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Abstract

Process event data contains events related to various entities of a process. These multi-dimensional
event data, generated by information systems, serve as source for the retrieval of event logs for
process mining techniques. The sequential event logs used in process mining today are bound to
a single case notion for their events to relate. This means that we are forced to flatten the data
into a single-dimensional format by dropping/ignoring information about further related entities
when creating event logs. Many processes cannot be fully captured by such a data structure.
Even though relational databases can be used to store these multi-dimensional event data, but
existing query languages do not support querying for paths of temporal relations of events, es-
pecially across multiple entities. Property graphs support storing and querying such data, but
there is no common understanding of how event data is systematically encoded in property graphs
and how such a data model can formally be defined such that structural and behavioral rules on
the data can be governed. Because no standard property graph schema definition exists, we first
introduce a schema language to describe the global data structure of graph databases with event
data. We furthermore define property graph-based templates to encode the fundamental event
log concepts. To enable the definition of integrity constraints, i.e. structural and behavioral rules,
on instance level, we introduce a technique that is based on local patterns (sub-graphs) of the
global schema to define rules within that limited scope. A set of templates for such local patterns
has been developed and successfully tested in six case studies on five different event logs data
sets. Furthermore, we provide basic means to validate the compliance of a graph instance with
event data to such a schema structure. Python and Cypher templates have been developed for
the creation of the six different graph event logs. These graph event logs and their creation script
templates are the direct results of our case studies and thus can serve as baseline for new research
question that arose from the different design artifacts of this thesis.

Keywords: process mining, multi-dimensional event data, labeled property graph, database
schema, graph database
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Chapter 1

Introduction

This master thesis concludes my graduation project for the Master’s program in Business Inform-
ation Systems at Eindhoven Univertiy of Technology (TU/e), conducted within the Architecture
of Information Systems (AIS) research group at the Department of Mathematics & Computer
Science.

In this chapter, we first provide the overall context of this thesis in section 1.1. Then we
describe the research problem and set the goals according to the defined requirements of our
research in section 1.2. Section 1.3 introduces the methodology we used to conduct our research.

1.1 Thesis Context

Process mining is the domain that combines data mining with business process management to
analyze process event data captured from information systems (IS). Retrieving such (sub-)sets of
event data is a recurring activity in process analysis and process mining [27]. For the analysis with
process mining techniques, these collections of events are stored in event logs, where every event
refers to a specific case, i.e. to a specific instance of a process execution. Typically, one event
describes an activity of such a process execution and it always contains temporal information, i.e.
the activity time, such that we can determine the order of executed activities w.r.t. to a case as
shown with the ”Timestamp” column in table 1.1. One process execution is stored as a sequence
of activities and denoted as trace.

For example, the basic example log in table 1.1 contains two cases identified by ”cID” with
the traces 〈a, b〉 and 〈b, a〉. Activity a is followed by b in trace 1 and activity b is followed by a in
trace 2. When referring to the individual events with additional attributes, rather than to their
activities only, we can create an event log table as shown in table 4.1. This table contains more
attributes, but only one trace. Such traces can easily be queried and for behavioral properties
such as event sequences and temporal relations like directly and eventually follows between events
and can be combined with other data attributes [6, 10, 19, 24, 25, 26], e.g. resource information,
i.e. which resource executed what activity.

cID Activity Timestamp ...
1 a 29.08.19 10:30 ...
1 b 29.08.19 13:14 ...
2 b 29.08.19 10:35 ...
2 a 30.08.19 13:59 ...
... ... ... ...

Table 1.1: Basic Event Log Example
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In reality, however, many processes cannot be captured by only a single case identifier as can
be seen in the example case of a loan application process in table 4.1 where one loan application
is related to two loan offers. This work specifically addresses processes containing multiple case
notions, i.e. different types of entities exist in a process that can be related to each other resulting
events with various relations to different entities, i.e. multi-dimensional event data. Various
approaches on extracting, representing, storing and mining multi-dimensional data [8, 13, 20, 28]
have recently been developed, where concepts like business artifacts or process objects have been
utilized to model the various multi-dimensional relations of the data. Relational databases (RDBs),
for example, can store 1:n and n:m relations of events and case identifiers and between case
identifiers. The explicit behavioral information of event sequences with arbitrary length, however,
is lost when extracting an event log, because the creator is forced to flatten the event data [17] by
choosing a single case notion. Thus, we generate a very narrow view on the process. Reconstructing
such sequences with multiple case identifiers from an RDB [17, 20] can only be done under severe
loss of information and can only be done with an arbitrary number of joins and by large and
non-intuitive queries [9].

Literature shows that different approaches have already been researched to deal with multi-
dimensional event data. Business artifacts and artifact-centric process models [21, 7, 20, 23]
emphasize interactions between different information objects in a process. Such approaches re-
quire different source data structures than traditional event logs. Recent research also looks into
extending traditional event logs w.r.t to business objects [28], i.e. information objects of a process
such as invoice or an order document, by adding a column per object type (case notion) of a
process. These columns contain sets of objects to which one event relates.

With the goal to find a suitable data model to store and query multi-dimensional event data, we
explored the feasibility of storing and querying multi-dimensional event data in labeled property
graph (LPG) databases in the preceding works of the thesis [11, 12]. We have been able to show
that event data and its variety of relations can be stored in LPGs and queries on such graph event
data can be formulated by implementing the BPI Challenge 17 data set (BPIC 17)[32] in the
graph database system (GDBS) Neo4j. For storing and querying the data, we implicitly respected
logical, behavioral rules, e.g. two resources may only handover work to each other if they have
relations to two events with a directly follows relation, separately from the structural data model
of the graph. For example, in table 1.1, the events of activity a and b of case 1 are related such
that a is directly followed by b because there is no other event, w.r.t. case 1, in between them.
Consequently, a resource related to a can handover work to the resource of b. Especially queries
over sequences of multiple entities, which are, if at all possible, very hard to define in SQL for
RDBs, can be defined and evaluated relatively quick with a few queries in Cypher, Neo4j’s native
query language. Our previous research, however, has only been conducted on a single event log
and lacks a formal description for the data model of such graph event data, i.e. the definition how
to systematically encode this event data in LPGs to create graph event data according to some
schema. This motivated us to put the focus of this thesis on the development of a systematic
approach to encode event data in a property graph and a schema definition for such data.

In property graphs, data points and their relations are treated as ”first-class-citizens” in terms
of a graph of nodes and edges. As LPGs are so flexible, in principle any structure can be created.
This, from a data modeling perspective, is not a good thing as a limited data structure helps
accessing and querying the data and makes sure the ideas are expressed the same way. Developing
a schema standard for property graphs is ongoing research [4, 5] and intensively discussed in
academia and industry. So what is necessary to govern a graph event log? For example, we want
to limit the creation of relationships and nodes based on the existence, non-existence or depending
on certain property values of other graph elements. We furthermore want to make sure that a
certain type of nodes exists, such as event nodes. Generally, we want some formalized means
of writing the implicit rules we applied in our preceding case study, i.e. we want to identify a
way to govern the creation of structural and behavioral relations in a graph database so that we
adequately represent process event log concepts such as directly follows and handover of work.
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1.2 Research Problem & Goals

As briefly discussed in section 1.1, sequential event logs with a single case identifier are not sufficient
to store multi-dimensional event data as they assume that only a single case notion exists and
every event refers to exactly one case. This thesis builds upon our research on storing and querying
multi-dimensional event data [11, 12]. In this exploratory work we showed that LPGs can be used
to store and query multi-dimensional graph data.

When we started to study the possibilities to define such a schema for labeled property graph
schema, we have been confronted with an additional issue, i.e. no standard schema or data defin-
ition language exists for LPGs [4, 5].

Problem Statement:
How can we define a schema for property graph for multi-dimensional event data and systematic-
ally encode the event data in a property graph instance accordingly, to enable querying of the event
data with reliable and repeatable results?

The lack of a standard schema for property graphs, however, does not allow to define a gen-
eric data model for graph event data with integrity constraints, yet. Consequently, no standard
approach for defining, storing and querying graph event data could be developed. Our research
has been conducted with the overall goal of creating design artifacts for a property graph schema
with the following requirements:

1. We must be able to describe/define the data model of a labeled property graph containing
event data.

2. Constraint definitions and encoding of behavioral attributes to property graphs must be
possible in a schema.

3. Encoding of event log concepts in such a graph must be possible.

4. It must be possible to relate different case notions in one log.

We have used these five requirements (R1-4) and the research problem above to set the follow-
ing goals for the development of the research output of this thesis:

Goal Statement:
Enable the definition of graph event logs based on property graphs described by a formally defined
schema with constraints and encoded behavioral attributes.

We divide the goal into four sub goals:

1. Develop a schema definition for property graphs with integrity constraints to explicitly model
event data concepts.

2. Define a baseline for encoding event data in property graphs.

3. Provide basic means of schema verification for LPGs.

4. Develop a generic concept for process entities in multi-dimensional event data in LPGs.

Goal 1 (G1) is set to tackle the requirements R1 and R2, as the desired outcome here is to
provide means to model a property graph schema that is able to constraint data structures on
instance level. With G2 we aim to fulfill R3, as by reaching G2 we will not only show that encoding
is possible, but also provide generic translation templates for such encodings. G3 does not tackle
G1 and G2 directly, but is a necessity to enable verification whether R1 and R2 are actually met
by our solution. The outcome of G4 shall be a more flexible concept than ”case” and thus satisfy
R4.
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1.3 Method

In this thesis, we followed the design science research (DSR) process [15, 22]. The research goal
and the requirements for a solution of this work has been derived from our previous works on
graph event data [11, 12].
The overall objective for the research, putting event data into a property graph, was given as
input by my supervisor.

The requirements for the solution were derived out of an exploratory case study on the BPIC 17
data set [11, 12] which led to the definition of the above research objectives.

The development of our solution is based on an iterative execution and refinement of schema
definitions for five different event logs to identify suitable artifacts for the requirements above. We
iteratively conducted the following steps for each data set:

• Prepare the source data format to be suitable for GDBS import.

• Import the event data into a GDBS.

• Transform the event data in the GDBS by adding nodes, relationships and properties to
model process behavior.

• Formulate queries over the graph event data.

• Evaluate how the importing, transformation and resulting graph data models compare to
other data sets.

• Compare how queries on this data are different or similar to queries on other data sets.

• Evaluate how good the graph event data describes the process and domain concepts.

• Evaluate the complexity in terms of import and transformations.

• Compare the complexity of the data model in terms of a global schema is to the data models
of other data sets.

Along the iterations we elicited principles for LPG schema modeling and graph event data mod-
eling. We used five different real-life event log data sets and for all event logs together we iterated
more than 100 times over the steps above.

This process resulted in the creation of several different artifacts:

1. A graph-based language and visualization to describe a global schema of a LPG over a
structure of relationships, nodes and properties for event data.

2. A non-exhaustive set of templates for converting event log concepts into LPG data structures.

3. A graph-based language and visualization to describe local, pattern based schema templates
with integrity constraints, called rules. We furthermore defined the following examples:

(a) ”0 core” - Ensures the mandatory event log concepts: events, entities (replacing case),
activities and timestamps.

(b) ”1 df” - Models the temporal relations between events.

(c) ”1 e coincide” - Defines how to correlate coinciding events.

(d) ”1 en coincide” - Defines how to correlate coinciding entities.

(e) ”2 how” - Models handover of work relations between resources of events.

4. A basic validation method for global schemata and local schemata with rules.
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5. The concept of a generic entity, to remove the limitation to one case identifier.

6. A set of Python and Cypher templates to create graph event logs from five different event
logs.

7. Six graph event log instances of real-life event data with multiple entity identifiers.

In the remainder of the thesis we first provide necessary background knowledge in Chapter 2.
In Chapter 3 we introduce a schema language and visual representation for a global property
graph schema, followed by the definition of templates for event log concepts in property graphs
in Chapter 3. Chapter 5 introduces a concept of local, pattern-based schema definition with
complementary rules to add (local) integrity constraints to the global schema. In Chapter 6 we
provide a set of templates for local pattern schemata to demonstrate them in the evaluation with
the five data sets in Chapter 7. We conclude this thesis in Chapter 8.
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Chapter 2

Background

This chapter introduces existing concepts on process event logs and graph databases this thesis
relies on. Section 2.1 introduces detailed information about event data and event logs. In sec-
tion 2.2 we point out the specifics of multidimensional event data and how traditional event logs
are not suitable to fully encode these data. In section 2.3 we describe graph databases in general
and then describe the labeled property graph model we used for our research in section 2.4. Fur-
thermore, we introduce Neo4j, a graph database management system (GDBMS) and Cypher, a
query language for property graphs [14] in section 2.5. In section 2.6 we recall basic principles of
database schemata.

2.1 Event Data and Event Logs

Table 2.1 shows a simple event log [27] with one case (process execution). Each row is one event,
each column is an attribute and each cell is an attribute value. Some of these attributes belong to
the case, for example the ”Amount” column. Other attributes belong to the events such as the
activity which indicates what process task led to the creation of an event.

Say we are looking at a loan application process of a local bank where customers can apply for
private loans and if they meet the banks requirements, the applicants receive one or more offers
with different conditions for a loan. An example case of such an event log is shown in table 2.1.

Process-related event data is usually created and updated by some information system by
creating data points for activities executed in some process. Single data points of these event
data are referred to as events. Typically, each process event log is centered around an entity,
often referred to as case, that is updated by the process. For example, the event log in table 2.1 is
centered around an application entity. Most organizations, however don’t structure their processes
around a single entity. For example the ”oID” column in table 2.1 indicates relations of certain
events to a second entity type: offer.

As described by van der Aalst in Chapter 5 in [27], event logs need to fulfill some minimum
requirements in order to be usable for process mining. Requirement 1) is the limitation to one
case identifier. One case is basically an instance of a process, i.e. a process execution, and the
case identifier is defined according to what entity is subject to the log. Requirement 2) states that
each event must have an activity attribute. Requirement 3) is the timestamp or temporal ordering
attribute to events. The events in the log are ordered sequentially by their temporal attributes
with respect to their case. In other words, the events and their order in the log are determined by
the case identifier making the log a view on the process.

To determine the temporal order, events are required to have a timestamp or some other
ordering attribute. Keeping the temporal order of events is a very important aspect for the
process analysis. Many process mining techniques rely on the directly follows relationships over
activities, derived from the directly follows relation of their events, i.e. if event e1 happens right
before event e2 and there is no event in between within one process instance, then e2 directly
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follows e1. Consequently, e2.Activity directly follows e1.Activity.

In summary, as the very minimum, we need a case identifier and events with activity and
ordering attribute for an event log. Further information can be associated to events and cases by
event and case attributes respectively. Optionally, further information such as resources can be
included. From this basis further concepts can be applied to an event log, such as organizational
process mining as described in Chapter 9 of [27].

Traditional event logs for process mining come in a two-dimensional data structure in comma-
separated values (CSV) or eXtensible Event Stream (XES) [16] format. While CSV is a simple
file format widely known to other domains, XES is a process mining specific data format based on
Extensible Markup Language (XML) and the de facto standard format for process mining event
logs.

2.2 Multidimensional Event Data

A process execution can involve multiple different entities. For example, the event log in table 2.1
involves applications (”cID”) and offers (”oID”). When referring to offer 1, we only consider the
two events for the ”Create Offer” and ”Send Offer”. When referring to application, we consider
all events shown in table 2.1. By just using the case identifier for process mining analysis, typical
techniques see the ”Create Offer” and ”Send Offer” activities as a repetitions within the case, but
these actually belong to two different offer entities.

During a execution of a process with many different entity types, the different entities can
interact and thus influence each other. So, which of these entity types shall be a case identifier for
a new event log? In fact, every entity type and even any combination of interacting entity types
of a process can be used as case identifier.

There we have a 1:n relation between application (cID) and offer (oID) entities. Other pro-
cesses have 1:1 and n:m relations between their entities and thus the resulting event data becomes
multi-dimensional too.

One major issue of the event logs described in section 2.1 is that creators of these event logs
are bound to the single case identifier and thus have to flatten the data from the source IS [17]. In
our small example above, we could chose to combine applications and offers to one case to create a
log. In the given two-dimensional event log format, however, these multi-dimensional relationships
pose a challenge, especially we want to analyse the directly follows relationships of events with
respect to different entities.

Previous research in the field of process mining related multi-dimensional event data has been
conducted by Lu et al. [20], where business artifacts [21, 7] have been used to mine from multi-
dimensional event data. This approach, however, relied on RDB-based event data providing far
more expressiveness compared to the event logs we based our research on. Closer to our research
is the work of Popova et al. [23] which uses a so called event stream where attributes (columns)
can hold multiple values. The recent work of van der Aalst on object-centric process mining [28]

cID Activity Timestamp Amount oID Terms
1 Create Appl. 29.08.19 10:30 1000
1 Appl. Ready 29.08.19 10:35 1000
1 Create Offer 29.08.19 13:14 1000 1 128
1 Create Offer 29.08.19 13:49 1000 2 256
1 Send Offer 29.08.19 18:00 1000 2 256
1 Send Offer 29.08.19 18:00 1000 1 128
1 Offer Returned 30.08.19 13:49 1000 2 256
1 Appl. Complete 30.08.19 13:59 1000

Table 2.1: Multi-Dimensional Event Data Case Example
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propose a table based format, where relations between events and objects are recorded in a table.
Object types are attributes (columns) and the respective object instances are correlated to the
events in sets, i.e. a row (event) may have different columns, one for each object type, which
indicate what objects (object sets in the field values) may be associated to the event. Besides the
question how to store and query these multi-dimensional data recent research is also looking after
ways to describe such a complex process behavior [13].

Two problems emphasized in the related works are data divergence and convergence. Data
convergence relates one event to multiple cases and data divergence relates multiple executions of
the same activities within one case. In RDB source systems, these problems are not very relevant,
since the data models can represent the different relationships. In the flattened data of event logs,
however, theses relationships pose a challenge. Our research provides a different perspective on
these problems, because we take the flattened data from event logs and try to ”reverse engineer”
the flattening of the data to recreate the lost information. For example, we take the log from
table 2.1 and analyze whether its columns may be suitable entity identifiers or not and then define
the entities we can derive from it. Sometimes this selection may depend on domain knowledge of
the process, but an educated guess can usually be made by a profound analysis of the data.

2.2.1 Entity Concept

In this section we introduce the concept of an entity. The concept in the context of multi-
dimensional event data has been largely inspired by the work of Lu et al. [20] and Popova et
al. [23] where so-called business artifacts are used in the context of process mining on multi-
dimensional data and the work of van der Aalst [28] where objects, a more generic concept than
business artifacts, are modeled into the corpus of classical event logs. Entities are individual,
information objects of a process that are created, manipulated or somehow involved in a process
execution. Entities are more ’flexible’ than traditional case identifiers, since any number of them
can be correlated to one event and they can even be used to derive entities from attributes seen in
the data, e.g. by combining two attributes. The concept of an entity shall replace the traditional
case notion, as an entity can be anything from a resource to an application to an offer to any
combination (that makes sense from a process perspective) of existing entities. We use entities in
place of the traditional case identifier in a graph database such that entities can be used to define
further cases from combinations with other entities. The objects in [28] and our entity are very
similar, as they both can represent the different case notions of a process. Entities differentiate
to these objects such that they also represent information objects of a log that are not necessarily
considered a case notion, such as resources. For example, resource information can, with our entity
concept, materialize once as case notion such that all related events are in temporal order w.r.t. to
the resources (e.g. with ”User” = resource, ”Patty” has the trace 〈 ”Create Offer”, ”Send Offer”,
”Offer Returned” 〉 in the example in table 4.1), and it can materialize as meta-entity, representing
organizational information of a process, i.e. the resource is an attribute to events of other entity
types. By defining two different entity types for that same source of information (resource), we
can use both in the same graph, once as case and once as resource.

2.3 Graph Databases

A graph database, as the name suggests, relies on mathematical graph data structures. Vertices
and edges, or nodes and relationships, as they are commonly referred to in the database domain,
build the base of the data models of graph databases. There are two predominant database models
in the field, the Resource Description Framework (RDF) and the Labeled Property Graph. While
the RDF world is all about triples, i.e. sets of node-relationship-node triples, to build complex
graphs, LPGs give much more freedom to model data structures as any number of properties can
be used to add information to nodes and edges. Even though it may sound counter intuitive,
compared to relational databases, graph databases put much more emphasis on the relations of
data points. As previous research has already shown [12], property graphs can be used to store
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and query multi-dimensional event data. At the time of writing, however, there is no standard
data definition language or schema for labeled property graphs yet. This made it necessary to
further develop the results of [12] and conceptualize event data representation in labeled property
graphs. Therefore, the labeled property graph model and the respective schema definition is one
of the core aspects of our research.

2.4 Labeled Property Graph

Labeled property graph is the data model we use as basis for our research. LPGs consist of a set
of vertices, called nodes, and a set of edges, called relationships. Nodes and relationships can have
labels, which effectively group the nodes and relationships into classes or types. Additionally, key-
value pairs can be assigned to nodes and relationships. These key-value pairs are called properties.
Properties are object-specific, i.e. they are assigned to node and relationship objects and do not
depend on the objects label. While there exist LPG based data models of various flavors as
described in Chapter 2 of [4], we refer to the property graph model implementation of Neo4j [18].
This means a property graph with directed relationships, allowing multiple relationships between
two nodes, zero or any number of labels to nodes, zero or one label to relationships and an arbitrary
number of key-value pairs, i.e. properties, to node a node or relationship. The formal definition of
the property graph model used in this thesis and the respective visual representation are described
in the following two paragraphs.

For this thesis we use the following LPG model definition based on the works of Bonifati et
al. [4, 5].

For a formal definition of property graphs assume that

• O is a set of objects;

• L is a set of labels;

• K is a set of property keys;

• V is a set of values.

We define a property graph as a structure (N,R, η, λ, v) where

• N ⊆ O is a set of node (vertex) objects;

• R ⊆ O is a set of relationship (edge) objects;

• N and R are disjoint, N ∩R = ∅;

• η : R→ N× N is a function assigning to each relationship an ordered pair of nodes;

• λ : N ∪R→ P(L) is a function assigning to each object a finite set of labels such that P(S)
denotes the set of finite subsets of set S;

• v : (N ∪R) × K → V is a partial function assigning values for properties to objects.

The basic components of our LPG model are illustrated in figure 2.1.
Nodes filled with colour - colouring only for an optical indication of relationship between node

instance - node type.
The nodes are circles filled by different colours. Note that the colours to not imply any

semantics, but rather serve the purpose to visually group certain node types (labels). Labels are
marked by a leading colon, e.g. :Student. The labels of nodes can either be placed inside the node,
or, if the space inside the node is to small for the label(s), the labels can be moved to the property
box of the node. This property box contains the property keys and values (and if applicable
the labels) of the respective object. All relationships are directed, and are represented as arrows
originating from the source node and pointing on the destination node. The relationship property
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Figure 2.1: Visual Property Graph Instance Elements

boxes are drawn with dashed lines to clearly separate them from the node property boxes which are
drawn with solid lines. As standard annotation format we completely capitalize :RELATIONSHIP
labels and only capitalize the first letter of :Node labels to support readability.

Figure 2.2 shows a small example graph.

Figure 2.2: Graph Instance Example

The figure shows a property graph that gives some high level context to this thesis. The
three blue nodes are persons, two of which are the TU/e professors Dirk and George who helped
me, Stefan, with their feedback and supervision to write this thesis. The thesis is a :Document
node and it has a property ”Type: Thesis”. Dirk and George of course know each other, which
is modeled by the :KNOWS relationship between the two nodes. We can also define multiple
relationships between nodes, for example Dirk obviously also knows Stefan and he also knows
George. Creating a :KNOWS relationship from Dirk to George effectively creates a undirected-
alike (or bi-directional) :KNOWS relationship from by two directed relationships.

2.5 Neo4j and Cypher

The graph implementation for this work has been done based on the GDBMS Neo4j and the graph
query language Cypher [14]. As it is crucial to understand the concepts and query structures of
Neo4j and Cypher and their importance to the graph and schema concepts we use in this work,
we give a short introduction into their components in this section. We first explain how the
property graph concepts introduced in section 2.4 are implemented in Cypher followed by the
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most important query clauses, operators and functions and how they can be used to query and
manipulate LPG instances.

2.5.1 Graph Elements

In the visual appearance for LPG instances we introduced in section 2.4 we already incorporated
some of the annotations of Cypher, such as the leading colon for labels (:Label). The Neo4j LPG
model implements the definitions introduced in section 2.4. Thus, we already provided the basis
for the introducing the following concepts.

Nodes

Nodes in Cypher are addressed in round brackets. Empty brackets ”()” serve as a wildcard for all
nodes in the set of objects we query on. By specifying a label for a node ”(:Label)”, we restrict the
wildcard to all nodes with the label specified in the round brackets. In order to work further with
nodes represented by the wildcard, we can add a variable to the node, ”(variableName:Label)”.
The variableName can now be used to address the set of nodes with the :Label.

Relationships

Relationships follow a similar logic for addressing them. They are addressed by an arrow-like string
”–>”, implicitly indicating the direction of the relationship. As every relationship is associated
with an ordered set of nodes, i.e. a source node (from) and a destination node (to), the Cypher
annotation for them always requires two nodes as well, even if no specific nodes are declared.
Thus a minimal example to specify a relationship in Cypher is: ”()–>()”, i.e. a relationship
can never be without a source and destination node. The arrow ”–>” for directed and the two
dashes ”–” for undirected relationships serve as wildcard for relationships, similar to the brackets
”()” for nodes. Pleas note, that Neo4j (and our property graph definition) only support directed
relationships in the data model. Cypher, however, can define queries ignoring the direction of the
relationship itself in a pattern. Similar to nodes, the group of relationships can be restricted by
specifying a label in squared brackets to the relationship like ”()-[:Label]->()” and again we can
address this set of relationships with variables such as ”()-[variableName:Label]->()”. Node and
relationship variable declarations can freely be combined. With ”(n:Professor)-[rel:SUPERVISES]-
>()” we declare variable n for nodes with label :Professor and variable rel for relationships with
:SUPERVISES label. For the example graph in figure 2.2 this pattern would match every professor
that supervises someone, or something, because we did not specify a label for the destination node.
In the concrete example, n would include Dirk’s node and rel would include the :SUPERVISES
relationship for Stefan’s master project. In bigger graphs, say for the entire TU\e, the variable
would contain a lot more nodes and relationships, which already illustrates a core concept of
querying graphs: finding sub graphs that match specific patterns.

Properties

Neo4j implements a set of different data types for property values. The most relevant for this
work comprise integer, float, string, boolean, list and datetime. Relationships and nodes can hold
any number of properties. Properties are specific to an object, i.e. properties and property types
are not dependent of a certain label. For example, a relationship and a node can both have
a Name property and one node with label :Student may have a property StudentNumber while
another :Student node doesn’t. Properties of nodes or relationships can be addressed in different
ways in Cypher. They can, for example be used in the pattern specification directly by extending
the node or relationship with the property key and value in curly brackets to further restrict
the matched sub graphs. ”(n:Person Name: George)” for example will match only those persons
with name George. A another way to address properties of objects is to first declare a variable
n with ”(n:Person)” and then, usually in a ”WHERE” clause, address the name property of the
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nodes in the variable with ”n.Name”. Along with other Cypher clauses, we elaborate more on the
”WHERE” clause in the following section.

2.5.2 Cypher Query Language

In this section we give a detailed introduction into the graph query language Cypher[14].

MATCH

”MATCH” is the clause used to identify the patterns of interest in our graph. It is used with the
node, relationship and property notations we introduced in section 2.5.1. In the listing below we
show an example query for the ”MATCH” clause.

1 MATCH (p : Pro f e s s o r ) − [ :SUPERVISES]−>( s : Person {Name : ’ Stefan ’ } )

Listing 2.1: MATCH Clause Example

Say we run this query against the small example graph in figure 2.2. The result will be Dirk’s
node for p and Stefan’s node for s.

RETURN

A ”MATCH” clause cannot be on it’s own, because Cypher always requires some operation on
the matched sub graphs. The easiest operation is to simply return the matched sub graphs with
a ”RETURN” clause as you can see in the listing below.

1 MATCH (p : Pro f e s s o r ) − [ :SUPERVISES]−>( s : Person {Name : ’ Stefan ’ } )
2 RETURN p AS ProfessorNodes , s AS StefanNodes

Listing 2.2: RETURN Clause Example

The query returns all professors in p that supervise a person with the name Stefan as well as
these persons’ nodes in s. Actually, there is a little extra to the return statement, because we
renamed the output variables with ”AS”. Thus in the final output, the variable p has the name
ProfessorNodes and the variable s has the name StefansNodes and the original variable names
are discarded. Please note that graph objects can multiple time be contained in a variable. Say
Dirk, the professor, has two students named Stefan he supervises. This would result in a situation
where Dirk’s node is matched two times in the ”MATCH” clause and thus will be included twice
in the variable p (or ProfessorNodes), i.e. the variable is a multi set. If this is not intended, we
can use the ”DISTINCT” clause.

DISTINCT

”DISTINCT” is an aggregation function to ensure that the result contains only distinct objects,
i.e. it removes duplicates from a multi set. This means that per object, only one item is included
in the variable values. The following listing shows how the example above can be enhanced to
include every graph object only once.

1 MATCH (p : Pro f e s s o r ) − [ :SUPERVISES]−>(: Person {Name : ’ Stefan ’ } )
2 RETURN DISTINCT (p)

Listing 2.3: DISTINCT Clause Example

WHERE

”WHERE” is a clause that helps us to put restrictions on the sample space of our graph. With
”WHERE” we can specify requirements for objects in patterns. The following listing shows a
short example that combines the aggregation function ”COUNT()” with the ”WHERE” clause
such that the first part of the query determines what professors p will be returned, i.e. only
professors that have more than one supervision are part of p.
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1 MATCH (p : Pro f e s s o r )−[ r : SUPERVISES]−>(: Person {Name : ’ Stefan ’ } )
2 WITH COUNT( r ) AS NoOfSupervis ions , p
3 WHERE NoOfSupervis ions > 1 and p .Name = ”Dirk”
4 RETURN (p)

Listing 2.4: WHERE Clause Example

The listing also gives a good example on how to address properties from variables, since the
”WHERE” statement has two components connected by a logical ”and”. The second condition
(p.Name = ”Dirk”) limits our result to professors named Dirk that have more than one supervision.

WITH

The ”WITH” clause can be used to handover results of one query to the next query. If we for
example want to execute aggregation opertaions to a variable and hand the aggregated value over
to the next query clause, we can use ”WITH” to make a cut. After a ”WITH” clause, all other
information of the previous query statements are lost.

1 MATCH (p : Pro f e s s o r )−[ r e l : SUPERVISES]−>( s : Person {Name : ’ Stefan ’ } )
2 WITH COUNT( r e l ) AS NoOfSupervis ions , p
3 RETURN p , NoOfSupervis ions

Listing 2.5: WITH Clause Example

The COUNT() function aggregates all relationships in rel per professor, providing the number
of supervised people. The variable s is no longer available as output after the ”WITH” statement.

ORDER BY

”ORDER BY” is a statement that, for readers familiar with SQL, should be self-explanatory.
”ORDER BY” defines the property types after which values the output shall be orderes.

1 MATCH (p : Pro f e s s o r )−[ r : SUPERVISES]−>(: Person {Name : ’ Stefan ’ } )
2 RETURN (p) , COUNT( r ) AS NoOfSupervis ions
3 ORDER BY NoOfSupervis ions DESC

Listing 2.6: ORDER BY Clause Example

In the listing above, the professors will be returned in the order of their number of supervisions.
The ”DESC” option, as opposed to ”ASC”, orders the result in descending order, i.e. the professor
with the most supervisions will be on top of the list.

LIMIT

By adding the ”LIMIT” keyword to the above example, we would only return the professor with
the single most supervisions. Please note that if there are more than one, a random professor with
the highest number of supervisions is returned.

1 MATCH (p : Pro f e s s o r )−[ r : SUPERVISES]−>(: Person {Name : ’ Stefan ’ } )
2 RETURN (p) , COUNT( r ) AS NoOfSupervis ions
3 ORDER BY NoOfSupervis ions DESC
4 LIMIT 1

Listing 2.7: LIMIT Clause Example

CREATE

Say we are about to finish the master’s thesis, but still need expert knowledge from a different
academic domain to finish the thesis and thus need a third professor to give feedback on the
content of the thesis. We want to create a new professor to give feedback as shown in figure 2.3.

To do so, we actually need to create the node and the relationship, so we have a two-step query.
First, we create the new professor node:
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Figure 2.3: Graph Instance Example Extended

1 CREATE ( : Pro f e s s o r : Person {Name : ’Oktay ’ } )

Listing 2.8: CREATE Node Example

Then we create a relationship ,:GIVES FEEDBACK, between the professor and the thesis:

1 MATCH (p : Pro f e s s o r {Name : ’Oktay ’ } )
2 MATCH(d : Document )
3 CREATE (p) − [ :GIVES FEEDBACK]−>(d)

Listing 2.9: CREATE Relationship Example

As you can see, we first need to match the two nodes we want to relate and can then create
the desired relationship between the two. ”MATCH” clauses can be defined after each other to
include the sub sets of each query in the output.

MERGE

The ”MERGE” clause is important in cases where certain nodes (or whole patterns) appear more
than once in the returned set of objects. By using the ”MERGE” clause in place of the ”CREATE”
clause, we ensure that any created pattern is distinct, i.e. if a pattern exists already, no new object
is created.

Let us consult the example in listing 2.3 once more, where we used the ”DISTINCT” function
to avoid redundant Professor nodes in the output for professors with more than one student named
Stefan under their supervision. This time, with ”MERGE”, we actually want to create a second
relationship :KNOWS between the person and the professor. The query looks as follows.

1 MATCH (p : Pro f e s s o r ) − [ :SUPERVISES]−>( s : Person {Name : ’ Stefan ’ } )
2 MERGE (p) −[ r e l :KNOWS]−> ( s )
3 ON CREATE SET r e l . Status = ” r e c en t l y ”
4 ON MATCH SET r e l . Status = ”a whi l e ”

Listing 2.10: MERGE Clause Example

For ”MERGE” we can furthermore define different actions for when a pattern already exists,
or not at the time of the ”MERGE” execution. To explain this concept, we included the ”ON
CREATE SET” and ”ON MATCH SET” clauses which are optional to the ”MERGE” clause. ”ON
CREATE SET” lets us define the behaviour of the query when the pattern in the ”MERGE” clause
did not exist before, i.e. the query creates a new (p) -[rel:KNOWS]-> (s) relationship and set a
property Status to ”recently”. ”ON MATCH SET” covers the case that (p) -[rel:KNOWS]-> (s)
already exists and only changes the ”Status” property value of the existing :KNOWS relationship.
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LOAD CSV

”LOAD CSV” is the clause that enables Neo4j to load data from CSV files. We made use of
this command to bulk load the event logs into Neo4j in one go. The built-in function to load
CSV-formatted files was the main determinant for the input format of our case studies.

Operators & Functions

Cypher comes with a number of operators and built-in functions. Next to mathematical operators
such as ”+” (addition), ”-” (substraction), ”*” (multiplication) and ”/” (division), there are graph-
specific operators as well. The *-operator, for example, allows us to specify graph patterns where
we do not know how many relationships exist along the path.

1 MATCH path = ( ( p : P ro f e s s o r {Name : ’Oktay ’ } ) −[∗]−( s : Student ) )
2 r e turn path

Listing 2.11: Paths of Variable Length Example

In the listing above, we define a query that matches every student Oktay has a relationship
to, no matter how remote this relationship is. The *-operator allows us to specify that we do not
know the length of the path of a connection between two nodes. We implicitly introduced the
capability of Neo4j to store graph paths in a variable.

Functions such as count() or sum() are only two examples of the functions implemented in
Neo4j. Neo4j has many functions natively built in, such as predicate functions (”exists()”), or
temporal functions (”duration()”).

2.6 Database Schema

The term ”database schema” has no clear standard definition and is ambiguously used. For
example, a schema may refer to the data’s actual, physical organization on a storage or to the
logical associations and relationships of the data [34]. In Oracle database environments a database
schema refers to the database objects created by a specific user, which essentially represents a
specific view on of the entire database [1].

To disambiguate the term, we define database schema as follows: A database schema is the
data structure of a database described in a formal language. The schema provides a blue-print to
the data structure and allows to define integrity constraints as a set of rules to manifest intended
behavior and restrict unintended behavior of the data. A visual representation of the essence of
the described data model is part of the schema.

A database instance, the entirety of all database objects, implements a schema if it respects
all of the schema’s structural definitions and integrity constraints.

While for database concepts such as the relational database (RDB) can rely on a variety of
standardized methods for data modeling and schema definition, such as the entity relationship
model (ERM) [2], there exists, at the time of writing, no standard schema for LPGs.
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Schema Representation

In this chapter we take a close look into how a schema for a property graph can be defined. Our
main difficulty with respect to schemata for our graph event logs is that no standard schema or
data definition language (DDL) for property graphs exists. There are, however, approaches that
cover our needs at least partly, such as the property graph based schema representation in Neo4j,
i.e. the schema of the property graph is modeled as property graph as well. In [5] Bonifati et al.
propose a schema language in which we found a good basis to build up upon to develop our own
solution. W introduce a schema language in section 3.1 and a visual representation to complement
the language in section 3.2. This schema definition can describe the graph data model attributes
globally, such that it describes node types, relationship types, properties. It furthermore describes
global attributes of properties such as the data type or uniqueness. We refer to the schema
introduced in this chapter as global schema.

3.1 Schema Defintion

As property graphs are able to contain much information in just a few elements, a complete visual
representation can be quite a challenge, especially if we want to abstract a schema from a graph
instance. Actually, we want to be able to define a schema for graph instances in a way that we
can add constraints and cardinalities to the different schema elements. As a first step towards
this goal, we need to define a way to annotate a property graph schema. Therefore, we introduce
a schema language, or DDL, for labeled property graphs based on the work of Bonifati et al.[5]
which is based on OpenCypher and thus goes well together with our implementation with Neo4j
and Cypher. They define a DDL that can describe the structural behavior of a LPG by listing all
node types, relationship types and property types of a graph. To this proposal we add a unique
attribute for property types.

For the global schema definition we assume

• L is a finite set of labels,

• K is a finite set of (property) keys,

• T is a finite set of data types,

• BT is a set of element types,

• NT is a set of node types,

• ET is a set of edge types.

A property graph type is a triple (BT ,NT ,ET ).
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A property type is a pair (k , t) with k ∈ K as property key and t ∈ T as its data type. For
a property ”Activity” of type STRING we write Activity: STRING.

An element type b ∈ BT is a 4-tuple (l ,P ,PM ,PU ) with label l ∈ L, property types P , a
subset of property types that are mandatory PM ⊆ P and a subset of property types with unique
constraint on their values PU ⊆ PM , i.e. values of that property must be unique in a property
graph instance. ”Entity ID: STRING, EntityType!: STRING, Name: STRING” is an example
declaration of element type en = (Entity, {pt1, pt2, pt3}, {pt2}, {pt3}) with pt1 = (ID, STRING),
pt2 = (EntityType!: STRING) and pt3 = (Name: String). The underlined property keys denote
the unique properties, the property keys with exclamation mark (!) denote mandatory properties
and the property keys without additional features denote optional properties.

prop(b) := P defines the property types of an element type b. In other words prob(b) rep-
resents all property types of b. Similarly, mand(b) := PM defines the mandatory property
types of b, uniq(b) := PU defines the unique property types of b and label(b) := l defines
the label b possesses. Note that we limit the number of labels intentionally to 1. Even though
property graph database implementations sometimes allow to assign multiple labels to a single
node, we want to avoid this situation by definition. For a proper schema definition we require
some reliable component to group the individual elements (nodes and relationships) to be able to
apply constraints and cardinality definitions to those groups. If one element can be part of two
groups, a clear schema definition becomes significantly harder.

A node type nt ∈ NT is a 1-tuple (b) with b ∈ BT as element type. (:Event) is the declara-
tion of nt with b as element type and label(b) = ”Event”.

An edge type et ∈ ET is a triple (s, b, t) with element type b ∈ BT , source node s ∈ NT
and target node t ∈ NT . Edge types, also referred to as relationship types in property graphs,
are denoted as (:Event)-[:E EN]->(:Entity) where label(s) = ”Event”, label(b) = ”:E EN” and
label(b) = ”Entity”.

With these definitions we can now define a complete, global property graph schema. As you
might have notices, out graph definition only includes directed edges. This is because it is based
on OpenCypher. We can, however, define an entity type for both directions and thereby allow
bi-directional relationship in the property graph. On the other hand, Cypher allows to neglect the
direction of a relationship type in queries, which effectively allows us to treat a relationship type
as undirected, regardless of how it is declared in the global schema.

The following listing shows the global schema declaration with the schema language for the
running example we introduce in section 4.1.

1 g loba l schema running example = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 TS ! : TIMESTAMP,
6 Amount : INTEGER,
7 Resource : STRING,
8 Of fe r : INTEGER,
9 # Terms : INTEGER,

10 Orig in : STRING,
11 Case : INTEGER
12 }
13 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
14 Log {ID} : STRING}
15 E EN {} ,
16 L E {} ,
17 DF {EntityTypes : LIST} ,
18 HOW {EntityTypes : LIST}
19 }
20 {//node types
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21 ( : Event ) , ( : Ent ity ) , ( : Log )
22 }
23 {// r e l a t i o n s h i p types
24 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
25 ( : Log ) − [ :L E]−>(:Event ) ,
26 ( : Event ) − [ :DF]−>(:Event ) ,
27 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
28 }
29 )

Listing 3.1: Running Example Global Schema Definition

We find the element types BT for nodes and relationships in the first section. The event got one
property type per attribute in table 4.1, the log of our running example. Activity (Activity!) and
the timestamp (TS!) property are marked as mandatory, because these two attributes are crucial
to every event. The values of the property ID of :Log nodes must be unique in a graph instances
which is based on this schema. Now that we have defined how we can declare a property graph
schema with our schema language, we want to enrich our schema with a visual representation in
the following section.

3.2 Visual Global Schema Representation

The schema definition serves as formal base to define a global property graph schema. However,
in order to create a practical schema overview, we still need an easy to read representation that
helps the user to quickly understand (or define) the structure of the graph. For this we also
follow the suggestion of Bonifati et. al.[5] to use a property graph for the Visual representation
of a graph schema. As we described in the preceding section, we utilize the concept of a labeled
property graph itself to describe a labeled property graph schema. This can be done by raising
the abstraction level of the graph itself, for example a node on the global schema level represents
a node type while a node on instance level represents a node instance, or simply said a node.
This node in turn has a label which is specified as node type in the graph schema. To be able to
distinguish between graph instance and graph schema figure instantly, we change the appearance
of the nodes such that they a node is represented as empty circle with a coloured line for schemata,
as opposed to the a filled circle for instances. We specified in section 5.3.1 that every node of an
instance, must have a label that is specified in the schema. The instance does otherwise not
conform to the global schema. The same applies to relationships and properties.

Figure 3.2 shows the global schema for the running example. For the schema annotation we
follow the same principle like for the graph instance annotation introduced in section 2.4. Nodes
are represented as circles and the directed relationships are arrows pointing to the destination
node. The labels are denoted, similar to the schema language, by a leading colon, e.g. :Event or
:E EN. The labels are written on their respective element types. Property types are placed in boxes
with solid lines and the boxes are attached to the element types they belong to. For properties
of relationship types, we chose boxes with dashed lines so that we can better distinguish between

Figure 3.1: Visual Global Schema Elements
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Figure 3.2: Running Example Global Schema

the two. If the graph schema grows and the number of properties confuses the graph overview
by overlapping other schema elements, we allow to reduce the number of property types in the
visual representation. In this case, a ”...” shall be added to indicate that the representation is not
complete and thus refer to the written global schema definition.
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Event Data in Labeled Property
Graphs

In the last chapter we defined a schema representation for labeled property graphs. However, we
still need a way to define a way to represent the event log elements and characteristics introduced
in section 2.1 in a labeled property graph with such a schema. In other words, we need to find a
way how we can, in general, transform events, activities, cases etc. into a labeled property graph
instance such that this instance follows a given schema. In section 4.1 we introduce a running
example. Section 4.2 discusses preceding research on the topic of event data in property graphs
and in section 4.3 we introduce a set of transformation templates for event data in property graphs.

4.1 Running Example

To illustrate the concept of multi-dimensional event data, we introduce a simplified event log of
a loan application process as running example. The example is based on the Business Process
Intelligence Challenge 2017 (BPIC17) data set [32]. This data set also served as base for two of
our case studies. For the running example we made some simplifications to the data shown, but
the overall structure is still the same as in the original log. Table 4.1 shows a case of the running
example.

We will consult this example case throughout the thesis in the context of multi-dimensionality
of event data. It has a case identifier in the cID column uniquely identifying the loan application
process instance. Furthermore, we have the different activities carried out during the process exe-
cution in the Activity column and a Timestamp column and some further case or event attributes.
So far we have everything we expect from a minimal event log already, a case ID, activities and a

cID eID Activity Timestmap Amount User oID Terms Src
1 1 Create Appl. 29.08.19 10:30 1000 Raphael A
1 2 Appl. Ready 29.08.19 10:35 1000 System W
1 3 Create Offer 29.08.19 13:14 1000 Selma 1 128 O
1 4 Create Offer 29.08.19 13:49 1000 Patty 2 256 O
1 5 Send Offer 29.08.19 18:00 1000 Patty 2 256 O
1 6 Send Offer 29.08.19 18:00 1000 Selma 1 128 O
1 7 Offer Cancelled 30.08.19 13:49 1000 Selma 1 128 O
1 8 Offer Returned 30.08.19 13:49 1000 Patty 2 256 O
1 9 Appl. Complete 30.08.19 13:59 1000 Raphael A

Table 4.1: Example Case Running Example
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temporal order. Amount is an ordinary case attribute. The User column, representing the resource
executing the task, can also be described as ordinary, even if it can be used to find organizational
information of the process’ operating organization, it is more or less a standard component of event
logs. The resource attribute of an event usually describes the working resource that carried out
the respective activity. This could be an employee, a machine or some virtual system component
handling tasks of the process for example. The next three columns, however, can on one hand also
be seen as ordinary event attributes, but on the other hand these columns contain much deeper
information. Deeper in the sense that we basically find an ID value for offers in the oID column.
The event attribute in the Terms column rather describes the offer than something specific to the
loan application. An offer is actually a sub process of the application process and the Src column
gives even more information about the structure of the application process. The values ’A’, ’W’
and ’O’ indicate to what sub process an event belongs, i.e. the source of the event. In this case we
have ’A’ for application, the actual entity the event log has been created for, ’W’ for the workflow
information which usually originates from some workflow management system that supports the
actual process and thus can be seen as an entity itself and the ’O’ for offer which we discussed
already. So we actually have three different types of entities involved in what we call a case. As
discussed in section 2.2.1 we can actually split this case into as many sub-cases as we have entities
involved and from these split entities we can construct the original case again, if we keep the
information of the sequential order of events. Keeping the order information is necessary because
most of the time the timestamp is not reliable enough in this respect, the two ’Send Offer’ events
for example could not be brought into their original order if we’d split the entities into separate
logs and later merge them again. The example case in table 4.1 has one application entity and
one workflow entity and these two entity types have a 1:1 relation in the log. The red markings in
the table show that ’A’ and ’B’ can be identified over cID and the green marking shows the offer
IDs. By combining the different ID types with their Origin, we can create unique identifiers for
every single entity. Figure 4.1 shows the entity types and their cardinalities.

Figure 4.1: Running Example Entities

As described above, we have the three entities and between Application and Offer we have a
1:n relationship making our event data multi-dimensional. We will consult this simple example
throughout the thesis to illustrate different concepts of graph databases and graph event data.

4.2 Previous Work

In [12] we introduced a preliminary representation of event data in a a LPG. This preliminary
representation, however, had the sole purpose to help exploring the feasibility of storing and
querying event data in LPGs and has not been developed with the purpose to get a general event
log definition for label property graphs in mind. Figure 4.2 shows Neo4j’s schema representation
of that paper. The BPIC 17 data set has been used to create this schema and thus we can compare
it very well to our running example. Please note that the figure is a standard output of Neo4j and
is not in line with our visual representation annotations. The graph in figure 4.2 is a schema and
would, in our annotation, contain nodes as thick coloured lines with non-coloured center.
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Figure 4.2: Previous Work Schema

A property graph generally offers many different ways to model the data schema. In figure 4.2,
a rather intuitive and practical schema has been used to answer given process mining questions.
The three entity types and the resources of the process became their own node types (their own
label) and the case became the label case. For processes with increased complexity, however, this
representation would lead to unreadable schemata. Therefore, we took this work as baseline to
develop a more general and readable data model for graph event data.

The goal was to reach a concept to store event data in labeled property graphs, generic enough
to allow the definition of compact, readable schemata for it and specific enough to enable the use
of common process mining procedures and analysis on the data. In essence, we redefine the event
log concepts described in 2.1 we developed for [12] and to enhance the entity concept described
in section 2.2.1. We used entities as such in the paper already, see the Application, Workflow,
Offer and Resource node types in figure 4.2, but not in a way such that we can generalize over all
entity types. With entities, we also want to omit the definition of predefined cases for event logs,
i.e. treat a case just as another business entity. The case in our running example log consists of
the combined events of an application, a workflow and two offers. This means, if we find a way
to only encode the application, workflow and offer events and make sure that we can relate these
entities, we can define new cases from those low level processes. With low level process we mean
a process that we cannot further divide into sub processes with their own identifiers. With such a
data structure, we could for example define a new entity consisting of application and offer events
only, or one that involves all three entity types which effectively reflects the case in the source
log in table 4.1. This makes the concept of a case in events logs as we use it today obsolete and
gives more flexibility to the analysts. Redefining a case with classical event logs always involved
creating a new log, completely separated from the other case definitions of log.

4.3 Event Log Concepts

As outlined in the preceding paragraph, we want to develop a generic but still flexible conception
of the event log concepts introduced in section 2.1. In the following paragraphs, we use the graph
schema concepts from Chapter 3 to define graph notation for these event log concepts. Please note
that we do not want the following graph concepts to be understood as immutable. A major goal
of this research is to provide a basis that can be used to flexibly define event graph data structures
according to the needs of given process mining questions. Therefore, the following definitions
are just another set of possible graph representations of the existing event log concepts. In the
following paragraphs we elaborate on how we translated the event log concepts to labeled property
graph concepts.
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4.3.1 Event

The core element of every event log is the event. Thus, it is the first graph event log element we
define. Events are created by the execution of activities in some process that is supported by an
information system. In a event log in CSV format, every event is represented as a row with the
columns as attributes to that event. Generally, we can choose out of three graph element types:
node, relationship and property. For the events, we decided to create a dedicated node type.
Nodes are the actual data points in a graph database and they can be enriched by properties. For
events, this is exactly what we need. In event nodes we are able to encode all event attributes in
form of properties. Figure 4.3 shows such a node. The label for this node type is :Event.

Figure 4.3: Event Node

These event nodes, i.e. nodes with the label :Event, are the core concept for our approach,
since they are the starting point for every event log and all further concepts can be based on
events. In order to store an entire CSV log, we can add a property for each column to the event
nodes, such that we can build the graph structures needed from the information encoded in the
event nodes.

4.3.2 Activity

The concept of activity is basically some attribute that is specific to an event and the logical
consequence is to model it as an attribute to events. Figure 4.4 shows an event from our running
example with the visual property notation we introduced in 2.4.

Figure 4.4: Activity

4.3.3 Timestamp

For the timestamp, the same reasoning applies like for the activity concept. Every event node has
a timestamp property, like shown in the example in figure 4.5.

Figure 4.5: Timestamp
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4.3.4 Event Log

The event log, in terms of the traditional process mining related definition, is a collection of events
that are somehow related to a case identifier. If a data set has more than one case identifier, we
usually have to deal with multiple event logs. Thus, some data sets include one event log while
others include more. To cope with that, we introduce a separate node type :Log for the logs as
shown in figure 4.6.

Figure 4.6: Log Node

So every event log of data sets we want to analyze together becomes its own :Log nodes to
which the respective events can be correlated.

4.3.5 Case

The case is a primary concept in traditional event logs, since it predetermines from what perspect-
ive the event log is looked at. In sequential event logs, if the case definition changes, a new log
must be created. In our graph-centric definition of an event log, the case identifier only plays a
secondary role, because the focus is on entities of a process. This means our focus within a log is
on events and their respective entities. Thus we use a generic :Entity nodes as shown in figure 4.7.

Figure 4.7: Entity Node

With these nodes we can represent all the different entities of a process, such as Application,
Workflow, Offer and even the case identifier and the resource. This is one of main differences to
the design in section 4.2. In the first approach we modeled every single entity as its own node
type, which worked very well in terms of storing and querying the data. For a generic schema,
however, this model would lead to unnecessary many elements and confusing schemata.

4.3.6 Attributes

In traditional process event logs we differentiate between case and event attributes, i.e. data fields
that can logically be assigned to case or event level as introduced in section 2.1. In property
graphs we can, similar to the timestamp and activity, make all attributes node properties. In the
complete lack of domain knowledge, all attributes might become event properties. Figures 4.8 and
4.9 show how attributes can be added as properties to the different elements. The event attribute
in the graph shown in figure 4.8 is not much different from the tradition event attribute.

The case attribute, however, becomes more diverse because of our notion of entity which we
introduced in section 2.2.1. Thus we call case attributes in our property graph design entity
attributes and these attributes can vary between the different entity types. In figure 4.9 we added
the ”# Terms” attribute we find in our example table 4.1 to an :Entity of type ”Offer”.

As you can see, because of the generic :Entity node, we need some additional means to differ-
entiate between the entity types we have in the log. In our case, we added another property called
”EntityType” to the :Entity node. This, however, is a design decision left open to the creator of
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Figure 4.8: Event Attribute

Figure 4.9: Entity Attribute

a graph event log, since the property graph data model offers many different ways to realize such
a differentiation.

Similarly, we can add attributes to logs.

4.3.7 Sequential Order

The sequential order is more an implicit concept of event logs, as the order is usually defined by the
timestamps. While the question whether event a and event b happened one after another is not
our concern at this point, we still want to define how we annotate a directly follows relationship
between events a and b. As shown in figure 4.10, we use a directed relationship between two event
nodes for that.

Figure 4.10: Sequential Event Order

4.3.8 Further Event Log Concepts

We introduced the most basic concepts of event logs in this chapter. Most more advanced concepts
of event logs or process mining build upon these concepts, for example a handover of work social
network of resources in the field of organizational process mining. At this point we do not intend
to define graph annotations for any of the advanced event log concepts, since our goal is to develop
a framework that enables us to formally define these concepts for every event log individually and
include them in a schema representation accordingly.

26 A Schema Framework for Graph Event Data



Chapter 5

Schema Framework for Graph
Event Data

In the last chapter we demonstrated a way to represent process event data in property graphs
and in Chapter 3 we showed a recent schema approach for property graphs. However, with this
global schema definition we cannot define constraints or rules for encoding behavioral properties
in graph data. In this chapter we propose a modular schema modeling approach for property
graph schemata. We introduce this framework as a set of concepts that constitute a way to define
a property graph schema with rules and constraints to restrict property graph instances using the
schema. Section 5.1 explains the problem an our idea on an example. In section 5.3 we introduce
a schema language for local pattern schemata and a complementary visual representation. In
section 5.4 we introduce consistency rules to govern the data structures of graph instances which are
based on the schema patterns. Section 5.5 wraps up how the different concepts in our framework
combine to create a (partial) schema for a property graph, we refer to as local schema.

5.1 Defining More Restrictive Schemata

In the set of figures below we show a simple global schema (figure 5.1) and show two example
instances, one with a data structure we expect for graph event data (figure 5.2) and one instance
that does not go along with our expectations (figure 5.3), even though both graph instances
conform to the global schema in figure 5.1.

The global schema in figure 5.1 specifies two node types, (:Event) and (:Entity), and two
relationship types, (:Event)-[:DF]->(:Event) and (:Event)-[:E EN]->(:Entity). The instances in
the figures 5.2 and 5.3 also only include objects of these four object types and thus conform to
the global schema. In the graph in figure 5.2 all event have their timestamps as required and the
:DF relationships are well in order with the Timestamp properties of the :Event nodes. Every
event is associated with the entity en1. In addition, the following properties of graph event data
hold: The clear association of events with directly follows relationships to entities; and keeping the
temporal order of evens in a relationship (e1:Event)-[:DF]->(e2:Event) such that e1.Timestamp
≤ e2.Timestamp. The behavioral properties encoded in the graph in figure 5.3 are inconsistent
with the attributes, making reliable querying on event data impossible. For the :DF relationship
to be defined well, it cannot just be specified in the global schema definition of Chapter 3, we
have to add further constraints, such as a temporal order dependency of :DF relationships, over
an instance. For example, :DF relationships should not start and end with the same node (no self
loops), the temporal order of events should be reflected by the directions of the :DF relationships
(e1 does not follow e2 ) and there should also be at least one relationship between an entity and
an event (e3 to en1 ). Furthermore, the :DF relationship between e1 and e2 should not exist,
because there is no single entity node related to both event nodes. These examples make the need
for more specific structural constraints very clear.
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Figure 5.1: Simple Example Global Schema

Figure 5.2: Example Instance with Desired Structure

Figure 5.3: Example Instance with Undesired Structure

The second problem with respect to defining structural constraints on property graphs is the
definition of such rules itself. As we have shown in the small example above, property graphs
can be very diverse and complex even with a small number of objects. Thus, the definition of
constraints for an entire graph schema is not feasible as a very complex set of rules would be
required.

Therefore, we need a way to take the global schema definition from Chapter 3 and the con-
sistency rules to model it in accordance with our domain-specific requirements. As the constraint
definition to such a schema is too complex, we want to reduce complexity by defining rules on
local patterns only and by splitting the schema into sub-schemata, or patterns of the schema, to
reduce the complexity and enable the definition of constraints and other rules.

5.2 Requirements and Proposed Solution

To identify the requirements for the rules, we analyzed and iteratively developed schemata for 5
event data sets described in detail in Chapter 7 and appendix A. We eventually identified that we
need to restrict instances of a schema in the following ways:

1. Make property keys mandatory for specified node or relationship types. :DF relationships,
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for example, must indicate for which entities they apply.

2. Limit property values to be globally unique in an entire graph instance. For instance, ID
properties of entity nodes.

3. Limit the number of possible materializations of specific object types. For example there
shall be only a single relationship to correlate an event e1 with an entity en1.

4. Define cardinalities between node types, e.g. events can only relate to one log.

5. Make the materialization of nodes and relationships dependent on the existence or non-
existence of graph object types. For example we can only create a :HOW relationship if a
corresponding :DF relationship exists.

6. Make the materialization of nodes and relationships dependent of properties and labels of
other objects. The direction of a :DF relationship, for example, depends on the Timestamp
properties of its source and target nodes.

From these above requirements, we developed the following proposal for specifying schemata
for event data in graph databases: There are two types of a schemata. 1) A graph schema is a
1-tuple (Global-Schema) that defines all possible node types, relationship types and element types
with property keys and data types. 2) A local schema is a pair (Local-Schema-Pattern, Rules)
that defines for a subset of the node types and relationship types of the global schema to be
mandatory in the global schema and add additional constraints. Local Schemata can build on the
global or other local schema by inheriting consistency rules already defined and adding additional
consistency rules as shown for the local pattern in figure 6.1 for example. The local pattern in
figure 6.1 makes :Log, :Event and :Entity nodes; :L E and :E EN relationships and their property
types mandatory. The rules to that pattern defined in section 6.1 for example specify that every
event node must be the source node of at least one :E EN relationship, because the event would
not have any ’case notion’ we could assign to it. This rule falls under requirement 1, as it is
concerned with cardinalities between event and entity nodes. We can extend the core pattern
by adding the directly follows pattern in figure 6.4. As stated above, the new local pattern then
combines all element types and rules of the two patterns.

The requirements 1-7 fall into 2 categories: 1) global structural requirements we can add to
the existing schema language (by extending), 2) local structural requirements which restrict for
example when two or more nodes may be in a relation based on the properties of these nodes.

The first category, where requirements 1 and 2 fall in, we can cover entirely with the schema
language in section 3.1. Requirement 1 can be satisfied by the definition of a property type to be
mandatory denoted as ”ProperyKey!” in the schema language. Requirement 2 can be satisfied by
specifying a unique property type as ”PropertyType” accordingly.

For the second category we propose the following idea: we specify the structure for which
relations between nodes must be restricted further as local schema pattern in terms of LPGs and
then specify consistency rules that must hold over this local schema in terms of logical constraints,
any set of nodes and relations that matches schema patterns must satisfy the corresponding
consistency rules, just as in the example schema in figure 5.1, for which we specified that for
(e1:Event)-[:DF]->(e2:Event), e1.Timestamp ≤ e2.Timestamp must hold.

So in total that means that each schema is defined in terms of LPGs, defining node types,
relations, properties. The local schema has in addition consistency rules that have to hold for
all element types matching the schema, i.e. pairs of (Local-Schema-Pattern, Rules) define sub-
schemata of a graph schema (Global-Schema).

5.3 Pattern Schema Definition

In this section we explain how local schema patterns can be defined. A pattern definition consists
of two parts, a formal definition in the schema pattern language we introduce in section 5.3.1 and
a visual representation introduced in section 5.3.2.
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5.3.1 Local Schema Pattern Language

As we showed in the previous paragraph, the global schema representation introduced in Chapter 3
is suitable to define element types a graph instance can contain, but it cannot be used to restrict
or prescribe how specific local patterns shall be shaped in an instance as specified in requirements
1-6. Chapter 3 defines a schema as a triple (BT ,NT ,ET ) which can be understood as a global
pattern for the entire graph. For the definition of local patterns we assume the following to be
given:

• L is a finite set of labels,

• K is a finite set of keys,

• BT P is a set of pattern element types,

• NT is a set of pattern node types,

• ET is a set of pattern edge types,

• GP is a set of property graph patterns,

We define a schema as set of pairs (gp, rd) where each local property graph pattern gp is 4-tuple
gp = (BTP ,NT ,ET ,GP) that can inherit from other patterns, and rules (defined in section 5.4)
further restrict instances w.r.t. the node types NT and edge types ET in gp.

A pattern property type is a 1-tuple (k) with k ∈ K as property key. We do not specify
data types in patterns as they are specified in the global schema already, we thus do not need a
second component t to the pattern property type. We, however, use the same set of keys K like
for the global schema definition in section 3.1.

A pattern element type b ∈ BT P is a triple (l ,P ,U ) with label l ∈ LP , P is a subset
of pattern property types with unique constraint PU ⊆ P . For example, the pattern element
type for an event with activity and timestamp and a unique ID may be defined as Event {ID,
Activity, Timestamp}. The unique property types are underlined. Mandatory properties are
not specifically denoted since all property types in patterns are always mandatory.

A pattern node types (nt ∈ NT ) and a pattern edge type (et ∈ ET ) are defined exactly
the same way as the schema node types and schema edge types in section 3.1.

A property graph pattern gp ∈ GP that inherits a pattern gp′, receives all definitions of
the inherited pattern. This implies BT ′ ⊆ BT ,NT ′ ⊆ NT and ET ′ ⊆ ET , i.e. gp inherits all
pattern element types, pattern node types and pattern edge types of gp′.

The local patterns have a higher abstraction level compared to the schema in Chapter 3 and
thus we need a modified language and representation. We again pick up the work of Bonifati et.
al. in [5] and adjust it to define a schema language for the patterns accordingly, a pattern schema
language. The main adjustment is the introduction of inheritance of patterns (sub-graphs). We
also drop the mand() function, since for patterns we define that every element type of a pattern
as mandatory for the schema, i.e. a pattern is always a subset of a schema. We want to keep
the event log creation as flexible as possible, hence patterns do not prescribe data types, but if
there are specific requirements to property values they can be specified in the rules. A pattern
property can be defined with a unique constraint, which effectively tags the respective schema
property as unique as described in section 3.1. The pattern property unique constraint is rendered
as underlined property key in the language as well as in the visual representation. The schema
pattern language is in essence is a generalized version of the schema language.

5.3.2 Visual Pattern Representation

Now that we have defined a way to represent a pattern in a written language to fully define every
aspect of a pattern, we want to add a visual representation to accompany the written definition.
This is to represent the patterns in an intuitive, quickly readable format, i.e. we again use a
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property graph as we did for the schema, but with slightly different semantics. The full visual
representation and its semantics is discussed in the following paragraphs.

Pattern node types and pattern relationship types come in the same form as the schema node
types and the schema relationship types: as a circle and a directed arrow and a label indicated
by a leading colon. This label is equal to the pattern element’s type. Their respective pattern
property types are written in boxes attached to the element. Property types of node types are
denoted in boxes with solid lines and the pattern relationship property types in boxes with dashed
lines. We use the full capitalization of the relationship types (:RELATIONSHIP) just as in the
schema representation to help the reader clearly distinguish node (:Node) and relationship labels.
This notation is commonly used with the graph query language Cypher [14]. Figure 5.4 gives an
overview with all visual components in an example pattern.

Figure 5.4: Pattern Element Types Overview

The difference between the visual pattern and the visual schema representation (figure 3.1)
is that the patterns do not specify data types for property types. As we also defined in the
schema representation in section 3.2, different pattern node types can be coloured differently in
the representation. This colouring comes with no semantics, but is intended to help the reader to
better and faster understand the differences within a pattern, but even more to better understand
the relations between the different layers, i.e. instance, schema and pattern. The latter requires
consistent colouring of the related elements of course. The relations of elements of the different
layers is closer discussed in the following section.

5.4 Consistency Rules

As specified in the requirements in section 5.2, we need a way to govern the graph data structure
on instance level. During the analysis of five different data sets we identified and used the following
types of consistency rules:

• Limit cardinality of an outgoing relationship of a node type n: |(n) − []− > ()| S k must
hold

• Limit cardinality of an incoming relationship of a node type n: |() − []− > (n)| S k must
hold

• Limit relationships (rel) based on property values of nodes: for any (n)−[rel]− > (n2), n1.x S
n2.y must hold

• Limit relationships based on the label of nodes: for any (n)−[rel]− > (n2), label(n1) = / 6= x
must hold

• Limit relationships (rel) or nodes (n) based on property values of remote relationships: for

any (n)− [rel]− > ()− [rel2]−, rel2.x S k must hold
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• Limit relationships (rel) or nodes (n) based on the label of remote relationships (rel2): for
any (n)− [rel]− > ()− [rel2]−, label(rel2) = / 6= x must hold

• Limit relationships (rel) or nodes (n) based on the existence of remote relationships: for any
(n)− [rel]− > ()− [rel2]−, rel2 must exist

• Limit relationships (rel) or nodes (n) based on the existence of remote relationships: for any
(n)− [rel]− > ()− []− (n2), n2 must exist

The list may be extended by further consistency rules as event data with further requirements
is to be encoded and analyzed in a property graph. The types of consistency rules specified above,
however, are sufficient to encode the behavioral attributes to graph event data of all five event
logs.

For the rules, we use Cypher syntax combined with regular predicate logic and precise language,
e.g. |(:Log)-[:L E]->(e ∈ N :Event)| ≤ 1 defines that any Event node of the instance may have a
maximum of 1 :L E relationships. Since the patterns strictly define the graph schema elements,
it is not necessary to declare node types of source and destination nodes if the relationship type
is included. If one of the patterns used has a relationship type (Log)− [LE ]− > (Event), we can
shorten the rule definition for the instance (based on the pattern) to |()− [: L E]− > (e ∈ N )| ≤ 1
since the information that the source node must be of type :Log and the destination log must be
of type :Event is given by the pattern definition.

5.5 Framework Overview

The patterns and their rules are the core components to the schema framework approach we
propose in this thesis. They enable us to flexibly adjust the schema to the manifold and changing
requirements on process event data while preserving the data structure we require for specific
applications or algorithms. For example, as we showed above where we need to ensure that our
graph has the structure in figure 5.2 and as opposed to the data model shown in figure 5.3. A local
pattern with :Event node type and :DF relationship type could for example be defined on the global
schema in figure 5.1, with a rule to ensure that e1.T imestamp ≤ e2.T imestamp ≤ e3.T imestamp
holds. This local schema alone is sufficient to invalidate the graph in figure 5.3.

Note that a global schema may include many more components than defined in its local pat-
terns, but what’s included in the patterns and their rules is the essential minimum without which
the vehicle was not functional.

A schema contains every aspect a graph instance can possess, i.e. node types, relationship
types and property types. The patterns prescribe the minimal subset of graph elements of the
schema to make sure it can describe the right type of data and the rules define constraints and
requirements to the graph instance to ensure the correct structure. Just as a graph instance must
conform to its schema, as stated in the last paragraph, a schema must conform to its patterns and
the instance must conform to the rules. A schema conforms to its patterns if it contains at least
all graph elements defined in the patterns. An instance conforms to the rules if not a single rule,
e.g. a cardinality condition or integrity constraint, is violated. Figure 5.5 gives an overview of the
framework and how the components relate to each other. In essence, a pattern is a partial schema
for a property graph schema.

In the framework, want to be able to verify three things. First, if a particular graph instance
conforms to a given global graph schema, i.e. only element types defined in the global schema
may be used in the instance. If an instance contains any different element it does not conform to
the schema anymore. Second, if a particular global schema conforms to the given local schema,
i.e. all elements of the pattern of a local schema are also included in the global schema. Third,
if a database instance conforms to the pattern rules, i.e. no pattern rule is violated by the data
structure of the graph instance.

Every pattern comes with its own set of rules. The link between rules and patterns is necessary,
because different requirements on the graph event data, e.g. for certain process mining techniques,
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Figure 5.5: Framework Overview

come with different expectations to the graph data structure. So even if the two patterns are of
equal structure, they can differ in terms of their rules. To be able to design dependencies between
patterns, we introduced pattern inheritance to the definition of a pattern. The pattern definition
is in essence the schema of a pattern as described in section 5.3.1. This way we are able to create
a hierarchy of patterns that build up on each other, i.e. the inherited pattern is required for the
inheriting pattern.

Figure 5.6 shows the hierarchical relationships of the patterns created for the case studies,
i.e. a pattern that defines the core structure (0 core) of all event logs, a directly follows pattern
(1 df) to create the sequential order of events, a pattern for the handover of work (2 how) between
resources, a pattern for coinciding entities (1 en coincide) in a single or over multiple logs and a
similar pattern for coinciding events (1 e coincide). The numeration in the pattern names suggest
their level in the hierarchy already. Each pattern always has at least one parent in each upper
layer, but since patterns on one layer are independent of each other not all patterns of a layer must
be inherited by a pattern of a lower layer. However, this framework approach leaves the graph
event data design open, i.e. it allows to freely define new patterns if needed such that a different
set of event data may have even a different core pattern and thus would not use a single pattern
introduced in this work.
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Chapter 6

Schema for Graph Event Logs

In this chapter we combine the local pattern definition introduced in the previous chapter, com-
bined with the global schema definition from Chapter 3 to develop example schema patterns
templates for the five data sets w.r.t. the event log concepts introduced in Chapter 4 to create the
local patterns shown in figure 5.6. In section 6.1 we introduce the pattern that basically defines
the core structure of graph event data, thus it is called 0 core. Section 6.2 introduces the local
pattern for directly follows relationships between events. In section 6.3 we define a pattern that
copes with multiple events that actually originated from the same activity. This pattern can, for
example, be used to tackle the data divergence problem. A similar pattern, but for coinciding
entities, is introduced in section 6.4. Section 6.5 introduces a pattern for the handover of work
concept, used for organization-related process analyses. In section 6.6 we discuss how such a
schema, local patterns and graph instance can be verified as illustrated in figure 5.5. Section 6.7
provides a summary to conclude the chapter.

The patterns proposed in this chapter are one example of many ways to define graph data
structures for event data. Different data sets or analysis questions may require an entirely different
set of patterns.

6.1 Event Log Graph Core

This pattern template is the starting point for any graph event log that is created according to this
work. The core pattern template includes all event logs concepts as required in process mining,
e.g. by Van der Aalst [27].

The central element, as the name event log suggests, is the event and this is not different in
graph event logs. An event must at least have an Activity, which is a general description of what
has been done, and some attribute for temporal ordering of events, usually found as timestamp
or the sequence in which events are recorded in the source information system. This information
is necessary to recreate the order of events from the original log in the graph. The Timestamp
property of Event nodes account for this. Note that this template does not include the sequence
information of events, since this can be interpreted in different ways (e.g. strict sequence or partial
order) we define a separate template in section 6.2. Different definitions of directly follows can
be introduced as additional patterns. Next to Event nodes, the core pattern template contains a
Log node type to enable us to store multiple event logs in a single graph instance. A Log node
must have a unique ID. The Entity node type is based on the concept of an entity which has been
introduced in section 2.2. An Entity node must have an ID, an EntityType and a unique key which
is essentially a combination of ID and EntityType. This composite key construction is necessary,
at least for our application, because we use entities to replace the strict notion of a case. The
concept of a case is commonly used in traditional event logs as described in section 2.1. If the
data permits, multiple entities can be derived from one specific case which would result in entity
nodes having the same identifiers. To illustrate this we consult our running example once more.
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The Origin column in table 4.1 show the letters ”A”, ”W ” and ”O” standing for ”Application”,
”W orklfow” and ”Offer” respectively. We find a separate id column (Offer) for the offer entities
as we can see in the green marking in table 4.1. For application and workflow entities, however,
there is only the case identifier and thus we cannot differentiate between the two entities by an
existing ID, as we can see in the red markings. Thus we can use the combination of the case
identifier and the origin, or entity type, to make the entities uniquely identifiable. This construct
is, of course, a necessity that comes from the structure of the data source we used and this would
probably be different for different data sets or sources. Logs are connected to events by L E (log to
event) relationships and events are connected to entities by E EN (event to entity) relationships,
both with no properties.

The following paragraphs define the pattern and its rules in more detail.
Pattern: Figure 6.1 illustrates the visual representation of the pattern.

Figure 6.1: Graph Event Log Core Pattern

The core pattern brings the event log characteristics we defined in Chapter 4 together to form
the most basic representation of graph event data. Depending on the complexity of the pattern,
the visual representation must be simplified to remain readable, e.g. by removing properties from
the node types. For this reason we introduced the schema pattern language in section 5.3.1. The
definition of the core pattern in the schema pattern language looks as follows:

1 0 co r e = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {}
8 }
9 {//node types

10 ( : Event ) , ( : Ent ity ) , ( : Log )
11 }
12 {// r e l a t i o n s h i p types
13 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
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14 ( : Log ) − [ :L E]−>(:Event )
15 }
16 {// i nh e r i t e d pat t e rns
17

18 }
19 )

Listing 6.1: CORE Pattern Definition

We have three node types and two relationship types in this pattern. Each of which classifies a
distinct subset of nodes and relationships respectively. As this is the core pattern which forms the
base for all logs, we have no inherited patterns. It is the base for all further patterns we developed
for this thesis. Since the patterns and rules only work together, we need to create a link between
them. The following sets of nodes and relationships of the graph instance can be affected by the
rules of this pattern, because they are part of the pattern definition:

• Event nodes Ne = {n|n ∈ N ∧ ”Event” = label(n)}, which map to the (:Event) pattern
node type.

• Entity nodes Nen = {n|n ∈ N ∧ ”Entity” = label(n)}, which map to the (:Entity) pattern
node type.

• Log nodes Nl = {n|n ∈ N ∧ ”Log” = label(n)}, mapping to the (:Log) pattern node type.

• The ’log to event’ relationships, L E, Rle = {r|r ∈ R ∧ ”L E” = label(r)}, mapping to the
(:Event)-[:E EN]->:Entity) pattern relationship type.

• The ’event to entity’ relationships, E EN, Reen = {r|r ∈ R ∧ ”E EN” = label(r)}, which
map to the (:Log)-[:L E]->(:Event) pattern relationship type.

Now we have defined the sets of nodes and relationships on instance level that are affected by
rules. Schema node types, relationship types and property types of the schema level have equal
names like the pattern’s node, relationship and property types. Figure 5.5 helps to grasp the
different layers and how they relate to each other.

Rules:

1. Ne, Nen and Nl are disjoint with any set of nodes.

2. Every event node e has maximum one L E relationship: |()− [: L E]− > (e)| ≤ 1

3. Every log node l has at least one L E relationship: |(l)− [: L E]− > ()| ≥ 1

4. Every event node e has at least one E EN relationship: |(e)− [: E EN ]− > ()| ≥ 1

5. Every entity node en has at least one E EN relationship: |()− [: E EN ]− > (en)| ≥ 1

The base pattern rules only describe the fundamental prerequisites of a graph event log. Rule
1 states that the set of nodes of the node types of this pattern are disjoint with any other set
of nodes of this instance, including all node types that are included in the schema, but not in
the schema patterns. Rules 2 to 5 are concerned with cardinalities. Rule 2 defines that an event
node can have maximum one log. Usually we expect event nodes to have a log, but there can
be exceptions, for example event nodes that function as collector node for coinciding event nodes
across logs or within a log. Rule 3 defines that a log node has at least one event. This is rather
intuitive since an event log without events is not very useful. Rules 4 and 5 are concerned with
the cardinality of relationships between events and entities. An event always needs a case (en-
tity) and every entity always needs at least one event, otherwise neither of them would fulfill the
requirements of event data as defined in section 2.1. So rules 4 and 5 define the lower bound of
the n:n relation between event and entity which gives us [1..n]:[1..n]. At this pattern, every event
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node needs to be (directly) related to at least one entity and vice versa. We later define patterns
that manipulate the last two rules by introducing special versions of event node types and entity
node types such that the lower bound of the relation between the two node types may change to
[0..n]:[0..n], but only for those special cases of so called collector nodes for coinciding events and
entities as mentioned in the pattern hierarchy in figure 5.6 already. We elaborate more on that
in the respective pattern descriptions below. Even though there is not much information to be
mined from an instance based on the core pattern only, the basic structure for the graph event
data is already set and we could implement a graph event log without any further pattern.

Examples: To illustrate the concepts of the patterns, we show some simple examples on how
a pattern can materialize in a graph instance. All examples show sub-graphs of a graph event
log on instance level, i.e. we are talking about actual nodes rather than about node types. We
use the graph instance annotation as introduced in 2.4 together with a Cypher-like declaration of
variables, e.g. (e:Event) written in a node means e represents the node with the node type :Event.
With e we can address the properties of a node just like in Cypher, e.g. e.Activity refers to the
event nodes Activity property.

Figure 6.2 shows three entities en1, en2 and en3, two events e1 and e2 and a log l.

Figure 6.2: Core Pattern Conform Instance

The core pattern primarily defines cardinalities of the different graph elements. The example
above respects rule 2, because the two events have only one :L E relationship each, which in
turn also satisfies rule 3 since we do not have a log without :L E relationships. Rules 3 and
4 are satisfied as well because all :Entity nodes and all :Event nodes have at least one :E EN
relationship and all relationship directions are correctly defined as required by the rules.

The following example in figure 6.3 does not conform to the rules. The new example has now
two log nodes l1 and l2. The issue of this sub-graph w.r.t. the rules is that event e2 is related to
two different logs now which effectively violates rule 2.
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Figure 6.3: Core Pattern Non-Conform Instance

6.2 Directly Follows

Directly follows in process mining is the relation of two events a and b that consecutively follow
one another in the context of a case. So if b happens after a and there is no other event in between
them, we have the relation a directly follows b. Important here is the case context. Traditionally,
event logs for process mining are focused on a single case identifier. The directly follows relation
between events is defined in the context of an entity. Entities are described in section 2.2.1 and
basically serve as sub cases that can, if the data allows correlation between entities, be flexibly be
combined to a composite entity. Such a composite entity, for example as shown in our running
example in section 4.1 can then serve as new context for directly follows relations of events. We
define DF by the sequential order the events got recorded, i.e. event c directly follows event b
if c happens to be recorded in the next row after b even if their timestamp is exactly the same.
In contrast, partial orders treat events with the same timestamp as parallel events. For example
events b and c directly follow event a and are both directly followed by event d. The patterns for
the two DF options might look equal, but the rules would be quite different. For our definition
of directly follows we require an explicit order of events per entity. As discussed in section 6.1,
timestamps are an intuitive choice when it comes to the order of events. However, timestamps of
events are often unreliable, e.g. because of their low granularity (containing only date information
and no time information), so in practice we cannot always rely on it to reconstruct the order in a
graph when only importing events as nodes with a timestamp and thus losing the actual sequential
order of the source table. However, since the source of the event data are event logs, we cannot
investigate the actual order in the source system and thus assume that the order they are recorded
in the event log is the actual order in which the events occurred.

Pattern: Figure 6.4 shows the visual representation of the DF pattern.

Even though we could only depict an event node type and the DF relationship to represent the
newly introduced elements of DF. There is no longer a single given case, but entities that give the
context to DF relationships. This means there are rules defined which add constraints to instance
level elements that have the node type Entity and thus, the Entity pattern node type is included.
The EntityTypes relationship property plays also a key role with respect to the entity context of
a DF relationship, i.e. two events a and b can have a DF relationship for multiple entities.

As discussed earlier, we decided to limit the elements of the pattern’s visual representations
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Figure 6.4: Directly Follows Pattern

to the minimum, to maximize the readability. Meaning we only include those elements that are
somewhat affected by the pattern or important to understand the pattern even if the pattern
inherits many elements from another pattern. This can either be a new node type or relationship
type added by the pattern, or element types whose instance level elements are affected by a rule
that comes with the pattern, e.g. by adding a new cardinality constraint. This should become
clear with the DF pattern.

The events 4 and 5 of running example in table 4.1 would, in our entity concept, have a DF
relationship for case and offer 2, the events 3 and 6 have a DF relationship for offer 1 and case,
and so on. This is the kind of reasoning behind the visual representation of a pattern. You will
find more elaborated examples at the end of this section. The pattern consists of all elements
either defined in the pattern itself or inherited by other patterns. The newly introduced elements
are marked as bold for better understanding. The full pattern definition looks as follows:

1 1 d f = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF EntityTypes
9 }

10 {//node types
11 ( : Event ) , ( : Ent ity ) , ( : Log )
12 }
13 {// r e l a t i o n s h i p types
14 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
15 ( : Log ) − [ :L E]−>(:Event ) ,
16 (:Event)-[:DF]->(:Event)
17 }
18 {// i nh e r i t e d pat t e rns
19 0 co r e
20 }
21 )

Listing 6.2: DF Pattern Definition

For the written definition of the DF pattern, there is actually not so much difference to the
core pattern. We have only one new element type that is materialized as relationship type :DF
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with event node type as source and destination and the property type EntityTypes we already
described. Everything else is inherited from the core pattern. The real difference of this and
also of the following patterns, lies in the rules that come with the patterns. Also the newly intro-
duced pattern DF relationship type can be mapped to the relationship’s instances in the graph log:

The ’directly follows’ relationships, DF, Rdf = {r|r ∈ R∧ ”DF” ∈ labels(r)}, mapping to the
(: Event)− [: DF ]− > (: Event) pattern relationship type. All inherited element types from the
core pattern keep their mapping, unless a rule defines something else.

For the DF pattern we defined the following rules:

Rules:

1. A DF relationship can only exist between two distinct events e1 and e2.

2. All events that have a DF relationship with each other must each have a E EN relationship
to the same entity node: (e2:Event)-[:E EN]->(enb:Entity)<-[:E EN]-(e1:Event).

3. The Timestamp property of the events e1 and e2 in a relationship (e1) − [: DF ]− > (e2)
defines the direction of the relationship by satisfying e1.T imestamp ≤ e2.T imestamp.

4. DF {EntityTypes} contains a list of (distinct) business entity types (enb) for which the DF
relationship of e1 and e2 holds.

5. There exists no ex such that e1.T imestamp < ex.T imestamp < e2.T imestamp for any of
the entity nodes this specific DF relation holds for.

6. Events e1 and e2 must be in the same log.

Rule 1 is to ensure that the DF relationship only exists between two different events. If we
would let the DF self loop on the event node type in figure 6.4 be the only constraint we would
allow a directly follows relation with the same event node as source and destination on instance
level. This would read event a directly follows event a and this does not make sense. Rule 2
enforces the entity context for two events that have a directly follows relation. As we elaborated
earlier in this section already, every entity can serve as case identifier and in some cases, if their
events can be correlated in a logical way, combinations of entities can be used to form a composite
case. This makes it necessary to ensure events with a directly follows relation actually relate to the
same entity. Rule 3 makes sure that the source of a DF relationship did not occur earlier than its
destination event node. Rule 4 defines that for every entity the DF relationship of the two events
holds, a distinct entry with the corresponding entity type (enb) must exist. Rule 5 formalizes that
there may be no third event that can be ordered in between two events with a DF relationship
based on its timestamp. Please note that timestamp as such is not bound on a strict format such
as datetime. It is rather a property of an event node that is concerned with the temporal ordering
of events of an entity. This means there could also be an index or any other concept suitable to
create an order instead of actual time information. The last rule, number 5, defines that events
with a DF relationship must be from the same log. This rule might seem superfluous at the first
glance, because yet event logs mainly consist of one log with one case. In our framework, however,
we are able to Handel multiple logs in a graph instance. This in turn enables us to correlate events
and entities of interacting processes and mine the data on those processes from different angles.
The following patterns will go deeper into the area of correlating events and entities, but they
focus on events or entities that coincide with each other.

Examples: For the directly follows pattern we show two examples with subgraphs of a graph
event log instance that conform to the pattern rules. Figure 6.5 shows a :DF relationship of the
events e1 and e2 with respect to entity en with EntityType ”Application”. Rule 1 is followed,
because the :DF relationship is not a self-loop as we have two distinct event nodes. Both events
have a :E EN relationship to the same business entity en which fulfills the requirements of rule
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Figure 6.5: Directly Follows Pattern Rules 1-4 Example

2. For rule 3 we need to make sure that there is no event related to en that actually happened
between e1 and e2. In this example not other events exist and thus e2 directly follows e1 w.r.t.
en. The EntityTypes property of the :DF relationship contains the EntityType of en which fulfills
rule 4.

Figure 6.6 shows a similar scenario like the example above. We extended it with a log l.
Both events e1 and e2 are part of the same log l, which satisfies rule 6. This rule is necessary,

because we do not expect events recorded in different logs to belong to the same process related
context. It might, however, be the case that different logs contain events that coincide, i.e.
originate from the same task execution, and thus might indeed have a relationship to events of
another log. For our graph model we decided to keep those events apart from each other, instead
of merging coinciding events to one node, because the identification of coinciding events usually
requires advanced domain knowledge which should not be required in our scenario. The following
patterns embrace exactly this subject.

The directly follows relation as we used it for this pattern is a commonly used way to define
DF, i.e. we generally assume that the order in which the events are recorded in the event log
is the same order in which the occurred in the information system, despite of potentially equal
timestamps with too little granularity in the timestamp column such as date. However, the pattern
approach could be extended to define other versions of the DF pattern. Even though we do not
generally restrict how patterns can be used together or inherit each other, it should be obvious
that the definition of a second DF pattern, e.g. to create partial orders, should involve some
mutual exclusivity between the two patterns.
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Figure 6.6: Directly Follows Pattern Rule 6 Example

6.3 Coinciding Events

If two events el1 and el2 coincide, they can be correlated by (el1) − [e coincide]− > (e′) and
(el2) − [e coincide]− > (e′) relationships. This relationship can be constructed by using domain
knowledge and can be applied to any number of events of the same log or different logs within a
graph instance. One (e′) could be used to correlate many different events. With the help of this
pattern we can group any number of events that originate from the execution of the same task
and thus actually are multiple materializations of the same event. Sometimes event logs contain
events with two timestamps, one for the start and one for the end. In traditional sequential event
logs the analyst usually has to decide which of the timestamps is used to determine the correct
order of events at the time of loading the event log. Another approach to deal with events with
start- and end-timestamp could be to treat them as two separate events, but this way most of
today’s process mining techniques would not deliver useful results on this data since they cannot
refer to the coinciding events as the same activity. With the help of this pattern we can actually
correlate events of a log that refer to the same activity and query the data as we desire, for example
by using only one start or end event by a simple graph query with no need to create a new log
or sort the log again, or by using the time interval between start and end events to determine
whether events that appear to happen in sequence in the log actually happen in parallel. An other
useful application of this pattern is to correlate events from different logs, for example events of
batch jobs that affect different processes and in consequence lead to multiple events in the logs
of these processes actually representing the same event. If we have enough domain knowledge
to correlated these coinciding events from the data, we can use this pattern to incorporate this
correlation information in the graph and derive further knowledge from it, such as interdependent
entities for example.

Pattern: The definition of the coinciding events pattern looks as follows:

1 1 e c o i n c i d e = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 E COINCIDE
9 }
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10 {//node types
11 ( : Event ) , ( : Ent ity ) , ( : Log )
12 }
13 {// r e l a t i o n s h i p types
14 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
15 ( : Log ) − [ :L E]−>(:Event ) ,
16 (:Event)-[:E COINCIDE]->(:Event)
17 }
18 {// i nh e r i t e d pat t e rns
19 0 co r e
20 }
21 )

Listing 6.3: E COINCIDE Pattern Definition

Similar to the :DF pattern, the :E COINCIDE, we have only a small extension (bold) of the
inherited elements. This also a good example to show why we need rules, because we actually
add a very similar component to the graph as we did in the DF pattern, i.e. a relationship with
:Event nodes as start and destination. The only difference, except for the rules, is the label (type)
:E COINCIDE. The effect on the graph instance, however, is completely different from the DF
pattern. You can immediately see in figure 6.7 that the focus of the pattern is very different.

Figure 6.7: Events Coincide Pattern

By comparing figure 6.7 and figure 6.4 it becomes also clear that the pattern elements are not
the only determining factor for what’s included in the visual pattern representation or what a pat-
tern does. We added very similar element types to the pattern, but the rules affect the inherited
components in a way that both figures look quite differently. The next step is to introduce the
rules for the pattern:

Rules:

1. Events e1, e2 ... en can be correlated to each other through some new event node e′, a meta
or collector event that serves as single destination node for all E COINCIDE relationships
of the coinciding events.

2. Collector event nodes e′ cannot be the destination of a L E relationship: |(: Log)−[: L E]− >
(e′)| = 0

3. Collector event nodes e′ cannot be the source of any: |(e′ : Event)−− > ()| = 0

4. e′ correlates at least two event nodes: |(:Event)-[:E COINCIDE]->(e′:Event)| ≥ 2

5. Each regular event e can only be the source of one E COINCIDE relationship: |(e:Event)-
[:E COINCIDE]->(e′:Event)| ≤ 1
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Rule 1 basically introduces a meta event e′ which serves as destination for the :E COINCIDE
relationships of a set of coinciding nodes. e′ is also the reason for the ’special cases’ of events
mentioned in section 6.1 when we introduced the core pattern, because we effectively need to alter
the lower bound of the relations between event and entity and between log and event. Rule 2
regulates that collector nodes may not be part of any log since it is supposed to represent some
meta information and it shall not obscure the information of the original event data. With rule
3 we effectively overwrite rule 4 of the core pattern and the lower bound of the cardinality of the
event:entity relation changes to [1..n]:[0..n], i.e. every entity still requires at least one event, but
an event can, as a collector event, can exist without a relationship to an entity node, but only
under these specific circumstances. Rule 4 defines that at least two events must be correlated by
a collector node, a rather intuitive rule. Rule 5 defines that a specific event cannot be correlated
through multiple different collector nodes. In this thesis we solely use ready made event logs for
our case studies. This means that hardly can determine which events actually coincide and which
ones don’t. To evaluate this pattern, we actually prepared one of the data sets to contain two
events per one event in the log, one for the start timestamp and one for the end timestamp by
keeping the rest of the attributes for both. Even though this is a rather artificial situation for
such a pattern, it serves the purpose of feasibility evaluation. The real value of such a pattern,
however, probably lies in the application on data that directly originates from a relational data
source where one can better determine if events that ’appear’ to affect different processes actually
coincide. We want to emphasise once more that these patterns are just examples and there are
many ways to handle such a structure. Another approach to handle coinciding events may be to
combine them in a single node, which in turn implies significant changes in other patterns as well
and especially to their rules. Changing the rules in turn significantly changes how we can query
the graph and what assumptions are made at the time of the graph creation. For example, if the
coinciding events would be incorporated as a single event node, which is how one might intuitively
design it in a property graph, we would also need to change the rules of the core pattern to enable
an event node to be related to multiple log nodes.

Examples: The simple example in figure 6.8 shows two events e1 and e2 of the same log that
are correlated by a collector event coll.

Figure 6.8: Coinciding Events Pattern Conform Instance

This is the pattern that we intended to model by the pattern and the rules. We wanted to
correlate events of a log that have been created from the exact same task execution in the process.
In this example, e1 and e2 belong to the same log, which is in line with the pattern definition
and rules.
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Figure 6.9 shows an example that violates the rules of the pattern.

Figure 6.9: Coinciding Events Pattern Non-Conform Instance

In the example that does not conform to the pattern rules, we introduced a second log to
illustrate in what situations events from different logs may coincide. Here we added a second log
l2, a fictional log to complement the running example log l1. Say l2 is a quality management
process that is supported by the same information system as the application process and thus
uses the same set of entities, such as Applications and Offers and thus, we have events that affect
both processes at the same time. A Offer Returned activity in the application process might, for
example, create an event relevant to both processes. In the example we show how these events can
be correlated. The second log, however, is not what violated a pattern rule. The actual violation
is the :L E relation between the log l2 and the collector event coll. Rule 2 defines that collector
events may not be the destination of a :L E relation.

6.4 Coinciding Entities

Similar to events, entities of different logs can also coincide. The same logic for the graph structure
applies here. By correlating entities from different logs with each other in the graph event log, we
enable the process analyst to correlate events from different processes that affect the same entities
and thus might influence each other. Early versions of the coinciding patterns we developed and
tested in our case studies have been more generic, such that the two patterns were one big pattern
with the elements and rules of the two combined. In the end we decided to split them because
we wanted to stay as flexible as possible, i.e. not every event log with coinciding entities also has
coinciding events and vice versa. Every time we add an element type to a pattern of a graph it
automatically becomes an element type of the schema, which is not what we want if the graph
instance does not have any elements of that element type. Thus we again only added a few
elements to the core as you can see in the listing below.

Pattern:

1 1 en c o i n c i d e = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {}
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8 EN COINCIDE
9 }

10 {//node types
11 ( : Event ) , ( : Ent ity ) , ( : Log )
12 }
13 {// r e l a t i o n s h i p types
14 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
15 ( : Log ) − [ :L E]−>(:Event ) ,
16 (:Entity)-[:EN COINCIDE]->(:Entity)
17 }
18 {// i nh e r i t e d pat t e rns
19 0 co r e
20 }
21 )

Listing 6.4: EN COINCIDE Pattern Definition

As the entity counterpart of :E COINCIDE, :EN COINCIDE actually builds the same struc-
ture with entities as :E COINCIDE does with events. Thus the :EN COINCIDE relationship has
entity nodes as source and destination. The pattern to link coinciding entities becomes especially
interesting in situations where multiple logs exists that share the same entity types. For example
in many modern IT landscapes different processes such as change management and incident man-
agement relate to the same entity types such as hardware or software from very different angles. If
you add additional processes such as an IT support process where support personnel interacts with
users for different purposes like changes or incidents, we have very intertwined system of entities
with varying influences from different processes. The event data that gets collected from this kind
of environments would nowadays most likely be split into at least one event log per process which
would be mined for insights in isolation. This pattern is designed to help redrawing those ’lost’
connections and take them into account when analysing the data of the different logs. This is again
motivated by the fact that we use ready made event logs as base. Event data directly extracted
from relational sources might use a different approach, similarly to the approach discussed for
coinciding events and with similar consequences. This means that coinciding entity nodes could
also be represented as single nodes that then would be part of multiple logs. Figure 6.4 shows the
visual representation of the pattern.

As we can see in the figure, the graph now also includes the entity node types and the
:EN COINCIDE relationship type as selfloop of the entity types. Even though it is not obvious,
the differences between events and entities can be very large. In our concrete pattern collection
we used here, entities have an EntityType pattern for example, which determines what entities can
actually coincide with each other and which ones cannot. For events we don’t have such a differen-
tiation. This kind of differences lead to many different rules to cover the different attributes of the
elements and certain combinations thereof we want to regulate in the actual graph instance. This
is the second reason why we decided to split the patterns into two. As we already mentioned, per
our definition entities are to some extend a more complex concept than events and consequently
the number of rules is a bit higher.

Rules:

1. Two entities of the same entity type, i.e. en1, en2 such that en1.EntityType = en2.EntityType,
can correlated with each other.

2. Similar to coinciding events, entities en1, en2 ... enn can be correlated with each other
through some entity node en′, collector entity that serves as single destination node for all
EN COINCIDE relationships of the coinciding entities, e.g.:
(en1:Entity)-[:EN CONINCIDE]->(en′:Entity)<-[:EN CONINCIDE]-(en2:Entity)

3. The two entities cannot be part of the same log logx: ¬(en1 ∈ logx ∧ en2 ∈ logx)

4. en′ has no outgoing edges: |(en′)−− > ()| = 0
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Figure 6.10: Entities Coincide Pattern

5. en′ correlates at least two entity nodes: |(:Event)-[:EN COINCIDE]->(en′:Entity)| ≥ 2

6. Every entity en can only be the source of one EN COINCIDE relationship:
|(en:Entity)-[:EN COINCIDE]->(en′:Entity)| ≤ 1.

Rule 1 of the pattern for coinciding entities specifies that entities must, to be able to correl-
ate them, have the same EntityType. EntityType is not to confuse with the graph element type
we specify for a pattern or schema. EntityType is the attribute on instance level containing the
information of the actual type of process entity, e.g. resources, documents etc. The rule ensures
that we don’t relate to a user and an invoice as coinciding entities. We intentionally do not enforce
the equality of ID values, because it is possible that coinciding entities in different logs may have
different IDs, e.g. by log prefix. We leave this open to the user and leave the ID matching to
domain knowledge. In rule 2 we define that two or more entities can be correlated with each other
through one entity collector. The collector node has the same properties as regular entity nodes
it ’collects’. Thus, during the an implementation, the event log designer must ensure that the
properties with unique flag also stay unique for the collector nodes as well. This could for example
be done by adding a log-specific prefix to the regular entity nodes, but this is not regulated by our
pattern rules as different analyses may require different implementations. Rule 3 defines that two
coinciding entities cannot come from the same log. The reason for this is again that we use ready
made event logs again. We simply lack the process knowledge if a sub process of case a coincides
with a sub process of case b, so we make the assumption that all entities of one log are discrete
entities. In rule 4 we again create an exception to a rule of the core pattern, because we define
that entities without incoming :E EN relationships can exist, or more specifically: we define that
entity collector nodes can’t serve as source node for any relationship. Thus we alter the lower
bond of the event:entity relation to [0..n]:[1..n] if we only use the :EN COINCIDE pattern on a
log. In the case we use both patterns, :EN COINCIDE and :E COINCIDE, in one log we actually
create a [0..n]:[0..n] event:entity relation, but of course only for the specific cases defined in the
pattern rules. Rule 5 says we need at least two entity nodes to correlate, otherwise we can’t use
the collector entity. With rule 7 we specify that a regular entity cannot be linked to more than
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one collector node, because this could lead to confusion when querying the coinciding entities over
multiple paths.

Examples: Figure 6.11 shows how such a collector entity can look like. With the entity nodes

Figure 6.11: Coinciding Entities Pattern Conform Instance

en1 and en2 of the same EntityType (rule 1) are correlated through a collector node coll. This
example illustrates that the two entities do not necessarily have the same ID. Say the offer entity
en1 belongs to the log of our example process and the offer entity of en2 refers to the same business
entity, but from the perspective of the quality management process of the bank that reviews offers
and thus is captured in a separate event log. With the :EN COINCIDE pattern we are able relate
these entities. Figure 6.12 shows a sub-graph that does not fully comply to the pattern’s rules.

Figure 6.12: Coinciding Entities Pattern Non-Conform Instance

en1 got a relationship to a second collector node, which is a violation of rule 6. The second
graph also got the direction of a :EN COINCIDE relationship switched, making the collector node
coll the source of this relationship.

6.5 Handover of Work

A handover of work social network is a higher level concept from the area of organizational process
mining, as described in [27]. Handover of work, as the name suggests, is based on work handovers
between resources in a process. To be able to create such a network, the log must contain resource
information. In our framework, with the patterns we introduced already, resources are treated just
as any other type of entity. This means, if the original log contained the information we need for
HOW, it is already encoded in the graph and we just need to use it for our purpose. A handover
of work relation is closely related to the directly follows relation of events. Say resources r1 and

A Schema Framework for Graph Event Data 49



CHAPTER 6. SCHEMA FOR GRAPH EVENT LOGS

r2 carry out two subsequent tasks in one process instance leading to events a and b, i.e. r1 is
related to event a, r2 is related to event b and b directly follows a. From that DF relationship
we can derive the HOW relationship, r1 hands over work to r1. This explains the concept on
which we based the design of the HOW pattern. The HOW pattern is the first pattern to inherit
two other patterns, the core and the directly follows pattern. The pattern definition can be found
in the listing below. The element we added here is the HOW relationship with its EntityTypes
property. While the HOW relationship implements the handover concept as described earlier,
the EntityTypes property actually mirrors its counterpart from the DF relationship from which
we derive the HOW pattern. This EntityTypes relationship property of HOW is used to ’mirror’
the DF relationship’s EntityTypes property it has been derived from. By following this logic we
can construct the HOW relations and mine a HOW social network, a social network containing
all hand overs between resources of a process, per entity. Moreover, we can basically specify any
entity as resource and, based on that, create a HOW social network. In event logs with users,
user groups and machines for example, we can freely choose which entities we want to consider
for organizational mining. This makes the pattern to one of best examples how suitable property
graphs are to store multidimensional event data.

Pattern: The listing below shows the definition of the HOW pattern.

1 2 how = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF {EntityTypes } ,
9 HOW EntityTypes

10 }
11 {//node types
12 ( : Event ) , ( : Ent ity ) , ( : Log )
13 }
14 {// r e l a t i o n s h i p types
15 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
16 ( : Log ) − [ :L E]−>(:Event ) ,
17 ( : Event ) − [ :DF]−>(:Event ) ,
18 (:Entity)-[:HOW]->(:Entity)
19 }
20 {// i nh e r i t e d pat t e rns
21 0 core , 1 d f
22 }
23 )

Listing 6.5: HOW Pattern Definition

As mentioned already, the HOW pattern is the first one to inherit two other patterns, 0 core
and 1 df. Next to the inherited elements, there is again only one new element unique to this
pattern, the HOW relationship with its EntityTypes property. The source and destination node
types are entities. Figure 6.13 shows the visual representation of our handover of work pattern.

The entity node type got a self loop. Without rules we now could create handovers between
invoice entities and resource entities, which does not make sense. Interestingly, handovers between
resources of different logs is not possible unless we allow it by a rule in this pattern even though
the Log node type does not show in the visual representation in figure 6.13, meaning the pat-
tern does not have a rule affecting this element type. How can this work then? The answer is:
inherited rules. In rule 6 of the DF pattern we specified that the source and destination node
of a DF relationship must be from the log and because we derive the HOW from the DF we
ensured already that the HOW relation is based on the same log’s events. The only question we
still may ask is: how do we treat the resources? Should we treat them as distinct entities per log
or should we use single nodes over all logs, or even a completely different representation? This is
a similar discussion like we had for coinciding events and coinciding entities in previous patterns
and the answer is: it depends. There is no definitive answer to this because different data and
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Figure 6.13: Handover of Work Pattern

analysis question require different solutions. Our proposed pattern approach deliberately leaves
such design choices to the analyst. For our patterns, we already have implemented a solution with
the :EN COINCIDE pattern, since resources are as well entities and :EN COINCIDE specifies
that we have to treat each entity as as discrete node per log and correlate them by collector entity
nodes. Please note that we also have the option to use the HOW pattern without :EN COINCIDE
for a graph instance, e.g. for data sets with only log only, data sets without coinciding entities,
or by the help of a new pattern that treats coinciding entity nodes differently. However, we still
need to define rules for our HOW pattern.

Rules:

1. Iff two events e1 and e2 have a DF relationship (e1:Event)-[:DF]->(e2:Event) with the related
resources (entities) en1 and en2:
(e1:Event)-[:E EN]->(en1:Entity) and (e2:Event)-[:E EN]->(en2:Entity)
then the two resources can have the relationship (en1:Entity)-[:HOW]->(en2:Entity)

2. en1 and en2 must have the same entity type : en1.EntityType = en2.EntityType

3. HOW relationships have a property EntityTypes, a list of entity types for which business
entity (enb) the HOW relationship is valid, i.e. for the relationships df and how with:
(en1:Entity)<-[:E EN]-(e1:Event)-[df :DF]->(e2:Event)-[:E EN]->(en2:Entity) and
(e2:Event)-[:E EN]->(enb:Entity)<-[:E EN]-(e1:Event) and
(en1:Entity)-[how :HOW]->(en2:Entity),
then enb.EntityType ∈ df.EntityTypes and enb.EntityType ∈ how.EntityTypes.

Due to the inherited rules from the core and df patterns we can keep the number of dedicated
rules for HOW relatively low. Rule 1 formalizes the handover of work concept as described earlier
in this paragraph in terms of how the handover of work can be derived from the directly follows
relations. With rule 2 we ensure that handovers can only happen between entities of the same
type, e.g. employee to employee or machine to machine. Since handovers between resources can
be based on events of multiple entities, the EntityTypes list of the DF relationships and the En-
tityTypes list of the HOW relationship must always both include the EntityType of the business
entity enb. To conclude the HOW pattern we want to show some examples.

A Schema Framework for Graph Event Data 51



CHAPTER 6. SCHEMA FOR GRAPH EVENT LOGS

Examples:

We want to illustrate the handover of work pattern with some examples. Figure 6.14 shows a
partial graph instance from our running example on which we find all rules and the relevant parts
of the pattern. Note that we use the Cypher annotation to assign variables to certain elements,
e.g. (en1:Entity) means that en1 is of type :Entity and refers to the entity node with the properties
shown in the properties box. Since we are looking at a instance and not at a schema, we cannot

Figure 6.14: Handover of Work Pattern Conform Instance

reason whether the patterns are fully included in the graph’s schema. What we can do, however,
is assess the instance’s conformance to the rules. The red boxes with number 1 inside show the
graph elements that are affected by rule 1, i.e. the two events e1 and e2, which are related to en1
and en2 respectively, have a :DF relationship. Thus, the requirements for a :HOW relationship
between en1 are met and rule 1 is satisfied. Rule 2 requires that en1 and en2 have the same
EntityType. As we can see in the property boxes of en1 and en2, rule 2 is satisfied as well. Rule
3 is to make sure the entity type of the actual business entity, i.e. not the resource entity, we
want to create the handover of work for is also the entity type for which the :DF relationship is
valid. This is determined by the elements of the list property EntityTypes of the :DF and :HOW
relationships.

If we compare the above situation with figure 6.15, we can see that some elements have changed.
This figure shows a similar pattern of the graph instance that does not comply with rules 1 and

3. Rule 1 is violated because e2 is not related to en2 and rules 2 does is violated for this sub-graph,
because the :HOW relationship has source and destination nodes of the same EntityType. Rule 3
in turn is violated, because :HOW and :DF refer to different business entities in their EntityTypes
properties.
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Figure 6.15: Handover of Work Pattern Non-Conform Instance

6.6 Schema Validation

With the patterns and rules introduced in the previous sections, we have everything that satisfies
our requirements for a event graph schema. The only problem left is how to validate the schema
and the instance, i.e. how to validate that all the ”conforms to” dependencies in figure 5.5 are
met?

In a first step we want to validate that a schema conforms to the defined patterns. A schema
conforms to its patterns if it contains all element types, nodes types and property types from all
its patterns. This means, if we merge all components of all the patterns for a schema, the result
of the merger must be a subset of the set of components of the schema. We can validate this
in different ways. For our case studies we closely inspected the resulting schema representation
native to Neo4j and compared it to the patterns. Figure 4.2 shows such an output of Neo4j from
another paper. By selecting the different components, we can inspect all the property types. A
second way to validate ”schema conforms to patterns” could be a dedicated graph instance that
represents the graph schema and can be queried according to the patterns, i.e. define a dedicated
query for every node type and relationship type from the patterns expecting exactly one match.
For example, if a pattern defines the schema must contain :Event nodes, we define a query for
exactly that node.

1 MATCH ( e : Event )
2 RETURN e

Listing 6.6: Match :Event Nodes

Similarly, we can define a query for the :DF relationship in the schema graph.
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1 MATCH ( : Event )−[ r :DF]−>(:Event )
2 RETURN r

Listing 6.7: Match :DF Relationships

If we run such a query for every node and relationship type and all return exactly one graph
element, we are certain that the schema conforms to its patterns.

The second conformance we want to check is the one between the graph instance and the rules.
Here we want to whether the constraints and cardinalities of defined by the rules are violated or
not. In the case studies, we again followed a rather pragmatic approach and queried samples of
affected patterns and visually checked their conformance. The affected parts on graph instance
level are closely elaborated in the example sections of the respective patterns. A more systematic
way to check the instance for rule conformance is to define queries that match patterns that are
actually forbidden by rules. In the handover of work example in figure 6.14, rule 2 defines that
the EntityType of the two entities handing over work must be equal. To test for conformance we
can define a query on the graph instance:

1 MATCH ( en1 : Entity ) − [ :HOW]−>(en2 : Entity )
2 WHERE en1 . EntityType <> en2 . EntityType
3 RETURN en1 , en2

Listing 6.8: Query for wrong HOW Relationships

If this query returns a matching result, we are certain that the instance does not conform to the
rules. For the rules we actually must test on non-conformance, because we restrict the graph
instance, as opposed to the schema where we define mandatory components with a pattern. How-
ever, since we, in some patterns, add exceptions to other rules, these queries must be defined
carefully.

The validation was not the focus of this research and developing a full, systematical validation
methodology was out of scope. This, however, is a potential next step to enhance the pattern
models in future research.

6.7 Summary

The overall goal of this thesis is to find a general way to encode multidimensional event data in
a property graph. Due to the lack of a standard schema for property graphs, we could not use a
out-of-the-box schema notation and apply it to our domain of interest. The development of such
a standard is ongoing since years, indicating that this is not a trivial thing to develop. With the
patterns in combination with the rules we found a way to overcome the lack of expressiveness of
the schema presentation shown in Chapter 3. We furthermore introduced examples of how the
framework can be applied to a specific domain, which is process event data in our case. We also
proposed ways to validate conformance of the different framework concepts.
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Evaluation

In this chapter we show how the schema framework can be applied to different data sets with
different kinds of multidimensional event data. In total, we conducted six case studies on five
different event logs. Section 7.1 lays out the goal and the overall setup of our evaluation.

In section 7.2 we give an in-depth description of how the case studies have been executed,
i.e. how we transformed the sequential source logs into multi-dimensional graph event data with
a validated schema. We explicitly explain the executed steps on the example of BPIC 17 as
representative procedure we used for all case studies. To conclude this chapter, we summarize the
findings of the evaluation in section 6.7.

7.1 Evaluation Setup

We chose five different sequential event logs as basis for six case studies to demonstrate a possible
way how the framework can be applied for these different multidimensional event data and have
indeed been able to store these data in labeled property graphs with a corresponding schema.
We used data sets of different BPI Challenges for the case studies. The BPI Challenges are
academically driven process mining contests where participants deal with real live event data.
These diverse, real live data sets form a suitable base to explore different forms of multidimensional
data in event logs. The main disadvantage of using this data is that for all of these data sets,
a preselection of the data and unknown design choices for the flat, sequential event logs have
been made by third parties, so we had to rely on our own assumptions when it came to domain
knowledge of the different data sets.

The objectives of the evaluation is to test our proposed LPG schema framework on real live
event data by answering the following questions:

1. Can the schema definition proposed in Chapter 3 and the graph event concepts defined in
Chapter 4 be applied to all data sets?

2. Are all schema patterns proposed in Chapter 5 applicable or do the patterns have to be
adapted?

3. Can the entity concept be applied to the proposed solution?

4. Can meaningful queries be formulated on the data?

5. How is the performance compared to the sequential counter parts?

The main purpose of the case studies is to show that we can apply our graph schema framework
to different data sets. They are explicitly not designed to show how process mining questions can
be answered, this has been shown in previous studies [11, 12]. We did, however, adapt some
process mining queries from these papers to our new schema structure to show that the same
information can be retrieved from graph data based on our schema approach.
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For all case studies we used the same machine, a 6 core Intel i7-9850H CPU @ 2.6 GHz with 32
GB of memory, and the same procedure of data preparation and graph creation to maintain some
baseline of comparability. The development of the patterns has primarily been done on sample
sets of the case studies in an iterative approach to find a sound set of patterns that can be used
for all the data sets. The usage of resources and time for creating the respective graph instances
have been recorded to be able to assess feasibility and usability of the proposed framework for the
different data sets.

This thesis makes a proposal for writing down event graph schemata for event logs. It only
provides the syntax for doing so while semantics of the schema (for schema validation) are derived
for each concrete schema instance. As described in section 6.6, the schema validation has not
been done systematically, but in a rather pragmatic way, i.e. by inspecting the Neo4j schema
(similar to figure 4.2) of a graph instance and matching it with the defined schema. The instance’s
conformance to the rules of the it’s local patterns has been checked by individual queries for (by
rule) forbidden or prescribed data structures as shown in the example query in section ! 6.6.
For every case study we show the data schema of the source event log and the assessment of it’s
multidimensionality, the data import, the creation of the log(s) and entity types as outlined in
figure 7.1. Furthermore, as every event log has it’s individual data structures, we individually
show further graph event data concepts, such as coinciding events to tackle the data divergence
problem, or creating case notions from base entities, for those some data where the source data
schema supports the definitions of these graph concepts. To test and evaluate the resulting graph
instances, custom Cypher queries and data profiling capabilities of Neo4j have been used to check
if the validation requirements specified in section 6.6 are met. Additionally, we defined individual
queries to demonstrate different aspects of multidimensional event data and explain how they are
incorporated in our schema framework.

7.2 Execution

The case studies haven been carried out on the property graph database engine Neo4j with its
native query language Cypher as introduced in section 2.5. The actual implementation has been
done with Python and the py2neo package. This way we have been able to automate the graph
implementation and optimized the iterative development of the patterns. Every graph instance
requires a set of Cypher queries to import the data from the source log in CSV format and create
the graph structure as defined in the respective schema and patterns. All scripts to the case
studies can be found in appendix A. The scripts allow flexible switching between sample sets and
the full data sets of the event logs to be used for a script execution. Identifiers for cases of each
log are hard coded in the scripts to ensure comparability of the results.

Even though these scripts vary from case study to case study they all have a common process
they follow. This process has been used to semi-automate the more than 100 iterations of creating
and testing the different graph structures of the case studies with different configurations. The
process as outlined in figure 7.1 includes:

First, the data import which consists of

• Analysis of the source data schema, i.e. what entities exist in the source event log, how are
they identified and how do they relate to events and other entities?

• Data preparation, i.e. make the source log ready for import in Neo4j by formatting timestamps
to a digestible format for example.

• Import the source log into a Neo4j database, i.e. create an event node for every row with
properties for every attribute.

• Define the core event data schema, i.e. define unique constraints as defined in the global
graph schema.

56 A Schema Framework for Graph Event Data



CHAPTER 7. EVALUATION

Even though XES format can directly be used by our Python scripts, e.g. by using the PM4Py
package [3], we decided to define a common baseline over the case studies such that every input and
output of the Python scripts is in CSV format. The output format was basically predetermined
by Neo4j, since its import functions are mainly based on CSV formatted data. Standardizing also
the input format to CSV was mainly motivated through keeping the dependencies of our Python
scripts as minimal as possible to minimize potential barriers for later replication. Thus, in the
first step we used the ProM Lite 1.21 process mining tool to convert the XES file to CSV format.

Importing the event nodes is done by the CSV import functionality native to Cypher and
Neo4j. The import serves the purpose to transport all information from the CSV log to the graph
such that every row from the CSV becomes an event node and every column becomes a property
key to the events. The cell values become the property values.

Second, for every log in the data set we perform the tasks

• Create a log node with a unique ID property.

• Correlate this log’s event nodes to the log node.

• Create the entity types that exist in the log. For every entity type we need to perform:

– Create entity nodes with a unique ID property and a property indicating the entity
type. If resource information exists, resource entities should be created first.

– Correlate the events to the respective events to the entity nodes.

– Create the temporal order relations between the events w.r.t. the entity type.

– Optionally, if resource information is available, create the handover of work w.r.t. to
the entity type.

Third, if the source data schema permits, we can choose to add additional data structures to
the graph event log, such as

• Correlate coinciding events, i.e. tackle event data divergence.

• Correlate coinciding entities.

• Create derived entity types, i.e. use base entity types to create new ”cases” of entities.

Figure 7.1 gives an overview of our graph event log process based on CSV source event logs.
The blue boxed tasks have been done for every graph event log in our case studies. The tasks in

dark grey boxes are optional in a sense that not every event log had sufficient data to apply them.
The bright grey boxes are analog to sub processes. The tasks in Log must be performed for every
log and the tasks in Entity Type for every entity type accordingly. The output of Entity Type is
multiple entity nodes per entity type and there can be multiple entity types per log. This process,
however, is just the standard approach for every log. There may also follow different steps, e.g.
defining a case from combined entities like we show in the BPIC 17 case study in section7.3.

In the following paragraphs we introduce each case studies and the context of the event logs.

1http://promtools.org
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Figure 7.1: Create Graph Event Log Process Overview

7.3 Results on Loan Application Process

Therefore, the data should, to a certain extend, be familiar to the reader already. The loan
application process is the event log of the BPI Challenge 17 [32]. It contains the data of a loan
application process of an online system of a Dutch financial institute. A simplified version of this
data set has been used as running example throughout the thesis.

Event Data Size: The log contains 561,671 unique events and 31,509 cases.

Activities: The events include the 26 different activities that are listed in table 7.1 in the left
column.

Entities: Next to the defined Case, we identified the Application, Workflow and Offer as
entities of the business process. The event data also includes resource information that, as per
our definition can also be considered an entity. From the business process perspective, however,
resources are rather complementary entities, i.e. they conduct activities, but do not have dedicated
activities in the process itself. From the graph perspective, we are primarily interested in events
and how they correlate to the different entities.

Activity-Entity-Relations: Thanks to the activity naming and an event attribute indicating
the ”EventOrigin”, we are able to correlate events with their business entities without relying on
external business knowledge. We show the full activity-entity mapping in table 7.1.
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Activity Entity
A Create Application Application
A Submitted Application
A Concept Application
W Complete application Workflow
A Accepted Application
O Create Offer Offer
O Created Offer
O Sent (mail and online) Offer
W Call after offers Workflow
A Complete Application
W Validate application Workflow
A Validating Application
O Returned Offer
W Call incomplete files Workflow
A Incomplete Application
O Accepted Offer
A Pending Application
A Denied Application
O Refused Offer
O Cancelled Offer
W Handle leads Workflow
A Cancelled Application
O Sent (online only) Offer
W Assess potential fraud Workflow
W Personal Loan collection Workflow
W Shortened completion Workflow

Table 7.1: BPIC 17 Activities per Entity
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Events per Entity: We can divide the 561,671 events into 239,595 application events, 128,227
workflow events and 193,840 offer events. For resources it does not make sense to count dedicated
events, since resources are rather complementary entities to the events and thus don’t represent
their own process. Nonetheless, we can in turn treat resource entities as case to retrieve the
sequence of events associated to the resources. The log contains 145 resources, i.e. 145 resource
cases. Because of the 1:1 relation, application and workflow have with 31,509 and 31,500 an almost
equal number of cases and offer has a 42,995 case count.

Attributes and Entity Identifiers: The BPI Challenge 17 event log has 19 columns which
serve as attributes to either one of the entities or to events. Generally, every column with a suitable
identifier can be used to create an entity, i.e. every column that doesn’t contain unique values.
How useful such an entity is can only be answered with at least a basic idea of the domain of the
process. In the BPIC 17 data set, we have a case ID, which apparently is an identifier for the
applications, because all values in this column start with ”Application ” and end with a number
unique to every case. Next to the cases, we have a offer ID with a structure similar to the case
ID.

Case-Entity-Relations: A case effectively consists of a combination of the three entity types
application, workflow and offer. Application and workflow have a 1:1 relation whereas application
(and workflow respectively) to offer is a 1:n relation. However, in some cases, no workflow events
exist for a case ID. We assume that these cases may simply be incomplete or otherwise faulty. In
table 7.2 we categorized every column to the best of our knowledge and as we are no domain experts
able to verify these assumptions, we define our assumptions as given. For our research problem, it
is not necessary to have a perfect representation of the respective domain. The identification and
definition of the multidimensionality of the data is key. Thus, like for the previous case studies,
we assessed every column whether it can potentially be used as identifier for an entity. Candidates
for such an identifier can be all ID fields that allow grouping such that multiple events can be
associated with such IDs. Again, assumptions need to be made according to the relevance of
such an entity, i.e. does it make sense to associate an entity with some kind of (sub) process?
The Action column for example has a number of distinct values like ”Created”, ”statechange”
or ”Obtained” for certain events and thus could potentially serve as entity identifier. In the
context of the application process, however, we assume that the Action column provides some
meta information e.g. from a workflow management system for the status of certain process tasks
or entities and therefore should not be treated as its own entity. The Offer ID column on the
other hand seems to exactly fit our expectations of an entity, i.e. individual entities are associated
with multiple events and can logically be related to as sub process in the given log context. In
section 4.1 we discussed this log’s entities and their relations already so we do not need to elaborate
on them too deep anymore.

Table 7.2 shows how we assigned the identifiers to entities. Since we assume that applications
and workflows have a 1:1 relation, we can use the case ID column for both.

For this data as described and modeled above, we now conducted two analyses:

1. Repeat the analysis of [11] and [12] through the generic approach proposed in this work.

2. Investigate the ability to handle data convergence [20].

For 1, we used the data as is. For 2, we used the two event attributes Start timestamp and
End timestamp to create a log where we certainly know what events coincide by ’splitting’ the
events to a start and end event. With this artificially generated situation we want to simulate
situations where we actually have multiple events that originated from a single event in the source
information system, also known as data convergence problem as described by Lu et al. in [20].
Please refer to section 2.2 for a detailed description of this type of problem in event data.

7.3.1 Graph Creation for BPIC 17

This case study uses the original log with two timestamps per event. In the following paragraphs
we describe how we created the graph by following the process shown in figure 7.1.
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Column Example Entity ID for Attribute to

Case ID Application 652823628
Application,

Workflow
Application,

Workflow
Activity A Submitted Event

Start timestamp 2016/01/01 10:51:15.304 Event
End timestamp 2016/01/02 12:30:28.633 Event

Loan goal Home improvement Application
Application type New credit Application

Requested amount 15000 Application
Action Created Event

FirstWithdrawalAmount 500 Offer
# of terms 33 Offer
Accepted True Offer
Offer ID Offer 148581083 Offer Offer
Resource User 38 Resource Event

Monthly cost 200 Offer
Event origin Offer Event

Event ID ApplState 752879093 Event
Selected True Offer

Credit score 979 Offer
Offered amount 15000 Offer

Table 7.2: BPIC 17 Data Description

Data Import

Data Preparation − This part describes how to get the data right. The log can be downloaded
in XES format. With ProM Lite 1.2 we converted the log to CSV format. We identified unex-
pected data conversions for some attributes for BPIC17. Please refer to appendix A.2 for more
information. After the conversion from XES to CSV, we have a log file with 1,160,405 rows with
many duplicates. These are removed during the preparation. The data preparation also included
the transformation of the timestamps to a string with datetime format according to the ISO 8601
standard. This allows us to directly import the timestamps as Neo4j datetime datatype. After
the preparation steps we have a CSV file with 561,671 rows (events) and a size of 0.13 GB ready
for import.

Event Node Import − This part is about the data import. After the log in CSV format has
been prepared, we import the complete log into the graph database system. After 32 seconds, the
import has finished and with a resulting graph database with 561,671 :Event nodes, 0 relationships
and a size of 0.93 GB.

Unique Constraints − In this part describe how we created the unique constraints. In Neo4j,
we do not require actual data objects to be present in order to define unique constraints for object
types. To enforce the uniqueness of our entity identifiers, we define the unique constraints before
we create the actual nodes. To follow our schema definition, we define a unique constraint on
the property type ”ID+EntityType” of the :Entity node type, which we renamed to uID in the
implementation for practical reasons, since the name in the pattern shall indicate from what other
properties this property is constructed. We also define unique constraints on the ID property type
of the :Log node type, which is the last step of the data import section in our graph event log
creation process.

Log

Create Log Nodes − The BPIC 17 event log data set consists of only one a single log, so there is
exactly one :Log node to be created in the next step.
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Create Log to Event Relationships − With that log node, we can now proceed and create the
:L E between this log node and all of the 561,671 :Event nodes, adding 561,671 :L E relationships
to our graph.

Entity Types − The sub tasks for entity types, as shown in the ”Entity Types” box in figure 7.1,
are performed in sequence and need to be executed for every individual entity type, i.e. we loop
over the tasks for every entity type.

Entity Nodes −− As a first step, we create the entity nodes. As mentioned in the BPIC
17 log description above, we have identified Application, Workflow and Offer as process entities.
Additionally, we have resource information we want to use for organizational event data structures
and thus create a :Resource entity as well. This has been done by using the information encoded
in the event properties. For every entity type, we have defined an entity identifier as shown in
table 7.2. For every entity we want to create, we can use these identifiers to create entity nodes,
i.e. for every unique value of the identifier one node is created. For creating resource entity nodes,
we can use the query shown in listing 7.1.

1 MATCH ( e : Event )
2 MERGE( r : Ent ity {ID : e . r e s ou r c e })
3 ON CREATE SET r . uID = ( ’ Resource ’+ toS t r i ng ( e . r e s ou r c e ) ) , r . EntityType = ’ Resource ’

Listing 7.1: Create Resource Entity Nodes (Cypher)

The query shows that we only match event nodes and use their properties, e.resource in this case,
to create distinct :Entity nodes with the ”MERGE” clause.

For the business entities in this data set, we also need to take the ”EventOrigin” into consid-
eration. We show this by example of the Application entities in the following query:

1 MATCH ( e : Event )
2 WHERE e . EventOrigin = ”Appl i ca t ion ”
3 WITH e . CaseID AS id
4 MERGE ( en : Entity {ID : id , uID : ( ” Appl i ca t ion”+toS t r i ng ( id ) ) , EntityType : ” Appl i ca t ion

”})

Listing 7.2: Create Application Entity Nodes (Cypher)

In this query we actually set the property values and keys in the ”MERGE” clause directly, instead
of using an additional ”ON CREATE SET” clause. In fact, there is no difference if the query is
correctly defined. To identify our application entities, we combine the ”EventOrigin” property
with the case identifier. For the entity’s unique identifier, we also use the ”CaseID” with the
entity type as prefix, to create uniqueness to the identifiers among the different entity types.

:E EN Relationships −− Next, we correlate the entity nodes to the events. For every single
entity we create :E EN relationships between them and their respective events as shown in the
example for resource entities in listing 7.3.

1 MATCH ( e : Event )
2 MATCH ( r : Entity {EntityType : ”Resource ”})
3 WHERE r . ID = e . r e s ou r c e CREATE ( e ) − [ :E EN]−>( r )

Listing 7.3: Create :E EN Relationships (Cypher)

:DF Relationships −− Now we can go on to the :DF relationships. Once we have correlated
the events with their entities, we can continue and create the entity specific :DF relationships.
With the help of the original sequence of the events, we generate an entity specific index to be able
to generate the :DF relationships over the events of the newly created entities. We used Python
for that, firstly because the handling of graph objects that have no direct relationship yet was far
more intuitive and secondly, we created the graphs with Python scripts anyway so this could be
easily integrated. In the next query we used the pandas and py2neo packages in Python to create
a sort order index for the newly created entity type.

1 query = ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {EntityType : ”Appl i ca t ion ”})
RETURN ev ORDER BY ev . case , ev . idx ’

2 output = Graph . run ( query ) . data ( )
3 en t i t y Idx = 0
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4 propertyName = ’ App l i c a t i on idx ’
5 f o r node in output :
6 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
7 Graph . push ( node [ ’ ev ’ ] )
8 en t i t y Idx += 1

Listing 7.4: Create Entity-Specifc Ordering Index (Python)

In line 1 we define the actual Cypher query to get all events with a relationship to one of
our Application entities and order them by their global ordering index (the original sequence of
all events in the log), which is a helper property, like all indexes, to keep track of sequential
information and thus can be deleted after use to not affect the schema. The result of this query is
saved into the pandas dataframe output. Every single event node in the query output becomes a
new property Application idx which is a strictly ordered index over the events of the Application
entity and because the ouput of the query is ordered (”ORDER BY”), we maintain the correct
order of events.

Based on the entity-specific index, we can now create the :DF relationships for events associated
to this entity type.

1 MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {EntityType : ”Appl i ca t ion ”}) <−[:E EN]− ( e2
: Event )

2 WHERE e2 . App l i c a t i on idx − e1 . App l i c a t i on idx = 1
3 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
4 ON CREATE SET df . EntityTypes = [” Appl i ca t ion ” ]
5 ON MATCH SET df . EntityTypes = CASE WHEN ”Appl i ca t ion ” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”Appl i ca t ion ” END

Listing 7.5: Create Entity-Specific :DF Relationships (Cypher)

The listing above matches every pair of events with a relationship to a Application entity with
e2.Application idx - e1.Application idx = 1. Since we have a discrete, strictly ordered index, we can
derive that e2 directly follows e1. With the MERGE clause in line 3 we make sure that for every
pair of nodes maximum one :DF relationship will be created, regardless for how many entities this
relationship it indicates a :DF. Through this merge, we ensure that the :DF relation adheres to the
rules of the 2 df pattern. Lines 4 and 5 help us to define different actions for different situations
in the MERGE clause. As we explained before, the MERGE clause creates the relationships only
once, but since we also want to maintain a correct list of entities to that relationship, we specify
the creation of a new property df.EntityTypes with a list with only one entry [”Application”] if
the relationship does not exist, yet (”ON CREATE SET”). If the relationship already existed, we
check whether the new entity is already member of the list and if not, it is added (”ON MATCH
SET”).

The last step in the creation of a general graph event log is creating the :HOW relationships
of the resources. The information can be derived from two events e1 and e2, the :DF relationship
between them and the resources r1 and r2 related to the events respectively. The we continue
with the application example in the query below.

1 MATCH ( r1 : Entity {EntityType : ”Resource ”}) <−[:E EN]− ( e1 : Event ) −[ r e l :DF]−> ( e2 :
Event ) − [ :E EN]−> ( r2 : Entity {EntityType : ”Resource ”})

2 WHERE ’ Appl icat ion ’ IN r e l . EntityTypes
3 MERGE ( r1 )−[how :HOW]−>( r2 )
4 ON CREATE SET how . EntityTypes = [” Appl i ca t ion ” ]
5 ON MATCH SET how . EntityTypes = CASE WHEN ”Appl i ca t ion ” IN how . EntityTypes THEN how .

EntityTypes ELSE how . EntityTypes + ”Appl i ca t ion ” END

Listing 7.6: Create Entity-Specific :HOW Relationships (Cypher)

Line 1 matches r1 and r2 if they are connected via two events. Line 2 reduces the set of
sub-graphs to those where the :DF refers to an :Application entity. Lines 3-5 follow a similar
logic like lines 3-5 in listing 7.5, only for :HOW relationships between resources instead of :DF
relationships between events.

With the above steps, the creation of the graph event log base is completed. The script
template in appendix A.6.1 can be used to replicate these results. This graph can now be used as
baseline for analyses and to create additional data structures for different types of analyses.
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7.3.2 Graph Event Data for BPIC 17

As shown in table 7.2, we identified four entity types and their ID attributes, Application, Work-
flow, Offer and Resource. Furthermore, we have two timestamps. The other attributes are not
particularly interesting as they do not contribute to the temporal order or the multidimensionality
of the events and their entities.

The data schema consists of the 0 core pattern (to model events, entities and logs), the 1 df
pattern (to model temporal relations) and the 2 how pattern (to model resource involvement as
this information is present in the BPIC 17 data). The schema pattern definition is exactly the
definition of the 2 how pattern in listing 6.2, because we did not use any of the other patterns on
hierarchy level 1. The concrete schema definition can be found in listing 7.7.

The schema in property graph representation looks as follows: We put a focus on keeping the

Figure 7.2: BPIC 17 Graph Event Log Schema

structure of the schema as easy and as readable as possible. As reasoned in Chapter 4 and 5,
different entity types are not represented by different labels, but share the same label :Entity ; the
type information is described as a property of an :Entity node. The ’...’ in the event property
box indicates that not all properties are shown in the figure. The schema definition in the listing
below gives us the full picture .

1 schema bpic17 = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Star t : TIMESTAMP,
6 End : TIMESTAMP,
7 Timestamp ! : TIMESTAMP,
8 Action : STRING,
9 FirstWithdrawalAmount : FLOAT,

10 NumberOfTerms : INTEGER,
11 EventOrigin : STRING,
12 Se l e c t ed : BOOLEAN,
13 Cred i tScore : INTEGER,
14 case : STRING,
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15 LoanGoal : STRING,
16 r e s ou r c e : STRING,
17 RequestedAmount : FLOAT,
18 Accepted : BOOLEAN,
19 OfferID : STRING,
20 ApplicationType : STRING,
21 MonthlyCost : FLOAT,
22 EventID : STRING,
23 OfferedAmount : STRING
24 }
25 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
26 Log {ID} : STRING}
27 E EN {} ,
28 L E {} ,
29 DF {EntityTypes : LIST} ,
30 HOW {EntityTypes : LIST}
31 }
32 {//node types
33 ( : Event ) , ( : Ent ity ) , ( : Log )
34 }
35 {// r e l a t i o n s h i p types
36 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
37 ( : Log ) − [ :L E]−>(:Event ) ,
38 ( : Event ) − [ :DF]−>(:Event ) ,
39 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
40 }
41 )

Listing 7.7: BPIC17 Schema Definition

According to listing 7.7, we need to have a Timestamp property on every node. Since our data set
contains two different timestamps per event, we can actually choose which one we use to satisfy
the mandatory property. We did that by duplicating one of the timestamps with a simple query:

1 MATCH ( e : Event )
2 SET e . Timestamp = e .End

Listing 7.8: Set Timestamp Property (Cypher)

As stated in the query, the end timestamp is the leading timestamp in the log because the
original log is ordered by that timestamp,i.e. not by the start timestamp, and the graph event
directly follows relationships are generated based on that order. If we want to use a different
timestamp for this, we either need to create a dedicated graph instance and predefine the start
timestamp as leading timestamp, or we need to define a more complext :DF pattern that it can
consider different timestamps and allows dedicated :DF relationships for the different timestamps
similarly to how the current :DF pattern treats the different entity types.

7.3.3 Examples for BPIC 17

Additional Data Structures: Create Derived Entity Types

For the BPIC 17 data set, we do not introduce any further structures in terms of patterns such
as coinciding events or coinciding entities. What we do, however, is to derive new entity types
from the entity types that already exist in the graph. This is to test the entity concept introduced
in 2.2.1 on the graph for whether we are able define new entity types from the combinations of
other entity types, e.g. to create an entity type for the actual case identifier of the BPIC 17 log
from the entity types Application, Workflow and Offer. The task to derive new entity types from
existing ones involves the exact same steps like the entity types we created from the imported data.
The only difference is that we correlate the event nodes of different entity types or simply select
entity types that are candidates for a alternative case identifier in the source log with each other.
In this step we defined three new entities: Case AWO, Case AO and Case R. Case AWO is the
entity for the actual case identifier from the log. For the case notion of Case AWO, we included
Application, Workflow and Offer events, for Case AO only considered event of Application and
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Offer and for the Case R entity we actually defined our resource entity to be the ”case identifier”
of the new entity type. All these case definitions coexist in the same graph instance and can be
queried separately. In the graph creation section 7.3.1 to this case study we describe the creation
of new entities much more detailed.

Say we want to create an entity from the combination of Applications and Offers, so we first
need to define what identifier is suitable for the new entity. In this case, we have a leading entity
Application since it has a 1:n relation with Offer and as stated in table 7.2, we can take the
”CaseID” as identifier. We called this new entity type Case AO and created the entity nodes with
the following Cypher query:

1 MATCH ( e : Event ) WITH e . CaseID AS id
2 MERGE ( : Entity {cbOpen}ID : id , uID : ( ” Case AO”+toSt r i ng ( id ) ) , EntityType : ”Case AO”{

cbClose })

Listing 7.9: Create Combined Entity Nodes

As you can see, we used the e.CaseID property as ID and set the entity’s uID and EntityType
properties accordingly. The next step is to relate all those events related to Offer or Application
(but not those related to Workflow) to the newly created Case AO entities.

1 MATCH ( e : Event ) − [ :E EN]−>( ent )
2 WHERE ( ent . EntityType IN [ ” Of f e r ” ,” App l i ca t ion ” ] )
3 MATCH (n : Entity {EntityType : ”Case AO”})
4 WHERE n . ID = e . CaseID
5 CREATE ( e ) − [ :E EN]−>(n)

Listing 7.10: Correlate Combined Entity with Events

We first filter in only only those events and their entities that are either Application or Offer. The
second MATCH selects the entity nodes of the ”combined entity” from step one. This way we
can create :E EN relationships between each selected event and the corresponding new Case AO
node n (by n.ID = e.CaseID).

After the nodes for the combined entity have been created an correlated to the events, we
can now follow the standard procedure for creating entity types in the process in figure 7.1, as
indicated with the light blue arrow.

This means we can adapt to the new entity type and apply the query in listing 7.4 to create
the Case AO-specific order index.
Adapt and apply the query in listing 7.5 to create the Case AO-specific :DF relationships and
Adapt and apply the query in listing 7.6 to create the Case AO-specific :HOW relationships. This
all we need to created combined entities. Resources, for example, can also be defined as ’case’. To
do so, we only look at the events from the resource perspective, meaning that a case represents all
events a resource creates while doing it’s tasks, in the correct temporal order. In a graph database,
with the structure and schema framework as we introduced it, we can define such cases on the fly.
With traditional event log several filter and sort actions are usually required to define a new case.

Figure 7.3 shows the Neo4j graph output on instance level of one complete

We ordered, removed irrelevant (Resource entities) and expanded interesting (Case AO entity)
elements in the graph view, manually after the query. As you can see, such a simple output can
get difficult to lay out very quickly. The entities in the upper part of figure 7.3 are the Application,
Workflow and Offer entities that had been created during the log creation process. The lower
two entities are Case AWO and Case AO. As can be seen from the :E EN relationships of the
two combined entities, Case AWO refers to the events of all three ’basic’ entities and Case AO
refers only to events of Application and Offer. The :DF relationships of the events are not shown
clearly, but as we have five entities for which different :DF relationships exist, you can get a rough
idea that the number of relationships grows as the number of entities grows. In figure 7.4 we
show the same instance we show the same event nodes reordered to illustrate the different :DF
relationships. Workflow events at the top, application events at the center and offer events at the
bottom.
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Figure 7.3: Events Related to the 3 Basic Entities and 2 Derived Entities

Figure 7.4: Events of Figure 7.3 Reordered

Additional Data Structures: Correlate Coinciding Events

Data convergence is a problem often discussed in process mining literature [20, 28]. As this problem
is related to the multi-dimensional attributes of the event data, we want to assess the ability of
our solution to enable process mining practices to create correlations between coinciding events.
Unfortunately, none of our available data sets contained indicators in the event data whether
certain events may coincide or not. Therefore, we decided to reshape the structure of BPIC 17
to artificially create coinciding events and thereby create a second case study based on this data
set. Table 7.3 shows a simplified example of the original BPIC 17 data, where each event has two
timestamps, one for the start and one for the end of the activity.

In figure 7.5 we show how the corresponding (sub-)graph instance for the original data looks
like after creating the graph.

Table 7.4 shows how the log is structured after the new preparation steps and in figure 7.6 we
show how the corresponding graph structure changed.

As you can see from the pictures above, we generated longer (doubled) sequences of events

cID eID Activity Start End ...
1 1 Create Appl. 29.08.19 10:30 29.08.19 10:40 ...
1 2 Appl. Ready 29.08.19 10:35 29.08.19 10:41 ...
1 3 Appl. Complete 30.08.19 13:59 30.08.19 14:00 ...
... ... ... ... ... ...

Table 7.3: BPIC 17 Simplified Example Table With Two Timestamps per Event
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Figure 7.5: BPIC 17 Simplified Example Graph With Two Timestamps per Event

cID eID Activity Timestamp ...
1 1 Create Appl. 29.08.19 10:30 ...
1 2 Appl. Ready 29.08.19 10:35 ...
1 1 Create Appl. 29.08.19 10:40 ...
1 2 Appl. Ready 29.08.19 10:41 ...
1 3 Appl. Complete 30.08.19 13:59 ...
1 3 Appl. Complete 30.08.19 14:00 ...
... ... ... ... ...

Table 7.4: BPIC 17 Simplified Example Table With One Timestamp per Event

Figure 7.6: BPIC 17 Simplified Example Graph With One Timestamp per Event

through this transformation compared to the original data and we ordered the sequence according
to the timestamps. Besides this data preparation step and different ”Additional Data Structures”,
everything regarding the graph event log creation has been done the exact same way as for the
original BPIC 17 data. The we added the 1 e coincide pattern as described in section 6.3, to be
able to correlated the events in the graph accordingly. As for every case study, we followed the
process show in figure 7.1 to create the BPIC 17 graph event log with split events. Due to the
duplication of the number of events in the source log, the number of event nodes in the graph
doubled to 1,123,342 accordingly. The numbers of entity and log nodes did not change, compared
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to the first BPIC 17 case study. Creating the basic graph event log took 5.87 hrs and has a
database size of 5.71 GB.

Due to the fact that we added a new template, we have to adjust the pattern definition
accordingly:

1 pa t t e r n bp i c 1 7 s p l i t = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF {EntityTypes } ,
9 E COINCIDE ,

10 HOW {EntityTypes}
11 }
12 {//node types
13 ( : Event ) , ( : Ent ity ) , ( : Log )
14 }
15 {// r e l a t i o n s h i p types
16 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
17 ( : Log ) − [ :L E]−>(:Event ) ,
18 ( : Event ) − [ :DF]−>(:Event ) ,
19 (:Event)-[:E COINCIDE]->(:Event) ,
20 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
21 }
22 {// i nh e r i t e d pat t e rns
23 0 core , 1 df , 1 e coincide
24 }
25 )

Listing 7.11: BPIC 17 Split Pattern Definition

We marked the newly added elements of the definition with bold text in listing 7.11. This of
course affects the global schema definition as well:

1 s chema bp i c17 sp l i t = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Timestamp ! : TIMESTAMP,
6 Action : STRING,
7 FirstWithdrawalAmount : FLOAT,
8 NumberOfTerms : INTEGER,
9 EventOrigin : STRING,

10 Se l e c t ed : BOOLEAN,
11 Cred i tScore : INTEGER,
12 case : STRING,
13 LoanGoal : STRING,
14 r e s ou r c e : STRING,
15 RequestedAmount : FLOAT,
16 Accepted : BOOLEAN,
17 OfferID : STRING,
18 ApplicationType : STRING,
19 MonthlyCost : FLOAT,
20 EventID : STRING,
21 OfferedAmount : STRING
22 }
23 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
24 Log {ID} : STRING}
25 E EN {} ,
26 L E {} ,
27 DF {EntityTypes : LIST} ,
28 E COINCIDE ,
29 HOW {EntityTypes : LIST}
30 }
31 {//node types
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32 ( : Event ) , ( : Ent ity ) , ( : Log )
33 }
34 {// r e l a t i o n s h i p types
35 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
36 ( : Log ) − [ :L E]−>(:Event ) ,
37 ( : Event ) − [ :DF]−>(:Event ) ,
38 (:Event)-[:E COINCIDE]->(:Event) ,
39 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
40 }
41 )

Listing 7.12: BPIC17 Split Schema Definition

Event though the changes appear to be relatively small, compared to the original BPIC 17 schema
definition, but since the rules for the 1 e coincide pattern template now apply to the graph in-
stance, we can now systematically create and query the coinciding event structures.

Based on the 1 e coincide pattern, we created collector nodes for each set of coinciding events
with the query shown in listing 7.13 and related these nodes based on their event ID (”eID”)
property accordingly.

1 match ( e : Event ) <−[:L E]−( l : Log ) − [ :L E]−>(e2 : Event )
2 where e . eID = e2 . eID
3 MERGE ( c o l l e c t o r : Event {ID : e . eID })
4 MERGE ( e ) − [ :E COINCIDE]−>( c o l l e c t o r )
5 MERGE ( e2 ) − [ :E COINCIDE]−>( c o l l e c t o r )

Listing 7.13: Query to Correlate Coinciding Events

Note that the :Log node used in the pattern is not shown in the example figures 7.5 and 7.6
as they only show sub-graphs of the complete instance. According to the defined schema and the
pattern templates used for BPIC 17 in general ensure that this log node must exist when querying
the graph event data. For example, for event 1 (”eID”) we show the the resulting collector node
in figure 7.7.

Figure 7.7: BPIC 17 Coinciding Events with Collector Node

If we want to correlate events over different logs, i.e. two events related to different :Log nodes,
we can adjust the query accordingly.
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While the creation of the log with duplicated events has been completed successfully, creating
the collector nodes for the complete data set failed. We assume that the graph grew too big for
our hardware, as this query would add another 561,671 nodes and 1,123,342 relationships to the
graph. We, however, verified the pattern template on a smaller sample of the data with the sample
cases encoded in the script template in appendix A.7.1. In principle, the pattern template works
as intended, except for the performance.

Querying Behavior Across Multi-Dimensional Instances

In the paper [12], we defined a query over multidimensional data which we also want to test on
the structure and the framework defined in this thesis. Say we have an entity type Case AWO,
similarly created like Case AO shown above. For that entity type, we want to find all entities
that are related to two or more Offer entities where event e1 with e1.Activity = ”O Created” is
directly followed, with respect to the Offer entity, by e2 with e2.Activity = ”O Cancelled”. For
all of these Offer nodes, we want to retrieve the path between the very start of the respective
Case AWO start event with Activity = ”A Create Application” and every ”O Cancelled” event of
offers that match our criteria. This query is hardly doable without plentiful aggregations, sorting
and data splitting and recombining on basis of a sequential event log. However, in the paper above
we have been able to show that this query is possible without any further tooling other than the
native Cypher functionality. The listing below shows the adapted query for our new event log
meta model:

1 MATCH (o : Entity {EntityType : ”Of f e r ”})<−[:E EN]−( e1 : Event {Act iv i ty : ”O Created ”})
−[ d f :DF]−> ( e2 : Event {Act iv i ty : ”O Cancel led ”}) − [ :E EN]−>(o )

2 MATCH ( e2 ) − [ :E EN]−>(c : Ent ity {EntityType : ”Case AWO”})<−[:E EN]−( e1 ) − [ :E EN]−>(o )
3 WITH c , count ( o ) AS ct
4 WHERE ct > 1
5 MATCH (o : Entity {EntityType : ”Of f e r ”})<−[:E EN]−( e1 : Event {Act iv i ty : ”O Created ”})

−[ d f :DF]−> ( e2 : Event {Act iv i ty : ”O Cancel led ”}) − [ :E EN]−>(o )
6 MATCH ( e2 ) − [ :E EN]−>(c )<−[:E EN]−( e1 ) − [ :E EN]−>(o )
7 RETURN o , c , e2

Listing 7.14: Query Multi-Dimensional Behavior

We have split that query into two parts. The first query in listing 7.14 returns exactly the 218
Offers of 103 Case AWO entities where the conditions from the analysis question are met. It also
returns the respective O Cancelled events we can then use to query for the paths. The second
step, however, poses a challenge to in our new data model as we need to query a path of :DF
patterns with variable length. To get the respective paths as output, we usually want to use the
*-operator with the :DF relationship type. Similar to the following listing:

1 MATCH p = (A Created : Event { a c t i v i t y : ”A Create App l i ca t ion ”}) − [ :DF∗]−>(e2 )
2 RETURN p

Listing 7.15: Query Paths for Multi-Dimensional Behavior

The problem is that, with our data model, we have a list of entity types as property of the :DF
relationships. Filtering on a list in combination with the *-operator was not possible and thus we
have not been able to get desired path-based output with the data model specified for this thesis.
With the data model used in [12], however, the desired output could be generated.

7.3.4 Schema Validation

With the graph instance in place, we want to validate three things:

1. Does the graph instance conform to the global schema (figure 7.2)?

2. Does the global schema conform to the local, pattern based schema?

3. Does the graph instance conform to the pattern rules?
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First, we want to verify that the graph instance and the global schema we defined for this data
set shown in figure 7.2 conform. By executing the ”db.schema()” function of Neo4j at our graph
instance, we receive a proprietary schema like model comparable to our global schema definition
(shown in figure 3.1). We show the the output of this function in figure 7.8.

Figure 7.8: Neo4j Schema for BPIC 17

Compared to the defined global schema in figure 7.2, we can at least say that the node and
relationship types match. The Neo4j schema, however, does not provide a list of property types
per element type in the graph. Thus, we can use the ”exists” functions with all element types
specified in our global schema to check whether they occur in the database or not. For example,
the listing below queries counts the number of events that have an Activity property.

1 MATCH ( e : Event )
2 WHERE e x i s t s ( e . Ac t i v i t y )
3 RETURN count ( e )

Listing 7.16: Query Property Exists

The expected output is equal to the number of events in the log, because Activity is defined
as mandatory property to event nodes. Relationship properties can be queried accordingly. Since
we did not have a systematical approach available to check for full compliance, we tested the
mandatory (including unique) properties specified in the global schema. With the query

1 MATCH ( e : Event )
2 RETURN keys ( e )

Listing 7.17: Query Property Keys of Nodes

we get all property keys of all nodes in the graph. By comparing the distinct values of the
output, with the property types in the schema definition in listing 7.7 we can validate that the
instance has the same properties we defined. When replacing the ”keys(e)” by the ”properties(e)”
function, we can furthermore validate the datatypes of the different keys. With these manual test
we successfully validate that the BPIC 17 graph instance conforms to the global schema.

Second, we want to validate that the global schema conforms to the local schema patterns
specified in listing 6.5, as it is equal to the BPIC 17 local pattern schema. To do so, we can take
the validated schema definition in listing 7.7 and check if all element types and respective property
keys, node types and relationship types in of the local schema (listing 6.5) are also included in the
global schema (listing 7.7). As this is the case, we validated the conformance of the global schema
to the local pattern schema.

Third, we want to verify that the graph instance conforms to the pattern rules. The verification
of the rule compliance is very specific to the type of rule and the complexity of the individual rules.
For every rule, we can define ’test cases’ with expected outcomes and define respective queries that
should produce the expected outcomes, otherwise we institute a non-compliant data model. For
example, we want to verify that rule 2 of the core pattern in section 6.1 is not violated. The rule
specifies that and event node e can have maximum one incoming :L E relationship. Therefore,
we define a query that identifies all event nodes with more than one :L E relationship and expect
the query to return an empty set. We query:

1 MATCH () − [ :L E]−>(e : Event )
2 WITH count ( e ) as eventCount , e
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Entity Type # of Event Nodes # of Entity Nodes
All 561,671 169,312

Application 239,595 31,509
Workflow 128,227 31,500

Offer 193,849 42,995
Case AWO 561,671 31,509

Case AO 433.444 31,509
Resource 561,671 145

Case R 561,671 145

Table 7.5: BPIC 17 Event Log Entities

3 WHERE eventCount > 1
4 RETURN eventCount , e

Listing 7.18: Example Query for Violated Cardinalities Rule

The result for BPIC 17 was empty, thus we imply that the rule is respected.
Another example of a rule validation is rule 1 of the directly follows pattern in section 6.2. It

specifies that a :DF relationship may only exist between two :Event nodes e1 and e2 with e1 6= e2.
The query below returns all source and target nodes n of :DF relationships with a label other
than :Event. Empty output is expected for compliance.

1 MATCH (n) − [ :DF]−( : Event )
2 WHERE NOT ”Event” IN l a b e l s (n)
3 RETURN n

Listing 7.19: Example Query for Violated DF Rule

The BPIC 17 graph event log passed this and all further tests we ran against it. Therefore, we
claim the graph event log is compliant to the entire graph schema (global schema, local patterns
and rules).

This validation, however, was not conducted systematically and we do not claim to have covered
100% of possible violations, but we tried to be as complete as possible in the given scope of this
thesis. A systematic schema validation for our schema framework might be subject to future
research.

7.3.5 Graph Event Data Statistics

In table 7.5 we summarize statistics of the different entities. These have been retrieved by querying
the graph event data and counting the number of events and entities. The number of entity and
event nodes are feasible. The entity and event numbers of the base entities are equal to the ones of
the original log as stated earlier in this section. The sum of entity nodes over all entity types sums
up to the number of all entities, which means that there are no entities created unintentionally.
The sum of Application, Workflow and Offer events is equal to the number of the query result for
all event nodes in the graph.

Creating the graph took 3.94 hours on our test system. The Neo4j database has a size of 6.34
GB with all elements described above. The original CSV log file (before the data preparation) has
a size of 0.28 GB which is loaded into process mining tool such as ProM in a matter of seconds.

7.4 Other Data Sets

In this section, we want to briefly report on the findings of the four other case studies we conducted
in the course of this thesis. Generally, all case studies had the same setup as described in section 7.1
and had their execution was very similar to the execution of the BPIC 17 case study described in
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Log # of Cases # of Events # of Entity Types
Change ? 30,275 3

Incident ? 46,606 6
IncidentDetail 46,616 466,737 5

Interaction ? 147,004 5

Table 7.6: BPIC 14 Event Log Events & Entities

detail in section 7.2. To avoid too much repetition, we mainly elaborate on interesting observations
in terms of differences and similarities to the case studies described above.

7.4.1 ITIL Service Management Process

The BPIC 14 [29] data set contains four logs of an ITIL service management process. One
log with change related events, a log for incident events, another log containing details to the
incidents and the fourth log contains events regarding user interactions. We have been able to
create a graph event log for the full data set. For performance reasons, we had to limit the
number of entities encoded in the graph. The result is a graph event log with 1.155.019 nodes and
3.140.289 relationships. Its database has a size of 3.94 GB and the creation script template shown
in appendix A.3.1 took 44.04 hrs to complete. In table 7.7 we show the event and entity statistics
of the log.

The number cases for the all logs, but the IncidentDetail log is marked with a question mark.
This is due to the fact that we don’t have a clear activity notion in these logs. For the incident
details, there is an activity notion in the log. Therefore, we treated the incident details as the
’leading’ log here as it is the only log that fits our definition of an event log. For the other logs, we
would need to randomly choose an activity notion to comply with the log’s graph schema shown
in appendix A.4.2. This raises the question whether we need a fixed activity notion for graph
event data or not, because we have been able to correlate events to entities and we can specify
any property of the event nodes as activity at query time. Whats interesting about this data set
is that it contains different log files. This means, that our global schema grows in terms of event
properties. Logs that have dedicated event attributes add properties to the global schema that
events of other logs do not have, for example the activity property as mentioned above.

Besides the activity, the log is fairly interesting from a multi-dimensional process perspective.
Different logs have different entity types in common which is a good use case for our pattern
template to correlate coinciding entities. After creating the base log, we used queries like shown
in listing 7.20 to create the collector node for entities across and within logs.

1 match ( en : Ent ity ) where en . Log = ’CHG’
2 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’INC ’
3 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
4 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
5 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r )

Listing 7.20: Query to Correlate Coinciding Entities

This query correlates the entities of the change log (”CHG”) with the entities of the incident
log (”INC”). For every pair of logs we must run such a query to capture all coinciding events
across logs.

7.4.2 Building Permit Application Processes

BPIC 15 [30] contains data of the same type of process of five municipalities, but with slight
variations for each municipality. These five processes event logs have a rather flat structure and
because the different municipalities don’t interact during these processes, there are no relation

74 A Schema Framework for Graph Event Data



CHAPTER 7. EVALUATION

Log # of Cases # of Events # of Entity Types
Log 1 1,199 52,217 6
Log 2 832 44,354 6
Log 3 1,409 59,681 6
Log 4 1,053 47,293 6
Log 5 1,156 59,083 6

Table 7.7: BPIC 15 Event Log Events & Entities

Log CSV Log Size
Click logged in 1.11 GB

Click not logged in 1.14 GB
Messages <0.01 GB
Questions 0.03 GB

Complaints <0.01 GB

Table 7.8: BPIC 16 Event Log Events & Entities

between entities or events of the different logs. Table 7.7 gives an overview of the entities and
events of the different logs.

With the log creation script in appendix A.4.1, we created the graph event log in 0.56 hours
with a size of 1.68 GB. The graph event log consists of 268,354 nodes and 1,032,155 relationships.

The resulting global and local schemata can be found in appendix A.4.2.
This process shows rather standard behaviour in terms of multi-dimensional data.

7.4.3 Customer Communication Process

BPIC 16 [31] consists of five different event logs, all containing a sub-process of a customer com-
munication process. One log containing click data on a website of users not logged in. A second log
containing click data for users logged in. The other three logs contain event data about messages,
questions and complaints of customers. This data set is bigger than any of the other data sets.
To reduce the amount of data, we dropped the data set with users that are not logged in. This is
because we assumed that without being able to correlate these clicks to any of the other data, the
unrelated data will not be interesting for us. Table 7.8 gives an overview over the size of the data.

Even though we spared out one of the clicks logs already, the creation of the graph event log
from the full data set was still not possible. Without the two clicks logs, we created the graph
with the script shown in appendix A.5.1. Creating the graph took 9.37 hrs and the database is
2.53 GB big.

The global and local schema can be found in appendix A.5.2.

7.4.4 Purchase Order Handling Process

BPIC 19 [33] contains the data of a purchase order process from a SAP data source. The main
entities of the process are purchase orders (PO) and purchase order items (POI). From the dimen-
sionality perspective, the process structure is very similar to BPIC 17 as PO and POI have a 1:n
relationship, just as application and offer in BPIC 17. With a size of 1,595,923 events, this data
set seems to close to infeasibility in terms of performance. The graph, created with the script in
appendix A.8.1, has 1,848,914 nodes and 7,737,347 relationships. We assume that selecting POI as
entity lead to the high number of relationships, as there are many entities with only a few events
each. The graph was has been created with a waiting time of 82.90 hrs and reached a size of 14.90
GB.

The global and local schema are shown in appendix A.8.2.
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7.5 Summary

To summarize the findings of our case studies we first conclude in our evaluation objectives:

1. We have been able to construct graphs with the schema and pattern definitions in Chapters 3
and Chapter 4 for all event logs we studied.

2. All schema patterns proposed in Chapter 5 could be applied in the case studies. For analyses
and queries, however, some limitations noticed that require adaption of the queries.

3. The entity concept has been successfully implemented by creating new case notions from
existing base patterns.

4. We have been able to query the data in a meaningful manner, however, not all queries could
be completed successfully.

5. The performance of the graph event data compared to its CSV or XES counterparts is
significantly worse. The processing time and the data size is much higher.

The limitations in querying have been caused by our pattern definition. The issue with the list
property and the *-operator can for example be solved by defining the :DF pattern in a way that
for every entity type, a dedicated :DF relationship is created between two events e1 and e2. This
will lead to more (relationship) objects in the database, but we expect for medium sized event
logs such as BPIC 17 the additional load can still be handled by a standard laptop.

Interestingly, the visual schema representations in our case studies all look very similar. This
is due to the very generic way we defined the patterns, i.e. there exists only one node type for all
entities. Compared to the data model in [11] shown in figure 4.2, many objects have been merged
and use the same element types in our new data model. Furthermore, each pattern, except for
0 core, only adds a very small portion of actual graph elements, but on the other hand enriches
the model with rules that do not have any impact on the visual pattern or schema representation.

The 0 core pattern and the 1 df pattern have been used in every case study. We may consider
the integration of the 1 df pattern into the core 0 core in future developments, because the
temporal order of events is crucial for event data and thus will probably always be needed.
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Chapter 8

Conclusions

This chapter concludes the thesis. First, we summarize and discuss our results and findings in
section 8.1. The limitations of our work and possible future developments based on the outcomes
are discussed in section 8.2

8.1 Results & Discussion

In this thesis, we explained the need for an event data model that supports multi-dimensional
relations of events and entities. Our proposed solution for this problem, property graphs, proofed
suitable in preliminary research [11, 12] to this thesis. However, this work lacked a formalized
schema for graph event data and thus does not provide a sufficient basis for modelling and soph-
isticated analyses of various event data sets. The lack of a schema standard for property graphs
and the need to derive case identifiers beyond the attributes you just see in the data, e.g., by
combining two attributes, constituted additional challenges for our research.

We followed the design science research process to develop a set of artifacts to help us in
achieving the research goals set in section 1.2 in accordance with the requirements specified in
section 1.3.

Our first contribution is a global graph schema definition to describe the data structure of entire
property graph instances in Chapter 3 based on the work of Bonifati et al. [5]. The corresponding
design artifact consists of a schema definition language and a visual representation of the schema.
With this schema definition approach we are able to describe all node types, relationship types
and properties with their data types of a graph database instance. Furthermore, we are able to
define unique constraints to property types and to define mandatory property types. As we are
not capable of defining behavioral attributes, i.e. fully encode event log concepts, in the schema,
we partly fulfill research goal G1.

The second contribution of this thesis is a non-exhaustive catalogue of event log concepts
encoded in the property graph data model described in Chapter 4. We defined how events or
directly follows relations can be transformed into property graph concepts and thus fulfilled G2.

Our third contribution is actually a complement artifact, or rather a set of artifacts to the
global schema definition. It was necessary, because the global schema could not encode integrity
constraints to the graph schema. In Chapter 5 we introduce local, pattern based schema definitions
and a set corresponding schema templates for event data in Chapter 6. Such templates consisting
of schema patterns and sets of formal rules and constraints can be used to define mandatory
element types to the global schema. They are also used to define rules and constraints to a
corresponding graph instance such that the local schema pattern templates with their rules. By
combining the local schema pattern templates with the global schema definition, we meet G1 as
we now can define a full schema with constraints and rules. Furthermore, with the contributions
discussed so far, we meet the requirements R1 and R2 for our design artifacts, as we now can
describe a data model of a LPG with event data (R1) and can encode behavioral attributes to
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enforce concepts such as handover of work and directly follows (R2).

This Thesis’ fourth contribution is a basic method to validate the conformance demands in
our schema framework as illustrated in figure 5.5. We provide a non-formalized collection of steps
that can be performed to validate the conformance of a graph instance to a schema by successively
querying the instance for all element types in the schema. We realized the conformance checking
of the global schema towards the pattern templates rather intuitively, i.e. by visually comparison
of the designed templates and the schema representation of the graph database in Neo4j. The
conformance of graph instances to the template rules has been validated by custom queries to
check for existence or non-existence of structures in the data model that have been prohibited or
requested by some rule. Also these checks have not been conducted systematically, but as accurate
as possible for the given project schedule, i.e. the combination of validation queries and visual
inspections of (sub-)graph instances are deemed sufficient, but without a final proof. Therefore
we declare as G3 fulfilled with limitations.

The fifth and last contribution of this thesis is the introduction of a flexible, generic entity
concept which allows us to specify single entities, combinations of entities and also complementary
entities, such as resources, as case notions. This enables us to encode various relations between
entities and events. The entity concept can also be used to encode meta entities, e.g. resources,
which provide meta information to events, but usually are not part of a process workflow directly.
With the introduction of the entity concept, we meet our research goal G4. This artifact satisfies
R4 as the entity concept allows to establish multiple case notions in a single log. We had to realize
though, that keeping a single notion of activity raises new questions in terms of multi-dimensional
data. Especially in event data sets that consist of multiple event logs, a single activity notion, i.e.
every event log in the data set has the same activities, limits the possible views on the data. We
realized, that we can actually ignore the activity notion of the source log and relate events to the
respective entities at graph creation time, leaving the choice for the activity notion open until the
graph event data is queried.

For the sixth type of artifact, we applied all above contributions to develop templates with
Python and Cypher for each of the case studies to automatically transform and import the CSV
logs to a graph database, i.e. create a graph event log. Actually, these scripts were the main tool
for developing the above graph and schema concepts for event logs in more than 100 iterations.
For each case study described in this thesis, we provide a a dedicated Python script that can be
used to generate a graph event log from the respective CSV log. Please refer to appendix A for a
detailed description.

As seventh and last contribution we have implemented graph event logs for all case studies
by using the script templates. These graph event logs have furthermore been used the evaluation
steps in Chapter 7. For some data sets, we have not been able to create the graph event logs from
the full data. This was due to performance issues, i.e. if the time to run the respective Python
template took more than 3 days, the execution was cancelled. Such Performance issues have not
only been recognized in relation to the number of events in a log file, but also in relation to the
number of entity types we wanted to include in the log. On the other hand, when the graph event
log has been created successfully, querying these data could still be done with short waiting times.
Therefore, the performance of graph event data - at least at creation time - was not competitive
compared to classical event logs. We will discuss more on that matter in section 8.2.

During our evaluation on 5 different data sets and throughout the iterations of the case studies,
we have been able to optimize the different components of our approach in such a way that we
have been able to meet all research goals. We furthermore have shown, with process mining
queries in Chapter 7 that we can also fulfill R3 to our design artifacts. In general, the interplay
of the different components of our framework was very good and extension of the templates or
their adoption to different analysis requirements is expected to work fluently. We, however, had
to realize that some of the data structures in the templates have not been designed optimally.
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8.2 Limitations & Future Work

First and foremost we want to discuss the performance of the graph event logs. With performance,
we mean the database size and the execution time for the graph creation. Even though, once
created, the graph database can be queried very quickly, the creation process could not be finished
in all case studies. In some of the studies we realized that some of the event logs are simply
too big to be entirely loaded into a Neo4j graph database with the data models proposed by us.
For one event log (the ITIL process in BPIC 14) we have been able to optimize the loading time
by reducing the number of entities to be included in the creation process. For another data set
(BPIC 16), we had to remove a specific log file from the load (a log of click data of website users).
Even for the data sets that have entirely been imported, the performance in terms of used disk
space and loading time was a lot higher than with CSV or XES based event logs. However, we
expect that the performance can be increased, especially in terms of loading times by optimizing
the queries for the graph creation. Optimizing the queries, or graph creation process in general,
is a potential goal for further research.

A further limitation of our work is the validation which has been done almost fully manual.
This thesis only required a basic form of validation, because we needed to verify whether our
assumptions and expectations towards graph instances, schemata, patterns and rules hold. Our
approach was rather pragmatic than systematic since we have validated mainly by visual inspec-
tions and to the best of our knowledge. Formally writing the rules and constraints down, however,
was necessary to enable a validation in the first place. The rules also allowed us to define individual
queries to inspect the graph instances for desired, or undesired data structures. The development
of a full validation methodology for our framework was outside the scope of this thesis. There-
fore, a potential next step towards a fully functional schema framework for property graphs is to
develop a systematic validation approach for our framework.

The next limitation is related to how we used our framework. In essence, we used the tool
set of our framework, i.e. the global schema definition and the local pattern templates with their
rules, as intended. What we realized during our case studies, however, is that our schema pattern
definitions included some design decisions that were not optimal for some more advanced use
cases. For example, the :DF pattern, which we defined as a relationship between two event nodes
e1 and e2 with a list property. This list property shall contain all entity types that the :DF
relationship is valid for. Listing 7.14 and the subsequent explanation shows a good example on
how this conception limits our ability to query the event data as required. The positive thing
about this limitation is that our framework follows a modular approach and allows to define new
or changed local pattern templates. By changing the :DF relationship definition in a way that the
pattern allows (or enforces) the creation of a distinct :DF relationship for every entity type, with
a string property only for one entity type. Such that from a relationship

1 ( e1 : Event ) − [ :DF {EntityTypes : [ ” App l i ca t ion ” ,” Of f e r ”]}]−>( e2 : Event )

we create two separate relationships:

1 ( e1 : Event ) − [ :DF {EntityType : ”Appl i ca t ion ”}]−>( e2 : Event )
2 ( e1 : Event ) − [ :DF {EntityType : ”Of f e r ”}]−>( e2 : Event )

This, however, would further increase the size of such a database, but would enable us to run the
query in listing 7.14 and extend it to return the full paths, which is what we intended initially.

The last limitation we want to point out is that, similar to our previous work [12, 11] on graph
event data, the findings and concepts from this thesis are based on event log data sets that have
been created and thus also flattened already. Meaning that the log extraction part from the actual
source of events, i.e. the information system, cannot be put into the context of our framework
yet, as a transformation of such ”native” event data from another source, such as a relational
database, has not been evaluated yet. Such a direct extraction from a RDB and transformation
to a PGDB would require an entirely different graph log creation process. However, we assume
that our framework may still be applicable to this kind of data as well. We assume that further
pattern templates, such as modeling the relationships between different entity types directly, might
become handy in such a use case. Our view on the data was event centric and thus there was
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no need for such a template, but in RDBs, entities are the predominant logical unit. A direct
graph log extraction and a subsequent investigation whether the framework can be used with it
as well are two interesting steps ahead. Within such a scope, it might also be interesting to assess
whether defining a more flexible activity concepts, e.g. assign an activity notion to an entity type
on query time, would be a valuable extension.

Furthermore, we would like to encourage researchers from other fields to explore the use of our
framework. The framework provides a tool set that can be flexibly adapted to other domains and
different types of data.
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Appendix A

Case Studies

This appendix provides detailed information about the implementation of our case studies. The
below Python scripts have been used to create the graphs for the different case studies. The
following sections describe in detail how we conducted the case studies.

A.1 How to

The case studies have been conducted using the following tools:

• Neo4j Desktop 1.2.1 with database version 3.5.9

• ProM Lite 1.2

• Python 3.7.4

– pandas 0.24.2

– py2neo 4.3.0

For reproduction of the case studies, perform the following steps:

1. Get one of the BPI Challenge data sets [29, 30, 31, 32, 33].

2. (If applicable) Use ProM Lite 1.2 to convert the XES file to CSV format.

3. Put the corresponding Python scripts from below on your local system.

4. Place the CSV log(s) in the same folder as the Python script.

5. In Neo4j Desktop, create a new database 3.5.9 or higher.

6. In the Neo4j DB settings, change the ”dbms.directories.import” parameter of the database
to ”c:/temp/import”.

7.

8. Create a folder ”c:/temp/import”, or change the path in the script respectively.

9. Run the Python script.

Use a dedicated Neo4j database for each script. All data of a target database will be deleted
with the script execution. Configure each script by setting the sample = True for the fixed sample
cases and sample = False to load the entire log files.
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A.2 XES to CSV conversion

The BPIC17 log conversion with ProM Lite 1.2 from XES to CSV format lead to some unexpected
data in the CSV log. We had to realize that different tools, e.g. ProM or Disco, may convert XES
files differently. Please refer to the example screenshots below that show differences how certain
attributes are converted between the formats and for a number of events the results have not been
as we expected. The same issue has been described in the precursor of this thesis [12]. Interestingly,
this issue seems to be related to the structure of the event data in the source format, because the
data conversion issues occurred on the offer entity and its attributes. Furthermore, BPIC17 is
the only log where we had this issue, so it only had to be considered in the data preparation for
the two case studies on this data set. Figure A.1 shows an example case of the original log in
XES format loaded with Disco. Figure A.2 contains the same case after the conversion to CSV.
In the CSV log we find duplicates of the attributes that, logically, belong to the entity Offer in
of Workflow or Application related rows (events). This issue has been considered during the data
preparation for the case studies on BPIC 17.

Figure A.1: BPIC17 Loaded from XES

Figure A.2: BPIC17 Loaded from CSV

A.3 BPIC14

A.3.1 Script Template

A.3.2 Schema Definitions

1 pat t e rn bp i c14 = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
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8 DF {EntityTypes } ,
9 EN COINCIDE {}

10 }
11 {//node types
12 ( : Event ) , ( : Ent ity ) , ( : Log )
13 }
14 {// r e l a t i o n s h i p types
15 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
16 ( : Log ) − [ :L E]−>(:Event ) ,
17 ( : Event ) − [ :DF]−>(:Event ) ,
18 ( : Event ) − [ :EN COINCIDE]−>(:Event )
19 }
20 {// i nh e r i t e d pat t e rns
21 0 core , 1 df , 1 e n c o i n c i d e
22 }
23 )

Listing A.1: BPIC 14 Pattern Definition

1 schema bpic14 = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Timestamp ! : TIMESTAMP,
6 s t a r t : TIMESTAMP,
7 end : TIMESTAMP,
8 Inc identID : STRING,
9 Inc identAct iv i tyType : STRING,

10 AssignmentGroup : STRING,
11 KMNo: STRING,
12 In t e rac t i on ID : STRING,
13 ServiceComponentAff : STRING,
14 CINameAff : STRING,
15 CITypeAff : STRING,
16 CISubTypeAff : STRING,
17 ClosureCode : STRING,
18 F i r s tCa l lRe s o l u t i on : STRING,
19 HandleTime : INTEGER,
20 Impact : INTEGER,
21 Urgency : INTEGER,
22 Pr i o r i t y : INTEGER,
23 F i r s tCa l lRe s o l u t i on : STRING,
24 Rela ted Inc ident : STRING,
25 Aler tSta tus : STRING,
26 NoReassignments : INTEGER,
27 ReopenTime : TIMESTAMP,
28 ResolvedTime : TIMESTAMP,
29 NoRe la tedInte rac t ions : INTEGER,
30 Re la t ed In t e r a c t i on : STRING,
31 NoRelatedInc idents : INTEGER,
32 NoRelatedChanges : INTEGER,
33 CINameCBy : STRING,
34 CITypeCBy : STRING,
35 CISubTypeCBy : STRING,
36 ServiceComponentCBy : STRING,
37 ChangeID : STRING,
38 ChangeType : STRING,
39 RiskAssessment : STRING,
40 EmergencyChange : STRING,
41 CABApprovalNeeded : STRING,
42 PlannedStart : TIMESTAMP,
43 PlannedEnd : TIMESTAMP,
44 ScheduledDowntimeStart : TIMESTAMP,
45 ScheduledDowntimeEnd : TIMESTAMP,
46 ActualSTart : TIMESTAMP,
47 ActualEnd : TIMESTAMP,
48 RequestedEndDate : TIMESTAMP,
49 OriginatedFrom : STRING
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50 }
51 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
52 Log {ID} : STRING}
53 E EN {} ,
54 L E {} ,
55 DF {EntityTypes : LIST} ,
56 EN COINCIDE {}
57 }
58 {//node types
59 ( : Event ) , ( : Ent ity ) , ( : Log )
60 }
61 {// r e l a t i o n s h i p types
62 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
63 ( : Log ) − [ :L E]−>(:Event ) ,
64 ( : Event ) − [ :DF]−>(:Event ) ,
65 ( : Event ) − [ :EN COINCIDE]−>(:Event )
66 }
67 )

Listing A.2: BPIC 14 Schema Definition

A.4 BPIC15

A.4.1 Script Template

A.4.2 Schema Definitions

1 pat t e rn bp i c15 = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF {EntityTypes } ,
9 HOW {EntityTypes}

10 }
11 {//node types
12 ( : Event ) , ( : Ent ity ) , ( : Log )
13 }
14 {// r e l a t i o n s h i p types
15 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
16 ( : Log ) − [ :L E]−>(:Event ) ,
17 ( : Event ) − [ :DF]−>(:Event ) ,
18 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
19 }
20 {// i nh e r i t e d pat t e rns
21 0 core , 1 df , 2 how
22 }
23 )

Listing A.3: BPIC 15 Pattern Definition

1 schema bpic15 = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Star t : TIMESTAMP,
6 End : TIMESTAMP,
7 Timestamp ! : TIMESTAMP,
8 r e s ou r c e : INT ,
9 cID : INT ,

10 event : STRING,
11 termName : STRING,
12 s tar tDate : TIMESTAMP,
13 endDate : TIMESTAMP,
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14 caseProcedure : STRING,
15 Respons ib l e a c to r : STRING,
16 caseSta tus : STRING,
17 Inc ludes subCases : STRING,
18 par t s : STRING,
19 requestComplete : STRING,
20 l a s t pha s e : STRING,
21 l andReg i s ter ID : STRING,
22 SUMleges : FLOAT,
23 IDofConceptCase : INT ,
24 planned : TIMESTAMP,
25 dateStop : TIMESTAMP,
26 dateFin i shed : TIMESTAMP,
27 ques t i on : STRING,
28 dueDate : TIMESTAMP,
29 monitor ingResource : INT ,
30

31 }
32 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
33 Log {ID} : STRING}
34 E EN {} ,
35 L E {} ,
36 DF {EntityTypes : LIST} ,
37 HOW {EntityTypes : LIST}
38 }
39 {//node types
40 ( : Event ) , ( : Ent ity ) , ( : Log )
41 }
42 {// r e l a t i o n s h i p types
43 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
44 ( : Log ) − [ :L E]−>(:Event ) ,
45 ( : Event ) − [ :DF]−>(:Event ) ,
46 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
47 }
48 )

Listing A.4: BPIC 15 Schema Definition

A.5 BPIC16

A.5.1 Script Template

1 #webs i te c l i c k data , labour s e r v i c e s p roce s s
2 import pandas as pd
3 import time , os , csv
4 from py2neo import Graph , Node
5

6 #con f i g
7 sample = True
8 path = ’C:\\Temp\\ Import\\ ’
9

10 de f LoadLog ( l o c a l F i l e ) :
11 da t a s e tL i s t = [ ]
12 headerCSV = [ ]
13 i = 0
14 with open ( l o c a l F i l e ) as f :
15 r eader = csv . r eader ( f )
16 f o r row in reader :
17 i f ( i==0) :
18 headerCSV = l i s t ( row )
19 i +=1
20 e l s e :
21 da t a s e tL i s t . append ( row )
22

23 l og = pd . DataFrame ( data s e tL i s t , columns=headerCSV)
24
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25 r e turn headerCSV , log
26

27 de f CreateEventQuery ( logHeader , f i leName , LogID = ”” ) :
28 query = f ’USING PERIODIC COMMIT LOAD CSV WITH HEADERS FROM \” f i l e :///{ f i leName

}\” as l i n e ’
29 brClose = ’ } ’
30 brOpen = ’ { ’
31 f o r c o l in logHeader :
32 i f c o l == ’ idx ’ :
33 column = f ’ t o In t ( l i n e .{ c o l }) ’
34 e l i f c o l in [ ’ timestamp ’ , ’ s t a r t ’ , ’ end ’ ] :
35 column = f ’ datet ime ( l i n e .{ c o l }) ’
36 e l s e :
37 column = ’ l i n e . ’+co l
38 newLine = ’ ’
39 i f ( logHeader . index ( c o l ) == 0 and LogID != ”” ) :
40 newLine = f ’ CREATE ( e : Event {brOpen}Log : ”{LogID}” ,{ c o l } : {column } , ’
41 e l i f ( logHeader . index ( c o l ) == 0) :
42 newLine = f ’ CREATE ( e : Event {brOpen}{ c o l } : {column } , ’
43 e l s e :
44 newLine = f ’ { c o l } : {column } , ’
45 i f ( logHeader . index ( c o l ) == len ( logHeader )−1) :
46 newLine = f ’ { c o l } : {column}{ brClose }) ’
47

48 query = query + newLine
49 r e turn query ;
50

51 ################## data prep ##################
52

53 de f CreateBPI16 ( path , f i leName , sample ) :
54

55 c l i c k sLog = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI2016 Cl icks Logged In . csv ’ ) ,
k e ep de f au l t na=True , sep=’ ; ’ , encoding=’ l a t i n 1 ’ )

56 compla ints = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI2016 Complaints . csv ’ ) ,
k e ep de f au l t na=True , sep=’ ; ’ , encoding=’ l a t i n 1 ’ )

57 que s t i on s = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI2016 Questions . csv ’ ) ,
k e ep de f au l t na=True , sep=’ ; ’ , encoding=’ l a t i n 1 ’ )

58 messages = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI2016 Werkmap Messages . csv ’ ) ,
k e ep de f au l t na=True , sep=’ ; ’ , encoding=’ l a t i n 1 ’ )

59

60 i f ( sample == True ) :
61 sampleIds = [2026796 , 2223803 , 2023026 , 114939 , 2011721 , 2022933 , 919259 ,

2079086 , 466152 , 2057965 , 1039204 , 395673 , 1710155 , 2081135 , 1723340 , 1893155 ,
1042998 , 435939 , 1735039 , 2045407]

62 e l s e :
63 sampleIds = c l i c k sLog . CustomerID . unique ( ) . t o l i s t ( ) # c r ea t e a l i s t o f a l l

c a s e s in the datase t
64

65 csvLog = compla ints
66 fileNameTmp = fi leName+’ Complaints . csv ’
67 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t

o f events f o r each o f the s e l e c t e d ca s e s
68 f o r case in sampleIds :
69 f o r index , row in csvLog [ csvLog . CustomerID == case ] . i t e r r ows ( ) : #second

i t e r a t i o n through the ca s e s f o r adding data
70 rowList = l i s t ( row ) #add the event data to rowList
71 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the sample

datase t
72

73 header = l i s t ( csvLog ) #save the updated header data
74 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe

and add the samples
75 logSamples . f i l l n a (0 )
76 logSamples [ ’ ContactDate ’ ] = pd . to date t ime ( logSamples [ ’ ContactDate ’ ] , format=’%

Y−%m−%d ’ )
77 logSamples [ ’ ContactDate ’ ] = logSamples [ ’ ContactDate ’ ] . map( lambda x : x . s t r f t ime (

’%Y−%m−%dT%H:%M:%S.% f ’ ) [0:−3]+ ’+0100 ’ )

90 A Schema Framework for Graph Event Data



APPENDIX A. CASE STUDIES

78 logSamples = logSamples . rename ( columns={ ’ ContactDate ’ : ’ timestamp ’ })
79

80 logSamples . t o c sv ( path+fileNameTmp , index=True , i n d e x l a b e l=” idx ” , na rep=”
Unknown” )

81 logSamples [ ’ idx ’ ] = logSamples . index
82

83 compla ints = logSamples
84

85 csvLog = que s t i on s
86 fileNameTmp = fi leName+’ Quest ions . csv ’
87 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t

o f events f o r each o f the s e l e c t e d ca s e s
88 f o r case in sampleIds :
89 f o r index , row in csvLog [ csvLog . CustomerID == case ] . i t e r r ows ( ) : #second

i t e r a t i o n through the ca s e s f o r adding data
90 rowList = l i s t ( row ) #add the event data to rowList
91 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the sample

datase t
92

93 header = l i s t ( csvLog ) #save the updated header data
94 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe

and add the samples
95 logSamples . f i l l n a (0 )
96 logSamples [ ’ ContactDate ’ ] = pd . to date t ime ( logSamples [ ’ ContactDate ’ ] , format=’%

Y−%m−%d ’ )
97 logSamples [ ’ ContactDate ’ ] = logSamples [ ’ ContactDate ’ ] . map( lambda x : x . s t r f t ime (

’%Y−%m−%d ’ ) )
98 logSamples [ ’ ContactTimeStart ’ ] = pd . to date t ime ( logSamples [ ’ ContactTimeStart ’ ] ,

format=’%H:%M:%S.% f ’ )
99 logSamples [ ’ ContactTimeStart ’ ] = logSamples [ ’ ContactTimeStart ’ ] . map( lambda x : x

. s t r f t im e ( ’%H:%M:%S.% f ’ ) [ 0 : −3 ] )
100 logSamples [ ’ s t a r t ’ ] = logSamples [ ’ ContactDate ’ ]+”T”+ logSamples [ ’

ContactTimeStart ’ ] + ’+0100 ’
101 logSamples [ ’ ContactTimeEnd ’ ] = pd . to date t ime ( logSamples [ ’ ContactTimeEnd ’ ] ,

format=’%H:%M:%S.% f ’ )
102 logSamples [ ’ ContactTimeEnd ’ ] = logSamples [ ’ ContactTimeEnd ’ ] . map( lambda x : x .

s t r f t im e ( ’%H:%M:%S.% f ’ ) [ 0 : −3 ] )
103 logSamples [ ’ end ’ ] = logSamples [ ’ ContactDate ’ ]+”T”+ logSamples [ ’ ContactTimeEnd ’

] +’+0100 ’
104 logSamples . t o c sv ( path+fileNameTmp , index=True , i n d e x l a b e l=” idx ” , na rep=”

Unknown” )
105 logSamples [ ’ idx ’ ] = logSamples . index
106

107 que s t i on s = logSamples
108 csvLog = messages
109 fileNameTmp = fi leName+’Messages . csv ’
110 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t

o f events f o r each o f the s e l e c t e d ca s e s
111 f o r case in sampleIds :
112 f o r index , row in csvLog [ csvLog . CustomerID == case ] . i t e r r ows ( ) : #second

i t e r a t i o n through the ca s e s f o r adding data
113 rowList = l i s t ( row ) #add the event data to rowList
114 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the sample

datase t
115

116 header = l i s t ( csvLog ) #save the updated header data
117 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe

and add the samples
118 logSamples . f i l l n a (0 )
119 logSamples [ ’ EventDateTime ’ ] = pd . to date t ime ( logSamples [ ’ EventDateTime ’ ] ,

format=’%Y−%m−%d %H:%M:%S.% f ’ )
120 logSamples [ ’ EventDateTime ’ ] = logSamples [ ’ EventDateTime ’ ] . map( lambda x : x .

s t r f t im e ( ’%Y−%m−%dT%H:%M:%S.% f ’ ) [0:−3]+ ’+0100 ’ )
121 logSamples = logSamples . rename ( columns={ ’ EventDateTime ’ : ’ timestamp ’ })
122 logSamples [ ’ idx ’ ] = range (1 , l en ( logSamples ) + 1)
123

124 logSamples [ ’MessageID ’ ] = logSamples [ ’ idx ’ ] . astype ( s t r ) #add p r e f i x to en t i t y
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i d s
125

126 logSamples . t o c sv ( path+fileNameTmp )
127

128 messages = logSamples
129 csvLog = c l i c k sLog
130 fileNameTmp = fi leName+’ C l i ck s . csv ’
131 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t

o f events f o r each o f the s e l e c t e d ca s e s
132 f o r case in sampleIds :
133 f o r index , row in csvLog [ csvLog . CustomerID == case ] . i t e r r ows ( ) : #second

i t e r a t i o n through the ca s e s f o r adding data
134 rowList = l i s t ( row ) #add the event data to rowList
135 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the sample

datase t
136

137 header = l i s t ( csvLog ) #save the updated header data
138 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe

and add the samples
139 logSamples . f i l l n a (0 )
140 logSamples [ ’TIMESTAMP’ ] = pd . to date t ime ( logSamples [ ’TIMESTAMP’ ] , format=’%Y−%m

−%d %H:%M:%S.% f ’ )
141 logSamples [ ’TIMESTAMP’ ] = logSamples [ ’TIMESTAMP’ ] . map( lambda x : x . s t r f t ime ( ’%Y

−%m−%dT%H:%M:%S.% f ’ ) [0:−3]+ ’+0100 ’ )
142 logSamples = logSamples . rename ( columns={ ’TIMESTAMP’ : ’ timestamp ’ , ’PAGENAME’ :

’ Ac t i v i ty ’ })
143 logSamples = logSamples . drop ( logSamples . columns [ [ range (−1,−10,−1) ] ] , a x i s =1)
144

145 logSamples . t o c sv ( path+fileNameTmp , index=True , i n d e x l a b e l=” idx ” )
146 logSamples [ ’ idx ’ ] = logSamples . index
147

148 c l i c k sLog = logSamples
149

150 r e turn c l i ck sLog , complaints , ques t ions , messages
151

152 ################## import s c r i p t s t a r t s here ##################
153

154 i f ( sample ) :
155 f i leName = ’BPIC16sample . csv ’
156 perfFi leName = ’ BPIC16samplePerformance . csv ’
157 e l s e :
158 f i leName = ’ BPIC16ful l . csv ’
159 perfFi leName = ’ BPIC16ful lPerformance . csv ’
160

161 c l i ck sLog , complaints , ques t ions , messages = CreateBPI16 ( path , f i leName , sample )
162

163 pe r f = pd . DataFrame ( columns=[ ’name ’ , ’ s t a r t ’ , ’ end ’ , ’ durat ion ’ ] )
164

165 cbClose = ”}”
166 cbOpen = ”{”
167

168 Graph = Graph ( password=”1234” )
169 Graph . d e l e t e a l l ( ) #make sure the neo4j DB i s empty
170

171 g l oba l S t a r t = time . time ( )
172

173 Graph . run ( ’CREATE CONSTRAINT ON ( e : Event ) ASSERT e . ID IS UNIQUE; ’ ) #f o r
implementation only ( not r equ i r ed by schema or pat t e rn s )

174 Graph . run ( ’CREATE CONSTRAINT ON ( en : Entity ) ASSERT en . uID IS UNIQUE; ’ ) #requ i r ed by
core pattern

175 Graph . run ( ’CREATE CONSTRAINT ON ( l : Log ) ASSERT l . ID IS UNIQUE; ’ ) #requ i r ed by core
pattern

176

177 ######################################################
178 ####################### s e s s i o n s ( c l i c k s ) #############
179 ######################################################
180
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181 s t a r t = time . time ( )
182 e n t i t i e s = [ [ ’ CustomerID ’ , ’ Customer ’ ] , [ ’ O f f i c e U ’ , ’ Of f i c e U ’ ] , [ ’ Office W ’ , ’

Office W ’ ] , [ ’ Sess ionID ’ , ’ S e s s i on ’ ] , [ ’ IPID ’ , ’ IP ’ ] ]
183 startTimestamp = ”timestamp”
184 endTimestamp = ”timestamp”
185 logID = ”Cl i ck s ”
186 fileNameTmp = fi leName+logID+’ . csv ’
187 header = l i s t ( c l i c k sLog )
188

189 pr in t ( f ’#################### { logID} import ########################’ )
190

191 qCreateEvents = CreateEventQuery ( header , fileNameTmp , logID ) #generate query to
c r e a t e a l l events with a l l l og columns as p r op e r t i e s

192 Graph . run ( qCreateEvents )
193

194 #no r e s ou r c e s per event in the log
195 #crea t e l og node and : L E r e l a t i o n s h i p s
196 Graph . c r e a t e (Node ( ”Log” , ID=logID ) )
197 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”{ logID }”{ cbClose }) MATCH ( l : Log {cbOpen}ID

: ”{ logID }”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
198

199

200 f o r en t i t y in e n t i t i e s : #per en t i t y
201

202 pr in t ( en t i t y [ 0 ] , e n t i t y [ 1 ] )
203

204 #crea t e en t i t y nodes
205 query=f ’ ’ ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }”
206 WITH e .{ en t i t y [ 0 ] } AS id
207 MERGE ( en : Entity {cbOpen}ID : ( ”{ logID}”+toS t r i ng ( id ) ) { cbClose })
208 ON CREATE SET en . IDraw = id , en . uID = ”{ en t i t y [1 ]}”+”{ logID}”+toS t r i ng ( id ) , en

. Log = ”{ logID }” , en . EntityType = ”{ en t i t y [ 1 ] } ” ’ ’ ’
209 Graph . run ( query )
210 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
211

212 #crea t e :E EN r e l a t i o n s h i p s
213 query=f ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }” MATCH (n : Entity

{cbOpen}EntityType : ”{ en t i t y [ 1 ] } ” , Log : ”{ logID }”{ cbClose }) WHERE e .{ en t i t y
[ 0 ] } = n . IDraw CREATE ( e ) − [ :E EN]−>(n) ’

214 Graph . run ( query )
215 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
216

217 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
218 query = f ’MATCH p = ( ev : Event {cbOpen}Log : ”{ logID }”{ cbClose }) − [ :E EN]−> ( en :

Ent ity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{
en t i t y [ 0 ] } , ev . idx ’

219 output = Graph . run ( query ) . data ( )
220 en t i t y Idx = 0
221 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
222 f o r node in output :
223 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
224 Graph . push ( node [ ’ ev ’ ] )
225 en t i t y Idx += 1
226 pr in t ( f ’ { en t i t y [ 1 ] } i n t e r n a l index added to nodes ’ )
227

228 #crea t e DF r e l a t i o n s
229 query = f ’ ’ ’MATCH ( l : Log ) − [ :L E]−>(e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}

EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )<−[:L E]−( l : Log )
230 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1 AND l . ID = ”{ logID }”
231 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
232 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
233 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
234 ’ ’ ’
235 Graph . run ( query )
236 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
237
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238 #crea t e HOW r e l a t i o n s
239 #not needed − no r e s ou r c e s
240

241 end = time . time ( )
242 pr in t ( ” Import o f the s e s s i o n s graph took : ”+s t r ( ( end − s t a r t ) )+” seconds .\n” )
243

244 pe r f = pe r f . append ({ ’name ’ : logID , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end − s t a r t
) } , i gno r e i ndex=True )

245

246 ######################################################
247 ####################### compla ints ###################
248 ######################################################
249 s t a r t = time . time ( )
250

251 startTimestamp = ”timestamp”
252 endTimestamp = ”timestamp”
253 logID = ”Complaints ”
254

255 pr in t ( f ’#################### { logID} import ########################’ )
256

257 e n t i t i e s = [ [ ’ CustomerID ’ , ’ Customer ’ ] , [ ’ O f f i c e U ’ , ’ Of f i c e U ’ ] , [ ’ Office W ’ , ’
Office W ’ ] , [ ’ ComplaintDossierID ’ , ’ ComplaintDoss ier ’ ] , [ ’ ComplaintID ’ , ’
Complaint ’ ] ]

258 fileNameTmp = fi leName+logID+’ . csv ’
259 header = l i s t ( compla ints )
260 qCreateEvents = CreateEventQuery ( header , fileNameTmp , logID ) #generate query to

c r e a t e a l l events with a l l l og columns as p r op e r t i e s
261 Graph . run ( qCreateEvents )
262

263 #no r e s ou r c e s per event in the log
264

265 #crea t e l og node and : L E r e l a t i o n s h i p s
266 Graph . c r e a t e (Node ( ”Log” , ID=logID ) )
267 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”{ logID }”{ cbClose }) MATCH ( l : Log {cbOpen}ID

: ”{ logID }”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
268

269

270 f o r en t i t y in e n t i t i e s : #per en t i t y
271

272 pr in t ( en t i t y [ 0 ] , e n t i t y [ 1 ] )
273

274 #crea t e en t i t y nodes
275 query=f ’ ’ ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }”
276 WITH e .{ en t i t y [ 0 ] } AS id
277 MERGE ( en : Entity {cbOpen}ID : ( ”{ logID}”+toS t r i ng ( id ) ) { cbClose })
278 ON CREATE SET en . IDraw = id , en . uID = ”{ en t i t y [1 ]}”+”{ logID}”+toS t r i ng ( id ) , en

. Log = ”{ logID }” , en . EntityType = ”{ en t i t y [ 1 ] } ” ’ ’ ’
279 Graph . run ( query )
280 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
281

282 #crea t e :E EN r e l a t i o n s h i p s
283 query=f ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }” MATCH (n : Entity

{cbOpen}EntityType : ”{ en t i t y [ 1 ] } ” , Log : ”{ logID }”{ cbClose }) WHERE e .{ en t i t y
[ 0 ] } = n . IDraw CREATE ( e ) − [ :E EN]−>(n) ’

284 Graph . run ( query )
285 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
286

287 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
288 query = f ’MATCH p = ( ev : Event {cbOpen}Log : ”{ logID }”{ cbClose }) − [ :E EN]−> ( en :

Ent ity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{
en t i t y [ 0 ] } , ev . idx ’

289 output = Graph . run ( query ) . data ( )
290 en t i t y Idx = 0
291 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
292 f o r node in output :
293 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
294 Graph . push ( node [ ’ ev ’ ] )
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295 en t i t y Idx += 1
296 pr in t ( f ’ { en t i t y [ 1 ] } i n t e r n a l index added to nodes ’ )
297

298 #crea t e DF r e l a t i o n s
299 query = f ’ ’ ’MATCH ( l : Log ) − [ :L E]−>(e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}

EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )<−[:L E]−( l : Log )
300 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1 AND l . ID = ”{ logID }”
301 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
302 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
303 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
304 ’ ’ ’
305 Graph . run ( query )
306 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
307

308 #crea t e HOW r e l a t i o n s
309 #not needed − no r e s ou r c e s
310

311 end = time . time ( )
312 pr in t ( ” Import o f the compla ints graph took : ”+s t r ( ( end − s t a r t ) )+” seconds .\n” )
313

314 pe r f = pe r f . append ({ ’name ’ : logID , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end − s t a r t
) } , i gno r e i ndex=True )

315

316 ######################################################
317 ####################### ques t i on s ####################
318 ######################################################
319 s t a r t = time . time ( )
320

321 startTimestamp = ” s t a r t ”
322 endTimestamp = ”end”
323 logID = ”Quest ions ”
324

325 pr in t ( f ’#################### { logID} import ########################’ )
326

327 e n t i t i e s = [ [ ’ CustomerID ’ , ’ Customer ’ ] , [ ’ O f f i c e U ’ , ’ Of f i c e U ’ ] , [ ’ Office W ’ , ’
Office W ’ ] , [ ’ QuestionThemeID ’ , ’ QuestionTheme ’ ] , [ ’ QuestionSubthemeID ’ , ’
QuestionSubtheme ’ ] , [ ’ QuestionTopicID ’ , ’ QuestionTopic ’ ] ]

328 fileNameTmp = fi leName+logID+’ . csv ’
329 header = l i s t ( que s t i on s )
330 qCreateEvents = CreateEventQuery ( header , fileNameTmp , logID ) #generate query to

c r e a t e a l l events with a l l l og columns as p r op e r t i e s
331 Graph . run ( qCreateEvents )
332

333 #no r e s ou r c e s per event in the log
334

335 #crea t e l og node and : L E r e l a t i o n s h i p s
336 Graph . c r e a t e (Node ( ”Log” , ID=logID ) )
337 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”{ logID }”{ cbClose }) MATCH ( l : Log {cbOpen}ID

: ”{ logID }”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
338

339 f o r en t i t y in e n t i t i e s : #per en t i t y
340

341 pr in t ( en t i t y [ 0 ] , e n t i t y [ 1 ] )
342

343 #crea t e en t i t y nodes
344 query=f ’ ’ ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }”
345 WITH e .{ en t i t y [ 0 ] } AS id
346 MERGE ( en : Entity {cbOpen}ID : ( ”{ logID}”+toS t r i ng ( id ) ) { cbClose })
347 ON CREATE SET en . IDraw = id , en . uID = ”{ en t i t y [1 ]}”+”{ logID}”+toS t r i ng ( id ) , en

. Log = ”{ logID }” , en . EntityType = ”{ en t i t y [ 1 ] } ” ’ ’ ’
348 Graph . run ( query )
349 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
350

351 #crea t e :E EN r e l a t i o n s h i p s
352 query=f ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }” MATCH (n : Entity

{cbOpen}EntityType : ”{ en t i t y [ 1 ] } ” , Log : ”{ logID }”{ cbClose }) WHERE e .{ en t i t y
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[ 0 ] } = n . IDraw CREATE ( e ) − [ :E EN]−>(n) ’
353 Graph . run ( query )
354 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
355

356 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
357 query = f ’MATCH p = ( ev : Event {cbOpen}Log : ”{ logID }”{ cbClose }) − [ :E EN]−> ( en :

Ent ity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{
en t i t y [ 0 ] } , ev . idx ’

358 output = Graph . run ( query ) . data ( )
359 en t i t y Idx = 0
360 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
361 f o r node in output :
362 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
363 Graph . push ( node [ ’ ev ’ ] )
364 en t i t y Idx += 1
365 pr in t ( f ’ { en t i t y [ 1 ] } i n t e r n a l index added to nodes ’ )
366

367 #crea t e DF r e l a t i o n s
368 query = f ’ ’ ’MATCH ( l : Log ) − [ :L E]−>(e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}

EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )<−[:L E]−( l : Log )
369 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1 AND l . ID = ”{ logID }”
370 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
371 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
372 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
373 ’ ’ ’
374 Graph . run ( query )
375 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
376

377 #crea t e HOW r e l a t i o n s
378 #not needed − no r e s ou r c e s
379

380 end = time . time ( )
381 pr in t ( ” Import o f the que s t i on s graph took : ”+s t r ( ( end − s t a r t ) )+” seconds .\n” )
382

383 pe r f = pe r f . append ({ ’name ’ : logID , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end − s t a r t
) } , i gno r e i ndex=True )

384

385 ######################################################
386 ####################### messages ####################
387 ######################################################
388 s t a r t = time . time ( )
389

390 startTimestamp = ”timestamp”
391 endTimestamp = ”timestamp”
392 logID = ”Messages ”
393

394 pr in t ( f ’#################### { logID} import ########################’ )
395

396 e n t i t i e s = [ [ ’ CustomerID ’ , ’ Customer ’ ] , [ ’ O f f i c e U ’ , ’ Of f i c e U ’ ] , [ ’ Office W ’ , ’
Office W ’ ] , [ ’MessageID ’ , ’Message ’ ] , [ ’ HandlingChannelID ’ , ’ HandlingChannel ’ ] ]

397 fileNameTmp = fi leName+logID+’ . csv ’
398 header = l i s t ( messages )
399 qCreateEvents = CreateEventQuery ( header , fileNameTmp , logID ) #generate query to

c r e a t e a l l events with a l l l og columns as p r op e r t i e s
400 Graph . run ( qCreateEvents )
401

402 #no r e s ou r c e s per event in the log
403

404 #crea t e l og node and : L E r e l a t i o n s h i p s
405 Graph . c r e a t e (Node ( ”Log” , ID=logID ) )
406 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”{ logID }”{ cbClose }) MATCH ( l : Log {cbOpen}ID

: ”{ logID }”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
407

408 f o r en t i t y in e n t i t i e s : #per en t i t y
409

410 pr in t ( en t i t y [ 0 ] , e n t i t y [ 1 ] )
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411

412 #crea t e en t i t y nodes
413 query=f ’ ’ ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }”
414 WITH e .{ en t i t y [ 0 ] } AS id
415 MERGE ( en : Entity {cbOpen}ID : ( ”{ logID}”+toS t r i ng ( id ) ) { cbClose })
416 ON CREATE SET en . IDraw = id , en . uID = ”{ en t i t y [1 ]}”+”{ logID}”+toS t r i ng ( id ) , en

. Log = ”{ logID }” , en . EntityType = ”{ en t i t y [ 1 ] } ” ’ ’ ’
417 Graph . run ( query )
418 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
419

420 #crea t e :E EN r e l a t i o n s h i p s
421 query=f ’MATCH ( e : Event ) <−[:L E]−( l : Log ) WHERE l . ID = ”{ logID }” MATCH (n : Entity

{cbOpen}EntityType : ”{ en t i t y [ 1 ] } ” , Log : ”{ logID }”{ cbClose }) WHERE e .{ en t i t y
[ 0 ] } = n . IDraw CREATE ( e ) − [ :E EN]−>(n) ’

422 Graph . run ( query )
423 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
424

425 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
426 query = f ’MATCH p = ( ev : Event {cbOpen}Log : ”{ logID }”{ cbClose }) − [ :E EN]−> ( en :

Ent ity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{
en t i t y [ 0 ] } , ev . idx ’

427 output = Graph . run ( query ) . data ( )
428 en t i t y Idx = 0
429 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
430 f o r node in output :
431 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
432 Graph . push ( node [ ’ ev ’ ] )
433 en t i t y Idx += 1
434 pr in t ( f ’ { en t i t y [ 1 ] } i n t e r n a l index added to nodes ’ )
435

436 #crea t e DF r e l a t i o n s
437 query = f ’ ’ ’MATCH ( l : Log ) − [ :L E]−>(e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}

EntityType : ”{ en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )<−[:L E]−( l : Log )
438 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1 AND l . ID = ”{ logID }”
439 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
440 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
441 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
442 ’ ’ ’
443 Graph . run ( query )
444 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
445

446 #crea t e HOW r e l a t i o n s
447 #not needed − no r e s ou r c e s
448

449 end = time . time ( )
450 pr in t ( ” Import o f the que s t i on s graph took : ”+s t r ( ( end − s t a r t ) )+” seconds .\n” )
451

452 pe r f = pe r f . append ({ ’name ’ : logID , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end − s t a r t
) } , i gno r e i ndex=True )

453

454 ###### en co i n c i d e
455

456 #crea t e c o l l e c t o r nodes f o r c o i n c i d i n g e n t i t i e s with log = ”none” and c r ea t e
r e l a t i o n s h i p s to the e n t i t i e s r e s p e c t i v e l y

457 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ C l i ck s ’
458 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’ Complaints ’
459 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
460 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
461 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
462 Graph . run ( query )
463

464 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ C l i ck s ’
465 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’ Quest ions ’
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466 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en
. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})

467 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
468 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
469 Graph . run ( query )
470

471 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ C l i ck s ’
472 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’Messages ’
473 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
474 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
475 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
476 Graph . run ( query )
477

478 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ Complaints ’
479 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’ Quest ions ’
480 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
481 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
482 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
483 Graph . run ( query )
484

485 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ Complaints ’
486 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’Messages ’
487 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
488 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
489 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
490 Graph . run ( query )
491

492 query = ’ ’ ’ match ( en : Ent ity ) where en . Log = ’ Quest ions ’
493 match ( en2 : Entity ) where en . EntityType = en2 . EntityType and en . IDraw = en2 . IDraw

and en2 . Log = ’Messages ’
494 merge ( c o l l e c t o r : Ent ity {IDraw : en . IDraw , EntityType : en . EntityType , ID : (”None”+en

. IDraw ) , uID : ( en . EntityType+”None”+en . IDraw ) , Log : ”None”})
495 merge ( en ) − [ :EN COINCIDE]−>( c o l l e c t o r )
496 merge ( en2 ) − [ :EN COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
497 Graph . run ( query )
498

499 globalEnd = time . time ( )
500 pr in t ( ”Total import time : ”+s t r ( ( globalEnd − g l oba l S t a r t ) )+” seconds .\n” )
501 pe r f = pe r f . append ({ ’name ’ : ’ Total ’ , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( globalEnd

− g l oba l S t a r t ) } , i gno r e i ndex=True )
502

503 pe r f . t o c sv ( perfFi leName )

A.5.2 Schema Definitions

1 pat t e rn bp i c16 = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF {EntityTypes } ,
9 EN COINCIDE {}

10 }
11 {//node types
12 ( : Event ) , ( : Ent ity ) , ( : Log )
13 }
14 {// r e l a t i o n s h i p types
15 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
16 ( : Log ) − [ :L E]−>(:Event ) ,

98 A Schema Framework for Graph Event Data



APPENDIX A. CASE STUDIES

17 ( : Event ) − [ :DF]−>(:Event ) ,
18 ( : Event ) − [ :EN COINCIDE]−>(:Event )
19 }
20 {// i nh e r i t e d pat t e rns
21 0 core , 1 df , 1 e n c o i n c i d e
22 }
23 )

Listing A.5: BPIC 16 Pattern Definition

1 schema bpic16 = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Timestamp ! : TIMESTAMP,
6 s t a r t : TIMESTAMP,
7 end : TIMESTAMP,
8 CustomerID : INTEGER,
9 AgeCategory : FLOAT,

10 Gender : INTEGER,
11 Off i ce U : INTEGER,
12 Office W : INTEGER,
13 Sess ionID : INTEGER,
14 IPID : INTEGER,
15 VHOST: STRING,
16 URL FILE : STRING,
17 ComplaintDossierID : STRING,
18 ComplaintID : STRING,
19 ContactChannelID : STRING,
20 ComplaintThemeID : STRING,
21 ComplaintSubthemeID : STRING,
22 ComplaintTopicID : STRING,
23 ComplaintTheme : STRING,
24 ComplaintSubtheme : STRING,
25 ComplaintTopic : STRING,
26 ComplaintTheme EN : STRING,
27 ComplaintSubtheme EN : STRING,
28 ComplaintTopic EN : STRING,
29 EventType : STRING,
30 HandlingChannelID : INTEGER,
31 MessageID : INTEGER,
32 ContactDate : TIMESTAMP,
33 ContactTimeStart : TIMESTAMP,
34 ContactTimeEnd : TIMESTAMP,
35 QuestionThemeID : STRING,
36 QuestionSubthemeID : STRING,
37 QuestionTopicID : STRING,
38 QuestionTheme : STRING,
39 QuestionSubtheme : STRING,
40 QuestionTopic : STRING,
41 QuestionTheme EN : STRING,
42 QuestionSubtheme EN : STRING,
43 QuestionTopic EN : STRING
44 }
45 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
46 Log {ID} : STRING}
47 E EN {} ,
48 L E {} ,
49 DF {EntityTypes : LIST} ,
50 HOW {EntityTypes : LIST}
51 }
52 {//node types
53 ( : Event ) , ( : Ent ity ) , ( : Log )
54 }
55 {// r e l a t i o n s h i p types
56 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
57 ( : Log ) − [ :L E]−>(:Event ) ,
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58 ( : Event ) − [ :DF]−>(:Event ) ,
59 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
60 }
61 )

Listing A.6: BPIC 16 Schema Definition

A.6 BPIC17

A.6.1 Script Template

1 #loan app l i c a t i on
2

3 import pandas as pd
4 import time , os , csv
5 from py2neo import Graph , Node
6

7 #con f i g
8

9 sample = True
10 createNewFi le = True
11

12 path = ’C:\\Temp\\ Import\\ ’
13

14 de f LoadLog ( l o c a l F i l e ) :
15 da t a s e tL i s t = [ ]
16 headerCSV = [ ]
17 i = 0
18 with open ( l o c a l F i l e ) as f :
19 r eader = csv . r eader ( f )
20 f o r row in reader :
21 i f ( i==0) :
22 headerCSV = l i s t ( row )
23 i +=1
24 e l s e :
25 da t a s e tL i s t . append ( row )
26

27 l og = pd . DataFrame ( data s e tL i s t , columns=headerCSV)
28

29 r e turn headerCSV , log
30

31 de f CreateEventQuery ( logHeader , f i leName , LogID = ”” ) :
32 query = f ’USING PERIODIC COMMIT LOAD CSV WITH HEADERS FROM \” f i l e :///{ f i leName

}\” as l i n e ’
33 brClose = ’ } ’
34 brOpen = ’ { ’
35 f o r c o l in logHeader :
36 i f c o l == ’ idx ’ :
37 column = f ’ t o In t ( l i n e .{ c o l }) ’
38 e l i f c o l in [ ’ timestamp ’ , ’ s t a r t ’ , ’ end ’ ] :
39 column = f ’ datet ime ( l i n e .{ c o l }) ’
40 e l s e :
41 column = ’ l i n e . ’+co l
42 newLine = ’ ’
43 i f ( logHeader . index ( c o l ) == 0 and LogID != ”” ) :
44 newLine = f ’ CREATE ( e : Event {brOpen}Log : ”{LogID}” ,{ c o l } : {column } , ’
45 e l i f ( logHeader . index ( c o l ) == 0) :
46 newLine = f ’ CREATE ( e : Event {brOpen}{ c o l } : {column } , ’
47 e l s e :
48 newLine = f ’ { c o l } : {column } , ’
49 i f ( logHeader . index ( c o l ) == len ( logHeader )−1) :
50 newLine = f ’ { c o l } : {column}{ brClose }) ’
51

52 query = query + newLine
53 r e turn query ;
54

55 de f CreateBPI17 ( path , f i leName , sample ) :
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56 csvLog = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI Chal lenge 2017 . csv ’ ) ,
k e ep de f au l t na=True ) #load f u l l l og from csv

57 csvLog . d r op dup l i c a t e s ( keep=’ f i r s t ’ , i np l a c e=True ) #remove dup l i c a t e s from the
datase t

58 csvLog = csvLog . r e s e t i n d e x ( drop=True ) #renew the index to c l o s e gaps o f
removed dup l i c a t e s

59

60 i f ( sample == True ) :
61 sampleIds = [ ’ Appl i cat ion 2045572635 ’ ,
62 ’ Appl i cat ion 2014483796 ’ ,
63 ’ Appl i cat ion 1973871032 ’ ,
64 ’ Appl i cat ion 1389621581 ’ ,
65 ’ Appl i cat ion 1564472847 ’ ,
66 ’ Appl i cat ion 430577010 ’ ,
67 ’ Appl i cat ion 889180637 ’ ,
68 ’ Appl i cat ion 1065734594 ’ ,
69 ’ Appl i cat ion 681547497 ’ ,
70 ’ Appl i cat ion 1020381296 ’ ,
71 ’ Appl i cat ion 180427873 ’ ,
72 ’ Appl i cat ion 2103964126 ’ ,
73 ’ Appl i cat ion 55972649 ’ ,
74 ’ Appl i cat ion 1076724533 ’ ,
75 ’ Appl i cat ion 1639247005 ’ ,
76 ’ Appl i cat ion 1465025013 ’ ,
77 ’ Appl i cat ion 1244956957 ’ ,
78 ’ Appl i cat ion 1974117177 ’ ,
79 ’ Appl i cat ion 797323371 ’ ,
80 ’ Appl i cat ion 1631297810 ’ ]
81 e l s e :
82 sampleIds = csvLog . case . unique ( ) . t o l i s t ( ) # c r ea t e a l i s t o f a l l c a s e s in

the datase t
83

84 csvLog [ ’ startTime ’ ] = pd . to date t ime ( csvLog [ ’ startTime ’ ] , format=’%Y/%m/%d %H:%
M:%S.% f ’ )

85 csvLog [ ’ s t a r t ’ ] = csvLog [ ’ startTime ’ ] . map( lambda x : x . s t r f t ime ( ’%Y−%m−%dT%H:%M
:%S.% f ’ ) [0:−3]+ ’+0100 ’ )

86 csvLog [ ’ completeTime ’ ] = pd . to date t ime ( csvLog [ ’ completeTime ’ ] , format=’%Y/%m/%
d %H:%M:%S.% f ’ )

87 csvLog [ ’ end ’ ] = csvLog [ ’ completeTime ’ ] . map( lambda x : x . s t r f t im e ( ’%Y−%m−%dT%H:%M
:%S.% f ’ ) [0:−3]+ ’+0100 ’ )

88 csvLog . drop ( columns=[ ’ startTime ’ , ’ completeTime ’ ] , i np l a c e=True )
89 csvLog = csvLog . rename ( columns={ ’ event ’ : ’ Ac t i v i t y ’ , ’ org : r e s ou r c e ’ : ’ r e s ou r c e ’ })
90

91 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t
o f events f o r each o f the s e l e c t e d ca s e s

92 f o r case in sampleIds :
93 f o r index , row in csvLog [ csvLog . case == case ] . i t e r r ows ( ) : #second i t e r a t i o n

through the ca s e s f o r adding data
94 i f row [ ’ Ac t i v i t y ’ ] == ”O Create Of f e r ” : # th i s a c t i v i t y be longs to an

o f f e r but has no o f f e r ID
95 i f csvLog . l o c [ index +1] [ ’ Ac t i v i ty ’ ] == ’ O Created ’ :#i f next a c t i v i t y

i s ”O Created” ( always d i r e c t l y f o l l ow s ”O Create Of f e r ” [ v e r i f i e d with Disco
] )

96 row [ ’ OfferID ’ ] = csvLog . l o c [ index +1] [ ’ OfferID ’ ] #as s i gn the
o f f e r ID o f the next event ( O Created ) to t h i s a c t i v i t y

97 rowList = l i s t ( row ) #add the event data to rowList
98 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the sample

datase t
99

100 header = l i s t ( csvLog ) #save the updated header data
101 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe

and add the samples
102 logSamples . f i l l n a (0 )
103 logSamples . t o c sv ( path+fileName , index=True , i n d e x l a b e l=” idx ” , na rep=”Unknown”

)
104

105 i f ( sample ) :

A Schema Framework for Graph Event Data 101



APPENDIX A. CASE STUDIES

106 f i leName = ’BPIC17sample . csv ’
107 perfFi leName = ’ BPIC17samplePerformance . csv ’
108 e l s e :
109 f i leName = ’ BPIC17ful l . csv ’
110 perfFi leName = ’ BPIC17ful lPerformance . csv ’
111

112 i f ( createNewFi le ) :
113 s t a r t = time . time ( )
114 CreateBPI17 ( path , f i leName , sample )
115 end = time . time ( )
116 pr in t ( ”Prepared data f o r import in : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
117

118 pe r f = pd . DataFrame ( columns=[ ’name ’ , ’ s t a r t ’ , ’ end ’ , ’ durat ion ’ ] )
119

120 header , csvLog = LoadLog ( path+fi leName )
121

122 e n t i t i e s = [ [ ’ case ’ , ’ App l i ca t ion ’ ] , [ ’ case ’ , ’Workflow ’ ] , [ ’ OfferID ’ , ’ O f f e r ’ ] ]
123

124 cbClose = ”}”
125 cbOpen = ”{”
126

127 Graph = Graph ( password=”1234” )
128

129 Graph . d e l e t e a l l ( )
130

131 ######################################################
132 ####################### BPIC 17 ######################
133 ######################################################
134 s t a r t = time . time ( )
135

136 qCreateEvents = CreateEventQuery ( header , f i leName , ’BPIC17 ’ ) #generate query to
c r e a t e a l l events with a l l l og columns as p r op e r t i e s

137 Graph . run ( qCreateEvents )
138 pr in t ( ’ Event nodes done ’ )
139

140 #crea t e unique c on s t r a i n t s
141 Graph . run ( ’CREATE CONSTRAINT ON ( e : Event ) ASSERT e . ID IS UNIQUE; ’ ) #f o r

implementation only ( not r equ i r ed by schema or pat t e rn s )
142 Graph . run ( ’CREATE CONSTRAINT ON ( en : Entity ) ASSERT en . uID IS UNIQUE; ’ ) #requ i r ed by

core pattern
143 Graph . run ( ’CREATE CONSTRAINT ON ( l : Log ) ASSERT l . ID IS UNIQUE; ’ ) #requ i r ed by core

pattern
144

145 #crea t e r e s ou r c e ( en t i t y ) nodes
146 Graph . run ( ”MATCH ( e : Event ) MERGE( r : Ent ity {ID : e . r e s ou r c e }) ON CREATE SET r . uID =

( ’ Resource ’+ toS t r i ng ( e . r e s ou r c e ) ) , r . EntityType = ’ Resource ’ ” )
147 pr in t ( ’ Resource nodes done ’ )
148

149 #crea t e :E EN r e l a t i o n s h i p s f o r r e s ou r c e s
150 Graph . run ( f ’MATCH ( e : Event ) MATCH ( r : Entity {cbOpen}EntityType : ”Resource ”{ cbClose

}) WHERE r . ID = e . r e s ou r c e CREATE ( e ) − [ :E EN]−>( r ) ’ )
151 pr in t ( ’ r e s ou r c e :E EN r e l a t i o n s h i p s done ’ )
152

153 #crea t e l og node and : L E r e l a t i o n s h i p s
154 Graph . c r e a t e (Node ( ”Log” , ID=’BPIC17 ’ ) )
155 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”BPIC17”{ cbClose }) MATCH ( l : Log {cbOpen}ID :

”BPIC17”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
156 pr in t ( ’ Log and : L E r e l a t i o n s h i p s done ’ )
157

158 f o r en t i t y in e n t i t i e s : #per en t i t y
159

160 s t a r tEn t i t y = time . time ( ) #per en t i t y
161

162 #crea t e en t i t y nodes
163 query=f ’MATCH ( e : Event ) WHERE e . EventOrigin = ”{ en t i t y [ 1 ] } ” WITH e .{ en t i t y [ 0 ] }

AS id MERGE ( en : Entity {cbOpen}ID : id , uID : ( ”{ en t i t y [1 ]}”+ toS t r i ng ( id ) ) ,
EntityType :”{ en t i t y [ 1 ]}”{ cbClose }) ’
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164 Graph . run ( query )
165 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
166

167 #crea t e :E EN r e l a t i o n s h i p s
168 query=f ’MATCH ( e : Event ) MATCH (n : Entity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{

cbClose }) WHERE e .{ en t i t y [ 0 ] } = n . ID AND e . EventOrigin = ”{ en t i t y [ 1 ] } ” CREATE (
e ) − [ :E EN]−>(n) ’

169 Graph . run ( query )
170 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
171

172

173

174 s t a r t 2 = time . time ( )
175 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
176 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{ en t i t y [ 0 ] } , ev . idx ’
177 output = Graph . run ( query ) . data ( )
178 en t i t y Idx = 0
179 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
180 f o r node in output :
181 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
182 Graph . push ( node [ ’ ev ’ ] )
183 en t i t y Idx += 1
184

185 end2 = time . time ( )
186 pr in t ( f ” Indexing { en t i t y [ 1 ] } nodes took : ”+s t r ( ( end2 − s t a r t 2 ) )+” seconds . ” )
187

188 #crea t e DF r e l a t i o n s
189 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )
190 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
191 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
192 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
193 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
194 ’ ’ ’
195 Graph . run ( query )
196 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
197

198 #crea t e HOW r e l a t i o n s
199 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN

]− ( e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType :
”Resource ”{ cbClose })

200 WHERE ’{ en t i t y [ 1 ] } ’ IN r e l . EntityTypes
201 MERGE ( r1 )−[how :HOW]−>( r2 )
202 ON CREATE SET how . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
203 ON MATCH SET how . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN how . EntityTypes THEN

how . EntityTypes ELSE how . EntityTypes + ”{ en t i t y [ 1 ] } ” END
204 ’ ’ ’
205 Graph . run ( query )
206 pr in t ( f ’ { en t i t y [ 1 ] } HOW re l a t i o n s h i p s done ’ )
207

208 endEntity = time . time ( ) #import t imer per en t i t y
209 pe r f = pe r f . append ({ ’name ’ : ( ”BPIC17”+’− ’+en t i t y [ 1 ] ) , ’ s t a r t ’ : s t a r tEnt i ty , ’ end ’

: endEntity , ’ durat ion ’ : ( endEntity − s t a r tEn t i t y ) } , i gno r e i ndex=True )
210

211 ########################## CASE A W AND O
212

213 #crea t e case nodes ( as e n t i t i e s ) with app , wf and o f f e r e n t i t i e s
214 query=f ’MATCH ( e : Event ) WITH e . case AS id MERGE ( en : Entity {cbOpen}ID : id , uID : ( ”

Case AWO”+toSt r i ng ( id ) ) , EntityType : ”Case AWO”{ cbClose }) ’
215 Graph . run ( query )
216 #crea t e :E EN r e l a t i o n s h i p s
217 query=f ’MATCH ( e : Event ) MATCH (n : Entity {cbOpen}EntityType : ”Case AWO”{ cbClose })

WHERE e . case = n . ID CREATE ( e ) − [ :E EN]−>(n) ’
218 Graph . run ( query )
219
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220 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”Case AWO”{
cbClose }) RETURN ev ORDER BY ev . case , ev . idx ’

221 output = Graph . run ( query ) . data ( )
222 en t i t y Idx = 0
223 propertyName = f ’Case AWO idx ’
224 f o r node in output :
225 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
226 Graph . push ( node [ ’ ev ’ ] )
227 en t i t y Idx += 1
228

229 #crea t e DF r e l a t i o n s
230 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”Case AWO”{

cbClose }) <−[:E EN]− ( e2 : Event )
231 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
232 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
233 ON CREATE SET df . EntityTypes = [”Case AWO” ]
234 ON MATCH SET df . EntityTypes = CASE WHEN ”Case AWO” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”Case AWO” END
235 ’ ’ ’
236 Graph . run ( query )
237

238 #crea t e HOW r e l a t i o n s
239 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN]− (

e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType : ”
Resource ”{ cbClose })

240 WHERE ’Case AWO ’ IN r e l . EntityTypes
241 MERGE ( r1 )−[how :HOW]−>( r2 )
242 ON CREATE SET how . EntityTypes = [”Case AWO” ]
243 ON MATCH SET how . EntityTypes = CASE WHEN ”Case AWO” IN how . EntityTypes THEN how .

EntityTypes ELSE how . EntityTypes + ”Case AWO” END
244 ’ ’ ’
245 Graph . run ( query )
246 pr in t ( f ’ case AWO e n t i t i e s done ’ )
247

248 ######################## CASE A AND O
249

250 #crea t e case nodes with app and o f f e r e n t i t i e s
251 query=f ’MATCH ( e : Event ) WITH e . case AS id MERGE ( : Entity {cbOpen}ID : id , uID : ( ”

Case AO”+toSt r i ng ( id ) ) , EntityType : ”Case AO”{ cbClose }) ’
252 Graph . run ( query )
253

254 #crea t e :E EN r e l a t i o n s h i p s
255 query=f ’ ’ ’MATCH ( e : Event ) − [ :E EN]−>( ent )
256 WHERE ( ent . EntityType IN [ ” Of f e r ” ,” App l i ca t ion ” ] )
257 MATCH (n : Entity {cbOpen}EntityType : ”Case AO”{ cbClose })
258 WHERE n . ID = e . case
259 CREATE ( e ) − [ :E EN]−>(n) ’ ’ ’
260 Graph . run ( query )
261

262 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”Case AO”{
cbClose }) RETURN ev ORDER BY ev . case , ev . idx ’

263 output = Graph . run ( query ) . data ( )
264 en t i t y Idx = 0
265 propertyName = f ’ Case AO idx ’
266 f o r node in output :
267 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
268 Graph . push ( node [ ’ ev ’ ] )
269 en t i t y Idx += 1
270

271 #crea t e DF r e l a t i o n s
272 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”Case AO”{

cbClose }) <−[:E EN]− ( e2 : Event )
273 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
274 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
275 ON CREATE SET df . EntityTypes = [”Case AO” ]
276 ON MATCH SET df . EntityTypes = CASE WHEN ”Case AO” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”Case AO” END
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277 ’ ’ ’
278 Graph . run ( query )
279

280 #crea t e HOW r e l a t i o n s
281 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN]− (

e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType : ”
Resource ”{ cbClose })

282 WHERE ’Case AO ’ IN r e l . EntityTypes
283 MERGE ( r1 )−[how :HOW]−>( r2 )
284 ON CREATE SET how . EntityTypes = [”Case AO” ]
285 ON MATCH SET how . EntityTypes = CASE WHEN ”Case AO” IN how . EntityTypes THEN how .

EntityTypes ELSE how . EntityTypes + ”Case AO” END
286 ’ ’ ’
287 Graph . run ( query )
288

289 pr in t ( f ’ case AO e n t i t i e s done ’ )
290

291 ########################### CASE RESOURCE
292

293 caseName = ”Case R”
294 #crea t e case nodes f o r r e s ou r c e ( case ) en t i t y
295 query=f ’MATCH ( e : Event ) WITH e . r e s ou r c e AS id MERGE ( : Entity {cbOpen}ID : id , uID

: ( ”{ caseName}”+toS t r i ng ( id ) ) , EntityType :”{ caseName}”{ cbClose }) ’
296 Graph . run ( query )
297 #crea t e :E EN r e l a t i o n s h i p s
298 query=f ’ ’ ’MATCH ( e : Event ) − [ :E EN]−>( ent : Entity {cbOpen}EntityType : ”Resource ”{

cbClose }) MATCH (n : Entity {cbOpen}EntityType : ”{caseName}”{ cbClose })
299 WHERE ent . ID = n . ID
300 CREATE ( e ) − [ :E EN]−>(n) ’ ’ ’
301 Graph . run ( query )
302

303 query = f ’MATCH p = ( ev : Event ) − [ :E EN]−> ( en : Entity {cbOpen}EntityType : ”{caseName
}”{ cbClose }) RETURN ev ORDER BY ev . re source , ev . idx ’

304 output = Graph . run ( query ) . data ( )
305 en t i t y Idx = 0
306 propertyName = f ’ Case R idx ’
307 f o r node in output :
308 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
309 Graph . push ( node [ ’ ev ’ ] )
310 en t i t y Idx += 1
311

312 #crea t e DF r e l a t i o n s
313 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{caseName

}”{ cbClose }) <−[:E EN]− ( e2 : Event )
314 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
315 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
316 ON CREATE SET df . EntityTypes = [”{ caseName }” ]
317 ON MATCH SET df . EntityTypes = CASE WHEN ”{caseName}” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”{caseName}” END
318 ’ ’ ’
319 Graph . run ( query )
320

321 pr in t ( f ’ case r e s ou r c e s e n t i t i e s done ’ )
322

323 end = time . time ( )
324 pr in t ( ” Import o f the graph took : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
325

326 pe r f = pe r f . append ({ ’name ’ : ’BPIC17 ’ , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end −
s t a r t ) } , i gno r e i ndex=True )

327

328 pe r f . t o c sv ( perfFi leName )

A.6.2 Schema Definitions

Please refer to listing 7.7 for the schema definition and listing 6.5 for the pattern definition.

A Schema Framework for Graph Event Data 105



APPENDIX A. CASE STUDIES

A.7 BPIC17 with Split Events

A.7.1 Script Template

1 #loan app l i c a t i on with s p l i t events
2

3 import pandas as pd
4 import time , os , csv
5 from py2neo import Graph , Node
6

7 #con f i g
8

9 sample = True
10 createNewFi le = True
11

12 path = ’C:\\Temp\\ Import\\ ’
13

14 de f LoadLog ( l o c a l F i l e ) :
15 da t a s e tL i s t = [ ]
16 headerCSV = [ ]
17 i = 0
18 with open ( l o c a l F i l e ) as f :
19 r eader = csv . r eader ( f )
20 f o r row in reader :
21 i f ( i==0) :
22 headerCSV = l i s t ( row )
23 i +=1
24 e l s e :
25 da t a s e tL i s t . append ( row )
26

27 l og = pd . DataFrame ( data s e tL i s t , columns=headerCSV)
28

29 r e turn headerCSV , log
30

31 de f CreateEventQuery ( logHeader , f i leName , LogID = ”” ) :
32 query = f ’USING PERIODIC COMMIT LOAD CSV WITH HEADERS FROM \” f i l e :///{ f i leName

}\” as l i n e ’
33 brClose = ’ } ’
34 brOpen = ’ { ’
35 f o r c o l in logHeader :
36 i f c o l == ’ idx ’ :
37 column = f ’ t o In t ( l i n e .{ c o l }) ’
38 e l i f c o l in [ ’ timestamp ’ , ’ s t a r t ’ , ’ end ’ ] :
39 column = f ’ datet ime ( l i n e .{ c o l }) ’
40 e l s e :
41 column = ’ l i n e . ’+co l
42 newLine = ’ ’
43 i f ( logHeader . index ( c o l ) == 0 and LogID != ”” ) :
44 newLine = f ’ CREATE ( e : Event {brOpen}Log : ”{LogID}” ,{ c o l } : {column } , ’
45 e l i f ( logHeader . index ( c o l ) == 0) :
46 newLine = f ’ CREATE ( e : Event {brOpen}{ c o l } : {column } , ’
47 e l s e :
48 newLine = f ’ { c o l } : {column } , ’
49 i f ( logHeader . index ( c o l ) == len ( logHeader )−1) :
50 newLine = f ’ { c o l } : {column}{ brClose }) ’
51

52 query = query + newLine
53 r e turn query ;
54

55 de f CreateBPI17 ( path , f i leName , sample ) :
56 csvLog = pd . r ead c sv ( os . path . r ea lpa th ( ’ BPI Chal lenge 2017 . csv ’ ) ,

k e ep de f au l t na=True ) #load f u l l l og from csv
57 csvLog . d r op dup l i c a t e s ( keep=’ f i r s t ’ , i np l a c e=True ) #remove dup l i c a t e s from the

datase t
58 csvLog = csvLog . r e s e t i n d e x ( drop=True ) #renew the index to c l o s e gaps o f

removed dup l i c a t e s
59
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60 i f ( sample == True ) :
61 sampleIds = [ ’ Appl i cat ion 2045572635 ’ ,
62 ’ Appl i cat ion 2014483796 ’ ,
63 ’ Appl i cat ion 1973871032 ’ ,
64 ’ Appl i cat ion 1389621581 ’ ,
65 ’ Appl i cat ion 1564472847 ’ ,
66 ’ Appl i cat ion 430577010 ’ ,
67 ’ Appl i cat ion 889180637 ’ ,
68 ’ Appl i cat ion 1065734594 ’ ,
69 ’ Appl i cat ion 681547497 ’ ,
70 ’ Appl i cat ion 1020381296 ’ ,
71 ’ Appl i cat ion 180427873 ’ ,
72 ’ Appl i cat ion 2103964126 ’ ,
73 ’ Appl i cat ion 55972649 ’ ,
74 ’ Appl i cat ion 1076724533 ’ ,
75 ’ Appl i cat ion 1639247005 ’ ,
76 ’ Appl i cat ion 1465025013 ’ ,
77 ’ Appl i cat ion 1244956957 ’ ,
78 ’ Appl i cat ion 1974117177 ’ ,
79 ’ Appl i cat ion 797323371 ’ ,
80 ’ Appl i cat ion 1631297810 ’ ]
81 e l s e :
82 sampleIds = csvLog . case . unique ( ) . t o l i s t ( ) # c r ea t e a l i s t o f a l l c a s e s in

the datase t
83

84 csvLog = csvLog . rename ( columns={ ’ event ’ : ’ Ac t i v i t y ’ , ’ org : r e s ou r c e ’ : ’ r e s ou r c e ’ })
85 csvLog [ ’ EventIDraw ’ ] = csvLog [ ’ EventID ’ ]
86

87 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a l i s t
o f events f o r each o f the s e l e c t e d ca s e s

88 f o r case in sampleIds :
89 f o r index , row in csvLog [ csvLog . case == case ] . i t e r r ows ( ) : #second i t e r a t i o n

through the ca s e s f o r adding data
90 i f row [ ’ Ac t i v i t y ’ ] == ”O Create Of f e r ” : # th i s a c t i v i t y be longs to an

o f f e r but has no o f f e r ID
91 i f csvLog . l o c [ index +1] [ ’ Ac t i v i ty ’ ] == ’ O Created ’ :#i f next a c t i v i t y

i s ”O Created” ( always d i r e c t l y f o l l ow s ”O Create Of f e r ” [ v e r i f i e d with Disco
] )

92 row [ ’ OfferID ’ ] = csvLog . l o c [ index +1] [ ’ OfferID ’ ] #as s i gn the
o f f e r ID o f the next event ( O Created ) to t h i s a c t i v i t y

93 rowEnd = row . copy ( )
94

95 row . rename ({ ’ startTime ’ : ’ timestamp ’ } , i np l a c e=True )
96 rowEnd . rename ({ ’ completeTime ’ : ’ timestamp ’ } , i np l a c e=True )
97

98 row . drop ( l a b e l s =[ ’ completeTime ’ ] , i np l a c e=True )
99 rowEnd . drop ( l a b e l s =[ ’ startTime ’ ] , i np l a c e=True )

100

101 row [ ’ EventID ’ ] = row [ ’ EventID ’ ]+” Star t ”
102 rowEnd [ ’ EventID ’ ] = rowEnd [ ’ EventID ’ ]+”End”
103

104 sampleLis t . append ( l i s t ( row ) ) #add the extended , s i n g l e row to the
sample datase t

105 sampleLis t . append ( l i s t ( rowEnd) )
106

107 header = [ ’ case ’ ,
108 ’ Ac t i v i ty ’ ,
109 ’ timestamp ’ ,
110 ’ LoanGoal ’ ,
111 ’ Appl icat ionType ’ ,
112 ’ RequestedAmount ’ ,
113 ’ MonthlyCost ’ ,
114 ’ r e s ou r c e ’ ,
115 ’ Accepted ’ ,
116 ’ EventID ’ ,
117 ’ OfferID ’ ,
118 ’ FirstWithdrawalAmount ’ ,
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119 ’ Action ’ ,
120 ’ S e l e c t ed ’ ,
121 ’ Cred i tScore ’ ,
122 ’NumberOfTerms ’ ,
123 ’ EventOrigin ’ ,
124 ’ OfferedAmount ’ ,
125 ’ EventIDraw ’ ]
126

127 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas dataframe
and add the samples

128

129 logSamples [ ’ timestamp ’ ] = pd . to date t ime ( logSamples [ ’ timestamp ’ ] , format=’%Y/%m
/%d %H:%M:%S.% f ’ )

130

131 logSamples . f i l l n a (0 )
132 logSamples . s o r t v a l u e s ( [ ’ case ’ , ’ timestamp ’ ] , i np l a c e=True )
133 logSamples [ ’ timestamp ’ ] = logSamples [ ’ timestamp ’ ] . map( lambda x : x . s t r f t im e ( ’%Y

−%m−%dT%H:%M:%S.% f ’ ) [0:−3]+ ’+0100 ’ )
134

135 logSamples . t o c sv ( path+fileName , index=True , i n d e x l a b e l=” idx ” , na rep=”Unknown”
)

136

137 r e turn logSamples
138

139 i f ( sample ) :
140 f i leName = ’ BPIC17sample spl i t . csv ’
141 perfFi leName = ’ BPIC17sample spl itPerformance . csv ’
142 e l s e :
143 f i leName = ’ BPIC17 fu l l s p l i t . csv ’
144 perfFi leName = ’ BPIC17 fu l l sp l i tPer fo rmance . csv ’
145

146 i f ( createNewFi le ) :
147 s t a r t = time . time ( )
148 csvMerged = CreateBPI17 ( path , f i leName , sample )
149 end = time . time ( )
150 pr in t ( ”Prepared data f o r import in : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
151

152 pe r f = pd . DataFrame ( columns=[ ’name ’ , ’ s t a r t ’ , ’ end ’ , ’ durat ion ’ ] )
153

154 header , csvLog = LoadLog ( path+fi leName )
155

156 e n t i t i e s = [ [ ’ case ’ , ’ App l i ca t ion ’ ] , [ ’ case ’ , ’Workflow ’ ] , [ ’ OfferID ’ , ’ O f f e r ’ ] ] #
de f i n e e n t i t i e s end en t i t y i d e n t i f i e r s

157

158 cbClose = ”}”
159 cbOpen = ”{”
160

161 Graph = Graph ( password=”1234” )
162

163 Graph . d e l e t e a l l ( )
164

165 ######################################################
166 #################### BPIC 17 ( s p l i t ) #################
167 ######################################################
168 s t a r t = time . time ( )
169

170 qCreateEvents = CreateEventQuery ( header , f i leName , ’BPIC17 ’ ) #generate query to
c r e a t e a l l events with a l l l og columns as p r op e r t i e s

171 Graph . run ( qCreateEvents )
172 pr in t ( ’ Event nodes done ’ )
173 end = time . time ( ) #import time o f a l l events
174 pe r f = pe r f . append ({ ’name ’ : ( ”Al l Events Import” ) , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’

durat ion ’ : ( end − s t a r t ) } , i gno r e i ndex=True )
175

176 #crea t e unique c on s t r a i n t s
177 Graph . run ( ’CREATE CONSTRAINT ON ( e : Event ) ASSERT e . ID IS UNIQUE; ’ ) #f o r

implementation only ( not r equ i r ed by schema or pat t e rn s )
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178 Graph . run ( ’CREATE CONSTRAINT ON ( en : Entity ) ASSERT en . uID IS UNIQUE; ’ ) #requ i r ed by
core pattern

179 Graph . run ( ’CREATE CONSTRAINT ON ( l : Log ) ASSERT l . ID IS UNIQUE; ’ ) #requ i r ed by core
pattern

180

181 #crea t e r e s ou r c e ( en t i t y ) nodes
182 Graph . run ( ”MATCH ( e : Event ) MERGE( r : Ent ity {ID : e . r e s ou r c e }) ON CREATE SET r . uID =

( ’ Resource ’+ toS t r i ng ( e . r e s ou r c e ) ) , r . EntityType = ’ Resource ’ ” )
183 pr in t ( ’ Resource nodes done ’ )
184

185 #crea t e :E EN r e l a t i o n s h i p s f o r r e s ou r c e s
186 Graph . run ( f ’MATCH ( e : Event ) MATCH ( r : Entity {cbOpen}EntityType : ”Resource ”{ cbClose

}) WHERE r . ID = e . r e s ou r c e CREATE ( e ) − [ :E EN]−>( r ) ’ )
187 pr in t ( ’ r e s ou r c e :E EN r e l a t i o n s h i p s done ’ )
188

189 startTmp = time . time ( )
190 #crea t e l og node and : L E r e l a t i o n s h i p s
191 Graph . c r e a t e (Node ( ”Log” , ID=’BPIC17 ’ ) )
192 Graph . run ( f ’MATCH ( e : Event {cbOpen}Log : ”BPIC17”{ cbClose }) MATCH ( l : Log {cbOpen}ID :

”BPIC17”{ cbClose }) CREATE ( l ) − [ :L E]−>(e ) ’ )
193 pr in t ( ’ Log and : L E r e l a t i o n s h i p s done ’ )
194 end = time . time ( ) #import time o f a l l events
195 pe r f = pe r f . append ({ ’name ’ : ( ”L to E r e l s ” ) , ’ s t a r t ’ : startTmp , ’ end ’ : end , ’ durat ion ’

: ( end − startTmp ) } , i gno r e i ndex=True )
196

197 f o r en t i t y in e n t i t i e s : #per en t i t y
198

199 s t a r tEn t i t y = time . time ( ) #per en t i t y
200

201 #crea t e en t i t y nodes
202 query=f ’MATCH ( e : Event ) WHERE e . EventOrigin = ”{ en t i t y [ 1 ] } ” WITH e .{ en t i t y [ 0 ] }

AS id MERGE ( en : Entity {cbOpen}ID : id , uID : ( ”{ en t i t y [1 ]}”+ toS t r i ng ( id ) ) ,
EntityType :”{ en t i t y [ 1 ]}”{ cbClose }) ’

203 Graph . run ( query )
204 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
205

206 #crea t e :E EN r e l a t i o n s h i p s
207 query=f ’MATCH ( e : Event ) MATCH (n : Entity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{

cbClose }) WHERE e .{ en t i t y [ 0 ] } = n . ID AND e . EventOrigin = ”{ en t i t y [ 1 ] } ” CREATE (
e ) − [ :E EN]−>(n) ’

208 Graph . run ( query )
209 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
210

211

212

213 s t a r t 2 = time . time ( )
214 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
215 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{ en t i t y [ 0 ] } , ev . idx ’
216 output = Graph . run ( query ) . data ( )
217 en t i t y Idx = 0
218 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
219 f o r node in output :
220 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
221 Graph . push ( node [ ’ ev ’ ] )
222 en t i t y Idx += 1
223

224 end2 = time . time ( )
225 pr in t ( f ” Indexing { en t i t y [ 1 ] } nodes took : ”+s t r ( ( end2 − s t a r t 2 ) )+” seconds . ” )
226

227 #crea t e DF r e l a t i o n s
228 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )
229 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
230 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
231 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
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232 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df
. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END

233 ’ ’ ’
234 Graph . run ( query )
235 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
236

237 #crea t e HOW r e l a t i o n s
238 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN

]− ( e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType :
”Resource ”{ cbClose })

239 WHERE ’{ en t i t y [ 1 ] } ’ IN r e l . EntityTypes
240 MERGE ( r1 )−[how :HOW]−>( r2 )
241 ON CREATE SET how . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
242 ON MATCH SET how . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN how . EntityTypes THEN

how . EntityTypes ELSE how . EntityTypes + ”{ en t i t y [ 1 ] } ” END
243 ’ ’ ’
244 Graph . run ( query )
245 pr in t ( f ’ { en t i t y [ 1 ] } HOW re l a t i o n s h i p s done ’ )
246

247 endEntity = time . time ( ) #import t imer per en t i t y
248 pe r f = pe r f . append ({ ’name ’ : ( ”BPIC17”+’− ’+en t i t y [ 1 ] ) , ’ s t a r t ’ : s t a r tEnt i ty , ’ end ’

: endEntity , ’ durat ion ’ : ( endEntity − s t a r tEn t i t y ) } , i gno r e i ndex=True )
249

250 coStar t = time . time ( )
251

252 query = ’ ’ ’ match ( e : Event ) <−[:L E]−( l : Log ) − [ :L E]−>(e2 : Event )
253 where e . EventIDraw = e2 . EventIDraw
254 MERGE ( c o l l e c t o r : Event {ID : e . EventIDraw })
255 MERGE ( e ) − [ :E COINCIDE]−>( c o l l e c t o r )
256 MERGE ( e2 ) − [ :E COINCIDE]−>( c o l l e c t o r ) ’ ’ ’
257 Graph . run ( query )
258

259 coEnd = time . time ( )
260 pr in t ( ” c o i n c i d e s took : ”+s t r ( ( coEnd − coStar t ) )+” seconds . ” )
261

262

263 end = time . time ( )
264 pr in t ( ” Import o f the graph took : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
265

266 pe r f = pe r f . append ({ ’name ’ : ’BPIC17 ’ , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end −
s t a r t ) } , i gno r e i ndex=True )

267

268 pe r f . t o c sv ( perfFi leName )

A.7.2 Schema Definitions

Please refer to listing 7.12 for the schema definition and listing 7.11 for the pattern definition.

A.8 BPIC19

A.8.1 Script Template

1 import pandas as pd
2 import time , csv , os
3 from py2neo import Graph , Node
4

5 ### con f i g
6

7 sample = True # False = f u l l data set , True = sample data s e t
8 createNewFi le = True # Update the CSV f i l e f o r import ?
9

10 path = ’C:\\Temp\\ Import\\ ’
11

12 de f LoadLog ( l o c a l F i l e ) :
13 da t a s e tL i s t = [ ]
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14 headerCSV = [ ]
15 i = 0
16 with open ( l o c a l F i l e ) as f :
17 r eader = csv . r eader ( f )
18 f o r row in reader :
19 i f ( i==0) :
20 headerCSV = l i s t ( row )
21 i +=1
22 e l s e :
23 da t a s e tL i s t . append ( row )
24

25 l og = pd . DataFrame ( data s e tL i s t , columns=headerCSV)
26

27 r e turn headerCSV , log
28

29 de f CreateEventQuery ( logHeader , f i leName , LogID = ”” ) :
30 query = f ’USING PERIODIC COMMIT LOAD CSV WITH HEADERS FROM \” f i l e :///{ f i leName

}\” as l i n e ’
31 brClose = ’ } ’
32 brOpen = ’ { ’
33 f o r c o l in logHeader :
34 i f c o l == ’ idx ’ :
35 column = f ’ t o In t ( l i n e .{ c o l }) ’
36 e l i f c o l in [ ’ timestamp ’ , ’ s t a r t ’ , ’ end ’ ] :
37 column = f ’ datet ime ( l i n e .{ c o l }) ’
38 e l s e :
39 column = ’ l i n e . ’+co l
40 newLine = ’ ’
41 i f ( logHeader . index ( c o l ) == 0 and LogID != ”” ) :
42 newLine = f ’ CREATE ( e : Event {brOpen}Log : ”{LogID}” ,{ c o l } : {column } , ’
43 e l i f ( logHeader . index ( c o l ) == 0) :
44 newLine = f ’ CREATE ( e : Event {brOpen}{ c o l } : {column } , ’
45 e l s e :
46 newLine = f ’ { c o l } : {column } , ’
47 i f ( logHeader . index ( c o l ) == len ( logHeader )−1) :
48 newLine = f ’ { c o l } : {column}{ brClose }) ’
49

50 query = query + newLine
51 r e turn query ;
52

53 de f CreateBPI19 ( path , f i leName , bSample ) :
54 da t a s e tL i s t = [ ]
55 headerCSV = [ ]
56 i = 0
57 pr in t ( ’ Loading source ’ + s t r ( time . time ( ) ) )
58 with open ( os . path . r ea lpa th ( ’ BPI Chal lenge 2019 . csv ’ ) ) as f :
59 r eader = csv . r eader ( f )
60 f o r row in reader :
61 i f ( i==0) :
62 headerCSV = l i s t ( row )
63 i +=1
64 e l s e :
65 da t a s e tL i s t . append ( row )
66 pr in t ( ’Renaming columns ’ + s t r ( time . time ( ) ) )
67 csvLog = pd . DataFrame ( data s e tL i s t , columns=headerCSV)
68

69 csvLog . drop ( columns=[ ’ event User ’ , ’ case Source ’ ] , i np l a c e=True ) #redundant
70

71 csvLog . rename ( columns={ ’ case concept : name ’ : ’ cID ’ ,
72 ’ case Purchasing Document ’ : ’cPOID ’ ,
73 ’ eventID ’ : ’ ID ’ ,
74 ’ case Spend area text ’ : ’ cSpendAreaText ’ ,
75 ’ case Company ’ : ’ cCompany ’ ,
76 ’ case Document Type ’ : ’ cDocType ’ ,
77 ’ case Sub spend area text ’ : ’ cSubSPendAreaText ’ ,
78 ’ case Purch . Doc . Category name ’ : ’ cPurDocCat ’ ,
79 ’ case Vendor ’ : ’ cVendor ’ ,
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80 ’ case Item Type ’ : ’ cItemType ’ ,
81 ’ case Item Category ’ : ’ cItemCat ’ ,
82 ’ case Spend c l a s s i f i c a t i o n text ’ : ’ cSpendClassText ’ ,
83 ’ case Name ’ : ’ cVendorName ’ ,
84 ’ case GR−Based Inv . Ve r i f . ’ : ’ cGRbasedInvVerif ’ ,
85 ’ case Item ’ : ’ cItem ’ ,
86 ’ case Goods Rece ipt ’ : ’cGR ’ ,
87 ’ event org : r e s ou r c e ’ : ’ r e s ou r c e ’ ,
88 ’ event concept : name ’ : ’ a c t i v i t y ’ ,
89 ’ event Cumulative net worth (EUR) ’ : ’ eCumNetWorth ’ ,
90 ’ event time : timestamp ’ : ’ timestamp ’ } , i np l a c e=True )
91 pr in t ( ’ Changing DateTime format ’+ s t r ( time . time ( ) ) )
92 csvLog [ ’ timestamp ’ ] = pd . to date t ime ( csvLog [ ’ timestamp ’ ] , format=’%d−%m−%Y %H:%

M:%S.% f ’ )
93 csvLog [ ’ timestamp ’ ] = csvLog [ ’ timestamp ’ ] . map( lambda x : x . s t r f t im e ( ’%Y−%m−%dT%H

:%M:%S.% f ’ ) [0:−3]+ ’+0100 ’ )
94

95 i f ( bSample == True ) :
96 sampleIds = [ ’ 4508062571 ’ ,
97 ’ 4507010217 ’ ,
98 ’ 4507000321 ’ ,
99 ’ 4507040910 ’ ,

100 ’ 4507021063 ’ ,
101 ’ 4507024440 ’ ,
102 ’ 4507001109 ’ ,
103 ’ 4507020425 ’ ,
104 ’ 4507014406 ’ ,
105 ’ 4507018608 ’ ,
106 ’ 4508066411 ’ ,
107 ’ 4508053414 ’ ,
108 ’ 4507010940 ’ ,
109 ’ 4507022053 ’ ,
110 ’ 4507016146 ’ ,
111 ’ 4508044395 ’ ,
112 ’ 4508072550 ’ ,
113 ’ 4507002104 ’ ,
114 ’ 4507020767 ’ ,
115 ’ 4508057849 ’ ]
116

117 d fS i z e = len ( csvLog . index )
118 #PO i s de f ined as case ( i n s t ead o f PO l i n e item )
119 sampleLis t = [ ] #c r ea t e a l i s t ( o f l i s t s ) f o r the sample data conta in ing a

l i s t o f events f o r each o f the s e l e c t e d ca s e s
120 i = 0
121 f o r case in sampleIds :
122 f o r index , row in csvLog [ csvLog . cPOID == case ] . i t e r r ows ( ) :
123 i += 1
124 rowList = l i s t ( row ) #add the event data to rowList
125 sampleLis t . append ( rowList ) #add the extended , s i n g l e row to the

sample datase t
126 i f ( i %100 == 0) :
127 pr in t ( i+ ’ o f ’+d fS i z e+’ wr i t t en . . . ’ )
128

129 header = l i s t ( csvLog ) #save the updated header data
130 logSamples = pd . DataFrame ( sampleList , columns=header ) #c r ea t e pandas

dataframe and add the samples
131 logSamples . t o c sv ( path+fileName , index=True , i n d e x l a b e l=” idx ” , na rep=”

Unknown” )
132

133 e l s e :
134 csvLog . t o c sv ( path+fileName , index=True , i n d e x l a b e l=” idx ” , na rep=”Unknown”

)
135

136 ### crea t e the graph
137

138 i f ( sample ) :
139 f i leName = ’BPIC19sample . csv ’
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140 perfFi leName = ’ BPIC19samplePerformance . csv ’
141 e l s e :
142 f i leName = ’ BPIC19ful l . csv ’
143 perfFi leName = ’ BPIC19ful lPerformance . csv ’
144

145 i f ( createNewFi le ) :
146 s t a r t = time . time ( )
147 CreateBPI19 ( path , f i leName , sample )
148 end = time . time ( )
149 pr in t ( ”Prepared data f o r import in : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
150

151

152 pe r f = pd . DataFrame ( columns=[ ’name ’ , ’ s t a r t ’ , ’ end ’ , ’ durat ion ’ ] )
153

154 header , csvLog = LoadLog ( path+fi leName )
155

156 e n t i t i e s = [ [ ’ cID ’ , ’POI ’ ] ]
157

158 cbClose = ”}”
159 cbOpen = ”{”
160

161 Graph = Graph ( password=”1234” )
162

163 Graph . d e l e t e a l l ( )
164

165 #####################################################
166 ###################### BPIC 19 ######################
167 #####################################################
168 pr in t ( ’ S ta r t i ng BPIC 19 import ’ )
169 s t a r t = time . time ( )
170

171 #crea t e unique c on s t r a i n t s
172 Graph . run ( ’CREATE CONSTRAINT ON ( e : Event ) ASSERT e . ID IS UNIQUE; ’ ) #f o r

implementation only ( not r equ i r ed by schema or pat t e rn s )
173 Graph . run ( ’CREATE CONSTRAINT ON ( en : Entity ) ASSERT en . uID IS UNIQUE; ’ ) #requ i r ed by

core pattern
174 Graph . run ( ’CREATE CONSTRAINT ON ( l : Log ) ASSERT l . ID IS UNIQUE; ’ ) #requ i r ed by core

pattern
175

176 qCreateEvents = CreateEventQuery ( header , f i leName , ’BPIC19 ’ ) #generate query to
c r e a t e a l l events with a l l l og columns as p r op e r t i e s

177 Graph . run ( qCreateEvents )
178

179 pr in t ( ’ Event nodes done ’ )
180

181 #crea t e r e s ou r c e ( en t i t y ) nodes
182 Graph . run ( ”MATCH ( e : Event ) MERGE( r : Ent ity {ID : e . r e s ou r c e }) ON CREATE SET r . uID =

( ’ Resource ’+ toS t r i ng ( e . r e s ou r c e ) ) , r . EntityType = ’ Resource ’ ” )
183

184 pr in t ( ’ Resource nodes done ’ )
185

186 #crea t e :E EN r e l a t i o n s h i p s f o r r e s ou r c e s
187 Graph . run ( ’MATCH ( e : Event ) MATCH ( r : Entity {EntityType : ”Resource ”}) WHERE r . ID = e

. r e s ou r c e CREATE ( e ) − [ :E EN]−>( r ) ’ )
188

189 pr in t ( ’ r e s ou r c e :E EN r e l a t i o n s h i p s done ’ )
190

191 #crea t e l og node and : L E r e l a t i o n s h i p s
192 Graph . c r e a t e (Node ( ”Log” , ID=’BPIC19 ’ ) )
193 Graph . run ( ’MATCH ( e : Event {Log : ”BPIC19”}) MATCH ( l : Log {ID : ”BPIC19”}) CREATE ( l )

− [ :L E]−>(e ) ’ )
194

195 pr in t ( ’ Log and : L E r e l a t i o n s h i p s done ’ )
196

197 f o r en t i t y in e n t i t i e s : #per en t i t y
198

199 s t a r tEn t i t y = time . time ( ) #per en t i t y
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200

201 #crea t e en t i t y nodes
202 query=f ’MATCH ( e : Event ) WITH e .{ en t i t y [ 0 ] } AS id MERGE ( en : Entity {cbOpen}ID :

id , uID : ( ”{ en t i t y [1 ]}”+ toS t r i ng ( id ) ) , EntityType :”{ en t i t y [ 1 ]}”{ cbClose }) ’
203 Graph . run ( query )
204 pr in t ( f ’ { en t i t y [ 1 ] } en t i t y nodes done ’ )
205 #crea t e :E EN r e l a t i o n s h i p s
206 query=f ’MATCH ( e : Event ) MATCH (n : Entity {cbOpen}EntityType : ”{ en t i t y [ 1 ]}”{

cbClose }) WHERE e .{ en t i t y [ 0 ] } = n . ID CREATE ( e ) − [ :E EN]−>(n) ’
207 Graph . run ( query )
208 pr in t ( f ’ { en t i t y [ 1 ] } E EN r e l a t i o n s h i p s done ’ )
209

210

211 #get a l l events per en t i t y and add ent i ty−s p e c i f i c index as property
212 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) RETURN ev ORDER BY ev .{ en t i t y [ 0 ] } , ev . idx ’
213 output = Graph . run ( query ) . data ( )
214 en t i t y Idx = 0
215 propertyName = f ’ { en t i t y [ 1 ] } i dx ’
216 f o r node in output :
217 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
218 Graph . push ( node [ ’ ev ’ ] )
219 en t i t y Idx += 1
220 pr in t ( f ’ { en t i t y [ 1 ] } i n t e r n a l index added to nodes ’ )
221

222 #crea t e DF r e l a t i o n s
223 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{

en t i t y [ 1 ]}”{ cbClose }) <−[:E EN]− ( e2 : Event )
224 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
225 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
226 ON CREATE SET df . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
227 ON MATCH SET df . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN df . EntityTypes THEN df

. EntityTypes ELSE df . EntityTypes + ”{ en t i t y [ 1 ] } ” END
228 ’ ’ ’
229 Graph . run ( query )
230 pr in t ( f ’ { en t i t y [ 1 ] } DF r e l a t i o n s h i p s done ’ )
231

232 #crea t e HOW r e l a t i o n s
233 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN

]− ( e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType :
”Resource ”{ cbClose })

234 WHERE ’{ en t i t y [ 1 ] } ’ IN r e l . EntityTypes
235 MERGE ( r1 )−[how :HOW]−>( r2 )
236 ON CREATE SET how . EntityTypes = [”{ en t i t y [ 1 ] } ” ]
237 ON MATCH SET how . EntityTypes = CASE WHEN ”{ en t i t y [ 1 ] } ” IN how . EntityTypes THEN

how . EntityTypes ELSE how . EntityTypes + ”{ en t i t y [ 1 ] } ” END
238 ’ ’ ’
239 Graph . run ( query )
240

241 pr in t ( f ’ { en t i t y [ 1 ] } HOW re l a t i o n s h i p s done ’ )
242

243 endEntity = time . time ( ) #import t imer per en t i t y
244 pe r f = pe r f . append ({ ’name ’ : ( ”BPIC19”+’− ’+en t i t y [ 1 ] ) , ’ s t a r t ’ : s t a r tEnt i ty , ’ end ’

: endEntity , ’ durat ion ’ : ( endEntity − s t a r tEn t i t y ) } , i gno r e i ndex=True )
245

246 ########################### CASE RESOURCE
247

248 caseName = ”Case R”
249 #crea t e case nodes f o r r e s ou r c e ( case ) en t i t y
250 query=f ’MATCH ( e : Event ) WITH e . r e s ou r c e AS id MERGE ( : Entity {cbOpen}ID : id , uID

: ( ”{ caseName}”+toS t r i ng ( id ) ) , EntityType :”{ caseName}”{ cbClose }) ’
251 Graph . run ( query )
252 #crea t e :E EN r e l a t i o n s h i p s
253 query=f ’ ’ ’MATCH ( e : Event ) − [ :E EN]−>( ent : Entity {cbOpen}EntityType : ”Resource ”{

cbClose }) MATCH (n : Entity {cbOpen}EntityType : ”{caseName}”{ cbClose })
254 WHERE ent . ID = n . ID
255 CREATE ( e ) − [ :E EN]−>(n) ’ ’ ’
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256 Graph . run ( query )
257

258 query = f ’MATCH p = ( ev : Event ) − [ :E EN]−> ( en : Entity {cbOpen}EntityType : ”{caseName
}”{ cbClose }) RETURN ev ORDER BY ev . re source , ev . idx ’

259 output = Graph . run ( query ) . data ( )
260 en t i t y Idx = 0
261 propertyName = f ’ {caseName} i dx ’
262 f o r node in output :
263 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
264 Graph . push ( node [ ’ ev ’ ] )
265 en t i t y Idx += 1
266

267 #crea t e DF r e l a t i o n s
268 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{caseName

}”{ cbClose }) <−[:E EN]− ( e2 : Event )
269 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
270 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
271 ON CREATE SET df . EntityTypes = [”{ caseName }” ]
272 ON MATCH SET df . EntityTypes = CASE WHEN ”{caseName}” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”{caseName}” END
273 ’ ’ ’
274 Graph . run ( query )
275

276 ########################### Resource Entity w/o ”NONE” user
277

278 caseName = ”Case R NoNone”
279 #crea t e case nodes f o r r e s ou r c e ( case ) en t i t y
280 query=f ’MATCH ( e : Event ) WITH e . r e s ou r c e AS id WHERE id <> ”NONE” MERGE ( : Entity {

cbOpen}ID : id , uID : ( ”{ caseName}”+toS t r i ng ( id ) ) , EntityType :”{ caseName}”{ cbClose
}) ’

281 Graph . run ( query )
282 #crea t e :E EN r e l a t i o n s h i p s
283 query=f ’ ’ ’MATCH ( e : Event ) − [ :E EN]−>( ent : Entity {cbOpen}EntityType : ”Resource ”{

cbClose }) MATCH (n : Entity {cbOpen}EntityType : ”{caseName}”{ cbClose })
284 WHERE ent . ID = n . ID
285 CREATE ( e ) − [ :E EN]−>(n) ’ ’ ’
286 Graph . run ( query )
287

288 query = f ’MATCH p = ( ev : Event ) −[E EN]−> ( en : Entity {cbOpen}EntityType : ”{caseName
}”{ cbClose }) RETURN ev ORDER BY ev . re source , ev . idx ’

289 output = Graph . run ( query ) . data ( )
290 en t i t y Idx = 0
291 propertyName = f ’ {caseName} i dx ’
292 f o r node in output :
293 node [ ’ ev ’ ] [ propertyName ] = ent i t y Idx
294 Graph . push ( node [ ’ ev ’ ] )
295 en t i t y Idx += 1
296

297 #crea t e DF r e l a t i o n s
298 query = f ’ ’ ’MATCH ( e1 : Event ) − [ :E EN]−> ( ent : Ent ity {cbOpen}EntityType : ”{caseName

}”{ cbClose }) <−[:E EN]− ( e2 : Event )
299 WHERE e2 .{ propertyName} − e1 .{ propertyName} = 1
300 MERGE ( e1 ) −[ d f :DF]−> ( e2 )
301 ON CREATE SET df . EntityTypes = [”{ caseName }” ]
302 ON MATCH SET df . EntityTypes = CASE WHEN ”{caseName}” IN df . EntityTypes THEN df .

EntityTypes ELSE df . EntityTypes + ”{caseName}” END
303 ’ ’ ’
304 Graph . run ( query )
305

306 #crea t e HOW r e l a t i o n s
307 query = f ’ ’ ’MATCH ( r1 : Ent ity {cbOpen}EntityType : ”Resource ”{ cbClose }) <−[:E EN]− (

e1 : Event ) −[ r e l :DF]−> ( e2 : Event ) − [ :E EN]−> ( r2 : Entity {cbOpen}EntityType : ”
Resource ”{ cbClose })

308 WHERE ’{ caseName } ’ IN r e l . EntityTypes
309 MERGE ( r1 )−[how :HOW]−>( r2 )
310 ON CREATE SET how . EntityTypes = [”{ caseName }” ]
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311 ON MATCH SET how . EntityTypes = CASE WHEN ”{caseName}” IN how . EntityTypes THEN how .
EntityTypes ELSE how . EntityTypes + ”{caseName}” END

312 ’ ’ ’
313 Graph . run ( query )
314

315 end = time . time ( )
316 pr in t ( ” Import o f the graph took : ”+s t r ( ( end − s t a r t ) )+” seconds . ” )
317

318 pe r f = pe r f . append ({ ’name ’ : ’BPIC19 ’ , ’ s t a r t ’ : s t a r t , ’ end ’ : end , ’ durat ion ’ : ( end −
s t a r t ) } , i gno r e i ndex=True )

319

320 pe r f . t o c sv ( perfFi leName )

A.8.2 Schema Definitions

1 pat t e rn bp i c19 = (
2 {// element types
3 Event {Act iv i ty , Timestamp}
4 Entity {ID , EntityType , ID+EntityType} ,
5 Log {ID} ,
6 E EN {} ,
7 L E {} ,
8 DF {EntityTypes } ,
9 HOW {EntityTypes}

10 }
11 {//node types
12 ( : Event ) , ( : Ent ity ) , ( : Log )
13 }
14 {// r e l a t i o n s h i p types
15 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
16 ( : Log ) − [ :L E]−>(:Event ) ,
17 ( : Event ) − [ :DF]−>(:Event ) ,
18 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
19 }
20 {// i nh e r i t e d pat t e rns
21 0 core , 1 df , 2 how
22 }
23 )

Listing A.7: BPIC 19 Pattern Definition

1 schema bpic19 = (
2 {// element types
3 Event {
4 Act iv i ty ! : STRING,
5 Timestamp ! : TIMESTAMP,
6 r e s ou r c e : STRING,
7 ID : INT ,
8 cID : INT ,
9 cSpendAreaText : STRING,

10 cCompany : STRING,
11 cDocType : STRING,
12 cSubSPendAreaText : STRING,
13 cPOID : INT ,
14 cPurDocCat : STRING,
15 cItemType : STRING,
16 cVendor : STRING,
17 cItemCat : STRING,
18 cSpendClassText : STRING,
19 cVendorName : STRING,
20 cGRbasedInvVerif : STRING,
21 cItem : STRING,
22 cGR: BOOLEAN,
23 eCumNetWorth : DOUBLE
24 }
25 Entity {ID : STRING, EntityType : STRING, ID+EntityType : STRING} ,
26 Log {ID} : STRING}
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27 E EN {} ,
28 L E {} ,
29 DF {EntityTypes : LIST} ,
30 HOW {EntityTypes : LIST}
31 }
32 {//node types
33 ( : Event ) , ( : Ent ity ) , ( : Log )
34 }
35 {// r e l a t i o n s h i p types
36 ( : Event ) − [ :E EN]−>(: Ent ity ) ,
37 ( : Log ) − [ :L E]−>(:Event ) ,
38 ( : Event ) − [ :DF]−>(:Event ) ,
39 ( : Ent ity ) − [ :HOW]−>(: Ent ity )
40 }
41 )

Listing A.8: BPIC 19 Schema Definition
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