
 Eindhoven University of Technology

MASTER

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Tuzzi, A.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/612b331f-d2a8-419b-acd1-1047c33407ec

Department of Mathematics and Computer Science

Electronic Systems Research Group

Verintec Solutions B.V.

A Predictable Task Migration
Mechanism with Partial

Application Stalling on a MPSoC

Master Thesis

MSc candidate

Alberto Tuzzi
(s: 1284274)

Supervisors: Committee members:

Dr. D. Goswami S. Tabatabaei Nikkhah

Dr. Ir. A. Nelson Dr. S. Zinger

Eindhoven, February 2020

Dedication

To my family, my girlfriend, my friends.

”I think it is possible, for ordinary people, to choose to be extraordinary”
E. Musk

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC iii

Preface

The work in this thesis project and the whole master program journey would have not been possible
without family, friends and colleagues, who supported me throughout this period.
First, I would like to thank my supervisors: Dip Goswami and Andrew Nelson. Not only for
providing me with a challenging project to complete my studies but also for their work ethics and
passion for research that always inspired me after every meeting.
A special thanks to my project advisor Shayan Tabatabaei Nikkhah, who was always available to
help me in solving major issues regardless of his undergoing PhD duties.
I would also like to thank Martijn Koedam for the support on any technical issue that came along
during the project development.
I would like to thank all of my colleagues at the Technische Universiteit Eindhoven who inspired
me with their passion and hard work: Inaki, Frederik, Saharsh and, especially, Bharat who was
teammate for most of the academic assignments.
I would like to thank all of my closer friends who helped me through my academic years and many
steps of life: Niccolò, Luca, Davide, Simone, Karolis, Alessandro, Christian, Luca and Pietro.
A special thanks to my girlfriend and front line supporter Ieva, whose unconditional love helped
during the hardest times to get back on track for pursuing my dreams.
On top of all, a big thanks to my family. My parents Lucia and Antonio for all they have done for
me and my brother in order for us to grow as human beings and be able to pursue our dreams.
A special thanks to my younger brother Alessandro, who has been the closest person to me in
my life not only in terms of blood, but also passions and interests and whose presence always
reminded me to do the best in being the older brother, and, by doing so, was the main factor into
the completion of my adulthood maturity process.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC v

Abstract

On MPSoC platforms, events such as a change in the requirements of the application, the neces-
sity to load new functionalities or faulty resources are the reason why these often need a Resource
Management System (RMS) capable of enacting resource management techniques with the ob-
jective of modifying resource allocations and bindings to overcome the aforementioned situations.
In many cases, the undertaken technique is task migration, where applications are stalled and
their tasks moved in execution to other resources on the platform. However, stalling the applica-
tion completely leads to a more impactful performance degradation by introducing a larger time
overhead. In fact, with total stalling, the application does not deliver output or does not operate
intermediate jobs that lead to the it, during the migration time window. Moreover, if the envir-
onment is not predictable, the migration process overhead cannot be estimated and its behaviour
will be then timely unpredictable, e.g. no upper bound can be defined beforehand or, most im-
portantly, at runtime (by the RMS, for instance). In this thesis work, we propose a solution to
this issue: we design a task migration mechanism that does not stall the entire target applica-
tion and we make it predictable by computationally modelling the target application and running
it on a predictable host MPSoC; we refer to this approach as partial-stalling. Being the target
application modelled with the data-flow model of computation, we implement the partial-stalling
task migration among two tiles as a dynamic rebinding of the involved actors (the task wrappers)
and edges (in the form of FIFO buffers) that enable communication between them, leaving the
non involved ones unaffected and free to keep executing where conditions to fire are met. With
analysis purposes, the mechanism itself is divided in phases, using the communication barriers in
it as phase boundaries, and for each one of them the upper execution time bound is predicted. The
time model for the whole migration is then derived, combining the phases, in order to predict the
Worst-Case Migration Time (WCMTmigrated task), and experimented on the presented case study.
The results of the experimentation show that the developed time model is capable of computing
an upper bound for any migration with a reasonable pessimistic error (of about 25%, at most
55% in particular approximation situations). Here we also show that the overall time overhead
δ, introduced by the partial-stalling migration on the response time of the application, is always
smaller or at most equal to the overhead introduced by the same migration with a full-stalling
approach; demonstrating also that the latter, in any scenario, is always an upper bound to the
former and therefore a non optimal approach.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC vii

Contents

Contents ix

List of Figures xi

List of Tables xv

Abbreviations xix

Definitions xxi

1 Introduction 1
1.1 Basic Concepts . 2

1.1.1 Multi-Processor System on Chip . 2
1.1.2 Data-Flow Model of Computation . 2
1.1.3 Predictability and Composability . 4

1.2 Problem Statement . 5
1.3 Case Study . 5

1.3.1 Image Processing Application: JPEG Decoder 5
1.3.2 Verintec MPSoC . 7

1.4 Thesis Structure . 9

2 Methodology 11
2.1 Proposed Solution . 11

2.1.1 Dynamic Reconfiguration . 12
2.1.2 Partial-Stalling Task Migration . 12
2.1.3 Project Milestones . 13

2.2 Related Work . 14

3 Design and Implementation of the Solution 19
3.1 Test Application . 19
3.2 Multiprocess Instance . 20
3.3 RTOS Library pose Expansion: the Migration API 21

3.3.1 Task Duplication . 21
3.3.2 Migration API . 22

3.4 Migration Daemon . 24
3.5 Migration Sequence . 26
3.6 Partial-Stalling Task Migration Example . 29

4 Time Model and Experimentation 33
4.1 Time Model . 33

4.1.1 Migration Phases Worst-Case Times . 33
4.1.2 Time Division Multiplexing Worst-Case Scenario 35
4.1.3 Subsequent Migrations . 39

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC ix

CONTENTS

4.2 Experimentation on the Case Study and Results 39
4.2.1 First Measured Migration: CC task . 40
4.2.2 Second Migration: IQZZ task . 45
4.2.3 Subsequent Migrations: CC then IQZZ . 51
4.2.4 Impact of δ on the application WCRT . 52

4.3 Summary of the Results . 55

5 Conclusions 57

Bibliography 59

A Verintec MPSoC 61

B JPEG decoder 63

C Migration API 65

x A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

List of Figures

1.1 A generic MPSoC structure made of multiple processing and memory blocks that
can communicate through an interconnect, as depicted in [8]. 2

1.2 The Data-Flow modelling happens by means of three elements: actors, edges and
tokens . 3

1.3 An example DF application graph made of three actors 4
1.4 Gantt chart showing the actor execution flow of the example application from Figure

1.3 . 4
1.5 The data-flow model of the JPEG decoder . 6
1.6 Partial-Stalling of the JPEG decoder in case IQZZ is being migrated (red). Orange

tasks are also involved due to direct communication and are also stalled, cyan tasks
keep executing . 7

1.7 A schematic of the used Verintec image . 8
1.8 A possible TDM scheduling table for a VEP on Verintec 9

2.1 An example DF graph with the highlighted RoC of the yellow task 12
2.2 An high level example of a partial-stalling task migration mechanism 13
2.3 Gantt chart showing a mock task execution flow during the partial stalling task

migration from the example of Figure 2.2 . 13
2.4 In a large MPSoC, a task migration might have the secondary duty of freeing space

for, like in the depicted example, a cluster of processing units that are to be assigned
to other applications . 15

2.5 In several task migration implementations, the context or state of the migrated
task is intermediately saved on a shared memory space where both source and
destination PEs have access . 16

3.1 The data-flow model of the simplistic test application 20
3.2 Structure comparison of the POSIX multiprocess instance and the Verintec platform 21
3.3 Task duplication of the test application on two tiles 21
3.4 The pose hierarchy of structures . 22
3.5 Migration state machines describing the update of Tasks and FIFOs attributes with

the Migration API . 23
3.6 With the migration API expansions, the suspension of portions of the application

is now possible . 23
3.7 Application mapping from the POSIX multiprocess to the Verintec platform . . . 24
3.8 Function calls in the migration sequence. The communication steps that occur in

the migration sequence are the horizontal arrays 26
3.9 Migration actions flow diagram: Source Phase I . 27
3.10 Migration actions flow diagram: Dest. Phase I . 27
3.11 Migration actions flow diagram: Source Phase II 28
3.12 Migration actions flow diagram: Dest. Phase II . 28
3.13 Migration actions flow diagram: Source Phase III 29
3.14 Migration actions flow diagram: Dest. Phase III 29

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xi

LIST OF FIGURES

3.15 The test DF application initial mapping . 30

3.16 Migration of SQR sequence source PHASE I: suspension of SQR and the RoC . . 30

3.17 Migration of SQR sequence dest. PHASE I: suspension of the RoC and activation
of SQR . 30

3.18 Migration of SQR sequence source PHASE II: push of the FIFO data and deactiv-
ation of SQR . 31

3.19 Migration of SQR sequence dest. PHASE II: pull of the FIFO data 31

3.20 Migration of SQR sequence source PHASE III: resumption of the RoC 31

3.21 Migration of SQR sequence dest. PHASE III: resumption of SQR and the RoC . . 32

3.22 Gantt chart showing a possible test application execution flow before, during and
after the migration of SQR . 32

4.1 Table schematization of the migration phases . 35

4.2 An example of the TDM frame structure used in the experiments. The migration
daemon is part of the System Application . 36

4.3 The worst-case scenario TDM frame sequences graphical analysis tools 36

4.4 The worst-case scenario assuming no preemptions happen for the migration mech-
anism . 37

4.5 The worst-case scenario assuming a preemption happens for phase SII 37

4.6 The worst-case scenario assuming a preemption happens for phase DII 38

4.7 The graph shows a comparison of the expected time amount needed to move each
of the seven FIFO buffers . 40

4.8 The JPEG decoder experimentation initial mapping 40

4.9 The graph in figure represents both the computed and measured execution cycles of
the source migration functions stacked one onto each other for the CC task migration 42

4.10 The graph in figure represents both the computed and measured execution cycles
of the destination migration functions stacked one onto each other for the CC task
migration . 42

4.11 The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the CC task migration 45

4.12 The JPEG decoder mapping after the CC migration 45

4.13 The graph in figure represents both the computed and measured execution cycles
of the source migration functions stacked one onto each other for the IQZZ task
migration . 47

4.14 The graph in figure represents both the computed and measured execution cycles of
the destination migration functions stacked one onto each other for the IQZZ task
migration . 47

4.15 The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the IQZZ task migration 50

4.16 The JPEG decoder mapping after the IQZZ migration 50

4.17 Comparison of the migration phases duration of the CC and IQZZ migrations . . 51

4.18 Comparison of the migration phases duration of the VLD migration 51

4.19 The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the subsequent migrations of CC and IQZZ 52

4.20 The Gantt chart in figure shows an hypothetical median case flow scenario for the
IQZZ migration . 53

4.21 The Gantt chart in figure shows an hypothetical worst-case flow scenario for the
IQZZ migration . 53

4.22 The Gantt chart in figure shows an hypothetical best case flow scenario for the
IQZZ migration . 54

A.1 A schematic of the Verintec virtualization . 61

A.2 The PYNQ-Z2 board . 62

xii A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

LIST OF FIGURES

B.1 cat.jpg, the used test image to keep the JPEG decoder application running . . . 63

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xiii

List of Tables

4.1 The JPEG decoder FIFOs and their size . 39
4.2 The single migration API functions worst-case execution times for the CC migration

scenario . 41
4.3 The migration phases worst-case execution times for the CC migration scenario . . 41
4.4 Comparison of the single functions expected execution times and measured execu-

tion times for the CC migration scenario. The relative error is also shown 42
4.5 The subscenario I TDM frames of the tiles for the CC migration 43
4.6 The subscenario I measured values for the CC migration 44
4.7 The subscenario II TDM frames of the tiles for the CC migration 44
4.8 The subscenario II measured values for the CC migration 45
4.9 The single migration API functions worst-case execution times for the IQZZ mi-

gration scenario . 46
4.10 The migration phases worst-case execution times for the IQZZ migration scenario 46
4.11 Comparison of the single functions expected execution times and measured execu-

tion times for the IQZZ migration scenario. The relative error is also shown 47
4.12 The subscenario I TDM frames of the tiles for the IQZZ migration 48
4.13 The subscenario I measured values for the IQZZ migration 48
4.14 The subscenario II TDM frames of the tiles for the IQZZ migration 49
4.15 The subscenario II measured values for the IQZZ migration 49
4.16 The subsequent migrations scenario TDM frames of the tiles 51
4.17 The subsequent migrations measurement results . 52

B.1 The JPEG decoder actors worst case response times for decoding cat.jpg 63

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xv

Listings

3.1 Pseudocode for the behaviour determination of the migration daemon 24
3.2 Pseudocode for the source behaviour of the migration daemon 25
3.3 Pseudocode for the destination behaviour of the migration daemon 25
4.1 The generic time() function . 34
C.1 Simplified C code representation of the suspension and resumption of the τ adjacent

tasks API functions . 66
C.2 Simplified C code representation of the push state and pull state API functions . . 67
C.3 Timing equations to compute the Suspension/Resumption API functions and Ac-

tivation/Deactivation API functions worst case timings 69
C.4 Flag reading and writing worst case timings . 70
C.5 Timing equations to compute the Suspension/Resumption of τ adjacent tasks API

functions worst case timings . 70
C.6 Timing equations to compute the Push FIFO state/Pull FIFO state of τ FIFO

buffers API functions worst case timings . 71

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xvii

Abbreviations

ACB Application Control Block

API . Application Program Interface

DF . Data-Flow

FCB FIFO Control Block

FIFO First In First Out

LM . Local Memory

MoC Model of Computation

MPI Message Passing Interface

MPSoC Multi-Processor System on Chip

NoC Network on Chip

OS . Operating System

PE . Processing Element

PSTM Partial-Stalling Task Migration

RMS Resource Management System

RoC Region of Communication

RTOS Real Time Operating System

SA . System Application

SDF . Synchronous Data-Flow

SM . Shared Memory

SoC . System on Chip

TCB Task Control Block

TDM Time Division Multiplexing

VEP Virtual Execution Platform

WCET Worst-Case Execution Time

WCMT Worst-Case Migration Time

WCRT Worst-Case Response Time

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xix

Definitions

API . Interface meant to simplify communication between software parts

COMPSoC Predictable and Composable SoC virtual platform design flow

Daemon Middleware . Software running transparently in background

Design Time Phase of design of the mechanism; e.g. before any use case application

Destination Tile Tile to which a task to migrate is moved

Embedded System . . . Computer system running within a larger system

Reconfiguration Element remapping mechanism (happens at runtime if dynamic)

Measurability Characteristic of a system of being quantifiable

µkernel Software virtualization of kernel application on a virtual platform

Run-Time Stationary phase of the software execution; e.g. main program

Source Tile Tile from which a task to migrate is moved

Startup-Time Transient phase of the software execution; e.g. initialization

System Application . . Privileged system management super application

Task Sub-element of a software application

Task Suspension Temporary suspension of the task scheduling after the last execution

Task Deactivation Permanent deactivation of the task scheduling

Time Overhead Additional execution time introduced by a reconfiguration mechanism

Upper Bound Design limit on a system measure; e.g. execution time

Virtual Platform Device that makes use of virtualized processing and memory blocks

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC xxi

Chapter 1

Introduction

Resource management techniques such as task migration, are used by resource management sys-
tems (RMS) to achieve different hardware usage settings; in the case of task migration, this
happens by moving the execution and state of the software, among resources. In scenarios such as
dynamic change of software requirements, need to free resources for new functionalities or faulty
execution on a processing unit, task migration may be applied to change the use of a resource or
free/load it completely.
State of the art task migration techniques (that we will discuss in Section 2.2) use full application
stalling to bestow the migration but do not address the impact of the overhead introduced by
this matter; full stalling causes the target application to not deliver output or to not compute
intermediate steps that lead to it, for the duration of the mechanism, adding time overhead to the
worst-case response time (WCRT) of the application execution. Then, the more frequently a RMS
triggers migrations, the more the overall performance may be prone to degradation. This is not
ideal for time-critical applications such as applications in medical software, automotive or avionics,
where high performance and fault tolerance are high priority requirements. In this thesis we aim to
tackle this by designing a task migration mechanism able to perform the duty without stalling the
entire target application (we will address this novel behaviour, from now on, as partial-stalling),
allowing the application to execute part of its duties without waiting, and aiming therefore to
reduce the cumulative overhead caused by the migrations.
Of course, the impact of this introduced overhead will be proportional to the worst-case reconfig-
uration time of the applied technique (that we will call worst-case migration time, WCMT, in the
case of task migrations). Nonetheless, estimating worst-case timings for these mechanisms is not
always possible; preventive or runtime measurability of time, comes from defined characteristics
of the used hardware architecture (and firmware), with the most important being predictability,
a concept that describes every event occurring on the platform as being bound by a maximum
event response time (later explained in Section 1.1.3). Henceforth, in this thesis we also focus on
the importance of having a predictable environment and how this leads to the achievement of a
predictable mechanism. The MPSoC under study is, in fact, predictable itself (see 1.3.2) and so is
the model of computation used on the target application (see 1.1.2). The achieved predictability
of the MPSoC-application system is then essential to develop a mathematical time model that
gives the possibility to estimate an upper bound for the developed mechanism in a given mapping.
We will see that such timing model predicts an upper bound on the WCMTX for a migration X ;
combining this with the object application WCRT, also an estimation of the overall time overhead
introduced by the migration X on the application response time is given.
Before proceeding with the main dissertation, important concepts for the understanding of this
document will be introduced in the first section of the chapter.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 1

CHAPTER 1. INTRODUCTION

1.1 Basic Concepts

In order to have a better understanding of certain technical aspects often mentioned in this thesis,
this section will go through them in more detail. Starting from the definition of Multi-Processor
System on Chip (MPSoC), we will go then through an introduction of the Data-Flow (DF) Model
of Computation (MoC), and close with the definitions of Predictability and Composability for an
MPSoC.

1.1.1 Multi-Processor System on Chip

A Multi-Processor System on Chip (MPSoC) is, first of all, a System on Chip (SoC): an integrated
circuit that has all the component blocks of a computer system (Processing Elements, Memory
Blocks and Input/Output Ports). If the Processing Elements (PEs) are two or more, then the
minimum requirement for the SoC to be an MPSoC is met. In such device, the communication
between blocks is achieved through a shared channel that is generally named Interconnect [8].
Such entity can be as complex as an actual network made of buffers and address tables, to store,
redirect and retrieve the data and thus bestow communication between a master block and a
slave block (a Network on Chip, NoC)[14]; or it can be, for instance, a more flexible and easier
to manipulate shared memory space with memory mapped accesses as in our case study (1.3). A
graphical example of the described MPSoC generic structure can be seen in Figure 1.1; the blocks
in the illustration represent the aforementioned SoC composing parts.

Figure 1.1: A generic MPSoC structure made of multiple processing and memory blocks that can
communicate through an interconnect, as depicted in [8].

These platforms are used in embedded applications, including time-critical applications, and are
therefore considered an embedded system device. An MPSoC will be used in the case study
challenged by this thesis; it will be introduced in Section 1.3.2 of this introduction chapter.

1.1.2 Data-Flow Model of Computation

Another important information to know about our study is the model of computation (MoC) of
the object application(s). In order to have an analyzable environment overall, the latter must be,
in fact, computationally modelled. When dealing with measurements on embedded applications,
it is important that such applications are modelled by following a MoC since this allows to get
measures (in terms of time, memory usage, energy consumption and more, depending on the used
model).

2 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 1. INTRODUCTION

Figure 1.2: The Data-Flow modelling happens by means of three elements: actors, edges and
tokens

In this thesis work we are interested in measuring time. In the case of data-flow (DF) MoCs,
applications are sub-divided into single actors that fire and create tokens when the necessary
number of incoming tokens are available and there is available space to store the newly generated
ones. We identify the actors, in our work, with the software tasks; although we must take in
account that actors are stateless. Actors, in fact, merely execute their duty over tokens (the
data), regardless of the previous executions, and then reset; in order to save the state in this
model, self edges must be added on the actor where to save tokens that have information useful
for future executions. In this way, when they fire, they have the necessary information on the
incoming token from the self edge, and, when done executing, they save the necessary information
on the newly generated token. Hence, allowing us to consider the two, within the boundaries of
our work, as equipollent. Communication and data dependencies are implemented through edges
that connect the actors and allow to store tokens and move them. These entities, illustrated
in Figure 1.2, quantize the three main elements of the application: tasks (into actors), data
(into tokens) and communication dependencies (into edges). Considering the DF application
singularly, without considering the platform it is running on, we can be sure that the quantization
introduced by the model allows to have defined response times of the single actors, with defined
communication times through the edges and with defined data size for tokens [11]. In such model,
the application has, therefore, a predictable behaviour (worst-case execution times for actors are
definable) and therefore it is timely measurable [3]. Our target application shall be in fact modelled
as a synchronous data-flow application (SDF). In this type of DF application, parameters such
as firing rules for actors and buffer sizes in the edges, do not change; moreover, the actors never
change in number nor duty. With such model a standard worst-case execution scenario of the
application can be defined, it is then possible to do timing analysis.
In a whole application-platform system, however, the global measurability depends not only on
the application but also on the platform. This one must in fact have a predictable behaviour (a
concept that will be explained right away, in 1.1.3).
One more important information, is that the single DF actors, as anticipated, are no other than
the application tasks wrapped up into unit of execution entities. This introduced atomicity of
tasks helps to make possible and to standardize operations over the application elements. Such
characteristic will be utterly exploited in this thesis project (as we will see later in Section 2.1)
during the implementation phase.

To define the cumulative WCRT of the SDF model, we consider the example graph of Figure 1.3
and we assume that the input data is always available when actor A is ready to fire (for instance,
images that are already stored in memory in the case of an image processing application). In such
scenario, the graph repetition vector, namely the minimal ratio of firing of the actors in a graph
iteration, is [2, 1, 2] (relative to [A,B,C]). Meaning that every iteration of the graph that leads to
output data delivered by actor C, needs two executions of A, one of B and again another two of
C (these are shown, stacked, on the Gantt chart in Figure 2.3). This implies that the WCRT of

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 3

CHAPTER 1. INTRODUCTION

Figure 1.3: An example DF application graph made of three actors

an iteration of the graph would be the following:

WCRTapp = 2 ∗WCETA +WCETB + 2 ∗WCETC

Figure 1.4: Gantt chart showing the actor execution flow of the example application from Figure
1.3

1.1.3 Predictability and Composability

Predictabiliy is a characteristic which, within an embedded platform, means that any kind of ex-
ecuted operation or mechanism is bounded by a worst-case response time. Predictability is hence a
key to measurability, since having any kind of process bound by a worst-case response time means
that global response times for defined mechanisms can be defined [13] (where for mechanism we
intend a programmed chain of events on the MPSoC). The heterogenous MPSoC provided by
Verintec [1] (that we will refer to often as the Verintec platform, for simplicity), which is going to
be the platform of our case study (1.3.2), is also predictable (being architecturally based on the
heuristics of the predictable platform guidelines of CompSOC [12]).
The Verintec platform happens also to be composable (another characteristic inherited by CompSOC).
Composability is a characteristic of an MPSoC where any operation done by the platform to execute
a certain application α does not affect in any way (time or memory wise) any other concurrently
running β application [13]; composability in our project is not among the primary concerns, but
it will also play a role in the validity of the presented solution implementation (as it will be ex-
plained in Section 2.1) and is useful to ensure global predictability of the environment (ensuring
that interference from concurrent applications are predictable).
In conclusion, since we need our implemented platform-application system to be measurable as a
whole to answer the problem of this project (more detail in 1.2), we need our final implementation
to be predictable. We should then be able to compute an upper bound for the response time for
all the sub-operations in any implemented mechanism. To achieve a predictable mechanism, we

4 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 1. INTRODUCTION

need either any interference on the application to be predictable or no interference at all (this
latter happens with composability). Therefore, the use of both data-flow (a predictable MoC) and
Verintec (a predictable platform) must happen. At the same time, composability ensures that any
interference from concurrent applications is already taken in account. Having these two elements,
ensures that a mathematical model for timing analysis can be in the end crafted. This will be
fundamental to determine the time upper bound and evaluate the impact of the implemented
solution on the general problem that will be introduced in the next section.

1.2 Problem Statement

From the introduced background, two research questions are derived:

Q1: Can a dynamic task migration that acts without stalling the target application entirely, be
designed and implemented?

Q2: Can the time overhead introduced by the partial-stalling task migration mechanism, be
quantifiable in terms of migration time beforehand?

From the research questions, we can now derive the problem:

P: Design and Development of a partial-stalling task migration mechanism and
juxtaposition of a preventive time model for the developed mechanism.

Hence, the focus of this thesis will move, from now on, on introducing the solution to P, answering
in this way Q1 and Q2.

1.3 Case Study

The case study that is being considered in this thesis project is the following: a predictable (and
composable) MPSoC with a relatively small number of PEs running a media processing application
modelled in data-flow MoC (the platform details are given in Section 1.3.2). In a scenario like
this where the availability of resources is dynamic and might become constrained, dealing with
time requirements influences the whole platform resource usage. We want to, in fact, reproduce a
situation where it can be possible to use the resources (PEs in this case) in different ways, with
different loads.
It is, therefore, possible to remap the target media processing application in different ways over
multiple processing elements as long as the resource constraints are not overtaken.

1.3.1 Image Processing Application: JPEG Decoder

The target application is named JPEG decoder. The purpose of this application is to decode an
image file in the JPEG format to obtain the binary version of it. Since the JPEG format is the
most used lossy format globally, a JPEG decoder (often together with the corresponding JPEG
encoder) can be often part of bigger embedded applications that operate media processing and
that might need operations over JPEG encoded images.

Data-Flow Model

The DF model of the application is formed by five actors (the software tasks): VLD (Variable
Length Decoding), IQZZ (Zig-Zag Inverse Quantization), IDCT (Inverse Discrete Cosine Trans-
form), CC (Color Conversion) and RASTER (Rasterization). The data dependencies can be seen
in Figure 1.5 where the DF model of the application is represented. In our case study, the input
data is always available for VLD and the buffers on the edges have the minimum possible size to
achieve the repetition vector of [1, 10, 10, 1, 1] (relative to [V LD, IQZZ, IDCT,CC,RASTER]),

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 5

CHAPTER 1. INTRODUCTION

so VLD cannot fire again until output data is delivered, e.g. RASTER executes and frees the edge
between the two.

Figure 1.5: The data-flow model of the JPEG decoder

The worst-case execution times of the single actors depend on the image that is being decoded, so
to ensure the consistency of the results presented in Section 4.2, we will use the same test image
for every experimentation. More details about the workflow of the DF model, the worst-case
execution time values and the test image, are given in Appendix B.
By following the example in Section 1.1.2, every single iteration is equal to:

WCRTjpeg = (WCETV LD + 10 ∗WCETIQZZ + 10 ∗WCETIDCT +WCETCC +WCETRAST)

In this thesis, we are interested in showing the impact of our solution mechanism on the worst-
case response time of the target application. In fact, we do not expect the throughput to change
because of the mechanism (it rather depends on the mapping of the application over the tiles), we
do expect on the other side to have an increase in the JPEG decoder worst-case response time,
every time an execution of the solution mechanism happens, of a quantity δ:

WCRTmigjpeg = WCRTjpeg + δ

where the upper index mig indicates that a migration introduced overhead on the the WCRT and
δ symbolizes that time overhead introduced by the WCMT on the WCRT .

Partial-Stalling Scenario

Assuming the use of the anticipated partial-stalling approach for the task migration mechanism
on the JPEG decoder, we consider the following scenario: we see on Figure 1.6 an example of how
a partial-stalling would affect the application (seen in its DF model graph form), in case IQZZ
was issued for migration.

6 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 1. INTRODUCTION

Figure 1.6: Partial-Stalling of the JPEG decoder in case IQZZ is being migrated (red). Orange
tasks are also involved due to direct communication and are also stalled, cyan tasks keep executing

The tasks that need to be stalled during migration are identified as Region of Communication, a
concept later described in 2.1.
In a classic (full-stalling) migration the iteration WCRT would be fully incremented by the Worst-
Case Migration Time, e.g. δ equals WCMTmigrated task:

WCRT fs migjpeg = WCRTjpeg + δ

where δ = WCMTIQZZ .

With the partial-stalling approach, δ will also depend on how much the migration lasts, but from
this amount we will have to take away some time where the tasks not part of the Region of Com-
munication can keep on executing (if conditions to fire are met) and is therefore not accountable
as migration time:

WCRT ps migjpeg = WCRTjpeg + δ

where δ ≤WCMTIQZZ .

Basically, the generic case of the same migration with full-stalling would be itself already an
upper bound for the same migration with the partial stalling approach. In this thesis, we will
quantify δ in Chapter 4, after an experimentation on our case study.

1.3.2 Verintec MPSoC

The MPSoC used in the presented thesis is, as anticipated, the Verintec MPSoC [1]. It is a
virtual platform, meaning that the hardware configuration of the MPSoC is a software artifact
built over the actual hardware board (a PYNQ-Z2 FPGA) which provides the real hardware
elements. Such virtual platform can then be configured with different hardware tiles, resulting in
different instanciatable images of the Verintec MPSoC. The instance that has been used in the
analysed case, consists of three PE tiles (that use MicroBlaze (mb) cores as physical processors)
that can run, each, a maximum of three applications at the same time (the dark blocks in Figure
1.7). Each tile T has a 128KB portion of combined instruction and data memory (I/D MEM) that
we will often refer to as local memory (LM), and the local memory of each tile cannot be accessed
by the other two tiles (to ensure composability). The interconnect that bestows intra-platform
communication is made of shared memory blocks; the only means of communication between each
couple of processing tiles is in fact a 64KB shared memory tile (the lighter grey blocks in Figure
1.7), bidirectionally accessible by means of memory mapping (MMIO). The platform features then
three of these shared memories (one for enabling communication between each pair of PEs, forming
a full mesh interconnect structure).
More details about the platform and the virtualization concept are given in Appendix A.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 7

CHAPTER 1. INTRODUCTION

Figure 1.7: A schematic of the used Verintec image

Real-Time Operating System

The virtualization architecture of Verintec is based on the same virtual platform design flow
described by COMPSoC. In a more general purpose version of the latter, the Real-Time Operating
System (RTOS) was formed by a single software entity called CompOSe RTOS that wrapped up
all of the necessary inter and intra application scheduling functionalities [13]. The OS provided by
Verintec, on the other hand, is formed through the unwrapped and combined action of the pose

framework and vkernel µkernel (which has the same purpose and functionality of the µkernel
used in CompSOC, comik [17]). The latter is used to compose the firmware of the platform and
has mainly the duty of managing the successful scheduling of virtual execution platforms (VEPs)
(inter-application scheduling), while the former is the medium for mapping those VEPs on the
µkernel (also as DF applications, like in our case study) and manage the scheduling of the single
jobs within them (intra-application scheduling) [13]. The pose half of the OS is going to be the
one to be expanded for the purposes described later in Chapter 2 (the expansion itself is discussed
later in Section 3.3).

Intra-tile scheduling

On the Verintec platform, VEPs are scheduled by means of Time Division Multiplexing (TDM).
We can now identify the VEPs as the single target applications that are to be scheduled and
executed on the platform. In such technique, applications have assigned and limited time slots in
which they can execute. The totality of the slots forms the TDM frame: a sequence of slots that
happen cyclically.
In the used platform instance, up to three applications per time can execute (on each tile) within
an unlimited number of slots (that have to be anyway defined and that can also have different
time lengths among them). In addition to the three applications, a super application, the System
Application (SA), can be scheduled to execute; the SA can be programmed to have any kind of
platform or application management purpose (this will be exploited later to run a support daemon
on the SA, see Section 3.4). In this scenario, the TDM frame can be initialised with a number N
of slots of different duration that can be singularly assigned either to be idle or to schedule one of
the four (three regular, plus SA) applications. After each allocated slot, is a context switch time
to be taken in account (of 4096 cycles) where the state of the VEP is saved; an example of TDM
frame is given in Figure 1.8 where the CS intervals represent the just described context switch
time. This type of scheduling makes the concurrent execution of the applications composable,
since each one of them has a defined time space to execute singularly without affecting the others.

8 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 1. INTRODUCTION

Figure 1.8: A possible TDM scheduling table for a VEP on Verintec

Intra-application scheduling

The pose library (written in the C language), as anticipated, is used for shaping and executing
applications in a data-flow model. By doing so the intra-application scheduling is consequentially
managed: the wrapped up tasks are in fact schedulable following a certain static scheduling policy.
In our case under examination, the task scheduling will follow the Round Robin heuristics, where
these are scheduled to execute cyclically whenever the necessary conditions (firing rules, availability
of tokens to consume and necessary space in the production buffer) are met.
The source code of this entity will be subject to expansion in this study; the process will be
described in Section 3.3.2.

1.4 Thesis Structure

The introduction chapter we just went through gave a general overview of the setting, the problem
and the case study challenged in this thesis. Following, Chapter 2 will introduce the proposed
solution to tackle the presented problem in our case study and a view of the current state of the
art concerning similar implementations and scenarios; after this, the rest of the thesis will focus
on the practical work for the project. First, in Chapter 3 the design decisions and tools for the
implementations will be described; the focus will then move on the latter, where the shape of the
solution is given and shown (with also the aid of a visual example). Finally, the evaluation of the
implementation is presented and discussed in Chapter 4; here the mathematical time measurement
model is presented and then used for real experimentation on the case study. The results from
such step are then discussed for the evaluation of the solution. To wrap up, the conclusions over
the project challenges and innovations will be given in Chapter 5; the chapter will also give a
glance of the possible future works that can see this thesis work as an inspiration or starting point
for a new project.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 9

Chapter 2

Methodology

After the investigation of the problem was discussed in introduction (Section 1.2), this very chapter
will focus on the proposed solution, with detail on the practical mechanism and the state of the
art in the field.

2.1 Proposed Solution

As stated before, the purpose of this thesis project is to research a resource management mechanism
according to the P problem. The most obvious solution to a generic case would be to implement a
design that takes in account an everlasting worst-case scenario in the system; this approach is the
furthest from optimal and would cause many other issues, resource misuse among all. To name
one of the others, the scalability of the system would be extremely lowered (adding a new object
applications would probably break apart any requirement in time of already mapped applications).
A different way from the worst possible case design would be to dynamically change the resources
allocated to the applications as resource management systems (RMS) do. Such techniques are
known as dynamic reconfigurations (see 2.1.1). In this case, when an application needs more
resources because of, say, a runtime change of a requirement, the RMS dynamically allocates more
resources to it. Although, dynamic allocation of resources leads to expansion of the VEP on which
the app is deployed and the expanded VEP may be mapped (bound) to physical resources of other
tiles. Henceforth, since physical resources cannot be ”moved”, we need a mechanism to migrate
the object application and its state (if we cannot reset the execution of it); this can be realized
through a partial application migration mechanism; this would be the solution to Q1 (research
question 1, 1.2).
In order for the partial migration mechanism to work, the elements to migrate must be put to
sleep. The process, within the interested application, should pause parts of it that are only directly
communicating with the elements to move (the Region of Communication, RoC). The reason we
want this behaviour, relies in the fact that, during a migration, not pausing the RoC might result
in unwanted production or consumption of data relevant to the part of the application to migrate.
This would alter the initial state (pre-migration) of the part to migrate, and such state might have
been already moved, causing post-migration inconsistencies in the application data. It is because
of this characteristic, that we refer to this migration mechanism as partial-stalling (detail is given
in Section 2.1.2). To give a generic example, as shown on 2.1, we have a dummy application in
a DF model. Task yellow is to be migrated (and its RoC is highlighted), the rest of the tasks
can keep on firing while the RoC undergoes the migration as long as conditions on incoming and
outgoing tokens are met. We must stress here, that with pausing an element (a task or whatever
other task in the RoC), in this project, we mean that we enforce that element to be unschedulable;
the element will execute until it is finished (wait for quiescence) once the pausing is issued and then
not execute newly, since unscheduled. This quiescence time, shown in Figure 2.3, does not account
for the migration time overhead, since it does not affect the application execution. In addition,

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 11

CHAPTER 2. METHODOLOGY

from now on, when talking about migration on our case study, we define it as the change of the
binding of the actors and respective FIFOs to the allocated resources being the target application
modelled in data-flow.
Implementing such mechanism in a predictable environment, allows the former to be predictable
as well; this will lead to the solution to Q2 (research question 2, 1.2). Being the Verintec MPSoC
also composable, such migration mechanism shall not affect other applications that are executing
normally.

Figure 2.1: An example DF graph with the highlighted RoC of the yellow task

2.1.1 Dynamic Reconfiguration

Because of the physical limits of embedded systems previously introduced, it became of primary
importance to avoid misuse of the available hardware. The performance improvement comes then
from the dynamic management of the available hardware: runtime resource management tech-
niques that not only allow to satisfy software with dynamic requirements, but also aim to reduce
performance degradation over time by redistributing workload for certain processing elements.
A dynamic reconfiguration of an embedded application is a mechanism where certain subelements
are re-configured during runtime in order to use a platform resource differently or even use a dif-
ferent one. Such reconfigurations can have, for example, the objective of minimizing the use of an
overheated processing unit (Dynamic Voltage Frequency Scaling or Dynamic Remapping/Loading),
remove ghost memory allocations (Dynamic Memory Desegmentation), reserve more processing
power for dynamic priority jobs (Dynamic Task Migration) or introducing new functionalities in
the system (Dynamic Loading).
As aforementioned, in the presented study we will adopt a variant of the task migration technique;
an introduction to the latter follows.

2.1.2 Partial-Stalling Task Migration

First of all, an actor (a stateless task) is a portion of an application that can be wrapped up as a
single atomic unit of its own; for instance, in a face recognition application, one of the sub parts
of the application is an edge detection filter: the edge detection will be a task of its own within
the face recognition application. In a generic task migration mechanism, the execution of the task
is moved from a processing element to another (for example, the yellow task in Figure 2.2a is
moved to the second available tile as it can be seen in 2.2d). When the task is not independent
and communicates directly with one or more fellow tasks from the same application (there is data
dependency), these latter need also to be put momentarily to sleep (suspended) for the duration
of the migration process, to allow the RMS to move the state (in our case the buffers that store
the tokens and any necessary counter and pointer).
In a partial-stalling task migration, the total stalling of execution of an application is avoided.
This is done by limiting the sleep phase to only the portion of the application interested by
the reconfiguration (the previously mentioned RoC); namely, the task to migrate and the directly
communicating (or adjacent) ones, as visible on Figure 2.2b and Figure 2.1. Also, we assume that

12 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 2. METHODOLOGY

(a) An application divided in tasks (the colored
circles) is running on one PE of an example MPSoC
where two Tiles communicate through a shared chan-
nel (a shared memory space)

(b) Yellow is paused and so is Green (because it dir-
ectly communicates with the former) to allow the
migration of the first while Blue keeps executing (if
conditions to fire are met)

(c) Yellow ’s execution is now moved to Tile B and
the communication channel with Green is remapped
on the shared channel

(d) The partial-stalling task migration process is
complete and the application is now distributed on
both the PEs

Figure 2.2: An high level example of a partial-stalling task migration mechanism

the buffers set at the borderline of the RoC (therefore the buffers on the edges of the adjacent
tasks that do not connects such task with the task to migrate) are big enough to not become full
during a migration due to the tasks that keep on executing.
Figure 2.3 depicts the task flow of the shown example and the main purpose of the partial-stalling
approach: the blue task, not part of the RoC of yellow, keeps executing during the migration
window.

Figure 2.3: Gantt chart showing a mock task execution flow during the partial stalling task
migration from the example of Figure 2.2

2.1.3 Project Milestones

The solution the project wants to give, is a software solution. In our case, it will happen by means
of a dynamic reconfiguration technique that will not affect the whole application execution.
Of course, when taking in account the dynamic reconfiguration method to overcome the main
problem, more lower level problems pop up; these are related to the initial state of our components.
The current platform OS, specifically the initial state of the intra-application scheduling library
(pose, seen in Section 1.3.2), does not support task migration, therefore it is still not possible

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 13

CHAPTER 2. METHODOLOGY

to achieve the task migration with the current state of the tools. Moreover, we want our task
migration to not stall the application entirely during migration time. However, there is a way to
support the partial stalling task migration; to achieve this pose must be updated and expanded.
In the end, by implementing our solution, we want to be able to timely estimate and evaluate
our implementation. Also this step can be supported by the predictable platform-application case
study.
The main objectives of this thesis are therefore:

• Expansion of the OS in order to support partial-stalling task migration on a data-flow
modelled application.

• Achieve a working implementation on the case study.

• Craft the design time timing estimation model.

• Experiment the timing model on the case study implementation in different configurations.

By completing these, we will have enough material and data to answer Q1 and Q2 and therefore
offer a solution for P.

2.2 Related Work

Before addressing our study directly, a view of the related state of the art is given in this section.
For a more logical information flow, the consulted literature will be organized in two paragraphs:
in the first one, studies involving embedded platforms resource management techniques in general
will be introduced and in the second one, the focus will move on studies that specifically make use
of runtime task migration.

Literature Studies that involve General Resource Management Mechan-
isms

A. Shabbir et al. [21] highlight the limits of centralised resource management in MPSoCs by
presenting a distributed resource management system that improves the the scalability of the
platform, e.g. the MPSoC handles an increase in the number of applications better with a dis-
tributed resource manager. The applications that are run are in the data-flow MoC, nonetheless
only dynamic task mapping is implemented and task migration is not supported.
O. Arnold et al. [4] propose a runtime management unit for heterogeneous MPSoCs called Core-
Manager. Such manager applies dynamic task scheduling among the PEs by using a scheduling-
specific instruction set purposely developed. Through the designed instruction set, a better energy
consumption and memory usage is achieved, however, nothing is proposed to improve the task
communication within applications.
In S. Sina et al. [22] an experimentation of application dynamic loading over an MPSoC in time-
critical systems is presented. At first an overview of the hardware and software is given, then
the worst-case computation model is introduced. The goal of the study is to demonstrate that
applications the dynamic loading of applications on a composable and predictable platform can
be also designed in a composable and predictable fashion. In order to achieve this, the study
presents a computation model for the worst-case loading time. Even thought the benchmarking
from the coarse grained point of view is provided, the study does not dive deeply in the detail of
the execution cycles of the loading mechanism, giving just rough estimates.
M. Mandelli et al. [15] present a resource management heuristic for MPSoCs with a large num-
ber of PEs. In this study, the tile management is distributed by organizing these into clusters,
managing these locally by means of a master PE. Through this mechanism, the task allocation
overhead for dynamically entering applications is minimised since the number of PE to parse for
availability is reduced. However, runtime minimisation of inter-application communication is not

14 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 2. METHODOLOGY

optimised. The clusters are, in fact, non reconfigurable and the task are not migratable, so tasks
that are forced to be distant if mapped on PEs on different clusters. Such issue is solved in the
follow-up study by G. Castilhos et al. [7] where runtime reorganisation of clusters is implemented
together with task migration. The study shows how investing processing time to migrate tasks
has a positive impact on the overall application execution (inter-application communication is
reduced).

Figure 2.4: In a large MPSoC, a task migration might have the secondary duty of freeing space
for, like in the depicted example, a cluster of processing units that are to be assigned to other
applications

Even though the last presented work does implement dynamic reconfiguration with the goal of
having application that better use the available resources, the general limits of using runtime
reclustering and task migration are not directly addressed, especially in terms of time overhead.
In that specific case, the stalling time to reconfigure is shown to be worth the investment in
such environment with multiple PE clusters: when a reclustering happens, applications are moved
through task migration to non involved clusters. However, such experimentation does not take
in account small MPSoCs with minimal number of PEs or overloaded MPSoCs with constrained
resources, where any dynamic operation would involve the whole tile-application environment an
there would be no space for concurrent executions.

Literature Studies that involve Dynamic Task Migration

P. Tendulkar et al. [23] investigate on resource management with task migration on a compos-
able and predictable MPSoC, of a SDF modelled application. In this work, they introduce a
system-level resource manager running as an additional application that does not affect the other
applications in time thanks to the composability of the platform. However, The implemented task
migration makes use of strict migration points where the target application is entirely paused,
due to the fact that just the execution of the task is migrated (meaning that the only migration
points occur when the state of the task is empty, e.g. no tokens on incoming and outgoing edges).
In addition, investigation of the time overhead introduced by the reconfiguration is not detailed
and no models are given. G.M. Almeida et al. [16] focus mainly on a message passing framework
for MPSoC in their work. Task migration is part of the study, being the previously mentioned
framework ideal to manage dynamic reconfiguration scenarios that involve more than one PE.
Task migration is achieved through the establishment of migration points, namely time windows
in the PE task execution schedule where there is no data on fly due to communication. During
the migration points the application can be stalled and the context of the task to move migrated.
However, the full application stalling is what we aim to avoid in our study.
In the follow-up work, still from G.M. Almeida et al. [2], the focus moves on the task migration
previously introduced. This study shows that the developed task migration mechanism intro-
duces overhead, but introduces also an improvement in performance because of the achievable

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 15

CHAPTER 2. METHODOLOGY

load balancing. Nonetheless, target applications are still fully paused during a migration and no
estimation of the overhead is given.
F. Fu et al. [9] present a task migration mechanism that focuses on preserving the task execution
time by introducing a low overhead on migration. In this research, the MPSoC is formed by one
master PE and a number of slave PE that execute the tasks. The migration is managed through
the use of a MPI purposely designed to initialise, manage and finalise the migration. Such ap-
proach is responsible for the reduction of the overhead compared to other works. We will use a
similar mechanism in our work, but, again, the used MPSoC here does not move the focus of the
work on resource management as we would like to do.
V. Nollet et al. [19] propose a resource management method for a reconfigurable hardware NoC;
within the hardware management heuristic, runtime task migration is implemented in order to
free space for the reconfigurable tiles to be moved when necessary. A benchmarking method is
also provided to evaluate the effectiveness of the migration; this provides certain parameters such
as: reaction time (time between the issue and the start of migration), freeze time (time during
which the task is suspended) and residual dependencies (the undesired dependencies left from a
task on the source tile of the migration). However, such migration is implemented only to avoid
a deadlock in a tile reconfiguration mechanism of a large MPSoC and, once again, resource usage
management to solve resource constraints is not the main focus of the study.
E. Briao et al. [6] present a dynamic task allocation mechanism on a simulated NoC, based on
bin-packing (assignment based on processor utilisation) and linear clusterization (assignment that
takes into account clusters of highly communicating tasks to minimize inter-process communica-
tion) algorithms. In order to allow dynamic load balancing through the mentioned algorithms, a
task migration mechanism is implemented. However, the mechanism is achieved through a total
idling of the destination processor since avoiding a big migration overhead and estimating it, is
not a one of the goals of the study.

Figure 2.5: In several task migration implementations, the context or state of the migrated task
is intermediately saved on a shared memory space where both source and destination PEs have
access

Again V. Nollet et al. [18] show a novel migration mechanism where the operation is initiated
by using the processor debug registers (commonly present in modern µprocessors) as means to
communicate and initiate a migration. Such method has minimal overhead, but is, however,
limited by the number of available registers.
S. Bertozzi et al. [5] present a lightweight task migration mechanism over a NUMA (Non Uniform
Memory Access, which means that access times for local and shared memories differ) MPSoC in
which the migration is implemented with two fundamental elements. The first is a MPI (Message
Passing Interface) that allows the master and slave processor to communicate, and therefore issue
and manage the migration by only sharing a bit, reducing, by means of it, the migration overhead.
The second is the processing context saving on the shared memory; the task state is in fact saved
on the shared memory so that a safe resuming of the application can happen on the migration

16 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 2. METHODOLOGY

destination tile. Both of the elements, are used and moved by a middleware, a deamon, present on
each tile. Such study is relevant to ours: it happens on a MPSoC with really similar structure to
ours (i.e. PEs that communicate through shared memory spaces see Figures 1.7). Moreover the
model they used for the message passing and the state (context) saving on the shared memory is
convenient to our case. Although, the resource budget again does not match our case study and
no benchmarking is given.
B. Pourmohseni et al. [20] propose a predictable task migration mechanism on a MPSoC, in
which possible migration outcome mappings of the target application are pre-explored at design
time through Design Space Exploration. Also in this study the migration is achieved by full stall
of the object application and, although they do provide a model to compute beforehand upper
bound of the migration, the article does not address the overall weight of full stalling on the global
migration time overhead.
L. Gantel et al. [10] present a task migration mechanism over a reconfigurable MPSoC in which
the application tasks are already initialised on every PE even if non active (task duplication).
This means that the necessary source code is already loaded on each tile and does not need to
be moved at each migration. A migration is therefore triggered for a task on a source tile; the
task is deactivated, the context is saved on the shared memory (just like in [5]) and moved to
the destination tile; the migrated task is activated on the destination tile, where the source code
was already loaded. The relevancy of this study relies in the fact that the necessary structures to
run a task are already loaded on each tile. Dynamic loading of instruction data is, in fact, not
relevant to our study and also expensive in terms of additional execution time; for this reason we
will also go for pre-loaded task code in our implementation. These relevant studies, nevertheless,
focus on offering a general solution to a general cases while and, by doing so, the used MPSoCs are
relatively large in terms of resources, while we are focused on scenarios where there are constraints
on resources. In such bigger MPSoCs a task migration might have the power moving an application
completely in another region of the platform, freeing, for instance, a cluster of six PEs to make
space for a new application, as shown in Figure 2.4. Of course, this is not a case for a small
MPSoC.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 17

Chapter 3

Design and Implementation of the
Solution

Investing a portion of execution time to migrate tasks to other tiles, in a parallel fashion respect
to the application execution, is our aimed solution. The initial RTOS state does not support
the functionalities of pausing tasks (e.g. unschedule and wait for quiescence) and moving (e.g.
rebind) the involved FIFO buffers among the tiles. Because of this, a phase of software expansion
to obtain the necessary framework for the objective has to take place.
After a phase of preparation, the morphology of the available tools was took into consideration to
develop a migration mechanism. In order to achieve a partial-stalling task migration following the
guideline introduced in 2.1.2 and, at the same time, preserve the predictability of the system, the
most logical approach is to update and expand the pose library (which is already a framework de-
signed for modelling DF applications and manage the task scheduling within it, but not designed
for task migration whatsoever). Together with the thesis supervisors, we decided to approach
the obstacle by developing first debug mediums to speed up any verification of the designed and
implemented software expansions.
In this chapter, we will firstly see two necessary tools developed for coding and debug purposes:
the test application and the POSIX multiprocess instance. Secondly, the pose expansion, that we
name the Migration API and the implementation of the migration daemon who uses the API to
make the migration mechanism possible. Then, the dynamics of the implemented partial stalling
task migration will be shown in detail with a focus on the steps taken by the migration daemon
to move the data; the addition of a visual example will be also given for ease of comprehension.

3.1 Test Application

As introduced in 1.1.2, the adopted MoC is the data-flow model: the target application will be
therefore subdivided into actors. This software morphology does not only make the dynamic man-
agement operations over the application predictable (thanks to the data-flow MoC, as explained
in 1.1.2), but it is also ideal for designing a partial-stalling task migration kind of reconfiguration
(see 2.1.2). Having actors that are scheduled singularly makes possible to identify, for each one of
them, regions of communication (the portion of the application defined by a certain task plus all
of the other ones that directly have incoming or outgoing communication with it).
During design and implementation of the task migration solution, the need for a test application of
simple structure and trivial operations was really important for debug purposes. For such phase,
a test application was quickly implemented and used. The application, modelled in the data-flow
MoC and consisting of four actors, follows in Figure 3.1.
The test application generates a random floating point number in the RND actor. The same
number is squared in SQR and doubled in DBL. At last, the two intermediate outputs of SQR and

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 19

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Figure 3.1: The data-flow model of the simplistic test application

DBL are divided by the DIV actor. Basically, if random number num is generated, the output will
be half of it (num2/2num = num/2). The job is trivial, but useful to determine swiftly whether the
reconfiguration process had been successful while leaving the application functionality unaltered.
The application starts thanks to two initial tokens put into the consumption buffers of RND ; the
self edge on this latter has no algorithmic purpose, it is there for debug purposes (e.g. testing the
migration of a task with a self edge).
A dataflow model of the described application can be observed in figure 3.1.

3.2 Multiprocess Instance

The necessity of having a design platform as an environment to test the effectiveness and consist-
ency of every single step of the expansion, led to the development of the Multiprocess Instance
on a Linux machine. The objective of the multiprocess instance is to recreate the behaviour that
is expected on the Verintec MPSoC in order to make the test implementation derived from the
design, portable to the embedded platform. On this latter, processors are unable to access each
other local memory to respect the composability principle; they are henceforth allowed to com-
municate just by using the NoC made of a full mesh of bidirectional shared memory spaces.
To emulate the processors, two different POSIX processes are initiated (in brief, two distinguished
main.c files are run). One of these two cannot access the memory allocation reserved to the other
and vice versa, recreating the local memory enclosure we see on the embedded processors (LM,
Local Memory on Figure 3.2a). To enable the communication, moreover, a POSIX shared memory
for inter process communication (IPC) instance is created, accessible by both processes through
an identifier (SM, Shared Memory on Figure 3.2a). The memory behaviour is now emulated.
When considering the platform, the firmware, supported by the vkernel µkernel library (same
as comik on COMPSoC [17]), makes the simultaneous run of applications possible through TDM
scheduling. This will not be the case on the multiprocess instance since the library is not portable
to a Linux machine; the approach to simultaneously run applications follows. In our study case
we have two applications: the test DF application and the migration daemon. To run these sim-
ultaneously on the multiprocess instance, two threads (through pthreads) are initiated on each
process (these emulate a TDM slot, see Figure 3.2a, even though they do not come after each other
sequentially, but seem to follow a round robin scheduling). The first thread will be responsible for
the execution of the test application, the second of the migration daemon.
The POSIX multiprocess instance is now ready; an high level schematic is given in Figure 3.2a.
Such tool is built considering the parallel structure present on Veritnec which is represented on
Figure 3.2b; once the initial implementation is ready, it will be portable from one to the other.

20 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

(a) POSIX (b) Verintec

Figure 3.2: Structure comparison of the POSIX multiprocess instance and the Verintec platform

3.3 RTOS Library pose Expansion: the Migration API

Modelling of data-flow applications and management of inter-scheduling and execution is the main
purpose of pose. Enabling partial-stalling task migrations, however, is not yet; the expansion of
the framework offered by the library becomes then a necessary step. In order for the partial-
stalling task migration to work, we need the possibility to suspend the execution of the involved
tasks within the RoC, to be sure that no data on flight would threaten the consistency of the
context data to be migrated. As mentioned previously in the dissertation, the suspension happens
by making the task unschedulable and letting it execute until completion if it was under execution
once the suspension was issued. In fact, to achieve a clean migration, we must wait until the
involved elements are in a quiescent state; this is enforced by not allowing tasks of the RoC to be
scheduled again.
The designed approach for the migration requires the application to be fully mapped on every PE
by means of task duplication, this will be discussed before taking a look at the migration API.

3.3.1 Task Duplication

The pre-concept for the designed software add-ons to work according to design, is the use of Task
Duplication at system startup-time. Task duplication is a technique where every necessary actor
(and FIFO) is loaded on each tile as if the application is to be executed exclusively on that PE.
This is already possible with the current state of pose, since loading of tasks and FIFOs is a
primary functionality of the library.
With this technique, a bigger memory footprint is left on each local memory (and shared memory).
However, a lot of time is saved in a migration process, where the only dominant time consuming
step remaining, is to move the content of the buffers (since both tasks and FIFO buffers are already
there and no dynamic loading of them will be needed). The same task duplication technique is
used in [10].
An example of task duplication on our test application can be seen in Figure 3.3: all the necessary
actor and FIFO instances are loaded at startup-time.

Figure 3.3: Task duplication of the test application on two tiles

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 21

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

3.3.2 Migration API

The pose library is used to model DF applications by creating a hierarchy of instances of three
different structs, as shown on Figure 3.4. To allow suspension/resumption, deactivation/activa-
tion and state move functionalities, expansions have been operated in two different areas of the
pose library: the control block structures and the control block manipulation functions within the
source C code.

Figure 3.4: The pose hierarchy of structures

• Structures: Relevant data, flags and pointers for each entity of the data-flow model of the
application are wrapped in struct instances called control blocks (CBs). One of such entities
is the application itself (ACB, Application Control Block), the others are the tasks and the
FIFO channels within it: these last two are subject to update.
In the TCB (Task Control Block), two flags are added: active and suspended. The activeness
flag signals whether the task is being scheduled on the tile from a global point of view, in
other words, if it is active on the specific tile or not. The suspension flag has also the
purpose of making the task unschedulable, but in this case the meaning is that the task is
unschedulable due to ongoing dynamic reconfiguration (like the task migration). Once the
reconfiguration is finished, the task is unsuspended and the prosecution of operation within
the tile will depend only on the more global activeness flag. The presence of the two flags
ensures that RoC tasks that are supposed to be unactive on one of the two tiles, do not
get accidentally activated when a resumption happens. To sum up, the active flag has a
permanent effect (task active or not on a tile), the suspended flag, instead, has a temporary
effect, it allows to unschedule, and therefore put to sleep, the tasks involved into a migration
to avoid on flight data to damage the veracity of the state of the application to migrate.
In the FCB (FIFO Control Block), the locality flag is added to signal the location of a
FIFO on a tile (self-edge, local, shared, unused). During a migration scenario, the locality
flag allows the migration daemon to know how to update the FIFO channel. Such flag will in
fact signal if the channel is a self edge, a communicating channel between two tasks on same
tile (local) or on different ones (shared), or even an unused channel (between two inactive
tasks on that tile). This information is necessary in order to update the FIFO channels
correctly and to their most optimal position, starting from their current nature. Through
this mechanism, no residual dependencies are left behind on the migration source tile (as in
[19]).

• Functions: The manipulation of the control blocks to support a migration is made possible
by the addition of several functions that operate at TCB and FCB level.
At task level, functions to suspend/resume a task τ and its adjacent communicating task
τadji and functions to activate/deactivate a task τ are added.
At FIFO level, a function to be used by the source to push the FIFO data and state is added
together with a function to pull the backed up information, to be used by the destination.

With the Migration API the tasks and the intermediate FIFO attributed describing the state of

22 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

them are then updated. The effect of the migration functions is shown in Figure 3.5 where two
state machines are represented. The one in Figure 3.5a represents how the state of the task changes
during a migration: on the source tile task τ will start as active and end as inactive following a
pause and a deactivate; on the destination tile τ will go from inactive to active in the opposite
fashion, with an activate and then a resume. In case the task is part of the τadji , then it will just
go from active to suspended during the migration and again to active. The other one, on Figure
3.5b represents how the locality of the FIFOs involved in a migration on a tile changes: a self-edge
preserves its nature regardless of which action is happening; FIFOs on normal edges can go from
local, passing by shared to unused, with the direction of the change depending if, on that tile, a
push or a pull is happening for that FIFO.
The expansion details and the API functionality are explained in detail on Appendix C. All of
these adaptations and newly added elements are used to craft the migration daemon that will be
introduced in Section 3.4.

(a) Task attribute state machine (b) FIFO locality state machine

Figure 3.5: Migration state machines describing the update of Tasks and FIFOs attributes with
the Migration API

Within a partial-stalling task migration, the task to migrate is suspended along with the directly
communicating tasks (the region of communication) since the FIFO channels between τ and τadji
are going to be moved and must be therefore quiescent at migration time. In the case of our test
DF application on Figure 3.6, migrating the SQR actor (orange, suspended and to be migrated)
means that in the process also RND and DIV are suspended (yellow, suspended), while leaving
DBL non-stalled (cyan, active). To achieve a predictable and composable migration, we need a
background entity that will make the migration process transparent from the point of view of the
target data-flow application. Such entity will be a part of the platform System Application (SA),
that we will call migration daemon. This is going to be described in the next section.

Figure 3.6: With the migration API expansions, the suspension of portions of the application is
now possible

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 23

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

3.4 Migration Daemon

To make the task migration parallel and transparent from the test application scope (or any other
application that will be executed on the platform), the implementation of a middleware was a
necessary step: the migration daemon.

(a) POSIX (b) Verintec

Figure 3.7: Application mapping from the POSIX multiprocess to the Verintec platform

Such application makes sure that the application(s) keeps executing while a migration is ongoing
(in the mapping example on Figure 3.7b we can observe that the daemon executes in its own System
Application slot as an independent application). The purpose of the daemon (on the model of the
one implemented by [5]) is to enable the message passing between the two involved PEs (achieving
in this way migration initialisation and finalisation), to save and move the communication context
(therefore move all the involved FIFO channel data, namely the state of the tasks) and, of course,
to direct the necessary activation/deactivation and suspension/resumption of tasks by using the
migration API expansion, described previously in Section 3.3.2. Since the daemon is meant to
alter the CBs of the application, to preserve composability, we must assemble such application as a
part of the system application (a super application that will be present on the Verintec platform).
Also, if we were to assemble it on the same VEP used by the target application, implementing a
partial stalling mechanism would not be possible because only one application per time would be
scheduled for execution.
The SA is present on each one of the tiles, meaning that there will be a daemon instance on each
PE to manage upcoming migrations. Of course a tile might behave as source or destination for
a migration; the first step for the middleware introduced in this section is therefore to determine
what will be the behaviour for the tile it runs on, during a migration. Such step is shown in Listing
3.4 where pseudocode resembling the actual C lang code is given.

/∗ The daemon checks whether to behave as source
∗ or d e s t i n a t i o n by v e r i f y i n g the s t a t e o f the
∗ task to migrate on which the daemon in s t anc e i s running
∗/

void migration daemon (i n t t i d)
{

t = g e t t a s k (t i d) ;

i f (i s a c t i v e (t))
{

t a s k m i g r a t i o n s o u r c e (t) ;
}
e l s e
{

t a s k m i g r a t i o n d e s t i n a t i o n (t) ;
}

}

Listing 3.1: Pseudocode for the behaviour determination of the migration daemon

24 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Once the behaviour for the daemon is determined, the migration can start. In Listing 3.4 we can
see the pseudocode steps that make up the source behaviour, while in Listing 3.4 the ones that
make up the destination behaviour. The main concern of the source is to pause the RoC and
deactivate the task to migrate to move its context out, while the main concern for the destination
is to move the context of the task to migrate in by also pausing the RoC and activating the former.
With a closer look we can notice that the two present some synchronization steps that are depend-
ent on each other (in the form of while loops). Source and destination must in fact communicate
in order to complete the migration process successfully; this happens by exchanging, on each step,
a byte of information to grant the passage of the barriers (in a similar way as [9] and [5] implement
their MPIs).

/∗ In the source behaviour , the task to migrate
∗ i s suspended and so are the adjacent ta sk s
∗ that are a c t i v e . The context o f the task i s
∗ pushed and the l a t t e r deac t iva ted . When
∗ the d e s t i n a t i o n i s done , the RoC task s are
∗ resumed to complete .
∗/

void t a s k m i g r a t i o n s o u r c e (task t)
{

o s mig ra t i on su spend ta sk (t) ;

o s m i g r a t i o n s u s p e n d a d j a c e n t t a s k s (t) ;

whi l e (! migrat ion grant push)
{

/∗ wait ing f o r d e s t i n a t i o n t i l e to be ready f o r context move phase ∗/
}

o s m i g r a t i o n p u s h t a s k s t a t e (t) ;

m i g r a t i o n g r a n t p u l l () ;

o s m i g r a t i o n d e a c t i v a t e t a s k (t) ;

whi l e (! m ig ra t i on pu l l done)
{

/∗ wait ing f o r d e s t i n a t i o n t i l e to f i n i s h p u l l i n g ∗/
}

resume () ;

o s m i g r a t i o n r e s u m e a d j a c e n t t a s k s (t) ;
}

Listing 3.2: Pseudocode for the source behaviour of the migration daemon

/∗ In the d e s t i n a t i o n behaviour , the
∗ adjacent ta sk s that are ac t ive , are suspended .
∗ the migrated task i s ac t ivated , the context i s
∗ pu l l ed and the RoC tasks are resumed in the end
∗/

void t a s k m i g r a t i o n d e s t i n a t i o n (task t)
{

o s m i g r a t i o n s u s p e n d a d j a c e n t t a s k s (t) ;

migrat ion grant push () ;

o s m i g r a t i o n a c t i v a t e t a s k (t) ;

whi l e (! m i g r a t i o n g r a n t p u l l)
{

/∗ wait ing f o r source t i l e to f i n i s h pushing ∗/

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 25

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

}

o s m i g r a t i o n p u l l t a s k s t a t e (t) ;

m ig ra t i on pu l l done () ;

whi l e (! resume)
{

/∗ wait ing f o r source t i l e to synch ∗/
}

os mig ra t i on re sume ta sk (t) ;

o s m i g r a t i o n r e s u m e a d j a c e n t t a s k s (t) ;
}

Listing 3.3: Pseudocode for the destination behaviour of the migration daemon

The operations and the interaction between source and destination create a fixed sequence of
events that characterize every possible migration. Such sequence of function calls is summarised
in Figure 3.8. All details of this migration sequence are explained in the following section (3.5)
and shown in an example later on (in Section 3.6).

Figure 3.8: Function calls in the migration sequence. The communication steps that occur in the
migration sequence are the horizontal arrays

3.5 Migration Sequence

The migration middleware introduced in Section 3.4, was then implemented to use the API func-
tions (discussed in Section 3.3.2). More precisely, the daemon has been equipped with two different
behaviours, one to deal with being a source of migration and one to deal with being a destination.
In this way, providing the daemon to each tile enables bidirectional possibilities for task migration.
The migration sequence resulting from the combined action of the source PE migration daemon
and the destination one, has been implemented to ensure the consistency of the data left behind
on source, the data to be moved among processors and the data at found at destination. The
sequence will be seen in detail in this section.
Once a migration for a task τ is issued, a series of fixed steps, of both communication and ma-
nipulation, happen. The designed flow of events is shown in Figure 3.9; in the image, the grey
blocks symbolise steps that have a variable execution time depending on the application that is
undergoing reconfiguration and on the exact state of it (explaining the need for synchronization
points between source and destination processor).
A more detailed sequence diagram of the pose function calls is given on Figure 3.8. The explan-
ation of the necessary steps for the migration to happen follow hereby. An external entity, that
we will call Resource Management System, monitors the resource usage for the platform. At a

26 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

given point in time t0 the RMS triggers a migration for task τ : the daemon determines whether
its execution tile is to behave as source or as destination, phase I begins for both tiles.

Source Phase I: τ and RoC Suspension (Figure 3.9)

In case of source behaviour, τ is suspended alongside all the other adjacent tasks (in the RoC)
active on the tile and then enters a loop where it waits for the destination to complete the parallel
duties.

Destination Phase I: RoC Suspension (Figure 3.10), Push Grant and
Activation of τ

On the other side, in case of destination behaviour, the daemon suspends the τ adjacent tasks
active here and communicates with the daemon on the source to allow the latter to continue to
its second phase (by means of the push grant signal). At the same time, the destination uses the
time the source uses now for pushing, to already put τ in an active state; after this activation, it
enters a loop to wait for the source to finish pushing.

Figure 3.9: Migration actions flow diagram: Source Phase I

Figure 3.10: Migration actions flow diagram: Dest. Phase I

Source Phase II: Push of FIFO Data, Pull Grant and Deactivation of τ
(Figure 3.11)

In its phase II, the source pushes the state data of the producing and consuming FIFOs of τ
(tokens and counters are moved to the most optimal position depending on the locality of the

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 27

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

FIFO, to shared if the FIFO is gonna bestow communication between tasks on different tiles).
The state push mechanism is similar to the one seen in the studies by [5] and [10]. When the
source daemon is done pushing, it communicates with the daemon on the destination to allow
the latter to exit the wait and continue to its phase II (with the pull grant signal). After this,
as also the destination tile did, the source tile uses the time the destination uses for pulling to
already put τ in an unactive state; after the deactivation, the processor enters a loop to wait for
the destination to finish pulling and therefore synchronize.

Destination Phase II: Pull of FIFO Data and Pull Done (Figure 3.12)

In its second phase, the destination pulls the state data of the producing and consuming FIFOs
of τ that have been previously pushed by the source (tokens and counters are moved to the most
optimal position depending on the locality of the FIFO, either from shared to local or leaving
them shared if the FIFO is gonna bestow communication between tasks on different tiles). The
state pull is also, consequently, a mechanism similar to the one seen in by [5] and [10]. Once the
destination daemon is done pulling, it communicates with the daemon on the source to allow the
latter to exit the wait and continue (with the pull done signal).

Figure 3.11: Migration actions flow diagram: Source Phase II

Figure 3.12: Migration actions flow diagram: Dest. Phase II

Source Phase III: Acknowledgement and RoC Resumption (Figure 3.13)

Once the pull done signal is received, acknowledgement is given through the resume signal (which
allows the destination tile to enter its last phase). After this, the source tile completes phase III
by resuming the previously suspended RoC tasks.

28 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Destination Phase III: τ and RoC Resumption (Figure 3.14)

After the destination tile completes the pull, it enters a loop to wait for the source to acknowledge
and allow it to exit the wait. After the acknowledgement happens (through the resume signal),
the destination tile resumes τ and the previously suspended τ adjacent tasks. The migration can
be considered complete after this step.

Figure 3.13: Migration actions flow diagram: Source Phase III

Figure 3.14: Migration actions flow diagram: Dest. Phase III

3.6 Partial-Stalling Task Migration Example

Hereby a visual PSTM example is shown from a high level point of view. We assume the mapping
of the test DF application to be the initial scenario shown on Figure 3.15, where all tasks active
on T0 and inactive on T1. The daemon is part of the System Application and therefore has its
own allocation in the TDM table (Figure 3.7b) and a shared communication channel to bestow
communication between the daemons on each tile. The task to be migrated is task SQR of the
test DF application.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 29

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Figure 3.15: The test DF application initial mapping

At first phase I begins on source (T0) and destination (T1). On T0, the task is suspended; the
suspension of the RoC tasks follows (3.16)). DBL is not directly involved, it is not suspended
and can therefore continue to execute (while execution conditions are met). On T1, in this case,
adjacent tasks are all inactive, so there is no suspension; after granting the push, SQR is already
put in active state (3.17).

Figure 3.16: Migration of SQR sequence source PHASE I: suspension of SQR and the RoC

Figure 3.17: Migration of SQR sequence dest. PHASE I: suspension of the RoC and activation of
SQR

Phase II follows on the tiles. On T0 the involved FIFO data is therefore pushed on the shared
memory and the FIFO locations are updated, where necessary; pull is granted afterwards. Then,

30 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

SQR is put to inactive state (Figure 3.18 depicts the outcome of this phase). The pull happens
on T1 and the FIFO locations are updated also here at the destination tile, where necessary and
in the optimal positions (3.19).

Figure 3.18: Migration of SQR sequence source PHASE II: push of the FIFO data and deactivation
of SQR

Figure 3.19: Migration of SQR sequence dest. PHASE II: pull of the FIFO data

After this, phase III begins. The source acknowledges the happened pull and resumption of
the previously suspended RoC tasks happens (3.20). When receiving the acknowledgement, the
destination resumes the migrated task SQR (and any RoC task in any other case where these are
active). The migration is finalised (3.21).

Figure 3.20: Migration of SQR sequence source PHASE III: resumption of the RoC

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 31

CHAPTER 3. DESIGN AND IMPLEMENTATION OF THE SOLUTION

Figure 3.21: Migration of SQR sequence dest. PHASE III: resumption of SQR and the RoC

Before the migration, T0 was bound to execute all the four tasks while T1 was completely unused.
The hypothetical scenario emulated in this example sees an overuse of T0 and an underuse of T1;
here the RMS commands a migration for SQR in order to achieve a better resource usage in terms
of PEs.
On Figure 3.22 a hypothetical, yet possible, execution flow scenario of the test DF application tasks
is represented in a gantt chart. Before, during and after migration flows are shown; the migration
is issued during the execution of one of the adjacent tasks (RND) adding a RoC quiescence wait
time before starting the migration. Task DBL, which was not involved in the RoC, is able to fire
during the migration process. After migration, normal execution resumes, however, DIV is data
dependent on SQR, and that is the reason it starves until SQR completes a new execution on its
new tile.

Figure 3.22: Gantt chart showing a possible test application execution flow before, during and
after the migration of SQR

32 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Chapter 4

Time Model and Experimentation

A reconfiguration measure such as a partial-stalling task migration, like, in general, any dynamic
reconfiguration, introduces time overhead. Henceforth, the most interesting aspect is to be re-
searched in the time delay introduced by this overhead and how this relatively affects the rest of
the application execution. The use of a predictable MPSoC such as the Verintec platform and
a predictable MoC such as the data-flow model, implies the time predictability of any operation
done by the platform, including the PSTM; i.e. the operations execution times can be estimated
in their worst-case at design time, before mapping and execution. Because of this, it was decided
to evaluate the experimentation through timing analysis.
First, the time model for the PSTM is to be designed, Section 4.1 gives details about how this is
crafted and how the model works. Secondly, such model is used to make measurements in our case
study; Section 4.2 goes over this. Section 4.3 reflects over the previously obtained measurements
and evaluations over the implemented migration solution are given.

4.1 Time Model

The developed time model has the objective of defining the worst-case execution time of a partial-
stalling task migration for any given task of the target application in any given mapping of the
target application over the MPSoC tiles and with any given TDM scheduling slot assignment. The
WCMT will depend on two macro factors: from the application fine grained point of view, the
expected execution time of the migration mechanism itself and, from the platform coarse grained
point of view, the execution of the latter over the defined TDM scheduling tables of the involved
tiles. Combining the two is the key to a reliable timing model for computing an upper time bound
for any possible migration in the application-platform system. The calculation must then follow
a bottom-up fashion, starting from the most atomic elements: the migration API functions.

4.1.1 Migration Phases Worst-Case Times

Regarding the migration mechanism worst-case response times of the phases, the time measure-
ment model was retrieved by analyzing the implementation that made use of the test DF applic-
ation with the timer available in the processor. The functions that form the migration API, have
both a timely static and (occasionally) a timely dynamic execution part (depending on the applic-
ation mapping and characteristics). The execution time of the migration API functions would in
fact mainly depend on different application parameters such as: number of tasks adjacent to the
task to migrate, number of self edges of the task to migrate, task activeness, number of production
and consumption FIFOs, token size, buffer capacity, FIFO locality.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 33

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Time Computing Functions

The analysis process consisted, at first, into constructing, for each function, execution time equa-
tions, defining precisely the static and dynamic parts (where present), highlighting all the involved
variables (listed above) that influenced the dynamic part.
Secondly, the same were measured in the implementation featuring the test application with
the use of a processor clock timer; each time measure was equalized to the corresponding time
computing equation. Finally, by reverse arithmetic, with the objective of constructing general
equations applicable to any object application, the weight for each of the variables, and therefore
the dynamic parts of the equations, were defined. By changing the parameters of the test target
application and therefore obtaining new time measures, the aforementioned weights were calibrated
until the expected measures had a (pessimistic) error of around 10%.
Each function in the migration mechanism can be then summarized as follows:

time(migration function) = time(static overhead) + time(dynamic part) (4.1)

where the number of cycles of the dynamic part is, depending on the considered migration function,
either 0 or a function of the number of tasks adjacent to the task to migrate, number of self edges
of the task to migrate, number of production and consumption FIFOs, token size, buffer capacity
or FIFO locality:

time(dynamic part) = f(nadj , nself , nprod fifos, ncons fifos, token size, buffer size, fifo locality)
(4.2)

At the end of the process, the time() function for the migration API functions will be shaped as
shown in Listing 4.1.1.

time (m i g r a t i o n a p i f u n c t i o n) =
s t a t i c n u m b e r o f c y c l e s + // u su a l l y func . c a l l and loop overhead
dynamic number of cyc les

where

dynamic number of cyc les = f (n ad j t a sk s , n s e l f e d g e s , n p r o d f i f o s , n c o n s f i f o s ,
t ok en s i z e , b u f f e r s i z e , f i f o l o c a l i t y)

Listing 4.1: The generic time() function

More detail about the time measurement of each of the migration API functions is shown in
Appendix C.

Migration Phases

For the migration mechanism as a whole, we take in account the division in phases, as described
previously in Section 3.5. These are represented and made of pseudo function names (for ease of
representation) on the schematic in Figure 4.1. When calculating the global WCMT at design
time, computing this bound on the migration phases is the first step.
Separating each phase is a synchronization barrier due to the communication between the tiles.
For each phase one can then define a worst-case migration phase time. For computing these worst-
case time bounds on the source and destination migration phases, we do not take into account the
cycles spent waiting for synchronizations; these waiting latencies will be accounted in the second
part of the WCMT computation (Section 4.1.2), when we will consider the bigger picture with
both the tiles involved.
As the depicted phases suggest, once the atomic migration API steps worst-case timings are
computed, building the equations is straightforward. For the source phase I, the worst-case time
will be the sum of the cycles spent to suspend task τ and the adjacent tasks to the latter active
on the tile:

WC SI = time(SRC suspend(τ)) + time(SRC suspend adj(τ)) (4.3)

34 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.1: Table schematization of the migration phases

Similarly, for destination phase I, we account the cycles spent to suspend the RoC tasks active on
the tile. In addition, we sum the time spent to send the push grant signal and the time to activate
τ :

WC DI = time(DST suspend adj(τ))+time(DST grant push)+time(DST activate(τ)) (4.4)

Regarding source phase II, the worst-case time will be the sum of the cycles to push the state of
τ , the cycles necessary to send the pull grant signal and the cycles to deactivate τ :

WC SII = time(SRC push state(τ))+time(SRC grant pull)+time(SRC deactivate(τ)) (4.5)

Destination phase II, on the other hand, accounts the time spent to pull the state of τ plus the
one spent on sending the pull done signal:

WC DII = time(DST pull state(τ)) + time(DST pull done) (4.6)

The bound on last source phase, phase III, is expected to be the sum of the cycles expired to send
the resume signal and the cycles invested to resume the RoC tasks that had been suspended in
phase I:

WC SIII = time(SRC grant resume) + time(SRC resume adj(τ)) (4.7)

As soon as the resume signal is received, destination phase III begins. The expected bound is given
by the sum of the time to resume τ on its new tile and the adjacent tasks previously suspended
in phase I:

WC DIII = time(DST resume(τ)) + time(DST resume adj(τ)) (4.8)

4.1.2 Time Division Multiplexing Worst-Case Scenario

The classic worst-case scenario where one has to wait for a whole TDM cycle before the application
can start to execute, is not enough in the specific case of our Partial Stalling Task Migration. The
migration mechanism is, in fact, not only dependent on two different TDM frames from two
different tiles (source and destination), but it also involves communication steps between the
migration daemons (each running in the System Application slot of the TDM frame, see Figure
4.2) on each one of them, introducing the risk of nested worst-case response time scenarios to the
communications.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 35

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.2: An example of the TDM frame structure used in the experiments. The migration
daemon is part of the System Application

For the purpose of demonstrating the final formula to compute the upper bound on the WCMT we
consider the graphical example depicted on Figure 4.3. First of all, we consider our demonstrative
TDM frames to be made of just two slots, one for the SA and the other for the target DF
application. Since our model will be proportional to the TDM frame size, we are, in such way,
sure to compute the most pessimistic upper bound; both the SA and the application have in fact
only one slot per TDM cycle to execute and preemptions would postpone the completion to the
next TDM frame (depending of course on the ratio between execution times and the slot sizes).
Also, on the platform, the clocks of the different tiles are synchronized, so we assume this condition
is met for developing our model.

Figure 4.3: The worst-case scenario TDM frame sequences graphical analysis tools

The first requirement to have a worst-case happens when all of the phases experience a waiting
time, i.e. they get to the wait step without having received the necessary signal to exit it. This
situation happens when the SA (who hosts the migration daemon) service slot of the source tile is
in a chronologically antecedent position compared to its destination tile counterpart (as depicted
on the example in 4.3).
At first, for simplicity, we now consider the single phase bounds, WC SI , WC DI , WC SII ,
WC DII , WC SIII , WC DIII , to be all smaller than the allocated service slots on source and
destination TDMs (SS and SD), so that we are sure they execute each within one service slot
(without getting preempted). The execution of the migration phases is now represented on Figure
4.4.

We can now start to build our upper bound mathematical formula. By following the representation
on Figure 4.4, we can observe that there will be, first of all, a time component equal to the maximum
possible discrepancy between SS and SD. We will call this cycle amount maxφ and compute it as
follows:

(4.9)

36 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.4: The worst-case scenario assuming no preemptions happen for the migration mechanism

maxφ =

{
ND ∗ CS + LD if TS ≥ TD
(TS +NS ∗ CS)− SD, otherwise

where, NX represents the number of distinct slots of the X TDM table, CS the cycles elapsed
during context switch between the cycles (4096), and LX the cycles of the TDM that do not
service SA (computed as LX = TX −SX with TX being the total cycles of the set TDM frame, as
suggested in Figure 4.3).
Now, observing again Figure 4.4, we can notice that, in this worst-case scenario, the migration is
dominated temporally by the destination tile since it will inevitably conclude here with destination
phase III. The end of the maxφ time, coincides with the begin of the destination tile migration
phases; in the example, the time elapsed from there to the begin of the last phase, equals the
time of two destination TDM cycles (2 ∗ TD) plus also the must be accounted context switches
(2 ∗ (ND ∗ CS)). To maxφ and this second component just described, we add in the end the
migration finalization of the third destination phase (WC DIII).
We have now three of the four components of our upper bound (WCMT) equation:

WCMT = maxφ+ 2 ∗ (TD +ND ∗ CS) +WC DIII + Pwait (4.10)

The missing component, Pwait, represents the impact of preemptions in the migration phases on
the WCMT. On Figure 4.4 we considered, in fact, worst-case times for the phases smaller than
the service cycles. However, this might not be the case in certain situations. On Figures 4.5 and
4.6 we can observe the effects of the preemptions of SII and DII , respectively.

Figure 4.5: The worst-case scenario assuming a preemption happens for phase SII

On 4.5 we can see that the effect of the preemption on the source tile, can result in waiting cycles

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 37

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.6: The worst-case scenario assuming a preemption happens for phase DII

on the dominating destination TDM. Therefore, one must, first of all, compute the likelihood
of preemptions on the source tile by considering the ratio between the worst-case bound on the
phases and a single service slot:

PS =
WC SI +WC SII +WC SIII

SS
(4.11)

Although this approach is pessimistic, since not all the phases execute on a single service slot in
a worst-case scenario, it ensures that no preemptions are missed in the calculation. In computing
an upper bound we must in fact not miss preemptions, we thus tolerate this calculation.
Now that we have the probability of the number of preemptions of the source side of the migration,
we must compute the impact of these on the destination tile. Since every preemption will trigger a
missed TDM cycle on the source tile, this is rather straightforward: the ratio of the total number
of the missed source cycles and the size of the destination TDM, will result in the likely number
of missed TDM frame cycles on the destination tile. The described computation follows:

PS2D =
PS ∗ (TS +NS ∗ CS)

(TD +ND ∗ CS)
(4.12)

After this, we move to the opposite example, depicted on Figure 4.6, where the preemption happens
on the destination tile. In this case, we will just need to compute the likelihood of preemptions on
the destination tile, since we assumed the destination tile as timely dominant. The computation
goes in the same direction as Equation 4.11:

PD =
WC DI +WC DII +WC DIII

SD
(4.13)

Considering that every preemption causes a waiting destination TDM frame, we have now all the
necessary to build the last component of the WCMT equation, Pwait. Before proceeding, we must
consider that, for ease of representation, the preemption on source and destination have been
depicted separately and for just one of the phases of the migration; in a real worst-case scenario
they can happen on source and destination at the same time and also multiple times. Because of
this, we combine the effects of the expected preemptions on source and destination, by summing
them linearly, and approximating to the upper integer to quantize the additional spent times to
the size of the destination TDM frame.
The Pwait equation follows:

Pwait = dPD + PS2De ∗ (TD +ND ∗ CS) (4.14)

The WCMT equation (4.10) is now complete in all of its components.
The ceiling approximation is certainly overpessimistic compared to the softer nearest integer ap-

38 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

proximation, if we consider that a likely number of preemptions smaller than x.5 would be approx-
imated to x+ 1 preemptions instead of x preemptions, but ensures that the computed WCMT is
a mathematical upper bound.

4.1.3 Subsequent Migrations

Another additional scenario we want to analyze is the following: a migration B was issued before
the end of a migration A, meaning that the former will start as soon as the latter is done; e.g.
the migrations are not decoupled and must be considered as whole in the calculation. In this
case the total worst-case of the two migrations will be the sum of the two worst-cases plus an
additional component, that is an intermediate worst-case wait between the two, that will amount
to a maximum of one destination tile TDM cycle:

WCMTAB = WCMTA + (TD +ND ∗ CS) +WCMTB (4.15)

A generalization of the formula for n migrations follows:

WCMTn =

n∑
i=1

WCMTi +

n−1∑
i=1

(TD +ND ∗ CS) (4.16)

4.2 Experimentation on the Case Study and Results

An experimentation using the introduced timing model is done in this section, where we will
compute the upper bound for two migrations on the JPEG decoder (with four different TDM
frame settings in total). By taking a look at the worst-case timing of the migration API functions
(in Appendix C), we can expect the bottleneck of the migration mechanism time to happen when
FIFOs are transferred in location (where every transfer of a single byte of information B, takes 14
cycles). These are also depicted on Figure 4.7 where the impact of the FIFO size on the time to
move it, is visualized. Below, is a table showing the sizes of the FIFOs (token size*buffer capacity)
for the JPEG decoder application data-flow model (Table 4.1).
Regarding the execution times of the single JPEG decoder actors, their duration can vary and
depends on the test image being used; Therefore, one single test image was used through the
experimentation to preserve the predictability of the environment. This matter is not central for
the purposes of this study, but more detail about the worst-case actor execution times and the
test image is given in Appendix B.
By taking a look at the total size of the buffers, we can already expect the most enduring migration
mechanisms in our case study to be the ones that involve FIFO 2 (3200 B) or FIFO 7 (3072 B),
that are both about as five times as big than the third FIFO in size (number 6, with 640B). For
this reason we will take into considerations two migrations, one involving FIFO 7 and the other
involving FIFO 2 (of course they cannot be moved in a same migration since they do not share a
same producing nor consuming task). First we will predict the worst-case time for the migration

FIFOlabel Routing token size (B) buffer capacity total size (B)

1 VLD local 448 1 448
2 VLD to IQZZ 320 10 3200
3 VLD to CC 60 1 60
4 VLD to RASTER 52 1 52
5 IQZZ to IDCT 256 1 256
6 IDCT to CC 64 10 640
7 CC to RASTER 3072 1 3072

Table 4.1: The JPEG decoder FIFOs and their size

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 39

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.7: The graph shows a comparison of the expected time amount needed to move each of
the seven FIFO buffers

of the CC actor from T1 to T0 (default mapping is shown on Figure 4.8). Then, from the resulting
mapping of this first migration (Figure 4.12)), the migration of the IQZZ actor also from T1 to T0

(that will result in Figure 4.16). As anticipated, within the scenario, we study two subscenarios
that differ in terms of the designed TDM frame. However, in both cases, the TDMs will be made
of two slots: one for the System Application (that hosts the migration daemon), and the other
for the execution of the JPEG decoder itself (on the model of the example shown on Figure 4.2).
The reason for this decision is that our model would give a less precise bound for TDMs that are
made of more slots, while in this section of the study, we are more interested in validating the
model in a more critical situation (where the upper bound is expected to be relatively closer to
the measured WCMT).

Figure 4.8: The JPEG decoder experimentation initial mapping

4.2.1 First Measured Migration: CC task

In this scenario, the application is running with the mapping depicted in Figure 4.8. By migrating
CC we identify also IDCT, RASTER and VLD in its RoC: These listed tasks are paused during
the target migration. Also, the FIFO buffers that bestow communication to and from CC are
the ones to be moved; these are number 3, 6 and 7. FIFO 3 is in a shared locality state, so we
expect the mechanism to make it fully local once the migration of CC is complete; this means
that moving this buffer will be more impactful when pulling. FIFOs 6 and 7, on the other hand,
are fully local on T1, so we expect the mechanism to make them shared once the migration is
complete (as suggested by the state machine we saw earlier in Figure 3.5b); meaning that moving
these buffers is heavier when pushing.

40 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Step I: API functions worst-case timings

As shown in the demonstration of the timing model of Section 4.1. We start computing the WCMT
from the single worst-case timing of the executed migration API functions. By using the derived
formulas (available in Appendix C), the computed values are displayed on Table 4.2

Migration API function WCET (cycles)

SRC suspend(CC) 8
SRC suspend adj(CC) 178
SRC push state(CC) 52277
SRC grant pull 6

SRC deactivate(CC) 8
SRC grant resume 6
SRC resume adj(CC) 176
DST suspend adj(CC) 176

DST grant push 6
DST activate(CC) 9
DST pull state(CC) 1199
DST pull done 6

DST resume(CC) 7
DST resume adj(CC) 175

Table 4.2: The single migration API functions worst-case execution times for the CC migration
scenario

Step II: Migration phases worst-case timings

We go on by determining the upper bounds of the single migration phases by using the Equations
from 4.3 to 4.8. The values are shown on Table 4.3.

Migration Phase WCET (cycles)

SI 186
DI 191
SII 52291
DII 1205
SIII 182
DIII 182

Table 4.3: The migration phases worst-case execution times for the CC migration scenario

We now do a first experimentation, by measuring the empirical values from the same described
migration on the platform. The obtained values are shown on 4.4, where the previously predicted
cycles for the API functions executions are shown besides the actual measured cycles.
As we can see on Figure 4.9, the bottleneck of the migration mechanism happens, as anticipated,
when moving the FIFO buffers and, in this specific case, when pushing the FIFOs to the shared
memory for migration. In the graph, the push state function execution takes up basically the
whole mechanism cycles; in this particular case it is even more explicit due to the need to move
FIFO 7, which has the relatively big size of 3072B.
Of a total predicted number of cycles 54237, the actual measurement is 53082, resulting in the
following delta: ∆ = 54237 − 53082 = 1155 This ∆ means that the predicted values were just
2.17% more than the actual ones. Also, taking a look at Figure 4.9, we can visualize the almost
non-perceivable difference between the two. The precision is such due to the fact that the single
atomic API functions are expected to execute always with the same number of cycles with a given

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 41

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Migration API function WCET (cycles) Measured ET (cycles) ∆

SRC suspend(CC) 8 8 0%
SRC suspend adj(CC) 178 162 9.88%
SRC push state(CC) 52277 51313 1.88%
SRC grant pull 6 6 0%

SRC deactivate(CC) 8 8 0%
SRC grant resume 6 6 0%
SRC resume adj(CC) 176 160 10%
DST suspend adj(CC) 176 166 6.02%

DST grant push 6 6 0%
DST activate(CC) 9 9 0%
DST pull state(CC) 1199 1060 13.11%
DST pull done 6 6 0%

DST resume(CC) 7 7 0%
DST resume adj(CC) 175 165 6.06%

total 54237 53082 2.17%

Table 4.4: Comparison of the single functions expected execution times and measured execution
times for the CC migration scenario. The relative error is also shown

Figure 4.9: The graph in figure represents both the computed and measured execution cycles of
the source migration functions stacked one onto each other for the CC task migration

Figure 4.10: The graph in figure represents both the computed and measured execution cycles of
the destination migration functions stacked one onto each other for the CC task migration

42 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

application mapping (except for the push and pull ones). This expectation is perfectly accounted
with the designed model (see Appendix C) that, up to this stage of the measurement, keeps
the ∆ small. As we will see right away, the biggest contribution to the global migration time
∆, comes when we consider the bigger migration picture with the source and destination TDM
frames interactions to bestow the migration.

Subscenario I: TS ≥ TD
In the first case, we assign for the source tile T1 a bigger TDM frame then the destination tile T0.
The values are shown in Table 4.5, where LX is the number of slot cycles assigned to the JPEG
application (named L because of it is seen as a latency time from the migration point of view)
and SX is the number of service slots cycles for the SA (and therefore the daemon); both for a
generic tile X.
Being FIFO 7 of 3072B in size, we already know that at least 43008 cycles (3072*14) will be spent
on moving only this FIFO from T1 to the shared memory. Therefore, to enhance the likelihood
of preemption of the migration phases, as shown in 4.1.2, we assign the two SX to be around the
same order of magnitude (50000 for the destination tile and 70000 for the source).

Tile LX (cycles) SX (cycles)

0 100000 50000
1 140000 70000

Table 4.5: The subscenario I TDM frames of the tiles for the CC migration

To compute the WCMT, we start with maxφ; by following Equation 4.9 we obtain the following:

maxφ = ND ∗ CS + LD = 108192cycles

Following the global worst-case time Equation 4.10 defined previously in Section 4.1 the WCMT,
assuming no preemptions happen, is:

WCMTnp = maxφ+ 2 ∗ (T0 +N0 ∗ CS) +WCDIII = 108192 + 308192 + 182 = 416566cycles

We now compute the likelihood of preemptions happening:

P0 = (WCDI+WCDII+WCDIII)
SD

= (191+1205+182)
50000 = 0.03

P1 = (WCSI+WCSII+WCSIII)
SD

= (186+52291+182)
70000 = 0.75

We proceed to calculate the influence of the preemptions of the source tile on the destination tile:

P1to0 = P1∗(T1+N1∗CS)
(T0+N0∗CS) = 0.75∗(218192)

158192 = 1.03

The total number of expected preemptions according to the model follows:

Ptot = dP0 + P1to0+e = d1.06e = 2

Hence, the WCMT considering preemption, according to Equation 4.10 is:

WCMT = WCMTnp + Ptot ∗ (T0 +N0 ∗ CS) = 416566 + 316384 = 732950

Timer Measurements Subscenario I

With this mapping and TDM configuration, 10 simulations of the CC migration were run and
timed with the embedded processor timer. The results are shown on Table 4.6.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 43

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Average Measured MT (of 10 measurements) (cycles) Measured WCMT (cycles)

410748 474493

Table 4.6: The subscenario I measured values for the CC migration

With a measured WCMT of 732950, the time model successfully predicted an upper bound, with
an error of:

∆ = 732950− 474493 = 258457cycles
∆% = (∆/474493) ∗ 100 = 54.47%

Subscenario II: TS < TD

In the second subscenario, we assign for the destination tile T0 a bigger TDM frame then the
source tile T1. The values are shown in Table 4.7.

Tile LX (cycles) SX (cycles)

0 150000 80000
1 90000 40000

Table 4.7: The subscenario II TDM frames of the tiles for the CC migration

To compute the WCMT, we proceed now in the same way as subscenario I, starting with the
maximum service slots discrepancy maxφ:

maxφ = (TS +NS ∗ CS)− SD = (T1 +N1 ∗ CS)− S0 = 138192− 80000 = 58192cycles

The global worst-case time follows, beginning with the assumption that no preemptions happen:

WCMTnp = maxφ+ 2 ∗ (T0 +N0 ∗ CS) +WCDIII = 58192 + 476384 + 182 = 534758cycles

We now compute the likelihood of preemptions happening:

P0 = (WCDI+WCDII+WCDIII)
SD

= (191+1205+182)
80000 = 0.02

P1 = (WCSI+WCSII+WCSIII)
SD

= (186+52291+182)
40000 = 1.32

We proceed to calculate the influence of the preemptions of the source tile on the destination tile:

P1to0 = P1∗(T1+N1∗CS)
(T0+N0∗CS) = 1.32∗(138192)

238192 = 0.77

The total number of expected preemptions according to the model follows:

Ptot = dP0 + P1to0e = d0.79e = 1

Hence, the WCMT considering preemption, according to Equation 4.10 is:

WCMT = WCMTnp + Ptot ∗ (T0 +N0 ∗ CS) = 534758 + 238192 = 772950

Timer Measurements Subscenario II

With this mapping and other TDM configuration, 10 simulations of the CC migration were run
and timed with the embedded processor timer. The results are shown on Table 4.8.

44 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Average Measured MT (of 10 measurements) (cycles) Measured WCMT (cycles)

479745 662964

Table 4.8: The subscenario II measured values for the CC migration

With a measured WCMT of 772950, the time model successfully predicted an upper bound, with
an error of:

∆ = 772950− 662964 = 109986cycles
∆% = (∆/662964) ∗ 100 = 16.59%

Figure 4.11: The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the CC task migration

Figure 4.12: The JPEG decoder mapping after the CC migration

4.2.2 Second Migration: IQZZ task

In the second scenario, the application is running with the mapping depicted in Figure 4.12. By
migrating IQZZ we identify also IDCT and VLD in its RoC: These listed tasks are paused during
the target migration. Also, the FIFO buffers that bestow communication to and from IQZZ are
the ones to be moved; these are number 2 and 5. FIFO 2 is in a shared locality state, so we
expect the mechanism to make it fully local once the migration of IQZZ is complete (as suggested
by the state machine we saw earlier in Figure 3.5b); this means that moving this buffer will be
more impactful when pulling. FIFO 5, on the other hand, is fully local on T1, so we expect the
mechanism to make it shared once the migration is complete; meaning that moving this buffers is
heavier when pushing.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 45

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Step I: API functions worst-case timings

Also for this scenario, we start computing the WCMT from the single worst-case timing of the
executed migration API functions. The computed values are displayed on Table 4.9

Migration API function WCET (cycles)

SRC suspend(IQZZ) 8
SRC suspend adj(IQZZ) 135
SRC push state(IQZZ) 3801

SRC grant pull 6
SRC deactivate(IQZZ) 8
SRC grant resume 6

SRC resume adj(IQZZ) 134
DST suspend adj(IQZZ) 135

DST grant push 6
DST activate(IQZZ) 9
DST pull state(IQZZ) 45017

DST pull done 6
DST resume(IQZZ) 7

DST resume adj(IQZZ) 134

Table 4.9: The single migration API functions worst-case execution times for the IQZZ migration
scenario

Step II: Migration phases worst-case timings

Again, we go on by determining the upper bounds of the single migration phases, as did for the
first scenario. The values are shown on Table 4.10.

Migration Phase WCET (cycles)

SI 143
DI 150
SII 3815
DII 45023
SIII 140
DIII 141

Table 4.10: The migration phases worst-case execution times for the IQZZ migration scenario

We do a first experimentation also for this IQZZ migration. We measure the empirical values from
the execution of the migration on the platform. The obtained values are shown on 4.11, where
the previously predicted cycles for the API functions executions are shown besides the actual
measured cycles.

As we can see on Figure 4.14, like in the first migration experiment, the bottleneck of the migration
mechanism happens when moving the FIFO buffers and, in this other case, when pulling the FIFOs
from the shared memory to local. In the graph, the pull state function execution takes up almost
the whole mechanism cycles; this time it happens due to the need to move FIFO 2, which has a
relatively big size of 3200B.

In this case the cumulative delta is: ∆ = 49412 − 46160 = 3252 Therefore the predicted values
were 7.04% more than the actual ones. Again the predicted atomic migration API values are
precise (see the graph on Figure 4.14), but, also in this case we expect the biggest contribution to
the global ∆ to come from the following global migration analysis.

46 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Migration API function WCET (cycles) Measured ET (cycles) ∆

SRC suspend(IQZZ) 8 8 0%
SRC suspend adj(IQZZ) 135 121 11.57%
SRC push state(IQZZ) 3801 3796 0.13%

SRC grant pull 6 6 0%
SRC deactivate(IQZZ) 8 8 0%
SRC grant resume 6 6 0%

SRC resume adj(IQZZ) 134 120 11.67%
DST suspend adj(IQZZ) 135 122 10.65%

DST grant push 6 6 0%
DST activate(IQZZ) 9 9 0%
DST pull state(IQZZ) 45017 41824 7.63%

DST pull done 6 6 0%
DST resume(IQZZ) 7 7 0%

DST resume adj(IQZZ) 134 121 10.74%

total 49412 46160 7.04%

Table 4.11: Comparison of the single functions expected execution times and measured execution
times for the IQZZ migration scenario. The relative error is also shown

Figure 4.13: The graph in figure represents both the computed and measured execution cycles of
the source migration functions stacked one onto each other for the IQZZ task migration

Figure 4.14: The graph in figure represents both the computed and measured execution cycles of
the destination migration functions stacked one onto each other for the IQZZ task migration

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 47

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Subscenario I: TS ≥ TD

In the first subscenario of this second experiment migration, we again assign for the source tile T1

a bigger TDM frame then the destination tile T0 (values are shown in Table 4.5. Being FIFO 2
of 3200B in size, we already know that 44800 cycles (3200*14) will be spent on moving only this
FIFO from T1 to the shared memory. Therefore, to enhance the likelihood of preemption of the
migration phases, as shown in 4.1.2, we assign the two SX to be again around the same order of
magnitude.

Tile LX (cycles) SX (cycles)

0 90000 40000
1 150000 80000

Table 4.12: The subscenario I TDM frames of the tiles for the IQZZ migration

As we did for the first migration of CC we compute the WCMT the same way. We start withmaxφ:

maxφ = ND ∗ CS + LD = 98192cycles

Following the global worst-case time Equation 4.10, the WCMT, assuming no preemptions hap-
pen, is:

WCMTnp = maxφ+ 2 ∗ (T0 +N0 ∗ CS) +WCDIII = 98192 + 276384 + 141 = 374717cycles

We now compute the likelihood of preemptions happening:

P0 = (WCDI+WCDII+WCDIII)
SD

= (150+45023+141)
40000 = 1.13

P1 = (WCSI+WCSII+WCSIII)
SD

= (143+3815+140)
80000 = 0.05

We proceed to calculate the influence of the preemptions of the source tile on the destination tile:

P1to0 = P1∗(T1+N1∗CS)
(T0+N0∗CS) = 0.05∗(238192)

138192 = 0.09

The total number of expected preemptions according to the model follows:

Ptot = dP0 + P1to0e = d1.22e = 2

Hence, the WCMT considering preemption, according to Equation 4.10 is:

WCMT = WCMTnp + Ptot ∗ (T0 +N0 ∗ CS) = 374717 + 276384 = 651101

Timer Measurements Subscenario I

With this mapping and TDM configuration, 10 simulations of the IQZZ migration were run and
timed with the embedded processor timer. The results are shown on Table 4.13.

Average Measured MT (of 10 measurements) (cycles) Measured WCMT (cycles)

380783 422506

Table 4.13: The subscenario I measured values for the IQZZ migration

48 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

With a measured WCMT of 651101, the time model successfully predicted an upper bound, with
an error of:

∆ = 651101− 422506 = 228595cycles
∆% = (∆/422506) ∗ 100 = 51.66%

Subscenario II: TS < TD

In the second subscenario, we assign for the destination tile T0 a bigger TDM frame then the
source tile T1. The values are shown in Table 4.14.

Tile LX (cycles) SX (cycles)

0 140000 70000
1 100000 50000

Table 4.14: The subscenario II TDM frames of the tiles for the IQZZ migration

To compute the WCMT, we proceed, one last time, with the same procedure, beginning from
maxφ:

maxφ = (TS +NS ∗ CS)− SD = (T1 +N1 ∗ CS)− S0 = 158192− 70000 = 88192cycles

By following the usual equation with the assumption that no preemptions happen:

WCMTnp = maxφ+ 2 ∗ (T0 +N0 ∗ CS) +WCDIII = 88192 + 436384 + 141 = 524717cycles

We now take in account preemptions by computing first the likelihood of them happening:

P0 = (WCDI+WCDII+WCDIII)
SD

= (150+45023+141)
70000 = 0.65

P1 = (WCSI+WCSII+WCSIII)
SD

= (143+3815+140)
50000 = 0.08

We proceed by calculating the influence of the preemptions of the source tile on the destination tile:

P1to0 = P1∗(T1+N1∗CS)
(T0+N0∗CS) = 0.08∗(218192)

158192 = 0.11

The total number of expected preemptions according to the model follows:

Ptot = dP0 + P1to0e = d0.76e = 1

Hence, the WCMT considering preemption, according to Equation 4.10 is:

WCMT = WCMTnp + Ptot ∗ (T0 +N0 ∗ CS) = 524717 + 218192 = 742909

Timer Measurements Subscenario II

With this mapping and other TDM configuration, 10 simulations of the IQZZ migration were run
and timed with the embedded processor timer. The results are shown on Table 4.15.

Average Measured MT (of 10 measurements) (cycles) Measured WCMT (cycles)

365589 607104

Table 4.15: The subscenario II measured values for the IQZZ migration

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 49

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

With a measured WCMT of 742909, the time model successfully predicted an upper bound, with
an error of:

∆ = 742909− 607104 = 135805cycles

∆% = (∆/607104) ∗ 100 = 22.36%

Figure 4.15: The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the IQZZ task migration

Figure 4.16: The JPEG decoder mapping after the IQZZ migration

Before proceeding to the subsequent migration experiment, it is interesting to notice how the
model points out how heavy is the influence of the application variables on the migration phases
duration. On Figure 4.17 we can see a graph that compares the phases for the CC and IQZZ
migrations (the values can be observed on Tables 4.3 and 4.10); the opening and closing phases
(I and III) are almost static (and neglectable), while the phase II for both source and destination
is heavily influenced on the amount of data (the FIFOs) to move among memories, making this
phase the main bulk of the mechanism.

50 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Figure 4.17: Comparison of the migration phases duration of the CC and IQZZ migrations

One can conclude that, when migrating a task, at least one of the two migration II phases, will
be a bottleneck among the phases timings; this unless there are any self edges on the migrated
task. In case of FIFOs with a self edge locality, both push and pull are expected to be influenced
proportionally by the size of the FIFO. If we were to hypothetically migrate the VLD task now,
from the resulting mapping in Figure 4.16, we would obtain the worst-case computed values
depicted on the graph of Figure 4.18.

Figure 4.18: Comparison of the migration phases duration of the VLD migration

4.2.3 Subsequent Migrations: CC then IQZZ

We now experiment the two migrations that we saw before on the same TDM frame instances (on
Table 4.16), issuing the IQZZ migration right after the end of the CC one. The scenario is now
the same as the one analyzed in Section 4.1.3.

Tile LX (cycles) SX (cycles)

0 200000 20000
1 300000 30000

Table 4.16: The subsequent migrations scenario TDM frames of the tiles

Using the already used model heuristics, we compute the WCMT for both the migrations, obtain-
ing the following:
WCMTCC = 1249334
WCMTIQZZ = 1457485

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 51

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

Then, we go one step further, considering the subsequent case and using Equation 4.16:

WCMTCC,IQZZ = WCMTCC + (T0 +N0 ∗CS) +WCMTIQZZ = 1249334 + 208192 + 1457485 =
2915011

Now, the same scenario, analyzed and measured on the platform gave the results shown on Table
4.17.

AveragemeasuredMT (of 10 measurements) (cycles) measuredWCMT (cycles)

2200720 2289979

Table 4.17: The subsequent migrations measurement results

With a measured WCMT of 2915011, the time model in its subsequent migrations expansion suc-
cessfully predicted an upper bound, with an error of:

∆ = 2915011− 2289979 = 625032cycles

∆% = (∆/2289979) ∗ 100 = 27.29%

As we can see, the error remains around the same order of magnitude. This proves the reliability
of the model, where the introduced error is only dependent on the single migrations and does not
propagate in case of subsequently issued ones. The same graphic confrontation of the model com-
puted WCMT and the worst measured time keeps the same shape as in the first two experiments,
as plotted on Figure 4.19.

Figure 4.19: The graph in figure shows the difference between the WCMT foreseen by the model
and the worst obtained measurement for the subsequent migrations of CC and IQZZ

4.2.4 Impact of δ on the application WCRT

If we assume the JPEG decoder in its minimal form, e.g. with the minimum possible buffer sizes,
as the version shown in this thesis (with repetition vector [1,10,10,1,1]), then we can discuss the
impact the partial-stalling approach on such migration experiment has on the execution flow of
the tasks (and the cumulative JPEG WCRT). If we take, for instance, a scenario in which this
migration happens during the execution of the non-RoC tasks CC or RASTER tasks (which
is likely, since the latter is the longest in execution on our JPEG decoder with the given test
image, see Appendix B), the migration of IQZZ (that endures 742909 in its worst-case) can start
right away and finish before RASTER (that can have a worst-case execution time of 1453095) is
complete or after by just a quantity δ which is anyway smaller than the WCMT ; in this case the
cumulative JPEG WCRT would be increased by 0 in the best case and a quantity δ in the other

52 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

cases, by following what has been anticipated in 1.3 about the JPEG WCRT :

WCRT ps migjpeg = WCRTjpeg + δ

where 0 ≤ δ ≤WCMTIQZZ .

Figure 4.20: The Gantt chart in figure shows an hypothetical median case flow scenario for the
IQZZ migration

The scenario is depicted on the Gantt chart on Figure 4.20; of course, this is not a worst-case
scenario, but proves the advantage introduced by the partial-stalling approach. Apart from this
median case, we can also identify a worst-case and a best case scenario for the partial-stalling
migration of IQZZ.
In the first one, the worst-case scenario happens when the migration for IQZZ is issued when one
of the actors that feeds the non-RoC tasks in terms of tokens, is executing, for instance VLD ; in
this case the migration happens as soon as the latter is done executing, but the non-RoC tasks
(CC and RASTER) cannot execute because they are starving: the WCMT will be completely
added to the JPEG WCRT, as it would happen for the general case of the full-stalling approach:

WCRT ps migjpeg = WCRTjpeg +WCMTIQZZ = WCRT fs migjpeg

The scenario is depicted on the Gantt chart on Figure 4.21.

Figure 4.21: The Gantt chart in figure shows an hypothetical worst-case flow scenario for the
IQZZ migration

In the second one, the migration of IQZZ is issued when IDCT is having the last of its 10
executions, meaning that the migration will start when this is done, and the non-RoC tasks will

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 53

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

have all of the necessary tokens available to execute, e.g. they will not starve. So the mechanism
starts at the same moment as CC starts executing; in this case the JPEG WCRT would be not
increased, if the WCMT is smaller than the response times of the non-RoC tasks, or would be
increased by the minimal δ quantity that we will call ε:

WCRT ps migjpeg = WCRTjpeg + ε

where

(4.17)

ε =

{
0 if WCMTmigrated task ≤WCRTnon RoC

WCMTmigrated task −WCRTnon RoC otherwise

with

WCRTnon RoC =
∑

τ /∈RoC,after migrated task

WCETτ

with migrated task being IQZZ in our experiment and the WCRTnon RoC being the sum of the
WCET s of CC and RASTER. The scenario is depicted on the Gantt chart on Figure 4.22.

Figure 4.22: The Gantt chart in figure shows an hypothetical best case flow scenario for the IQZZ
migration

In the scenario of our case study (WCET s are provided in Appendix B) with the same setting
of the experimental migration of IQZZ (subscenario I, for instance), we would have the following
values:

WCRTjpeg = 2155376cycles
WCMTIQZZ = 651101cycles

with WCMTIQZZ being 30.2% of the cycle size of WCRTjpeg. We would thus define:

WCRT IQZZ ps mig
jpeg = WCRTjpeg + δ

where 0 ≤ δ ≤ WCMTIQZZ = 651101 (and, in case of best situation: δ = ε = 0). Meaning that
the relative time overhead added to WCRTjpeg, would oscillate between 0% (in the best case) and
30.2% (in the worst case).

54 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

CHAPTER 4. TIME MODEL AND EXPERIMENTATION

4.3 Summary of the Results

From the experimentation of the time model on the case study, we have seen that the former can
be used to compute an upper bound on the designed partial-stalling task migration. In the CC
and IQZZ migration examples that we saw, the computed WCMTs do not differ more than 55%
compared with the corresponding empirical values from the measurement results. Nonetheless,
the 50+% errors are obtained when the likely number of preemption just passes the nearest integer
(1.06 and 1.22) triggering particularly pessimistic estimations. The results of the measurement
show in fact that the most pessimistic prediction happens when approximating the number of
preemptions to the upper integer; when the likely number of preemptions gets closer to the upper
integer, like 0.77 and 0.76, the final error is definitely smaller, 16.59% and 22.36% respectively.
Considering that, with the used implementation, triggering the real worst-case is unlikely, we can
expect the actual ∆ to be even smaller than in the presented results in a real use case; we could
then say that the upper bound computed with the presented time model is, yes, pessimistic, but
just by a quantifiable magnitude (as we saw in Figures 4.11, 4.15 and 4.19).
∆ is clearly increased when we consider the interaction of the TDM frames of the two tiles during
the migration phases. This becomes more visible if we take a look at the single migration API
functions execution times (on Tables 4.4 and 4.11). Before taking in account the effect of the
TDM frame interaction between the two tiles and the preemptions, the error, is kept small, with
a maximum of 7.04% for the IQZZ migration.
In any kind of task migration where moving the state of the task to migrate is necessary, the
state moving functionality is always the bottleneck. In fact, regarding the results on the migration
API functions execution of our implemented mechanism, it appears clear that the bigger are the
involved FIFOs and the more the execution of the push state and pull state will be significant,
dwarfing the execution time of the other functions (as we saw with our experimentation, in Figures
4.17 and 4.18). The model computed FIFO moving times compared to the resulting ones from
timer measurement, demonstrated that the bigger these are and the more the preemptions of
the migration phases will be likely (in relation with the size of the SA service slot, as we saw)
stretching in this way the total migration time.
From these considerations, we can affirm that the time estimation model of the presented partial-
stalling migration mechanism suggests that a parameter compromise must be found depending on
the use case. Given an application, the most likely tasks to be migrated of it and the frequency of
migration the resource manager using the mechanism might apply, a TDM frame with a certain SA
slot number can be derived to have a least possible overhead while still benefit of such migration
measure.
Least but not last, we saw in the second migration example of actor IQZZ (Section 4.2.2), an
analysis of the impact of the computed WCMT on the total cumulative application WCRT .
Here, it was proven that the time overhead δ is at most as impactful as the best possible case of
the same migration with full stalling approach, following in:

WCRT ps migapp ≤WCRT fs migapp (4.18)

the WCMTmigrated task is therefore the upper bound on the overhead δ, introduced by the mi-
gration of the migrated task:

0 ≤ δ ≤WCMTmigrated task (4.19)

with the addition that, for PSTM, the overhead δ can be also null in the best case situation.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 55

Chapter 5

Conclusions

We have seen in this thesis a variant technique of the task migration. The dissertation began from
the design of the mechanism, passing by the implementation and culminated with the experiment-
ation; the latter was made possible through a detailed demonstration of the purposely crafted
timing model. In essence, the presented work has shown that, in a predictable environment, it is
possible to innovate and redesign resource management techniques while also giving an estimation
of the expected performance (in this case, in terms of execution time). The designed Partial-
Stalling Task Migration proved itself to be optimal compared to the same mechanism with the
classic full-stalling approach, especially in scenarios where the target application has tasks with
long execution times). Here, the long execution time of a task A, can be invested into executing
a migration of another task Z that has no communication constraints with A. Compared to the
state of the art seen in 2.2, this thesis work offers an alternative view of the general task migra-
tion technique, focusing on a more resource constrained environment, but, most importantly, an
environment that offered beforehand and runtime measurability and therefore the possibility of
estimating (with the same platform and the same application MoC) any kind of use case applied
to it. Moreover, this thesis showed that building a design time estimation model with a limited
error introduction, like the one that has been shown, in a system with a predictable platform and
predictably modelled applications is always possible.

Future Work

Considering the outcome of this thesis, many branches can take place to open the development
of new works. The main upgrades that can be implemented concern the software; it is also im-
portant to mention that calling them upgrades strongly depends on the scenario and use case in
consideration.
The first to mention is the following. At startup time, task duplication, namely the load of all
the application actors and involved FIFO channels on every involved tile, might be avoided. This
happens by dynamically loading (or removing) the needed (or not) tasks and FIFOs only when a
task migration happen. The advantage of this approach is that the memory footprint is reduced
both locally and globally; not having a task allocated on a tile means that all the the needed
control blocks for the actor and the FIFO buffers are not there. The major drawback is that, of
course, each migration process will be significantly longer since, every time, a task control block
and 2 or more FIFO control blocks will have to be loaded before moving the context.
Moving on, the partial-stalling characteristic of the task migration mechanism from the presented
thesis might be exploited for migration-time execution optimisation. For example, both consump-
tion and production buffers of tasks out of the region of communication of the task to be migrated,
might be dynamic in size in order to allow these to execute as much as possible during the mi-
gration window. Even though this is a way to keep a significant throughput during migration,
additional buffer backpressure, which is already a drawback of partial-stalling migrations with
static buffer sizes, will be an outcome of such technique. Also, making the buffer size dynamic

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 57

CHAPTER 5. CONCLUSIONS

might affect predictability principle; moreover, more time during migration will be spent to expand
the buffers (and it will be time spent on tasks and FIFOs that are not involved in the region of
communication).
The current implementation allocates all the necessary control blocks and buffers sequentially in
order to avoid memory segmentation. Such approach is not optimal, for MPSoCs with reduced
memory space. An improvement on this side would be to dynamically allocate portions of the CBs
only when these are necessary. They are not used, in fact, for the whole execution time, especially
if a task is not active on that specific PE or if a FIFO buffer is unused (which happens when both
of the producing and consuming tasks are not active on the local tile). This improvement would
definitely reduce the memory footprint, but it would also mean that now the memory is prone to
segmentation, especially because the core of the involved CB is still allocated. Henceforth, this
approach must come together with dynamic loading and memory desegmentation, meaning that
more processing time will be invested despite the need of high throughput from RT applications.
Migrating more than one task ad the time, is also a possible future implementation outcome. In
such scenario, an additional migration step would have to be taken to intersect the involved RoCs
and verify in which way the buffers should be moved. Nonetheless, many more FIFOs will be in-
volved, making necessary further analysis to check whether migrating one task after another with
the current implementation has still less overhead than this hypothetical multiple task migration.
Another way to speedup the migration process, would be to dynamically manage the TDM frames
during a migration. In case there are empty slots that are not allocated or not being used, these
could be temporarily used to execute the SA and therefore the migration daemon, allocating in
such way more processor cycles per each TDM cycle for the migration. In such approach, it
must also be considered that by reallocating slots one must be careful to not impact the already
allocated applications that are still executing; this would in fact affect both predictability and
composability.
Another approach might as well take in account the interruption in the middle of the migration
process due to a new decision from the resource manager. Here, instead of ending the migration
regularly, and then re-migrate the involved task back, a backtracking mechanism could be imple-
mented so that if a migration decision is retracted, this can be done right away without waiting
for the migration to end plus redoing all of the steps in the opposite way to re-migrate.
To conclude, regarding the overhead estimation, in this thesis we assumed the pessimistic scenario
where input data is available at any time for the first actor whenever output data for the previous
input has been delivered (like a DF back edge from the last actor to the first). In a ”closer to
real”, more precise and less pessimistic analysis, one should take in account that input data might
arrive periodically and that the first actor might start computing over it as soon as it is available,
if the production buffers are big enough to store new tokens before the old ones are parsed (e.g. a
new iteration enters the pipeline). This might be the case of raw input coming from a camera for
example. Estimating the overhead introduced by the migration in such scenario is more complex
but would also be more precise, because the δ would be spread over several iterations instead of
just one (as shown in Chapter 4); giving a more fine grained view of δ. We started developing the
mathematics to account also this case, but since it was incomplete, it has not been included in
this thesis.

58 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Bibliography

[1] Verintec solutions, 2020. 4, 7

[2] Gabriel Marchesan Almeida, Sameer Varyani, Rémi Busseuil, Gilles Sassatelli, Pascal Benoit,
Lionel Torres, Everton Alceu Carara, and Fernando Gehm Moraes. Evaluating the impact of
task migration in multi-processor systems-on-chip. In Proceedings of the 23rd symposium on
Integrated circuits and system design, pages 73–78, 2010. 15

[3] Hadi Alizadeh Ara, Marc Geilen, Amir Behrouzian, Twan Basten, and Dip Goswami. Com-
positional dataflow modelling for cyclo-static applications. In 2018 21st Euromicro Conference
on Digital System Design (DSD), pages 121–129. IEEE, 2018. 3

[4] Oliver Arnold and Gerhard Fettweis. Adaptive runtime management of heterogenous mpsocs:
Analysis, acceleration and silicon prototype. In 2014 International Symposium on System-
on-Chip (SoC), pages 1–4. IEEE, 2014. 14

[5] Stefano Bertozzi, Andrea Acquaviva, Davide Bertozzi, and Antonio Poggiali. Supporting task
migration in multi-processor systems-on-chip: a feasibility study. In Proceedings of the Design
Automation & Test in Europe Conference, volume 1, pages 1–6. IEEE, 2006. 16, 17, 24, 25,
28

[6] Eduardo Wenzel Brião, Daniel Barcelos, and Flávio Rech Wagner. Dynamic task allocation
strategies in mpsoc for soft real-time applications. In 2008 Design, Automation and Test in
Europe, pages 1386–1389. IEEE, 2008. 16

[7] Guilherme Castilhos, Marcelo Mandelli, Guilherme Madalozzo, and Fernando Moraes. Dis-
tributed resource management in noc-based mpsocs with dynamic cluster sizes. In 2013 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pages 153–158. IEEE, 2013. 15

[8] Taho Dorta, Jaime Jiménez, José Luis Mart́ın, Unai Bidarte, and Armando Astarloa. Recon-
figurable multiprocessor systems: a review. International Journal of Reconfigurable Comput-
ing, 2010, 2010. xi, 2

[9] FangFa Fu, Liang Wang, Yu Lu, and Jinxiang Wang. Low overhead task migration mechanism
in noc-based mpsoc. In 2013 IEEE 10th International Conference on ASIC, pages 1–4. IEEE,
2013. 16, 25

[10] Laurent Gantel, Salah Layouni, Mohamed El Amine Benkhelifa, François Verdier, and
Stéphanie Chauvet. Multiprocessor task migration implementation in a reconfigurable plat-
form. In 2009 International Conference on Reconfigurable Computing and FPGAs, pages
362–367. IEEE, 2009. 17, 21, 28

[11] Marc Geilen. Synchronous dataflow scenarios. ACM Transactions on Embedded Computing
Systems (TECS), 10(2):1–31, 2011. 3

[12] Kees Goossens, Arnaldo Azevedo, Karthik Chandrasekar, Manil Dev Gomony, Sven Goossens,
Martijn Koedam, Yonghui Li, Davit Mirzoyan, Anca Molnos, Ashkan Beyranvand Nejad, et al.
Virtual execution platforms for mixed-time-criticality systems: the compsoc architecture and
design flow. ACM SIGBED Review, 10(3):23–34, 2013. 4

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 59

BIBLIOGRAPHY

[13] Kees Goossens, Martijn Koedam, Andrew Nelson, Shubhendu Sinha, Sven Goossens, Yonghui
Li, Gabriela Breaban, Reinier van Kampenhout, Rasool Tavakoli, Juan Valencia, et al. Noc-
based multiprocessor architecture for mixed-time-criticality applications., 2017. 4, 8

[14] Shashi Kumar, Axel Jantsch, J-P Soininen, Martti Forsell, Mikael Millberg, Johny Oberg,
Kari Tiensyrja, and Ahmed Hemani. A network on chip architecture and design methodology.
In Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for
VLSI Systems Design. ISVLSI 2002, pages 117–124. IEEE, 2002. 2

[15] Marcelo Mandelli, Guilherme M Castilhos, and Fernando G Moraes. Enhancing perform-
ance of mpsocs through distributed resource management. In 2012 19th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS 2012), pages 544–547. IEEE, 2012.
14

[16] Gabriel Marchesan Almeida, Gilles Sassatelli, Pascal Benoit, Nicolas Saint-Jean, Sameer
Varyani, Lionel Torres, and Michel Robert. An adaptive message passing mpsoc framework.
International Journal of Reconfigurable Computing, 2009, 2009. 15

[17] Andrew Nelson, Ashkan Beyranvand Nejad, Anca Molnos, Martijn Koedam, and Kees Goos-
sens. Comik: A predictable and cycle-accurately composable real-time microkernel. In 2014
Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1–4. IEEE,
2014. 8, 20

[18] Vincent Nollet, Prabhat Avasare, J-Y Mignolet, and Diederik Verkest. Low cost task migra-
tion initiation in a heterogeneous mp-soc. In Design, Automation and Test in Europe, pages
252–253. IEEE, 2005. 16

[19] Vincent Nollet, Théodore Marescaux, Prabhat Avasare, Diederik Verkest, and J-Y Mignolet.
Centralized run-time resource management in a network-on-chip containing reconfigurable
hardware tiles. In Design, Automation and Test in Europe, pages 234–239. IEEE, 2005. 16,
22

[20] Behnaz Pourmohseni, Stefan Wildermann, Michael Glaß, and Jürgen Teich. Predictable run-
time mapping reconfiguration for real-time applications on many-core systems. In Proceedings
of the 25th International Conference on Real-Time Networks and Systems, pages 148–157,
2017. 17

[21] Ahsan Shabbir, Akash Kumar, Bart Mesman, and Henk Corporaal. Distributed resource
management for concurrent execution of multimedia applications on mpsoc platforms. In
2011 International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation, pages 132–139. IEEE, 2011. 14

[22] Shubhendu Sinha, Martijn Koedam, Rob Van Wijk, Andrew Nelson, Ashkan Beyranvand
Nejad, Marc Geilen, and Kees Goossens. Composable and predictable dynamic loading for
time-critical partitioned systems. In 2014 17th Euromicro Conference on Digital System
Design, pages 285–292. IEEE, 2014. 14

[23] Pranav Tendulkar and Sander Stuijk. A case study into predictable and composable mpsoc
reconfiguration. In 2013 IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, pages 293–300. IEEE, 2013. 15

60 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Appendix A

Verintec MPSoC

The Verintec MPSoC is an FPGA based platform constructed with hardware virtualization (the
used FPGA is the PYNQ-Z2 board, shown in Figure A.2). This technique has the aim of adding
a layer of abstraction between the applications and the hardware (the virtualization layer, the
VEP in Figure A.1), that creates a virtualized environment for them to be deployed on. The
µkernel (which is an entity named hypervisor in general virtualization techniques) is the vector
that provides the virtual resources for the VEP, and therefore for the application to execute.

Figure A.1: A schematic of the Verintec virtualization

The hardware processor can run software (main) but also interrupt (int.) and exception handlers
(exc.). These are virtualized through the virtual processor layer, therefore the application uses
indirectly the hardware processor by using the virtual one.

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 61

APPENDIX A. VERINTEC MPSOC

Figure A.2: The PYNQ-Z2 board

The memory, on the other side, is instanciated by mapping the BRAM blocks present on the
FPGA; The routings are then statically defined by means of virtual memory mapping. The
virtual processor can then access the addresses directly by having the virtual address; however, it
cannot access the global physical addresses, since they might be part of a different virtualization
(of another processor), notching out the composability principle.

62 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Appendix B

JPEG decoder

The JPEG decoder application has been introduced in Chapter 1, where also the data-flow model
has been shown (on Figure 1.5). By using the processor timer, the single JPEG decoder actor
execution times where measured; the detected actor worst case execution times for the case study
using the cat.jpg (Figure B.1) test image are shown below on Table B.1.

Actor WCET (cycles)

V LD 489888
IQZZ 7609
IDCT 10283
CC 33473

RASTER 1453095

Table B.1: The JPEG decoder actors worst case response times for decoding cat.jpg

Figure B.1: cat.jpg, the used test image to keep the JPEG decoder application running

JPEG Data-Flow Algorithm

A quick overview of the JPEG decoder data-flow is given, for ease of comprehension following the
graph on Figure 1.5 is advised. The VLD actor takes as global input a block of the input JPEG
encoded image, and decodes its JPEG format header data. This first task, when complete, feeds

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 63

APPENDIX B. JPEG DECODER

the rest of the graph by outputting 10 FValue tokens in the direction of the IQZZ, a SubHeader1
token towards the CC and a SubHeader2 token towards RASTER. The IQZZ performs the inverse
quantization on the FValues and outputs, for each of them, a PValue, that is then processed by the
IDCT task. The latter performs a cosine transform on the PValues and outputs, for each of them, a
PBlock. The CC can now fire, having the 10 necessary PBlocks and the SubHeader1, generating
a ColorBuffer on the edge that goes to the last task: RASTER. This one, fires, operating the
rasterization on the color converted image from the ColorBuffer with the use of the information
on the SubHeader2. A binary decoded block of the initial image is given as global output.

64 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

Appendix C

Migration API

Updated Functions

Several minor/major changes have been done on some already existing pose library functions in
order to support the migration mechanism. The most relevant ones are listed here:

• void os add task(... int active ...) This is the function that creates the TCB for a
given task. The function initialises the relevant TCB flags for migration: active with the
passed value and suspended with 0.

• void os add fifo(... int locality ...) This is the function that creates the FCB for
a given FIFO channel. The function now allows the FCB to store the buffer and counters
shared and backup allocations, so that they are retrievable when necessary (on FIFO update
due to migration). The function also initialises the locality flag with the passed value.

• int os check task fr (int task id) This function determines whether a task is schedulable
or not. It is used by another function, TCB* os schedule task(), to schedule the next avail-
able task. An if statement check inside of it has been added to make a task with id task id

unschedulable if it is suspended or inactive.

Migration API Functions

In this subsection more detail to the add-on functions of pose library is given. These are funda-
mental for obtaining a working non-stalling task migration.

• void os migration [activate/deactivate] task(int task id)

Sets the active flag for the task with id task id to value 1 for activation and 0 for deac-
tivation.

• void os migration [resume/suspend] task(int task id)

Sets the suspended flag for the task with id task id to value 1 for suspension and 0 for
resumption.

• void os migration [resume/suspend] adjacent tasks(int task id)

Sets the suspended flag, for the the tasks adjacent to the task with id task id and active
on the involved tile, to value 1 for suspension and 0 for resumption.

• void os migration push task state (int task id)

Initialises the push to the shared memory of the context of each FIFO that allows the task
with id task id to communicate (namely the FIFOs on the task consuming and producing
edges).

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 65

APPENDIX C. MIGRATION API

• void os migration fifo out(FCB * fifo)

Pushes the context of the FIFO pointed by *fifo to the shared memory and updates the
FIFO channel depending on the current source tile locality of it to the most optimal
position.

• void os migration pull task state (int task id)

Initialises the pull from the shared memory of the context of each FIFO channel that allows
the task with id task id to communicate (again, the FIFOs on the task consuming and
producing edges).

• void os migration fifo in(FCB * fifo)

Pulls from the shared memory the context of the FIFO pointed by *fifo and updates the
FIFO depending on the current destination tile locality of it.

• void os migration copy buffer(void * dst, void * src, int size)

Copies a FIFO buffer of size size from the source pointer by *src to the destination pointed
by *dst. The function is used by os migration fifo out and os migration fifo in to
move the FIFO buffer content.

The workflow of the most complex functions, to suspend/resume the adjacent tasks and to
push/pull the task state, is shown on the following listings. The code is a simplified pseudo
C code for ease of depiction.

/∗
∗ RESUME ADJACENT TASKS
∗ resumes adjacent ta sk s to the passed task
∗ that are a c t i v e (with in the t i l e)
∗/

void o s m i g r a t i o n r e s u m e a d j a c e n t t a s k s (task t) {

/∗ Retr i eve producing ta sk s to resume ∗/
f o r (j = 0 ; j < num prod f i f o s ; j ++) {

/∗ i gno r e s e l f edges , the task adjacent through a s e l f edge i s the passed task
i t s e l f ∗/

i f (f i f o l o c a l i t y != 0) {
i f (task on edge−>a c t i v e) {

os mig ra t i on r e sume ta sk (ta sk on edge) ;
}

}
}

/∗ Retr i eve consuming ta sk s to resume ∗/
f o r (j = 0 ; j < num cons f i f o s ; j ++) {

/∗ i gno r e s e l f edges , the task adjacent through a s e l f edge i s the passed task
i t s e l f ∗/

i f (f i f o l o c a l i t y != 0) {
i f (task on edge−>a c t i v e) {

os mig ra t i on r e sume ta sk (ta sk on edge) ;
}

}
}

}

/∗
∗ SUSPEND ADJACENT TASKS
∗ suspends adjacent ta sk s to the passed task
∗ that are a c t i v e (with in the t i l e)
∗/

void o s m i g r a t i o n s u s p e n d a d j a c e n t t a s k s (task t) {

/∗ Retr i eve producing ta sk s to suspend ∗/
f o r (j = 0 ; j < num prod f i f o s ; j ++) {

/∗ i gno r e s e l f edges , the task adjacent through a s e l f edge i s the passed task
i t s e l f ∗/

66 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

APPENDIX C. MIGRATION API

i f (f i f o l o c a l i t y != 0) {
i f (task on edge−>a c t i v e) {

o s mig ra t i on su spend ta sk (ta sk on edge) ;
}

}
}

/∗ Retr i eve consuming ta sk s to suspend ∗/
f o r (j = 0 ; j < num cons f i f o s ; j ++) {

/∗ i gno r e s e l f edges , the task adjacent through a s e l f edge i s the passed task
i t s e l f ∗/

i f (f i f o l o c a l i t y != 0) {
i f (task on edge−>a c t i v e) {

o s mig ra t i on su spend ta sk (ta sk on edge) ;
}

}
}

}

Listing C.1: Simplified C code representation of the suspension and resumption of the τ adjacent
tasks API functions

/∗
∗ MIGRATE FIFOS − DESTINATION
∗ r e t r i e v e s the the wr i t e / read counter s
∗ and the b u f f e r content and r e l o c a t e s
∗ the f i f o s on the d e s t i n a t i o n t i l e to the
∗ most optimal p o s i t i o n accord ing to the
∗ prev ious l o c a l i t y f o r the passed FIFO
∗/

void o s m i g r a t i o n f i f o i n (f i f o f) {
switch (f i f o l o c a l i t y) {

case 0 :
// f i f o i s a s e l f edge , r e t r i e v e data from shared l o c a t i o n
c u r r e n t w r i t e c = sha r ed wr i t e c ;
cu r r en t r eadc = shared readc ;
o s m i g r a t i o n c o p y b u f f e r (c u r r e n t b u f f e r , sha r ed bu f f e r , t o t a l b u f f e r s i z e) ;
break ;

case 1 :
// shouldn ’ t occur .
break ;

case 2 :
// f i f o i s shared , i t w i l l become o f l o c a l i t y 1 so update the cur rent p t r s to

l o c a l
wr i t e c = l o c a l w r i t e c ;
readc = l o c a l r e a d c ;
b u f f e r = l o c a l b u f f e r ;
// r e t r i e v e the data from the shared l o c a t i o n
c u r r e n t w r i t e c = sha r ed wr i t e c ;
cu r r en t r eadc = shared readc ;
o s m i g r a t i o n c o p y b u f f e r (c u r r e n t b u f f e r , sha r ed bu f f e r , t o t a l b u f f e r s i z e) ;
f i f o l o c a l i t y = 1 ;
break ;

case 3 :
// f i f o was unused , i t w i l l become o f l o c a l i t y 2 so update the cur rent p t r s

to shared
wr i t e c = sha r ed wr i t e c ;
readc = shared readc ;
b u f f e r = s h a r e d b u f f e r ;
f i f o l o c a l i t y = 2 ;
break ;

d e f a u l t :
break ;

}
}

/∗

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 67

APPENDIX C. MIGRATION API

∗ MIGRATE FIFOS − SOURCE
∗ backs up the the wr i t e / read counter s
∗ and the b u f f e r content and r e l o c a t e s
∗ the f i f o s on the source t i l e to the
∗ most optimal p o s i t i o n accord ing to the
∗ prev ious l o c a l i t y f o r the passed FIFO
∗/

void o s m i g r a t i o n f i f o o u t (f i f o f) {
switch (f i f o l o c a l i t y) {

case 0 :
// s e l f edge , data must be pushed to shared l o c a t i o n
sha r ed wr i t e c = c u r r e n t w r i t e c ;
shared readc = cur r en t r eadc ;
o s m i g r a t i o n c o p y b u f f e r (sha r ed bu f f e r , c u r r e n t b u f f e r , t o t a l b u f f e r s i z e) ;
break ;

case 1 :
// f u l l y l o c a l f i f o with in the t i l e , data must be pushed to shared l o c a t i o n
sha r ed wr i t e c = c u r r e n t w r i t e c ;
shared readc = cur r en t r eadc ;
o s m i g r a t i o n c o p y b u f f e r (sha r ed bu f f e r , c u r r e n t b u f f e r , t o t a l b u f f e r s i z e) ;
// f i f o w i l l become o f l o c a l i t y 2 , so update cur rent p t r s to shared
wr i t e c = sha r ed wr i t e c ;
readc = shared readc ;
b u f f e r = s h a r e d b u f f e r ;
f i f o l o c a l i t y = 2 ;
break ;

case 2 :
// shared f i f o , w i l l become o f l o c a l i t y 3 so do nothing
f i f o l o c a l i t y = 3 ;
break ;

case 3 :
// doesn ’ t occur .
break ;

d e f a u l t :
break ;

}
}

/∗
∗ PULL FIFOS − DESTINATION
∗ t r i g g e r s the inwards migrat ion o f producing
∗ and consuming FIFOs o f the passed task
∗/

void o s m i g r a t i o n p u l l t a s k s t a t e (task t) {

/∗ Check producer f i f o s ∗/
f o r (j = 0 ; j < num prod f i f o s ; j ++) {

/∗ s e l f edge w i l l appear a l s o in consuming f i f o s loop so we sk ip i t here ∗/
i f (f i f o l o c a l i t y == 0)

cont inue ;
o s m i g r a t i o n f i f o i n (f i f o o n e d g e) ;

}

/∗ Check consumer f i f o s ∗/
f o r (j = 0 ; j < num cons f i f o s ; j ++) {

o s m i g r a t i o n f i f o i n (f i f o o n e d g e) ;
}

}

/∗
∗ PUSH FIFOS − SOURCE
∗ t r i g g e r s the outwards migrat ion o f producing
∗ and consuming FIFOs o f the passed task
∗/

void o s m i g r a t i o n p u s h t a s k s t a t e (TCB∗ task) {
/∗ Check producer f i f o s ∗/
f o r (j = 0 ; j < num prod f i f o s ; j ++) {

68 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

APPENDIX C. MIGRATION API

/∗ s e l f edge w i l l appear a l s o in consuming f i f o s loop so we sk ip i t here ∗/
i f (f i f o l o c a l i t y == 0)

cont inue ;
o s m i g r a t i o n f i f o o u t (f i f o o n e d g e) ;

}

/∗ Check consumer f i f o s ∗/
f o r (j = 0 ; j < num cons f i f o s ; j ++) {

o s m i g r a t i o n f i f o o u t (f i f o o n e d g e) ;
}

}

Listing C.2: Simplified C code representation of the push state and pull state API functions

Migration API Timing Model

As described in the thesis, the derived timing model is made of two parts: one dependant ex-
clusively on the migration mechanism and the other dependant on the TDM scheduling of the
applications, including the SA (who runs the migration daemon). In this appendix more detail is
given to the timing functions that are used to compute the migration mechanism expected upper
bound at design time.
By taking another look at Figure 4.1 we can see which are the involved migration API functions
to be time measured. The timing functions to compute their own upper bound singularly follow.

Suspension/Resumption and Activation/Deactivation of a task τ

The functions to suspend/resume/activate/deactivate a task τ do not involve any of the variables
that influence the execution time. The involved API functions, in fact, fulfill their purpose just
by manipulating the TCB of τ with no data involved. Therefore the dynamic part of the timing
equation will be equal to zero, meaning that any task of any application, on the Verintec platform,
will take the cycles shown here on C to be suspended/resumed.

time (SUSPEND(t)) =
7 + // func . overhead
1 = // execut ion
8 c y c l e s

time (RESUME(t)) =
6 + // func . overhead
1 = // execut ion
7 c y c l e s

time (ACTIVATE(t)) =
7 + // func . overhead
2 = // execut ion
9 c y c l e s

time (DEACTIVATE(t)) =
7 + // func . overhead
1 = // execut ion
8 c y c l e s

Listing C.3: Timing equations to compute the Suspension/Resumption API functions and
Activation/Deactivation API functions worst case timings

Writing/Reading communication barrier flags

We have seen in Chapter 3 that the migration daemons on the source and destination tile com-
municate over the shared memory to assure the correct transfer of context data, and we have seen

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 69

APPENDIX C. MIGRATION API

that this happens by using mutex flags on the shared memory channel between the two tiles. Also
in this case, their timing would be the same for any application on the Verintec MPSoC, since the
operation is, in essence, just a write/read of a variable.

time (WRITE BARRIER FLAG) = 6 c y c l e s

time (READ BARRIER FLAG) = 12 c y c l e s

Listing C.4: Flag reading and writing worst case timings

Suspension/Resumption of tasks adjacent to τ

In order to ensure that the Region of Communication of task τ is quiescent during the migration
process, we have seen that the tasks within the region must be also suspended (and resumed once
the mechanism is complete). Differently form the single suspension/resumption of τ , this time we
have variables involved: the number of self edges on τ and the number of incoming and outgoing
edges on τ .

time (SUSPEND ADJACENT(t)) =
37 + // func . overhead
7 + // prod . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e
f o r each (produc ing edge)

41 + // loop c y c l e
i f a c t i v e (ta sk on edge)

2 // suspens ion o f invo lved task
7 + // cons . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e
f o r each (consuming edge)

41 + // loop c y c l e
i f a c t i v e (ta sk on edge)

2 // suspens ion o f invo lved task

time (RESUME ADJACENT(t)) =
37 + // func . overhead
7 + // prod . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e
f o r each (produc ing edge)

41 + // loop c y c l e
i f a c t i v e (ta sk on edge)

1 // resumption o f invo lved task
7 + // cons . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e
f o r each (consuming edge)

41 + // loop c y c l e
i f a c t i v e (ta sk on edge)

1 // resumption o f invo lved task

Listing C.5: Timing equations to compute the Suspension/Resumption of τ adjacent tasks API
functions worst case timings

Push/Pull of tasks τ context

The most time expensive parts of the migration are related to the push and pull of the migration
mechanism (on source and destination). The long duration of these API functions happens because
their dynamic part is proportional to many variables, such as: the number of self edges on τ , the
number of incoming and outgoing edges on τ , call of nested functions, buffer size and token size.

70 A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC

APPENDIX C. MIGRATION API

time (PUSH FIFO(f)) =
25 + // func . overhead
10 + // switch overhead
switch (f i f o l o c a l i t y)

case (0) : 15 + // 0 : f i f o was on a s e l f edge
(14∗ b u f f e r s i z e ∗ t o k e n s i z e) // 14 c y c l e s to t r a n s f e r a B

case (1) : 16 + // 1 : f i f o wads f u l l y l o c a l
(14∗ b u f f e r s i z e ∗ t o k e n s i z e) // 14 c y c l e s to t r a n s f e r a B

case (2) : 15 // 2 : f i f o was shared

time (PULL FIFO(f)) =
25 + // func . overhead
10 + // switch overhead
switch (f i f o l o c a l i t y)

case (0) : 15 + // 0 : f i f o was on a s e l f edge
(14∗ b u f f e r s i z e ∗ t o k e n s i z e) // 14 c y c l e s to t r a n s f e r a B

case (2) : 16 + // 2 : f i f o was shared
(14∗ b u f f e r s i z e ∗ t o k e n s i z e) // 14 c y c l e s to t r a n s f e r a B

case (3) : 15 // 0 : f i f o was unused

time (PUSH STATE(t)) =
20 + // func . overhead
7 + // prod . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e overhead
fo r each (produc ing edge)

41 + // loop c y c l e overhead
time (PUSH FIFO(f i f o o n e d g e)) // push invo lved f i f o

7 + // cons . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e overhead
fo r each (consuming edge)

41 + // loop c y c l e overhead
time (PUSH FIFO(f i f o o n e d g e)) // push invo lved f i f o

time (PULL STATE(t)) =
20 + // func . overhead
7 + // prod . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e overhead
fo r each (produc ing edge)

41 + // loop c y c l e overhead
time (PULL FIFO(f i f o o n e d g e)) // p u l l invo lved f i f o

7 + // cons . loop overhead
fo r each (s e l f e d g e)

28 + // loop c y c l e overhead
fo r each (consuming edge)

41 + // loop c y c l e overhead
time (PULL FIFO(f i f o o n e d g e)) // p u l l invo lved f i f o

Listing C.6: Timing equations to compute the Push FIFO state/Pull FIFO state of τ FIFO buffers
API functions worst case timings

A Predictable Task Migration Mechanism with Partial Application Stalling on a MPSoC 71

	Contents
	List of Figures
	List of Tables
	Abbreviations
	Definitions
	Introduction
	Basic Concepts
	Multi-Processor System on Chip
	Data-Flow Model of Computation
	Predictability and Composability

	Problem Statement
	Case Study
	Image Processing Application: JPEG Decoder
	Verintec MPSoC

	Thesis Structure

	Methodology
	Proposed Solution
	Dynamic Reconfiguration
	Partial-Stalling Task Migration
	Project Milestones

	Related Work

	Design and Implementation of the Solution
	Test Application
	Multiprocess Instance
	RTOS Library pose Expansion: the Migration API
	Task Duplication
	Migration API

	Migration Daemon
	Migration Sequence
	Partial-Stalling Task Migration Example

	Time Model and Experimentation
	Time Model
	Migration Phases Worst-Case Times
	Time Division Multiplexing Worst-Case Scenario
	Subsequent Migrations

	Experimentation on the Case Study and Results
	First Measured Migration: CC task
	Second Migration: IQZZ task
	Subsequent Migrations: CC then IQZZ
	Impact of on the application WCRT

	Summary of the Results

	Conclusions
	Bibliography
	Verintec MPSoC
	JPEG decoder
	Migration API

