
 Eindhoven University of Technology

MASTER

Ant Colony Optimization for Model Checking

van de Put, Elbert J.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b39d95c1-84d8-4c74-b979-9202b490c2b4

Master’s Thesis

Ant Colony Optimization for
Model Checking

E.J. van de Put

Supervisor: E.P. de Vink

February 2020

Eindhoven University of Technology
Department of Mathematics and Computer Science

Formal System Analysis

Contents

1 Introduction . 4
2 Understanding Ant Colony Optimization 5

2.1 Combinatorial Optimization . 6
2.2 Local- and Global Optima . 6
2.3 Complexity of Ant Colony Optimization 7
2.4 Travelling Salesman Problem 8
2.5 Boolean Satisfiability . 10
2.6 The Model Checking Problem 11
2.7 Complexity of the Model-Checking Problem 13

3 Ant Colony Optimization Technically 14
3.1 Hyperparameters . 14
3.2 Experimentation Framework 14

4 Boolean Equation Systems . 18
4.1 Algorithms for checking BES 20
4.2 Applying ACO to solve a BES 21
4.3 Initial version . 22
4.4 Hyperparameters . 22
4.5 Reducing the search space . 23
4.6 Important fixed-point classifiers 24
4.7 Fundamental problem . 26
4.8 Final version . 28
4.9 Conclusion . 28

5 Parity Games . 30
5.1 Parity Game from a BES . 31
5.2 Ant Colony Optimization for Parity Games 31
5.3 Hyperparameters . 32
5.4 Random Against Best . 33
5.5 Game Exploration . 34
5.6 Conclusion . 36
5.7 Future Work . 37

6 Strategy Improvement . 38
6.1 Strategy Improvement Algorithm 38
6.2 A motivation for a different switching policy 42
6.3 Applying ACO . 43
6.4 Biased ants with valuations . 46
6.5 Results on simple games . 47
6.6 Conclusion . 47
6.7 Future Work . 48

7 Conclusion . 49

2

8 Future work . 50

Appendices 52
A Framework . 52
B Implementation for BES . 54
C Implementation for parity games . 62
D Implementation for strategy improvement 68

3

Ga naar de mier, luiaard, zie zijn wegen en word wijs.

Spreuken 6:6.

ABSTRACT
In this paper we explore the application of ant colony optimization to model check-
ing. We analyze how ant colony optimization can be applied to the so-called model
checking problem. More specifically to Boolean equation systems and parity games.
We look at the challenges that arise when applying ant colony optimization to en-
suing decision problems and at possible solutions to those challenges.

1. Introduction

For safety-critical systems we want to be able to prove the presence or absence of
certain behavior. Some systems can be modeled as a set of states with transitions
between them, where every state has a number of propositions that hold in that state.
On these models we want to check the presence of ‘good’ and absence of ‘bad’ behavior.
The model checking problem is the problem of validating whether a model has certain
behavior. In our particular case the model is a mixed-Kripke structure, (Kripke, 1963),
and the behavior is described by first order modal µ-calculus, as described in Groote
and Mousavi (2014). We are interested to see if Ant Colony Optimization can be
applied to this problem.

Ant Colony Optimization (ACO) (Dorigo, Maniezzo, & Colorni, 1996) is a stochastic
search algorithm that is inspired by the foraging behavior of ants. When an ant finds
food it leaves a trail of pheromone that other ants will follow to find the food. In the
ACO algorithm artificial ants will generate a candidate solution to the problem and
based on the quality of that solution an amount of pheromone is deposited on the
components they used to construct the solution, which other ants can smell.

The model checking problem can be solved directly by, for example, the algorithm
proposed in Emerson and Lei (1986). The problem can also be transformed to other
problems with a simpler structure. It can be transformed into a Boolean equation sys-
tem, a parity game or the v-parity loop problem in a switching graph. We try to apply
Ant Colony Optimization to Boolean equation systems and to parity games. We do not
try to solve the model checking problem directly because the model checking problem
has a structure that does not lend itself well to applying ant colony optimization.

We start this report with preliminaries. In section 2 we begin with explaining the
ACO paradigm. Then we give examples for how ACO can be applied. In section 2.4
we look how it can be applied to the Travelling Salesman Problem, and in section
2.5 we look how it can be applied to boolean satisfiability. Then, in section 2.6 we
explain the model checking problem, to see how we can apply ACO. We conclude that
we should apply it to problems that are generated from the model checking problem.
After that we will present our research. In section 3.2 we will explain the framework
we have built to implement ACO. In section 4 we will explain the problem of solving a
Boolean equation system, and applying ACO to it. Then, in section 5 we explain the
application of ACO on parity games. Finally, in section 6 we explain how we used ACO
in a strategy improvement algorithm to solve parity games. We discuss our results in
section 7. Implementation of the algorithms can be found in the appendices.

4

https://www.bible.com/en-GB/bible/116/PRO.6.HSV

2. Understanding Ant Colony Optimization

Ants live and work in a colony. Ants, and other social insects, communicate us-
ing pheromones (Vander Meer, Breed, Winston, & Espelie, 2019). Pheromones are
smelly substances which evaporate over time. When an ant has found food it de-
posits a pheromone. When other ants smell the pheromone they will follow the trail of
pheromone. If, by following this trail, they find the food, they will also leave pheromone
while walking back to the colony. In this way a trail is maintained if there is food at
the end of the trial. If there is no food at the end of the trial no extra pheromone is
deposited and the existing pheromone will evaporate.

The ant colony optimization paradigm, as proposed in (Dorigo et al., 1996), is a
stochastic optimization algorithm. It is based on the foraging behaviour of ants. In
the ant colony optimization paradigm ants are divided in generations. Every ant in a
generation constructs a solution candidate for the problem in a stochastic way based
on pheromone levels and possibly on heuristics.

Next, we explain ACO in more detail. A good explanation of ACO is given in (Blum
& Dorigo, 2004). We follow their approach and notation. Ants generate a solution
candidate S by selecting solution components from the set of all solution components C
until they have constructed a complete solution candidate. Ants use a function g : 2C →
2C to determine which solutions components they are allowed to add to their partial
solution candidates. This function prevents ants from creating impossible solutions.
Ants pick solution components from the set of potential solution candidates until they
cannot add any more solution candidates, i.e. g(S) = ∅. To pick a solution component
from the set of potential solution components a conditional probability is used. By
default, this probability only depends on the amount of pheromone on the solution
components. The function τ : C → R gives the amount of pheromone on a solution
component. The probability of picking a solution component oi from a set of solution
candidates, given by the set of current solution components S, is p(oi|S) and is defined
as:

p(oi|S) =

τ(oi)∑

{τ(oj) | oj ∈ g(S)}
if oi ∈ g(S)

0 otherwise

(1)

Ants can also base their choice on heuristic information about the quality of solution
components. This is information that can help guide ants to construct solution can-
didates which are more likely to have a good quality. For example when we try to
find the shortest road from city A to city B we prefer roads that go in the direction
of city B, the direction of the road could be used as heuristic information. We use
the function η : C → R to denote the heuristic value corresponding to a solution
component. Using two parameters, α and β, the relative importance of pheromone
and heuristic information can be configured. The probability of selecting a solution
component becomes:

p(oi|S) =

η(oi)

ατ(oi)
β∑

{η(oj)ατ(oj)β | oj ∈ g(S)}
if oi ∈ g(S)

0 otherwise

(2)

This provides us with enough information on how ants create solution candidates.

5

We continue by explaining how pheromone is deposited. In ant colony optimization
there are generations. Every generation has three phases. In the first phase all ants
generate a solution candidate. In the second phase the amount of pheromone from
previous generations is reduced to model evaporation. In the third phase pheromone
is deposited on solution components for solution candidates produced by ants of the
current generation. The amount of pheromone deposited on a solution component
is based on the quality of the solution candidates they were used in. The function
f : 2C → R determines the quality of a solution. If a solution is better, its quality
value should be higher because then more pheromone is deposited on the solution
components. The amount of evaporation is controlled by the parameter ρ, which can
take values between 0 and 1. Equation 3 formally describes the process of evaporation
and depositing pheromone for a generation that we described above. There are k ants
in a generation. A solution candidate for ant i is denoted Si.

τ(oj)← ρ · τ(oj) +
k∑

i=1

∆τ ij where ∆τ ij =

{
f(Si) if oj ∈ Si

0 otherwise
(3)

In ant colony optimization generations are run until a stopping condition is met.
This could be an amount of generations or a specific solution quality is reached. The
stopping condition depends on the problem.

There is a difference in quality among the solution candidates generated in a gen-
eration. In order to prevent depositing pheromone on ‘bad’ solution components we
deposit pheromones for only a fraction of the best solution candidates.

2.1. Combinatorial Optimization

Ant colony optimization is easily applied to combinatorial optimization problems.
These are problems where a solution is created by selecting a set of solution com-
ponents out of a finite set of solution components. For example, linear programming
is not combinatorial optimization because solutions cannot be constructed by pick-
ing components from a finite set (the size of R is infinite). Boolean satisfiability is a
combinatorial optimization problem because there are a finite number of components
from which a solution can be constructed. In the case of combinatorial optimization
pheromone can be applied to every solution component and ants will select a number
of solution components to build a solution based on the amount of pheromone on the
solution components.

2.2. Local- and Global Optima

Ant colony optimization is a stochastic optimization algorithm. An important capa-
bility of stochastic optimization algorithms is the ability to explore solutions that
are worse than the currently known best solution. This is important in order not to
get stuck at a local optimum. We consider two optimization algorithms that do this
exploring of worse solutions explicitly. We explain how they work and after that we
discuss how ACO can escape a local optima.

Tabu search (Glover, 1989) is a local search algorithm. In every step of tabu search
the direct neighbours of the current solution are explored. The algorithm then moves
to the best solution among the neighbours. This process continues until a certain
stopping condition is met. A list of solutions that are already explored and are therefore

6

forbidden (tabu) are maintained in order to not evaluate the same solution twice. By
moving to a neighbour even if it is worse than the current position, the algorithm is
able to escape local optima.

Simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) is a search algorithm. At
every step of this algorithm the current solution is slightly changed and its quality is
measured. Based on the quality of the new solution it decides to go to the new solution
or to stay at the current solution. The chance of accepting worse solutions is gradually
decreased over the run of the algorithm. In this way the algorithm can escape local
optima at the start and find the best solution in the optimum it is in at the end.

In ACO solutions that are worse than the best solution can be explored because ants
do not always choose the solution components with most pheromone on it. At the start
of ACO almost all solutions can be explored because there is almost no pheromone
present. When ACO has been running for some generations there are pheromone trails
and only solutions that are slight modifications of this trail will be explored.

2.3. Complexity of Ant Colony Optimization

The computational complexity of Ant Colony Optimization algorithms is determined
by three variables. The first variable limits in how many steps an ant can construct
a solution. This is linear in the number of solution components. The computational
complexity of selecting a solution component is at least linear to the amount of solution
candidates. The second variable is how many ants there are per generation. From
literature it seems that ACO algorithms work best if this is a fraction of the problem
size (Dorigo et al., 1996). The third variable is how many generations are required to
find an acceptable solution. We do not know how this is related to the problem size.

The conclusion that we can draw from this is that ACO algorithms have a compu-
tational complexity of at least O(n3). This is if the amount of solution components is
linear to the problem size, if the complexity of selecting a solution component is linear
to the amount of solution components and if the amount of ants required is linear to the
problem size. Because the problems we evaluate are computationally hard, exact al-
gorithms typically have a non-polynomial computational complexity. ACO algorithms
can typically outperform exact algorithms on sufficiently large problems.

7

2.4. Travelling Salesman Problem

In order to gain a better understanding of ant colony optimization and how to apply
the paradigm we will apply it to a number of standard NP-complete problems,
starting with the Travelling Salesman Problem. ACO was applied to the Travelling
Salesman Problem by (Dorigo et al., 1996). The Travelling Salesman Problem is the
following problem: Given a set of n towns that are all connected, find a minimal length
closed tour. A closed tour is a route that visits every town exactly once and that ends
at the same town where it started. We call dij the length of the path between towns i
and j. An instance of the TSP is given by a graph (V,E). Where V is the set of towns
and E : V × V → R gives the length of the edges between the towns.

When applying ACO to the Travelling Salesman Problem every edge connecting
two towns is a solution component. An ant starts at a random town. Then it chooses
an edge to travel out of the set of edges to towns that it has not visited yet. This choice
is made by a weighted probability based on the inverse of the length of the edges and
the amount of pheromone on them. The ant will do this until it has visited all towns.
For this problem the inverse of the edge length is used as heuristic information. This
is because it is more likely that the shortest tour consists of short edges than that it
consists of long edges.

After all ants have created a tour an amount of pheromone is evaporated. After
that an amount of pheromone is deposited on edges based on the inverse of the tour
length for all tours created by ants. This is because we want to find the shortest tour.
We have written a simple implementation of ACO for TSP (Put, 2019) in order to run
experiments. More explanation about the implementation can be found in section 3.1.

Figure 1.: Ant Colony Optimization applied to the TSP Djibouti dataset

A result can be found in figure 1, which is a set of 38 towns in Djibouti. The graph
shows the shortest tour per generation of ACO. This benchmark comes from (uwater-
loo tsp dataset). The best known length for this problem is 6656. As can be seen our
algorithm does not find this global optimum, but it does find a reasonable approxima-
tion.

Hyperparameters
There are a number of parameters that influence the performance of the ant colony
optimization algorithm. They can be found in section 3.1. We try to determine how to

8

http://www.math.uwaterloo.ca/tsp/data/index.html
http://www.math.uwaterloo.ca/tsp/data/index.html

tune the hyperparameters in order to improve performance. That is, we want to make
a good tradeoff between finding the global optimum and convergence speed.

Figure 2.: Results with different hyperparameters on a benchmark with 100 towns.

We ran experiments to see how these parameters affected the algorithm. An overview
of how the number of ants and the evaporation coefficient effect performance can be
found in figure 2. We see that with a higher evaporation coefficient convergence is
slower, but better results are achieved. We also see that with more ants per generation
better results are achieved, but running times go up. We ran an experiment to see

Figure 3.: Results with different pheromone fractions on a benchmark with 100 towns.

the influence of the amount of ants that were allowed to deposit pheromone. This
experiment was run with 150 ants and ρ = 0.8. Results from this epxeriment can
be found in figure 3. We see that if less ants are allowed to deposit pheromone, the
solution quality increases.

9

2.5. Boolean Satisfiability

The next problem considered here is satisfiability of a Boolean formula. We want to
apply ACO to this problem in order to explore how to map ACO to problems that
are not directly relatable to graphs. Every Boolean formula can be rewritten to 3SAT.
This is the format that we will use. Given a formula in the following form:

ϕ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ ... ∧ (ak ∨ bk ∨ ck)

The goal is to find an assignment for all Boolean literals ai, bi and ci, where i ∈
{1, ..., k}, such that ϕ is true or report that such an assignment does not exist. This
problem is NP-complete (Garey & Johnson, 1979).

ACO for satisfiability
In (Moritz & Springer, 2010) ant colony optimization is applied to the Boolean sat-
isfiability problem. A solution candidate for a formula consists of a truth value for
every Boolean variable in the formula. For a problem with k variables, pheromone
values τ : {1, ..., k} → R and τ̄ : {1, ..., k} → R represent the pheromone levels of a
variable and its negation respectively. For a solution to be valid every variable should
be assigned a truth value. If a variable is not assigned true, it is assigned false. An
ant assigns a variable l true with probability:

p(ℓ) =
τ(ℓ)

τ(ℓ) + τ̄(ℓ)

The amount of clauses that evaluate to true is used as the quality of a solution. For
every Boolean variable ℓ an amount of pheromone is added to τ(ℓ) if ℓ was assigned
true and to τ̄(ℓ) otherwise.

In (Moritz & Springer, 2010) two heuristics are considered for improving the creation
of solution candidates. The first heuristic is that variables that occur more often are
more important. In the function that selects a truth value, pheromone values are
weighted by the number of clauses that the variable occurs in. The second heuristic
is to make clauses that are not solved by previous solutions more important. To do
this the algorithm keeps track of how long a clause has not been solved by the best
solutions. Then the quality of a solution is the sum of the importance of all satisfied
clauses. We have not implemented these heuristics.
We ran an experiment to verify that ACO for SAT works. The result can be found in
figure 4. In this example ACO gets stuck in a local optima.

Incompleteness
For boolean satisfiability an assignment of variables that will make a formula true,
proves that the formula is satisfiable. Proving unsatisfiability is much harder and there
is no simple check to do it. The basic ant algorithm applied to satisfiability has no
way to prove unsatisfiability, therefore it is incomplete. This means that if a formula is
found to be satisfiable by the algorithm, then it is indeed satisfiable, but if it is found
to be unsatisfiable, we do not know, it might really be unsatisfiable, but there might
be a solution that the algorithm was just not able to find.

10

Figure 4.: ACO for SAT on a problem with 250 variables and 1065 clauses.

2.6. The Model Checking Problem

We now turn to the main topic of this thesis, concerning an ACO approach to the
model checking problem. We need to understand the problem in order to determine
how to apply ACO. We start with an explanation of what the model checking problem
is.

There are systems for which it is crucial that they have or do not have certain
behavior. Example of these systems are medical systems or controllers in an aircraft
or car. We want to prove the absence or presence of certain behaviour mathematically.
The problem to prove that a system has a certain behavior is called model checking.
In this section we will explain how this problem can be formalized and solved.

The system we wish to check is represented by a model of its behavior. The behavior
we want to check is represented by a formula. We wish to check in which states of the
model this formula holds and especially if it holds in the initial state. We need a model
of the system we want to check. The systems that we deal with can be abstracted to
systems with the following properties: A system has a set of states that it can be
in. Every state has a set of atomic propositions that hold in that state. There are
transitions from a state to another. Systems with these properties can be represented
by a mixed Kripke-structure. This is the model we will use for the model checking
problem.

11

Definition 2.1 (Mixed Kripke-structure). Formally, this model is a six tuple.

M = 〈S, s0, Act, AP,R,L〉
where:

S is a set of states.

s0 is an initial state.

Act is a set of action labels.

AP is a set of atomic propositions.

R ⊆ S ×Act× S is a transition relation.

L : S → 2AP is a labeling function.

Behavior can be specified by the modal µ-calculus (definition 2.2). We follow the
exposition of (Kozen, 1982).

Definition 2.2 (Syntax of modal µ-calculus).

φ ::= true | false | p | ¬φ | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | µX.φ | νX.φ | X

In this definition a is an action label and X is a variable from the set of variables V ar.

This calculus is used to specify which atomic propositions hold in a state and what
actions are possible from a state. We give a very brief overview of two important
parts of this calculus, they are the modalities and the fixed-points 1. There are two
modal operators in this calculus, [a]φ and 〈a〉φ. The first modality [a]φ says that from
the current state, φ should hold in all states that are reachable by a single a action.
The other modal operator 〈a〉φ says that there is a state which is reachable from the
current state with an a action, in which φ holds. The fixed point classifiers µ and ν
can be used to specify finite or infinite behaviour. The least fixed point µX.φ indicates
that the path where φ holds in every state is finite. The greatest fixed point νX.φ
indicates that the path where φ holds in every state is infinite.

We have a definition of a model and a definition of behavior. We continue by defining
in which states a formula holds. The formal definition can be found in 2.3. In order to
understand the meaning of this definition we present an example below.

Definition 2.3 (Semantics of modal µ-calculus). [[φ]]e denotes the set of states where
φ holds given context e : V ar → 2S .

[[true]]e = S

[[false]]e = ∅
[[p]]e = {s | p ∈ L(s)}

[[¬φ]]e = S \ [[φ]]e
[[φ1 ∧ φ2]]e = [[φ1]]e ∩ [[φ2]]e
[[φ1 ∨ φ2]]e = [[φ1]]e ∪ [[φ2]]e

[[〈a〉φ]]e = {s | ∃t.s→
a t =⇒ t ∈ [[φ]]e}

[[[a]φ]]e = {s | ∀t.s→
a t =⇒ t ∈ [[φ]]e}

[[X]]e = e(X)

[[νX.φ]]e = ν(Z 7→ [[φ]]e[X:=Z])

[[µX.φ]]e = µ(Z 7→ [[φ]]e[X:=Z])

In this definition s →a t has the meaning that there is a transition with the label a
from state s to state t.

1A fixed point for a function f : X → X is a value x ∈ X for which f(x) = x

12

For the fixed-point classifiers we need monotonic functions. With a non-monotonic
function it is not possible to compute a fixed-point. Monotonicity is guaranteed by
only allowing an even number of negation for a variable.

qA

C

p

B
a

a a

a
b

Figure 5.: A model represented by a mixed Kripke structure.

Example 2.4 (Solving a model checking problem). Consider the model in figure 5
and the formula νX.p ∧ [b]X. This formula expresses that there is an infinite path
of b actions where in every state the proposition p holds. We want to check in which
states of the model this formula holds. We do this by using definition 2.3. In order to
solve νX. we need to find the greatest fixed-point of X 7→ p∧ [b]X. It follows from the
Knaster-Tarski theorem that we can find the greatest fixed-point by setting the initial
value of X to the set of all states. This gives the following iterations:

X0 = {A,B,C}
X1 = p ∧ [b]X0 = {B} ∧ [b]{A,B,C} = {B}
X2 = p ∧ [b]X1 = {B} ∧ [b]{B} = {B}

We have found a fixed-point because X1 is the same as X2. We conclude that the
formula holds only in state B. This makes sense because from state B a b action can
be done infinitely often and the proposition p is always true.

The structure of the model checking problem does not lend itself to the application of
ACO. A solution for a model checking problem is the set of states in which a formula
holds. We think that we cannot efficiently compute the quality of a solution, which
is required for ACO. Therefore, we convert the problem into problems with a simpler
structure and try to apply ACO to those problems.

2.7. Complexity of the Model-Checking Problem

The model checking can be converted in linear time to the problem of solving a parity
game. Parity games can be solved in quasi-polynomial time, as shown by (Calude,
Jain, Khoussainov, Li, & Stephan, 2020). Solving the model checking problem is com-
putationally hard and therefore applying ACO to it might be a good idea.

13

3. Ant Colony Optimization Technically

In this section we discuss how we implemented ACO and what challenges there are
when implementing ACO.

3.1. Hyperparameters

There are a number of parameters that influence the performance of the ant colony
optimization algorithm. The first one is the number of generations for which the algo-
rithm is run. This parameter depends on the other parameters as they determine the
convergence speed. We want to limit the maximum number of generations in order to
limit computation time. The second one is the number of ants that are used. The third
one is the number of ants that are allowed to lay down pheromone. The fourth one is
the amount of evaporation that occurs. The amount of evaporation is determined by
the evaporation coefficient ρ. Another hyperparameter is the relative importance of
pheromone and heuristic values, controlled by α and β. We use grid search to select
values for hyperparameters.

3.2. Experimentation Framework

To apply Ant Colony Optimization to multiple problems in a clean and efficient way
we built a framework (Put, 2019). We make a division between components that are
problem specific and components that are generic. Generic components are compo-
nents that are the same for every implementation of ant colony optimization. Specific
components differ between implementations of ant colony optimization. In the frame-
work we provide interfaces for the problem specific components. While the generic
components are implemented in the framework.

In our framework we call the class that stores pheromone amounts for the solution
candidates the terrain. For every application of ant colony optimization there are
ants that generate solution candidates based on the terrain. There is an evaluation
function that will update the terrain based on the quality of the solution. Notice that
the evaluation function has two tasks. One is to calculate the quality of a solution
candidate. The other is to update pheromone levels of the terrain based on the solution
quality. If we build proper interfaces for these components we can make a generic
implementation of the ant colony optimization algorithm.

We define the following problem specific components: the Ant, the Evaluator, the
Terrain and the SolutionCandidate. An implementation of Ant needs to imple-
ment the function search : Terrain → SolutionCandidate. An implementation
of Evaluator needs to implement the function evaluate : SolutionCandidate →
R × Terrain. The first return value is the quality of the solutions candidate, better
solution candidates should get a lower value for quality. A Terrain needs to im-
plement an evaporate function. This function should reduce the effect of previous
pheromone. How this is implemented is problem specific but usually multiplying the
pheromone levels with the evaporation coefficient is enough. A SolutionCandidate

has no required functions or data, it is completely problem specific. Using the inter-
faces specified above AntColonyOptimizer implements the algorithm. In figure 6 the
components and their relation are listed.

The implementation of AntColonyOptimizer is generic for all problems. Pseu-
docode for AntColonyOptimizer can be found in listing 1. The main function of this

14

Listing 1: AntColonyOptimizer

class AntColonyOptimizer(

ant: Ant,

evaluator: Evaluator

pheromoneFraction: Double,
evaporationCoef: Double

) {

var terrain: Terrain

var bestSolution: SolutionCandidate

var bestQuality: Double

fun execute(initialTerrain: Terrain): SolutionCandidate {

terrain = initialTerrain

while (!stoppingCondition) {

// result: Pair<quality, bestSolution >

var result = runGeneration(generation)

if (result.quality < bestQuality) {

bestSolution = result.solution

bestQuality = result.quality

}

}

return bestSolution.second

}

fun runGeneration(): Pair<Double, SolutionCandidate > {

var evaluations = (0..numberOfAnts).map {

var solution = ant.search(terrain)

Pair(solution , evaluator.evaluate(solution))

}

terrain.evaporate(evaporationCoef)

val sorted = evaluations.sortedBy { x -> x.second.first }

sorted

.take(numberOfAnts*pheromoneFraction)

.forEach { e -> terrain.addPheromoneFrom(e.second.second) }

return Pair(sorted.first().second.first, sorted.first().first)

}

}

15

 Ant Colony Optimizer
- exectute(Terrain) -> Boolean, Solution?

 Ant
- search(Terrain) -> Solution Candidate

 Evaluator
- evaluate(Solution Candidate) -> Terrain

 Terrain
- evaporate()
- add(Terrain)

Solution Candidate

has anhas an

Figure 6.: Framework for implementing Ant Colony Optimization

class is execute. It will run generations of ant colony optimization until a specific stop-
ping condition is met. This stopping condition could be after number of generations
or if a certain solution quality is achieved.

The other function in this class is runGeneration. It will let a number of ants create
candidate solutions, after that it will evaluate the solutions. Then it will evaporate
pheromone and add pheromone for the evaluated solutions. Notice that only a fraction
of solution candidates with the highest quality are allowed to deposit pheromone.

We built the framework in kotlin, because it is multi-platform (can run on the
JVM), has good built-in support for paralellization and has a nice concise syntax. The
implementation of this framework is only 120 lines of code, it can be found in appendix
A.

Example 3.1 (Implementation of ACO for TSP). In order to get a better feeling
for how this framework can be used we provide an example implementation for the
Traveling Salesman Problem. For the Traveling Salesman Problem a solution candidate
is a closed tour. A closed tour consists of edges between towns. So the terrain consists
of a pheromone value for the edges. The terrain is stored as a matrix where the indexes
represent the start and end town of the edge.

Listing 2: Ant implementation for TSP

class TspAnt(val graph: CompleteGraph): Ant {

var lastCity

fun search(terrain: Terrain): SolutionCandidate {

var tour = Tour(graph.numberOfNodes)

lastCity = 0

tour.visit(lastCity, 0.0);

for (i in 0..graph.numberOfNodes - 2) {

lastCity = step(graph, terrain, tour)

}

tour.visit(

tour.getFirstCity(),

graph.getValue(tour.getFirstCity(), lastCity)

);

return tour

}

16

fun step(graph: CompleteGraph , terrain: TspTerrain , tour: Tour) {

// Get the cities that the ant can move to.

val candidates = tour.getNotVisited()

val attract = candidates.map {cd ->

// Attractiveness is based on pheromone and edge length.

var a =

terrain.getPheromone(lastCity , cd).pow(ALPHA) +

(1.0 / graph.getValue(lastCity, cd)).pow(BETA)

Pair(cd, a)

}

var total = attract.fold(0.0) { acc, att -> acc+att.second}

// Weighted choice between all candidates

var rnd = Random.nextDouble(total)

var choice = attract.fold(Pair(null, rnd)) { acc, att ->

if (acc.second < 0.0)

acc

else
Pair(att.first, acc.second - att.second)

}

tour.visit(choice.first, graph.getValue(lastCity, choice.first));

lastCity = choice.first

}

}

Selecting a next town is based on pheromone and edge length. In the code this is called
the attractiveness of a town. The parameters ALPHA and BETA are used to control the
influence of pheromone levels and edge length.

Listing 3: Evaluator implementation for TSP

class TspEvaluator(val graph: CompleteGraph): Evaluator {

fun evaluate(candidate: SolutionCandidate): Pair<Double, Terrain> {

// Quality is the length of the tour.

val quality = candidate.length

val qualityMatrix = candidate.matrix.mapIndexed { x,y,v ->

if (0.0 == v)

v

else
// If the tour is longer less pheromone should be added.

1.0 / quality

}

return Pair(quality, TspTerrain(qualityMatrix))

}

}

As can be seen in listing 3 the evaluation is very simple. This is because the edges used
in the tour are stored in a matrix that has the same shape as the terrain. On this edges
an amount of pheromone relative to the tour length is deposited. The implementation
of ACO for TSP is around 330 lines of code, this includes all required datastructure.

17

4. Boolean Equation Systems

The model checking problem can be converted to the problem of solving a Boolean
Equation System (BES). More specific, to the problem of finding the solution of the
first equation of a BES. We are interested if we can apply ACO to the problem of
finding a solution to a BES. The structure of a BES is similar to the structure of
Boolean satisfiability. Therefore we expect that we can apply ACO in a similar way.
This turns out not to be the case, as this chapter will make clear.

A BES is an ordered sequence of Boolean equations with fixed-point classifiers. The
advantage of a BES over a modal µ-formula, definition 2.2, is that a variable in a BES
is a Boolean, whereas a variable in a modal µ-formula is a set of states. The complexity
of solving a BES is the same as the complexity of solving the modal µ-calculus but
the problem has a simpler structure. If we can solve a BES, we can solve the model
checking problem.

We start this section by defining the structure of a BES and showing how it can be
solved in order to understand the problem. Then we will show how a modal µ-formula
and a mixed Kripke-structure can be converted to a BES. After that we will show how
we applied ACO to BES and discuss our findings.

We start with the formal definition of a Boolean equation system. The definition
consists of the syntax and the semantics of this problem.

Definition 4.1 (Syntax of Boolean Equation Systems). A Boolean Equation System
E has the following structure.

f ::= X | true | false | f ∨ f | f ∧ f

E ::= ε | (µX = f)E | (νX = f)E

In this definition, X is a Boolean variable. We introduce an order on truth values
where true > false in order to be able to define the greatest and least fixed points
classifiers. The least fixed point classifier µ is the value of the variable which yields
the minimum fixed point for the equation, see section 2.6. The greatest fixed point
classifier ν is the value of the variable which yields the maximum fixed point for the
equation. The empty Boolean equation system is denoted by ε.

The syntax of a BES can be found in definition 4.1. There are a couple of things worth
mentioning about this definition. There are no negations, if there where, an unsolvable
BES could be constructed. In the context of a BES, by equation we mean the equation
for one variable in the Boolean equation system. So νX1 = X2 ∨ X3 is an equation.
Another point to note is that we will write equations in a column for clarity.

Definition 4.2 (Semantics of Boolean Equation Systems).

[[ε]](η) = η

[[(µX = f)E]](η) = [[E]](η[X := [f](ηµ)]) where ηµ = [[E]](η[X := false])

[[(νX = f)E]](η) = [[E]](η[X := [f](ην)]) where ην = [[E]](η[X := true])

In this definition, η is the environment η : X → B. It assigns a truth value to every
variable in the BES. The evaluation function [[]] : E × η → η creates an environment
from a BES.

18

The problem of checking a modal µ-formula on a mixed Kripke structure can be
converted to the problem of solving a Boolean Equation System. This transformation
is explained in Mader (1997). Given a model M , a state t an a modal µ formula φ, we
define a BES with the following property:

([[E]](η))(Xt) = true ⇐⇒ M, t |= σX.φ

Where σ denotes a fixed-point classifier (either µ or ν). This equation states that the
formula holds for the initial state if the first equation in the corresponding BES is
true. This BES can be found using the following procedure: For every sub-formula
σX.φ for each state s ∈ S we create an equation. The order of the equations in the
BES should be the same as the order of the fixed-points in the modal µ-formula. For
every sub-formula σX.φ for each state s ∈ S we create the following equation:

σXs = RHS(s, φ)

We want that RHS(s, φ) iff s |= φ. This is achieved using the following definition of
RHS.

Definition 4.3 (RHS).

RHS(t, true) = true

RHS(t, false) = false

RHS(t, p) =

{
true if p ∈ L(t)

false otherwise

RHS(t,X) = Xt

RHS(t, µX.f) = Xt

RHS(t, νX.f) = Xt

RHS(t, f ∧ g) = RHS(t, f) ∧RHS(t, g)

RHS(t, f ∨ g) = RHS(t, f) ∨RHS(t, g)

RHS(t, [a]f) =
∧

v∈S
{RHS(v, f) | t→a v}

RHS(t, 〈a〉 f) =
∨

v∈S
{RHS(v, f) | t→a v}

This results in a BES that expresses the same as the model and the formula.

Example 4.4 (Converting a model checking problem to a BES). Consider the follow-
ing model.

qA

B

p

C
a

a a

a
b

Figure 7.: A simple model

And the formula µX.(νY.p∧〈b〉Y)∨〈a〉X. This formula expresses that there is a finite
path of a’s that leads to an infinite path of b’s where p holds. Let’s look at how this

19

model and formula can be converted to a BES.

µXA = RHS(A, (νY.p ∧ 〈b〉Y) ∨ 〈a〉X) = YA ∨XB

µXB = RHS(B, (νY.p ∧ 〈b〉Y) ∨ 〈a〉X) = YB ∨XC

µXC = RHS(C, (νY.p ∧ 〈b〉Y) ∨ 〈a〉X) = YC ∨ (XA ∨XB)

νYA = RHS(A, p ∧ 〈b〉Y) = false

νYB = RHS(B, p ∧ 〈b〉Y) = false

νYC = RHS(C, p ∧ 〈b〉Y) = true ∧ YC = true

As we can see, there is an equation for every node (A, B and C) for every fixed point
(µX and νY). The order of the fixed-points is preserved, µX comes before νY . The
expansion has been done by applying the rules of definition 4.3.

4.1. Algorithms for checking BES

Gauss elimination is the standard algorithm that is used to solve a BES. This algorithm
resembles the Gauss elimination technique that can be used to solve systems of linear
equations. In Gauss elimination, equations are evaluated starting at the last equation
and working back to the first. If a solution is found for an equation, i.e. it evaluates
to the value true or false, the variable is substituted by the truth value in all other
equations. If no solution is found for an equation, the expression is substituted to
equations at the left. When a variable occurs in its defining equation, it is assigned a
truth value value due to the fixed-point. Because of this, and the substitution to the
left, there will eventually be an equation that is assigned a truth value.

Example 4.5 (Solving a BES using Gauss Elimination). We will show how a BES is
solved using Gauss elimination. Consider the following Boolean Equation System.

νX1 = X1 ∧X3

µX2 = X1 ∧X2

νX3 = X4

µX4 = X3

iteration → 0 1 2 3 4
X1 = X1 ∧X3 * X1 * true
X2 = X1 ∧X2 * * false *
X3 = X4 X3 true * *
X4 = X3 X3 true * *

Table 1.: Gauss elimination

Table 1 shows how the BES is solved by Gauss elimination. In iteration 1 the expres-
sion for X4 does not evaluate to a truth value, therefore every occurrence of X4 is
substituted by the expression (X3). In iteration 2 the variable X3 is evaluated to true
because of the greatest fixed-point (ν). After that, all occurrences of X3 are eliminated
by substituting them with true. In iteration 3 X2 is set to false because of the least

20

fixed-point (µ), because of that X1 ∧X2 evaluates to false. In iteration 4 X1 is set to
true because of the greatest fixed-point (ν).

The complexity of this algorithm lies in the iterative substitutions. In the worst case
all equations are substituted. Because the substitutions are repeated, the size of the
Boolean equations can grow exponentially. Assume that a Boolean equation system
consists of n variables and equations, then the size of the Boolean expressions created
by the algorithm is bound by 2n. Therefore the worst case complexity is O(2n). This
result can be found in Mader (1997).

4.2. Applying ACO to solve a BES

In our implementation ants assign truth value to every variable. To implement this we
need an algorithm to compute the correctness of an assignment of variables. However,
there is no simple algorithm to check if a solution candidate for a BES is correct.
Therefore we use a heuristic to evaluate solution candidates.

As an initial heuristic, we check how many equations are correct. An equation being
correct means that the evaluation of the expression matches the value assigned to the
variable. The quality of the solution candidate is the amount of equations that are
correct. As a second heuristic we assign more weight to variables that have the value
of their fixed-point. So false for least-fixed-points and true for greatest-fixed-points. We
will build multiple heuristics for evaluating solution candidates and test which works
best. We will try to build heuristics for the evaluation function that when optimized
lead to the correct solutions. For the ants we wish to search more promising areas of
the search space first and that reduce the search space. Reducing the search space can
be done by letting an ant not generate solution candidates that are obviously wrong.

In order test how well Ant Colony Optimization can be applied to BES we create
an implementation. This implementation is using our framework (see section 3.2), the
implementation can be found in appendix B. To do this we need to implement the
interfaces specified by the framework. They are SolutionCandidate, Ant, Evaluator
and Terrain. The solution of a Boolean Equation System is the assignment of a truth
value to every variable so that all equations are satisfied. A SolutionCandidate for
a BES is an assignment of a truth value to every variable. This is implemented by an
array of Booleans, one for every variable. A solution component is the assignment of
a variable to true or false. We will have pheromone on the assignment of a variable
to true and pheromone on the assignment of a variable to false. For all variables
pheromone is deposited on the truth values that these variables are assigned by the
solution candidate. A Terrain for a BES consists of two arrays of pheromone levels.
One is for the assignment of variables to true. The other is for the assignment of
variables to false. Obviously, every variable can be assigned only one truth value at
a time. The implementation of Ant and Evaluator are specific per heuristic. Their
implementation will be discussed in the corresponding sections.

In order to verify the performance of our algorithm we compare the assignment of
variables to a known correct algorithm. With this information we have an absolute
measure of correctness. The percentage of incorrect variables is used as a measure of
performance. We have obtained this information by modifying the bessolve tool of the
mcrl2 toolset.

21

4.3. Initial version

The first version uses an ant that chooses purely based on pheromone levels. The
same weighted probability is used as for boolean satisfiability, see section 2.5. With
the exception that it assigns variables where the equation is a truth value to that
truth value. So for νX1 = false, the ant will always choose X1 = false. The heuristic
that is used to rate solution candidates only checks if the individual equations are
correct. This means that evaluating the Boolean expression yields the same value as
was assigned to that variable.

Figure 8.: Initial optimization (domineering/player 2 can win)

Figure 8 shows how this algorithm performs on an example test. The reference is
the fraction of variables that are chosen incorrectly. The value of the heuristic is the
fraction of variables that do not match with their expressions. From this figure we
can see that the algorithm does indeed optimize, and that minimizing the heuristic
leads to an objectively better solution. We also see two problems with this result,
the first being that the algorithm does not get all equations correct, the second is
that there is a gap between the heuristic and the actual solution, so that even if the
algorithm gets all equations correct, it still does not have the correct solution for the
BES. The first problem can be reduced by reducing the search space. This is described
in section 4.5. It is also possible that this behaviour can be fixed by implementing
a so-called catastrophe. This means to reset a random number of variables if it is
detected that the algorithm is stuck in a local minimum.

4.4. Hyperparameters

We ran an experiment to choose good hyperparameters. For a description of hyperpa-
rameters for ant colony optimization we refer the reader to section 3.1. Figure 9 shows
the results of an experiment to choose the number of ants and evaporation coefficient.
The experiment was run on (domineering(4x4)/player 2 can win), which has about
2000 variables. The figure shows the quality of the best solution per generation. It
is interesting to see that a higher value of ρ, which means less evaporation, causes
a slower optimization process. Better results are obtained when more ants are used,

22

Figure 9.: Hyper parameter optimization (domineering/player 2 can win)

but optimization is slower. The hypothesis is that better results are obtained because
with more ants more different solution candidates are explored, which prevents pre-
mature optimization. On different test sets similar results were obtained, although
the difference between the settings was less noticeable on tests with fewer variables.
From this experiment we see that a ρ of 0.9 and 100 ants are good settings for the
hyperparameters. They will be used for the rest of the experiments.

4.5. Reducing the search space

In order to improve performance we want to prevent the ants from generating solution
candidates that are obviously false. To do this, we let the ant do a simple analysis.
By doing this we reduce the search space. A simple analysis that can be done for
BES is this. If a variable X is assigned false by an ant then all variables for which
X occurs in a conjunction in their defining equation will evaluate to false as well.
The same goes for variables that are assigned true and occur in dis-junctions. The
ant that implements this behaviour is DependencyAnalyzingBesAnt (listing 17). For
a BES with n variables it assigns variables starting at Xn−1 and ending at X0. When
it assigns a variable Xi it checks for all equations X0 to Xi−1 if the equation evaluates
to a truth value using the analysis described above and assigns the variable if that is
the case.

To illustrate this, consider the following example.

Example 4.6 (Simple dependencies in a BES).

σX0 = X1 ∧ ϕ1

σX1 = ϕ2

In this example if X1 is assigned false, then it is impossible that assigning X0 to true
leads to a correct solution.

23

experiment variables heuristic % assignments incorrect
dining3 seq nodeadlock 93 0.003 0.3
dining3 seq nostarvation 372 0.002 0.6
domineering(4x4) player2 can win 2443 0.008 17.1
domineering(4x4) nodeadlock 2443 0.004 92.7
dining3 seq nostuffing 553 0.033 84.9

Table 2.: Results of DependencyAnalyzingBesAnt.

(a) Initial ant (b) Dependency analyzing ant

Figure 10.: Convergence speed of dependency analysis ant

As can be seen from table 2 this analysis caused a lower number of variable to be
assigned the wrong value in the solution. The heuristic is the fraction of equations
for which the evaluated expression has a different truth value than was assigned to
the variable. In figure 10 we compare the performance of ants that do dependency
analysis against ants that do not, the test we used is (domineering player2 can win).
From figure 10 we see that dependency analysis increases convergence speed. This is
because fewer wrong solutions could be created. This version introduced a new problem
as now some variables have a large effect on the correctness of the solution, so picking
them wrong initially leads to a large error.

4.6. Important fixed-point classifiers

Currently fixed-point classifiers are not taken into account when evaluating solution
candidates. This prevents us from finding the correct solution in general. An idea is to
analyze for which equations the fixed-points are important, and for which they are not
important and assign the important fixed-points first, and check if they are assigned
a value corresponding to their fixed-point and not care about other fixed-points. To
explain what important fixed-points are, consider the following example:

Example 4.7. Consider the following BES.

µX0 = X0

νX1 = X2

νX2 = X1

First we introduce the rank of a variable. The rank of a variable is the position where

24

it is defined. Variables that are defined more to the left have a higher rank. In this
example X0 has a higher rank then X2.

In this example X0 and X1 are marked important, but X2 is not. The value of X2

depends on the truth values of variables with a lower rank, because all variables in its
expression (X1) have a lower rank than the variable. Because of this, the fixed-point
classifier of X2 does not affect the solution.

It is always the case that if all variables of an equation for a variable have a rank
lower than that variable that the expression will be substituted and therefore the
fixed-point will have no effect.

For important fixed-points we reward solutions that have a truth value correspond-
ing to the fixed-point. This is done to imitate the behaviour of the fixed-points, when a
fixed-point is evaluated first a solution is sought with the truth value corresponding to
the fixed-point. Finding important fixed-points is simple as we only have to compare
the rank of the variable of the highest rank in the expression with the rank of the vari-
able that is defined by the expression. Unfortunately this does not solve the problem
of opposite optimization. The heuristic is implemented in ImportantFPBesEvaluator,
listing 20.

experiment heuristic value % assignments incorrect
dining3 seq nodeadlock -0.605 90.3
dining3 seq nostarvation -0.543 17.1
domineering(4x4) player2 can win -0.604 60.7
domineering(4x4) nodeadlock -0.728 12.1
dining3 seq nostuffing -0.262 28.3

Table 3.: Results of ImportantFPBesEvaluator.

As we can see from table 3 this heuristic reverses which tests are not fixed correctly.
This heuristic does not solve the problem of which fixed-points are used. There are
instances where it works, but in most problems there are fixed-points that are impor-
tant according to the heuristic but that do not actually have an effect. To explain this,
we consider the following example.

Example 4.8 (Important fixed-points are not always important). Consider the fol-
lowing BES.

µX0 = X0

νX1 = X2

νX2 = X0

Here X1 is considered an important fixed-point by the heuristic. When we solve this
BES we see that the fixed-point classifier of X1 does not have an effect (X2 gets
substituted by X0).

A better estimation of which fixed-points are important can be made by doing all
substitutions and keeping track of the rank of the highest variable. The approach of
finding important fixed-points is not enough to take the behavior of the fixed-point
classifiers into account.

25

4.7. Fundamental problem

While running the experiment dining3 ns nostuffing we noticed that our initial algo-
rithm optimizes to the opposite value. This behaviour can be seen in Figure 11a. This
is a more extreme case of the problem already noted in the previous section. This hap-
pens in — but is not limited to — cases where the Boolean expressions contain mainly
conjunctions. When the ants start searching, solutions with more variables false are
considered more correct.

(a) Opposite optimization (b) Fixed with bias

Figure 11.: Results from the initial version

In order to solve the problem, we tried to start searching at a specific place, based
on the problem structure. For example if the problem contains a lot of conjunctions,
we start assigning variables to true. This is done by using a bias in the ants when
selecting truth values for the variables. The updated probability of setting variable ℓ
to true becomes:

p(ℓ) =
τ(ℓ) + b

τ(ℓ) + τ̄(ℓ)

Where b is the amount of bias. This is a parameter that changes how likely an ant is to
set l to true. This can solve the problem for specific instances, the result with a positive
bias can be found in Figure 11b. However, this introduces a new problem as it will also
set variables to true when the dominating fixed points are µ, in which case variables
should be assigned false first. We conclude that the bias should be based on the fixed
point classifier. The ant that implements this behaviour is FPHeuristicBesAnt, listing
18.

experiment heuristic % variables incorrect
dining3 seq nodeadlock 0.121 89.2
dining3 seq nostarvation 0.075 9.5
domineering(4x4) player2 can win 0.086 24.9
domineering(4x4) nodeadlock 0.048 14.2
dining3 seq nostuffing 0.160 39.3

Table 4.: Results of FPHeuristicBesAnt.

We ran this version on a number of test cases, the result can be found in table 4. The
problem with this solution, and all previous solutions is that the heuristic cannot reason

26

which fixed-points will be used. To illustrate this, consider the following example.

Example 4.9 (Determining which fixed-points are used).

νX1 = X1 ∨X3

µX2 = X1 ∧X2

νX3 = X4

µX4 = X3

There are multiple possible assignments for which the equations are correct if the fixed-
point classifiers are not taken into account. For example X1 = false, X2 = false, X3 =
false, X4 = false and X1 = true, X2 = true, X3 = false, X4 = false are solutions.

In example 4.9 the fixed-points for X3 and X2 have an effect but the heuristics cannot
detect that the solutions are wrong because of the fixed-points.

Consider the following Boolean equation system:

νX1 = X2 ∧ φ1

µX2 = X3 ∧ φ2

νX3 = X1

(4)

Where φ1 and φ2 are Boolean expressions, what they are exactly is not relevant for
this example.

X1

X2

X3

φ1

φ2

Figure 12.: Dependency graph for 4

The dependency graph for this BES can be found in figure 12. We see that there is a
circular dependency, in this case the fixed-point of the variable with the lowest rank,
X1, will be used. However, due to φ1 and φ2 we cannot check if the fixed-point is
satisfied or not. It could be that they also include circular dependencies. A heuristic
that only checks circular dependencies and does not take other dependencies into
account does not solve the problem of knowing which fixed-points have an effect.

This could be solved if the heuristic could have a dependency graph of which vari-
ables depend on each other. In that way it is possible to detect if an assignment satisfies
the fixed-points. The problem with such a heuristic is that it has to solve the BES,
because of that it makes more sense to solve the BES directly once instead of solving
it many times in order to check solution candidates.

27

4.8. Final version

The heuristic that awards variables that are assigned according to their fixed-point in
combination with the dependency analyzing ant is the best algorithm we have come
up with. It is fundamentally flawed as the previous section made clear, this can be seen
in the results. We will now give a brief overview of its performance, discuss problems
and possible solutions.

problem correct solution ACO solution steady state
dining cs nodeadlock true true 20 cycles, 14% error
dining cs nostarvation false false 25 cycles, 2% error
dining cs nostuffing true true 200 cycles, 11% error

Table 5.: Benchmark on dining philosophers testset (50-200 variables)

problem correct solution ACO solution steady state
player2 can win true true 200 cycles, 18% error
nodeadlock true false 200 cycles, 76% error

Table 6.: Benchmark on 4x4 domineering (2000 variables)

As can be seen in table 5 and table 6 the performance of this algorithm is not good,
it does get a correct solution, but with a high error rate. Which means that it is not
correctly solving the problem.

problem local fixed-point (s) ACO (s)
dining cs nodeadlock 0.15 0.1 - 1.8
dining cs nostarvation 0.04 0.1 - 1.3
dining cs nostuffing 1.8 19.3
domineering(4x4) player2 0.69 336
domineering(4x4) nodeadlock 0.5 337

Table 7.: Running time for the benchmarks

For this final version we will list the performance. We compare against the local fixed-
point algorithm, which is an optimized version of gauss elimination. As can be seen in
table 7 the local fixed-point algorithm is much faster than ant colony optimization on
these benchmarks.

4.9. Conclusion

As we have seen in the previous section, also the final algorithm performs poorly.
This is a fundamental problem because the ant colony optimization algorithm does
not know which fixed-point classifiers have an effect. Without knowing this it is not
possible to construct a correct solution. There was no heuristic that we could come up
with that targeted this specifically. As far as we know the only method to determine
which fixed-point classifiers are used is to solve the BES. Checking Boolean equations
using a dependency analysis does not solve the problem.

28

We must conclude that we have not been able to create an algorithm that correctly
solves a BES based on ACO. The fundamental problem is that the complexity of
checking if a solution candidate is indeed a solution is equal to the complexity of solving
the problem and therefore infeasible. And we have not found a reliable heuristic that
can be used to find a correct solution. In general the complexity of checking a solution
candidate should be low, which is not possible for this problem. This indicates that
this problem fundamentally does not lend itself to the application of ACO.

29

5. Parity Games

We are interested to see if ACO can be applied to solve a parity game, that is to find
the winner of the game. This section starts with an explanation of parity games. After
that we will explain how we applied ACO and our results.

The model checking problem can be converted to the problem of solving a parity
game, as shown by (Mader, 1997). A parity game is a two player game that is played
on a graph. In this graph vertices are connected using directed edges. Every vertex has
an owner and a priority. The game is played by two players, odd and even. A token is
placed on the initial vertex of the play and the owner of the vertex moves the token to
a next vertex that is connected by an edge. The goal of the players is to let the parity
of the lowest priority that occurs infinitely often be of same parity as they have, so
player odd wins if the lowest priority that occurs infinitely often is odd and vice versa
for even. The winner of a vertex is who wins the play starting at that vertex if both
players play optimally. For the model checking problem we want to know who wins a
vertex, which is called the initial vertex.

Definition 5.1 (Parity game). A parity game G = (V0, V1, E, p) consists of a set of
vertices owned by player even V0, a set of vertices owned by player odd V1, disjoint
of V0, an edge relation E : V ×V , where V = V0∪V1 and a priority function p : V → N
that assigns a priority to every vertex.

The winner is determined by the parity of the lowest priority occurring infinitely
often in a play induced by optimal strategies of odd and even. A winning strategy
is independent of the history of the game (where the token has been), this is called
memoryless determinacy and was proved to hold for parity games by (Emerson &
Jutla, 1991) and in parallel by (Mostowski, 1991). This means that a strategy picks an
edge to play to independent of where the token came from or what happened before.
Because we can assume that strategies are independent of history when playing the
game this play will always end up in a loop that is travelled infinitely often.

We will show an example to make the concepts of a strategy and winning more
clear. In figure 13 the even player is denoted by a diamond and the odd player by a

1

even

3

odd

2

4 1

(a) Parity Game

1

3 2

4 1

(b) Strategies

1

3 2

4 1

(c) Winners

Figure 13.: Example of a parity game

square. The even player is blue and the odd player is red. The strategies are denoted
in figure 13b by colored lines which indicate that the player will always choose to play
to that edge. Notice that there are two strategies, one for odd (in red) and one for
even (in blue). In figure 13c the vertices that are won by odd and even are denoted.
Winning a vertex means winning the game that is played when the token is initially

30

placed at that vertex.

5.1. Parity Game from a BES

The model checking problem for the modal µ-calculus is equivalent to the problem of
solving a parity game, see (Stirling, 1995). A Boolean equation system can be converted
to a parity game, see (Mader, 1997). This transformation can be done in linear time.
The transformation works on a BES in normal form. In normal form each equation
is purely conjunctive or disjunctive and does not contain truth values. Converting a
BES to normal form is straightforward. To transform a BES to a parity game a BES
is first divided into blocks with the same fixed-point operator. Every block is assigned
a priority. The priority of the first block is 1 if the first block is µ and 0 if it is ν. Every
next block has a priority one higher than the previous block. For every equation in
a block, a vertex is created in the parity game with the priority of the block. If the
equation is a conjunction odd owns the vertex, otherwise even owns the vertex. For
every variable that occurs in the expression for an equation, create an outgoing edge
to the vertex of the equation that defines that variable.

5.2. Ant Colony Optimization for Parity Games

The implementation of Ant Colony Optimization for parity games differs from the
approach we used for BES. A solution for a parity game is the answer who wins the
game. Who wins can be supported by providing an optimal strategy for both players,
in this case the proof should be that these strategies are indeed optimal (the best
possible strategy). Who wins can also be supported by a division of all vertices into a
set where even wins and a set where odd wins. Both approaches are computationally
hard to validate, so letting ants generate strategies or winning sets will not work.

Instead we let the ants play the game. An ant plays for both players at the same
time. An ant starts at the initial vertex and moves from vertex to vertex while it
remembers the choice it made for every vertex. After a finite number of moves the ant
will encounter a vertex that it has already visited. When this happens there is a loop.
Notice that the loop the ants find will be repeated because the ant always makes the
same choice for every vertex. This loop means that a winner can be determined (by
determining the parity of the lowest priority in the loop). The movement of the token
is called a play, so an ant makes a play. To which vertex an ant moves is determined
by a weigted random choices based on the amount of pheromones on the edges.

When a winner is determined for a play, every ’good’ choice will be rewarded and
every ’bad’ choice penalized. This means that if even wins, all choices even made are
rewarded, because they led to a win. Odds choices will be penalized because they led
to a loss for odd. Reversed if odd wins. After a number of generations the solution is
retrieved. For determining the winner, the edge with most pheromone on it is chosen
for every vertex. The winner of the play that is generated in this manner is reported
as the winner of the game. The idea of the algorithm is to let the ants try to find an
optimal strategy for the players. We will illustrate this algorithm with an example.

Example 5.2 (ACO for parity games). Consider the parity game in figure 14. In this
game edge labels represent the pheromone levels on the edges. The higher the amount
of pheromone is, the more likely it is that an ant will choose that edge. The initial
vertex is indicated by the incoming arrow.

There is an ant that makes the play displayed in figure 15a. In this figure solid

31

5

3 2

4 1

0.1 0.1

0.1
0.1

0.1

0.1
0.1

Figure 14.: A parity game with pheromone

5

3 2

4 1

(a) A random play

5

3 2

4 1

+0.05 +0.05

−0.05 −0.05

+0.05

(b) Updated pheromone levels

Figure 15.: A play and the resulting pheromone updates

edges are in part of the play, the dashed edges are not in the play. This play ends
with a loop in the vertex with priority 4, which means that even will win this play.
When evaluating this play pheromone is deposited or removed. Every choice that even
made will be rewarded and every choice that odd made will be penalized. The updated
pheromones on this game can be found in figure 15b.

The final solution is retrieved by creating a strategy by always picking the edge
with the highest pheromone level. A play is created using this strategy. The winner
of this play is the winner of the game. The idea behind this is that the pheromone
levels mark the optimal strategies. When we determine the winner of the terrain in
figure 15b we start at the initial vertex (priority 1), then move to the vertex with most
pheromone on the edge, the vertex with priority 2, from there we move to the vertex
with priority 5, then to the vertex with priority 3 and then back to the initial vertex.
The lowest priority in this loop is 1, which is odd, so odd wins this game.

We have implemented this algorithm. The implementation can be found in appendix
C.

5.3. Hyperparameters

If an ant makes a good choice for a player, that choice is rewarded a certain amount of
pheromone. If an ant makes a bad choice (leading to a loss) the amount of pheromone
is decreased. If too much pheromone is removed, then an edge on a good path could
be marked bad on only one example, which would lead to instability. If not enough
pheromone is removed a bad solution would not be marked as a bad solution and ants
will continue to create that solution. We are interested in what amount of pheromone
to remove and how that affects the stability of the algorithm. We use a grid search to

32

determine the best amount of pheromone decrease. We ran experiments on a games
with different sizes in amount of vertices and amount of edges per vertex. We found
that removing about a third of the pheromone on a loss gives the best result. This is
quite a big penalty.

0.5 0.6 0.7 0.8 0.9 1

0.7

0.75

0.8

0.85

0.9

0.95

evaporation

retainment %

co
rr

ec
tn

es
s

%

Figure 16.: Evaporation levels

We ran an experiment to determine the amount of pheromone evaporation. The re-
sult of this experiment can be found in figure 16. We see that there is a peak after
the penalty for losing a game (which is 0.65). We evaporate 25% of the pheromone
from previous generations. This relative high amount indicates that there is a large
movement in the generated solutions and pheromone levels per generation.

We want to know how much ants we need to get a good exploration of the game. For
a game with a lot of vertices and edges more ants are required than for a small game.
Intuitively it makes sense to make the amount of ants linear to the amount of edges in
the game. This is because the amount of edges has a big influence on the number of
possible plays. We use a relation between the number of edges and the number of ants
as a rule of thumb. In order to test the choice of hyper parameter, we test on random
games with varying size and varying edge density. We find that using edge count

9 ants
the algorithm gives the most correct answers on tests.

5.4. Random Against Best

To improve strategies faster we let the ants play a random strategy for one player
against the current best strategy of the other player. Instead of letting ants use random
choices for odd and even. The random strategy is created by a weighted random choice
based on pheromone values on the edges. The best strategy is created by choosing the
vertex with most pheromone on its edge. This is regarded as the best strategy because
the edges with the most pheromone on them were part of the best plays.

If the player that made random choices wins, its strategy is better and we should
reward this strategy. If the random strategy loses we penalize this strategy in order
to not try it again. For a play created by an ant in this way only the choices of the
random strategy are rewarded or penalized. The rationale behind this is that mediocre

33

strategies will not be enforced and exploring better strategies is enforced.
It solves a problem that occurs when ants make random choices for both players.

There it is possible that the choices of one player get rewarded because it won a play,
while that win was not due to its beneficial choices but due to the bad choices of the
opponent. If this happens, other ants will follow this bad path which prevents them
from following a better path that they would have followed otherwise.

We ran the same experiments we used in section 5.3 to find hyperparameters for
this version. We found that a 25% penalty for a bad strategy works best combined
with 30% evaporation per generation. The amount of ants required is equal to the
amount of ants for the original version.

We are interested how this biased version compares to the original version. We have
a benchmark of randomly generated parity games. We run the algorithm 6 times on
every benchmark and average the result. We use the recursive algorithm (Zielonka,
1998) as reference. Results from this experiment can be found in table 8. Because

experiment aco random vs best reference
steadygame(10,2) 0.0 (0.03s) 0.0 (0.03s) false (0.06s)
steadygame(100,2) 0.0 (0.53s) 0.33 (0.29s) false (0.01s)
steadygame(1000,2) 0.5 (5.93s) 0.33 (5.77s) false (0.02s)
steadygame(10,10) 1.0 (0.01s) 1.0 (0.01s) true (0.01s)
steadygame(100,10) 1.0 (0.20s) 1.0 (0.51s) true (0.02s)
steadygame(1000,10) 0.0 (75.56s) 0.33 (109.48s) false (0.02s)

Table 8.: Results of random against best

the results from ACO are averaged the result is a number between 0 and 1, with 0
indicating that all runs returned false and 1 indicating that all runs returned true.
The version with biased ants performed slightly worse than the original version.

A problem with random against best is the start of the algorithm. Then the best
strategy is random for both players and we have the problem that we wanted to solve,
namely that we do not know if a win is due to good strategy of the winner or a
bad strategy of the loser. A drawback of this approach is that ants only deposit or
remove pheromone on edges for one player, this makes the ants a little less effective.
In conclusion, this way of generating strategies is not much better than the original
approach. It is very interesting to apply this approach to strategy improvement. In
strategy improvement the best strategy for the opponent player is known. Instead
of playing against a best strategy that might not be a good strategy there the best
strategy is an optimal strategy. We will research this in section 6.4.

5.5. Game Exploration

There are games in which one player can always force a play to a certain vertex. The
algorithm does not create plays that reach this vertex because the chance to reach it
randomly is very small. We constructed some games to test the algorithms ability to
explore games. The games we constructed are hard to solve via random plays because
there is a large chance to create wrong plays. An example of a constructed game can
be found in Figure 17. In this game every vertex has an edge to every previous vertex
and only one option to go to a next vertex. Consider what happens if ants try to create
plays. If an ant has already visited a vertex, a loop is created when it visits that vertex
again. Almost all edges create a loop, which reduces the chance to create a play that

34

1

A

1

B

1

C

1

D

0

X

Figure 17.: Constructed game

visits vertex X. In this example the chance of playing to vertex X is:

1× 1

2
× 1

3
× 1

4

On versions of this game with more vertices it is virtually impossible for the ants to
find the correct solution (vertex X).

If a loop is constructed the ant knows which player will win. This information can be
used to solve the problem on the testcase mentioned above. This is done by restricting
the choices of the ant on a given vertex. If the ant can go to vertices where the current
player (owner of the current vertex) wins, it will choose between these vertices. If the
ant can go to vertices where the current player loses, it will not consider these vertices,
except if all options are losing.

In order to implement this an ant needs to keep track of the priorities of the vertices
that it has already visited. When an ant keeps track of the priorities of all visited
vertices, the winner can be calculated by iterating over the priorities that are in the
loop (priorities between the vertex that is visited again and the end of the path). This
is inefficient as it requires a calculation at every potential loop. We want to be able
to lookup if a loop is winning or losing in O(n) because we do this lookup for every
vertex we can go to at every step. This can be done by keeping track of the lowest loop
value of the visited vertices instead of the priorities of the visited vertices. When we
visit a vertex we store its priority as the lowest loop value. (Because if at that point a
loop to itself is found, that is the only, and thus lowest, priority in the loop.) For all
previous vertices we update their lowest loop value to the minimum of their current
value and the priority of the new vertex. This is valid because if a loop is formed by
visiting a vertex that is already visited again. Then its priority is the minimum of all
vertices in between. We can optimize this algorithm by the lowest priorities from back
to front and stopping the update if we find a lowest priority lower or equal to our
priority. This is because when that occurs all vertices before that vertex necessarily
have an equal or lower value. Pseudocode for this algorithm can be found in listing 4.

This behaviour is implemented in ExploringPgAnt, listing 25. It finds the correct
solution on our artificial test sets. Table 9 shows results from test on versions of the

experiment number of edges aco solution exploring aco solution
explorationgame(10) 46 false, 0.04s true, 0.08s
explorationgame(50) 1226 false, 1.31s true, 8.36s
explorationgame(100) 4951 false, 33.84s true, 65.86s

Table 9.: Results of ACO on steady games.

testcase of figure 17. In this table we see that our modification works and leads the
ants to find the correct solution, it also requires a lot more computation time as it has
to check which edges lead to a loss.

35

Listing 4: Keeping track of lowest priority

vertices = List()

priorities = List()

fun visit_vertex(v) {

vertices.add(v)

priorities.add(v.priority)

for (index, priority in priorities.reversed) {

if (priority > v.priority) {

priorities[index] = v.priority

} else {

// All values before have a lower value.

break;
}

}

}

// Get the winning priority if v is visited.

fun get_winning_priority(v) {

if (vertices.contains(v)) {

return priorities[vertices.indexOf(v)]

} else { // No loop, no winning priority

return null
}

}

The question is if this behaviour leads to better results on other games. This depends
on how hard it is to find the solution by making random choices. In the example we
created the chance to find the solution by making random choices is almost zero when
more vertices are added to the chain. We suspected that this approach would improve
performance. We have not found games in practice in which exploring ants performed
significantly better than the standard ants.

5.6. Conclusion

We have created an implementation of ACO to solve parity games that gives a correct
solution in most instances. The biggest challenge in this implementation was explo-
ration, forcing that ants would explore more options. This algorithm is moderately
useful, using Strategy Improvement (see next section) the correctness of a solution
can be checked in a reasonable time. The algorithm is much slower then the recursive
algorithm or small progress measures, which we used to benchmark against. This can
partially be explained by our inefficient implementation. It indicates that ACO applied
to parity games in this manner does not scale better then other algorithms. This is
because the number of possible strategies increases exponentially with the game size
(in number of vertices and edges). ACO is slowed down because it has to create a lot
more plays and because the plays are generally longer. Other algorithms that do not
create strategies but instead search for dominions do not suffer from this blowup in
amount of possible strategies.

36

5.7. Future Work

Currently the reward is binary, either even wins and its choices are rewarded or odd
wins and its choices are rewarded. It would be interesting to see if making the reward
continuous and based on more properties of the winning play can increase the conver-
gence speed. It would also be interesting to research what heuristics the ants could use
when generating plays. Currently plays are constructed purely based on pheromone
levels. Therefore it would be interesting to research if for example preferring playing
to a vertex with parity of the current player, or owned by the current player improves
the strategy.

37

6. Strategy Improvement

Strategy improvement (SI), (Vöge & Jurdziński, 2000), is an algorithm for solving
parity games. In this algorithm one player is improving its strategy. She does this
based on an optimal response strategy created by her opponent. From the strategy of
the optimizing player and the response strategy of the opponent an order on vertices
is created. This order represents the value of that vertex as seen by the optimizing
player, i.e. how good playing to that vertex is. The optimizing player will improve its
strategy by playing to vertices with a higher value then the vertices it currently plays
to, with respect to this order. After the optimizing player has updated her strategy,
her opponent will respond with a new strategy that is optimal for the opponent. This
will update the order on the vertices. This process is repeated until a point where
no more changes can be made that improve with respect to the vertex order (a fixed
point). When this happens the strategy of the optimizing player is optimal. With these
two optimal strategies we can subsequently compute the winner of the parity game,
thus solving the parity game.

We want to know if ACO can help to speed up strategy improvement. We think it
can be applied to decide how to improve a strategy. In the previous chapter we have
applied ACO to parity games. The problem of that approach was that it was uncertain
if the solution was correct. When helping SI with ACO this problem does not occur
because SI will always find the correct solution. In the next part of this section we
will explain the Strategy Improvement algorithm in more detail. After that we explain
why applying ACO in this algorithm is a good idea. After that we will show how we
applied ACO and the results thereof.

6.1. Strategy Improvement Algorithm

Let us start with explaining what a strategy is, and how we can use it. Recall that the
vertices of a parity game are divided between two players, odd (1) and even (0) (see
section 5). The set of vertices owned by even is V0 and the set of vertices owned by odd
is V1. We define a strategy for player i ∈ {0, 1} as a function σi : Vi → V . For every
vertex owned by player i the strategy will give the vertex she will play to. If we have
a strategy for both players we can determine who wins which vertices. We can do this
by starting in a vertex and playing according to the strategies until a loop is found.
The parity of lowest priority in that loop determines who wins the play. A strategy
is a winning strategy for a vertex v if it is winning all possible plays that start in v
against all possible opponent strategies.

We introduce a generic strategy improvement algorithm. After that we show the
implementation of this generic algorithm that we have used. The ideas explained below
are from (Vöge & Jurdziński, 2000). In order for a player to optimize its strategy we use
a pre-order > on strategies for this player. This pre-order should satisfy the following
two postulates:

Postulate 6.1. Given a finite set of strategies. There is a maximum element in this
set with regard to the pre-order >.

Postulate 6.2. If σi is the maximum element with regard to >, it is winning for every
vertex where player i can win.

The maximum winning strategy can be found using an order that satisfies the postu-

38

lates listed above. Now we define a function improve : (Vi → V)→ (Vi → V). It takes
a strategy and it returns a strategy. This function intends to improve a strategy, it
should satisfy:

Postulate 6.3. If σi is not a maximum element given the preorder >, then
improve(σi) > σi.

Postulate 6.4. If σi is a maximum element given the preorder >, then improve(σi) =
σi.

Listing 5: Strategy improvement algorithm

strategy_improvement() {

sigma = some_strategy_for(some player)

do {

sigma’ = sigma

sigma = improve(sigma)

} while (sigma’ != sigma)

}

We can use the algorithm in listing 5 to find the solution to a parity game. We will
refer to an iteration of the do-while loop as an iteration of the strategy improvement
algorithm. In an iteration an ordering on vertices is created and the strategy of the
optimizing player is improved with respect to this valuation.

Theorem 6.5. If a pre-order > on strategies satisfies postulates 6.1 and 6.2, and a
function improve satisfies postulates 6.3 and 6.4, then the algorithm in listing 5 is a
correct algorithm to find the solution for a parity game.

It is easy to see, based on the monotonicity of the improve function, that applying
improve recursively will result in a fixed point. The value of this fixed-point is maxi-
mum for the ordering. An element that is maximum is an optimal strategy because of
postulate 6.2. A proof for the correctness of this algorithm can be found in (Vöge &
Jurdziński, 2000).

We will now describe how we can create a pre-order on strategies and an improve
function. We start with defining a pre-order on strategies. This pre-order is based on
an order on vertices. We introduce a total order on vertices �.

We will define a pre-order on strategies based on an order on vertices �. To do this
we will introduce some definitions. We will do this first. To define �, some data to
indicate the value of a vertex given a pair of strategies is used. This data is called a
play profile. In order to define a play profile we introduce an order:

Definition 6.6 (Reward order). The reward order <rw is an order on vertices based
on the priority of the vertex. Recall that p : V → N gives the priority for a vertex. In
the equation below we use v instead of p(v) for readability.

v <rw w ⇐⇒

even(v) ∧ even(w) ∧ v > w ∨
odd(v) ∧ odd(w) ∧ v < w ∨
odd(v) ∧ even(w)

The reward for a vertex is the value of the vertex as seen by the optimizing player.
Vertices with the highest relevance and the parity of the optimizing player have the
highest reward, but players with the highest relevance and parity of the opponent

39

player have the lowest reward. An example of this order is:

1 <rw 3 <rw 5 <rw 7 <rw 6 <rw 4 <rw 2 <rw 0

Definition 6.7 (Play Profile). A play profile for a play π is a triple of:

(1) The vertex with the lowest priority that is visited infinitely often uπ (the winning
vertex).

(2) The set of vertices Pπ that have a lower priority than uπ and occur in the play.
(3) The number of vertices eπ visited before the first visit of uπ.

5

A

0

B

1

C

4 D

4

E

2 F

3

G

Figure 18.: Parity game

Example 6.8 (Play profiles for a simple game). We create a play profile for vertex A
of figure 18. The winning vertex for a play starting in vertex A is vertex F. Nodes
with a lower priority than the winner (vertex F) between A and F are vertex B and
vertex C. The distance from vertex A to vertex F is 5. The play profile for A becomes
(F, {A,B}, 5).

We create a play profile for vertex D of figure 18. The winning vertex for a play
starting in vertex D is vertex F. There are no nodes with a lower priority than the
winner between D and F. The distance from vertex D to vertex F is 2. The play profile
for D becomes (F, {}, 2).

A play profile can be constructed for a vertex by fixing the strategy for one player
(the optimizing player) and using an optimal counter-strategy for the other player.
This optimal counter-strategy is easy to compute if the strategy is fixed, see (Vöge
& Jurdziński, 2000) for an algorithm. A valuation is a function that assigns a play
profile to every vertex based on strategies for both players. It is defined as φ : (Vi →
V)× (V1−i → V)× V → D, where D is the set of play profiles. For every vertex v the
strategies σi and σ1−i induce a play πv,σi,σ1−i

. This play gives a play profile for the
vertex v.

We examine how to compare the play profiles in order to improve the strategy for
the optimizing player. To do this we first introduce the reward order on sets.

Definition 6.9 (Reward order on sets <rw).

min(P,Q) = argmin{p(v) | v ∈ P 4 2Q}

2symmetric difference X △ Y = (X ∪ Y) \ (X ∩ Y)

40

P <rw Q ⇐⇒

{
min(P,Q) ∈ P ∧ odd(min(P,Q)) ∨
min(P,Q) ∈ Q ∧ even(min(P,Q))

This allows us to compare play profiles.

Definition 6.10 (Order on play profiles).

(u, P, e) � (v,Q, f) ⇐⇒

u <rw v ∨
u = v ∧ P <rw Q ∨
u = v ∧ P = Q ∧ (odd(u) ∧ e < f) ∨
u = v ∧ P = Q ∧ (even(u) ∧ e > f)

This comparison consists of three parts. A vertex is positive for a player if it has the
same parity as that player and is negative for that player otherwise.

• The vertex u has a lower reward than v. (We prefer plays that we win, or are
more likely to win.)
• The element with the highest relevance in (P 4 Q) is in P and is negative for

the optimizing player or is in Q and is positive. (Maybe a loop could be found
from this vertex.)
• e is higher than f if u is a positive vertex for the optimizing player (The optimizing

player wins this play), if u is a negative vertex then if e is lower than f.

Example 6.11 (Comparison of play values). Given play profiles A = (3, {0, 1}, 2)
and B = (3, {0, 2}, 4), let us determine if A � B. The first elements are equal (3 = 3)
so we compare the second elements. The symmetric difference of {0, 1} and {0, 2}
is {1, 2}. The minimum of this set is 1, which is in A and is odd. This means that
{0, 1} <rw {0, 2} (see definition 6.9) and therefore A � B.

Definition 6.12 (pre-order on strategies based on vertex values). We define a pre-
order on strategies where a strategy σ′ has a higher value than σ if for all vertices
vi ∈ Vi it holds that σ(vi) � σ′(vi), i.e every choice in the strategy has a higher or
equal value with respect to �.

The intuition behind � is that if the optimizing player is more likely to win from that
vertex, its value is higher. The order � can be constructed from a given strategy σi for
player i and an optimal strategy of its opponent σ1−i,opt. This completes the pre-order
on strategies that was defined in definition 6.12.

Now that we have a pre-order on strategies we define a version of improve that
works with this pre-order. The function improve does two things. It creates a
play profile for every vertex. This is done by creating optimal response strategy
optimalResponse(game, sigma). With two strategies a play profile can be created
for every vertex. It improves the strategy based on the play profiles of the valuation
switch(valuation, sigma). At the start of this section we have seen that we improve
a strategy if, for every vertex owned by the optimizing player we choose a vertex with
a play profile that is higher then the current play profile. Pseudocode for the improve
function can be found in listing 6. An optimal response strategy for a strategy σi can
be found in the following way. First a sub-game is created by removing all edges of
player i except the edges in σi. In this sub-game loops are searched for in increasing
reward (1,3, ...2,0). The set of vertices that can reach the loop is calculated, the at-

41

Listing 6: Improve function

improve(game, sigma) {

valuation = valuation(game, sigma)

return switch(valuation , sigma)

}

valuation(game, sigma) {

counterStrategy = optimalResponse(game, sigma)

return valuation(game, sigma, counterStrategy)

}

tractor set. All vertices leaving the attractor or the loop are removed. When this is
done all edges of player 1− i form the strategy for 1− i.

Definition 6.13 (Switching policy). The function that selects a vertex from the set
of feasible vertices for every vertex in the strategy is called the switching policy. The
piece of code that implements switch(valuation, sigma).

The standard strategy improvement algorithm will select the node with the largest
play profile, but there are often more vertices that have a higher play profile and that
we can switch to. Choosing the largest play profile is not always the best choice.

6.2. A motivation for a different switching policy

There is a simple example where SI uses much more iterations than required. Notably,
in this example, using ACO the correct solution can be generated immediately. The
example can be found in figure 19. Other examples with a similar structure can easily
be created, the pattern is that the priorities are all odd and decrease except for the
last priority, which should be even. Consider the example in figure 19. This example

7

A

5

B

3

C

1

D

0

X

Figure 19.: Hard game for SI

consists of a game and a strategy. In this example the strategy of even is denoted by
a solid line and edges that are not in even’s strategy by a dotted line. Remember that
a play profile is a triple containing the vertex v with the lowest priority, vertices that
have a lower priority than v and are visited before v and the amount of vertices visited
before v. Remember that φ : (Vi → V) × (V1−i → V) × V → D is a function that

42

assigns play profiles to vertices. The play profiles under this strategy for even are:

φ(A) = (4, {}, 3)
φ(B) = (4, {}, 2)
φ(C) = (4, {}, 1)
φ(D) = (4, {}, 0)
φ(X) = (5, {}, 0)

Now let us look at how even would improve its strategy under the default switching
policy (picking the vertex with the largest play profile).

• Vertex A: There is only one option, no change.
• Vertex B: The options are A, B and C. Node A has the highest value (it has the

largest distance to a vertex where even loses).
• Vertex C: The options are B, C and D. Node B has the highest value so it will

be selected.
• Vertex D: The options are C, D and X. Node X has the highest value (even wins)

so it will be selected.

Vertex X is owned by odd and therefore the strategy of even does not decide where
vertex X should play to.

7

A

5

B

3

C

1

D

0

X

Figure 20.: Strategy after one update

The strategy after the update can be found in figure 20. We see that the new strategy
is better than the previous strategy because even wins vertex D and X instead of
vertex X. However, it could have been much better if a different switching policy was
used. Per iteration only one node extra will play to node X.

6.3. Applying ACO

We research three approaches of applying ACO in Strategy Improvement (section 6.1).
The first approach is to let ACO generate an initial strategy and use SI to correct the
strategy. The second approach is to use ACO to update the strategy with the constraint
that it can only increase valuations. In this approach we always find a correct solution,
the question is if using ACO helps us to find the answer faster. The third approach is
to use ACO to update the strategy with valuations as guidance. Because this approach
does not guarantee that play values are increased, the algorithm might not terminate.
We prevent this by adding a final stage where the ants do not operate anymore. The
implementation of these approaches can be found in appendix D.

We expect that this problem suits ACO very well because: If the algorithm makes
wrong choices the impact is limited: It can slow down the process of finding a solution,
but SI will still find the correct solution. The problem of finding optimal choices is
a hard problem that has to be executed many times in the run of the algorithm.

43

Applying an optimal algorithm to it would slacken the algorithm because of the extra
computation time. Using a naive method like taking a random switch might lead to
slow optimization or exponential behaviour. ACO could be a good middle ground
between these two approaches, we will research if it is. In this section we will first
explain how we used ACO, and after that we will show results of this research.

The first approach is to let ACO generate an initial strategy which SI uses. We let
the ants generate a strategy for the parity game in the same manner as explained in
section 5. Ants will create plays, deposit pheromone on choices that the winner made
and remove pheromone on choices that the loser made. In the final terrain, for every
vertex the successor with the highest amount of pheromone is included in the strategy.
This is how an initial strategy is generated. The Strategy Improvement algorithm uses
this strategy and uses the default switching policy. We want ACO to prefer strategies
with a higher valuation. To do this we add a bonus for the priority of the winning
node in a play, the lower the priority is, the higher the bonus. With ran experiments
to compare initial strategies created by ants versus random initial strategies. The

experiment name random (iterations, time) ACO (iterations, time)
steadygame(10,2) (2.8, 0.009s) (2.0, 0.010s)
steadygame(100,2) (6.0, 0.028s) (6.0, 0.040s)
steadygame(1000,2) (22.6, 1.109s) (18.4, 1.033s)
steadygame(10,5) (3.0, 0.001s) (3.2, 0.002s)
steadygame(100,5) (6.0, 0.003s) (6.2, 0.020s)
steadygame(1000,5) (10.6, 0.161s) (10.0, 1.207s)
steadygame(10,10) (3.2, 0.000s) (2.8, 0.001s)
steadygame(100,10) (5.6, 0.005s) (4.6, 0.019s)
steadygame(1000,10) (10.6, 0.246s) (10.2, 2.444s)

Table 10.: Results of ACO generating an initial strategy.

experiments found in table 10 are experiments on games with a different number
vertices and average out-degree. The steadygame games are semi random games, they
are generated using tools from pgsolver (Friedmann & Lange, 2019). They are in
general hard to optimize for and therefore make good benchmarks. The out-degree
is the average number of edges originating from a vertex. The first parameter is the
number of vertices, the second is the average out-degree. We ran five instances per
experiment. The running time and the amount of iterations in the table are an average
of the results of the instances. We used ACO with 20 generations in order to create the
initial strategy. We have verified that this is long enough to create a good solution. We
measure the speed of finding a solution in the amount of iterations that are required
to find a solution, and by the computation time that is used, including initialization
time.

We can see that there is not much improvement in using ACO to generate an initial
strategy. In cases where SI needs a lot of iterations to get a result, ACO seems to
speed up the algorithm. It might be that the strategy created by the ants is not
similar enough to the strategy with a maximal valuation.

Another approach that we tested is to use ACO to update the strategy. This is
motivated by the problem with SI as described in section 6.2. Recall that in every
iteration of the strategy improvement algorithm a valuation is created for the current
strategy and an improved strategy is created based on this valuation. A strategy is
improved when choices are made to vertices with higher play profiles. There is often

44

more than one vertex with a higher play value. We use ACO to determine which of
these options to choose.

We do this by running ACO for several generations and using the terrain to make
choices. We select the vertex with the highest pheromone level. We set a budget for
the number of generations that ACO can run. Every iteration of SI, ACO uses half of
its budget. This happens until the budget is gone, then the default switching policy
is used again. This implementation makes the amount of computation time for ACO
regulatable. We save and restore the terrain created by ACO between iterations to
improve performance. In ACO information from previous generations is used to create
better solutions in the current generation. Therefore we want to retain the information
from previous generation. We illustrate how we applied ACO by an example.

7

A

3

C

φ = (1, {}, 1)

5

B

φ = (3, {}, 1)

1

D

φ = (0, {}, 1)

0

E

φ = (2, {}, 1)

(a) Valuation and current strategy

7

A

3

C

5

B

1

D

0

E

(b) Terrain created by ACO

Figure 21.: Choices for a switching policy

Example 6.14 (Choices in a switching policy). In figure 21a we see a vertex, vertex A,
from which a choice has to be made in order to improve the strategy. The current
strategy is to play to vertex B. The valid choices from this vertex are vertices with
an equal or higher play profile, they are B, D and E. We use ACO to make a decision
between vertices. We let ACO run and generate a terrain, after that we choose the
vertex with the most pheromone on it. In figure 21b the edge thickness indicates the
amount of pheromone on that edge. In this example we would choose vertex B. Notice
that this is different from the default switching policy. The default switching policy
selects the vertex with the highest play profile, which is vertex D in this case.

In all tests we ran, ACO performed worse than the default switching policy. We think
that this might be because the ants do not create the same strategy as the strategy
SI searches for. Another problem might be that the strategy that ACO generates is
better but in the current valuation SI cannot see that.

This motivates us to check what happens if we allow changing the strategy to a
lower valuation. We are interested if ignoring the rule to increase valuations might
lead to finding a solution quicker. If this is done there is a chance that the algorithm
might not terminate. However, this problem is mitigated because we set a generation
budget for ACO and if that budget runs out the default switching policy will be used
again. We have implemented the following rules for updating the strategy:

45

• If the choice created by ACO is a clear choice (pheromone is 1.5 times than the
average) use that.
• Otherwise take the vertex with the highest valuation.

We ran experiments using the same benchmarks as we used when generating an initial
strategy. We compare the performance of the switching policy where violations are
allowed against the default switching policy.

experiment default (iterations, time) ant (iterations, time)
steadygame(100,5) (6.4, 0.005s) (12.8, 0.576s)
steadygame(1000,5) (11.2, 0.244s) (16.6, 49.372s)
steadygame(100,2) (6.2, 0.011s) (11.6, 0.567s)
steadygame(1000,2) (18.8, 0.930s) (28.0, 23.785s)
steadygame(10,10) (4.0, 0.001s) (9.4, 0.019s)
steadygame(10,2) (2.4, 0.011s) (6.6, 0.038s)
steadygame(100,10) (5.6, 0.004s) (11.2, 0.898s)
steadygame(10,5) (3.0, 0.001s) (8.4, 0.014s)
steadygame(1000,10) (9.8, 0.180s) (16.6, 86.920s)

Table 11.: Results of SI with violations

In table 11 we see that in all cases ACO makes SI perform worse. When the budget
of ACO has run out SI starts to correct the strategy again using the default switching
policy.

At this moment there is no interaction between the terrain created by the ants
and the valuation. The advantage of linking the terrain and the valuations might be
that ants do not have to explore the whole game, but only the part of interest. The
weakness of a combination is that valuations are only based on the current strategy
for the optimizing player. So it does not represent the ”real” value of a vertex for a
player. Because of this weakness we have chosen not to link the terrain and valuations.

A practical advantage of using ACO as a switching policy is that it can run in
parallel to the rest of the algorithm. In particular it can be run in parallel to the
creation of a valuation. So that, with proper tuning, it can be implemented in a way
so that it does not make the improvement steps take more computation time.

We repeat every run three times to get a reasonable sample of the performance of
the algorithm, which varies because SI is initialized with a random strategy by default
and because ACO is stochastic. In all benchmarks ACO used 200 ants and ran for 160
generations to come up with an initial strategy and ran for 40 generations per strategy
improvement iteration. With these values ACO is able to create a reasonable strategy
for most games.

6.4. Biased ants with valuations

We tried to apply a version of random against best ants for the strategy improvement
algorithm. The idea is to use valuations to create optimal plays for player odd. When
an ant creates a play it will select an edge based on pheromone levels for player even.
For player odd it will select the edge leading to the vertex with the lowest play profile,
this is because a play profile indicates the value of a vertex for player even, player odd
wants to minimize that value.

This approach was not fruitful. An hypotesis is that this is because the strategy of

46

odd is only optimal against the current strategy of even. It might be that it is a very
bad strategy if even would make different choices.

6.5. Results on simple games

We illustrate the ACO can work as a switching policy by applying it to simple games.
The first benchmark that we used are versions of the game that was shown in section
6.2.

experiment number of vertices default iterations ACO iterations
hard(10) 11 11,10,11 1,1,0
hard(100) 101 101,100,101 1,0,1
hard(500) 1001 498,501,501 1,1,1

Table 12.: Results of ACO on SI hard game.

As can be seen from the results in table 12 this game is rather simple for ACO as a
switching policy. This indicates that ACO could be used as a switching policy, but
this test case is simple so we try a more difficult test case.

The next benchmark is a benchmark on which strategy improvement algorithms
should show exponential behaviour.

experiment number of vertices default iterations ACO iterations
cunningham(2) 19 4,6,5 3,1,2
cunningham(10) 91 10,6,8 9,3,3
cunningham(20) 181 20,24,23 22,23,23
cunningham(100) 901 103,99,103 101,103,103

Table 13.: Results of ACO on other SI hard games.

It is interesting to see that the advantage of using ACO decreases when the problem size
increases. On this benchmark we found that using ACO did not improve performance
a lot.

In our research on ACO for parity games we used parity games that were created
from the model checking problem. This conversion created parity games where there
were no choices for even. Because of this they are always solvable in one iteration and
therefore do not make a good benchmark.

6.6. Conclusion

Thus far, when applying ACO to Strategy Improvement, there is not much improve-
ment with respect to the standard algorithm. In simple examples we found that ACO
outperformed the standard strategy improvement algorithm. Therefore we assume that
using ACO might also improve performance in general. It could be that we have not
done sufficient tuning so that the choices of the ants are on average worse than choos-
ing the maximum play profile. It could also be the case that the strategy created by
ACO is very different from the strategy created by SI. The only conclusion that we
can make here is that an implementation of ACO for parity games can be used as a
switching policy for Strategy Improvement.

47

The problem with a negative result on an algorithm that requires tuning is that it is
hard to determine the cause of the negative result. The idea that it might have worked
if some extra tuning or technique was used remains until we find a fundamental flaw.
We are in this state, we have a negative result but have not found any reason why this
approach is fundamentally incorrect.

6.7. Future Work

One future direction of research is to see if ACO for parity games can be adjusted
to search for strategies which are similar to strategies the SI searches for (strategies
with a maximum valuation). There are multiple points that made the application of
ACO as a switching policy hard to debug. The first being that for large games it is
hard to if what ACO does is correct, so if the advice given by ACO is valid. There are
variants of ACO which require less tuning, applying one of these might help prevent
the problems we found. The second is that it is unclear what happens if the strategy
found by ACO uses paths of decreasing valuation. In this case the switching policy
makes a choice that is neiter good according to the valuation nor good according to
the ants, it might be interesting to research how this problem can be solved and if it
makes a large impact on performance. Another approach might be to reset pheromone
levels if the playprofile clearly indicates that a path leads to a bad play.

48

7. Conclusion

The research question we started with was if ACO could be used to solve the model
checking problem. We have researched this by applying ACO to Boolean equation
systems and parity games, which are both problems to which the model checking
problem can be transformed. We start this conclusion by evaluating the results we
got for ACO for BES, parity games and in strategy improvement. After that we will
discuss what we learned about implementing and using ACO.

We started our research with applying ACO to solving BES. ACO applied to BES
is not particularly useful as it gives a correct solution with a very low probability.
While for the BES problem we want to be certain that the solution is correct. The
fundamental problem is that no heuristic could be found that takes the fixed points
into account correctly and is computationally easy enough to be executed very often
during the optimization process. In hindsight we should have noticed this problem
earlier and concluded that applying ACO to BES directly was not possible. For this
part of the research we conclude that ACO cannot be applied to solve BES directly.
We have learned that it is crucial to have a valuation function that does not give false
positives, i.e. it should not mark a solution correct that is incorrect.

After that we applied ACO to parity games. For parity games ACO seems to find
the correct solution of a parity game with a high probability. Having an algorithm
that finds the correct solution of a parity game most of the time is not what we want
because we cannot verify if a solution is correct. We conclude that ACO can be applied
to solve parity games but that it is not reliable and therefore not useful in practice. We
have learned that we can apply ACO in a creative manner. The problem of a parity
game is to find optimal strategies, but we were able to apply ACO by letting ants
generate plays instead of optimal strategies.

Finally we used ACO as part of a strategy improvement algorithm. When ACO is
applied as a switching policy in strategy improvement it is able to prevent exponential
behaviour of the strategy improvement algorithm on some test sets. However it does
not improve performance on more complex problems. We have not been able to fully
debug the problem so we cannot conclude whether this result indicates a fundamental
flaw or a problem that is solvable.

It is interesting to see how the structure of the problems affects the effectiveness
of ACO for that problem. For BES it was not possible to create a good heuristic and
therefore the algorithm could not find good solutions. For parity games there was a
good heuristic (the winner) that determined which plays were good and bad. In this
way the correct solution was frequently found but the problem of incorrect solutions
remained. In the application of ACO in strategy improvement the problem of finding
a wrong solution was resolved because the valuations restricts the choices of the ants
to good choices.

The answer to the main research question is that we do not know. No research has
previously been done in this area. We have tried different approaches and learned how
to apply ACO and gained a better understanding of the problems derived from the
model checking problem. We know that applying it directly to BES does not work.
That applying it to parity games can work. But we have not found an answer to the
most interesting and promising question. Namely if ACO can be used to improve the
strategy improvement algorithm. More research has to be done in this area.

49

8. Future work

As stated in the conclusion this was the first research in this area. There are promising
ways to continue research. The question if ACO or other optimization algorithms can
be used to improve strategy improvement remains an open question. It might be
interesting to research ACO or other optimization methods for the switching policy
of strategy improvement. In general, the most promising way of applying ACO for
model checking is as a part of an algorithm that is correct, so that a correct solution
is always found. Strategy improvement is one such example but there might be more
algorithms in which ACO can be used.

50

References

Blum, C., & Dorigo, M. (2004, April). The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34 (2), 1161-
1172.

Calude, C. S., Jain, S., Khoussainov, B., Li, W., & Stephan, F. (2020). Deciding parity games
in quasi-polynomial time. SIAM Journal on Computing .

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Systems, Man, and Cybernetics, Part B , 26 (1), 29–41.

Emerson, E. A., & Jutla, C. S. (1991). Tree automata, mu-calculus and determinacy (extended
abstract). In 32nd annual symposium on foundations of computer science, san juan, puerto
rico, 1-4 october 1991 (pp. 368–377). IEEE Computer Society.

Emerson, E. A., & Lei, C.-L. (1986). Model checking in the propositional mu-calculus.
Friedmann, O., & Lange, M. (2019). pgsolver. https://github.com/tcsprojects/pgsolver.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). freeman San

Francisco.
Glover, F. (1989). Tabu searchpart i. ORSA Journal on computing , 1 (3), 190–206.
Groote, J. F., & Mousavi, M. R. (2014). Modeling and analysis of communicating systems..
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

science, 220 (4598), 671–680.
Kozen, D. (1982). Results on the propositional mu-calculus, in ninth international colloquium

on automata. Languages, and Programming, pp, 348–359.
Kripke, S. A. (1963). Semantical considerations on modal logic. Acta Philosophica Fennica,

16 (1963), 83–94.
Mader, A. (1997). Verification of modal properties using boolean equation systems. Edition

versal 8.
Moritz, D., & Springer, M. (2010). Solving satisfiability with ant colony optimization and

genetic algorithms.
Mostowski, A. W. (1991). Games with forbidden positions (Tech. Rep.). University of Gdansk.
Put, E. v. d. (2019). Thesis implementation. https://gitlab.com/nouwaarom/thesis.
Stirling, C. (1995). Local model checking games. In International conference on concurrency

theory (pp. 1–11).
Vander Meer, R. K., Breed, M. D., Winston, M., & Espelie, K. E. (2019). Pheromone com-

munication in social insects: ants, wasps, bees, and termites. CRC Press.
Vöge, J., & Jurdziński, M. (2000). A discrete strategy improvement algorithm for solving

parity games. In International conference on computer aided verification (pp. 202–215).
Zielonka, W. (1998). Infinite games on finitely coloured graphs with applications to automata

on infinite trees. Theoretical Computer Science, 200 (1-2), 135–183.

51

https://github.com/tcsprojects/pgsolver
https://gitlab.com/nouwaarom/thesis

Appendix A. Framework

Listing 7: Ant Colony Optimizer

package framework

import arrow.core.None

import arrow.core.Some

import arrow.core.getOrElse

import kotlin.math.ceil

class AntColonyOptimizer(

private val numberOfAnts: Int,
private val maxNumberOfCycles: Int,
val ant: Ant,

val evaluator: Evaluator ,

private val evaporationCoef: Double = 0.5,

// The fraction of ants that are allowed to deposit pheromone.

private val pheromoneFraction: Double = 0.25

) {

init {

require(numberOfAnts > 0) { "Cannot␣execute␣with␣less␣than␣1␣ant" }

}

lateinit var terrain: Terrain

private set

val quality: DoubleArray = DoubleArray(maxNumberOfCycles)

var bestQuality: Double = Double.MAX_VALUE
var bestSolution: SolutionCandidate? = null

var listener: GenerationDoneListener? = null
set(deb) {

deb?.initialize(maxNumberOfCycles)

field = deb

}

// Returns (isSolutionCorrect , foundInGeneration , bestSolution)

fun execute(initialTerrain: Terrain, _forGenerations: Int = maxNumberOfCycles):

Triple<Boolean, Int, SolutionCandidate?> {

terrain = initialTerrain

for (generation in 0 until maxNumberOfCycles) {

val result = runGeneration(generation)

if (result.first) {

return Triple(result.first, generation , result.second)

}

//println("generation: $generation")

}

return Triple(false, _forGenerations - 1, null)
}

private fun runGeneration(generation: Int): Pair<Boolean, SolutionCandidate?> {

val evaluations = (0 until numberOfAnts).map {

val solution = ant.search(terrain).copy()

val evalOption = evaluator.evaluate(solution)

52

if (evalOption.isDefined()) {

val eval = evalOption.getOrElse { throw Exception("Critical␣error") }

if (eval.isCorrect) {

return Pair(true, solution)

}

Some(Pair(solution, eval))

} else {

None

}

}.filter { x -> x.isDefined() }.map {

x -> x.getOrElse { throw Exception("Critical␣error") }

}

terrain.evaporate(evaporationCoef)

val sorted = evaluations.sortedBy { x -> x.second.quality }

sorted.take(ceil(numberOfAnts * pheromoneFraction).toInt())

.forEach { e -> terrain.addPheromoneFrom(e.second.terrain) }

val qualityOfBestSolution = sorted.first().second.quality

quality[generation] = qualityOfBestSolution

listener?.onGenerationDone(sorted.first().first, qualityOfBestSolution , terrain)

if (qualityOfBestSolution < bestQuality) {

bestQuality = qualityOfBestSolution

bestSolution = sorted.first().first

}

return Pair(false, sorted.first().first)

}

}

Listing 8: Ant

package framework

interface Ant {

fun search(terrain: Terrain): SolutionCandidate

}

Listing 9: Evaluator

package framework

import arrow.core.Option

interface Evaluator {

fun evaluate(solutionCandidate: SolutionCandidate): Option<Evaluation >

}

data class Evaluation(val quality: Double, val terrain: Terrain, val isCorrect: Boolean)

Listing 10: Terrain

package framework

/**

* The terrain holds the pheromone for a problem.

53

*/

interface Terrain {

fun evaporate(rho: Double)

fun addPheromoneFrom(terrain: Terrain)

fun copy(): Terrain

}

Listing 11: SolutionComponent

package framework

interface SolutionComponent {

}

Listing 12: SolutionCandidate

package framework

interface SolutionCandidate {

fun copy(): SolutionCandidate

}

Appendix B. Implementation for BES

Listing 13: BooleanEquationSystem

package bes

data class BooleanEquationSystem(val equations: List<BooleanEquation >) {

override fun toString(): String =

"BooleanEquationSystem:\n" + equations.map { e -> e.toString() }.joinToString("\n")

val numberOfVariables = equations.size

fun clone(): BooleanEquationSystem {

return BooleanEquationSystem(equations.map { e -> e.clone() })

}

}

data class BooleanEquation(

val variable: Int,
val fixedPointOperator: FixedPointOperator ,

var booleanExpression: BooleanExpression

) {

fun isTruthValue(): Boolean {

return booleanExpression is TruthValue

}

fun clone(): BooleanEquation {

return BooleanEquation(variable , fixedPointOperator , booleanExpression)

}

override fun toString(): String {

return fixedPointOperator.value + "␣X" + variable +

"␣=␣" + booleanExpression.toString()

}

}

54

sealed class BooleanExpression

data class TruthValue(val value: Boolean) : BooleanExpression() {

fun negate(): TruthValue {

return TruthValue(!value)

}

override fun toString(): String {

return value.toString()

}

}

data class Variable(val name: Int) : BooleanExpression() {

override fun toString(): String {

return "X%d".format(name)

}

}

data class Not(val body: BooleanExpression) : BooleanExpression()

data class And(

val left: BooleanExpression ,

val right: BooleanExpression

) : BooleanExpression()

data class Or(

val left: BooleanExpression ,

val right: BooleanExpression

) : BooleanExpression()

data class Impl(

val left: BooleanExpression ,

val right: BooleanExpression

) : BooleanExpression()

enum class FixedPointOperator(val value: String) {

MU("mu"), NU("nu")

}

Listing 14: SatTerrain

package sat

import framework.Terrain

import java.lang.IllegalArgumentException

import kotlin.random.Random

class SatTerrain : Terrain {

val positivePheromone: Array<Double>
val negativePheromone: Array<Double>

constructor(numberOfVariables: Int) {

positivePheromone = Array(numberOfVariables) { 0.0 }

negativePheromone = Array(numberOfVariables) { 0.0 }

}

constructor(positive: Array<Double>, negative: Array<Double >) {

positivePheromone = positive

negativePheromone = negative

55

}

override fun copy(): Terrain {

return SatTerrain(positivePheromone.copyOf(), negativePheromone.copyOf())

}

fun addPheromone(variable: Int, value: Boolean, amount: Double) {

if (true == value) {

positivePheromone.set(variable, amount)

} else {

negativePheromone.set(variable, amount)

}

}

companion object {

fun createRandom(numberOfVariables: Int): SatTerrain {

val terrain = SatTerrain(numberOfVariables)

terrain.positivePheromone.forEachIndexed { i, _ ->

terrain.positivePheromone.set(i, Random.nextDouble())

}

terrain.negativePheromone.forEachIndexed { i, _ ->

terrain.negativePheromone.set(i, Random.nextDouble())

}

return terrain

}

}

override fun evaporate(rho: Double) {

positivePheromone.forEachIndexed { i, x -> positivePheromone.set(i, x * rho) }

negativePheromone.forEachIndexed { i, x -> negativePheromone.set(i, x * rho) }

}

override fun addPheromoneFrom(terrain: Terrain) {

if (terrain !is SatTerrain) {

throw IllegalArgumentException("Can␣only␣add␣SatEnvironment")

}

positivePheromone.forEachIndexed { i, x ->

positivePheromone.set(i, x + terrain.positivePheromone.get(i))
}

negativePheromone.forEachIndexed { i, x ->

negativePheromone.set(i, x + terrain.negativePheromone.get(i))
}

}

override fun toString(): String {

return positivePheromone.joinToString { x ->

"%.3f".format(x)

} + "\n" + negativePheromone.joinToString { x ->

"%.3f".format(x)

}

}

}

Listing 15: Assignment (Solution Candidate)

package bes

56

import framework.SolutionCandidate

data class Assignment(val assignedVariables: BooleanArray) : SolutionCandidate {

override fun copy(): SolutionCandidate {

return Assignment(assignedVariables)

}

override fun toString(): String {

return "Assignment(" +

assignedVariables.mapIndexed { i, l -> "X$i:$l" }.joinToString("␣") +

")"

}

fun debugCompareTo(other: Assignment , context: BooleanEquationSystem) {

val isCorrect = (assignedVariables zip other.assignedVariables).mapIndexed { i, p ->

if (p.first != p.second) {

println("Variable␣X$i,␣should␣have␣been␣${p.first},␣but␣was␣${p.second}")

println("In␣equation␣${context.equations[i]}")

}

p.first == p.second

}.fold(true) { acc, b -> acc && b }

if (isCorrect) {

println("The␣assignments␣are␣equal.")

}

}

}

Listing 16: BesAnt

package bes

import framework.Ant

import framework.Terrain

import sat.SatTerrain

import kotlin.random.Random

class BesAnt(val bes: BooleanEquationSystem): Ant {

override fun search(terrain: Terrain): Assignment {

require(terrain is SatTerrain) { "Only␣works␣on␣Sat␣or␣Bes" }

val pheromones = terrain.positivePheromone zip terrain.negativePheromone

val assignment = (pheromones).mapIndexed { i, x ->

// If the equation is a truth value, assign it.

if (bes.equations[i].isTruthValue()) {

(bes.equations[i].booleanExpression as TruthValue).value

} else {

Random.nextDouble(x.first + x.second) < x.first

}

}.toBooleanArray()

return Assignment(assignment)

}

}

Listing 17: DependencyAnalyzingBesAnt

package bes

import framework.Ant

57

import framework.Terrain

import sat.SatTerrain

import kotlin.random.Random

/**

* When assigning a variable check which equations are set by that assignments.

*/

class DependencyAnalyzingBesAnt(val bes: BooleanEquationSystem) : Ant {

private val trueDependencies: HashMap<Int, List<Int>> = HashMap()

private val falseDependencies: HashMap<Int, List<Int>> = HashMap()

init {

bes.equations.reversed().forEach { e ->

trueDependencies[e.variable] =

findTrueDependencies(e.variable , bes.equations.take(e.variable))

falseDependencies[e.variable] =

findFalseDependencies(e.variable, bes.equations.take(e.variable))

}

}

private fun findTrueDependencies(variable: Int, bes: List<BooleanEquation >): List<Int> {

return bes.filter { be ->

findTrueDependency(variable , be.booleanExpression)

}.map { be -> be.variable }

}

// This is a very simple analysis , this might be made a bit more complex.

private fun findTrueDependency(variable: Int, be: BooleanExpression): Boolean {

return when (be) {

is Or -> {

findTrueDependency(variable, be.left) ||

findTrueDependency(variable, be.right)

}

is Variable -> (be.name == variable)

is Impl -> false
is TruthValue -> false
is And -> false
is Not -> false

}

}

private fun findFalseDependencies(variable: Int, bes: List<BooleanEquation >): List<Int> {

return bes.filter { be ->

findFalseDependency(variable, be.booleanExpression)

}.map { be -> be.variable }

}

// This is a very simple analysis , this might be made a bit more complex.

private fun findFalseDependency(variable: Int, be: BooleanExpression): Boolean {

return when (be) {

is And -> {

findFalseDependency(variable, be.left) ||

findFalseDependency(variable, be.right)

}

is Variable -> (be.name == variable)

is Impl -> false
is TruthValue -> false
is Or -> false
is Not -> false

58

}

}

override fun search(terrain: Terrain): Assignment {

require(terrain is SatTerrain) { "Only␣works␣on␣Sat␣or␣Bes" }

val assignment = MutableList(bes.numberOfVariables) { Bit.Undefined }

(0 until bes.numberOfVariables).reversed().forEach assign@{ i ->

if (Bit.Undefined != assignment[i]) {

return@assign

}

val equation = bes.equations[i]

if (equation.isTruthValue()) {

assignment[i] = fromBool((equation.booleanExpression as TruthValue).value)

} else {

val total = terrain.positivePheromone[i] + terrain.negativePheromone[i]

val assigned = Random.nextDouble(total) < terrain.positivePheromone[i]

if (assigned) {

assignment[i] = Bit.True

if (trueDependencies[i]?.isNotEmpty() == true) {

trueDependencies[i]?.forEach { d -> assignment[d] = Bit.True }

}

} else {

assignment[i] = Bit.False

if (falseDependencies[i]?.isNotEmpty() == true) {

falseDependencies[i]?.forEach { d -> assignment[d] = Bit.False }

}

}

}

}

return Assignment(assignment.map { v -> Bit.True == v }.toBooleanArray())

}

}

Listing 18: FPHeuristicBesAnt

package bes

import framework.Ant

import framework.Terrain

import sat.SatTerrain

import util.config.AntConfig

import kotlin.random.Random

class FPHeuristicBesAnt(

val bes: BooleanEquationSystem ,

val config: AntConfig.FpHeuristicBesAntConfig

) : Ant {

override fun search(terrain: Terrain): Assignment {

require(terrain is SatTerrain) { "Only␣works␣on␣Sat␣or␣Bes" }

val pheromone = terrain.positivePheromone zip terrain.negativePheromone

val assignment = pheromone.mapIndexed { i, x ->

val equation = bes.equations[i]

// For a truth value it does not make sense to assign it a different value.

if (equation.isTruthValue()) {

(equation.booleanExpression as TruthValue).value

59

} else {

// Prefer the corresponding fixed point.

val offset = if (equation.fixedPointOperator == FixedPointOperator.MU)

config.fpPenalty

else
config.fpReward

// Prefer setting a variable to true.

Random.nextDouble(x.first + x.second) < x.first + offset

}

}.toBooleanArray()

return Assignment(assignment)

}

}

Listing 19: InitialBesEvaluator

package bes

import arrow.core.Option

import arrow.core.Some

import framework.Evaluation

import framework.Evaluator

import framework.SolutionCandidate

import sat.SatTerrain

class InitialBesEvaluator(val bes: BooleanEquationSystem) : Evaluator {

override fun evaluate(solutionCandidate: SolutionCandidate): Option<Evaluation > {

require(solutionCandidate is Assignment) { "Can␣only␣evaluate␣Assignment." }

val quality = checkBooleanEquations(bes, solutionCandidate)

.fold(0.0) { acc, b -> acc + b.second }

val pairs = (solutionCandidate.assignedVariables).map { l ->

if (l) Pair(quality, 0.0) else Pair(0.0, quality)

}

// The quality if the percentage of correct equations

return Some(

Evaluation(

(bes.numberOfVariables - quality) / bes.numberOfVariables ,

SatTerrain(

pairs.map { p -> p.first }.toTypedArray(),

pairs.map { p -> p.second }.toTypedArray()

),

quality >= bes.numberOfVariables

)

)

}

}

Listing 20: ImportantFPBesEvaluator

package bes

import arrow.core.Option

import arrow.core.Some

import framework.Evaluation

import framework.Evaluator

import framework.SolutionCandidate

60

import sat.SatTerrain

class ImportantFPBesEvaluator(val bes: BooleanEquationSystem) : Evaluator {

private val importantFPs: MutableList <Int> = mutableListOf()

init {

bes.equations.forEach { e ->

if (isImportant(e.variable , e.booleanExpression)) {

importantFPs.add(e.variable)

}

}

}

private fun isImportant(variable: Int, booleanExpression: BooleanExpression): Boolean {

return when (booleanExpression) {

is Variable -> booleanExpression.name >= variable

is TruthValue -> false
is And -> {

isImportant(variable, booleanExpression.left) ||

isImportant(variable, booleanExpression.right)

}

is Or -> {

isImportant(variable, booleanExpression.left) ||

isImportant(variable, booleanExpression.right)

}

is Impl -> {

isImportant(variable, booleanExpression.left) ||

isImportant(variable, booleanExpression.right)

}

is Not -> isImportant(variable, booleanExpression.body)

}

}

override fun evaluate(solutionCandidate: SolutionCandidate): Option<Evaluation > {

require(solutionCandidate is Assignment) { "Can␣only␣evaluate␣Assignment." }

val assignedLiterals = solutionCandidate.assignedVariables

val quality = checkBooleanEquations(bes, solutionCandidate).fold(0.0) { acc, b ->

val correctFPReward =

if (importantFPs.contains(b.first.variable) &&

((b.first.fixedPointOperator == FixedPointOperator.NU) ==

assignedLiterals[b.first.variable])

)

1.0

else
0.0

acc + b.second + correctFPReward

}

val pairs = solutionCandidate.assignedVariables.map { l ->

if (l) Pair(quality, 0.0) else Pair(0.0, quality)

}

return Some(

Evaluation(

(bes.numberOfVariables - quality) / bes.numberOfVariables ,

SatTerrain(pairs.map { p -> p.first }.toTypedArray(), pairs.map { p ->

p.second

}.toTypedArray()),

quality > 0.99 * bes.numberOfVariables

61

)

)

}

}

Appendix C. Implementation for parity games

Listing 21: ParityGame

package pg.data

import java.lang.Integer.max

class Node(val id: Int, val even: Boolean, var priority: Int, val successors: List<Int>) {

val parity = if (even) 0 else 1

val predecessors = mutableListOf <Int>()

override fun toString(): String {

return this.id.toString() +

(if (this.even) "␣<${this.priority}>␣" else "␣[${this.priority}]␣") +

"␣successors␣" + successors.joinToString(",")

}

fun toShortString(): String {

return this.id.toString() +

(if (this.even) "␣<${this.priority}>" else "␣[${this.priority}]")

}

}

class ParityGame {

val nodes: MutableList <Node> = mutableListOf()

var goalVertex: Int = 0

var highestPriority: Int = 0

private set

val allNodes: Set<Int>
get() {

return nodes.indices.toSet()

}

fun addNode(node: Node) {

this.nodes.add(node)

highestPriority = max(highestPriority , node.priority)

}

fun getNode(nodeNumber: Int): Node {

return this.nodes[nodeNumber]
}

fun getEdgeCount(): Int {

return nodes.fold(0) { acc, x -> acc + x.successors.size }

}

override fun toString(): String {

var result = ""

for (i in this.nodes.indices) {

result = result + "␣" + this.nodes[i].toString() + "\n"

62

}

return result

}

}

Listing 22: PgTerrain

package pg.ant

import framework.Terrain

import pg.data.ParityGame
import kotlin.random.Random

/**

* The terrain consists of pheromone levels for all outgoing edges per node.

*/

class PgTerrain : Terrain {

var pheromones: List<List<Double>>

constructor(game: ParityGame) {

pheromones = game.nodes.map { n -> (n.successors.indices).map { 0.0 } }

}

constructor(pheromones: List<List<Double >>) {

this.pheromones = pheromones

}

override fun evaporate(rho: Double) {

pheromones = pheromones.map { node -> node.map { ph -> ph * rho } }

}

override fun addPheromoneFrom(terrain: Terrain) {

require(terrain is PgTerrain) { "Can␣only␣add␣PgTerrain" }

pheromones = pheromones.mapIndexed { i, node ->

node.mapIndexed { j, ph -> ph + terrain.pheromones[i][j] }

}

}

override fun copy(): Terrain {

return PgTerrain(pheromones.map { i -> i.toList() })

}

override fun toString(): String {

return pheromones.mapIndexed { i, ph ->

i.toString() +

"␣(" + ph.joinToString(",") { j -> String.format("%.3f", j) } + ")"

}.joinToString("\n")

}

companion object {

fun createRandomFor(game: ParityGame): PgTerrain {

val terrain = PgTerrain(game)

terrain.pheromones = terrain.pheromones.map { n ->

n.map { p -> Random.nextDouble(0.1, 0.5) }

}

return terrain

}

}

63

}

Listing 23: Play (Solution Candidate)

package pg.ant

import framework.SolutionCandidate

import pg.data.ParityGame

class BiasedPlay(

steps: List<Step>,

lassoStart: Int,
val optimalForEven: Boolean

) : Play(steps, lassoStart) {

override fun copy(): Play {

return BiasedPlay(steps.toList(), lassoStart , optimalForEven)

}

}

/**

* A play is a series of nodes that are visited by the token during a play.

*/

open class Play(val steps: List<Step>, val lassoStart: Int) : SolutionCandidate {

val length = steps.size

override fun copy(): Play {

return Play(steps.toList(), lassoStart)

}

fun toString(game: ParityGame): String {

return steps.joinToString("\n") { s ->

val to = game.nodes[s.node].successors[s.choice]

val priority = game.nodes[s.node].priority

"(node:${s.node}␣prio:$priority␣choice:${s.choice}␣to␣$to)"

}

}

}

// The choice made at the current node.

data class Step(val choice: Int, val node: Int)

Listing 24: PgAnt

package pg.ant

import framework.Ant

import framework.Terrain

import pg.data.ParityGame
import kotlin.random.Random

/**

* Creates a play by using pheromone levels on the edges.

* If a loop is detected the play ends because the loop is repeated.

*/

class PgAnt(private val game: ParityGame) : Ant {

override fun search(terrain: Terrain): Play {

require(terrain is PgTerrain) { "Can␣only␣use␣a␣PgEnvironment" }

val strategy = game.nodes.mapIndexed { i, _ ->

64

val pheromones = terrain.pheromones[i]

val totalAttractiveness = pheromones.fold(0.0) { acc, att -> acc + att }

// Weighted choice between all candidates

val rnd = Random.nextDouble(totalAttractiveness)

val choice = pheromones.foldIndexed(Pair(0, rnd)) { j, acc, att ->

if (acc.second <= 0.0) acc else Pair(j, acc.second - att)

}.first

Step(choice, i)

}

val lassoStart: Int
val steps = mutableListOf(strategy[game.goalVertex])

while (true) {

val lastNode = game.nodes[steps.last().node]

val lastChoice = steps.last().choice

val nextStep = strategy[lastNode.successors[lastChoice]]

if (!steps.any { visited -> nextStep.node == visited.node }) {

steps.add(nextStep)

} else { // We have found a lasso.

lassoStart = steps.indexOfFirst { visited -> nextStep.node == visited.node }

break
}

}

return Play(steps, lassoStart)

}

}

Listing 25: ExploringPgAnt

package pg.ant

import framework.Ant

import framework.Terrain

import pg.data.ParityGame
import pg.data.Node
import kotlin.random.Random

/**

* Keeps on exploring if a loop would mean a loss for the current player.

*/

class ExploringPgAnt(private val game: ParityGame) : Ant {

override fun search(terrain: Terrain): Play {

require(terrain is PgTerrain) { "Can␣only␣use␣a␣PgEnvironment" }

val lassoStart: Int
val steps = mutableListOf <Step>()

// The priority that would win if we jump back to this node.

var previousPriorities = mutableListOf <Int>()
val previousNodes = mutableListOf <Int>()
while (true) {

val currentNodeIndex = if (steps.isEmpty())

game.goalVertex

else
game.nodes[steps.last().node].successors[steps.last().choice]

val currentNode = game.nodes[currentNodeIndex]

previousNodes.add(currentNodeIndex)

65

// The priority for a node is

// the priority that the loop would have if we would jump back to that position.

previousPriorities.add(currentNode.priority)

previousPriorities =

previousPriorities.map { p ->

if (p > currentNode.priority) currentNode.priority else p

}.toMutableList()

val loops = findLoops(currentNode , previousNodes , previousPriorities)

// Check if we can win by jumping back.

val winningChoices = loops.filter { choice ->

choice.second.rem(2) == currentNode.parity

}

var choices = currentNode.successors.indices.toList()

// If we have winning choices, choose them.

if (winningChoices.isNotEmpty()) {

choices = winningChoices.map { wc -> wc.first }

} else {

// Check with which edge’s we lose.

val losingChoices = loops.filter { choice ->

choice.second.rem(2) != currentNode.parity

}.map { c -> c.first }

// Remove the losing choices from the choices

if (losingChoices.size != choices.size) {

choices = choices.subtract(losingChoices).toList()

//println("after subtraction: $choices")

}

}

val nextStep = createStep(currentNodeIndex , choices, terrain)

if (!steps.any { visited -> nextStep.node == visited.node }) {

steps.add(nextStep)

} else { // We have found a lasso

lassoStart = steps.indexOfFirst { visited -> nextStep.node == visited.node }

break
}

}

return Play(steps, lassoStart)

}

private fun createStep(node: Int, choices: List<Int>, terrain: PgTerrain): Step {

val pheromones = terrain.pheromones[node]

val totalAttractiveness = choices.fold(0.0) { acc, c -> acc + pheromones[c] }

// Weighted choice between all candidates.

val rnd = Random.nextDouble(totalAttractiveness)

val choice = choices.fold(Pair(choices.first(), rnd)) { acc, c ->

if (acc.second <= 0.0) acc else Pair(c, acc.second - pheromones[c])

}.first

return Step(choice, node)

}

// find all loops, return a list of <index, priority >

private fun findLoops(

66

currentNode: Node,

previousNodes: List<Int>,
previousPriorities: List<Int>

): List<Pair<Int, Int>> {

val loops = currentNode.successors.mapIndexedNotNull { i, trans ->

val index = previousNodes.indexOf(trans)

if (-1 == index) {

null
} else {

Pair(i, previousPriorities[index])

}

}

return loops

}

}

Listing 26: PgEvaluator

package pg.ant

import arrow.core.Option

import arrow.core.Some

import framework.Evaluation

import framework.Evaluator

import framework.SolutionCandidate

import pg.data.ParityGame

/**

* Checks which player wins a play.

* Rewards the choices of the winning player.

* Penalizes the choices of the losing player.

*/

class PgEvaluator(

private val game: ParityGame ,

private val rewardAmount: Double,
private val penaltyPercentage: Double

) : Evaluator {

override fun evaluate(solutionCandidate: SolutionCandidate): Option<Evaluation > {

assert(solutionCandidate is Play) { "Can␣only␣evaluate␣plays." }

val play = solutionCandidate as Play

// Check what the parity of the parity of the lowest priority in the lasso is.

val lasso = play.steps.takeLast(play.steps.size - play.lassoStart)

val winningParity =

lasso.fold(Pair(false, Int.MAX_VALUE)) { acc, s ->

val node = game.nodes[s.node]

if (node.priority < acc.second) Pair(node.even, node.priority) else acc

}.second.rem(2) == 0

val pheromones = PgTerrain(game).pheromones.map { i ->

i.toMutableList()

}.toMutableList()

play.steps.forEach { s ->

val node = game.nodes[s.node]

if (node.even == winningParity) {

pheromones[s.node][s.choice] += rewardAmount

} else {

pheromones[s.node][s.choice] =

67

pheromones[s.node][s.choice] * penaltyPercentage

}

}

return Some(Evaluation(1.0, PgTerrain(pheromones), false))
}

}

Appendix D. Implementation for strategy improvement

Listing 27: Strategy

package pg.strategy_improvement

/**

* Contains a strategy from V_i to V_{1-i}.

*/

class Strategy(val strategy: Map<Int, Int>) {

override fun equals(other: Any?): Boolean {

if (other !is Strategy) {

return false
}

return other.strategy == strategy

}

override fun hashCode(): Int {

return strategy.hashCode()

}

fun forNode(i: Int): Boolean {

return strategy.containsKey(i)

}

fun getTransition(i: Int): Int {

return strategy[i]!!

}

override fun toString(): String {

return strategy.map { e -> "${e.key}=${e.value}"}.joinToString("␣")

}

}

Listing 28: SubGame

package pg.strategy_improvement

import pg.data.Node
import pg.data.ParityGame

/**

* Stores a subgame.

* A subgame is a game with fewer transitions or fewer vertices than the original game.

*/

class SubGame(

private val game: ParityGame ,

_successors: Map<Int, List<Int>>,
val nodes: Set<Int>

) {

68

private val predecessors: Map<Int, List<Int>> by lazy {

val _predecessors = nodes.map { n ->

n to mutableListOf <Int>()
}.toMap().toMutableMap()

successors.forEach { s ->

s.value.forEach { x ->

_predecessors[x]?.add(s.key)

}

}

_predecessors.mapValues { v -> v.value.toList() }

}

private val successors: Map<Int, List<Int>> by lazy {

_successors.filterKeys { k -> nodes.contains(k) }.map { k ->

k.key to k.value.filter { s -> nodes.contains(s) }

}.toMap()

}

fun getNode(id: Int): Node {

if (nodes.contains(id)) return game.nodes[id]

throw Exception("The␣node␣$id␣is␣not␣in␣this␣subgame.")

}

fun getPredecessors(id: Int): List<Int> {

return predecessors[id]!!

}

fun getSuccessors(id: Int): List<Int> {

return successors[id]!!

}

infix fun subtract(other: Set<Node>): SubGame {

return SubGame(game, successors.toMap(), nodes.subtract(other.map { n -> n.id }))

}

infix fun partition(part: Set<Node>): SubGame {

return SubGame(game, successors.toMap(), part.map { n -> n.id }.toSet())

}

infix fun subtract(edges: Map<Int, List<Int>>): SubGame {

val newSuccessors = successors.map { entry ->

entry.key to if (edges.contains(entry.key))

entry.value.subtract(edges[entry.key]!!).toList()

else
entry.value

}.toMap()

return SubGame(game, newSuccessors , nodes.toSet())

}

companion object {

fun fromStrategy(game: ParityGame , strategy: Strategy): SubGame {

val _successors = game.nodes.map { n ->

n.id to if (strategy.forNode(n.id))

listOf(strategy.getTransition(n.id))

else
n.successors

}.toMap()

69

return SubGame(game, _successors , game.nodes.indices.toSet())

}

fun fromParityGame(game: ParityGame): SubGame {

val successors = game.nodes.map { n -> n.id to n.successors }.toMap()

return SubGame(game, successors , game.nodes.indices.toSet())

}

}

}

Listing 29: Valuation

package pg.strategy_improvement

import pg.data.Node
import util.isEven

import util.isOdd

class Valuation {

private var valuations = mutableMapOf <Int, PlayProfile >()

fun add(other: Valuation) {

other.valuations.forEach { entry ->

valuations[entry.key] = entry.value

}

}

fun set(i: Int, playProfile: PlayProfile) {

valuations[i] = playProfile

}

fun contains(node: Node): Boolean {

return valuations.contains(node.id)

}

fun of(node: Node): PlayProfile {

return of(node.id)

}

fun of(id: Int): PlayProfile {

val playProfile = valuations[id]

require(playProfile != null) { "A␣valuation␣is␣missing␣for␣node␣$id." }

return playProfile

}

// Takes self loops into account correctly , use this in switching policies.

fun ofEdge(from: Node, to: Int): PlayProfile {

// The most important node in a self-loop is the only node there is.

return if (from.id == to) {

PlayProfile(from)

} else {

of(to)

}

}

override fun toString(): String {

70

return valuations.toSortedMap().map { e ->

"phi(${e.key})=${e.value}"

}.joinToString("\n")

}

}

data class PlayProfile(

val mostImportantNode: Node,

val moreImportantNodes: MutableSet <Node> = mutableSetOf(),

var initLength: Int = 0

) {

fun addImportantNode(node: Node) {

moreImportantNodes.add(node)

}

/**

* -1 -> first object is less than the second.

* 0 -> same

* 1 -> first object is more than the second.

*/

operator fun compareTo(other: PlayProfile): Int {

val priorityDiff = RewardOrder.compare(mostImportantNode , other.mostImportantNode)

if (0 != priorityDiff) {

return priorityDiff

}

val moreImportantDiff = rewardCompareTo(moreImportantNodes , other.moreImportantNodes)

if (0 != moreImportantDiff) {

return moreImportantDiff

}

return if (mostImportantNode.priority.isOdd()) {

initLength.compareTo(other.initLength)

} else {

other.initLength.compareTo(initLength)

}

}

override fun toString(): String {

return "PlayProfile(" +

mostImportantNode.toShortString() + "," +

moreImportantNodes.joinToString("␣") { n ->

"${n.id}(${n.priority})"

} + "," +

initLength + ")"

}

}

fun rewardCompareTo(a: Set<Node>, b: Set<Node>): Int {

val aMinB = a.minus(b)

val bMinA = b.minus(a)

if (aMinB.isEmpty() && bMinA.isEmpty()) {

return 0

}

val highest = aMinB.plus(bMinA).maxWith(RelevanceOrder)!!

return if (aMinB.contains(highest)) { // The highest element is only in a.

if (highest.priority.isOdd()) -1 else 1 // If it is odd a is smaller.

71

} else { // The highest element is only in b.

if (highest.priority.isEven()) -1 else 1 // If it is even a is smaller.

}

}

Listing 30: Default Switching Policy

package pg.strategy_improvement.switching_policy

import pg.data.ParityGame
import pg.strategy_improvement.PlayProfileRewardOrder

import pg.strategy_improvement.Strategy

import pg.strategy_improvement.SwitchingPolicy

import pg.strategy_improvement.Valuation

/**

* Always choose the node with the highest valuation.

*/

class DefaultSwitchingPolicy(game: ParityGame) : SwitchingPolicy(game) {

override fun generateInitialStrategy(): Strategy {

return Strategy(game.nodes.filter { n -> n.even }.map { n ->

n.id to n.successors.random()

}.toMap())

}

override fun improve(strategy: Strategy, valuation: Valuation): Strategy {

//println("# START switching policy")

//println("Current strategy: $strategy")

//println("Valuation:\n$valuation")

var changeCount = 0;

val improved = strategy.strategy.map { e ->

val node = game.getNode(e.key)

val playProfiles = node.successors.map { s ->

s to valuation.ofEdge(node, s)

}

val best = playProfiles.maxWith(PlayProfileRewardOrder)

// Only change if the best valuation is strictly higher.

// This ensures that we find a fixed-point.

if (valuation.of(e.value) < best!!.second) {

changeCount++

node.id to best.first

} else {

node.id to e.value

}

}.toMap()

println("Default␣switchingpolicy␣made␣$changeCount␣changes.")

//println("# END switching policy")

return Strategy(improved)

}

}

Listing 31: Ant Switching Policy

package pg.strategy_improvement.switching_policy

import framework.AntColonyOptimizer

import pg.ant.*

72

import pg.data.ParityGame
import pg.strategy_improvement.*

import kotlin.math.ceil

/**

* Uses ACO to guide changing the switches.

*/

class AntSwitchingPolicy(

game: ParityGame ,

private val config: AntSwitchingPolicyConfig

) : SwitchingPolicy(game) {

val ant = ExploringPgAnt(game)

val evaluator = ValuationPgEvaluator(game)

private val optimizer = AntColonyOptimizer(

config.numberOfAnts ,

config.generationsPerIteration ,

ant,

evaluator ,

config.rho,

1.0

)

var terrain = PgTerrain.createRandomFor(game)

private var generationsLeft = config.generationsPerIteration

private fun startOptimizer(forGeneration: Int) {

optimizer.execute(terrain, forGeneration)

}

override fun generateInitialStrategy(): Strategy {

startOptimizer(config.generationsForInit)

// Store the environment for the next iteration.

terrain = optimizer.terrain as PgTerrain

// Choose the edge with the most pheromone.

val choices = game.nodes.filter { n -> n.even }.map { n ->

val pheromones = terrain.pheromones[n.id]

val choice =

pheromones.foldIndexed(Pair(0, 0.0)) { j, acc, att ->

if (acc.second > att) acc else Pair(j, att)

}.first

n.id to n.successors[choice]

}

return Strategy(choices.toMap())

}

val defaultSwitchingPolicy = DefaultSwitchingPolicy(game)

override fun improve(strategy: Strategy, valuation: Valuation): Strategy {

//println("# START switching policy")

//println("Current strategy: $strategy")

//println("Valuation:\n$valuation")

if (0 == generationsLeft) {

return defaultSwitchingPolicy.improve(strategy, valuation)

}

73

// Store the environment for the next iteration.

val generations = ceil(generationsLeft / 2.0).toInt()

startOptimizer(generations)

generationsLeft -= generations

println("Running␣for␣$generations")

terrain = optimizer.terrain as PgTerrain

var changeCount = 0

// Use the pheromone levels on the environment to make choices.

val improved = strategy.strategy.map stratMap@{ e ->

val node = game.getNode(e.key)

val playProfiles: Map<Int, PlayProfile > = node.successors.map { s ->

s to valuation.ofEdge(node, s)

}.toMap()

// Only allow changes to strictly higher play profiles.

val choices = playProfiles.filter { pp ->

PlayProfileRewardOrder.compare(

pp.toPair(),

Pair(1, playProfiles[e.value]!!)

) == 1

}.keys

if (choices.isEmpty()) {

return@stratMap e.key to e.value

}

changeCount++

val choiceIndices = choices.map { c -> node.successors.indexOf(c) to c }

val pheromones = terrain.pheromones[node.id]

val pheromoneChoices = choiceIndices.map { c ->

c.second to pheromones[c.first]

}

val choice = pheromoneChoices.fold(Pair(-1, -1.0)) { acc, c ->

if (acc.second > c.second) acc else c

}.first

//println("Changed: ${e.key} from ${e.value} to ${choice}.")

e.key to choice

}.toMap()

println("Ant␣switchingpolicy␣made␣$changeCount␣changes.")

//println("#end switchingpolicy")

return Strategy(improved)

}

}

Listing 32: Strategy Improvement

package pg.strategy_improvement

import pg.data.Node
import pg.data.ParityGame
import util.isEven

/**

* An implementation of the strategy improvement algorithm.

* Based on

* ‘A Discrete Strategy Improvement Algorithm for Solving Parity Games‘

74

* by Jens Voge and Marcin Jurdzinski.

*/

class StrategyImprovement(private val switchingPolicy: SwitchingPolicy) {

var lastNumberOfIterations = 0

/**

* Run strategy improvement , where the strategy of player 0 is optimized.

*/

fun run(pg: ParityGame): Pair<Boolean, Strategy> {

val initialStrategy = switchingPolicy.generateInitialStrategy()

var lastStrategy: Strategy

var currentStrategy = initialStrategy

var valuation: Valuation

val startTime = System.currentTimeMillis()

var iterations = 0

do {

// Create a sub-game based on the current strategy.

val subGame = SubGame.fromStrategy(pg, currentStrategy)

//println("Current strategy: $currentStrategy")

valuation = valuation(subGame)

lastStrategy = currentStrategy

// Optimize the strategy according to the valuation.

currentStrategy = switchingPolicy.improve(currentStrategy , valuation)

iterations++

} while (currentStrategy != lastStrategy)

val duration = System.currentTimeMillis() - startTime

println("Solved␣in␣$iterations␣iterations␣and␣$duration␣ms.")

lastNumberOfIterations = iterations

val evenWins = valuation.of(pg.goalVertex).mostImportantNode.priority.isEven()

return Pair(evenWins , lastStrategy)

}

private fun valuation(_game: SubGame): Valuation {

var game = _game

val valuation = Valuation()

val nodes = game.nodes.map { i -> game.getNode(i) }

nodes.sortedWith(RewardOrder).forEach { w ->

if (!valuation.contains(w)) {

// L contains nodes that can reach w, where w has the highest priority.

val L = lessRelevantReach(game, w)

val containsLoop = game.getSuccessors(w.id).fold(false) { acc, s ->

acc || L.any { n -> n.id == s }

}

if (containsLoop) {

val R = reach(game, w)

valuation.add(subValuation(game partition R, w))

game = game subtract vertices(R, R)

}

}

}

return valuation

}

75

private fun subValuation(_game: SubGame, w: Node): Valuation {

var game = _game

val valuation = Valuation()

game.nodes.forEach { n -> valuation.set(n, PlayProfile(w)) }

// Iterate more relevant nodes than the winner, starting with the most relevant one.

val moreRelevantNodes = game.nodes.filter { i ->

game.getNode(i).priority < w.priority

}.map { i -> game.getNode(i) }

moreRelevantNodes.sortedWith(RelevanceOrder).reversed().forEach { u ->

if (u.priority.isEven()) { // We want to avoid nodes with an even priority.

val U = reach(game subtract setOf(u), w)

(game.nodes.map { n -> game.getNode(n) } subtract U).forEach { v ->

valuation.of(v).addImportantNode(u)

}

// Remove edges that go through u that are not necessary to reach w.

game = game subtract vertices(U.plus(u), U)

} else { // We want to visit nodes with an odd priority

val U = reach(game subtract setOf(w), u)

U.forEach { v -> valuation.of(v).addImportantNode(u) }

// Remove edges that avoid u.

game = game subtract vertices(U.minus(u), U.plus(w))

}

}

if (w.priority.isEven()) {

maximalDistances(game, w).forEach {

require(it.value != -1) {

throw Exception("Too␣many␣edges␣have␣been␣removed!")

}

valuation.of(game.getNode(it.key)).initLength = it.value

}

} else {

minimalDistances(game, w).forEach {

require(it.value != Int.MAX_VALUE) {

throw Exception("Too␣many␣edges␣have␣been␣removed!")

}

valuation.of(game.getNode(it.key)).initLength = it.value

}

}

return valuation

}

}

76

	Introduction
	Understanding Ant Colony Optimization
	Combinatorial Optimization
	Local- and Global Optima
	Complexity of Ant Colony Optimization
	Travelling Salesman Problem
	Boolean Satisfiability
	The Model Checking Problem
	Complexity of the Model-Checking Problem

	Ant Colony Optimization Technically
	Hyperparameters
	Experimentation Framework

	Boolean Equation Systems
	Algorithms for checking BES
	Applying ACO to solve a BES
	Initial version
	Hyperparameters
	Reducing the search space
	Important fixed-point classifiers
	Fundamental problem
	Final version
	Conclusion

	Parity Games
	Parity Game from a BES
	Ant Colony Optimization for Parity Games
	Hyperparameters
	Random Against Best
	Game Exploration
	Conclusion
	Future Work

	Strategy Improvement
	Strategy Improvement Algorithm
	A motivation for a different switching policy
	Applying ACO
	Biased ants with valuations
	Results on simple games
	Conclusion
	Future Work

	Conclusion
	Future work
	Appendices
	Framework
	Implementation for BES
	Implementation for parity games
	Implementation for strategy improvement

