4, sensors could be read using ROS and then the data could be

sent to PX4 to use this data. ROS�ight could be an option for autopilot. It is an autopilot designed from

the ground up for integration with ROS [59].

https://www.ros.org https://rosflight.org/

2.3.7 ROS2
ROS2 is the successor of the Robot Operating System, ROS is being used by increasingly more people and

companies. One of the problems was that since the beginning the API of ROS was compatible with the

oldest versions. �is is nice in terms of stability, but this also means that choices made at the beginning

of ROS, which could have been be�er are still implemented [60]. �at is why it was decided to create a

new version of ROS which will also enhance several new technologies. Not all the packages available for

ROS are available for ROS2 yet.

https://index.ros.org/doc/ros2/

2.3.8 Uaventure
Uaventure has a fully autonomous Hybrid Vertical Take-O� and Landing (VTOL) Flight Control System

[61]. It is compatible with most Pixhawk (hardware which is also used for PX4) compatible autopilots.

�is so�ware is mainly being used for the autonomous delivery of medicine in hard-to-reach areas or

areas where faster transportation is necessary. Unfortunately, this is not an open-source project and will

thus not be suitable for this project.

http://uaventure.com/

An MPSoC based autonomous UAV 5

http://wiki.paparazziuav.org/wiki/Main_Page
https://slugsuav.soe.ucsc.edu/
https://www.librepilot.org/
https://www.ros.org
https://rosflight.org/
https://index.ros.org/doc/ros2/
http://uaventure.com/

CHAPTER 2. STATE OF THE ART

2.3.9 Develop from scratch
�e �nal option could be to develop the complete algorithm from scratch. Building it from scratch would

likely result in be�er utilization of the FPGA compared to when using an open-source autopilot. Addi-

tionally, it will probably be easier to add additional features within the autopilot since the exact working

of the so�ware is known. For an autopilot if these features are not implemented they must be extensively

researched. However, this option will likely cost signi�cantly more time than using an open-source auto-

pilot. It requires much more research on how to exactly develop the algorithm and likely not have the

same amount of safety features as when using an autopilot. �ere are several research papers about the

control of the quadcopter [62, 63, 64] which worked on the control of the motors to make a quadcopter

�y. �is does not include running it on an FPGA or �ying autonomously. Development of the entire

autopilot will most likely not be completed within the project time frame.

2.3.10 License
�e GNU General Public License (GPL) license allows free online distribution a�er purchase of the code

[65]. �e Berkeley So�ware Distribution (BSD) license does not allow this [66]. With BSD the author has

more control about what happens with the code. �erefore it is preferred to use the BSD license and thus

either PX4 or ROS(2).

2.3.11 Conclusion
In Table 2.1 the important criteria for each autopilot can be observed. �e table shows that Dronecode

(PX4) or ArduPilot will be the best solution especially since these have already been implemented on a

similar platform using an MPSoC. ROS(2) could also be a solution because of its large community and

many available packages.

An interesting remark to make is that PX4 can be used in combination with ROS. ROS can handle the

detection of obstacles and avoidance while PX4 takes care of �ight of the retrieved path.

In the end PX4 will be used for this project because of the license and the knowledge that it works in

various con�gurations.

Table 2.1: Di�erent autopilot so�ware compared

License Features Implemented

on MPSoC

Size of community

Dronecode (PX4) open-source

BSD

All available Yes Big community

ArduPilot open-source

GPL

All available Yes Big community

Paparazzi project open-source

GPL

All available No Small community

SLUGS open-source

MIT

Basic �ying available No No community

LibrePilot open-source

GPL

All available No Small community

ROS open-source

BSD

Flying and obstacle

avoidance available

No Big community

ROS2 open-source

BSD

Flying and obstacle

avoidance available

No Big community

Uaventure Closed All available No No community

Develop from

scratch

- Necessary features can

be implemented

- -

6 An MPSoC based autonomous UAV

CHAPTER 2. STATE OF THE ART

2.4 ROS on FPGA
Since PX4 will be used in collaboration with ROS, it is therefore essential to research about whether ROS

can be implemented on the FPGA.

K. Yamashina et al. [67] proposes creator for Recon�gurable Component (cReComp) which is an

automated design tool to improve productivity of ROS-compliant FPGA component. Xillinux [68] is used

to form the connection between the ARM processor and the FPGA logic. It can read and write to the

FPGA as a device �le that corresponds to First-In First-Out (FIFO) bu�ers. Developers can connect user

logic to the FIFO bu�ers of Xillinux. Using a special �le format to describe the connection between the

ARM cores and Programmable Logic the connection is formed by cReComp. cReComp generates an HDL

�le and interface so�ware in the form of a C++ �le.

�e paper of Y. Ni�a et al. [69] describes the design and implementation of a small robot with a camera.

�e motors are controlled via a special embedded board which listens to the ROS network. �e data from

the camera is acquired using the FPGA and later pushed to ROS via the ARM cores. As concluded in this

paper the FPGA is not fully utilized since only the image is acquired via FPGA. �e image processing is

still done on CPU.

Both these papers still require an external so�ware interface that publishes the data retrieved from

the FPGA onto the ROS network. It looks like it is not possible to directly publish from the FPGA as a

so�ware interface is always needed.

2.5 Trade-o�s of techniques for sensors
In order to realize a fully autonomous drone it is important that it can locate and avoid obstacles. �e

�ight speed of the drone will be limited to the range of a certain sensor. �e faster the drone �ies the

earlier the obstacle has to be detected in order to prevent it from crashing. �ere are several techniques

available to detect obstacles. Additionally, a distance sensor can be mounted looking down, this enables

a more precise �ight height.

2.5.1 Camera
Cameras with object recognition capabilities in cars have been used to identify other vehicles, lines, and

objects. However, within cars these cameras always seem to work in collaboration with other sensors.

D. Valencia et al. [70] shows that it is possible to implement an obstacle detection and avoidance

system using only a monocular camera. From the results there is a 90 percent rate that the obstacle will

be avoided. However, an external computer is used to detect the obstacles and it can only detect obstacles

which are in front of the drone, preferably in the center.

2.5.2 Stereo Camera
�e stereo camera uses the same principle as the human eye. By placing two cameras at a small distance

from each other the depth can be calculated using triangulation and for instance 3D Gaussian distributions

[71]. �is is a computationally intensive method to determine the depth which could be utilized by an

FPGA. Stereo cameras available typically have a maximum depth range of 10 till 20 meters.

Y. Xiao et al. [72] proposes a multi-obstacle detection algorithm based on stereo vision which has a

range between 1 and 15 meters. �e tests prove that this is a possible solution. �e only requirement for

it in order to work is that there is good weather conditions since the camera relies on external light.

2.5.3 3D Camera
A 3D camera works di�erent than the other cameras. It uses an extra infrared emi�er and infrared image

sensor to determine the depth. �is is either done via the structured light or Time of Flight principle.

�ese sensors can be made very compact since they only need an infrared emi�er and an infrared sensor

to determine the depth. Hence, why these sensors are used in small devices like smart phones. �e sensors

typically have a range of up to 5 meters.

An MPSoC based autonomous UAV 7

CHAPTER 2. STATE OF THE ART

Jia Hu et al. [73] shows that using a RealSense R2000 which uses structured light scanning [74] to

perform obstacle avoidance on a UAV. �eir solution shows a working example as long as the obstacles

are not placed to close. Furthermore, they also used an external processing board, the Jetson TK1 [75] to

process the depth image. Additionally, this solution is for indoor �ight and not for outdoor �ight which

will be the case for this project. Flying outdoor causes extra interference from the sun.

2.5.4 Radar
Radar uses a high frequency signal of multiple Gigahertz to measure the distance. It sends out short

pulses and measures the time it takes to re�ect back to the sensor and then calculates the distance. �is

is presented as a 3D depth image . A big bene�t of radar is that it works independent of the weather

conditions, thus even when there is fog.

S. Clark et al. [76] discusses a 77 GHz millimetre wave radar as a guidance sensor for autonomous land

vehicle navigation. Using an extended Kalman �lter it maintains an estimate of map features. �e map is

made with radar re�ectors designed for high visibility. �e entire mapping process is done without any

prior knowledge of the environment. �e usage of radar re�ectors is done because only radar is used for

position estimation, if an extra sensor as for instance GPS is used the radar re�ectors are not needed.

2.5.5 Ultrasonic
Ultrasonic uses sound waves instead of radar waves. �ese sound waves are �red in rapid succession,

re�ected by an object and when received again by the sensor, the distance is calculated. Since it uses

sound it is be�er for short range applications and not suitable for long range. It could be used to assist a

long range sensor for nearby application. A typical ultrasonic sensor has a maximum range of 5 meters.

An interesting remark is the possible interference of measurements from wind current, either generated

by the rotors or regular high-speed wind [77].

J. Lim et al. [78] proposes a rotating ultrasonic range sensor to measure distance to the walls and detect

obstacles. A smart phone is used to process the data of the sensors for the heavy-duty computations. �e

usage of rotating ultrasonic range sensors ensures that less sensors are required and reduces the scanning

time. �e experiments within the project shows that it is feasible to use a rotating ultrasonic range sensor

for indoor navigation. No tests were conducted where objects and walls were further away than 4 meters

which is the maximum range of the ultrasonic sensor being used.

2.5.6 Infrared Time of Flight
Infrared Time of Flight sensors are sometimes included within 3D camera’s to determine the depth. �ey

use an infrared LED and Infrared receiver and by measuring the time of �ight the distance can be retrieved.

�ese sensors are compact since only a single infrared LED and infrared receiver is required. �e big

downside to these sensors is that they heavily rely on re�ection of the object. A black object does not

re�ect well and with the already limited range of approximately 2 meters, it is therefore not feasible for

this project. No example implementation of an infrared navigation system was found in literature.

2.5.7 Lidar
Lidar works by illuminating a target with laser light and measuring the re�ected light with a sensor.

Because it uses a laser instead of, for instance ultrasonic or Infrared the range is longer, up to several

100 meters. �e range is, however, heavily in�uenced by the re�ected object. However, since the laser

is really concentrated it can still detect these objects from 10s of meters compared to 5 meter maximum

range of the other sensors. Lidar is used for instance in automotive. Many of the Lidars on the market

are capable of mapping the environment in 360 degrees by using a rotating Lidar. Because of the narrow

beam used by the Lidar this is still on a 2D plane. High end sensors can even have a vertical �eld of view

of up to 40 degrees to create a very complete 3D map of the environment with only one single sensor.

�ese sensors however are much more expensive compared to the other sensors and the Lidar technology

8 An MPSoC based autonomous UAV

CHAPTER 2. STATE OF THE ART

is a�ected by fog. Additionally, they contain rotating sensor which has the disadvantage that it will wear

and will therefore be less reliable.

Y. Peng et al. [79] proposes an obstacle avoidance algorithm based on 2D Lidar. For this test a 180

degree Lidar is used that looks into the forward direction. In the end the Lidar was tested in a static way

and the obstacle avoidance algorithm was simulated using MATLAB.

2.5.8 Conclusion
Table 2.2 compares the typical characteristics of various sensor techniques.

Table 2.2: Typical sensor characteristics

Sensor technique Depth Range Beam width Accuracy Cost
Camera - 70 degrees - ∼ €10

Stereo Camera 20m 110 degrees ∼1cm ∼ €450

3D camera 5m 70 degrees ∼1cm ∼ €100

Radar 160m 42 degrees ∼10cm unknown

Ultrasonic 4m ∼15 degrees ∼1cm ∼ €5

Infrared TOF 2m ∼10 degrees ∼1cm ∼ €10

Lidar 40m ∼1 degree ∼2.5cm ∼ €130

360 Lidar 40m 360 degrees ∼2cm ∼ €600

From Table 2.2 and what was stated before a couple of remarks can be made.

Camera has the possibility to detect obstacles with only a single camera with a 90 percent success rate.

�is solution however, has di�culties with recognizing objects which appear suddenly.

Stereo Camera is a viable solution, the FPGA could be used to process the data from the stereo camera

to create a depth image. Stereo camera does not have the possibility to work at night since it needs

external sunlight.

3D Camera is not a good solution because of the interference of sunlight.

Radar is a good solution, it has a long range in combination with a good width, however these sensors

are very limited available or made for speci�c applications.

Ultrasonic is good for short range application, it is also really cheap where more expensive ones up to

6 meters range. Ultrasonic sensors are not a�ected by the sun but can be possibly a�ected by wind.

Infrared Time of Flight is not a good solution for the same reason as 3D camera, there will be too

much interference from sunlight.

Lidar sensors have a very good range but a very small beam width, these sensors are more expensive

than Ultrasonic sensors and are a�ected by the weather conditions.

360 Lidar o�er similar range as the normal Lidar sensor but the beam is in 360 degrees. One sensor can

map the environment around the drone making them very suitable for this project, they have the

same negatives as the Lidar, being expensive and interference from sunlight.

In the end the choice for which sensor setup to use will be in�uenced by what the �ight speed will

be. Ultrasonic sensors with only a range of 5 meters can be used when the �ight speed will be 1 m/s but

when �ying at 10 m/s this can cause some di�culties. �e best solutions from these comparisons are

the Ultrasonic, Stereo Camera, Radar, Lidar or 360 Lidar. Di�erent sensors with these techniques will be

further investigated in the Section 2.6.

An MPSoC based autonomous UAV 9

CHAPTER 2. STATE OF THE ART

2.6 Trade-o�s of sensors for navigation

�ere are a lot of di�erent sensors available which can be used for the navigation that use the techniques

discussed in the previous section. �is is a short overview of the sensors available. A more extensive list

can be found in Appendix A.

2.6.1 Stereolabs zed

�e stereolabs zed is a stereo camera with an integrated processing unit. It has a big �eld of view of 90 by

60 degrees and works outside. It has a reported depth range of 20 meters and with the correct calibration

it can reach up to 40 meters of range. It is connected via a USB3.0 port and its data can be retrieved via

ROS or the internal API. �e package of the sensor is relative compact and it only weighs 159 grams. �e

sensor is shown in Figure 2.1.

Figure 2.1: Stereolabs zed [1]

2.6.2 µSharp

�e µSharp is one of the few radar sensors available for consumers which does not use the Doppler e�ect

[80]. It is developed by Aerotenna and has a �eld of view of approximately 50 by 30 degrees. It uses a

frequency of 24 Ghz to determine the distance with a maximum range of 120 meters. �e output from the

sensor can be retrieved via Universal asynchronous receiver-transmi�er (UART). �e sensor is in a small

housing and weighs only 43 grams. �e sensor is shown in Figure 2.2.

Figure 2.2: µSharp [2]

2.6.3 HC-SR04

HC-SR04 is one of the most used ultrasonic sensors in robotics made by various companies. It works by

�rst writing a high signal to the trig pin which then sends out an 8 cycle sonic burst and via the echo pin

the duration will be returned. �is duration should then be multiplied by 0.034 and divided by 2 to get

the correct distance. It has really small �eld of view of approximately 15 by 15 degrees and a maximum

range of 4 meters. �e sensor is much smaller than the other sensors because of its simplicity and weighs

only 8.5 grams. �e sensor is shown in Figure 2.3.

10 An MPSoC based autonomous UAV

CHAPTER 2. STATE OF THE ART

2.6.4 LIDAR-Lite v3
�e LIDAR-Lite v3 is a laser sensor which uses a 905 nm wavelength laser to measure the distance. It is

developed by Garmin and comes in a normal variant which works at 500 Hz. A High Performance version

which works at 1 kHz and has a water-resistant casing is available. �e �eld of view for these sensors is

much smaller of only approximately 0.5 by 0.5 degrees but the range is much larger with 40 meters. �e

sensor can be read via either PWM or I2C. It weighs 22 grams for the normal version and 38 grams for

the High Performance version. �e sensor is shown in Figure 2.4.

Figure 2.3: HC-SR04 [3]

Figure 2.4: Lidar-Lite [4]

2.6.5 RPLidar A3/S1
RPLidar is a 360 degree Lidar meaning it can map in a full circle of 360 degrees. It is developed by Slamtec

and comes in multiple variants. �e S1 sensor is the successor of the A3 sensor and comes with outdoor

functionality. �e �eld of view of these sensors is 360 degrees by 0.4 degree with a maximum range of

20 meters for the A3 and 40 meters for the S1. �e sensors can be read via UART which then sends the

current degree and distance. �e RPLidar A3 weighs 190 grams and the RPLidar S1 weighs 105 grams.

�e sensor is shown in Figure 2.5.

Figure 2.5: RPLidar S1 [5]

2.6.6 Puck Lite
�e Puck Lite is a 360 degree Lidar which is developed by Velodyne and is the lighter version of the

compact Puck sensor. �e �eld of view of the Puck Lite is 360 degrees by 30 degrees and a maximum

range of 100 meters. �e sensor can be read via a 100 Mbps Ethernet connection. �e Puck Lite weighs

590 grams. �e sensor is shown in Figure 2.6.

An MPSoC based autonomous UAV 11

CHAPTER 2. STATE OF THE ART

Figure 2.6: Velodyne Puck Lite [6]

2.6.7 Conclusion
An important aspect for the sensors is the power impact which can be derived using a small calculation.

�e ba�ery that is going to be used on the drone is 48.8 Wh, the motors are the TMotor 900 kV

brushless DC motors. �is means that for every volt it spins at 900 rotations per minute. At 100% thro�le

the motor consumes 147.4 wa�s and generates a thrust of 1000 grams resulting at an e�ciency of 6.78

grams per Wa� [81]. �e e�ciency of the motor decreases the more thro�le is used and thus the worst-

case scenario will be used. �is means that the power impact can be approximated as

Powerimpact = Powerusage +
weight
6.78

(2.1)

A description of potential sensors can be seen in Table 2.3. A table with more sensors can be found

in the Appendix A. It can overall be observed that the longer the range the higher the power usage. In

the text there was only a small re�ection on the weight of the sensor but this is of real importance. �e

drone must be able to li� all the weight of the drone and the sensor. Additionally, Equation 2.1 shows,

the higher the weight, the higher the power impact.

Table 2.3: Overview of potential sensors

Sensor Max range Beam width Power Weight Power
Impact per
sensor

Cost

Stereolabs ZED 20 meters ∼90 degrees 2 W 159 g 25.5 ∼€450

µSharp 120 meters ∼50 degrees 1.25 W 43 g 7.6 €625

HC-SR04 4 meters ∼15 degrees 75 mW 8.5 g 1.3 €5

LIDAR-Lite v3 40 meters 0.5 degree 650 mW 22 g 3.9 €130

LIDAR-Lite v3 HP 40 meters 0.5 degree 325 mW 38 g 5.9 €150

RPLidar A3 25 meters 360 degrees 6 W 190 g 34.0 €600

RPLidar S1 40 meters 360 degrees 1.75 W 105 g 17.2 €650

Puck LITE 100 meters 360 degrees 8 W 590 g 95.0 ∼€4000

It can be observed that the power impact factor is heavily in�uenced by the weight of the sensor. �e

Lidar-Lite v3 HP uses half the power but due to it weighting 16 grams more the power impact is much

higher. It can also be observed that the RPLidar S1 has a really good power impact compared to the other

360 lidars and even compared to the Stereolabs ZED. �e puck LITE is the best sensor overall if we do

not take the Power Impact in consideration. However, it would cost a lot of extra energy to �y with the

puck LITE sensor and the interface via Ethernet is not optimal for the platform.

From what is found the RPLidar S1 is the best choice. It has a 40 meter range inside with a range of

approximately 20 meters outside which should be su�cient for obstacle avoidance.

12 An MPSoC based autonomous UAV

CHAPTER 2. STATE OF THE ART

2.7 Implementing drone-so�ware on an FPGA
Multiple studies have been performed in implementing drone so�ware on an FPGA.

B. L. Sharma et al. [82] discusses what type of �ight controller, PID, KALMAN or Fuzzy Logic con-

troller can be implemented on an FPGA. In the end they concluded that the fuzzy logic controller is best

suited because it can be�er react to unexpected conditions as for instance weather.

J. Kok et al. [83] describes the development of a path planner for UAVs running on an FPGA using

Evolutionary Algorithms. It is concluded that with the implemented path planning algorithm the FPGA

is a suitable platform for �ight-constrained autonomous UAV applications.

In F.A. Abouelghit et al. [84] two things are being discussed. A fault-tolerant FPGA-base architec-

ture and fuzzy logic to design an obstacle avoidance system. For electronic components radiation and

electromagnetic interference can seriously a�ect system reliability. In order to create a Fault-Tolerant

Architecture they used the 1-out-of-2 Fault Tolerant techniques with two identical FPGA’s and a Micro

controller. When the micro controller no longer receives the watchdog signal it tries to re-program the

FPGA. If this does not work it will disconnect the FPGA and the output of the other FPGA is used until

it is repaired. �e fuzzy logic obstacle avoidance was tested using MATLAB simulations and proved its

superior performance.

G. Premkumar et al. [85] describes the design and implementation of an FPGA based �ight controller.

�e complete system is implented in the programmable logic of a ZED board. �e end result is that the

drone controller system is fully running on the ZED board. It is however only capable of very limited

�ying where it requires an input from the user to do something.

N. Monterrosa et al. [86] describes the development and implementation of a UAV �ight controller

based on a state machine on an FPGA is discussed. For this project a �xed-wing UAV was being developed.

�ey used an FPGA in collaboration with an ATmega processor which reads the sensors. In the end parts

of the prototype were developed and these parts were being veri�ed with simulations, but it was never

tested in a real life application.

�ese papers show that it is possible to implement parts of autopilot so�ware on an FPGA and show

the advantages of using an FPGA versus a micro controller.

2.8 Design �ow
�e design �ow is of importance to research what would be the way to implement an autonomous drone.

P. smyczynski et al. [87] discusses the system design �ow of an autonomous drone control system

with object tracking. It started with the usage of an already working �ight controller. �e pixhawk

and as a computing platform it uses the Raspberry Pi. �e so�ware is build in a modular way and the

communication between these modules had to be fast and stable. ROS is used for that. Since the pixhawk

is taking care of the �ying the only focus had to be in the vision system, mission planning and sending

commands to the �ight controller.

�e paper of A. Janarthanan et al. [88] discusses the design of an UAV with autonomous �ight path

planning. However, this research uses a �ight controller and a Raspberry Pi separately for the path

planning. �ey started their design by using the working �ight controller as a basis.

E. Chirtel et al. [89] discusses the development of an autonomous quadcopter which is spatially aware

using a SLAM algorithm. A phone is used to read the data from a Lidar sensor. �e map is created and

high-level �ight planning occurs on the smartphone. A Pixhawk v4 running Ardupilot receives high-level

mission commands as speed and direction setpoints from the phone and will execute these.

�e paper of W.Y. Lai et al. [90] discusses an enhancement of an o�-the-shelf product that is capable

of achieving semi-autonomous �ight. Features like auto-thro�le which ensures that the drone will �y at

a certain height. �is is done by using a �ight controller based on the Arduino Mega and an ultrasonic

sensor pointing downwards that measures the distance.

�ese papers show that for most of the projects involving an autonomous drone a �ight controller is

used in collaboration with a computing platform. �ese papers do not go in depth about what design �ow

is exactly used. It seems that most of these �rst realize a �ying platform. A�er that develop the speci�c

hardware for the project, combine it and test it.

An MPSoC based autonomous UAV 13

CHAPTER 2. STATE OF THE ART

2.9 conclusion
�e novelty of this research will be describing the complete design �ow of developing an autonomous

drone on a MPSoC. �is includes describing the design �ow, sensor selection for obstacle avoidance, and

proving that it works. �e state of the art implementations of obstacle avoidance in drones start with a

working prototype and extending this with an extra board and sensor. �is research proposes the design

�ow on a new platform with taking obstacle avoidance into consideration. �is causes di�erent problems

to occur compared to starting with a ready to �y platform.

14 An MPSoC based autonomous UAV

Chapter 3

Background

�is chapter presents background information regarding the essential topics for this thesis. First, it is

discussed what a quadcopter is. Secondly, autopilots are being discussed and what they exactly do. �en,

the hardware for current UAVs is discussed. A�er that, the XDP-platform is discussed. Next, real-time is

discussed. Lastly, the build environment is discussed.

3.1 �adcopter/Drone

A quadcopter stands for quadrotor helicopter, this means that it is a helicopter propelled by four rotors. It

is called a drone when there is no human pilot on board. It either navigates autonomously or is controlled

by a human pilot which is not present in the vehicle (for instance via Radio Control). A quadcopter will

thus always consist of four rotors and can be controlled by an on board human pilot. A drone can have

any amount of rotors or can even be a non-aerial vehicle.

Figure 3.1: �adcopter [7]

As can be observed from Figure 3.1 two of the rotors spin clockwise while two rotors spin coun-

terclockwise. �is behaviour prevents the quadcopter from spinning around its axis when it �ies. �is

behaviour can also be observed in a helicopter where the tail rotor prevents this behaviour.

A quadcopter has four main parameters; roll, pitch, yaw, and thro�le. A roll is performed by increasing

the thrust on either the le� or right side of the drone. �is makes the drone move to the le� or to the

right. Pitch is performed by increasing the thrust either in the front or in the back rotors. �is makes the

drone move forwards or backwards. Yaw is performed by increasing the thrust on the rotors that move

in the same direction. �is makes the drone spin around its axis. �ro�le is important for the altitude

of the drone and at what speed the drone �ies. �e more thro�le the more thrust all rotors will generate

and thus �y higher or move faster.

An MPSoC based autonomous UAV 15

CHAPTER 3. BACKGROUND

3.2 Autopilot
An autopilot is a system used to control the trajectory of an aircra� without constant ’hands-on’ control by

a human operator being required [91]. Most autopilots available are very similar. �ey all have the same

goal, make the vehicle move autonomous. An autopilot requires input from various sensors in order to

register the movement of the vehicle e.g. gyroscope, accelerometer, magnetometer, and barometer. Extra

sensors can be added to increase the accuracy or add extra features. �e autopilot will use the sensor data

to calculate which path has to be taken in order to reach the speci�ed target. �e motors will then be

controlled in order to reach such target.

3.3 Hardware
Most of the consumer drones use the same kind of processors for the �ight controller namely the cortex

ARM M series. �ese are 32 bit processors which use Reduced Instruction Set Computer (RISC) which

is known for its high energy-e�ciency and cheap price. Most �ight controllers use only a single core

M7 processor for the �ight controller. Flight controllers only have to read a small amount of sensors and

control the motors according to the input received from the remote controller. Optionally they have to

transmit the camera feed. �ese computations do not require a lot of computational power and therefore

a small single core M7 is su�cient. When additional features are required as for instance mapping of the

environment, this is handled by the speci�c peripheral. It is done via post processing or it is done by an

external processor.

3.4 XDP
XDP stands for Xilinx Drone Platform and is the platform developed by Topic speci�cally for the usage

in drones and can be observed in Figure 3.2.

Figure 3.2: �e XDP

For hardware it has all the required sensors available in order to �y. �e IMU is the Bosch BMI088 [92]

which is a 6-axis motion tracking sensor. It combines its accelerometer and gyroscope data to form an

IMU. Due to its high vibration robustness and small footprint it is ideal for the usage within drones. �e

magnetometer is a Bosch BMM150 [93] which is a low power and low noise 3-axis digital geomagnetic

sensor. Due to the stable performance over a large temperature range, the BMM150 is ideal for the usage

16 An MPSoC based autonomous UAV

CHAPTER 3. BACKGROUND

within drones. �e data of the magnetometer can be fused with the data of the IMU to increase the

reliability. Additionally, there is an environmental sensor, the Bosch BME680 [94]. It has the capability

to measure barometric pressure and altitude, humidity, temperature, and gas. Barometric pressure is of

importance for drones since this can be used to calculate the altitude. For the Global Positioning System

(GPS) the ZOE-M8B module [95] is used which is a low power GPS sensor. It uses Global Navigation

Satellite System (GNSS) to ensure that it can use multiple navigation systems. For processing the MPSoC

contains four A53 cores, two R5 cores, ARM-Mali400 GPU and Programmable logic. A small overview of

the MPSoC is shown in Figure 3.3.

Figure 3.3: MPSoC overview [8]

3.5 Real-time
In Section 3.4 it is mentioned that the MPSoC contains Real-Time Processing units. �ese have the cap-

ability to run a Real-Time Operating System (RTOS). A RTOS guarantees that tasks will be run with very

consistent timing. Additionally, tasks can be preempted, have deadlines and di�erent schedules can be

chosen. �is makes the use of a RTOS bene�cial for time critical application e.g. an airbag or the �ight

controller of a drone.

3.6 Build environment
�e build environment used within Topic is the Yocto project. �e Yocto project is an open-source project

that is used to create operating system images for embedded Linux devices. �e tools from the Yocto

Project are based on the OpenEmbedded project. It uses the BitBake build tool to create Linux images.

A Yocto project typically consist of several meta layers. �ese layers include multiple hardware and/or

so�ware components sca�ered over multiple recipes located in the meta. For instance there is a ROS

layer which contains multiple recipes like the navigation core, opencv camera and many more.

Using BitBake an image can be generated which can be wri�en to an SD card to be used by the MPSoC.

An MPSoC based autonomous UAV 17

Chapter 4

Design

4.1 Required computation of PX4

As mentioned in Section 2.3.1, PX4 is the �ight controller part of dronecode, it is responsible to ensure

a safe �ight. �is consists of multiple parts, a small overview is given in Figure 4.1. A more extensive

overview can be observed in Appendix B. Appendix B shows most of the essential modules used for �ight

and the messages being communicated between these modules.

Figure 4.1: Flight stack overview [9]

4.1.1 Messaging protocol

�e communication between these modules is done via the micro Object Request Brokers (UORB) pro-

tocol. �e UORB protocol uses the shared memory to communicate between the modules. It is asyn-

chronous and lock-free, a subscriber does not wait for a publisher and vice versa. Modules can publish

and subscribe to a topic to which the messages are being communicated. �is has been achieved by using

a separate bu�er between a publisher and subscriber. �e UORB protocol has been optimized to minimize

the memory footprint and latency.

4.1.2 Sensors

�e sensors module gathers the low-level output from the sensor drivers and turns it into a more usable

form for the rest of the system. It will gather the input from all the di�erent sensor drivers. When there

are multiple sensors of the same type it will do voting and failover handling. Additionally, it will apply

the board rotation and temperature calibration. Finally, it publishes the data such that it can be used by

the rest of PX4.

An MPSoC based autonomous UAV 19

CHAPTER 4. DESIGN

4.1.3 Local position estimator

�e local position estimator works in collaboration with the a�itude estimator discussed in Section 4.1.5.

�e local position estimator uses an extended Kalman �lter to generate the 3D position and velocity states.

It uses the data from the sensor that was combined by the sensors module. It publishes the vehicle local

position, where the origin is the start point and vehicle global position, which is the actual position on

the world map.

�e local position estimator publishes:

• Velocity at the IMU - North,East,Down (m/s)

• Position at the IMU - North,East,Down (m)

• IMU delta angle bias estimates - X,Y,Z (rad)

• IMU delta velocity bias estimates - X,Y,Z (m/s)

• Earth Magnetic �eld components - North,East,Down (gauss)

• Vehicle body frame magnetic �eld bias - X,Y,Z (gauss)

• Wind velocity - North,East (m/s)

�e computation of a Kalman �lter can be found in R.E. Kalman [39]. �e extended Kalman �lter

which is used by PX4 can be found in S.J. Julier et al. [96]. �e extended Kalman �lter can also be

implemented on an FPGA as proven by L. Idkhajine et al. [97].

4.1.4 Navigator

�e navigator is the module that is responsible for the autonomous �ight modes. Additionally, it is also

responsible to check for Geo-fence violations. Using the Inertial Navigation System [98], the trajectory,

corrections, and the global position are calculated and send to the rest of the system. �e navigator

receives commands from the commander, for instance takeo� or �y to a certain destination. A�er that

it sends ’vehicle command messages’ to the commander what the drone should do. At the end of the

message the navigator will report whether the mission is completed or not.

4.1.5 Attitude estimator q

�e a�itude q estimator is a simple quaternion based complementary �lter. It calculates the IMU data,

which it receives from the sensors module. It publishes the vehicle a�itude. �is consist of the �aternion

rotation from XYZ body frame to NED earth frame and the amount by which the quaternion has changed

during last reset. A complementary �lter is useful in cases where there are two di�erent measurement

source for the estimation of one variable. One source gives information in low frequency region while

the other source gives it in high frequency. An example would be data from the IMU and GPS data.

4.1.6 Mc att control

�e multicopter a�itude and rate controller takes the vehicle a�itude setpoint as input and outputs the

actuator control messages. �e a�itude and rate controller contain 2 loops. A P loop for the angular error

and a PID loop for the angular rate error as researched by D. Brescianini et al. [99]. Depending on the

mode, the outer P loop is bypassed, this loop is only used when holding position or when the requested

velocity on an axis is null. An overview for this controller can be observed in Figure 4.2. In order to

reduce the control latency of the mc a� control it directly polls the gyro from the bmi088 module.

20 An MPSoC based autonomous UAV

CHAPTER 4. DESIGN

Figure 4.2: Multicopter position controller [10]

4.1.7 Mc pos control
�e multicopter position controller outputs the vehicle local position setpoint / trajectory setpoint. It

contains two loops just like the mc a� control, a P loop for position error and a PID loop for the velocity

error. �e output of the controller is a thrust vector. It is split into thrust direction (rotation matrix for

multicopter orientation) and thrust scaler (multicopter thrust itself).

4.1.8 Mixer
�e mixer translates the commands received from the controller to values that can be used by the actuator.

�e output is calculated for every rotor by multiplying the roll, pitch, yaw, and thrust by their scale and

then sum these results. �ese are all very basic operations which require limited processing power. It is

included within the Linux pwm out.

4.1.9 Linux pwm out
�e Linux pwm out module is responsible to control the motors. It reads from the actuator controls 0

topic and sends this via a �le to the motors. �e connection between the processing system to control the

motors will be explained in Section 5.1. Additionally, it also receives data from the actuator armed topic

which ensures that when the motors are armed, they always spin.

4.1.10 Land detector
�e land detector is the module that detects free fall or the landed state of the vehicle and publishes it on

the vehicle land detected topic. To land it reports 3 possible states, ground contact, maybe landed and

landed. Ground contact is the �rst step a�er which the thrust setpoint is lowered. Maybe landed requires

the ground contact with lower thrust and no velocity in the horizontal plain. A�er the maybe landed

state has been active for a minimal amount of time the quadcopter concludes to be landed.

4.1.11 Commander
Commander is one of the most important modules within PX4. It is responsible to calibrate the acceler-

ometer, gyroscope, magnetometer, and determine the level horizon. Furthermore, it sends the di�erent

commands to the navigator as for instance takeo�, land or go to a certain position. It will do all the

pre-�ight checks in order to ensure that all the sensors are calibrated. During �ight the commander can

be thought of as a big state machine that switches between di�erent states according to the needs of the

user.

An MPSoC based autonomous UAV 21

CHAPTER 4. DESIGN

4.1.12 Conclusion
�e calculations done within the application are very simple but very powerful when combined. In the

end the computation power available within the platform is expected to be su�cient in order to correctly

implement PX4.

A small test on the board with running PX4 con�rms this. �e average load of PX4 is approximately

two percent, the A53 core has a DMIPS of 2.3 DMIPS/MHz. Since the four A53 cores run at 1.2 GHz for a

total of 4∗1200∗2.3 = 11040 DMIPS. Approximately 2 percent is used thus 11040∗2% = 220.8 DMIPS

is required for PX4 to run.

4.2 Required computation for ROS
ROS is required for the obstacle avoidance in collaboration within PX4. In a normal setup ROS runs

on a companion computer. For this implementation the ROS environment will also run on the platform

itself. �e sensor that will be used for the project is the RPLidar S1 sensor. Data from the sensor can

be retrieved via UART at a baud rate of 256000. �is means that the port is capable of transferring a

maximum of 256000 bits per second or 256 kilobits per second.

�e sensor receives 360 degrees of sensor data with an angular resolution of 0.391° for a total of

360
0.391 ≈ 920 points per rotation. Since it works at 10 Hertz there will be 9200 samples per second. Each of

these samples has to do 2 multiplications and 1 division to get the correct compensated angle. In total this

evaluates to approximately 27600 calculations per second to retrieve the sensor data and convert it to the

correct angle. If it would be assumed that 1 calculation takes 2 instructions this would still only be 55200

instructions per second. Since the processor has approximately 11040 DMIPS available it is expected that

the computation for ROS �ts within the system.

Figure 4.3: CPU usage when running ROS with Lidar, processes are highlighted

From Figure 4.3 it can be observed that when running on the A53 cores the CPU load is indeed very

low as it is below 1 percent.

22 An MPSoC based autonomous UAV

CHAPTER 4. DESIGN

4.3 Mapping of the processes

�e MPSoC used on the XDP-platform is the Zynq Ultrascale+ ZU7EV device. It can be observed in

Figure 4.4 and contains two main blocks, the Processing System (PS) and Programmable Logic (PL). �e

PS consists of an APU which consists of four ARM Cortex-A53 cores, a GPU which is an ARM Mali-400, a

Real-Time Processing Unit which consists of two ARM Cortex-R5 cores and some additional peripherals.

�e PL is the FPGA part of the MPSoC, it consists of 504 thousand System Logic Cells, 38 Mb of memory,

1728 DSP Slices and o�ers a maximum of 464 I/O Pins including 12 Gigabit transceivers.

Figure 4.4: �e Zynq Ultrascale+ [11]

�e system architecture for the Dronecode platform can be observed in Figure 4.5.

It can be observed that the �ight controller which consists of many di�erent modules is drawn as

one big block. It is drawn this way because all the communication happens within the �ight controller.

�erefore it is preferred to have this run on the same processor.

�e drivers for the Rotors, IMU, Barometer, Distance, and GPS are connected via their respective

connections. �ey can be read either in the Programmable Logic or in the Processing System.

Within the platform there are 4 theoretical possibilities where the autopilot can be placed; Program-

mable Logic, A53 cores, R5 cores or the mali-400 GPU. It is however, not a feasible solution to implement

the entire autopilot on either the Programmable Logic or the mali-400 GPU. To implement the autopilot

or a �ight controller would cost a lot of resources of the FPGA and leads to a long implementation time.

To implement the autopilot on the mali-400 GPU would be extremely ine�cient. A GPU excels in simple

parallel computation’s but not in running a complex state machine.

Either the Real-Time cores or the APU seem therefore like the best solution. �e advantages for each

of these solutions will be discussed in the following sections. Additionally, there will be a small discussion

about the FPGA and GPU.

An MPSoC based autonomous UAV 23

CHAPTER 4. DESIGN

Figure 4.5: Dronecode platform [12]

4.3.1 Advantages Real-Time cores
�e biggest advantage of running the entire system on the Real-Time Processing unit is that the overall

behaviour of the system will be more deterministic. �e Real-Time Processing unit has preemptive pos-

sibilities which is be�er for security. When a single task hangs this will not in�uence any other tasks

running on the Real-Time Processing unit. If an application hangs on the ARM cores it has the possibility

to in�uence the other tasks. �is could cause the miss of deadlines which could have big impact on the

motor control.

4.3.2 Advantages A53 cores
�e A53 cores have more compute power available compared to the Real-Time cores and it was proven

that these can easily run PX4 and ROS. �e current setup for the platform uses the A53 cores as basis

for its Linux distribution and the Real-Time cores are not used at all. All the sensors already work on

the Linux distribution which runs on the A53 cores. Additionally, the board support package (BSP) is

already developed for the current Linux distribution and used within the build environment. Another big

advantage of using the A53 cores is that ROS is runs on Linux which is an essential part for this project.

4.3.3 Advantages FPGA
An FPGA or also called the Programmable Logic has several advantages. �e �rst one is that the FPGA

has much more Input/Output (IO) available compared to APU or real-time cores. �is IO can be read by

the Programmable Logic in a very deterministic way at speci�c intervals. �is is not possible for the A53

cores. �e second advantage is that the Programmable Logic is able to pre-compute data. For instance,

signal processing on data that comes in from the IO. �is prevents the microprocessor from having to do

these calculations. �is reduces the load on the microprocessor. �e third advantage is that it is possible to

expand the platform with more complex algorithms. As long as these algorithms can be implemented in

24 An MPSoC based autonomous UAV

CHAPTER 4. DESIGN

the FPGA logic. Examples for these algorithm could be signal processing, image processing or even things

like image recognition. An FPGA is able to do these applications in parallel where a microprocessor has

to do these operations sequentially. �e �nal advantage is that an FPGA is a much more suitable platform

for redundancy of components. When double or triple redundancy is applied, the Programmable Logic

can be multiplied by the same factor. An arbiter can be used to determine the correct outcome [100]. For

a micro controller this would increase the computation required from a certain sensor by the amount of

redundancy required.

4.3.4 Advantages of GPU
�e GPU available within the platform is the mali-400 GPU. �e mali-400 is a small GPU that is a pure

3D engine which renders graphics into memory and passes the rendered image over to another core to

handle display. A big advantage of having a dedicated GPU is the capability for �oating-point operations.

Additionally, many signal-processing algorithms are designed for GPUs.

4.3.5 ROS on real-time processor
A big component of this research is based around ROS for the obstacle avoidance. According to the

website, ROS can only run on a Linux or windows based system. However there are some examples in

literature that claim to run ROS in real-time.

H. Wei et al. [101] ([102]) discusses a real-time ROS architecture on multi-core processors called RT-

ROS. RT-ROS is a hybrid combination that supports both Linux and a RTOS. It can use ROS nodes running

non-real-time and real-time. �is is tested running Linux on one core and running Nu�x on the other

core which communicate using shared memory. It is shown that the real-time core meets it constraints

independent of the load on the Linux OS. �e Master node however, is still running on the Linux core

and can not run just on the real-time core.

4.3.6 Conclusion
Unfortunately, it is not possible to run ROS on the real-time cores alone, it needs cores running Linux.

Since ROS is essential for obstacle avoidance the master has to run on the A53 cores. �is means there

are only two possibilities. Either everything runs on the A53 cores or there is a hybrid where the �ight

controller runs on the R5 cores and ROS on the A53 cores.

�e use of a hybrid solution would have the bene�t of the load being spread over the processors. �e

real-time cores actually being utilized and of course have the advantage of being able to run PX4 on an

RTOS. Running PX4 on an RTOS has the advantages of it being more predictive, predictable, and staying

reactive.

Running everything on the A53 cores has the advantage that the build environment is already setup

and all the sensors are already working on the platform. It is unknown how much the e�ort would be to

implement the hybrid solution in the existing system and to get all the sensors working on the RTOS.

�e hybrid solution is likely the best solution in order to get everything to work correctly, however, it

will likely cost a lot of time, First to get the real-time cores running a RTOS. �en to get all the sensors to

work. Finally, to establish the connection between the RTOS and Linux distribution to get ROS to work.

Due to the implementation time constraints the decision is made to implement both PX4 and ROS on the

A53 cores. With the knowledge available it likely costs too much time to implement everything correctly.

It will be interesting to see how the load of the A53 cores will in�uence the performance of the system.

�e Programmable Logic is very suitable to implement the peripherals of the �ight controller like the

motors. �is would ensure that there is a deterministic input and output which ensures that the motors

are being controlled at a speci�ed frequency. �is should result in shorter delays and a more controlled

behaviour. �is also means that the motor control which is a critical component will no longer run on

the A53 cores and cause the system to be more secure. When the A53 core hangs it will not in�uence the

motor control loop.

�e Programmable Logic could also be used to do signal processing over the data gathered from

sensors or process data from additional sensors (sensor fusion). Additionally, redundancy could be im-

An MPSoC based autonomous UAV 25

CHAPTER 4. DESIGN

plemented in the Programmable Logic to ensure a safer platform but that is not within the scope of this

project.

Figure 4.6: �e mapping

�e goal is to run both the perception computer and �ight controller on the MPSoC. �is causes the

drone to become fully autonomous in the sense that the platform can �y on its own. Most other solution

use a special companion computer that plans the route and avoids obstacles. �is will prevent the need

for a lot of communication over the air. �is makes it possible to �y much further because there is no

need for a connection to a ground station.

4.4 Obstacle avoidance

4.4.1 Connection between PX4 and ROS
ROS and PX4 have to communicate with each in order to utilize obstacle avoidance, for this Micro Air

Vehicle Link (MAVLink) is used. MAVLink is a protocol to communicate with small unmanned vehicles.

To use the MAVLink protocol within ROS the mavros node has to be used. Mavros makes it possible to

transfer data from ROS to PX4 over the MAVLink in various ways, Serial, UDP or TCP.

4.4.2 Obstacle avoidance in PX4
Obstacle avoidance within PX4 can be achieved in two di�erent ways, O�board Mode Avoidance or

Mission Mode Avoidance.

O�board mode avoidance ensures that the desired route comes from a ROS node. �is is passed into

an obstacle avoidance module, which is another ROS node. �e avoidance so�ware sends the planned

path to the �ight stack as a stream of SET POSITION TARGET LOCAL NED messages. �e

SET POSITION TARGET LOCAL NED format can be seen in Table 4.1. Since the navigation is done

within ROS for o�board mode avoidance, it is possible to use all sensors that can be used to detect an

obstacle as within ROS

Mission mode avoidance is the other solution. PX4 communicates with the obstacle avoidance so�-

ware using an implementation of the MAVLink path planning protocol. It is di�erent in the sense that

a waypoint is reached when the vehicle is within the goal radius of its goal not taking the heading into

consideration. �is is because the obstacle avoidance algorithm has full control of the vehicle heading.

PX4 then emits a new waypoint when the goal is reached via the TRAJECTORY REPRESENTATION

WAYPOINTS. �e data format can be observed in Table 4.2. �e avoidance so�ware will respond with

26 An MPSoC based autonomous UAV

CHAPTER 4. DESIGN

Table 4.1: SET POSITION TARGET LOCAL NED [26]

Field Name Type Units Values Description
time boot ms uint32 t ms Timestamp (time since system boot).

target system uint8 t System ID

target component uint8 t Component ID

coordinate frame uint8 t MAV FRAME Valid options are: MAV FRAME

LOCAL NED = 1, MAV FRAME LOCAL

OFFSET NED = 7, MAV FRAME BODY

NED = 8, MAV FRAME BODY OFFSET

NED = 9

type mask uint16 t POSITION

TARGET

TYPEMASK

Bitmap to indicate which dimensions

should be ignored by the vehicle.

x �oat m X Position in NED frame

y �oat m Y Position in NED frame

z �oat m Z Position in NED frame (note, altitude is

negative in NED)

vx �oat m/s X velocity in NED frame

vy �oat m/s Y velocity in NED frame

vz �oat m/s Z velocity in NED frame

afx �oat m/s/s X acceleration or force (if bit 10 of

type mask is set) in NED frame in meter

/ s2 or N

afy �oat m/s/s Y acceleration or force (if bit 10 of

type mask is set) in NED frame in meter

/ s2 or N

afz �oat m/s/s Z acceleration or force (if bit 10 of

type mask is set) in NED frame in meter

/ s2 or N

yaw �oat rad yaw setpoint

yaw rate �oat rad/s yaw rate setpoint

the TRAJECTORY REPRESENTATION WAYPOINTS message with only the current setpoint of the mes-

sage. If the waypoint is inside an obstacle which makes it unreachable. �e obstacle avoidance so�ware

tries to enlarge the acceptance radius, if this is not possible it might be stuck. Because mission mode

avoidance uses the MAVLink path planning protocol, it therefore requires a point cloud and can thus

potentially not work with all available sensors.

Figure 4.7 gives a simple visual representation of the main di�erence between both modes. It shows

what messages are communicated between ROS and PX4. Additionally, it shows whether ROS or PX4 is

in control to fetch the new waypoint and complete the mission. �e mission mode is preferable since this

does not change anything for the user. �e user can still do the advanced �ight modes from PX4 which

would not be possible when using o�board mode control.

Di�erent planners can be used for the path planning. �e local planner and the global planner. �e

local planner is the default planner, it creates a local map of the environment with the data from the Lidar.

It will not always �nd the most optimal path to its goal. �e local planner will not save data about the

map, only a local map. �is causes the local planner to require less computation than the global planner.

�e global planner uses a global map, the drone �ies within the map and extend it with data from the

Lidar. In a known environment the global planner will more likely �nd the optimal path its goal. Since it

has to save the global map it requires more computation than the local planner.

�e local planner is the default for PX4 and is heavily �ight tested using 3D stereo cameras. �erefore,

there has been chosen to use the local planner.

An MPSoC based autonomous UAV 27

CHAPTER 4. DESIGN

Table 4.2: TRAJECTORY REPRESENTATION WAYPOINTS [26]

Field Name Type Units Values Description
time usec uint64 t us Timestamp (UNIX Epoch time or time

since system boot). �e receiving end can

infer timestamp format (since 1.1.1970 or

since system boot) by checking for the

magnitude the number.

valid points uint8 t Number of valid points (up-to 5 waypoints

are possible)

pos x �oat[5] m X-coordinate of waypoint, set to NaN if

not being used

pos y �oat[5] m Y-coordinate of waypoint, set to NaN if

not being used

pos z �oat[5] m Z-coordinate of waypoint, set to NaN if

not being used

vel x �oat[5] m/s X-velocity of waypoint, set to NaN if not

being used

vel y �oat[5] m/s Y-velocity of waypoint, set to NaN if not

being used

vel z �oat[5] m/s Z-velocity of waypoint, set to NaN if not

being used

acc x �oat[5] m/s/s X-acceleration of waypoint, set to NaN if

not being used

acc y �oat[5] m/s/s Y-acceleration of waypoint, set to NaN if

not being used

acc z �oat[5] m/s/s Z-acceleration of waypoint, set to NaN if

not being used

pos yaw �oat[5] rad Yaw angle, set to NaN if not being used

vel yaw �oat[5] rad/s Yaw rate, set to NaN if not being used

command �oat MAV CMD Scheduled action for each waypoint,

UINT16 MAX if not being used.

Figure 4.7: A visual representation of o�board and mission mode

28 An MPSoC based autonomous UAV

CHAPTER 4. DESIGN

4.5 Design �ow
�e implementation for this project is done in an agile/scrum way, each sprint it is determined what

the goal will be for the sprint. At the start of every day day there will be a stand up during which the

problems encountered can be discussed. At the end of the sprint it is the goal to always have a partially

working product. �e goal for the sprints are de�ned as milestones within the project. Milestones that

take multiple sprints can be split in sub-milestones. �ese milestones can be for instance: Building the

so�ware on the platform, running the motors, reading the GPS, etc. Additionally, it is important that for

each of these milestones there is a backup available. What happens if the milestone costs too much time

or does not seem to be feasible? �ere should be a backup in such a way that the project can still continue

with minor alterations.

It is important that a�er a milestone has been realized it is extensively tested. �is way it prevents

possible problems which are encountered at a much later stage and require more work to repair again.

�is also prevents incorrect assumptions being made which caused changes within the system.

Using this design �ow results in if the project would come to a stop earlier, there would still be a

prototype that could be shown. If some parts of the project take longer than expected in the end there

will still be a partial working prototype, compared to having a prototype that is not working yet.

An MPSoC based autonomous UAV 29

Chapter 5

Implementation

5.1 Connect Processing System and Programmable Logic
To control the motors from the Processing System via the Programmable Logic a couple of alterations

have to be done and additional applications have to be developed.

5.1.1 Device Driver
A device driver is a so�ware application that is designed to enable interaction between the so�ware

and hardware devices [103]. Device drivers are the bridge between the application so�ware and the

hardware. Using various methods data can be send to the device driver which will then use this data to

do the corresponding hardware action.

A device driver generates a kernel module. A kernel module is a piece of code that is loaded or

unloaded into the kernel. Because a device driver is loaded into the kernel it has access to various locations

which are not accessible for user space programs. A kernel module that controls hardware is called a

kernel driver. In this project the kernel module will write to a speci�c memory location and not directly

control the hardware, in that sense it is not a real device driver.

�e device driver that has been developed has a very simple task. When it receives a value, this value

is wri�en to a certain memory location. �is value can be read later. When the Kernel driver is initialized

it will generate the correct registers and set them to 0 by default.

5.1.2 Device Tree
�e Device Tree describes the hardware components of a particular system in such a way that the kernel

can use and manage those components. Typical instances described in a device tree are memory, CPU,

and buses [104]. Since the kernel driver is going to write the data to a special memory address. Changes

have to be made to the device tree. An additional node has to be added to the device tree which holds

information like, the bus, address, and which drivers has to be loaded for this device. Additionally via the

device tree parameters can be given to the Kernel drivers which in this case is the number of motors.

5.1.3 Programmable logic
�e previous sections were about sending data from the processing system to a certain memory address.

An important aspect however is that this data is going to be used by the programmable logic in order to

control the peripheral, in this case the motors. In order to do so there is a special interface used on the

FPGA called Advance eXtensible Interface (AXI) [105]. �is address from the kernel driver should then

be within the speci�ed AXI memory region to form a memory mapped AXI [106].

To use the data received via the AXI protocol an Intellectual Property (IP) has to be developed which

can be connected to the AXI bus. A project should be made which contains an AXI-slave. �is AXI-slave

translates the data in the correct way such that it can be used by parts of the program which directly

An MPSoC based autonomous UAV 31

CHAPTER 5. IMPLEMENTATION

control the hardware. �is project should then be packaged as an IP and added to the FPGA image and

connected to the AXI bus.

An overall impression can be observed in Figure 5.1.

Figure 5.1: �e communication between the Processing system and Programmable Logic visualized

5.2 How to utilize the sensors in PX4?
�is task can be split in two separate tasks, reading the sensor data correctly and publishing the correct

data on the PX4 network. �ese will be discussed in the following sections.

5.2.1 Reading the sensor data
�e sensors are already implemented on the platform and can be read in two ways. �ey can be read

via either the default �le system, where �les are located at various locations in sysfs or via the Industrial

Input/Output (IIO) [107] standard. �e advantage of using �le operations to read the data from the sensors

is that it is much easier to program. �e basic �le IO is already incorporated within PX4. �e disadvantage

however will be the speed when using �le IO. It is necessary that each time the �le is opened and thus

also closed for each measurement. Because of this the amount of time it takes to read via the �le IO is

much higher. A small experiment was conducted where the �le IO would be read a 100 times, a single

time and also the data would be retrieved via libiio [108]. �e results are shown in Table 5.1. �is showed

that on average, when it is invoked using libiio it is twice as fast as �le IO. When invoked 100 times in

a row libiio is still approximately 25 percent faster. �e smaller di�erence when invoking it directly in

quick succession could be explained by the data being loaded in cache. However, it is safe to conclude

from these tests that for this system it is faster to use IIO with libiio than using �le IO.

Table 5.1: Comparison Industrial IO and File IO

1 time (ns) 100 times (ns)

Industrial IO 72821 6664427

File IO 185872 8670267

32 An MPSoC based autonomous UAV

CHAPTER 5. IMPLEMENTATION

So what exactly is IIO? IIO has as main purpose to provide support for devices that perform either

analog-to-digital conversion or digital-to-analog conversion at high sample rates. As is the case for most

sensors. Each IIO device can be found in the Linux �le system at /sys/bus/iio/iio:deviceX/.

�is folder contains the name of the sensor along with all it channels. Each sensor that is connected

has a number of channels available. For instance, when a magnetometer sensor is connected there will

be a channel for the X-axis, Y-axis, and Z-axis. Of course there can also be additional channels for the

temperature and voltage. All of these channels have a number of a�ributes available which can specify for

instance the scale, raw values or sampling frequency. For the magnetometer sensor used in this project

an example is shown in Figure 5.2.

Figure 5.2: �e channels and a�ributes of the Magnetometer

If the sensor would be used on another board it can be found immediately using the name. If one

would use another sensor within PX4 only the name has to be swapped and the correct channels and

a�ributes should be chosen correctly.

5.2.2 Publishing the data in PX4
PX4 communicates via modules via the so called UORB protocol [48]. It is therefore important that the

data that is being read via the IIO standard is also being broadcast on the network. For this PX4 has a

special structure. It supports various sensors that do exactly the same it is designed in such a way that

one can use special library functions to publish the data. �ese library functions will then calculate the

derived parameters necessary for the drone platform. For instance, the integrated values and derivation.

�ese functions then handle publishing the data on the network. �is can be seen as a form of abstraction

and prevents the developer from having to �gure out all of the complex parts. It also ensures that not all

sensors contain the same code.

An MPSoC based autonomous UAV 33

CHAPTER 5. IMPLEMENTATION

5.3 PID tuning
A PID controller [109] is the standard controller used within drones, it controls the roll, pitch, and yaw

of the quadcopter. Each of these has their own PID controller which have to be tuned separately.

Figure 5.3: Default PID controller [13]

Each of these controllers have their own P, I, and D component as can be observed from Figure 5.3

hence the name PID which can be tuned individually.

• �e P term is used for the present error, the further the distance between the current value and the

set-point. �e bigger the di�erence will be and the more the P term will contribute to push towards

the set-point. In a drone changing the P can be thought of as the sensitivity and responsiveness of

the drone. A higher P means sharper control, however, if the P is too high it will over-correct and

cause overshoots.

• �e I term is used for the past error, this is done by using the integral over the incoming data. It

ensures that past errors are counteracted. In a drone this can be thought of as the sti�ness of the

drone, it prevents the drone from dri�ing away. If the I is too high the quadcopter will become sti�

and unresponsive.

• �e D term is used for future error, this is done by calculating the derivative over the incoming

data. �is way the rate of change of error can be calculated and brought to zero. It aims to �a�en

the error trajectory into a horizontal line and so reduces the overshoot. If the D is too high it will

potentially amplify the noise and in case of a drone causes vibration.

From Figure 5.4 it can be observed that for the �rst takeo� there is a big problem. �ere is a big

oscillation in the roll, which eventually causes the quadcopter to crash. �is means that the P term is too

high. It is clear that the PID needs to be tuned in order to work correctly.

5.3.1 Methods found in literature
One of the most known methods/heuristic is the Ziegler and Nichols method [110]. It is based on experi-

mentally determining the point of marginal stability. �e proportional gain of the controller is increased

until the process becomes marginally stable. A disadvantage of the continuous cycling method is that the

system is driven towards instability. �is can lead to dangerous situations.

An improvement of the Ziegler and Nichols method is given by Åström and Hägglund [111]. �ey

propose to use a relay feedback, because of this the system should no longer be driven towards instability.

5.3.2 Methods in drones
PX4 has its own PX4 PID tuning guide [112]. It starts with the precondition that the vehicle already �ies

and by default the gains are set to low values. �e gains should slowly be increased by 20-30% per itera-

tion. Too large gains may cause dangerous oscillations. In our case where the vehicle does not �y at all

34 An MPSoC based autonomous UAV

CHAPTER 5. IMPLEMENTATION

Figure 5.4: �e roll angle during �rst takeo�

Figure 5.5: Roll rate a�er PID tuning

the P and D gains should be decreased until takeo�.

For drones enthusiasts there are multiple sites available to read about drones and discuss with fellow

enthusiasts. OscarLiang.com is one of these sites which has an explanation of the quadcopter PID

[113] which explains how to tune the PID. It advises to divide the default values by two and then increase

the values until undesired behaviour is observed. First the roll then the pitch and �nally the yaw should

be tuned. For each of these �rst the P should be tuned, then the D should be tuned and �nally the I should

be tuned. �ere is a possibility that there needs to be switched back and forth to �ne tune each value

because they in�uence each other.

�e decision was made to use the method of the PX4 tuning guide in collaboration with the informa-

tion provided by oscarliang.com because the PID consists of multiple stages. �e results a�er the

tuning of the PID can be observed in Figure 5.5. �ere is no longer a big oscillation in the roll and crash

during the takeo�, there will still be a small oscillation but this oscillation will slowly converge to 0.

An MPSoC based autonomous UAV 35

OscarLiang.com
oscarliang.com

CHAPTER 5. IMPLEMENTATION

5.4 Obstacle avoidance
5.4.1 Reading the sensor in ROS
�e sensor used for the project is the RPLidar S1. A big bene�t of this sensor besides it being lightweight

and having low energy consumption is the serial interface which it uses to communicate the data. Within

the FPGA it is easy to add an extra serial interface and utilize this. �is can then directly be used within

the special RPLidar ROS node. �e sensor is connected via the pins on the same header as the motors

and receives its power from the Ba�ery Elimination Circuit (BEC) of the ESCs. �e BEC can provide up

to 3 Ampère and is capable of handling the RPLidar S1 during startup which requires a maximum of 1.5

Ampère. �e results from the ROS node can be observed in Figure 5.6. Some of the structures like the

walls of the building can be observed. �e wall on the far right is approximately 25 meters and is still

detected correctly as expected.

Figure 5.6: Output of RPLidar in ROS

5.4.2 Converting the data
As mentioned in Section 4.4.2, PX4 requires a point cloud and not a laser scan, which is the output of the

RPLidar ROS node. �is thus has to be converted, for this a special ROS package is used, vigir lidar proc.

�is contains a laser scan to point cloud node which converts reads the message on a speci�c ROS topic

and publishes it as a point cloud. Using this the data can be used by PX4 for avoidance.

5.4.3 Connection
�e connection between PX4 and ROS is done via mavros as mentioned in Section 4.4.1. For test purposes

all the avoidance so�ware is installed on a companion computer. �is way tests can be done and visualized

easily on the system. �e connection between PX4 and ROS via mavros is established and the avoidance

system is started. Unfortunately, the working of the obstacle avoidance is not tested.

36 An MPSoC based autonomous UAV

Chapter 6

Experiments & Results

�is chapter contains the experiments and results. Most of the experiments have been conducted indoors

unless stated otherwise. �e indoor tests involving �ight were conducted within the Topic Gym which

can be observed in Figure 6.1. Unfortunately the space within the gym is limited and there is no GPS

reception within the building. �e GPS has been mocked. �is results in it always reporting the same

location. �is results in it being less reliable and requiring to do advanced �ying tests outdoors.

Figure 6.1: �e Topic gym

6.1 Testing of the sensors
�ere are several sensors on the XDP platform which should be interpreted correctly by PX4. �ese

consist of the IMU, magnetosensor, and environmental sensor. As speci�ed before drivers have to be

wri�en in order to use this data in PX4. It is also important that this data is correctly interpreted with

the correct units.

An MPSoC based autonomous UAV 37

CHAPTER 6. EXPERIMENTS & RESULTS

6.1.1 Testing the barometer
�e barometer is of importance to determine the height, especially in the indoor testing environment

where GPS cannot be used. �e barometer uses the barometric pressure to determine its height, the

lower the pressure the higher the drone is located. To test the barometric pressure sensor an outdoor

emergency staircase will be used. It is expected that there will be an increase of approximately 10 meters

(the height of the staircase), and when returned back it should be at approximately the original height.

Figure 6.2: �e barometric sensor data

From Figure 6.2 it can be observed that the barometer behaved as expected. �e barometer altitude

increases, at a certain point reaches the top and then once again goes down. One can observe that the

starting height is already at 76 meter. �is is because the barometric pressure is not constant for an area

because of weather in�uences. �is can be adjusted, however, is not necessary since during startup it will

be determined what the o�set is.

Additionally, the barometric pressure could be in�uenced by the air displacement of the drone. It is

important that this is tested in order to assure the correct working during �ying. It is expected that due

to a distance of circa 5 centimeters between the barometric pressure sensor and the propellers this will

not be in�uenced. In E. Kuantama et al. [114] it can be observed that the air�ow is only in�uenced close

by the propeller. In order to test this the drone will be strapped to the ground and will try to takeo� to

simulate the real world scenario.

Figure 6.3: Barometric sensor data during takeo� strapped to the ground

Figure 6.3 shows the result of the test. It can be observed there is a small time where during takeo�

on average it will be 15 centimeters higher than without running rotors. It seems there is a di�erence.

However, this deviation is only really small and could be caused by the fact that the drone is strapped to

the ground. �is behaviour can be observed in Figure 6.4 and is called the ground e�ect. �e air�ow is

directly in�uencing the air�ow above the platform and can thus have an impact on the air pressure.

38 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.4: Air�ow of a quadcopter with the ground e�ect [14]

In order to con�rm if it is really caused by the ground e�ect the quadcopter is tested at an elevation.

�is causes the ground e�ect to no longer occur and it is expected that there will be no deviation in air

pressure.

Figure 6.5: Barometric sensor data during takeo� strapped elevated

As can be observed in Figure 6.5 there is no longer a deviation during takeo�. �is con�rms the

expectations and the ground e�ect is indeed the cause for the deviation. �is means that during takeo�

there will be a small deviation in estimated altitude but during �ight this will no longer occur.

An MPSoC based autonomous UAV 39

CHAPTER 6. EXPERIMENTS & RESULTS

6.1.2 Testing the Magnetometer
�e Magnetometer is of importance to determine the direction in which the aircra� is �ying. It uses the

earth magnetic �eld to determine what its relative position to north is. �e earth magnetic �eld is really

weak (25 to 65 microteslas [115]). �e common case within the Netherlands is around 50 microtesla [116].

It is therefore possible to experience in�uence from electricity �owing on the pcb or electricity �owing

through cables. Whether it can be in�uenced can be calculated using Ampère’s law:

B =
µ0 ∗ I
2 ∗ π ∗ r

(6.1)

µ0 is the permeability of free space which is equivalent to 4.7∗10(−7)T ∗m/a , I is the current in Ampère

and r is the distance from the wire in meters. To see the amperage needed per distance the Equation 6.1

can be rewri�en to:

I = B ∗ 2 ∗ π ∗ r
µ0

(6.2)

If then the di�erent cases for earth magnetic �eld would be used for the calculation a plot can be

made.

Figure 6.6: Amperage needed to in�uence magnetic �eld at certain distance

As can be observed from Figure 6.6 in best case when 40 Ampère is �owing at approximately 12

centimeters the magnetometer will be in�uenced. At 100 percent thrust one motor draws 13.4 Ampère

and thus in theory the 4 motors combined can draw a total of up to 4 ∗ 13.4 = 53.6 Ampère (only for the

motors). In best case this evaluates to approximately 16 centimeters and in common case 21 centimeters,

in worst case conditions it would be 43 centimeters.

In the current setup the distance between the sensor is 16 cm in length and 8 centimeters in height.

Using the Pythagorean theorem [117] this evaluates to 162+82 = 320 and thus the distance is approxim-

ately 17.89 centimeters. In best case this would be su�cient, however, in the common case, this would not

be su�cient. If the cables would be lowered by 6 centimeters in theory the common case would no longer

be in�uenced, unfortunately, this is not possible. In order to test whether this is possible a small test was

conducted in which the drone was strapped to the ground and the motors were turned at full strength.

�en the raw values for the magnetic �eld were plo�ed. With the results found from the calculations it

is expected that there will be an in�uence on the raw magnetic �eld when the motors are turned on.

From Figure 6.7 it can be observed that what was expected is indeed correct. When the motors are

turned on for takeo� at approximately 9:51 all the raw magnetic �eld strength values are increased and

thus in�uence the reading.

�e next question that should be asked is how is this normally solved within the drone industry?

Industry solves this by mounting the magnetometer as far as possible from the �ight controller. For DJI

this can be observed in the fact that the �ight controller has an external GPS-Compass Pro module which

40 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.7: Raw magnetic �eld

contains the compass [118]. For PX4 the recommendation is given to mount the combined GPS + compass

as for away from the motor/ESC power supply lines as possible [119]. Within the literature not much

information can be found on an internal magnetometer, only on the use of an external magnetometer as

in Endrowednes K. et al. [120].

When the motors are turned o� however, it is expected that the magnetometer will accurately report

the degrees that the board is heading. In order to test this the board is turned approximately 90 degrees

and it is checked whether this value is re�ected within PX4. To prevent any external interference the

test has been conducted in a remote area. An analog compass is used to verify north and that there is no

external interference. Figure 6.8 shows the setup.

�ese tests show that the value shown in PX4 is not accurate as can be observed in Table 6.1. It can be

observed that for south and west the values are still approximately accurate. However, North, and East

are way o� showing that there is likely a problem with the board.

Table 6.1: Results from magnetometer experiment

Direction of board Expected value Reported value
Up (South) 178 177

Right (West) 264 252

Down (North) 356 303

Le� (East) 87 18

�is has two possibilities, either there is a problem in PX4 or a problem with the magnetometer. To

verify what is the problem the magnetometer will be read directly. If this data is not accurate it is not

going to be accurate in PX4 either.

When reading the data directly from the sensor this data is the same as in Table 6.1.

It should be investigated why the sensor does not give the expected reading, whether it is related to

the sensor or to the board. However, this will likely cost a lot of valuable time, additionally, there is an

alternative available. �e use of the IMU is su�cient to determine the direction of the drone. With the

use of GPS this can be made more redundant.

�e tests with the IMU have been conducted in the same was as the tests for the magnetometer

have been conducted and are discussed in Section 6.1.3. �e result however when using only the IMU is

be�er than with the IMU and magnetometer combined. �erefore there has been chosen to not use the

magnetometer. If there was more time available it could be researched why exactly the magnetometer is

not working properly.

An MPSoC based autonomous UAV 41

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.8: Start orientation up

6.1.3 Testing the IMU
�e IMU is the combination of an Accelerometer and a Gyroscope within the same package, combining

this gives the Inertial Measurement Unit. �e data of the IMU is of importance to determine the roll,

pitch, and yaw of the drone and the position of the drone. �e sensors will be tested by moving the drone

over its roll pitch and yaw manually and then verifying these results via the logs. It is expected that this

will work smoothly. �e magnetometer has already been disabled for this test and will thus not have any

in�uence on the data received via the logs.

�e �rst test is the pitch of the drone, the pitch is the rotation over the y axis and can be thought of as

leaning forward or backward. For the test there will �rst be pitched forward and than pitched backwards

at approximately 60 degrees. It is expected that this can be observed from the graphs and that in the end

the pitch will be returned to approximately 0 when the test is done.

Figure 6.9: Pitch Angle

Figure 6.9 shows the results from the test. It can be observed that �rst there is a big spike in negative

pitch to approximately 60 degrees and then a spike in positive pitch to approximately 55 degrees. A�er

42 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

these spikes it returns to 0 and thus con�rms that the expectations are correct.

�e second test is the roll of the drone, the roll is the rotation over the x axis and can be thought of

as leaning le� or right at approximately 60 degrees. For the test there will �rst be roll to the le� and then

roll to the right. It is expected that this can be observed from the graphs and that in the end the roll will

be returned to approximately 0 when the test is done.

Figure 6.10: Roll Angle

Figure 6.10 shows the results from the test. It can be observed that �rst there is a big spike in negative

roll to approximately 55 degrees and then a spike in positive roll to approximately 60 degrees. A�er which

it returns to 0 and thus con�rms that the expectations are correct.

�e �nal test is the yaw of the drone, the yaw is the rotation over the z axis and can be thought as

simply turning it le� and right. �is test is a bit more extensive, the drone will be turned 180 degrees,

then in the original position, then 270 degrees and �nally it will be returned in the original position. It

is expected that this behaviour can be observed from the graph and that the begin position is almost

equivalent to the �nal position.

Figure 6.11: Yaw Angle

Figure 6.11 shows the results from the test. It can be observed that a�er turning the drone for ap-

proximately 180 degrees there is a big spike into the other direction. �is is caused by the angle of the

drone will always be within -180 degrees or 180 degrees and this is thus re�ected in the graph. �en the

graph goes back to approximately the start position and then it turns 270 degrees to �nally go back to

the starting position again. �is con�rms that the expectations are correct.

An MPSoC based autonomous UAV 43

CHAPTER 6. EXPERIMENTS & RESULTS

6.1.4 Testing the GPS
�e GPS is of importance to determine the location of the drone. �e sensors on the drone will have an

estimation error which is corrected by the GPS. Additionally the GPS can also be used to determine the

current height and can be fused with the barometer for a more accurate height estimation. �e GPS will

be tested by taking a walk around the perimeter outside. �e whole test will be done outside close to the

building. It is expected that the GPS will follow the trajectory of the path taken.

Figure 6.12: Purple: Gps trajectory, Red: Real trajectory approximated

From Figure 6.12 it can be observed that the GPS trajectory does not always nicely overlap with the

real trajectory. When taking the data from Figure 6.13 into consideration it can be observed that for

certain area’s there are big spikes in the position accuracy and the number of satellites used drops. �is

is caused by to the fact of being close to the building at a low height and thus losing a big line of sight.

�is can be prevented by elevating to higher height or staying further away from buildings. When the

GPS is tested in a more open environment as in Figure 6.14 and Figure 6.15 it can be observed that the

GPS will be very accurate over the entire path.

44 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.13: Statistics for GPS uncertainty near building

Figure 6.14: GPS trajectory open environment, purple: GPS trajectory, Read: Real trajectory approximated

An MPSoC based autonomous UAV 45

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.15: Statistics for GPS uncertainty in open environment

46 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

6.2 Testing of the motors
�e layout of the motors can be observed in Figure 6.16. �e numbers given by Figure 6.16 will be used

within this section and in the logger. �e log data will be used to verify whether the experiments are as

expected, it has been veri�ed that the data being logged is the correct data being send to the motors.

Figure 6.16: �adcopter layout [15]

A small remark that has to be taken into consideration is that motor 1 corresponds to output 0, motor

2 corresponds to output 1, etc. Additionally, the value of the motors is displayed between -1 and 1 where

-1 is the minimum thro�le and 1 is full thro�le.

6.2.1 Arming and Calibration

When the motors are disarmed and go to arming it is expected that the output will rise by a small margin.

When the motors calibrate the output should be the maximum output possible, this will be the case for

all the motors equally.

Figure 6.17: Arming of the motors

From Figure 6.17 and Figure 6.18 it can be concluded that what was expected is indeed correct. All

the motors rise simultaneously. It can be observed that when arming the output rises a bit to a maximum

of -0.8 and for the calibration the output rises to 1 (the maximum).

An MPSoC based autonomous UAV 47

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.18: �e calibration of the motors

6.2.2 Tilt forwards and backwards
When tilting forwards it is expected that motor 1 and 3 will increase their thrust while 2 and 4 will

decrease their thrust in order to stabilize again. When tilting backwards it is expected that 2 and 4 will

increase their thrust while 1 and 3 will decrease their thrust.

Figure 6.19: Tilting forwards (li�ing the back)

Figure 6.20: Tilting backwards (li�ing the front)

�ese Figures are a bit more di�cult to interpret, because of the takeo� being engaged the output is

no longer -1 but tries to correct the board in most situations. �is causes some other di�culties where fail

safes are being engaged since the system does not react as expected. �e behaviour of tilting forwards

can be observed in Figure 6.19. Output 0 and output 2 will higher their values and output 1 and 3 will

lower their value which correspond to the expected behaviour. �e behaviour of tilting backwards can

be observed in Figure 6.20. Output 1 and output 3 are high while output 0 and output 2 are low which

corresponds to the correct motors.

48 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

6.2.3 Tilt le� and right
When the board is tilted to the le� it is expected that motor 2 and 3 will increase their thrust while motor

1 and 4 will decrease their thrust. When tilting to the right it is expected that motor 1 and 4 will increase

their thrust while motor 2 and 3 will decrease their thrust.

Figure 6.21: Tilting right (li�ing the le�)

Figure 6.22: Tilting le� (li�ing the right)

From Figure 6.21 and Figure 6.22 we can observe that what we expected is correct. When tilting right

the thrust is increased on motor 1 and motor 4 while the thrust is decreased for motor 2 and 3. When

tilting le� the thrust is increased for motor 2 and 3 while the thrust is decreased for motor 1 and 4.

6.3 Takeo�
It is expected that when the takeo� command is being send to the drone platform the drone will takeo� to

the desired height and hover at this position. �e height to which it takes o� can be given by a parameter

and it is expected that the drone will go to a close approximation of this height. �e takeo� should be

stable and it should not move to much in another direction during takeo�.

�e �rst takeo� did not go as expected as observed in Figure 6.23. �ere is a large oscillation in the

roll resulting in a crash, in order to prevent this behaviour the internal PID control loops have to be tuned.

A�er several iterations tuning the PID parameters the end result of Figure 6.24 was achieved.

An MPSoC based autonomous UAV 49

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.23: �e roll angle during �rst takeo�

Figure 6.24: �e roll angle a�er PID tuning

As can be observed in Figure 6.24 the roll angle is an almost �at line. It can be observed that in the

end there is a huge spike. �is is because the drone crashed and therefore could no longer compensate its

roll. �e behaviour of the system is now as expected. �e drone will takeo� to approximately the given

height and hover.

6.4 �e system under load
�e decision has been made to implement everything on the A53 cores instead of the real-time cores with

a RTOS. �e disadvantage to this is that there will be more load on the A53 cores since both ROS and PX4

are running on these. Additionally the behaviour is less deterministic compared to when running on an

RTOS. And �nally the biggest factor is that there is a possibility that if the A53 cores are under high load

that PX4 will hang. In order to test this a small test has been conducted.

To simulate load on the CPU a small script is run which executes the following command eight times:

cat /dev/urandom > /dev/null, this causes the CPU to get random data from /dev/urandom and

write it to /dev/null and create a big load on the system.

�is is executed eight times in order to run the program on all cores.

It is expected that because of the load the system will react less smooth which results in the �ying

being less accurate Another possible behaviour could be that safety triggers are triggered because sensors

50 An MPSoC based autonomous UAV

CHAPTER 6. EXPERIMENTS & RESULTS

not reaching their expected update rates.

Figure 6.25: �e roll rate under load

A�er some tests and looking at the log data as can be observed in Figure 6.25 the behaviour did not

change, the roll rate is still stable during �ight.

A possible explanation for this behaviour is that PX4 is wri�en according to the reactive manifesto

[121]. Reactive systems are responsive, resilient, elastic, and message driven. Elastic means that the

system stays responsive under varying workload. ”Reactive Systems can react to changes in the input

rate by increasing or decreasing the resources allocated to service these inputs”, which is happening in

this situation. Even though the load of the system is very high PX4 still stays responsive.

6.5 First test �ight with GPS
All the individual aspects of the system have been tested. �is means that in theory everything should

work. It is therefore expected that when the takeo� command is send to the drone that the drone will

start to takeo� and hover at roughly the speci�ed height. A�er this a certain location will be send to the

drone and it is expected that it will travel to this location.

�e test, however, did not go as expected, the drone kept elevating a�er which it was manually killed.

It fell from approximately 4 meter high destroying the chassis of the drone. During indoor tests it has been

observed that the drone is able to takeo� to the correct height and then hover at this height, however, in

the outdoor test it failed at this step, so something went wrong.

Figure 6.26 shows a part of the possible explanation. When looking at the fused altitude estimation it

can be observed that it barely goes up although the barometers altitude goes up by 5 meters. Additionally

it can be observed that the GPS altitude is a perfect straight line. It is expected to contain some noise as

can be observed in Figure 6.27.

It seems like the altitude estimate from the GPS is not accurate. Looking into the data of the GPS

as observed in Figure 6.28 it becomes much more clear what went wrong. It can be observed that at

timestamp 11:37 there is the last update of the GPS a�er 10 seconds at timestamp 11:47. �ere are no

satellites found and thus the data is no longer valid. �e data between these points is interpolated.

What happened is that the barometer registered the elevation and the GPS did not. However, the

in�uence of the GPS is higher since GPS is not a�ected by possible external factors like weather and

temperature.

In order to prevent this from happening it is important to know what exactly caused this. Either

something went wrong in the so�ware or the GPS was not physically working anymore, however, in

Section 6.1.4 the GPS did work. A possible explanation could be that the antenna broke of during the test

�ight. In order to test whether this could be correct a small simple test will be conducted. �e drone will

An MPSoC based autonomous UAV 51

CHAPTER 6. EXPERIMENTS & RESULTS

Figure 6.26: Altitude estimate during �rst test �ight

try to takeo� without its rotors connected and the GPS will be disconnected. It will be manually elevated

and checked whether the same behaviour can be observed.

�e test has been conducted again near Topic. �e drone was told to takeo� without any motors

spinning and then the GPS antenna was manually disconnected. However, the behaviour is di�erent as

can be observed in Figure 6.29 and Figure 6.30. At approximately 3:00 the GPS has been disconnected

and immediately the horizontal and vertical position accuracy rises. Compared to Figure 6.28 where

the horizontal and vertical position accuracy only increases a�er a certain amount of time the system

reacted di�erently. Another interesting remark that can be observed and not mentioned before is that

the accuracy during the test �ight in Figure 6.28 is really high. �e accuracy di�erence can be observed

compared to the GPS trajectory test in Figure 6.15.

Prior to the takeo� a warning was given by the Local position estimator and GPS module. �ese

messages can be observed in Figure 6.31. As observed by the timestamps these messages occurred much

earlier than the actual �ying took place but these could still have an in�uence. �e GPS timeout warning

happens a�er the data from the GPS has not been updated for 1 second. �is could already mean that

there was a problem with the GPS. �e other message states there is an invalid GPS message received

with a payload of 46556 bytes. Normally it expects a message with a payload of 92 bytes. �is would

evaluate to approximately 506 messages from the GPS being interpreted as 1 message and could be an

explanation why the GPS timeout warning was displayed.

A possible scenario that might have happened during the test �ight is that the GPS was already provid-

ing incorrect information during takeo�. A�er it crashed the GPS antenna broke and the horizontal and

vertical position accuracy rise as can be observed in Figure 6.28. Which would explain why it is the same

behaviour as in Figure 6.29. �e simple way to prevent this is looking more careful at the warning since

it does not happen all the time. During the GPS test on the parking lot the warning did not occur and the

GPS worked all the time. Unfortunately, it is not found possible to reproduce the behaviour that happened

during the �rst test �ight.

52 An MPSoC based autonomous UAV

Figure 6.27: Altitude estimate from the GPS test of section 6.1.4

Figure 6.28: GPS uncertainty during test �ight

Figure 6.29: GPS uncertainty during test near topic

Figure 6.30: altitude estimate during test near topic

Figure 6.31: Log messages

Chapter 7

Conclusion

7.1 Conclusions

In the end, the goal of the project has been partially realized. �e autopilot has been implemented and

tested successfully. Unfortunately, not a lot of outdoor tests have been conducted to verify the correct

working in di�erent environments such as wind. All these functions have been tested in simulation and

the autopilot has been extensively tested in an outdoor environment by the PX4 community. It has been

proven that the sensor can be connected to the platform and the data can be read directly. �e connection

between PX4 and ROS has been established, however, the obstacle avoidance has not been tested.

On the MPSoC it is proved that the design �ow used within the project is correct. First the drivers for

the motors were implemented and tested. A�er that the sensors were implemented and the correct func-

tioning of these sensors within PX4 was tested. �en tests with the autonomous takeo� were performed

and lastly the obstacle avoidance sensor was incorporated. �e sensor proved to be suitable for the drone

platform. �e obstacle avoidance was implemented but not tested.

�e trade-o�s for di�erent mappings on the MPSoC have been investigated and considered. Mapping

it all on the A53 cores was the correct choice for this project. Even at full load the system was still

responsive and it saved implementation time.

Di�erent sensors have been researched and the trade-o�s for these sensors have been presented.

Depending on what is exactly expected from the sensor, a di�erent sensor can be chosen. For this project

the RPLidar S1 is the most suitable choice for obstacle avoidance sensor.

PX4 was found as the so�ware that o�ers all the necessary functionality and proved to be the correct

decision. It is a very modular autopilot and o�ers the possibility for obstacle avoidance in conjunction

with ROS.

�e project had its fair share of challenges. As could be expected when open-source so�ware is im-

plemented without any prior knowledge and experience. �e correct functioning of the open-source

so�ware proved to be di�cult. �e so�ware runs in multiple threads and communicates over various

topics making it di�cult to debug. �e tuning of the PID control loops within the autopilot showed to be

di�cult. �is was extra di�cult because it was immediately tested with the use of the automatic takeo�

function of PX4 and not tested with a remote control. If a remote control would be used, tuning the

di�erent PID loops would have been easier. �e incorrect working of the magnetometer on the platform

caused some strange behaviours. �ese were not immediately identi�ed as problems caused by the mag-

netometer. �is caused extra time trying to debug and in the end the decision was made to not use the

magnetometer for this project. Additionally, it was di�cult to test the drone in an outdoor area. It is not

legal to �y with a drone within 20 kilometers of Topic due to Eindhoven Airport.

It probably would have been be�er to start with a platform that already �ies. �is would require less

time being spend on tuning the PID. �is would also be a good example to compare the performance

between the Topic platform and the default autopilot hardware.

An MPSoC based autonomous UAV 55

CHAPTER 7. CONCLUSION

7.2 Future works
�e drone industry is still rapidly evolving and not much research has be done on fully autonomous

drones. Hence, the following topics represents possible future works.

• Verify that the obstacle avoidance works correctly.

• Be�er utilize the FPGA, run parts of the autopilot on the FPGA e.g. PID control loops.

• Use multiple obstacle avoidance sensors and combine the data with sensor fusion.

• Add redundancy to the platform. Since drones will elevate to higher heights the chance for cosmic

radiance e�ect (single-event upsets) will be higher. It would be interesting to research the bene�ts

of the added redundancy within the platform.

• Utilize the FPGA by running for instance, video processing on the platform.

• Implement obstacle avoidance with radar and compare its performance to Lidar

56 An MPSoC based autonomous UAV

Bibliography

[1] Stereolabs, “Stereolabs zed.” https://www.stereolabs.com/zed/, 2019. xixi, xiixii, 10,

65

[2] Aerotenna, “Aerotenna µsharp product overview.” https://aerotenna.com/sensors/
#usharp, 2019. xixi, xiixii, 10, 66

[3] Elecfreaks, Ultrasonic Ranging Module HC-SR04. https://cdn.sparkfun.com/assets/
b/3/0/b/a/DGCH-RED datasheet.pdf. xixi, xiixii, 11, 66

[4] Garmin Ltd., “Lidar-lite v3hp product page.” https://buy.garmin.com/en-US/US/p/
578152/pn/010-01722-10, 2019. xixi, xiixii, 11, 67

[5] Shanghai Slamtec , “Rplidar s1 product page.” https://www.slamtec.com/en/Lidar/
S1, 2019. xixi, xiixii, 11, 68

[6] Velodyne Lidar, “Velodyne lidar puck lite product page.” https://velodynelidar.com/
vlp-16-lite.html, 2019. xixi, xiixii, 12, 68

[7] R. Mackay, H. Willee, C. Elder, and A. Trigdell, “Connect escs and motors.” http:
//ardupilot.org/copter/docs/connect-escs-and-motors.html, January

2019. xixi, 15

[8] Digikey, “Xilinx authorized distributor.” https://www.digikey.co.uk/en/
supplier-centers/x/xilinx, 2019. xixi, 17

[9] H. Willee and B. Kung, “Px4 architectural overview.” https://dev.px4.io/en/
concept/architecture.html, February 2018. xixi, 19

[10] H. Willee, M. Bresciani, and R. Bapst, “Controller diagrams.” https://dev.px4.io/en/
flight stack/controller diagrams.html, May 2019. xixi, 21

[11] Xilinx Inc., “Zynq ultrascale+ mpsoc.” https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, 2019. xixi, 23

[12] H. Willee, “Px4 platform hardware/so�ware architecture.” https://dev.px4.io/
master/en/concept/dronecode architecture.html, November 2019. xixi,

24

[13] A. Urquizo, “Pid controller — Wikipedia, the free encyclopedia.” https://en.wikipedia.
org/w/index.php?title=PID controller&oldid=923999209, December 2011.

xixi, 34

[14] M. Rabah, A. Rohan, M. Talha, K.-H. Nam, and S. Kim, “Autonomous vision-based target detection

and safe landing for uav,” International Journal of Control, Automation and Systems, vol. 16, pp. 3013–

3025, 12 2018. xixi, 39

[15] H. Willee, C. Dongcai, and B. Kung, “Airframes reference.” https://dev.px4.io/v1.9.
0/en/airframes/airframe reference.html, January 2020. xiixii, 47

An MPSoC based autonomous UAV 57

https://www.stereolabs.com/zed/
https://aerotenna.com/sensors/##usharp
https://aerotenna.com/sensors/##usharp
https://cdn.sparkfun.com/assets/b/3/0/b/a/DGCH-RED_datasheet.pdf
https://cdn.sparkfun.com/assets/b/3/0/b/a/DGCH-RED_datasheet.pdf
https://buy.garmin.com/en-US/US/p/578152/pn/010-01722-10
https://buy.garmin.com/en-US/US/p/578152/pn/010-01722-10
https://www.slamtec.com/en/Lidar/S1
https://www.slamtec.com/en/Lidar/S1
https://velodynelidar.com/vlp-16-lite.html
https://velodynelidar.com/vlp-16-lite.html
http://ardupilot.org/copter/docs/connect-escs-and-motors.html
http://ardupilot.org/copter/docs/connect-escs-and-motors.html
https://www.digikey.co.uk/en/supplier-centers/x/xilinx
https://www.digikey.co.uk/en/supplier-centers/x/xilinx
https://dev.px4.io/en/concept/architecture.html
https://dev.px4.io/en/concept/architecture.html
https://dev.px4.io/en/flight_stack/controller_diagrams.html
https://dev.px4.io/en/flight_stack/controller_diagrams.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://dev.px4.io/master/en/concept/dronecode_architecture.html
https://dev.px4.io/master/en/concept/dronecode_architecture.html
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=923999209
https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=923999209
https://dev.px4.io/v1.9.0/en/airframes/airframe_reference.html
https://dev.px4.io/v1.9.0/en/airframes/airframe_reference.html

BIBLIOGRAPHY

[16] Intel, “Intel realsense depth cameera d400-series.” https://software.intel.com/
en-us/realsense/d400, 2019. xiixii, 65

[17] Carnegie Robotics, “Carnegie robotics multisense s7.” https://carnegierobotics.
com/multisense-s7, 2019. xiixii, 65

[18] MaxBotic Inc., “Maxsonar ultrasonic sensor product selector.” https://www.maxbotix.
com/Ultrasonic Sensors.htm, 2019. xiixii, 66

[19] LeddarTech Inc., “Leddartech leddarone product page.” https://leddartech.com/
lidar/leddarone/, 2019. xiixii, 67

[20] Benewake , “Benewake tf-2 lidar product page.” http://en.benewake.com/product/
detail/5c345c9de5b3a844c4723299.html, 2019. xiixii, 67

[21] Hokuyo Automatic , “Hokuyo utm-30lx product page.” https://www.hokuyo-aut.jp/
search/single.php?serial=169, 2019. xiixii, 68

[22] Shenzhen Yuedeng Technology, “Ydlidar g4 product page.” http://www.ydlidar.com/
products/view/3.html, 2019. xiixii, 68

[23] Ocular Robotics Limited, “Ocular robotics re05 3d lidar scanner product page.” https://www.
ocularrobotics.com/products/lidar/re05/, 2019. xiixii, 69

[24] SICK AG, “Sick lms1000 2d lidar sensor product page.” https://www.sick.com/nl/
en/detection-and-ranging-solutions/2d-lidar-sensors/lms1000/
c/g387151, 2019. xiixii, 69

[25] Terabee, “Teraranger tower evo product page.” https://www.terabee.com/shop/
lidar-tof-multi-directional-arrays/teraranger-tower-evo/, 2019.

xiixii, 69

[26] Hamish Willee, “Mavlink common message set.” https://mavlink.io/en/messages/
common.html, February 2019. xiiixiii, xiiixiii, 27, 28

[27] B. Canis, “Unmanned aircra� systems (uas): Commercial outlook for a new industry,” 2015. 1

[28] G. M. Crutsinger, J. Short, and R. Sollenberger, “�e future of uavs in ecology: an insider perspective

from the silicon valley drone industry,” Journal of Unmanned Vehicle Systems, vol. 4, no. 3, pp. 161–

168, 2016. 1

[29] F. Giones and A. Brem, “From toys to tools: �e co-evolution of technological and entrepreneurial

developments in the drone industry,” Business Horizons, vol. 60, no. 6, pp. 875 – 884, 2017. THE

GENERATIVE POTENTIAL OF EMERGING TECHNOLOGY. 1

[30] T. H. Cox, C. J. Nagy, M. A. Skoog, I. A. Somers, and R. Warner, “Civil uav capability assessment,”

NASA, Tech. Rep., dra� Version, 2004. 1

[31] D. Murugan, A. Garg, T. Ahmed, and D. Singh, “Fusion of drone and satellite data for precision

agriculture monitoring,” in 2016 11th International Conference on Industrial and Information Systems
(ICIIS), pp. 910–914, Dec 2016. 1

[32] A. J. A. Dhivya and J. Premkumar, “�adcopter based technology for an emergency healthcare,”

in 2017 �ird International Conference on Biosignals, Images and Instrumentation (ICBSII), pp. 1–3,

March 2017. 1

[33] S. K. Da�a, J. Dugelay, and C. Bonnet, “Iot based uav platform for emergency services,” in 2018 In-
ternational Conference on Information and Communication Technology Convergence (ICTC), pp. 144–

147, Oct 2018. 1

58 An MPSoC based autonomous UAV

https://software.intel.com/en-us/realsense/d400
https://software.intel.com/en-us/realsense/d400
https://carnegierobotics.com/multisense-s7
https://carnegierobotics.com/multisense-s7
https://www.maxbotix.com/Ultrasonic_Sensors.htm
https://www.maxbotix.com/Ultrasonic_Sensors.htm
https://leddartech.com/lidar/leddarone/
https://leddartech.com/lidar/leddarone/
http://en.benewake.com/product/detail/5c345c9de5b3a844c4723299.html
http://en.benewake.com/product/detail/5c345c9de5b3a844c4723299.html
https://www.hokuyo-aut.jp/search/single.php?serial=169
https://www.hokuyo-aut.jp/search/single.php?serial=169
http://www.ydlidar.com/products/view/3.html
http://www.ydlidar.com/products/view/3.html
https://www.ocularrobotics.com/products/lidar/re05/
https://www.ocularrobotics.com/products/lidar/re05/
https://www.sick.com/nl/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1000/c/g387151
https://www.sick.com/nl/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1000/c/g387151
https://www.sick.com/nl/en/detection-and-ranging-solutions/2d-lidar-sensors/lms1000/c/g387151
https://www.terabee.com/shop/lidar-tof-multi-directional-arrays/teraranger-tower-evo/
https://www.terabee.com/shop/lidar-tof-multi-directional-arrays/teraranger-tower-evo/
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/messages/common.html

BIBLIOGRAPHY

[34] R. Obradović, I. Vasiljević, D. Kovačević, Z. Marinković, and R. Farkas, “Drone aided inspection dur-

ing bridge construction,” in 2019 Zooming Innovation in Consumer Technologies Conference (ZINC),
pp. 1–4, May 2019. 1

[35] Gartner Research, Dale Kutnick, “10 Critical Components Driving the Robot and Drone Revolution

.” Gartner Research report, October 2017. ID: G00328769. 1

[36] S. Jin, J. Cho, X. D. Pham, K. M. Lee, S. Park, M. Kim, and J. W. Jeon, “Fpga design and imple-

mentation of a real-time stereo vision system,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 20, pp. 15–26, Jan 2010. 1

[37] Markets and Markets, “Unmanned Aerial Vehicle (UAV) Market by Application (ISR, Precision Agri-

culture, Product Delivery), Class (Tactical, MALE, HALE, UCAV), System (Avionics, Sensors, Pay-

load), MTOW (<25Kg, 25-150Kg, >150kg), Range, Type, and Region - Global Forecast to 2025.”

Market Research report - AS2802, February 2018. 3

[38] L. Schä�er, Z. Kincses, and S. Pletl, “A real-time pose estimation algorithm based on fpga and

sensor fusion,” in 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics
(SISY), pp. 000149–000154, Sep. 2018. 3

[39] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Fluids
Engineering, vol. 82, pp. 35–45, 03 1960. 3, 20

[40] M. E. Conde, S. Cruz, D. M. Muñoz, C. H. Llanos, and E. L. F. Fortaleza, “An e�cient data fusion

architecture for infrared and ultrasonic sensors, using fpga,” in 2013 IEEE 4th Latin American Sym-
posium on Circuits and Systems (LASCAS), pp. 1–4, Feb 2013. 3

[41] M. Itani, A. Haroun, and W. Fahs, “Obstacle avoidance for ultrasonic unmanned aerial vehicle mon-

itoring using android application,” in 2018 International Arab Conference on Information Technology
(ACIT), pp. 1–4, Nov 2018. 3

[42] K. Li, C. Wang, S. Huang, G. Liang, X. Wu, and Y. Liao, “Self-positioning for uav indoor navigation

based on 3d laser scanner, uwb and ins,” in 2016 IEEE International Conference on Information and
Automation (ICIA), pp. 498–503, Aug 2016. 3

[43] C. Cigla, R. Brockers, and L. Ma�hies, “Image-based visual perception and representation for col-

lision avoidance,” in 2017 IEEE Conference on Computer Vision and Pa�ern Recognition Workshops
(CVPRW), pp. 421–429, July 2017. 4

[44] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and collision avoidance for a uav with

complementary low-cost sensors,” IEEE Access, vol. 3, pp. 599–609, 2015. 4

[45] R. Li, J. Liu, L. Zhang, and Y. Hang, “Lidar/mems imu integrated navigation (slam) method for a

small uav in indoor environments,” in 2014 DGON Inertial Sensors and Systems (ISS), pp. 1–15, Sep.

2014. 4

[46] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part i,” IEEE Robotics
Automation Magazine, vol. 13, pp. 99–110, June 2006. 4

[47] �e Linux Foundation, “Dronecode - the open source uav platform.” https://www.
dronecode.org/, 2019. 4

[48] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based multithreaded open source robotics

framework for deeply embedded platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6235–6240, May 2015. 4, 33

[49] �e Linux Foundation, “Px4 autopilot.” https://px4.io/, 2019. 4

An MPSoC based autonomous UAV 59

https://www.dronecode.org/
https://www.dronecode.org/
https://px4.io/

BIBLIOGRAPHY

[50] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Pixhawk: A system for autonomous �ight

using onboard computer vision,” in 2011 IEEE International Conference on Robotics and Automation,

pp. 2992–2997, May 2011. 4

[51] ArduPilot, “Ardupilot open source autopilot.” https://http://ardupilot.org, 2019. 4

[52] B. Gati, “Open source autopilot for academic research - the paparazzi system,” in 2013 American
Control Conference, pp. 1478–1481, June 2013. 5

[53] F. Ruess, “Paparazzi uav.” http://wiki.paparazziuav.org/wiki/Main Page,

december 2018. 5

[54] M. Lizarraga, G. H. Elkaim, and R. Curry, “Slugs uav: A �exible and versatile hardware/so�-

ware platform for guidance navigation and control research,” in 2013 American Control Conference,

pp. 674–679, June 2013. 5

[55] UCSC Autonomous Systems Lab, “Santa cruz low-cost uav gnc system.” https://slugsuav.
soe.ucsc.edu/, 2009. 5

[56] LibrePilot, “Librepilot open-source so�ware suite to control multicopter.” https://www.
librepilot.org/site/index.html, 2019. 5

[57] Open Source Robotics Foundation, “Robot operating system.” https://www.ros.org/,

2019. 5

[58] M. �igley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an

open-source robot operating system,” in ICRA workshop on open source so�ware, vol. 3, p. 5, Kobe,

Japan, 2009. 5

[59] D. Koch and J. Jackson, “Ros�ight.” https://rosflight.org, January 2018. 5

[60] J. Perron, “Robot operating system 2.” https://index.ros.org/doc/ros2/, May 2019.

5

[61] UAVenture AG, “Uaventure a complete hybrid vtol autopilot solution.” http://uaventure.
com/, 2018. 5

[62] A. Astudillo, P. Muñoz, F. Álvarez, and E. Rosero, “Altitude and a�itude cascade controller for

a smartphone-based quadcopter,” in 2017 International Conference on Unmanned Aircra� Systems
(ICUAS), pp. 1447–1454, June 2017. 6

[63] G. Kravit, “Fpga implementation of a digital controller for a small vtol uav,” Master’s thesis, Mas-

sachuse�s Institute of Technology, 12 2014. 6

[64] M. A. Lukmana and H. Nurhadi, “Preliminary study on unmanned aerial vehicle (uav) quadcopter

using pid controller,” in 2015 International Conference on Advanced Mechatronics, Intelligent Manu-
facture, and Industrial Automation (ICAMIMIA), pp. 34–37, Oct 2015. 6

[65] Free So�ware Foundation, “Frequently asked questions about the gnu licenses.” https://www.
gnu.org/licenses/gpl-faq.en.html, 2019. 6

[66] Free So�ware Foundation, “Various licenses and comments about them - modi�ed bsd.” https:
//www.gnu.org/licenses/license-list.html#ModifiedBSD, 2019. 6

[67] K. Yamashina, H. Kimura, T. Ohkawa, K. Ootsu, and T. Yokota, “crecomp: Automated design

tool for ros-compliant fpga component,” in 2016 IEEE 10th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSOC), pp. 138–145, Sep. 2016. 7

[68] Xillybus, “Xillinux: A linux distribution for z-turn lite, zedboard, zybo and microzed.” http:
//xillybus.com/xillinux, 2019. 7

60 An MPSoC based autonomous UAV

https://http://ardupilot.org
http://wiki.paparazziuav.org/wiki/Main_Page
https://slugsuav.soe.ucsc.edu/
https://slugsuav.soe.ucsc.edu/
https://www.librepilot.org/site/index.html
https://www.librepilot.org/site/index.html
https://www.ros.org/
https://rosflight.org
https://index.ros.org/doc/ros2/
http://uaventure.com/
http://uaventure.com/
https://www.gnu.org/licenses/gpl-faq.en.html
https://www.gnu.org/licenses/gpl-faq.en.html
https://www.gnu.org/licenses/license-list.html##ModifiedBSD
https://www.gnu.org/licenses/license-list.html##ModifiedBSD
http://xillybus.com/xillinux
http://xillybus.com/xillinux

BIBLIOGRAPHY

[69] Y. Ni�a, S. Tamura, and H. Takase, “A study on introducing fpga to ros based autonomous driving

system,” in 2018 International Conference on Field-Programmable Technology (FPT), pp. 421–424, Dec

2018. 7

[70] D. Valencia and D. Kim, “�adrotor obstacle detection and avoidance system using a monocular

camera,” in 2018 3rd Asia-Paci�c Conference on Intelligent Robot Systems (ACIRS), pp. 78–81, July

2018. 7

[71] L. Ma�hies and S. Shafer, “Error modeling in stereo navigation,” IEEE Journal on Robotics and Auto-
mation, vol. 3, pp. 239–248, June 1987. 7

[72] Y. Xiao, X. Lei, and S. Liao, “Research on uav multi-obstacle detection algorithm based on stereo

vision,” in 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control
Conference (ITNEC), pp. 1241–1245, March 2019. 7

[73] J. Hu, Y. Niu, and Z. Wang, “Obstacle avoidance methods for rotor uavs using realsense camera,” in

2017 Chinese Automation Congress (CAC), pp. 7151–7155, Oct 2017. 8

[74] O. Hall-Holt and S. Rusinkiewicz, “Stripe boundary codes for real-time structured-light range scan-

ning of moving objects,” in Proceedings Eighth IEEE International Conference on Computer Vision.
ICCV 2001, vol. 2, pp. 359–366, IEEE, 2001. 8

[75] E-linux community, “Jetson tk1.” https://elinux.org/Jetson TK1, July 2019. 8

[76] S. Clark and G. Dissanayake, “Simultaneous localisation and map building using millimetre wave

radar to extract natural features,” in Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 2, pp. 1316–1321 vol.2, May 1999. 8

[77] A. Corporation, “Technical guide for ultrasonic sensors.” http://us.azbil.com/
CP-GC1003E Vol.1 a c/B/TEC ULTRASONIC.pdf, November 2014. 8

[78] J. Lim, S. Lee, G. Tewolde, and J. Kwon, “Indoor localization and navigation for a mobile robot

equipped with rotating ultrasonic sensors using a smartphone as the robot’s brain,” in 2015 IEEE
International Conference on Electro/Information Technology (EIT), pp. 621–625, May 2015. 8

[79] Y. Peng, D. �, Y. Zhong, S. Xie, J. Luo, and J. Gu, “�e obstacle detection and obstacle avoidance

algorithm based on 2-d lidar,” in 2015 IEEE International Conference on Information and Automation,

pp. 1648–1653, Aug 2015. 9

[80] N. Giordano, “�e doppler e�ect,” in College Physics (Cengage Learning, ed.), pp. 421–424, Cengage

Learning. 10

[81] Aerolab, “T-motor ms2216 kv900.” https://www.aerolab.de/
brushless-motoren/t-motor-ms/t-motor-ms2216-kv900 107002 1096,

2019. 12

[82] B. L. Sharma, N. Khatri, and A. Sharma, “An analytical review on fpga based autonomous �ight

control system for small uavs,” in 2016 International Conference on Electrical, Electronics, and Op-
timization Techniques (ICEEOT), pp. 1369–1372, March 2016. 13

[83] J. Kok, L. F. Gonzalez, and N. Kelson, “Fpga implementation of an evolutionary algorithm for

autonomous unmanned aerial vehicle on-board path planning,” IEEE Transactions on Evolutionary
Computation, vol. 17, pp. 272–281, April 2013. 13

[84] F. A. Abouelghit, H. ElSayed, G. I. Alkady, H. H. Amer, and I. Adly, “Fpga-based fault-tolerant quad-

copter with fuzzy obstacle avoidance,” in 2019 8th Mediterranean Conference on Embedded Comput-
ing (MECO), pp. 1–4, June 2019. 13

An MPSoC based autonomous UAV 61

https://elinux.org/Jetson_TK1
http://us.azbil.com/CP-GC1003E_Vol.1_a_c/B/TEC_ULTRASONIC.pdf
http://us.azbil.com/CP-GC1003E_Vol.1_a_c/B/TEC_ULTRASONIC.pdf
https://www.aerolab.de/brushless-motoren/t-motor-ms/t-motor-ms2216-kv900_107002_1096
https://www.aerolab.de/brushless-motoren/t-motor-ms/t-motor-ms2216-kv900_107002_1096

BIBLIOGRAPHY

[85] G. Premkumar, R. Jayalakshmi, and M. Akramuddin, “Design and implementation of fpga based

quadcopter,” International Journal of Engineering Technology Science and Research, vol. 5, pp. 558–

562, 2018. 13

[86] N. Monterrosa, J. Montoya, F. Jarquı́n, and C. Bran, “Design, development and implementation of

a uav �ight controller based on a state machine approach using a fpga embedded system,” in 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–8, Sep. 2016. 13

[87] P. Smyczyński, Starzec, and G. Granosik, “Autonomous drone control system for object tracking:

Flexible system design with implementation example,” in 2017 22nd International Conference on
Methods and Models in Automation and Robotics (MMAR), pp. 734–738, Aug 2017. 13

[88] A. Janarthanan, H. W. Ho, L. Gopal, V. Shanmugam, and W. K. Wong, “An unmanned aerial vehicle

framework design for autonomous �ight path,” in 2019 7th International Conference on Smart Com-
puting Communications (ICSCC), pp. 1–5, June 2019. 13

[89] E. Chirtel, R. Knoll, C. Le, B. Mason, N. Peck, J. Robarge, and G. C. Lewin, “Designing a spatially

aware, autonomous quadcopter using the android control sensor system,” in 2015 Systems and In-
formation Engineering Design Symposium, pp. 35–40, April 2015. 13

[90] W. Y. Lai, M. J. Er, Z. C. Ng, and Q. W. Goh, “Semi-autonomous control of an unmanned aerial

vehicle,” in 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV),
pp. 1–4, Nov 2016. 13

[91] Federal Aviation Administration, “Automated �ight controls.” http://www.faa.
gov/regulations policies/handbooks manuals/aviation/advanced
avionics handbook/media/aah ch04.pdf, 2014. 16

[92] Bosch SensorTec, BMI088: Data sheet. Bosch SensorTec, https://ae-bst.resource.
bosch.com/media/ tech/media/datasheets/BST-BMI088-DS001.pdf,

1.4 ed., September 2018. BMI088 6-axis Motion Tracking for High-performance Application. 16

[93] Bosch SensorTec, BMI150: Data sheet. Bosch SensorTec, https://ae-bst.resource.
bosch.com/media/ tech/media/datasheets/BST-BMM150-DS001.pdf,

1.2 ed., April 2019. BMI150 Geomagnetic Sensor. 16

[94] Bosch SensorTec, BME680: Data sheet. Bosch SensorTec, https://ae-bst.resource.
bosch.com/media/ tech/media/datasheets/BST-BMM150-DS001.pdf,

1.3 ed., July 2019. BME680 Low power gas, pressure, temperature and humidity sensor. 17

[95] U-blox, ZOE-M8B: Data sheet. U-blox, https://www.u-blox.com/sites/default/
files/ZOE-M8B DataSheet %28UBX-17035164%29.pdf, r03 ed., March 2018. ZOE-

M8B Ultra-small, super low power u-blox M8 GNSS SiP module. 17

[96] S. J. Julier and J. K. Uhlmann, “Unscented �ltering and nonlinear estimation,” Proceedings of the
IEEE, vol. 92, pp. 401–422, March 2004. 20

[97] L. Idkhajine, E. Monmasson, and A. Maalouf, “Fully fpga-based sensorless control for synchron-

ous ac drive using an extended kalman �lter,” IEEE Transactions on Industrial Electronics, vol. 59,

pp. 3908–3918, Oct 2012. 20

[98] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for mobile robots,” IEEE Trans-
actions on Robotics and Automation, vol. 11, pp. 328–342, June 1995. 20

[99] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter a�itude control: Technical

report,” tech. rep., ETH Zurich, 2013. 20

[100] P. Mallavarapu, H. N. Upadhyay, G. Rajkumar, and V. Elamaran, “Fault-tolerant digital �lters on

fpga using hardware redundancy techniques,” in 2017 International conference of Electronics, Com-
munication and Aerospace Technology (ICECA), vol. 2, pp. 256–259, April 2017. 25

62 An MPSoC based autonomous UAV

http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/advanced_avionics_handbook/media/aah_ch04.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/advanced_avionics_handbook/media/aah_ch04.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/advanced_avionics_handbook/media/aah_ch04.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI088-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI088-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMM150-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMM150-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMM150-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMM150-DS001.pdf
https://www.u-blox.com/sites/default/files/ZOE-M8B_DataSheet_%28UBX-17035164%29.pdf
https://www.u-blox.com/sites/default/files/ZOE-M8B_DataSheet_%28UBX-17035164%29.pdf

BIBLIOGRAPHY

[101] H. Wei, Z. Shao, Z. Huang, R. Chen, Y. Guan, J. Tan, and Z. Shao, “Rt-ros: A real-time ros architecture

on multi-core processors,” Future Generation Computer Systems, vol. 56, pp. 171 – 178, 2016. 25

[102] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan, and J. Tan, “Rgmp-ros: A real-time ros architecture of

hybrid rtos and gpos on multi-core processor,” in 2014 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2482–2487, May 2014. 25

[103] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, �ird Edition. O’Reilly Media,

Inc., 3 ed., 2005. 31

[104] Embedded Linux Contributors, “Device tree usage,” April 2019. 31

[105] Fu-ming Xiao, Dong-sheng Li, Gao-ming Du, Yu-kun Song, Duo-li Zhang, and Ming-lun Gao,

“Design of axi bus based mpsoc on fpga,” in 2009 3rd International Conference on Anti-counterfeiting,
Security, and Identi�cation in Communication, pp. 560–564, Aug 2009. 31

[106] Xilinx, Vivado Design Suite - AXI Reference Guide, July 2017. 31

[107] “iio, a new kernel subsystem.” 32

[108] Analog devices, “What is libiio?,” January 2018. 32

[109] Kiam Heong Ang, G. Chong, and Yun Li, “Pid control system analysis, design, and technology,”

IEEE Transactions on Control Systems Technology, vol. 13, pp. 559–576, July 2005. 34

[110] J. G. Ziegler and N. B. Nichols, “Optimum Se�ings for Automatic Controllers,” Journal of Dynamic
Systems, Measurement, and Control, vol. 115, pp. 220–222, 06 1993. 34

[111] K. J. Åström and T. Hägglund, PID controllers : theory, design, and tuning. Research Triangle Park,

N.C.: International Society for Measurement and Control, 1995. 34

[112] H. Willee and M. Grob, “Multicopter pid tuning guide.” https://docs.px4.io/v1.9.0/
en/config mc/pid tuning guide multicopter.html, September 2019. 34

[113] O. Liang, “�adcopter pid explained.” https://oscarliang.com/
quadcopter-pid-explained-tuning/, July 2018. 35

[114] E. Kuantama, D. Craciun, and R. Tarca, “�adcopter body frame model and analysis,” ANNALS OF
THE ORADEA UNIVERSITY. Fascicle of Management and Technological Engineering., vol. Volume

XXV (XV), 2016/1, 05 2016. 38

[115] C. C. Finlay, S. Maus, C. D. Beggan, T. N. Bondar, A. Chambodut, T. A. Chernova, A. Chulliat,

V. P. Golovkov, B. Hamilton, M. Hamoudi, R. Holme, G. Hulot, W. Kuang, B. Langlais, V. Lesur,

F. J. Lowes, H. Lühr, S. Macmillan, M. Mandea, S. McLean, C. Manoj, M. Menvielle, I. Michaelis,

N. Olsen, J. Rauberg, M. Rother, T. J. Sabaka, A. Tangborn, L. Tø�ner-Clausen, E. �ébault, A. W. P.

�omson, I. Wardinski, Z. Wei, and T. I. Zvereva, “International Geomagnetic Reference Field: the

eleventh generation,” Geophysical Journal International, vol. 183, pp. 1216–1230, 12 2010. 40

[116] National Aeronautics and Space Administration, “Measuring earth’s magnet-

ism.” https://earthobservatory.nasa.gov/images/84266/
measuring-earths-magnetism, September 2014. 40

[117] J. D. Sally and P. Sally, Roots to research: a vertical development of mathematical problems. American

Mathematical Society Bookstore, 2007. 40

[118] DJI, “Introducing the new a2 gps pro plus module.” https://www.dji.com/nl/
newsroom/news/introducing-the-new-a2-gps-pro-plus-module, January

2015. 41

An MPSoC based autonomous UAV 63

https://docs.px4.io/v1.9.0/en/config_mc/pid_tuning_guide_multicopter.html
https://docs.px4.io/v1.9.0/en/config_mc/pid_tuning_guide_multicopter.html
https://oscarliang.com/quadcopter-pid-explained-tuning/
https://oscarliang.com/quadcopter-pid-explained-tuning/
https://earthobservatory.nasa.gov/images/84266/measuring-earths-magnetism
https://earthobservatory.nasa.gov/images/84266/measuring-earths-magnetism
https://www.dji.com/nl/newsroom/news/introducing-the-new-a2-gps-pro-plus-module
https://www.dji.com/nl/newsroom/news/introducing-the-new-a2-gps-pro-plus-module

BIBLIOGRAPHY

[119] H. Willee, P. Riseborough, and B. Kung, “Gps compass.” https://docs.px4.io/v1.9.
0/en/gps compass/, August 2019. 41

[120] E. Kuantama, I. Tarca, R. Tarca, and D. Craciun, “Aspects regarding �y control of quadcopter,” Recent
Innovations in Mechatronics, vol. 3, 09 2016. 41

[121] Lightbend, “�e reactive manifesto.” https://www.reactivemanifesto.org/,

September 2014. 51

[122] Windows2universe.org, “�e multispectral sun, from the national earth science teach-

ers association.” http://www.windows2universe.org/sun/spectrum/
multispectral sun overview.html, April 2007. 68

64 An MPSoC based autonomous UAV

https://docs.px4.io/v1.9.0/en/gps_compass/
https://docs.px4.io/v1.9.0/en/gps_compass/
https://www.reactivemanifesto.org/
http://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html
http://www.windows2universe.org/sun/spectrum/multispectral_sun_overview.html

Appendix A

Appendix sensors

A.1 What currently available sensor can beused to detect obstacles?
A.1.1 Stereo camera
Intel Realsense

Intel is mostly known for its CPU’s, but they also o�er various other products as for instance the

realsense camera. �ese use two camera’s to determine the depth and have a wide �eld of view of 85

degrees. �e exact maximum range is stated as 10 meters but with correct calibration this can be extended.

�e output is send over a USB-C port and the API of realsense can be used to retrieve the data from the

sensor. �e sensor itself is also guaranteed to work outdoor without any performance loss.

Carnegie Robotics
Carnegie robotics specializes in robust sensors for robotics, they have a couple of stereo sensors avail-

able for long and short range applications. �eir camera has a wide �eld of view of 80 degrees and they

have a C++ library and even ROS nodes available. �e output is send over Ethernet. �ese sensors have

several demo’s online available and work outdoor without any performance loss.

Figure A.1: Intel realsense D435 [16]
Figure A.2: Carnegie Multisense S7 [17]

Stereolabs
Stereolabs o�ers di�erent stereo camera’s, the zed and the zed mini. Like all the Stereo camera’s it

has a big Field of view of 90 by 60 degrees and works good outside. It has a reported depth range of 20

meters up to 40 meters. It is connected via a USB3.0 port and its data can be retrieved via ROS or the API.

�e package of the sensor is relative small and only weighs 159 grams.

Figure A.3: Stereolabs zed [1]

An MPSoC based autonomous UAV 65

APPENDIX A. APPENDIX SENSORS

A.1.2 Radar

µSharp
�e µSharp is developed by Aerotenna. It uses a frequency of 24 Ghz and has a maximum range of

120 meters. It costs approximately 625 euros. �e output can be retrieved via UART. It has a measuring

angle of approximately 50 by 30 degrees and 1 sensor has a power consumption of 1.25W. �e sensor is

in a compact housing and due to the 24 Ghz frequency it works good in for instance rain.

Figure A.4: µSharp [2]

A.1.3 Ultrasonic

HC-SR04
�is is one of the most used ultrasonic sensors in robotics, it is cheap with a price of only 5 euro and

works really simple. First a high signal is wri�en to the trig pin which sends out the message, then an

8 cycle sonic burst will be send out by the sensor and via the echo pin the duration will be returned.

�is duration must be multiplied by 0.034 and divided by 2 because the signal travels 2 times the distance

to the object. It has an operation range between 2 and 400 centimeters. It has a measuring angle of

approximately 15 degrees. �e power usage of 1 sensor is approximately 5V and 15mA thus 75mW.

MaxSonar
�ese sensors are a bit more expensive, ranging from 25 to 50 euro. It is a series from MaxBotix with

various variants ranging in things like for indoor or outdoor usage, range, output, beam angle, input

voltage etc.

It is a series from MaxBotix with various variants ranging in things like for indoor or outdoor usage,

range, output, beam angle, input voltage etc. �ese sensors can have a range up to 10 meters with a very

shallow beam and re�ected on a perfect �at surface, the expected range of this sensor is around 6 meters.

For controlling this sensor only an input voltage is needed, the output is then presented in Analog Voltage,

RS232 Serial or Pulse width. It only uses an average of 3.4mA with 5V for a total of 17mW. Optionally

these sensors are available for outdoor usage with protective casing but this will greatly reduce either the

range or the beam angle of the sensor.

Figure A.5: HC-SR04 [3]
Figure A.6: MaxSonar [18]

66 An MPSoC based autonomous UAV

APPENDIX A. APPENDIX SENSORS

A.1.4 Lidar
LIDAR-Lite v3

�is sensor is available for 130 to 150 euro. It is developed by Garmin and has two variants, the normal

variant which can sample up to 500Hz and the HP variant which can sample at rates around 1kHz and has

a water-resistant casing. Both variants have a range of up to 40 meters which is considerable bigger than

the ultrasonic sensors. However, the beam that it covers is also much shallower of only approximately

0.5 degree. �is sensor can be read via 2 di�erent methods, either PWM or I2C. It also requires a bit more

power, it still uses 5V but on average it uses 130mA which results in a total of 650mW.

LeddarTech
�is company has several Lidar sensors available ranging with a beam from only 3 degrees up to 100

degrees. Going to a wider beam will greatly reduce the range of the sensor varying from 60 meters to

only 12 meters. �ese sensors are also a bit more expensive where it starts with 150 euro up to 1100 euro

for the wide range variants. In order to read this sensor either UART can be used or RS-485. It uses more

power than the previous sensor as the power consumption is rated at 1.3W which is thus twice the usage

of the previous sensor. For the wide beam sensors this can increase to 2W.

Figure A.7: Lidar-Lite [4] Figure A.8: LeddarOne by LeddarTech [19]

Benewake
Benewake o�ers the possibility to choose between a Short-range, Mid-range or Long-range Lidar

sensor. Ranging from a maximum operating range of 12 meters to a maximum range of 180 meters. All

these sensors have like most Lidar devices a really small beam width and cost between 100 and 250 euros.

�e sensors can be read using either UART or CAN. All these sensors are less than 100 grams and have

an average power usage of 0.6W.

Figure A.9: Benewake TF02 [20]

An MPSoC based autonomous UAV 67

APPENDIX A. APPENDIX SENSORS

A.1.5 360 Lidar
RPLIDAR

RPLidar is developed by Slamtec, the price of the RPLidars range from only 115 euro up to 650 euro.

�ere are di�erent Lidars available with di�erent ranges and di�erent number of samples. Where the

maximum range is between 12 and 40 meters. �e sensor gives as output the distance in millimeter and

the current degree of the measurement via UART. �e power consumption by the sensor is approximately

5V at 350mA for a total of 1.75W. �ese sensors also have the possibility to communicate with ROS which

can be used to plan a new path.

Velodyne
Velodyne has several Lidars available, many of the sensors used in the automotive industry are being

produced by Velodyne. Velodyne is one of the biggest high-end Lidar companies available. �ey have

several variants of Lidar sensors available which have a small form factor and low weight as for instance

the Puck LITE, although it still weights 590 grams. It has a range of 100 meters with a vertical angle of

30 degrees. In order to read this sensor UDP packets are send over Ethernet. �is sensor requires a total

of 8W to run. �is sensor is obviously much be�er than what we have seen so far but this also comes at

a price, the exact prices are not known but rumored around 4000 euro.

Figure A.10: RPLidar S1 [5] Figure A.11: Velodyne Puck [6]

Hokuyo
Hokuyo is a manufacturer of a lot of di�erent industrial products with a lot of di�erent Lidar sensors

available ranging from 1000 euro up to 5000 euro. Most of the Lidar sensors have a range of 270 degrees.

�is is not really an issue compared to the 360 degrees of the other sensors since it can be avoided to �y

backwards. �e range of the Lidar sensors can be up to 30 meters and they have special sensors which

can work outside. For receiving the output of the Hokuyo sensors RS232 can be used or the data can be

directly used in ROS like the RPLidar to plan the new path. �e sensors require 12 V at 0.7A for a power

consumption of 8.4W.

YDLidar
YDLidar o�ers 3 di�erent Lidars. A cheap Lidar for indoor small robotics usage and a more advanced

Lidar capable of scanning up to 16 meters for a price of around 450 euro. �e output of this sensor can

be retrieved via UART. It uses 5V with 450mA for a power consumption of 2.25W. �is sensor also has

the possibility to be integrated with ROS to avoid obstacles. An interesting fact is that this Lidar uses

a di�erent Wavelength than most other Lidar devices at 785nm instead of 905nm. �is likely results in

more interference from the sun [122].

Figure A.12: Hokuyo UTM-30LX [21]

Figure A.13: YDLidar G4 [22]

68 An MPSoC based autonomous UAV

APPENDIX A. APPENDIX SENSORS

Ocular robotics
Ocular Robotics o�ers a lot of di�erent sensors including 2 Lidars which cost around 8000 euro. Ac-

cording to Ocular robotics they are the smartest Lidars on the market. �is is due to the many di�erent

modes that can be chosen to scan, either everything that is possible or only a very narrow band or a

certain region. �ey have high range up to 160 meters. �e output of the Lidar is given via Ethernet. It

has a power consumption of approximately 50W and it weights around 3kg.

SICK
SICK is a company that specializes in sensors, they have a couple of 2D and even 3D Lidars available.

�ese sensors typically have a beam width of 275 degrees and sensors which are especially for outdoor

usage. �e typical range of these is 30 meters. Additionally, these sensors include di�erent �lters to

achieve be�er results and neglect the e�ects of fog as much as possible. �e output can be retrieved using

Ethernet. �e typical power usage of the sensor is 18W.

Figure A.14: Ocular Robotics RE05 [23]

Figure A.15: SICK LMS1000 [24]

A.1.6 Time of Flight LED
Terabee

Terabee is a company that o�ers multiple sensor modules all based on Time of Flight sensors. �ey

have di�erent variants of Time of Flight sensors available. A special long range sensor which has a range

of 60 meters in a really compact housing. Outdoor these sensors would get a range of 20-30 meters which

would make them really suitable. �is is however doubtful since all other Time of Flight LED sensors

report a maximum range of several meters. �e data can be retrieved via I2C or UART. �e typical power

usage of the sensor is 13W.

Figure A.16: TeraRanger Tower Evo [25]

An MPSoC based autonomous UAV 69

APPENDIX A. APPENDIX SENSORS

A.1.7 Criteria
Ba�eries are 48.8 Wh.

�e motors that are going to be used in this project are the TMotor 900kV brushless DC motors, this

means for every volt it spins at 900 rotations per minute. At 100% thro�le the motor consumes 147.4

wa�s and generates a thrust of 1000 gramms resulting in an e�ciency of 6.78 Gramms per Wa�. Since

the same motors are used this value can be used to determine the power impact. �e e�ciency decreases

the more thro�le that is used and thus the worst-case scenario will be used. �is means that the �ight

impact can be approximated as Powerimpact = Powerusage+ Weight
6.78 .

Below in Table A.1 some of the available sensors are given. Not all di�erent sensors are in the table

since that would make the table to clu�ered. It can overall be observed that the longer the range the

higher the power usage. An important parameter not re�ected that much in the text is the weight. A

drone must be able to li� the entire drone and sensor. �e higher the weight the more thro�le must be

used and thus power must be used.

Additionally, it is not required to get full 360 degree visibility, since the drone will likely only move

forwards or sideways. If we look at the table there are several options available. Multiple small beam

width sensors could be used like the HC-SR04 and Lidar-Lite, as done in the TeraRanger Tower Evo (see

Figure A.16). Multiple stereo camera’s can be used in order to get vision all around the drone. �e ZED

has the best speci�cations for this project from the stereo cameras. �e µsharp would also be a possibility

although multiple of these sensors would be needed to ensure good vision.

Another approach that can be taken is using a 360-degree Lidar. �is would only require one single

sensor to map the entire surroundings. �ere are several 360-degree Lidars available from which the

RPLidar S1, YDLidar G4 or puck LITE seems like the best solution. �e rest of the sensors either lack

range, are to heavy or have be�er alternatives. �e puck LITE is a really high-end sensor with its high

range with relative low power usage and low weight. Something that could give a problem is the interface

which is Ethernet and the price of approximately 4000 euro. �e YDLidar G4 has good speci�cations for

its low price, the only questionable thing about this sensor is that it uses a di�erent wave length compared

to other Lidars. �is is much more radiated by the sun and likely result in more interference when �ying

outdoors especially when taking into consideration that the maximum range is only 16 meters. �is will

likely be reduced heavily outside. In the end the RPLidar S1 seems like the best solution in terms of

360 Lidar. Another possible solution could be the TeraRanger Tower Evo, which on paper o�ers good

range (which is doubtful) and also the 360 degrees vision. Tests would have to be conducted to see which

performs best outdoors.

70 An MPSoC based autonomous UAV

APPENDIX A. APPENDIX SENSORS

Table A.1: Table of available sensors

Sensor Max range Beam width Power Weight Power
Impact per
sensor

Cost

Intel Realsense D435 10 meters ∼85 degrees 1.25 W 72 g 11.9 €160

Carnegie Multisense S7 10 meters ∼80 degrees 20 W 1.2 kg 197.0 ∼€4000

Stereo labs ZED 20 meters ∼90 degrees 2 W 159 g 25.5 ∼€450

µSharp 120 meters ∼50 degrees 1.25 W 43 g 7.6 €625

HC-SR04 4 meters ∼15 degrees 75 mW 8.5 g 1.3 €5

MaxSonar 6 meters ∼10 degrees 17 mW 32 g 4.7 €25-€50

LIDAR-Lite v3 40 meters 0.5 degree 650 mW 22 g 3.9 €130

LIDAR-Lite v3 HP 40 meters 0.5 degree 325 mW 38 g 5.9 €150

LeddarOne 40 meters 3 degree 1.3 W 14 g 3.4 €150

LeddarVU8 185 meters ∼20 degrees 2 W 110 g 18.2 €475

Benewake TF02 22 meters 3 degree 0.6 W 52 g 8.3 €100

RPLidar A3 25 meters 360 degrees 6 W 190 g 34.0 €600

RPLidar S1 40 meters 360 degrees 1.75 W 105 g 17.2 €650

puck LITE 100 meters 360 degrees 8 W 590 g 95.0 ∼€4000

Hokuyo UTM-30LX 30 meters 270 degrees 8.4 W 210 g 39.4 ∼€4900

YDLidar G4 16 meters 360 degrees 2.25 W 214 g 33.8 €350

Ocular Robotics RE05 160 meters 360 degrees 50 W 2.8 kg 463.0 ∼€8000

SICK LMS1000 64 meters 275 degrees 18 W 1.2 kg 195.0 ∼€3000

TeraRanger Tower Evo 60 meters ∼360 degrees 13 W 130 g 32.2 ∼€600

An MPSoC based autonomous UAV 71

Appendix B

Overview image

72 An MPSoC based autonomous UAV

APPENDIX B. OVERVIEW IMAGE

F
i
g

u
r
e

B
.1

:
B

l
a
c
k

r
e
c
t
a
n

g
l
e
s

r
e
p

r
e
s
e
n

t
m

o
d

u
l
e
s
,
l
i
n

e
s

i
n

d
i
c
a
t
e

m
e
s
s
a
g

e
s

b
e
i
n

g
c
o

m
m

u
n

i
c
a
t
e
d

w
i
t
h

t
h

e
b
l
u

e
f
o

n
t
s

n
a
m

i
n

g
t
h

e
m

e
s
s
a
g

e

An MPSoC based autonomous UAV 73

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Problem statement
	Research question
	Approach
	Outline

	State of the art
	Sensors on an FPGA
	Obstacle avoidance in drones
	Autopilots available
	Dronecode (PX4)
	ArduPilot
	Paparazzi project
	SLUGS
	LibrePilot
	ROS (Robot Operating System)
	ROS2
	Uaventure
	Develop from scratch
	License
	Conclusion

	ROS on FPGA
	Trade-offs of techniques for sensors
	Camera
	Stereo Camera
	3D Camera
	Radar
	Ultrasonic
	Infrared Time of Flight
	Lidar
	Conclusion

	Trade-offs of sensors for navigation
	Stereolabs zed
	µSharp
	HC-SR04
	LIDAR-Lite v3
	RPLidar A3/S1
	Puck Lite
	Conclusion

	Implementing drone-software on an FPGA
	Design flow
	conclusion

	Background
	Quadcopter/Drone
	Autopilot
	Hardware
	XDP
	Real-time
	Build environment

	Design
	Required computation of PX4
	Messaging protocol
	Sensors
	Local position estimator
	Navigator
	Attitude estimator q
	Mc att control
	Mc pos control
	Mixer
	Linux pwm out
	Land detector
	Commander
	Conclusion

	Required computation for ROS
	Mapping of the processes
	Advantages Real-Time cores
	Advantages A53 cores
	Advantages FPGA
	Advantages of GPU
	ROS on real-time processor
	Conclusion

	Obstacle avoidance
	Connection between PX4 and ROS
	Obstacle avoidance in PX4

	Design flow

	Implementation
	Connect Processing System and Programmable Logic
	Device Driver
	Device Tree
	Programmable logic

	How to utilize the sensors in PX4?
	Reading the sensor data
	Publishing the data in PX4

	PID tuning
	Methods found in literature
	Methods in drones

	Obstacle avoidance
	Reading the sensor in ROS
	Converting the data
	Connection

	Experiments & Results
	Testing of the sensors
	Testing the barometer
	Testing the Magnetometer
	Testing the IMU
	Testing the GPS

	Testing of the motors
	Arming and Calibration
	Tilt forwards and backwards
	Tilt left and right

	Takeoff
	The system under load
	First test flight with GPS

	Conclusion
	Conclusions
	Future works

	Bibliography
	Appendix
	Appendix sensors
	What currently available sensor can be used to detect obstacles?
	Stereo camera
	Radar
	Ultrasonic
	Lidar
	360 Lidar
	Time of Flight LED
	Criteria

	Overview image

