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Abstract

Technical developments result in increased mechanization of manufacturing processes. These devel-
opments improve the quality of the used machines, meaning that they are controlled independently
and they all generate data. This data can be used to provide insights or to control the process
automatically. The Smart Industry 4.0 Assistant (SIA)[1], which is being developed by Bright
Cape, is a tool that aids in the usage of such data. SIA provides tools to improve both product or
process quality. One of its tools predicts product quality. Quality predictions are currently made
done without the use of event sequences. However, since event sequences result from the process,
it is expected that this data would aid in the prediction of quality.

In this thesis, we investigate five different methods to translate process sequences into at-
tributes for classification. One of those methods also includes additional information that comes
available with every event. One problem that arises is that rework is also an activity that is part
of the event log. The evaluation method is adapted to take this problem into account. For eval-
uation, we defined a naive classifier, which is used as a baseline to assess the new prediction models.

The five different event log translation methods are tested using both an artificial event log
and a real event log retrieved from an automated production environment. After the translation
of the event log, random forests are trained on the resulting attributes. For the simulated data,
this resulted in the expected results: the method which also includes event attributes performed
best, as it translates most information. The case study, however, did not show any promising
results: all resulting random forests achieved the same accuracy or a lower accuracy than the
defined baseline. Since the model proved to be working with the simulated data and the results
of the case study did not show any useful predictions, it is concluded that the data from the case
study did not correlate with rework.
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Chapter 1

Introduction

Data availability grows at a high rate, which increases the availability of data in all kinds of en-
vironments. The manufacturing industry is no exception. Modern machines keep track of every
processed product and record information about that product, such as the time when it is pro-
cessed. The goals of using such information are to either improve the process or the manufactured
product. The research reported in this thesis is conducted at Bright Cape, a company that iden-
tified an opportunity with the use of such data.

1.1 Context

Bright Cape is a company located in the Netherlands that helps customers retrieve knowledge from
data to optimize their processes, increase revenue, or to decrease costs. It does so by providing
services for Data-Driven User Experience (DDEX), Process Mining, and Applied Data Science.
Aside from providing insights into the use of data, the company also works the development of
innovative products. one of these products machines is called the Smart Industry 4.0 Assistant[1],
or SIA for short.

Industry 4.0 is a name for the anticipated fourth industrial revolution[16]. The first being
mechanization, the second industrial revolution refers to the intensive use of electrical energy, and
the third revolution, which resulted from digitization. The current ongoing revolution aims to
create systems that automatically control the manufacturing process while being flexible and able
to adapt to each type of product. The need for a fourth revolution arises due to the reduced devel-
opment periods of new products and the requirement of products to be adapted to the customers’
needs. Technological innovations fitting these requirements are possible due to increased mechan-
ization and automation of manufacturing processes. The quality of these machines also increases,
meaning that they can be controlled independently in each step of the process. These machines
also record several actor- and sensor data, which provides input to guide the process automatically.

The Smart Industry Assistant looks to aid organizations in the realization of Industry 4.0. It
collects all generated data from the factory for analysis and provides multiple tools for the user in
order to improve both product or process quality. It does so by automatic reporting and visualiz-
ation of data, predicting the product quality, detect anomalies, provide smart maintenance, or by
automatically adapting the process to optimize the resulting products. The main goals of these
tools are to increase the revenue, increase the efficiency of resources and to reduce the costs.

Rework Prediction Using Event Logs 1



CHAPTER 1. INTRODUCTION

1.2 Problem statement

One of the other modules that SIA aims to offer includes process mining. There are concerns re-
garding the general usability of process mining within largely automated production lines, where
there is little to no variation in the production of each product. The limited variety in the pro-
cesses results in doubts in the usefulness of process mining. These doubts are likely to come from
the misconception that process mining is limited only to control-flow discovery[30]. The time per-
spective and resource perspective provides useful insights into bottlenecks and throughput times.

First, the scope of the study needs to be clarified. This study focuses on an automated se-
quential production process, meaning that the value-adding production steps are performed in
sequence by machines. The only deviations in the production process should be the result of hu-
man intervention. These interventions are the result of products not reaching a quality threshold,
after which they are either reworked or scrapped.

The goal of this thesis is to investigate the usefulness of process mining in the targeted en-
vironment. We attempt to find links between data collected throughout the process and product
quality performance. In order to test the value of process data, we train models to predict the
presence of a rework activity for one product. Decision making can be improved if quality inform-
ation becomes available earlier, providing the opportunity to reduce costs and required resources.
However, event data needs to be translated into features before it is ready to be used for prediction.

RQ1. How can event logs be translated into features for prediction?

After the data is made prediction-ready, there is a decision to be made on which prediction
algorithm to use. Thus, it requires an evaluation of prediction models to decide which fits best
for this research. Even though the method for prediction is not the main focus of this thesis, it is
crucial to evaluate the different options since it is used to test the different methods to translate
event logs into features.

RQ2. What prediction method is most useful for predictions with event logs?

After acquiring a model to assess the usability of data, we need to assess which data is most
valuable. We identify three main types of data as output from an automated manufacturing pro-
cess. First, we identify data that is present before the process starts, which holds information
about what is manufactured and when. The second type is the data about the process. The
usability of this data is assessed next.

RQ3. Do predictions become more accurate when including event log data in prediction models?

For this research question, we investigate models trained on either type of data. First, we
investigate the difference in accuracy between models trained on data of the product specifications
and adding the sequence data. Next, we combine both process and product information to train
models.

1.3 Outline

The next chapter covers the preliminaries of this thesis. In the third chapter, we discuss previous
related research on the matter. The fourth chapter discusses the different methods used to translate
an event log into features for classification. Subsequently, we discuss the second research question,
where we evaluate different prediction models. Next, the implemented method to predict rework
is discussed. In the subsequent chapter, this model is validated using an artificial event log. In the
eighth chapter, the same method is used on a real dataset that originates from an actual automated
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CHAPTER 1. INTRODUCTION

production environment. Lastly, the thesis concludes with our main findings and conclusions as
well as providing suggestions for future research.
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Chapter 2

Preliminaries

In this chapter, we explain the basic concepts and notations relating to process mining and pre-
diction. These notations are used in the remainder of this thesis.

2.1 Process Mining

Process mining techniques seek to extract knowledge from event logs [30], meaning that event logs
are critical in process mining. Process mining is not a single technique but combines both data
mining and the modelling and analysis of business processes. The different techniques are used
for the discovery, monitoring, and improvement of real processes from event logs.

Event logs are datasets containing the recorded data of events. These events refer to executions
of activities for a single case and the recorded data for this activity. A case refers to a single process
instance. For example, one case in a hospital can be one patient, where a case in a production
process can refer to one product. By listing the events of each case in sequential order, it becomes
possible to extract the sequence of activities of a single case. The sequence of activities for one
case is also called a trace.

Definition 2.1.1. (Case)
Let C be the set of all cases. Where c ∈ C refers to a single process instance. For manufacturing,
a single case refers to one product.

Definition 2.1.2. (Event log, Event)
Let E be the set of all events and e ∈ E refers to a single event. then let E ×E be the total ordening
on E and E∗ ⊆ E ×E is the set of ordered events, i.e. e1 ≥ e2. An event log L contains event data
of all past events of the process of all cases.

Definition 2.1.3. (Trace)
Each event is related to one case, and one case only. Where a trace σc is the ordered set of events
for case c, i.e. σc = 〈e1, . . . , en〉 ∈ E∗. γ is the function that maps each event to one case, i.e.
γ : E → c. Then ∀c∈C ∀e∈σc γ(e) = c ∧ ∀e∈E ∀c∈Cγ(c) = σc, which states that each event in a
trace maps onto the same case, and each case maps onto one trace.

Definition 2.1.4. (Prefix)
A prefix of a trace, is the subset of chronological consecutive events of a trace, starting with the
first event. Let σc = 〈e1, . . . , en〉 be a trace of size n. then the prefix of σc with length m is
σmc = 〈e1, . . . , ei〉 with σc = 〈e1, . . . , en〉 and where 1 ≤ m ≤ n

Events contain a minimum of two types of attributes, namely the activity name and case ID,
which are the minimum requirements for process mining[29]. Events often contain other attrib-
utes besides the activity name and case ID, such as timestamps or the used resource. Timestamps
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indicate the start- or end time and date of an activity. An event can have two timestamps, one
for the start of the activity and one when it finishes. The resource provides information on the
one performing the activity. For example, the identification number of an employee or machine.
Aside from these components, additional information can be present contained in the event log.
For example, the event log can contain information about the quantity of a batch, the weight of
a product or quality information.

Definition 2.1.5. (Event Attribute)
Let A be a set of event attribute names, then ∀a∈A #a : E → Va. Where #a is the function that
maps each event to attribute name a with Va possible values. For example, #activity(e1) provides
the activity of the first event and Vactivity is the set of activities, then |Vactivity| is the total number
of possible activities.

Similar to event attributes, there are also case attributes. Case attributes are related to a
single case and do not change over time. For example, in the treatment process of patients in
hospitals, each patient can be seen as a case and each treatment as an event. Aside from the
treatment information for each patient, there is also a collection of patient information. This
patient information can, for example, contain the name, date of birth, and place of birth.

Figure 2.1: Links between Software, Event Logs, Models and the enviornment [29]

Figure 2.1 shows the relations between the real world, software systems, event logs, and models.
There are three connections between ‘event logs’ and ‘(process) model’. Each connection refers to
a different type of process mining. Process discovery is the process of discovering a process model
based on an event log. Conformance checking is the process of comparing the actual process with
a process model, which can be done either to assess the quality of the model or to detect anomalies
in traces. The last type of process mining that Figure 2.1 displays is model enhancement. Here
an existing model is enhanced with information from an event log.

Another type of process mining that is not included in Figure 2.1 is case prediction. In case
prediction, prediction models are trained based on historical data. Historic data comprises the
event logs of complete cases, which are cases for which no events will occur in the future. These
models are used for predictions for a single case. These predictions can be made for other complete
cases or running cases. Where running cases are cases that are currently in the system and for
which events will occur in the future.

A common misconception of process mining is that it is limited to control-flow discovery [30].
The process discovery segment is an important part of process mining to gain understanding in

6 Rework Prediction Using Event Logs
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the real-life process. However, process mining is used for other principles as well. Aside from the
control-flow perspective, there are also the organizational perspective; the time perspective and
the case perspective.

2.1.1 Petri nets

One method for depicting process flows are Petri nets. In this section, we provide the basic concepts
of a Petri net. There are four common components in a Petri net, namely: Places, Transitions,
Arcs, and Tokens. Places carry tokens, and each place can have any amount of tokens. Arcs
connect places and transitions. A common method of representing them is shown in Figure 2.2.

Figure 2.2: Representations of Places, Transitions, Arcs and Tokens

These components can be combined to depict a process. Four often reoccurring combinations
are splits and joins, which are depicted in Figures 2.3 to 2.6. These figures are also used to describe
the basics of Petri nets. The firing of transitions is critical in understanding Petri nets, since all
transitions that are fired from 1 token in the start place up until there is one token in the end
place make up a trace. Both transitions and places have arcs entering and outgoing arcs, there
are two exceptions. The starting place has no arcs going in, and the end-place has no outgoing
arcs. A transition is enabled when each place that is entering the transition carries a token. The
amount of tokens produced is equal to the number of outgoing arcs, where one token is created
for each place connected to the exiting arcs of the transition.

Figure 2.3: AND-Join Figure 2.4: AND-Split

Figure 2.5: XOR-Join Figure 2.6: XOR-Split
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For example, Figure 2.3 shows two entering arcs to the transition and one exiting arc. The
places connected to the entering arcs each contain a token, which makes it possible to fire the
transition. If this transition fires, then those two tokens are consumed and removed from the
place. As a result, one token is added to the place connected to the exiting arc. The AND-Split,
shown in Figure 2.4, is the opposite of the AND-Join. When this transition fires, one token is
consumed from the place connected to the entering arc. Next, two tokens are produced, one
for each place connected to the exiting arcs. Figure 2.5 shows two enabled transitions. These
transitions can be fired in any order and each produce one token in the place connected to the
exiting arc. The last example is shown in Figure2.6, which shows two enabled transitions but
only one token. One of these transitions can be fired, after which the token from the starting
place is consumed and a token is produced in the place connected to the exiting arc. After firing
one transition, there are no tokens left in the starting place, which are required in order to fire
a transition. In the example, the transitions are not named. However, with named transitions,
recording the ordered list of fired transitions results in a trace. The names of the transitions would
then be the event names or activities.

2.2 Prediction

Data Mining is defined as the extraction of knowledge from large amounts of data. This definition
is similar to the definition of process mining. However, process mining focuses on a specific type
of data, namely event logs[30]. Machine learning focuses on the creation of a model using training
data to either predict or find patterns in data[3]. This thesis focuses on supervised learning. For
supervised learning methods, each data point contains a target label l. This label is the targeted
variable for prediction and is known for the training data. Labels can be categorical, binary, or
a metric variable. In contrast to supervised learning methods, unsupervised learning methods do
not require labels for each data point.

In short, the goal of supervised learning is to derive a model from training data to predict the
labels of data points where the label is unknown. This model is trained on data with a known
label l with input attributes I. The set of possible labels is L, which can be discrete or continuous.
If the set of output labels L is continuous, then the prediction task is a regression problem[14]. If
the set of output labels L is discrete, then the prediction task is a classification problem, where
each value in L is a class.

Definition 2.2.1. (Prediction Model)
Given the input variables of one data point I, and given output labels l ∈ L a function can be
derived to make predictions: l∗ ∈ L. This function is written as P : I → l∗. The prediction model
is the function that predicts the output label based on a set of input variables.

2.2.1 Evaluation

The evaluation of prediction models depends on the prediction task, i.e., the evaluation methods
are different for regression and classification. In this section, we only discuss the most common
evaluation methods classification.

Two-class classification models are generally evaluated using a set of data where the class is
already known. By comparing the actual classes to the predicted classes, it is possible to identify
four measurements. These measurements are: the number of True Positives (TP), True Negat-
ives (TN ), False Positives (FP) and False Negatives (FN ). These concepts are explained as follows:

TP : Total number of data points that were classified as true which actual class is true
FP : Total number of data points that were classified as true which actual class is false
TN : Total number of data points that were classified as false which actual class is false

8 Rework Prediction Using Event Logs



CHAPTER 2. PRELIMINARIES

FN : Total number of data points that were classified as false which actual class is true

A common way to represent the number of TP, TN, FP, and FN is to use a confusion matrix.
Here the predicted classes are compared to the actual class in a tabular form, as shown in Table
2.1.

Table 2.1: Confusion Matrix

Predicted Class
True False

Actual Class
True TP FN
False FP TN

The four previously described measurements are input for several evaluation measures. The
two most-basic evaluation measures are the error rate(2.1) and the accuracy rate (2.2). These
are the rate of wrongly classified data points and the rate of correctly classified data points,
respectively.

Error rate =
FP + FN

TP + TN + FP + FN
(2.1)

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

Three other methods are: Recall(2.3), Specificity(2.4) and Precision(2.5). Precision provides
a ratio between the data points that are correctly classified positive and the total amount of
positive data points. Recall, which is also called sensitivity, provides a ration between the data
points correctly classified positive and the data points incorrectly classified as negative. Specificity
is similar to recall, but it centres around negative classifications and data points that are negative.
These methods might be more relevant for evaluation due to a difference in interpretation. For
example, in a hospital, recall might be more important when using classification to predict the
required treatments. Here false positives are less of a problem than false negatives, since the
consequences of a false negative are larger.

Recall =
TP

TP + FN
(2.3)

Specificity =
TN

TN + FP
(2.4)

Precision =
TP

TP + FP
(2.5)

Another evaluation method is the ROC curve, which stands for Receiver Operating Charac-
teristic. When creating a classification model, the model assigns scores or probabilities to a data
point for it to belong to one class. With this probability, it is possible to change the threshold
for assigning it to a class. The ROC curve plots the false-positive rate (1-Specificity) against the
true positive rate (Sensitivity) for all thresholds. For example, at a threshold of 0, every data
point is classified as positive or true. This threshold results in a Specificity of 0 and a Sensitiv-
ity of 1. A model performs best when there is a point for which the sensitivity is high and the
Specificity is high. Figure 2.7 shows an example of a ROC curve. The displayed curve shows that
the underlying model performs well. The closer the curve gets to the upper left corner, the better
the model. Where a perfect model has a threshold for which the false positive percentage equals
0 and the true positive percentage equals 100. In the example, there are several thresholds for
which the false positive percentage is low, but the true positive percentage is high, indicating a
well-performing model. From the ROC curve, it is possible to calculate the AUC, which stands
for Area Under Curve. A higher value for AUC is better since this indicates a higher true positive
rate with a lower false positive rate. The AUC value for the ROC curve shown in Figure 2.7 equals
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97.16%.

Figure 2.7: ROC Curve Example
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Chapter 3

Related Work

Data mining in manufacturing is not new. There is numerous research that tries to predict
outcomes such as the total throughput time and the quality of finalized products. The field of
process-mining, however, is relatively new; some uses of process data have been described before,
but were not classified as a different field of data mining. Making predictions in process mining
has been mentioned before, where it is used to find correlations in business process characteristics
[9]. However, similar to other literature [6][7][11][15][18], it selects attributes from a complete pro-
cess rather than translating the process sequence or event log into attributes that can be used for
classification. There also exists literature on the predictions of prefixes of processes [21]. In these
articles, the attributes are predefined rather than derived from the event-log. Other literature that
is irrelevant for this thesis focuses on continuous measurements [12][26], or does not use data on
case level[17][26]. In this chapter, we discuss the previous efforts to make predictions using event
logs, which are on case level and translate the event-log into features in order to make predictions.

The first part of literature discussed first is not related to manufacturing, but provides an
overview of ways to translate sequences into features. Dong and Pei[10] distinguish between basic
types of sequence features. It distinguishes between two simple patterns, namely k-grams and
k-gapped pairs. K-grams are a subsequence of length k, where k-gapped pairs are parts of a se-
quence with a fixed distance between positions. Besides the k-gram and k-gapped pairs there are
more complex features, where the amount of sequence elements and distance between positions is
flexible.

The values of these features are of two types: presence and count. Where a presence type fea-
ture is a Boolean feature, which means the feature equals true if the sequence element is present,
or false if it is not. The second type is a numeric feature, which counts how many times the feature
occurs.

There is one article that includes the most basic forms of translating sequences from event logs
into features. The most basic form would be a 1-gram[19]. Where only one sequence element,
here an activity, is used as a pattern. The article covers both types of feature values, namely pres-
ence and count. In this article, they are named as Boolean encoding and frequency-based encoding.

The next step is a 2-gram, which is covered in one article in an assembly environment[8]. In
this article, the method is referred to as a Bi-gram. Da Cunha, Agard and Kusiak use a randomly
generated dataset in order to improve the quality of an assembly process. They try to capture
patterns from sequences that result in faulty products. They do so by translating the sequences
into features for the extraction association rules. The features they extract are a subsequence of
length two.

This research was then picked up and continued by Rokach[24], who described the use of the
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Teiresias algorithm [23]. This algorithm results in more complex sequences than k-gram and k-
gapped pairs[10]. The extracted features are patterns that are restricted by three variables: the
maximum length of a pattern, the maximum number of gaps, and the minimum number of occur-
rences. This algorithm is tested and results in similar results as the Bi-gram, the main difference
being that the resulting decision trees are less complicated when features are created using the
Teiresias algorithm.

Another algorithm that tries to extract matching patterns is the FAST algorithm [27]. How-
ever, Different from the other articles, it does not use the resulting patterns as features. Ceci,
Fumarola, Lanotte and Malerba[5] solely use the resulting frequent subsequence to decide on
features that can be used for a given pattern, since these features result from parts of the sub-
sequence. Although this is different from the previous methods to create features from event logs,
it is capable of including features that become available during the process.

The last described method to translate a trace into features is to use trace indexes as features
instead of activities [8][19]. Each activity can be seen as a sequence element which, together which
its position, is recorded as a feature [10]. However, instead of creating multiple Boolean variables,
it is compressed into one categorical variable, which is called the simple-index encoding[19]. This
encoding results in the same number of features as the number of activities in the prefix.

The simple-index encoding can be used to create features from the so-called payload, which
is the information that is included in the event log aside from the activity. Translating payload
can be done by using only the payload of the latest activity, combined with the simple-index
encoding, resulting in the latest-payload encoding[19]. Instead of using only the latest payload,
it is also possible to use the payload of each event included in the prefix. Here, each activity, as
well as each feature resulting from the payload, is numbered. The number relates to the index
of each activity[19]. This encoding is similar to the one described by Maki and Teranishi[22]; in
their notation, it is assumed that each activity sequence is the same. This means that the event
sequence is not present in the dataset that was used for classification, as it would not add value.

3.1 Conclusion

Only little research is focused on manufacturing sequences. Most other sequence encodings that
are described are used in a different environment. The sequences that are used in a manufacturing
environment[8][24] focus on sequences that can happen in any order. This thesis focuses on
automated processes, where the amount of paths and the complexity of sequences is limited. Since
these processes are less complex than other processes, mining large sequences from the process
does not result in useful features. Differences in quality are more likely to be the result of small
differences in the process, rather than a great combination of activities. Besides that, the results
from the discussed research show that complex methods provide close to equal results as a more
complex sequence encoding [10].
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Chapter 4

Translating Traces to Attributes

One crucial step before making predictions using data from an event log is the translation from
traces to features. The related work section describes the literature used as inspiration for doing
this translation step. In this chapter, we cover different methods of translating process data into
features for prediction into more detail.

For this chapter, we use a running example. In this example, there are four activities named
after the first four letters of the alphabet. Which can be translated to: Vactivity = {A,B,C,D},
with an example trace of length n = 5 with activity sequence: #activity(σ) = 〈A,B,A,B,D〉.
This trace is used to elaborate on the introduced translations in this section.

4.1 Translating Sequences

We consider four methods for the translation of event logs. This section describes those methods.
In the next section, one of the translation methods is extended to include event attributes.

4.1.1 1-Gram

The first type of attribute translates the presence or absence of a sequence of length 1 into one
attribute. This means that the number of created attributes is equal to the number of activities in
the event-log, i.e., |Attributes| = |Vactivity|. Both the Boolean feature type and frequency feature
type are similar. However, the first only indicates the presence of the sequence and the second
provides the count of occurrences. First, we define a function α(e) that checks if the activity of
an event matches the target activity.

f(e, target) =

{
1, if #activity(e) = target.

0, otherwise.
(4.1)

where e ∈ E and target ∈ Vactivity

Equations 4.2 and 4.3 use Equation 4.1 as input. In order to get an attribute value of a Boolean
type, the Equation 4.1 needs to be checked for each event in the trace and the maximum value is
picked. This results in a 0 if none of the activities matches the target activity and a 1 if one or more
activities match the target activity. The previously described steps are combined in Equation 4.2.
When this equation is used for all activities in Vactivity of the previously introduced example, it
results in Table 4.1.

g(σ, target) =
n

max
i=1

f(ei, target) (4.2)
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Table 4.1: Boolean 1-Gram Example

A B C D
1 1 0 1

In order to get an attribute of the frequency type, the sum of all values from Equation 4.1 is
required. This is performed using Equation 4.3. If Equation 4.3 is used for each of the activities
in Vactivity on the events of the trace of the previously mentioned example, it results in Table 4.2

g(σ, target) =

n∑
i=1

f(e, target) (4.3)

Table 4.2: Frequency 1-Gram Example

A B C D
2 2 0 1

4.1.2 Bi-Gram

Another method to translate an event-log into attributes is to use a combination of two consecutive
activities. When following the literature of Dong and Pei[10], the combination of two consecutive
activities is referred to as a 2-gram or a 0-gapped pair. However, Da Cunha, Agard and Kusiak
name this method a Bi-gram[8]. For the remainder of this thesis, this method is referred to as
Bi-gram. The setup is similar to the setup of the 1-gram method, but the function f now requires
two subsequent events as input and two target activities, instead of just one. This results in
Equation 4.4.

f(ei, ei+1, target1, target2) =

{
1, if #activity(ei) = target1 & #activity(ei+1) = target2.

0, otherwise.
(4.4)

where e ∈ E and target ∈ Vactivity

Using Equation 4.4 two new functions for g can be defined. This function can be used for any
combination of two activities from Vactivity, and thus results in a larger number of attributes than
the previously mentioned 1-Gram. Since any two combinations of activities can be an attribute, the
number of attributes is the number of activities to the power of 2, i.e. |Attributes| = |Vactivity|2.
The Boolean attribute type results from the maximum value of all values for f . This is shown in
Equation 4.5. An example of a table for this type of feature is shown in Table 4.3, where there
are 16 attributes, since |Vactivity| = 4.

g(σ, target1, target2) =
n−1
max
i=1

f(ei, ei+1, target1, target2) (4.5)

Table 4.3: Boolean Bi-gram Example

AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DD
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

The same steps can be performed to get a frequency type attribute. Similar to the 1-gram,
the resulting values from f need to be summed. This method is not used in this thesis, since this
method is not discussed in previous literature.
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The main advantage of using the Bi-gram over a 1-gram is that it translates a part of the
sequence. However, it results in a large number of attributes, which can result in higher calculation
times or problems with classification algorithms.

4.1.3 simple-index

The simple-index method is different from the previous two methods, since it is not a binary
variable nor a numeric variable. The resulting attributes that are translated using the event log
are categorical variables. For each event, the activity is stored as an attribute value. Therefore,
the attributes are translated using a function that was introduced before but is mentioned again
for completeness. The function is defined in Definition 2.1.5, where the attributes are retrieved,
where the simple index translation method focuses on the activity of each event.

#activity(e) = Activity (4.6)

where Activity ∈ Vactivity

Each event maps onto one attribute; this means that the number of attributes is the same as
the length of a trace, i.e. |Attributes| = n. Given the trace σ that was given as an example earlier
in this section, the translation to attributes results in five attributes. The five attributes resulting
from the example trace are shown in Table 4.4.

Table 4.4: Simple-Index Example

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5
A B A B D

The simple-index method may be the simplest method to translate a trace of events to a set
of attributes. An algorithm can find combinations of activities or patterns that have a relation to
the label of a case. The most considerable difference between the previously described methods
is that the index of each activity is relevant as well. If a pattern that is related to the outcome
occurs in different traces, but these patterns start at different indexes, then the pattern might not
be recognized by an algorithm or model. Although this problem might occur, a previous study
has shown that it has a better performance than the previously described methods[19].

4.2 Translating Payload

Activities are not the only attributes contained in the event log. Aside from the Case ID and
activity of each event, the log often contains other data as well. The most common types of addi-
tional attributes are resources and timestamps. Timestamps can indicate the start or end times of
an activity, or two timestamps are present to indicate both the start and end times of activities.
The event attributes besides the activity, case ID and timestamps can be referred to as payload
[19]. The payload that is available in an event log can be used to create additional payload, which
is called event log enrichment [28]. Payload cannot be used for classification or regression if it is
not translated into attributes. Therefore, this chapter also provides a method to include payload
into the attributes used for classification.

Literature introduces only one generic method to translate payload to activities. This method
is similar to the simple-index method described in the previous section. Other literature which
describes the use of activity sequences to attributes that do include payload are not generic; they
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describe a method to select attributes for matching prefixes [27].

The only method that was covered in literature to translate payload is an extension of the
simple-index method that was described before. Instead of using the function described in Defin-
ition 2.1.5 only for the activity attribute, the function is used for the entire payload.

Then again, there is the decision to decide which events and their payload to translate into
attributes. Two methods described in literature [19] involve the translation of either only the last
event or the translation of all events.

As an example, consider the sequence σ which was introduced as an example in the pre-
vious section. In the previous section only the function#activity was considered. Now we can
include other event attributes, such as: employee, machine, day and shift. Some possible values
for these attributes are Vsay = {Monday, Tuesday,Wednesday, Thursday, Friday}, Vemployee =
{Frank,Eva, John}, Vmachine = {1, 2, 3} and Vshift = {Morning,Day,Night}. Then a possible
translation of the payload of two events of a sequence is shown in Table 4.5.

Table 4.5: Payload translation Example

Employee 1 Machine 1 Shift 1 Day 1 Employee 2 Machine 2 Shift 2 Day 2
John 1 Night Monday Eva 3 Night Monday
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Chapter 5

Comparison of Classification
Techniques

A prediction model type has to be chosen before making predictions using an event-log. Since
this thesis focuses on the added value of two different types of data, it was chosen to only use one
algorithm for classification.

Before comparing the different algorithms, we make a list of the desired characteristics of the
algorithm. First, it should be possible to identify which of the attributes used for classification
are most important. This information makes it possible to identify relations with attributes to
a particular type of rework, which would make it possible to improve the process. Second, the
algorithm should be able to take numeric as well as categorical variables into account, since these
are common types of variables to find in an event log. For example, the employee that performed
an activity would be a discrete attribute and the duration of an activity is a continuous attribute.

Additionally, it would be preferred for the algorithm to be easy to adjust, since one model is
trained for each prefix. As a result, numerous models have to be trained, for each of which the
parameters can be adjusted to obtain optimal results. If the number of input parameters of the
algorithm is low, then the optimization of each model takes considerably less effort and time.

Other algorithm characteristics, such as calculation time are less important, since there is no
time restriction as of now. Calculation times might become more critical if it were to be imple-
mented and used on a day-to-day basis.

A review of classification techniques from 2007[13] identifies five main types of classification
techniques. The techniques are divided into logic-based techniques, perceptron-based techniques,
statistical learning methods, instance-based learning and support vector machines. Next, we eval-
uate which techniques are most in line with the requirements. This evaluation is supported by
Table 5.1, which summarizes different characteristics of the different types of techniques.

Table 5.1 displays a summary of characteristics of six different classification techniques. In
this table, logic-based techniques are separated into decision trees and rule-learners. Based on the
formulated criteria, a technique is selected that fits these requirements best. The two main criteria
being the transparency of the technique and the ability to deal with different attribute types.

Let us first consider the first criteria: The technique should be able to explain which attributes
are most important in classifying a data point. As shown in Table 5.1, two techniques have a
low performance on the transparency of knowledge, namely neural networks and support vector
machines(SVM). Notably, these two techniques are among the highest performing techniques in
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Table 5.1: Comparison of Classification Techniques (* indicates lowest performance and ****
highest)[13]

Decision
Trees

Neural
Networks

Naive
Bayes

kNN SVM
Rule-
learners

Accuracy in general ** *** * ** **** **
Speed of learning
with respect to number of
attributes and the
number of instances

*** * **** **** * **

Speed of classification **** **** **** * **** ****
Tolerance to
missing values

*** * **** * ** **

Tolerance to
irrelevant attributes

*** * ** ** **** **

Tolerance to
redundant attributes

** ** * ** *** **

Tolerance to highly
independent attributes

** *** * * *** **

Dealing with different
attribute types

****
*** (not
discrete)

*** (not
continuous)

*** (not
directly
discrete)

** (not
discrete)

*** (not
directly
continuous)

Tolerance to noise ** ** *** * ** *
Dealing with
danger of overfitting

** * *** *** ** **

Attempts for
incremental learning

** *** **** **** ** *

Transparency of
knowledge/classifications

**** * **** ** * ****

Model parameter handling *** * **** *** * ***
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terms of accuracy in general. Less accurate algorithms like decision trees, rule-learners and Naive
Bayes seem to be a better fit for classification of rework, due to the importance of transparency
of the techniques.

The second criteria for the selection of a classification technique is the ability to deal with
different attribute types. Table 5.1 shows a clear favorite, namely decision trees. All other al-
gorithms have a problem in dealing with either continuous attributes or discrete attributes. From
the algorithms that are under consideration, the only other classification technique that might
be interesting are rule-based techniques. Rule-learners can be adjusted to be able to deal with
both continuous and discrete attribute types. However, it is beneficial to discretize the continuous
attributes in order to increase accuracy and to reduce the time required for training [2]. The ref-
erenced table is retrieved from an article that was written 13 years ago. This provides a possible
explanation of why it fails to mention that attributes can be adjusted in order to work with Neural
Networks, Naive Bayes or SVM. However, decision trees are still more suitable than the other,
since they do not require any adaptation of attributes and provide transparency.

In short, logic-based classification methods seem to be the best fit for the first requirement
since they are the easiest to interpret [13]. From the logic-based classification methods, decision
trees seem to to have the best performance on the chosen criteria. Decision trees do not require
any modification on the attributes before they can be used and are therefore the best technique
to deal with different attribute types. Notably, this is in line with the previously discussed related
work. These articles all focus on logic-based classification methods, where most are focused on
decision trees[24][19], while another is focused on more rule-based techniques[8]. The choice of the
latter article for using a rule-based technique might be the result of the data only having discrete
attributes.

5.1 Decision Trees

Decision trees assign a data point to a class using their feature values. These rules are applied
hierarchically. After applying all the rules, the data point is assigned to a class. Figure 5.1 shows
an example of a decision tree. Here there are four different attributes: ’at1’, ’at2’, ’at3’ and ’at4.
There are two classes in which each data point can be classified: ’yes’ and ’no’. at1 and at2 have
three possible values, while at3 and at4 only have two possible values. A data point starts from
the top, if its value for at1 is a1, it goes on to the next node. Otherwise, if its value for at1 is b1 or
c1, then the data point is classified as no. The same decision is made for the different attributes
until a data point a class is assigned.

Instead of training one decision tree, it is possible to train multiple trees. The combination of
decision trees and letting them vote for the class of a data point showed significant improvements
in classification accuracy[4]. The ’growing’ of multiple decision trees and letting them vote for
the class of a data point is a procedure called random forests. Aside from its high performance in
classification accuracy, random forests have multiple other advantageous features. One important
feature is that random forests do not overfit[4]. Another positive feature is that it is still possible
to gain insights into the importance of the features used for classification. One of the main reasons
to choose decision trees over other classification methods is that it also provides insights into the
process when used on an event log. With the combination of multiple decision trees, this is still
possible. Just as with decision trees, it is capable of handling both numerical and categorical data.
This flexibility avoids the preprocessing of variables before using them to train a model. Lastly,
it is also a quick method to train models [4].
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Chapter 6

Method Description

In previous chapters, we described five methods to translate event logs into features and which
classification model would be most useful. This chapter describes the order of actions which are
required to use event logs in order to obtain results in combination with usable models. Besides
descriptions, we also provide an example for clarification. The running example is an extension of
the running example introduced in Chapter 4, where an activity ’Rework’ is added and two other
traces are added. This results in the set of activities Vactivity = {A,B,C,D,Rework} and activ-
ity sequences #activity(σ1) = 〈A,B,A,B,D〉, #activity(σ2) = 〈A,B,C,D〉 and #activity(σ3) =
〈B,A,Rework, C,D〉.

This thesis highlights two types of data, namely case data and event data. Case data contains
information about each case and is not dependent on the process. Event data, or the event log,
is data that is stored retrieved from the process and is therefore dependent on the process. Due
to this difference, the number of required models are different for both data types. Only one
model is required when only considering the case data since no additional data becomes available
during the process. Event data is different; each event contains new information. There is a model
required for each prefix length, as more information becomes available for each event.

First, we discuss how the label is determined from an event log. In this thesis, we only predict
one type of rework. Therefore, the resulting label is a Boolean variable. The value of the label
of a case is ’TRUE’ or 1 if the rework activity is present in its trace, and ’FALSE’ or 0 if none
of the activities in the trace match the rework activity. This method is the same as the method
used in the Boolean type of the 1-Gram, which is described in Equation 4.2. Equation 4.2 makes
use of the input Equation 4.1. The resulting labels for the example traces σ1, σ2, and σ3 are
’FALSE’, ’FALSE’ and ’TRUE’ respectively. This can be derived from Equation 4.2, which results
in g(σ1, Rework) = 0, g(σ2, Rework) = 0 and g(σ3, Rework) = 1. The resulting labels are used
in combination with the case attributes and the features that were translated from the event log
to train models.

When using the case log for prediction, it is the same as most common prediction problems.
Each case is a data point with one label. All case attributes can be used as input for training the
prediction model. When including the translated event logs, there are more models required since
the amount of available data differs for each prefix length. As a result, one model is created for
each prefix length.

As the following step, the event log is translated into attributes for classification. This step
requires one of the five translation methods described in Chapter 4. The translation of a trace
into attributes has to be done for each prefix length m up until the complete trace length n. This
translation is repeated for each case. Table 6.1 shows the different attributes for each trace at a
prefix length of 5, thus the complete traces, and their corresponding label. As simple as it sounds,
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the prediction of a rework activity which is present in the event log results in multiple problems.
In the remainder of this chapter, we discuss each of these problems and describe the implemented
solution.

Table 6.1: 1-Gram Boolean Attributes and labels of example traces

Trace A B C D Rework Label
σ5
1 TRUE TRUE FALSE TRUE FALSE FALSE
σ5
2 TRUE TRUE TRUE TRUE FALSE FALSE
σ5
3 TRUE TRUE TRUE TRUE TRUE TRUE

One can imagine that each case requires a different amount of activities before it finishes. One
solution might be to ignore cases with a smaller length than the prefix length on which the model is
trained. Ignoring these cases results in another problem, since many data points are then ignored
when training a model. In the example, σ2 would be ignored when training a model for a prefix
length of 5. However, in order to include all cases for each model, cases can be made longer by
adding ’empty’ events. These events do not hold any information. The translation of cases which
are shorter than the maximum trace length results in the same attributes when translating the
event log using the 1-gram method or the Bi-gram method, i.e. g(σ4

2 , Target) = g(σ5
2 , Target) for

all target activities in Vactivity. In the simple index method, there are additional attributes for
each additional event. The attribute values that cannot be filled in are left blank. Classification
algorithms can have problems with missing values. These problems can be avoided by filling in
a value which is the same for each attribute which should be left blank. Using the simple index
translation method to translate σ5

2 into attributes then results in the attributes shown in Table
6.2. In this table, the fifth activity is an empty activity.

Table 6.2: Simple-Index Example

Activity 1 Activity 2 Activity 3 Activity 4 Activity 5
A B C D None

Another problem that results from this approach is that both the label and are derived from
the event log. This means that the information about the label is also present in the attributes
used for classification. These attributes thus contain information which also indicates the label.
In this example, the value for rework is the same as the label value. One possible solution is to
only consider the section of the trace up until the rework activity, i.e. #activity(σ3) = 〈B,A〉.
However, this solution results in another problem. If we ignore all activities after and including
rework, then other possible signals give away if rework has occurred or not. In the given example,
this would be activity ’D’. This activity only occurs at later indexes. If this activity is not present
in a trace, then that trace contains ’Rework’. Another possible solution is to ignore the rework
activity, i.e. #activity(σ3) = 〈B,A,C,D〉. This solution uses less information than is available.
The model might still provide wrong classifications even though ’Rework’ has already occurred in
the trace.

The implemented solution does not adapt the traces, but adapts the evaluation method. Since
the translated attributes after certain prefix length contain information about the label, one can
expect that the accuracy at one point will reach 100% for running cases. The classification ac-
curacy should become 100% at a certain prefix length. When all rework activities have occurred,
all traces with a rework activity are correctly classified. All other traces are correctly classified
as false, When an activity which only occurs after rework. In the example traces, this occurs at
a prefix length of 5. At this prefix length, all reworks have occurred, since rework only occurs at
the fourth event. For the other traces, ’D’ occurs as a fourth or fifth event. The presence of ’D’
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indicates that no rework will occur in the future. The combination of this information provides
the opportunity to achieve a classification accuracy of 100%. Figure ?? provides a section of a
decision tree which can be added to ensure that 100% classification accuracy gets achieved for
the traces provided in the running example. To ensure that a model can ’know’ when a trace has
ended, we assume that all cases have the same end activity. In the example, this end activity is
activity ’D’. If there is no such activity, then artificial start and end activities can be added to
traces.

Figure 6.1: Decision Tree which Results in 100% Accuracy for the Given Example

In order to assess the performance of the trained classifications models, a baseline needs to be
defined. This baseline is called the naive classifier. This classifier classifies all new data points
into the same class, which is dominant in the training data. For example, if 30% of the training
data was labelled as true and 70% labelled as false, then the naive classifier classifies all of the
new data points as false.

The naive classifier has to be extended when including event data. Since the previously de-
scribed naive classifier only takes the labels of the training data into account, it never reaches an
accuracy of 100%. The naive classifier is extended to achieve 100% accuracy as well. The naive
classifier predicts all cases as false for all prefixes, up until when a prefix contains the rework
activity. When a prefix contains the rework activity, then l∗ = TRUE. For this naive classifier
extension, we assume that rework occurs on less than 50% of the cases. Table 6.3 shows all predic-
tions made using the naive classifier for each prefix length of each example trace. In this example,
an accuracy of 100% is reached at a prefix length of 3.

Table 6.3: Label Predictions Resulting from the Naive Classifier

Prefix Length: 1 2 3 4 5 Actual Class
σ1 FALSE FALSE FALSE FALSE FALSE FALSE
σ2 FALSE FALSE FALSE FALSE FALSE FALSE
σ3 FALSE FALSE TRUE TRUE TRUE TRUE

Given the naive classifier, it would not make sense to evaluate the models based on the ROC
curve or AUC. The simple classifier does not provide scores or probabilities for data points to
belong to a class, making it impossible to plot the ROC curve or to calculate the AUC. In this
thesis, we focus on the accuracy of models. The main concern of using accuracy to assess models
is imbalanced data. When the predicted class of all cases is equal to the most abundant class,
then a high accuracy can still be achieved. For this reason, models are compared to the naive
classifier, which takes away this concern. The naive classifier is used in the next two chapters,
both to validate the method described in this section and to assess models.
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Method Validation

The previous chapter described a method to predict future rework in running cases where rework
is present in an event log as an activity. This method first needs to be validated before using it
in a case study. For the validation of the previously described model we make use of a randomly
generated event log. For validation, we describe four phenomena which are possible causes for the
presence of a rework. These phenomena are by no means a complete representation of causes for
rework, but they provide a sufficient test for the method. These phenomena are explained using
the process of a baker.

The first possible cause is the presence of a specific activity. This cause can occur if rework of
a product is the result of an addition to the product. For example, in the example of the process
of baking, if the glaze has to be redone more often than a product without it, then the activity of
adding glaze to the product is correlated to the presence of rework.

Second is the duration of an activity. The duration of an individual activity can be the cause
of rework. A logical Explanation from the bakery can be the activity of baking. If a cake sits in
the oven for too long, then it is likely that additional action is required to deliver a final product
that meets the requirements.

Another possible cause for rework is performing an activity twice. If a pastry needs two be in
the oven two times, for example when baking the bottom and again when the top and stuffing are
added. Then it is more likely that the pastry burns, since then the bottom is placed in the oven
twice.

The last phenomena that we add in our generated event log, is the order of activities. Two
activities can happen in parallel, but it might be advantageous for one activity to be started or
finished before the other.

For testing the model, we created 10000 artificial cases. Each case has a minimum of 5 activities
and a maximum of 9 activities. The process flow is displayed as a Petri net in Figure 7.1. The
data is randomly generated using the following constraints:

• Each case has the same start and end event, which are named ’Start’ and ’End’ respectively.
Both these activities have a duration of 0.

• All other activities have a random duration from a uniform distribution between 0 and 100
minutes.

• Each case starts with activities ’A’ and ’B’, which can happen in any order. Both orders
have the same probability of occurring, i.e. 50% and 50%.
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• In the following section, the activity ’A’ can happen again, or an activity ’C’ can occur, or
no activity is performed. There is a 25% chance ’A’ occurs, 25% chance ’B’ occurs and 50%
chance that the product continues to the next section. This section is added to include the
possibility of the activity A occurring twice.

• In the last section, there are four activities that can happen in any order, but none of which
are mandatory. These activities are ’D’, ’E’, ’F’ and ’Rework’. The activities ’D’, ’E’, ’F’ or
no activity all have the same chance of occurring and also the order is random.

• The chance of a rework occurring is independent of the activities ’D’, ’E’ and ’F’. There is a
probability of 5% that a rework occurs which increases with the following four phenomena:
’B’ happens before ’A’, ’B’ has a duration longer than 50 minutes, ’A’ happens twice, or ’C’
occurs. For each of the possible phenomena, the probability that rework is required increases
with increments of 25%.

Figure 7.1: Experimental Process visualized as Petri-Net

The expected chance of a rework to occur, with the provided information, equals 42.5%. The
expected chance of a rework to occur when ’B’ happens before A, or ’B’ has a duration longer
than 50, goes up to 55%. When both these possible causes occur, this goes up to 67.5% chance.
Moreover, if ’A’ or ’C’ occurs, the chance of rework to be required is 80%. In the next section of
this chapter, we discuss the classification results of the random forests that were created using the
randomly generated event data and the five previously discussed methods for translating event
logs.

7.1 Implementation

In order to implement the different translation methods that were described in Chapter 4 and the
model described in Chapter 6, RStudio[25] version 3.6.0. was used. Within RStudio, the package
named ’randomForest’[20] version 4.6-14 to train and use random forests.

The implementation is separated into seven different scripts, which are shown in Appendix A.
The first script implements the generation of the used event log to validate the described model.
Five other scripts are used to translate an event log into attributes for classification. One script
for each different translation method described in Chapter 4. The last script implements the naive
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classifier, which is used for evaluation. Each of these scripts works with the generated event log,
but they can be adjusted to also work with other event logs.

An event log and a case log are the required input for the translation scripts. The minimum
requirement of the case log is that it contains the list of case ID’s. The generated case log also
contains trace length and labels. Including trace length makes it easier to determine the maximum
prefix length. Labels of cases are not needed for the translation of event logs. However, they are
needed when training and testing models. After translation, the scripts result in one dataset for
each prefix length.

The last script that is included in Appendix A implements the naive classifier. It uses an event
log to make predictions for each prefix length. Where it results in one table, where each column
represents the predictions for that prefix length.

After the translation of the event log using the different methods, the attributes can be used
to train models. One model is trained for each prefix length of each different translation method.
These models are trained using the randomForest package[20] in RStudio. The number of trained
trees equals 200, and the number of used attributes in each tree equals the square root of the total
number of attributes. Before the models are trained, the columns with one value are removed.
As a result, some translation methods do not result in a model for a particular prefix length.
70% of the data is used for training and 30% as a test set. The scripts are executed using a PC
with an AMD Ryzen 5 1600 Six-Core Processor 3.20 GHz and 16GB RAM 3000 MHz. Table 7.1
provides a summary of execution times for the most time-consuming steps. Note that the table
shows relatively low execution times, but these execution times grow when there are longer traces
and more attributes.

Table 7.1: Execution Time Summary

Translation
Method

Total
Attributes

Total
Models

Execution Time
Translation

Execution Time
Training Models

Boolean 1-Gram 9 7 16.2 Secs 4.4 Secs
Frequency 1-Gram 9 7 45.3 Secs 4.9 Secs

Bi-Gram 81 8 17.2 Secs 15.5 Secs
Simple Index 9 8 17.1 Secs 4.8 Secs
Simple Index
with Payload

18 8 26.2 Secs 11.5 Secs

7.2 Discussion of Results

Table 7.2 shows the classification accuracy of the different event log translation methods and the
naive classifier. Note that the table starts with a prefix length of 2. The first index is ignored,
due to the first event being the same for each case: a start event with a duration of 0. The same
problem occurs for both the 1-gram translation methods at a prefix length of 3. At this length,
each case has the same value for each attribute, namely 1 or TRUE for activities ’Start’, ’A’ and
’B’. The same information is plotted as a graph in Figure 7.2. In the remainder of this section, we
discuss the accuracy for each prefix length for each of the different event log translation methods.
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Table 7.2: Summary of Random Forest Classification Accuracy on Randomly Generated Data

Prefix
Length

1-Gram
Boolean
Accuracy

1-Gram
Frequency
Accuracy

Bi-Gram
Accuracy

Simple
Index
Accuracy

Simple Index
With Payload
Accuracy

Naive
Classifier
Accuracy

2 0.629 0.629 0.629 0.629 0.652 0.573
3 0.629 0.629 0.652 0.573
4 0.620 0.646 0.692 0.688 0.709 0.587
5 0.704 0.725 0.760 0.766 0.776 0.674
6 0.876 0.876 0.888 0.888 0.894 0.840
7 0.974 0.974 0.973 0.973 0.973 0.958
8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000

Figure 7.2: Random Forest Classification Accuracy on Randomly Generated Data

At a prefix length of 2, both 1-gram translation methods and the Bi-gram and simple index
method have the same accuracy, namely 0.629. Which is higher than the accuracy of the naive
classifier, but lower than the simple index method with payload included. These values make
sense. At a prefix length of two, each translation method is capable of identifying if ’B’ occurs
before ’A’. The accuracy of the simple index method with payload has higher accuracy, since it is
also able to identify the duration of activity ’B’. Since the naive classifier is incapable of identifying
either, it scores lower. When assuming that at a prefix length of 3 the classifications remain the
same for the 1-gram method, then the results at a prefix length of 3 are the same.

At a prefix length of 4 there is more difference. The 1-gram Boolean method scores lower than
at a prefix-length of 2, this can be explained since there is no way of identifying if ’B’ occurred be-
fore ’A’. The same problem is present in the 1-gram frequency method, but this method is capable
of tracking if ’A’ occurred twice, thus explaining an increased accuracy. Notably, the classification
accuracy of the simple index method is slightly lower than the Bi-gram accuracy. This difference
is difficult to explain, as both methods hold the same information. A possible explanation is the
presence of multiple variables with multiple categories, instead of just two, which makes classi-
fication more complex. The method where payload is included still performs best, as expected,
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since it stores most information. The accuracy of the naive classifier also increases. This increase
means that the first occurrences of rework happen at the fourth activity, which is in line with our
expectations.

At a prefix length of 5, the accuracy increases for all translation methods. Which is likely due
to the increase in occurrences of rework. With this in mind, the explanation for the differences in
accuracy stays the same. However, the simple index translation method has higher accuracy than
the Bi-gram translation method for this prefix length. This difference is likely due to some small
errors.

For the remaining prefix lengths, the difference decreases and the accuracy converges to 1. The
only notable difference is the slightly lower accuracy of the more complex methods; this difference
amounts to 0.001. The complexity of the methods explains this slight difference.

In conclusion, all of the translation methods perform as expected. Overall the simple index
method where payload is included performs best, since it also takes event attributes into account.
The Bi-gram method and simple index method without payload perform similarly, which makes
sense since both methods store the same amount of information. The 1-gram methods have a
worse accuracy than the others, which is because the attributes that result from these translation
methods do not store the order in which activities occur. The Boolean 1-gram method scores the
worst of all event log translation methods, since its resulting attributes do not store the order nor
the frequency of activities. It must be noted that there are scenarios in which the frequency 1-gram
translation method can outperform the Bi-gram translation method. If a combination of the same
two activities happen more than one time and the frequency of these activities correlates with
rework, then the frequency 1-gram method performs better. Lastly, there is the naive classifier,
which only reacts to occurrences of rework. The naive classifier has worse accuracy than the event
log translation methods, since it does not take any process aspects into account.

Rework Prediction Using Event Logs 29





Chapter 8

Case Study

In order to test the previously introduced method, we use the different translation methods on a
data set that is retrieved from a real automated manufacturing environment. This data provides
insights into the usefulness of using event logs to predict rework. In this case study, we use an
event log and case data that was retrieved from an actual automated manufacturing environment.
The data description is shallow, since the received data was requested to remain anonymous.

The remainder of this chapter contains a short data description and a description. Next, the
results of the described actions are presented, and finally, these results are evaluated.

8.1 Data Preparation

In order to implement the previously discussed method, the same implementation as described
in Chapter 7 is used. We have used RStudio[25] version 3.6.0. Within RStudio a package was
used to implement the random forests, named ’randomForest’[20] version 4.6-14. The usage of
this package resulted in an issue with categorical variables, since it had trouble dealing with that
had over 52 categories. This issue is solved with data preparation, which is discussed next.

Before the data is ready to be used, it first requires cleaning and preparation. After data clean-
ing, there are a total of 39960 usable complete cases. As mentioned before, some of the attributes
have too many categories to be used for growing random forests using the randomForest package.
These attributes are each individually evaluated. Some have 200 or more categories; these cat-
egories are filtered. The other remaining categorical variables that are above the threshold were
adjusted. The top 49 most occurring categories are kept, and the other remaining categories are
changed to the same class, named ’OTHER’. After preparation and cleaning, both the event log
and case log are ready to be used. The case log features 39960 cases, each with 35 attributes
which are usable for classification. The event log contains over 1.3 million events, each containing
7 event attributes. Besides the payload, there are two timestamps, an activity, and a case identi-
fier. Among the activities, there are a total of 63 unique activities.

Before splitting the data, there was a consideration of how the data is split in reality. If this
method for predicting rework is implemented, then the models are trained on a specific date while
using historical data. To pick this date, we first look at a dotted chart of the process to gain
insights. This dotted chart is created using ProM 6.7[31]. A subsection of the dotted chart is
shown in Figure 8.1. Note that the timestamps are anonymized, which is why the values on the
x-axis do not make sense. In this dotted chart, there are clusters of events, separated with spaces
that are left blank. These blank spaces are weekends, which indicates that there are no activities
during the weekend. The absence of activities provides the opportunity to train new models during
the weekend. For splitting the data into training and test data, a multiple of weeks for which the
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ratio between test and training data equals 70/30 is determined. The dotted chart from Figure
8.1 also provides a visualization of how the data is divided. When ignoring the incomplete cases,
this results in a training dataset of 25194 cases and a test dataset of 11043 cases. Cross-validation
is not required, since random forests train each tree on a bootstrapped sample from the original
training set[4]

Figure 8.1: Subsection of the Used Dotted Chart

Each of the five described event log translation methods are used to create additional attributes
for each case. These attributes are used in combination with the case log, or just by themselves in
order to train classification models. From the resulting attributes, a selection is made; attributes
for which each case has the same value are ignored. In the next section, we present the results for
the different types of data and the different attributes resulting from the five different translation
methods.

8.2 Results

This section presents the classification results of this case study. The presented results are inter-
preted and discussed in the subsequent section. The results are divided into three subsections. The
first subsection presents the classification accuracy of a random forest model which was trained
using only the case log. The next two subsections provide the accuracy of random forests of all
five event log translation methods. Each method results in a total of 54 models, one for each prefix
length. In some cases, there are no models for a prefix length of 1, since all attribute values are
the same for each case. In the two subsections, there is a difference; one subsection includes the
case log data while the other subsection presents the classification accuracy of models that only
use the attributes which result from the five different translation methods.

8.2.1 Classification Accuracy of Random Forest trained on Case Data

Table 8.1 shows the confusion matrix of the resulting classifications of the test set. There are
a total of 258 true positives, 20405 true negatives, 1138 false positives and 3394 false negatives.
These results amount to an accuracy of 0.820.

Accuracy =
258 + 20405

258 + 3394 + 1138 + 20405
= 0.820
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Table 8.1: Confusion Matrix Case Log Random Forest

Predicted Class
True False

Actual Class
True 258 3394
False 1138 20405

To avoid the misinterpretation of accuracy in an unbalanced dataset, we also calculate the
accuracy when each case is classified to the largest class. The largest class is ’False’, which contains
a total of 25153 cases. The remaining cases, amounting to a number of 3651, are classified as ’True’.
This results in the confusion matrix shown in Table 8.2. The ratio between these two classes results
in an accuracy of 0.855.

Table 8.2: Confusion Matrix Case Log Naive Classifier

Predicted Class
True False

Actual Class
True 0 3651
False 0 21543

Accuracy =
0 + 21543

0 + 3651 + 0 + 21543
= 0.855

Results show that the naive classifier has higher accuracy than the random forest which is
trained on only the case data. However, the classifications using the trained random forest have a
higher number of true positives.

8.2.2 Classification Accuracy of Different Translation Methods with
Case Data

Next, we present the classification accuracy of the random forests that were trained on attributes
resulting from the five different methods in combination with the case data. For the Boolean
and frequency 1-gram method, this results in 63 attributes, one for each activity. Of those 63
attributes, there is a maximum of 55 attributes where there is a difference in attribute values. For
the frequency 1-gram method, the maximum number of attributes containing differing values is
equal to 63; this number is higher since activities that occur multiple times result in a different
attribute value. In combination with the case data, these methods result in a maximum of 80 and
98 attributes for the Boolean and frequency 1-gram method respectively.

The Bi-gram translation method can result in a total of 4096 attributes, considering all com-
binations of all 63 activities. When ignoring the combinations that do not occur in the process,
this results in a maximum of 339 attributes. When combined with the 35 attributes from the case
log, this results in a maximum of 374 attributes.

Attributes of the simple index method can amount up to a total of 54, since this is the max-
imum length of a trace. However, the first activity for each trace is the same. This translation
method results in a maximum of 53 attributes. When combined with the case data, it results in
a total of 88 attributes. When extending this method with event attributes, the so-called payload
increases the number of attributes with 378. This number is calculated by multiplying the number
of event attributes with the maximum length of a trace. After filtering the attributes where each
case has the same value, it results in a total of 429 attributes and 464 attributes when including
the case log data. This total means that there are two additional attributes which have the same
value for all cases.
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The classification accuracy of all trained random forests is shown in Table 8.3. The last six
prefixes are not shown in this table, since these show the same results as the prior prefix. The
same information is visualized in Figure 8.2. Some prefix lengths are omitted in this figure, since
this resulted clearer plots. All confusion matrices and the corresponding accuracy, error rate,
precision, recall and specificity are shown in Appendix B in Tables B.1 to B.6.

Figure 8.2: Classification Accuracy for Different Translation Methods with Case Data

Results show that the naive classifier has the highest accuracy overall. The only exceptions
occur at prefixes 30 to 33, where the simple index method with payload performs slightly better
or the same as the naive classifier in terms of classification accuracy. All translation methods
converge to an accuracy of 1, however the simple index method and simple index method with
payload never reach the upper limit of an accuracy of 1. Up until a prefix length of 30, the simple
index method has a considerably lower accuracy than all other methods.

8.2.3 Classification Accuracy of the Different Translation Methods Without
Case Data

This subsection presents the results of all random forests which trained on attributes that result
from the five different methods to translate an event log into attributes. These random forests are
only trained and tested on the attributes that are derived from the event log, meaning that case
data is not included. Given the description in the previous section, the Boolean 1-gram method
results in a maximum of 55 attributes. The frequency 1-gram method results in a maximum of 63
attributes which are used for the training and testing of models. When using the Bi-gram method,
of the 4096 possible combinations, only 339 of those combinations occur in the event log. The
last two methods for translating event logs into attributes involve the simple index method. This
method is divided into two types, one which only includes activities and one which also includes
payload. Without payload, the translated attributes add up to a maximum of 53 attributes. When
including payload with the simple index method, this results in a maximum of 429 attributes.

When using the attributes as data for training, this results in one random forest for each prefix
and each translation method. The classification accuracy of those random forests on the test set
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is summarized in Table 8.4. Prefix lengths of 49 or more are omitted in this table, since the prior
nine prefix lengths show similar results. The classification accuracy of the models is also plotted
in Figure 8.3. In this figure Some prefix lengths are omitted, since the values did not change much
in those ranges. The results are shown more elaborately in Tables C.1 to C.5, in Appendix C. The
last column refers to the naive classifier that is implemented. The results of the naive classifier are
the same as in the previous section, since the naive classifier only makes use of the event log and
ignores the case log. The confusion matrix and corresponding evaluation measures can be found
in Table B.1 in Appendix B.

Figure 8.3: Classification Accuracy for Different Translation Methods without Case Data

The resulting classification accuracy of random forests is different when excluding case data.
All translation methods have an accuracy which is close to equal of the classification achieved ac-
curacy using the naive classifier. For prefix lengths 2 to 25 and 34 to 54, the maximum difference
in accuracy amounts to 0.003. This difference in accuracy amounts to a difference of about 33
classification errors over a total of 11043 cases. There are slight deviations from this statement;
there are more substantial differences in the range of prefix lengths 26 to 33. Here, there are
cases where the random forest is trained on the attributes resulting from the simple index method
with payload outperform the naive classifier. Also, in this range the simple index method without
the inclusion of payload has the overall worst accuracy. Both 1-gram methods and the Bi-gram
method perform similarly at the prefix lengths of 26 to 33, with a maximum difference in accuracy
of 0.001. Note that in this range the reworks occur, since the naive classifiers’ accuracy increases
from prefix lengths 26 to 38.
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Table 8.3: Summary of Classification Accuracy of the Different Translation Methods With Case
Data

Prefix
Length

1-Gram
Boolean
Accuracy

1-Gram
Frequency
Accuracy

Bi-Gram
Accuracy

Simple
Index
Accuracy

Simple Index
With Payload
Accuracy

Naive
Classifier
Accuracy

1 0.821 0.821 0.820 0.821 0.821 0.883
2 0.824 0.833 0.834 0.795 0.840 0.883
3 0.833 0.840 0.850 0.782 0.843 0.883
4 0.828 0.827 0.876 0.791 0.849 0.883
5 0.834 0.840 0.876 0.806 0.857 0.883
6 0.836 0.837 0.874 0.813 0.867 0.883
7 0.829 0.829 0.878 0.809 0.869 0.883
8 0.837 0.843 0.875 0.806 0.871 0.883
9 0.840 0.840 0.879 0.807 0.872 0.883

10 0.850 0.849 0.881 0.814 0.875 0.883
11 0.833 0.830 0.881 0.812 0.874 0.883
12 0.844 0.853 0.882 0.817 0.876 0.883
13 0.849 0.845 0.882 0.812 0.879 0.883
14 0.847 0.844 0.882 0.811 0.879 0.883
15 0.846 0.851 0.881 0.798 0.878 0.883
16 0.846 0.855 0.882 0.785 0.880 0.883
17 0.853 0.850 0.882 0.783 0.878 0.883
18 0.856 0.858 0.882 0.798 0.880 0.883
19 0.849 0.848 0.882 0.801 0.880 0.883
20 0.851 0.852 0.882 0.795 0.879 0.883
21 0.853 0.857 0.882 0.807 0.879 0.883
22 0.851 0.843 0.882 0.814 0.879 0.883
23 0.857 0.850 0.883 0.809 0.880 0.883
24 0.861 0.848 0.882 0.809 0.879 0.883
25 0.864 0.849 0.882 0.810 0.880 0.883
26 0.850 0.851 0.882 0.815 0.889 0.891
27 0.869 0.874 0.891 0.831 0.906 0.908
28 0.882 0.889 0.908 0.845 0.914 0.916
29 0.901 0.900 0.916 0.869 0.923 0.925
30 0.913 0.910 0.925 0.872 0.963 0.962
31 0.952 0.953 0.964 0.931 0.981 0.981
32 0.974 0.974 0.982 0.966 0.990 0.988
33 0.982 0.984 0.990 0.979 0.993 0.993
34 0.991 0.992 0.994 0.991 0.995 0.996
35 0.995 0.996 0.995 0.994 0.996 0.998
36 0.996 0.997 0.997 0.996 0.996 0.998
37 0.998 0.998 0.998 0.996 0.997 0.999
38 0.999 0.999 0.999 0.996 0.998 1.000
39 0.999 1.000 0.999 0.996 0.998 1.000
40 1.000 1.000 1.000 0.995 0.997 1.000
41 1.000 1.000 1.000 0.996 0.997 1.000
42 1.000 1.000 0.999 0.996 0.998 1.000
43 1.000 1.000 1.000 0.996 0.997 1.000
44 1.000 1.000 1.000 0.996 0.997 1.000
45 1.000 1.000 1.000 0.996 0.997 1.000
46 1.000 1.000 1.000 0.996 0.997 1.000
47 1.000 1.000 0.999 0.996 0.998 1.000
48 1.000 1.000 1.000 0.997 0.997 1.000
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Table 8.4: Summary of Classification Accuracy of the Different Translation Methods Without
Case Data

Prefix
Length

1-Gram
Boolean
Accuracy

1-Gram
Frequency
Accuracy

Bi-Gram
Accuracy

Simple
Index
Accuracy

Simple Index
With Payload
Accuracy

Naive
Classifier
Accuracy

1 0.883 0.883
2 0.883 0.883 0.883 0.883 0.883 0.883
3 0.883 0.883 0.883 0.883 0.883 0.883
4 0.883 0.883 0.883 0.883 0.883 0.883
5 0.883 0.883 0.883 0.883 0.883 0.883
6 0.883 0.883 0.883 0.883 0.883 0.883
7 0.883 0.883 0.883 0.883 0.883 0.883
8 0.883 0.883 0.883 0.883 0.883 0.883
9 0.883 0.883 0.883 0.883 0.883 0.883

10 0.883 0.883 0.883 0.883 0.883 0.883
11 0.883 0.883 0.883 0.882 0.883 0.883
12 0.883 0.883 0.883 0.882 0.883 0.883
13 0.883 0.883 0.883 0.883 0.882 0.883
14 0.883 0.883 0.883 0.882 0.883 0.883
15 0.883 0.883 0.883 0.882 0.882 0.883
16 0.883 0.882 0.883 0.882 0.882 0.883
17 0.883 0.883 0.883 0.881 0.882 0.883
18 0.883 0.883 0.883 0.880 0.882 0.883
19 0.883 0.883 0.883 0.880 0.882 0.883
20 0.883 0.883 0.883 0.881 0.882 0.883
21 0.883 0.883 0.883 0.880 0.882 0.883
22 0.883 0.883 0.883 0.880 0.882 0.883
23 0.883 0.883 0.883 0.880 0.882 0.883
24 0.883 0.883 0.883 0.881 0.882 0.883
25 0.883 0.883 0.883 0.880 0.882 0.883
26 0.883 0.883 0.883 0.880 0.891 0.891
27 0.892 0.892 0.892 0.890 0.908 0.908
28 0.909 0.909 0.909 0.906 0.916 0.916
29 0.917 0.917 0.916 0.914 0.924 0.925
30 0.925 0.925 0.925 0.924 0.964 0.962
31 0.964 0.964 0.965 0.963 0.982 0.981
32 0.983 0.982 0.982 0.981 0.990 0.988
33 0.991 0.991 0.991 0.990 0.994 0.993
34 0.995 0.995 0.995 0.993 0.995 0.996
35 0.997 0.997 0.996 0.995 0.996 0.998
36 0.998 0.998 0.998 0.996 0.997 0.998
37 0.998 0.998 0.999 0.997 0.997 0.999
38 0.999 0.999 0.999 0.997 0.998 1.000
39 0.999 1.000 0.999 0.998 0.998 1.000
40 1.000 1.000 1.000 0.998 0.998 1.000
41 1.000 1.000 1.000 0.998 0.998 1.000
42 1.000 1.000 1.000 0.998 0.998 1.000
43 1.000 1.000 1.000 0.997 0.998 1.000
44 1.000 1.000 1.000 0.998 0.997 1.000
45 1.000 1.000 1.000 0.998 0.998 1.000
46 1.000 1.000 1.000 0.997 0.997 1.000
47 1.000 1.000 1.000 0.997 0.997 1.000
48 1.000 1.000 1.000 0.998 0.998 1.000
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8.3 Discussion

In this section we discuss the results that are presented in the previous section. Here, the results
of each translation method are discussed separately and are each compared to the naive classifier.
An important result from the naive classifier is that reworks occur at indexes 26 to 38, for the
other indexes there is no rework. First we discuss the 1-gram methods, starting with the Boolean
method. Next, the Bi-gram translation method results are discussed, and lastly, the simple in-
dex methods are discussed. Finally, the discussion section concludes with a general comparison
between the use of the case log and the event log.

Translating event logs into attributes using the Boolean 1-gram method is the simplest method.
It results in the lowest amount of attributes and the lowest values of those attributes. Despite
its simplicity, this method does not have the lowest overall accuracy. In most cases, the simple
index method without payload performs worse than the Boolean 1-gram method. This method
performs similarly to the frequency 1-gram. When including the case log into the training of ran-
dom forests, the classification accuracy sometimes both outperform the other without any clear
structure. Without case data, both methods perform much more similar. In Table 8.4, there are
only two lengths of prefixes for which the frequency method has an accuracy which is only 0.001
higher. Indicating that, with this data, both methods have a similar performance.

The Bi-gram translation method does not perform similar to any of the other translation meth-
ods. When including case data, the classification accuracy of the random forests is close to that
of the naive classifier when using the Bi-gram method. Without case data, this method performs
almost equal to the naive classifier in terms of accuracy. The only exception is the range of indexes
in which rework occurs, where the simple index method with payload and the naive classifier per-
form better. From this, it can be concluded that the Bi-gram method produces more attributes
which are related to the process and thus making it less sensitive to attributes that are not related
to rework.

When translating the event log with the simple-index method, it results in the worst models
in terms of classification accuracy. It scores lower than all other methods, including the naive
classifier for most prefixes. There are some cases in which it performs similar to the other meth-
ods. This similarity occurs for the first 25 prefixes where the case data is excluded, where the
most substantial difference in accuracy equals 0.003. When using the same method, but including
payload, the results are different. This method has a range in which it slightly outperforms the
naive classifier. The difference can be explained. One of the event attributes holds information
on the quality of the product. With a specific value, it indicates that rework is performed next.
Outside of this range, it performs similar to the other translation methods. With the inclusion
of case data, the simple index method with payload results in one of the better random forests.
Only the models that are trained on attributes from the Bi-gram method have a higher accuracy
up until the prefixes that contain the rework activity.

Overall it shows that the naive classifier outperforms the models that are trained on the at-
tributes which result from the different translation methods. The only exception being the simple
index method where payload is included. This difference is explained by one of the event attrib-
utes, which holds information about the next activity. The inclusion of event data does increase
accuracy. However, even higher accuracy can be achieved by ignoring the case data. This indicates
that the information in the case log does not contain a relation with rework.
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8.4 Conclusion

From the differences in terms of accuracy between all of the models, it becomes clear that the
trained random forest models experience issues with categorical attributes with a large number of
categories. This conclusion can be drawn, since the inclusion of case data results in lower accuracy
and since the simple index methods never reach a point in which the classifications are perfect.
The models resulting from the other three translation methods and the naive classifier do converge
to an accuracy of 1. Another conclusion that can be drawn from the decrease in accuracy when
including case data is the insignificance of the case data. Since these attributes result in lower
accuracy, it is concluded that these attributes have no relation with rework. The only positive
side of the inclusion of case data results in more true positives, which is displayed in Appendix B.
However, these true positives are much lower than the number of false positives which indicates
that these classifications are not the result of a relation between case attributes and rework.

Another important notice is the difference of accuracy between the naive classifier and most
other trained models. It has the highest accuracy in most cases, the only exception being the
models resulting from the simple index method translation method were payload is included. This
difference can be explained by one of the event attributes containing information on the next
activity. It can be concluded that there is no relation between all but one of the attributes, both
from the case log and the event log. Continuing this conclusion, the used data was not useful for
proving the usefulness of including event data in the quality prediction process.
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Chapter 9

Conclusion & Future research

In this thesis, we investigated the possibility of adding information contained in event logs as input
for classification models. This investigation resulted in three research questions, namely: ”How
can event logs be translated into features for prediction?”, ”What prediction method is most useful
for predictions with event logs?” and ”Do predictions become more accurate when including event
log data in your prediction models?”. In this final chapter, we state the main findings and provide
suggestions for future research.

There are five methods for translating event logs into features for classification, which are
described in this thesis. The 1-gram Boolean method records for all activities in a process, if
the activity is present in a trace. The frequency 1-gram extends this method by counting how
often each activity occurs. Another translation combines the presence of two subsequent activities
into a 2-gram which is also called a Bi-gram [8]. This method determines for each combination
of activities if it is present in a trace. The last method, called the simple index method, uses
each event as a distinct set of attributes. Each activity maps onto one attribute. If event attrib-
utes are included in the translation, then each event attribute is mapped onto a separate attribute.

The best prediction method for this research is decision trees. Decision trees can process both
categorical as numerical variables. This method is also the most transparent one; decision trees
are simple to understand and interpret. In this thesis, we used random forests which are a set
of decision trees. Random forests achieve higher accuracy and are immune to overfitting while
preserving transparency.

Next, both the translation methods and prediction methods are used to predict rework in a
trace. The resulting method provides a quick method to include event-logs in the prediction of
rework. With the inclusion of event logs, there is more information available. This additional
information improves predictions when process aspects and rework correlate.

A problem that arises when predicting the presence of a future event using event logs is that
the activity to predict is present in the event log. Instead of working around this problem, it was
chosen to adapt the evaluation method. A naive classifier was defined, which assumes that the
rework does not occur. This classification changes as soon as the event log provides information
that the rework happened. For this to work, rework should only be required for less than 50% of
the cases. By defining this naive classifier, we established a baseline which can be used to evaluate
classification models that result from translated event logs.

While validating the model, it showed that the results were as expected. The simple index
with payload method performs best, since it can translate the structure, occurrence and frequency
of activities into event logs. It also includes event attributes, where if there is a correlation with
an attribute and the probability of rework, models trained on its resulting attributes are able to
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find this relation.

Despite the promising results found during the model validation, only a few findings resulted
from the case study. It was found that none of the data, in the event log nor in the case log,
contained information which was relevant for the prediction of rework. The simple index method
with payload only performed slightly better for a couple of prefix lengths, but it never resulted
in perfect classifications. Perfect classifications are expected, since the translated attributes at
some point state if the rework has already occurred. More straightforward methods, such as the
1-gram, did reach the perfect accuracy of 1. The choice of translation methods is dependent on
the actual results. If none of the event attributes correlates with rework, then a simpler method
should be chosen.

9.1 Future Research

The results of this thesis show that the translation of event logs has yet to prove its value in
automated production environments. In previous literature, there was only one article [19] which
used real event logs to prove its usefulness. Other articles only used artificially created event logs
to test their methods of translation [8][24]. Even though this proves its possible usefulness, it
would be more promising if its results were shown with an event log originating from an actual
process. A possible cause is the lack of structured event logs. There are only a few event logs
made available publicly, of which none of these are sequential processes.

Only a few articles translate event sequences, which is also done in this thesis. Besides, this
thesis introduces a new problem where running cases are used to predict the occurrence of an
event. It is attempted to prove usefulness with a case study, but the data did not contain any
relation with rework, which opposed this attempt. This problem could prove itself in other en-
vironments as well. Additional case studies could prove the added value of the event log data in
predicting activity occurrences. When the value of event logs in predictions is proven, a compar-
ison can be made between the different translation methods. Each method has its advantages and
disadvantages; thus an article describing these differences is useful.

One other point which was not mentioned in this thesis, is the assumed independence of cases.
Assuming cases are independent makes it easier to clean data, since each case can be removed
without having a consequence. During the case study, there were multiple cases which are not
used due to incompleteness, which makes it challenging to investigate the dependence of cases. In
reality, cases are likely to be dependent, especially in a sequential automated production envir-
onment. For example, it is likely that if a machine malfunctions, there are multiple consecutive
flawed products. Due to the lack of clean event logs from production processes, it is challenging
to analyze this expectation.
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Appendix A

R Scripts

A.1 Event Log Generation

#Def ine Number o f Cases & Set seed
NumberOfCases <− 10000
Name Act i v i ty <− ”Rework”

# Generate Event Log ====
# Name Columns
EventLog <− data . frame ( matrix ( nco l = 4) )
colnames ( EventLog ) <− c ( ”CaseID” , ” Act i v i ty ” , ” Index” , ”Duration” )

# F i l l in rows
Case <− 1
Row <− 1

whi l e ( Case < NumberOfCases + 1) {
# Reset Parameters
Phenom1 <− FALSE
Phenom2 <− FALSE
Phenom3 <− FALSE
Phenom4 <− FALSE
Index <− 1

# Star t Ac t i v i t y
EventLog [Row , ] <− c (Case , ” Star t ” , Index , 0)
Row <− Row + 1
Index <− Index + 1

# Sect i on 1
Sect ion1 <− sample ( c ( ”A” , ”B” ) , 2 , r ep l a c e = FALSE)
i f ( ( Sec t ion1 [ 1 ] == ”B” )&( Sect ion1 [ 2 ] == ”A” ) ) {

Phenom1 <− TRUE
}

f o r ( Ac t i v i ty in Sect ion1 ) {
Time <− r un i f (1 , 0 , 100)
i f ( ( Ac t i v i t y == ”B” ) & (Time > 50) ) {

Phenom2 <− TRUE
}
EventLog [Row , ] <− c (Case , Act iv i ty , Index , Time)
Row <− Row + 1
Index <− Index + 1

}

# Sect ion 2
prob <− r un i f (1 , 0 , 100)
i f ( prob < 50) {

i f ( prob < 25) {
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EventLog [Row , ] <− c (Case , ”A” , Index , Time)
Phenom3 <− TRUE
Row <− Row + 1
Index <− Index + 1

} e l s e {
EventLog [Row , ] <− c (Case , ”C” , Index , Time)
Phenom4 <− TRUE
Row <− Row + 1
Index <− Index + 1

}
}

# Sect ion 3
Sect ion3 <− c ( )
prob <− r un i f (1 , 0 , 100)
i f ( prob < 50) {

Sect ion3 <− c ( Sect ion3 , ”D” )
}
prob <− r un i f (1 , 0 , 100)
i f ( prob < 50) {

Sect ion3 <− c ( Sect ion3 , ”E” )
}
prob <− r un i f (1 , 0 , 100)
i f ( prob < 50) {

Sect ion3 <− c ( Sect ion3 , ”F” )
}
prob Rework <− (5 + (Phenom1 ∗ 25)+ (Phenom2 ∗ 25)+ (Phenom3 ∗ 25)+ (Phenom4 ∗

25) )
prob <− r un i f (1 , 0 , 100)
i f ( prob < prob Rework ) {

Sect ion3 <− c ( Sect ion3 , ”Rework” )
}
f o r ( Ac t i v i ty in Sect ion3 ) {

EventLog [Row , ] <− c (Case , Act iv i ty , Index , r un i f (1 , 0 , 100) )
Row <− Row + 1
Index <− Index + 1

}
# End Act iv i ty
EventLog [Row , ] <− c (Case , ”End” , Index , 0)
Row <− Row + 1
Index <− Index + 1
Case <− Case + 1

}
EventLog$Duration <− as . numeric ( EventLog$Duration )

# Create CaseLog and Def ine Label
CaseLog <− data . frame ( matrix ( nco l = 3 , nrow = NumberOfCases ) )
colnames (CaseLog ) <− c ( ”CaseID” , ”Length” , ”Label ” )
CaseLog$Label = FALSE

f o r ( i in 1 : NumberOfCases ) {
CaseLog$CaseID [ i ] <− i
Trace <− EventLog [ ( EventLog [ , 1 ] == CaseLog$CaseID [ i ] ) , ]
CaseLog$Length [ i ] <− NROW(Trace )
i f ( any ( Trace$ Act i v i ty == Name Act i v i ty ) ) {

CaseLog$Label [ i ] <− TRUE
}

}

rm(Trace , Act iv i ty , Case , i , Index , NumberOfCases , Phenom1 , Phenom2 , Phenom3 , Phenom4 , prob ,
prob Rework ,Row, Sect ion1 , Sect ion3 , Time)

save . image ( f i l e = ”Data . RData” )
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A.2 Boolean 1-Gram Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )

# Make Empty Datasets (1 Per Pr e f i x Length ) #
Ac t i v i t i e s <− as . cha rac t e r ( unique ( EventLog$Act i v i ty ) ) #l i s t o f d i f f e r e n t A c t i v i t i e s
EmptyDataset <− data . frame ( matrix ( nrow = NROW(CaseLog ) , nco l = length ( A c t i v i t i e s ) ) )
colnames ( EmptyDataset ) <− Ac t i v i t i e s
EmptyDataset [ , ] <− FALSE

f o r ( i in 1 : P r e f i x MaxLength ) {
Name Dataset <− paste ( ”Data Pre f i x ” , i , sep = ” ” )
a s s i gn (Name Dataset , EmptyDataset )

}
rm(EmptyDataset )

# Determine Values #
f o r ( i in 1 :NROW(CaseLog ) ) { #Loop per case

Trace <− EventLog [ ( EventLog$CaseID == CaseLog$CaseID [ i ] ) , ]
f o r ( i i in 1 :NROW(Trace ) ) { #Loop per index

Name Dataset <− paste ( ”Data Pre f i x ” , i i , sep = ” ” )
Add Data <− get (Name Dataset )
f o r ( i i i in 1 : l ength ( A c t i v i t i e s ) ) { #Check per a c t i v i t y

i f ( any ( as . cha rac t e r ( Trace$ Act i v i ty [ 1 : i i ] ) == Ac t i v i t i e s [ i i i ] ) ) {
Add Data [ i , i i i ] <− TRUE

}
}
a s s i gn (Name Dataset , Add Data )

}
# When a t ra c e l ength i s sho r t e r than the maximum length , the data remains the

same f o r those p r e f i x e s
i f (NROW(Trace ) < Pre f i x MaxLength ) {

Name Last <− paste ( ”Data Pre f i x ” ,NROW(Trace ) , sep = ” ” )
Data Last <− get (Name Last )
Data Last <− Data Last [ i , ]
f o r ( i i in ( (NROW(Trace )+1) : P r e f i x MaxLength ) ) {

Name Dataset <− paste ( ”Data Pre f i x ” , i i , sep = ” ” )
Add Data <− get (Name Dataset )
Add Data [ i , ] <− Data Last
a s s i gn (Name Dataset , Add Data )

}
}

}

rm( Ac t i v i t i e s , i , i i , i i i , Name Dataset ,Name Last , Data Last ,Add Data , Trace , P r e f i x
MaxLength )

save . image ( ”1Gram−Boolean . RData” )

Rework Prediction Using Event Logs 49



APPENDIX A. R SCRIPTS

A.3 Frequency 1-Gram Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )

# Make Empty Datasets (1 Per Pr e f i x Length ) #
Ac t i v i t i e s <− as . cha rac t e r ( unique ( EventLog$Act i v i ty ) ) #l i s t o f d i f f e r e n t A c t i v i t i e s
EmptyDataset <− data . frame ( matrix ( nrow = NROW(CaseLog ) , nco l = length ( A c t i v i t i e s ) ) )
colnames ( EmptyDataset ) <− Ac t i v i t i e s
EmptyDataset [ , ] <− 0

f o r ( i in 1 : P r e f i x MaxLength ) {
Name Dataset <− paste ( ”Data Pre f i x ” , i , sep = ” ” )
a s s i gn (Name Dataset , EmptyDataset )

}
rm(EmptyDataset )

# Determine Values #
f o r ( i in 1 :NROW(CaseLog ) ) { #Loop per case

Trace <− EventLog [ ( EventLog$CaseID == CaseLog$CaseID [ i ] ) , ]
f o r ( i i in 1 :NROW(Trace ) ) { #Loop per index

Name Dataset <− paste ( ”Data Pre f i x ” , i i , sep = ” ” )
Add Data <− get (Name Dataset )
f o r ( i i i in 1 : l ength ( A c t i v i t i e s ) ) { #Check per a c t i v i t y

i f ( any ( as . cha rac t e r ( Trace$ Act i v i ty [ 1 : i i ] ) == Ac t i v i t i e s [ i i i ] ) ) {
Add Data [ i , i i i ] <− l ength ( which ( as . cha rac t e r ( Trace$ Act i v i ty [ 1 : i i ] ) ==

Ac t i v i t i e s [ i i i ] ) )
}

}
a s s i gn (Name Dataset , Add Data )

}
# When a t ra c e l ength i s sho r t e r than the maximum length , the data remains the

same f o r those p r e f i x e s
i f (NROW(Trace ) < Pre f i x MaxLength ) {

Name Last <− paste ( ”Data Pre f i x ” ,NROW(Trace ) , sep = ” ” )
Data Last <− get (Name Last )
Data Last <− Data Last [ i , ]
f o r ( i i in ( (NROW(Trace )+1) : P r e f i x MaxLength ) ) {

Name Dataset <− paste ( ”Data Pre f i x ” , i i , sep = ” ” )
Add Data <− get (Name Dataset )
Add Data [ i , ] <− Data Last
a s s i gn (Name Dataset , Add Data )

}
}

}

rm( Ac t i v i t i e s , i , i i , i i i , Name Dataset ,Name Last , Data Last ,Add Data , Trace , P r e f i x
MaxLength )

save . image ( ”1Gram−Frequency . RData” )
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APPENDIX A. R SCRIPTS

A.4 Bi-Gram Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )

A c t i v i t i e s <− unique ( as . cha rac t e r ( EventLog$Act i v i ty ) )
Values <− array (dim = c (NROW(CaseLog ) , P r e f i x MaxLength ) )
A c t i v i t i e s NO <− l ength ( A c t i v i t i e s )

f o r ( i in 1 :NROW(CaseLog ) ) {
Trace <− EventLog [ ( EventLog [ , 1 ] == CaseLog [ i , 1 ] ) , ]
f o r ( i i in 2 :NROW(Trace ) ) {

Act iv i ty1 <− which ( A c t i v i t i e s == as . cha rac t e r ( Trace$ Act i v i ty [ i i −1]) )
Act iv i ty2 <− which ( A c t i v i t i e s == as . cha rac t e r ( Trace$ Act i v i ty [ i i ] ) )
Values [ i , i i ] <− ( A c t i v i t i e s NO∗ ( Act iv i ty1 −1)+Act iv i ty2 )

}
}

#Create Empty Dataset
Add Columns <− data . frame ( matrix ( nrow = NROW(CaseLog ) , nco l = A c t i v i t i e s NO∗

Ac t i v i t i e s NO) )
Add Columns [ ] <− FALSE
ColNames <− c ( )
f o r ( i in 1 : l ength ( A c t i v i t i e s ) ) {

f o r ( i i in 1 : l ength ( A c t i v i t i e s ) ) {
ColNames <− c (ColNames , paste ( A c t i v i t i e s [ i ] , A c t i v i t i e s [ i i ] , sep = ” ” ) )

}
}
colnames (Add Columns ) <− ColNames

# Assign Data Per Pr e f i x #
f o r ( i in 2 : P r e f i x MaxLength ) {

f o r ( i i in 1 :NROW(CaseLog ) ) {
x <− Values [ i i , i ]
i f ( i s . na (x ) ) {

next ( )
}
Add Columns [ i i , x ] <− TRUE

}
Name Dataset <− paste ( ”Data Pre f i x ” , i , sep = ” ” )
a s s i gn (Name Dataset ,Add Columns )

}
rm(x , P r e f i x MaxLength ,Name Dataset , i , i i , ColNames , Act iv i ty1 , Act iv i ty2 , A c t i v i t i e s NO,

Ac t i v i t i e s , Values , Trace ,Add Columns )
save . image ( f i l e = ”BiGram .RData” )
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A.5 Simple Index Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )

# Create Empty Dataset #
Add Columns <− data . frame ( matrix ( nrow = NROW(CaseLog ) , nco l = max(CaseLog$Length ) ) )
names <− c ( )
f o r ( i in 1 :max(CaseLog$Length ) ) {

names <− c (names , paste ( ”Event” , i , sep = ” ” ) )
}
colnames (Add Columns ) <− names
rm(names )

#F i l l In Data Values #
f o r ( i in 1 :NROW(CaseLog ) ) {

Trace <− EventLog [ ( EventLog$CaseID == CaseLog$CaseID [ i ] ) , ]
d i f <− NCOL(Add Columns )−NROW(Trace )
Add Columns [ i , ] <− c ( as . cha rac t e r ( Trace$ Act i v i ty ) , rep ( ”None” , d i f ) )

}

# Change Column Type to f a c t o r #
f o r ( i in 1 :NCOL(Add Columns ) ) {

Add Columns [ , i ] <− as . f a c t o r (Add Columns [ , i ] )
}
# Divide Complete Set Per p r e f i x
f o r ( i in 1 : P r e f i x MaxLength ) {

Name Data <− paste ( ”Data Pre f i x ” , i , sep = ” ” )
a s s i gn (Name Data ,Add Columns [ , ( 1 : i ) ] )

}
rm( Pre f i x MaxLength ,Name Data , i , d i f ,Add Columns )
save . image ( ”SimpleIndex . RData” )
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A.6 Simple Index With Payload Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )
I gno r eL i s t <− c ( ”CaseID” , ” Index” ) #Payload that shouldnt be converted in to

a t t r i b u t e s

# Create Empty Dataframe #
Add Columns <− data . frame ( matrix ( nrow = NROW(CaseLog ) , nco l = max(CaseLog$Length ) ∗

(NCOL(EventLog ) − l ength ( I gno r eL i s t ) ) ) )
names l i s t <− c ( )
names <− names ( EventLog )
names <− names[−which ( names %in% Igno r eL i s t ) ]
f o r ( i in 1 :max(CaseLog$Length ) ) {

names l i s t <− c ( names l i s t , paste ( names , i , sep = ” ” ) )
}
colnames (Add Columns ) <− names l i s t

EventLog f i l t e r e d <− EventLog [ ,−which ( names ( EventLog ) %in% Igno r eL i s t ) ]

#Create Empty Act i v i ty (To f i l l columns that are f i n i s h e d Ea r l i e r )#
EmptyActivity <− EventLog f i l t e r e d [ 1 , ]
f o r ( i in 1 :NCOL( EmptyActivity ) ) {

i f ( c l a s s ( EmptyActivity [ , i ] ) == ” charac t e r ” ) {
EmptyActivity [ 1 , i ] <− ”None”

} e l s e {
EmptyActivity [ 1 , i ] <− 0

}
}

f o r ( i in 1 :NROW(CaseLog ) ) {
Trace <− EventLog f i l t e r e d [ ( EventLog$CaseID == CaseLog$CaseID [ i ] ) , ]
f o r ( i i in 1 : P r e f i x MaxLength ) {

i f ( i i < NROW(Trace )+1){
Add Columns [ i , ( ( ( i i −1)∗NCOL(EventLog f i l t e r e d )+1) : (NCOL(EventLog f i l t e r e d ) ∗ i i

) ) ] <− Trace [ i i , ]
} e l s e {

Add Columns [ i , ( ( ( i i −1)∗NCOL(EventLog f i l t e r e d )+1) : (NCOL(EventLog f i l t e r e d ) ∗ i i
) ) ] <− EmptyActivity

}
}

}
Add Columns <− as . data . frame ( unc l a s s (Add Columns ) ) #change S t r i ng s to Factors
f o r ( i in 1 :max(CaseLog$Length ) ) {

Name Data <− paste ( ”Data Pre f i x ” , i , sep = ” ” )
Data <− Add Columns [ , 1 : ( i ∗NCOL(EventLog f i l t e r e d ) ) ]
a s s i gn (Name Data , Data )

}
rm(Add Columns , Data , EmptyActivity , EventLog f i l t e r e d , Trace , i , I gnoreL i s t , i i ,

Name Data , names , names l i s t , P r e f i x MaxLength )
save . image ( ”SimpIndexPayload . RData” )
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A.7 Naive Classifier Implementation

load ( ”Data . RData” )
Pr e f i x MaxLength <− max(CaseLog$Length )
Na i v eC l a s s i f i e r <− data . frame ( matrix ( nco l = (max(CaseLog$Length ) ) , nrow = NROW(

CaseLog ) ) )
Name Act i v i ty <− ”Rework”

# Def ine Column Names
names <− c ( )
f o r ( i in 1 :max(CaseLog$Length ) ) {

names <− c (names , paste ( ”Class ” , i , sep = ”” ) )
}
colnames ( Na i v eC l a s s i f i e r ) <− names

# Determine Values
f o r ( i in 1 :NROW( Na i v eC l a s s i f i e r ) ) {

Trace <− EventLog [ ( EventLog$CaseID == CaseLog$CaseID [ i ] ) , ]
i f ( any ( Trace$ Act i v i ty == Name Act i v i ty ) ) {

IndexOfRework <− which ( Trace$ Act i v i ty == Name Act i v i ty )
Na i v eC l a s s i f i e r [ i , ( 1 : ( IndexOfRework [1 ]−1) ) ] <− FALSE
Na i v eC l a s s i f i e r [ i , ( IndexOfRework [ 1 ] :NCOL( Na i v eC l a s s i f i e r ) ) ] <− TRUE

} e l s e {
Na i v eC l a s s i f i e r [ i , ( 1 :NCOL( Na i v eC l a s s i f i e r ) ) ] <− FALSE

}
}
rm(Trace , i , IndexOfRework ,Name Act iv i ty , names , P r e f i x MaxLength )
save . image ( f i l e = ” Na i v eC l a s s i f i e r . RData” )
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Appendix B

Classification Results of Random
Forests with Case Data

The next pages of this appendix presents six different table. Five of those tables present the
confusion matrices and corresponding evaluation measures for each random forest model that was
trained using attributes from that translation method. This appendix also includes the confusion
matrices for each prefix of the simple classifier, which is shown in table B.1 on page 56.
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Table B.1: Classification Results of the Simple Classifier That Was Implemented

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 9750 0 1293 0 0.883 0.117 0.000 1.000
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9750 0 1293 0 0.883 0.117 0.000 1.000
5 9750 0 1293 0 0.883 0.117 0.000 1.000
6 9750 0 1293 0 0.883 0.117 0.000 1.000
7 9750 0 1293 0 0.883 0.117 0.000 1.000
8 9750 0 1293 0 0.883 0.117 0.000 1.000
9 9750 0 1293 0 0.883 0.117 0.000 1.000

10 9750 0 1293 0 0.883 0.117 0.000 1.000
11 9750 0 1293 0 0.883 0.117 0.000 1.000
12 9750 0 1293 0 0.883 0.117 0.000 1.000
13 9750 0 1293 0 0.883 0.117 0.000 1.000
14 9750 0 1293 0 0.883 0.117 0.000 1.000
15 9750 0 1293 0 0.883 0.117 0.000 1.000
16 9750 0 1293 0 0.883 0.117 0.000 1.000
17 9750 0 1293 0 0.883 0.117 0.000 1.000
18 9750 0 1293 0 0.883 0.117 0.000 1.000
19 9750 0 1293 0 0.883 0.117 0.000 1.000
20 9750 0 1293 0 0.883 0.117 0.000 1.000
21 9750 0 1293 0 0.883 0.117 0.000 1.000
22 9750 0 1293 0 0.883 0.117 0.000 1.000
23 9750 0 1293 0 0.883 0.117 0.000 1.000
24 9750 0 1293 0 0.883 0.117 0.000 1.000
25 9750 0 1293 0 0.883 0.117 0.000 1.000
26 9750 0 1199 94 0.891 0.109 1.000 0.073 1.000
27 9750 0 1017 276 0.908 0.092 1.000 0.213 1.000
28 9750 0 932 361 0.916 0.084 1.000 0.279 1.000
29 9750 0 832 461 0.925 0.075 1.000 0.357 1.000
30 9750 0 416 877 0.962 0.038 1.000 0.678 1.000
31 9750 0 208 1085 0.981 0.019 1.000 0.839 1.000
32 9750 0 127 1166 0.988 0.012 1.000 0.902 1.000
33 9750 0 75 1218 0.993 0.007 1.000 0.942 1.000
34 9750 0 47 1246 0.996 0.004 1.000 0.964 1.000
35 9750 0 27 1266 0.998 0.002 1.000 0.979 1.000
36 9750 0 18 1275 0.998 0.002 1.000 0.986 1.000
37 9750 0 7 1286 0.999 0.001 1.000 0.995 1.000
38 9750 0 5 1288 1.000 0.000 1.000 0.996 1.000
39 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
40 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
41 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
42 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table B.2: Classification Results of the Boolean 1-Gram Translation Method In Combination
With Case Data

PrefixLength TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 8935 815 1165 128 0.821 0.179 0.136 0.099 0.916
2 8972 778 1165 128 0.824 0.176 0.141 0.099 0.920
3 9095 655 1187 106 0.833 0.167 0.139 0.082 0.933
4 9013 737 1162 131 0.828 0.172 0.151 0.101 0.924
5 9104 646 1191 102 0.834 0.166 0.136 0.079 0.934
6 9127 623 1185 108 0.836 0.164 0.148 0.084 0.936
7 9038 712 1174 119 0.829 0.171 0.143 0.092 0.927
8 9142 608 1189 104 0.837 0.163 0.146 0.080 0.938
9 9185 565 1199 94 0.840 0.160 0.143 0.073 0.942

10 9318 432 1219 74 0.850 0.150 0.146 0.057 0.956
11 9085 665 1177 116 0.833 0.167 0.149 0.090 0.932
12 9233 517 1205 88 0.844 0.156 0.145 0.068 0.947
13 9296 454 1211 82 0.849 0.151 0.153 0.063 0.953
14 9267 483 1207 86 0.847 0.153 0.151 0.067 0.950
15 9258 492 1206 87 0.846 0.154 0.150 0.067 0.950
16 9261 489 1216 77 0.846 0.154 0.136 0.060 0.950
17 9339 411 1210 83 0.853 0.147 0.168 0.064 0.958
18 9377 373 1221 72 0.856 0.144 0.162 0.056 0.962
19 9308 442 1222 71 0.849 0.151 0.138 0.055 0.955
20 9307 443 1204 89 0.851 0.149 0.167 0.069 0.955
21 9332 418 1210 83 0.853 0.147 0.166 0.064 0.957
22 9324 426 1219 74 0.851 0.149 0.148 0.057 0.956
23 9390 360 1221 72 0.857 0.143 0.167 0.056 0.963
24 9450 300 1236 57 0.861 0.139 0.160 0.044 0.969
25 9482 268 1238 55 0.864 0.136 0.170 0.043 0.973
26 9318 432 1219 74 0.850 0.150 0.146 0.057 0.956
27 9434 316 1130 163 0.869 0.131 0.340 0.126 0.968
28 9416 334 964 329 0.882 0.118 0.496 0.254 0.966
29 9527 223 874 419 0.901 0.099 0.653 0.324 0.977
30 9589 161 802 491 0.913 0.087 0.753 0.380 0.983
31 9578 172 361 932 0.952 0.048 0.844 0.721 0.982
32 9633 117 171 1122 0.974 0.026 0.906 0.868 0.988
33 9630 120 78 1215 0.982 0.018 0.910 0.940 0.988
34 9699 51 44 1249 0.991 0.009 0.961 0.966 0.995
35 9716 34 22 1271 0.995 0.005 0.974 0.983 0.997
36 9727 23 16 1277 0.996 0.004 0.982 0.988 0.998
37 9738 12 10 1283 0.998 0.002 0.991 0.992 0.999
38 9744 6 6 1287 0.999 0.001 0.995 0.995 0.999
39 9747 3 4 1289 0.999 0.001 0.998 0.997 1.000
40 9747 3 1 1292 1.000 0.000 0.998 0.999 1.000
41 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
42 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table B.3: Classification Results of the Frequency 1-Gram Translation Method In Combination
With Case Data

PrefixLength TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 8939 811 1165 128 0.821 0.179 0.136 0.099 0.917
2 9080 670 1170 123 0.833 0.167 0.155 0.095 0.931
3 9168 582 1188 105 0.840 0.160 0.153 0.081 0.940
4 9019 731 1177 116 0.827 0.173 0.137 0.090 0.925
5 9170 580 1190 103 0.840 0.160 0.151 0.080 0.941
6 9144 606 1196 97 0.837 0.163 0.138 0.075 0.938
7 9028 722 1171 122 0.829 0.171 0.145 0.094 0.926
8 9208 542 1190 103 0.843 0.157 0.160 0.080 0.944
9 9180 570 1192 101 0.840 0.160 0.151 0.078 0.942

10 9286 464 1209 84 0.849 0.151 0.153 0.065 0.952
11 9047 703 1178 115 0.830 0.170 0.141 0.089 0.928
12 9343 407 1214 79 0.853 0.147 0.163 0.061 0.958
13 9241 509 1202 91 0.845 0.155 0.152 0.070 0.948
14 9231 519 1202 91 0.844 0.156 0.149 0.070 0.947
15 9318 432 1210 83 0.851 0.149 0.161 0.064 0.956
16 9379 371 1229 64 0.855 0.145 0.147 0.049 0.962
17 9310 440 1211 82 0.850 0.150 0.157 0.063 0.955
18 9413 337 1228 65 0.858 0.142 0.162 0.050 0.965
19 9286 464 1211 82 0.848 0.152 0.150 0.063 0.952
20 9330 420 1219 74 0.852 0.148 0.150 0.057 0.957
21 9384 366 1217 76 0.857 0.143 0.172 0.059 0.962
22 9212 538 1194 99 0.843 0.157 0.155 0.077 0.945
23 9297 453 1207 86 0.850 0.150 0.160 0.067 0.954
24 9277 473 1207 86 0.848 0.152 0.154 0.067 0.951
25 9285 465 1203 90 0.849 0.151 0.162 0.070 0.952
26 9321 429 1213 80 0.851 0.149 0.157 0.062 0.956
27 9511 239 1148 145 0.874 0.126 0.378 0.112 0.975
28 9483 267 964 329 0.889 0.111 0.552 0.254 0.973
29 9526 224 878 415 0.900 0.100 0.649 0.321 0.977
30 9543 207 790 503 0.910 0.090 0.708 0.389 0.979
31 9599 151 368 925 0.953 0.047 0.860 0.715 0.985
32 9633 117 171 1122 0.974 0.026 0.906 0.868 0.988
33 9652 98 78 1215 0.984 0.016 0.925 0.940 0.990
34 9712 38 46 1247 0.992 0.008 0.970 0.964 0.996
35 9729 21 23 1270 0.996 0.004 0.984 0.982 0.998
36 9739 11 17 1276 0.997 0.003 0.991 0.987 0.999
37 9740 10 10 1283 0.998 0.002 0.992 0.992 0.999
38 9747 3 6 1287 0.999 0.001 0.998 0.995 1.000
39 9749 1 4 1289 1.000 0.000 0.999 0.997 1.000
40 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
41 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
42 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table B.4: Classification Results of the Bi-gram Translation Method In Combination With Case
Data

PrefixLength TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1
2 9104 646 1182 111 0.834 0.166 0.147 0.086 0.934
3 9308 442 1212 81 0.850 0.150 0.155 0.063 0.955
4 9651 99 1270 23 0.876 0.124 0.189 0.018 0.990
5 9646 104 1264 29 0.876 0.124 0.218 0.022 0.989
6 9620 130 1259 34 0.874 0.126 0.207 0.026 0.987
7 9673 77 1270 23 0.878 0.122 0.230 0.018 0.992
8 9631 119 1261 32 0.875 0.125 0.212 0.025 0.988
9 9700 50 1281 12 0.879 0.121 0.194 0.009 0.995

10 9714 36 1281 12 0.881 0.119 0.250 0.009 0.996
11 9725 25 1287 6 0.881 0.119 0.194 0.005 0.997
12 9734 16 1286 7 0.882 0.118 0.304 0.005 0.998
13 9735 15 1288 5 0.882 0.118 0.250 0.004 0.998
14 9741 9 1291 2 0.882 0.118 0.182 0.002 0.999
15 9728 22 1287 6 0.881 0.119 0.214 0.005 0.998
16 9731 19 1288 5 0.882 0.118 0.208 0.004 0.998
17 9739 11 1290 3 0.882 0.118 0.214 0.002 0.999
18 9736 14 1288 5 0.882 0.118 0.263 0.004 0.999
19 9737 13 1289 4 0.882 0.118 0.235 0.003 0.999
20 9739 11 1288 5 0.882 0.118 0.312 0.004 0.999
21 9739 11 1291 2 0.882 0.118 0.154 0.002 0.999
22 9734 16 1287 6 0.882 0.118 0.273 0.005 0.998
23 9743 7 1289 4 0.883 0.117 0.364 0.003 0.999
24 9736 14 1288 5 0.882 0.118 0.263 0.004 0.999
25 9733 17 1290 3 0.882 0.118 0.150 0.002 0.998
26 9738 12 1290 3 0.882 0.118 0.200 0.002 0.999
27 9737 13 1193 100 0.891 0.109 0.885 0.077 0.999
28 9744 6 1008 285 0.908 0.092 0.979 0.220 0.999
29 9742 8 919 374 0.916 0.084 0.979 0.289 0.999
30 9746 4 828 465 0.925 0.075 0.991 0.360 1.000
31 9747 3 392 901 0.964 0.036 0.997 0.697 1.000
32 9738 12 191 1102 0.982 0.018 0.989 0.852 0.999
33 9732 18 96 1197 0.990 0.010 0.985 0.926 0.998
34 9730 20 50 1243 0.994 0.006 0.984 0.961 0.998
35 9730 20 34 1259 0.995 0.005 0.984 0.974 0.998
36 9741 9 20 1273 0.997 0.003 0.993 0.985 0.999
37 9741 9 11 1282 0.998 0.002 0.993 0.991 0.999
38 9743 7 7 1286 0.999 0.001 0.995 0.995 0.999
39 9745 5 5 1288 0.999 0.001 0.996 0.996 0.999
40 9746 4 1 1292 1.000 0.000 0.997 0.999 1.000
41 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
42 9745 5 1 1292 0.999 0.001 0.996 0.999 0.999
43 9749 1 0 1293 1.000 0.000 0.999 1.000 1.000
44 9748 2 1 1292 1.000 0.000 0.998 0.999 1.000
45 9747 3 0 1293 1.000 0.000 0.998 1.000 1.000
46 9747 3 0 1293 1.000 0.000 0.998 1.000 1.000
47 9744 6 0 1293 0.999 0.001 0.995 1.000 0.999
48 9747 3 0 1293 1.000 0.000 0.998 1.000 1.000
49 9746 4 1 1292 1.000 0.000 0.997 0.999 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9746 4 0 1293 1.000 0.000 0.997 1.000 1.000
52 9746 4 0 1293 1.000 0.000 0.997 1.000 1.000
53 9749 1 0 1293 1.000 0.000 0.999 1.000 1.000
54 9746 4 0 1293 1.000 0.000 0.997 1.000 1.000



Table B.5: Classification Results of the Simple Index Translation Method without payload in
combination with Case Data

PrefixLength TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 8942 808 1164 129 0.821 0.179 0.138 0.100 0.917
2 8590 1160 1106 187 0.795 0.205 0.139 0.145 0.881
3 8435 1315 1089 204 0.782 0.218 0.134 0.158 0.865
4 8539 1211 1098 195 0.791 0.209 0.139 0.151 0.876
5 8745 1005 1137 156 0.806 0.194 0.134 0.121 0.897
6 8819 931 1130 163 0.813 0.187 0.149 0.126 0.905
7 8773 977 1136 157 0.809 0.191 0.138 0.121 0.900
8 8735 1015 1131 162 0.806 0.194 0.138 0.125 0.896
9 8758 992 1137 156 0.807 0.193 0.136 0.121 0.898

10 8846 904 1150 143 0.814 0.186 0.137 0.111 0.907
11 8806 944 1132 161 0.812 0.188 0.146 0.125 0.903
12 8874 876 1141 152 0.817 0.183 0.148 0.118 0.910
13 8820 930 1150 143 0.812 0.188 0.133 0.111 0.905
14 8817 933 1149 144 0.811 0.189 0.134 0.111 0.904
15 8636 1114 1115 178 0.798 0.202 0.138 0.138 0.886
16 8480 1270 1100 193 0.785 0.215 0.132 0.149 0.870
17 8440 1310 1081 212 0.783 0.217 0.139 0.164 0.866
18 8633 1117 1110 183 0.798 0.202 0.141 0.142 0.885
19 8669 1081 1115 178 0.801 0.199 0.141 0.138 0.889
20 8594 1156 1111 182 0.795 0.205 0.136 0.141 0.881
21 8754 996 1133 160 0.807 0.193 0.138 0.124 0.898
22 8847 903 1149 144 0.814 0.186 0.138 0.111 0.907
23 8774 976 1137 156 0.809 0.191 0.138 0.121 0.900
24 8775 975 1135 158 0.809 0.191 0.139 0.122 0.900
25 8795 955 1140 153 0.810 0.190 0.138 0.118 0.902
26 8860 890 1150 143 0.815 0.185 0.138 0.111 0.909
27 8950 800 1071 222 0.831 0.169 0.217 0.172 0.918
28 8927 823 893 400 0.845 0.155 0.327 0.309 0.916
29 9114 636 814 479 0.869 0.131 0.430 0.370 0.935
30 9042 708 708 585 0.872 0.128 0.452 0.452 0.927
31 9302 448 314 979 0.931 0.069 0.686 0.757 0.954
32 9528 222 156 1137 0.966 0.034 0.837 0.879 0.977
33 9587 163 67 1226 0.979 0.021 0.883 0.948 0.983
34 9687 63 40 1253 0.991 0.009 0.952 0.969 0.994
35 9706 44 19 1274 0.994 0.006 0.967 0.985 0.995
36 9710 40 9 1284 0.996 0.004 0.970 0.993 0.996
37 9708 42 5 1288 0.996 0.004 0.968 0.996 0.996
38 9711 39 5 1288 0.996 0.004 0.971 0.996 0.996
39 9710 40 3 1290 0.996 0.004 0.970 0.998 0.996
40 9704 46 5 1288 0.995 0.005 0.966 0.996 0.995
41 9708 42 2 1291 0.996 0.004 0.968 0.998 0.996
42 9709 41 1 1292 0.996 0.004 0.969 0.999 0.996
43 9709 41 2 1291 0.996 0.004 0.969 0.998 0.996
44 9709 41 3 1290 0.996 0.004 0.969 0.998 0.996
45 9707 43 2 1291 0.996 0.004 0.968 0.998 0.996
46 9708 42 2 1291 0.996 0.004 0.968 0.998 0.996
47 9710 40 3 1290 0.996 0.004 0.970 0.998 0.996
48 9714 36 1 1292 0.997 0.003 0.973 0.999 0.996
49 9710 40 2 1291 0.996 0.004 0.970 0.998 0.996
50 9707 43 2 1291 0.996 0.004 0.968 0.998 0.996
51 9712 38 2 1291 0.996 0.004 0.971 0.998 0.996
52 9708 42 3 1290 0.996 0.004 0.968 0.998 0.996
53 9714 36 2 1291 0.997 0.003 0.973 0.998 0.996
54 9706 44 2 1291 0.996 0.004 0.967 0.998 0.995



Table B.6: Classification Results of the Simple Index Translation Method with payload in com-
bination with Case Data

PrefixLength TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 8931 819 1159 134 0.821 0.179 0.141 0.104 0.916
2 9173 577 1186 107 0.840 0.160 0.156 0.083 0.941
3 9208 542 1196 97 0.843 0.157 0.152 0.075 0.944
4 9304 446 1218 75 0.849 0.151 0.144 0.058 0.954
5 9409 341 1234 59 0.857 0.143 0.147 0.046 0.965
6 9534 216 1252 41 0.867 0.133 0.160 0.032 0.978
7 9550 200 1248 45 0.869 0.131 0.184 0.035 0.979
8 9597 153 1271 22 0.871 0.129 0.126 0.017 0.984
9 9596 154 1264 29 0.872 0.128 0.158 0.022 0.984

10 9650 100 1278 15 0.875 0.125 0.130 0.012 0.990
11 9637 113 1274 19 0.874 0.126 0.144 0.015 0.988
12 9654 96 1278 15 0.876 0.124 0.135 0.012 0.990
13 9698 52 1283 10 0.879 0.121 0.161 0.008 0.995
14 9698 52 1280 13 0.879 0.121 0.200 0.010 0.995
15 9690 60 1284 9 0.878 0.122 0.130 0.007 0.994
16 9709 41 1288 5 0.880 0.120 0.109 0.004 0.996
17 9696 54 1290 3 0.878 0.122 0.053 0.002 0.994
18 9706 44 1286 7 0.880 0.120 0.137 0.005 0.995
19 9708 42 1287 6 0.880 0.120 0.125 0.005 0.996
20 9708 42 1289 4 0.879 0.121 0.087 0.003 0.996
21 9704 46 1287 6 0.879 0.121 0.115 0.005 0.995
22 9700 50 1288 5 0.879 0.121 0.091 0.004 0.995
23 9716 34 1286 7 0.880 0.120 0.171 0.005 0.997
24 9706 44 1288 5 0.879 0.121 0.102 0.004 0.995
25 9712 38 1290 3 0.880 0.120 0.073 0.002 0.996
26 9717 33 1189 104 0.889 0.111 0.759 0.080 0.997
27 9717 33 1001 292 0.906 0.094 0.898 0.226 0.997
28 9712 38 914 379 0.914 0.086 0.909 0.293 0.996
29 9726 24 822 471 0.923 0.077 0.952 0.364 0.998
30 9724 26 385 908 0.963 0.037 0.972 0.702 0.997
31 9726 24 184 1109 0.981 0.019 0.979 0.858 0.998
32 9721 29 86 1207 0.990 0.010 0.977 0.933 0.997
33 9726 24 49 1244 0.993 0.007 0.981 0.962 0.998
34 9726 24 34 1259 0.995 0.005 0.981 0.974 0.998
35 9727 23 18 1275 0.996 0.004 0.982 0.986 0.998
36 9722 28 12 1281 0.996 0.004 0.979 0.991 0.997
37 9729 21 10 1283 0.997 0.003 0.984 0.992 0.998
38 9728 22 5 1288 0.998 0.002 0.983 0.996 0.998
39 9731 19 6 1287 0.998 0.002 0.985 0.995 0.998
40 9727 23 7 1286 0.997 0.003 0.982 0.995 0.998
41 9724 26 6 1287 0.997 0.003 0.980 0.995 0.997
42 9728 22 4 1289 0.998 0.002 0.983 0.997 0.998
43 9727 23 7 1286 0.997 0.003 0.982 0.995 0.998
44 9727 23 5 1288 0.997 0.003 0.982 0.996 0.998
45 9726 24 6 1287 0.997 0.003 0.982 0.995 0.998
46 9727 23 6 1287 0.997 0.003 0.982 0.995 0.998
47 9727 23 4 1289 0.998 0.002 0.982 0.997 0.998
48 9726 24 4 1289 0.997 0.003 0.982 0.997 0.998
49 9728 22 5 1288 0.998 0.002 0.983 0.996 0.998
50 9727 23 6 1287 0.997 0.003 0.982 0.995 0.998
51 9723 27 5 1288 0.997 0.003 0.979 0.996 0.997
52 9725 25 5 1288 0.997 0.003 0.981 0.996 0.997
53 9723 27 6 1287 0.997 0.003 0.979 0.995 0.997
54 9727 23 6 1287 0.997 0.003 0.982 0.995 0.998





Appendix C

Classification Results of Random
Forests without Case Data

The following pages present five tables, one per page. Each table shows the confusion matrices and
corresponding evaluation measures of the classification results. Each table shows the classification
results of random forests that were trained on attributes resulting from one of the five described
translation methods.
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Table C.1: Classification Results of the Boolean 1-Gram Translation Method

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9750 0 1293 0 0.883 0.117 0.000 1.000
5 9750 0 1293 0 0.883 0.117 0.000 1.000
6 9750 0 1293 0 0.883 0.117 0.000 1.000
7 9750 0 1293 0 0.883 0.117 0.000 1.000
8 9750 0 1293 0 0.883 0.117 0.000 1.000
9 9750 0 1293 0 0.883 0.117 0.000 1.000

10 9750 0 1293 0 0.883 0.117 0.000 1.000
11 9750 0 1293 0 0.883 0.117 0.000 1.000
12 9750 0 1293 0 0.883 0.117 0.000 1.000
13 9750 0 1293 0 0.883 0.117 0.000 1.000
14 9750 0 1293 0 0.883 0.117 0.000 1.000
15 9750 0 1293 0 0.883 0.117 0.000 1.000
16 9750 0 1293 0 0.883 0.117 0.000 1.000
17 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
18 9750 0 1293 0 0.883 0.117 0.000 1.000
19 9750 0 1293 0 0.883 0.117 0.000 1.000
20 9750 0 1293 0 0.883 0.117 0.000 1.000
21 9750 0 1293 0 0.883 0.117 0.000 1.000
22 9750 0 1293 0 0.883 0.117 0.000 1.000
23 9750 0 1293 0 0.883 0.117 0.000 1.000
24 9750 0 1293 0 0.883 0.117 0.000 1.000
25 9750 0 1293 0 0.883 0.117 0.000 1.000
26 9750 0 1293 0 0.883 0.117 0.000 1.000
27 9750 0 1196 97 0.892 0.108 1.000 0.075 1.000
28 9750 0 1009 284 0.909 0.091 1.000 0.220 1.000
29 9749 1 920 373 0.917 0.083 0.997 0.288 1.000
30 9748 2 822 471 0.925 0.075 0.996 0.364 1.000
31 9747 3 390 903 0.964 0.036 0.997 0.698 1.000
32 9744 6 187 1106 0.983 0.017 0.995 0.855 0.999
33 9742 8 90 1203 0.991 0.009 0.993 0.930 0.999
34 9741 9 50 1243 0.995 0.005 0.993 0.961 0.999
35 9740 10 27 1266 0.997 0.003 0.992 0.979 0.999
36 9742 8 19 1274 0.998 0.002 0.994 0.985 0.999
37 9745 5 13 1280 0.998 0.002 0.996 0.990 0.999
38 9748 2 7 1286 0.999 0.001 0.998 0.995 1.000
39 9749 1 5 1288 0.999 0.001 0.999 0.996 1.000
40 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
41 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
42 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9749 1 0 1293 1.000 0.000 0.999 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table C.2: Classification Results of the Frequency 1-Gram Translation Method

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9750 0 1293 0 0.883 0.117 0.000 1.000
5 9750 0 1293 0 0.883 0.117 0.000 1.000
6 9750 0 1293 0 0.883 0.117 0.000 1.000
7 9750 0 1293 0 0.883 0.117 0.000 1.000
8 9750 0 1293 0 0.883 0.117 0.000 1.000
9 9750 0 1293 0 0.883 0.117 0.000 1.000

10 9750 0 1293 0 0.883 0.117 0.000 1.000
11 9750 0 1293 0 0.883 0.117 0.000 1.000
12 9750 0 1293 0 0.883 0.117 0.000 1.000
13 9750 0 1293 0 0.883 0.117 0.000 1.000
14 9750 0 1293 0 0.883 0.117 0.000 1.000
15 9750 0 1293 0 0.883 0.117 0.000 1.000
16 9744 6 1293 0 0.882 0.118 0.000 0.000 0.999
17 9750 0 1293 0 0.883 0.117 0.000 1.000
18 9750 0 1293 0 0.883 0.117 0.000 1.000
19 9750 0 1293 0 0.883 0.117 0.000 1.000
20 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
21 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
22 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
23 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
24 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
25 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
26 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
27 9748 2 1196 97 0.892 0.108 0.980 0.075 1.000
28 9749 1 1008 285 0.909 0.091 0.997 0.220 1.000
29 9748 2 919 374 0.917 0.083 0.995 0.289 1.000
30 9747 3 821 472 0.925 0.075 0.994 0.365 1.000
31 9747 3 390 903 0.964 0.036 0.997 0.698 1.000
32 9743 7 187 1106 0.982 0.018 0.994 0.855 0.999
33 9740 10 90 1203 0.991 0.009 0.992 0.930 0.999
34 9740 10 49 1244 0.995 0.005 0.992 0.962 0.999
35 9740 10 27 1266 0.997 0.003 0.992 0.979 0.999
36 9743 7 18 1275 0.998 0.002 0.995 0.986 0.999
37 9746 4 13 1280 0.998 0.002 0.997 0.990 1.000
38 9749 1 7 1286 0.999 0.001 0.999 0.995 1.000
39 9750 0 5 1288 1.000 0.000 1.000 0.996 1.000
40 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
41 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
42 9750 0 1 1292 1.000 0.000 1.000 0.999 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table C.3: Classification Results of the Bi-Gram Translation Method

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9750 0 1293 0 0.883 0.117 0.000 1.000
5 9750 0 1293 0 0.883 0.117 0.000 1.000
6 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
7 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
8 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
9 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000

10 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
11 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
12 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
13 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
14 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
15 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
16 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
17 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
18 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
19 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
20 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
21 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
22 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
23 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
24 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
25 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
26 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
27 9748 2 1195 98 0.892 0.108 0.980 0.076 1.000
28 9749 1 1007 286 0.909 0.091 0.997 0.221 1.000
29 9748 2 921 372 0.916 0.084 0.995 0.288 1.000
30 9750 0 828 465 0.925 0.075 1.000 0.360 1.000
31 9747 3 387 906 0.965 0.035 0.997 0.701 1.000
32 9745 5 189 1104 0.982 0.018 0.995 0.854 0.999
33 9745 5 96 1197 0.991 0.009 0.996 0.926 0.999
34 9744 6 52 1241 0.995 0.005 0.995 0.960 0.999
35 9744 6 33 1260 0.996 0.004 0.995 0.974 0.999
36 9747 3 22 1271 0.998 0.002 0.998 0.983 1.000
37 9746 4 12 1281 0.999 0.001 0.997 0.991 1.000
38 9747 3 6 1287 0.999 0.001 0.998 0.995 1.000
39 9749 1 5 1288 0.999 0.001 0.999 0.996 1.000
40 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
41 9750 0 2 1291 1.000 0.000 1.000 0.998 1.000
42 9749 1 1 1292 1.000 0.000 0.999 0.999 1.000
43 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
44 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
45 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
46 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
47 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
48 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
49 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
50 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
51 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
52 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
53 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000
54 9750 0 0 1293 1.000 0.000 1.000 1.000 1.000



Table C.4: Classification Results of the Simple Index Translation Method without payload

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
5 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
6 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
7 9747 3 1293 0 0.883 0.117 0.000 0.000 1.000
8 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
9 9747 3 1293 0 0.883 0.117 0.000 0.000 1.000

10 9746 4 1293 0 0.883 0.117 0.000 0.000 1.000
11 9745 5 1293 0 0.882 0.118 0.000 0.000 0.999
12 9744 6 1293 0 0.882 0.118 0.000 0.000 0.999
13 9746 4 1293 0 0.883 0.117 0.000 0.000 1.000
14 9745 5 1293 0 0.882 0.118 0.000 0.000 0.999
15 9742 8 1293 0 0.882 0.118 0.000 0.000 0.999
16 9740 10 1293 0 0.882 0.118 0.000 0.000 0.999
17 9734 16 1293 0 0.881 0.119 0.000 0.000 0.998
18 9721 29 1292 1 0.880 0.120 0.033 0.001 0.997
19 9720 30 1293 0 0.880 0.120 0.000 0.000 0.997
20 9726 24 1292 1 0.881 0.119 0.040 0.001 0.998
21 9721 29 1292 1 0.880 0.120 0.033 0.001 0.997
22 9719 31 1291 2 0.880 0.120 0.061 0.002 0.997
23 9721 29 1291 2 0.880 0.120 0.065 0.002 0.997
24 9724 26 1290 3 0.881 0.119 0.103 0.002 0.997
25 9721 29 1291 2 0.880 0.120 0.065 0.002 0.997
26 9718 32 1289 4 0.880 0.120 0.111 0.003 0.997
27 9725 25 1192 101 0.890 0.110 0.802 0.078 0.997
28 9721 29 1004 289 0.906 0.094 0.909 0.224 0.997
29 9721 29 917 376 0.914 0.086 0.928 0.291 0.997
30 9725 25 815 478 0.924 0.076 0.950 0.370 0.997
31 9725 25 382 911 0.963 0.037 0.973 0.705 0.997
32 9720 30 179 1114 0.981 0.019 0.974 0.862 0.997
33 9721 29 81 1212 0.990 0.010 0.977 0.937 0.997
34 9717 33 43 1250 0.993 0.007 0.974 0.967 0.997
35 9718 32 20 1273 0.995 0.005 0.975 0.985 0.997
36 9721 29 12 1281 0.996 0.004 0.978 0.991 0.997
37 9723 27 7 1286 0.997 0.003 0.979 0.995 0.997
38 9727 23 5 1288 0.997 0.003 0.982 0.996 0.998
39 9727 23 4 1289 0.998 0.002 0.982 0.997 0.998
40 9728 22 4 1289 0.998 0.002 0.983 0.997 0.998
41 9728 22 5 1288 0.998 0.002 0.983 0.996 0.998
42 9726 24 3 1290 0.998 0.002 0.982 0.998 0.998
43 9726 24 4 1289 0.997 0.003 0.982 0.997 0.998
44 9728 22 3 1290 0.998 0.002 0.983 0.998 0.998
45 9727 23 4 1289 0.998 0.002 0.982 0.997 0.998
46 9727 23 5 1288 0.997 0.003 0.982 0.996 0.998
47 9725 25 3 1290 0.997 0.003 0.981 0.998 0.997
48 9727 23 3 1290 0.998 0.002 0.982 0.998 0.998
49 9724 26 5 1288 0.997 0.003 0.980 0.996 0.997
50 9726 24 2 1291 0.998 0.002 0.982 0.998 0.998
51 9726 24 3 1290 0.998 0.002 0.982 0.998 0.998
52 9728 22 5 1288 0.998 0.002 0.983 0.996 0.998
53 9727 23 3 1290 0.998 0.002 0.982 0.998 0.998
54 9725 25 3 1290 0.997 0.003 0.981 0.998 0.997



Table C.5: Classification Results of the Simple Index Translation Method with payload

Prefix TN FP FN TP Accuracy Error Rate Precision Recall Specificity
1 9750 0 1293 0 0.883 0.117 0.000 1.000
2 9750 0 1293 0 0.883 0.117 0.000 1.000
3 9750 0 1293 0 0.883 0.117 0.000 1.000
4 9750 0 1293 0 0.883 0.117 0.000 1.000
5 9748 2 1293 0 0.883 0.117 0.000 0.000 1.000
6 9750 0 1293 0 0.883 0.117 0.000 1.000
7 9750 0 1293 0 0.883 0.117 0.000 1.000
8 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
9 9750 0 1293 0 0.883 0.117 0.000 1.000

10 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
11 9749 1 1293 0 0.883 0.117 0.000 0.000 1.000
12 9747 3 1293 0 0.883 0.117 0.000 0.000 1.000
13 9745 5 1293 0 0.882 0.118 0.000 0.000 0.999
14 9746 4 1292 1 0.883 0.117 0.200 0.001 1.000
15 9744 6 1292 1 0.882 0.118 0.143 0.001 0.999
16 9743 7 1292 1 0.882 0.118 0.125 0.001 0.999
17 9741 9 1292 1 0.882 0.118 0.100 0.001 0.999
18 9739 11 1292 1 0.882 0.118 0.083 0.001 0.999
19 9744 6 1292 1 0.882 0.118 0.143 0.001 0.999
20 9743 7 1292 1 0.882 0.118 0.125 0.001 0.999
21 9741 9 1293 0 0.882 0.118 0.000 0.000 0.999
22 9741 9 1292 1 0.882 0.118 0.100 0.001 0.999
23 9735 15 1291 2 0.882 0.118 0.118 0.002 0.998
24 9741 9 1292 1 0.882 0.118 0.100 0.001 0.999
25 9738 12 1293 0 0.882 0.118 0.000 0.000 0.999
26 9738 12 1194 99 0.891 0.109 0.892 0.077 0.999
27 9738 12 1006 287 0.908 0.092 0.960 0.222 0.999
28 9743 7 919 374 0.916 0.084 0.982 0.289 0.999
29 9739 11 825 468 0.924 0.076 0.977 0.362 0.999
30 9733 17 386 907 0.964 0.036 0.982 0.701 0.998
31 9736 14 186 1107 0.982 0.018 0.988 0.856 0.999
32 9732 18 90 1203 0.990 0.010 0.985 0.930 0.998
33 9729 21 49 1244 0.994 0.006 0.983 0.962 0.998
34 9726 24 36 1257 0.995 0.005 0.981 0.972 0.998
35 9732 18 22 1271 0.996 0.004 0.986 0.983 0.998
36 9728 22 13 1280 0.997 0.003 0.983 0.990 0.998
37 9730 20 11 1282 0.997 0.003 0.985 0.991 0.998
38 9731 19 7 1286 0.998 0.002 0.985 0.995 0.998
39 9731 19 8 1285 0.998 0.002 0.985 0.994 0.998
40 9730 20 6 1287 0.998 0.002 0.985 0.995 0.998
41 9730 20 7 1286 0.998 0.002 0.985 0.995 0.998
42 9728 22 4 1289 0.998 0.002 0.983 0.997 0.998
43 9730 20 6 1287 0.998 0.002 0.985 0.995 0.998
44 9728 22 7 1286 0.997 0.003 0.983 0.995 0.998
45 9730 20 6 1287 0.998 0.002 0.985 0.995 0.998
46 9728 22 7 1286 0.997 0.003 0.983 0.995 0.998
47 9728 22 6 1287 0.997 0.003 0.983 0.995 0.998
48 9729 21 6 1287 0.998 0.002 0.984 0.995 0.998
49 9729 21 7 1286 0.997 0.003 0.984 0.995 0.998
50 9729 21 7 1286 0.997 0.003 0.984 0.995 0.998
51 9729 21 8 1285 0.997 0.003 0.984 0.994 0.998
52 9728 22 7 1286 0.997 0.003 0.983 0.995 0.998
53 9727 23 6 1287 0.997 0.003 0.982 0.995 0.998
54 9729 21 8 1285 0.997 0.003 0.984 0.994 0.998


	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Problem statement
	Outline

	Preliminaries
	Process Mining
	Petri nets

	Prediction
	Evaluation


	Related Work
	Conclusion

	Translating Traces to Attributes
	Translating Sequences
	1-Gram
	Bi-Gram
	simple-index

	Translating Payload

	Comparison of Classification Techniques
	Decision Trees

	Method Description
	Method Validation
	Implementation
	Discussion of Results

	Case Study
	Data Preparation
	Results
	Classification Accuracy of Random Forest trained on Case Data
	Classification Accuracy of Different Translation Methods with Case Data
	Classification Accuracy of the Different Translation Methods Without Case Data

	Discussion
	Conclusion

	Conclusion & Future research
	Future Research

	Bibliography
	Appendix
	R Scripts
	Event Log Generation
	Boolean 1-Gram Implementation
	Frequency 1-Gram Implementation
	Bi-Gram Implementation
	Simple Index Implementation
	Simple Index With Payload Implementation
	Naive Classifier Implementation

	Classification Results of Random Forests with Case Data
	Classification Results of Random Forests without Case Data

