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Abstract—It is of interest to the medical field to localize
abnormalities in large volumes of medical images. Medical images
usually comes with two types of annotations – annotations that
indicate the presence of an abnormality, and annotations that
indicate the exact location of abnormalities. Annotations with
exact locations in medical imaging are scarcely available, limiting
the use of established fully supervised algorithms for localizing
abnormalities. Thus, medical imaging often relies on multiple
instance learning (MIL). MIL algorithms rely only on annotations
about the presence of an abnormality, which are more widely
available, and can perform classification about the presence or
location of an abnormality. This type of inference, however, may
lead to unstable localization.

This paper studies stability of localization of abnormalities in
MIL algorithms in deep learning architectures. We propose two
alternative measures of stability, based on the correlation between
predictions; and based on localization agreement between two
predictions. Using the proposed scores, we investigate the stability
on two large public medical datasets with a common deep learning
architectures for MIL. We explore the relationship between sta-
bility and performance across various MIL aggregation functions.

I. INTRODUCTION

Researchers in the medical field apply machine learning on
medical images for computer-aided diagnosis and computer-
aided detection [1]–[3]. Computer-aided detection specializes
in localizing abnormalities in medical images. However, the
detection of abnormalities is challenging due to the limited
availability and quality of data annotations. Two types of
annotations are differentiated. The first type annotates the
absence or presence of an abnormality in the image as a
whole, and the other type indicates the specific abnormality
location within the image. An example is shown in Figure 1.
Labels in medical imaging often only indicate the presence
of an abnormality, as annotations about exact locations are
costly, time-consuming and require the expertise of people
in the domain. Hence, to overcome the absence of location
annotations, classifiers in such settings are frequently trained in
a weakly supervised manner [4], [5], such as multiple instance
learning (MIL).

Originally introduced by Dietterich et al. [6], multiple
instance learning is an extension of supervised learning. Simi-
larly to fully supervised algorithms, multiple instance learning
relies on labeled observations. However, in MIL, observations
are defined as a set of bags, where every bag consists of
multiple instances. A bag is often an image, and instances
are segments of the associated image. Annotation indicating
the presence of an abnormality in an entire image is referred
to as bag-level annotation, and annotation specifying the exact
location of an abnormality is called instance-level annotation.
Figure 1a demonstrates a bag-level annotation, and Figure 1b
shows instance-level annotation.

MIL classifiers are often trained only on available bag
labels. However, we are ultimately interested in both, bag and
instance labels, and MIL classifiers can be designed to predict
instances or bags. This type of weak supervision facilitated
the application and research of machine learning algorithms
in fields where labeled data is rather limited. The limited

(a) (b)

Fig. 1: Types of annotation (a) Annotation indicating pres-
ence of an abnormality (in red) in the image as a whole
(b)Annotation indicating exact location of healthy tissues (in
green) or abnormal tissues (in red) on specific locations.

labeled data in medical field lends itself well to the use
of MIL methods. Furthermore, MIL algorithms perform well
on various imaging modalities. Successful accounts include
computed and optical tomography, radiography, ultrasound,
and MRI scans [7], [8] on various anatomic structures such
as the brain, eyes, breasts, lungs, abdomen, and cells [7], [9].

Instance classifiers in MIL predict on instance level, but
are trained with bag labels. So earlier research examines
the relation between bag and instance performance in MIL
classifiers [10], [11]. Cheplygina et al. [12] focus on another
aspect of the bag-instance relationship - particularly the sta-
bility of the predictions. Stability reflects the capability of
algorithms to consistently detect abnormalities. Stability is
measured by comparing the predictions of multiple models
trained on subsets of the same dataset. In this way, stability
can be seen as an unsupervised measure to check for instance
performance, without having instance labels. The caveat is that
stability does not directly infer good localization, but rather an
important prerequisite of predicting instances accurately.

Examining notable MIL algorithms excluding deep learning
architectures, Cheplygina et al. [12] show that there is a trade-
off between instance stability and bag performance. Currently,
deep learning architectures are employed more often to solve
MIL problems [13]–[15]. We identify the need to expand
the research about stability of deep learning architectures.
In addition, the existing stability score is not be an optimal
measurement of stability, especially for some classifiers, thus
we also need to formulate alternative ways of measuring
stability. This project aims to further investigate the following
aspects of stability:
• How can we improve the measurement of stability?
• How do current deep learning models perform in terms

of stability?
• What is the stability of models with respect to bag

performance?
• How do assumptions of MIL algorithms influence the

stability?
We provide alternative measures of the stability which can
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be used for reporting models’ stability performance, in addition
to the traditional evaluation metrics. Consequently, we examine
the stability of a common deep learning architecture for
MIL. Results from the experiments demonstrate that stability
increases with the bag performance, although the stability is
still somewhat low even for datasets with perfect evaluation
performance. Finally, we find that stability of MIL algorithms
can vary according to the aggregation used from instance to
bag predictions.

This paper is organized as follows. Section II describes
the previous work in MIL and stability, Section III propose
alternatives for a stability score. Section IV introduces the
experimental setup, and Section V presents the results.

II. RELATED WORK

This section introduces fundamental aspects of the project,
among which are the concepts of MIL, stability score, and
common deep architectures for MIL.

A. Multiple Instance Learning

Multiple instance learning [6] is a variation of supervised
learning. Each observation is seen as a bag Bi of Ni instances,
such that:

Bi = {xij |j = 1, ..., Ni} ⊂ Rd

and xij is an instance, a d-dimensional feature vector. Ulti-
mately every instance has an associated label yij ∈ {0, 1}, but
yij is not known during training. Instead, each bag is annotated
with bag label Yi ∈ {0, 1}.

MIL classifiers are trained on bag labels, but they can
be designed to predict bag labels, or the instance labels.
Depending on their predictions we differentiate between bag
classifiers and instance classifiers [16]. A bag classifier g is
described as:

Ŷi = g(xij |j = 1, ..., Ni)

while an instance classifier f is:

ŷij = f(xij)

Instance classifiers are attained by either assuming an explicit
relation between bags and its instances, or aggregating their
instance labels within the bag. In the first case, various
relations can be assumed, but commonly a bag label is negative
when all instances within are negative [17]:

Ŷi =

{
0, iff ∀j : yij = 0

1, otherwise

}
However, another frequent approach is aggregating all instance
labels to derive the bag label [17], such that:

Ŷi = θ(ŷij |j = 1, ..., Ni)

where θ is the aggregation function for all instances in a bag.

B. MIL Pooling operators
MIL pooling operators refer to the aggregation function

which derives a bag label from all its instance predictions.
Common choices for MIL operators are Max, Mean or
Log-Sum-Exp (LSE). The Max operator implies that the
bag has the same label as its most discriminate instance:

Ŷi = max
j

(ŷij) (1)

Mean operator considers all the instances equally discriminate,
and assigns a bag label which represents all of the encompass-
ing instances.

Ŷi =
1

Ni

Ni∑
j

(ŷij) (2)

LSE is an approximation of the Max function [18]:

Ŷi = log

 1

N

∑
j

exp (ŷij)

 (3)

Furthermore, a more flexible version of Log-Sum-Exp
with hyper-parameter r exists:

Ŷi =
1

r
log

 1

N

∑
j

exp (rŷij)

 (4)

The benefit of this function is that according to the value of
r, the function can resemble the Max function (with large r),
or estimate the Mean function (with a smaller value of r).
Another way to infer the bag label from the instance labels is
the Noisy-OR (NOR) aggregation [19]:

Ŷi = 1−
∏
j

(1− ŷij) (5)

In NOR, each instance is an independent binomial variable
with a probability ŷij of being positive. The probability of a
bag being negative is equal to the simultaneous probability that
all instances are negative. On the other hand, the probability
of a bag not being negative is equal to the probability of being
positive [20].

C. Stability Score
Consider a bag Bi and two similarly trained instance clas-

sifiers, f ′ and f ′′, obtained by the same algorithm. We dif-
ferentiate between two kinds of instance classifiers - yielding
probabilities, or binary predictions for every instance.

Let W ′i and W ′′i be the set of instance predictions from f ′

and f ′′ on Bi.

W ′i = {f ′(xij)} and W ′′i = {f ′′(xij)}

Depending on the type of classifier, W ′i and W ′′i are sets
of either probabilities, or binary instance predictions of the
same bag. If f ′ and f ′′ predict instance probabilities, then
each instance is ultimately expected to have the same, or
closely correlated prediction value in W ′i and W ′′i . In case
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of binary predictions, let W
′+
i ⊆W ′

i and W
′′+
i ⊆W ′′

i denote
the positive predictions from W ′i and W

′′

i , respectively. W
′+
i

and W
′′+
i are expected to agree on the containing instances if

the algorithm yields reliable results. In order to measure the
degree of agreement between two predictions a stability score
is introduced.

Considering that bags are images and instances in a bag
are sub-regions of an image, the stability problem in this case
is comparable to similarity problems in other fields. In object
detection and segmentation, a common agreement metric [21]–
[24] is the Jaccard index (also known as intersection over union
(IoU)) [25]. The Jaccard index measures the area between
predicted bounding boxes and ground truth segmentation:

Jaccard(P,Q) =
|P ∩Q|
|P ∪Q|

(6)

The Jaccard index is the stability score originally defined in
[12]. Their proposal of stability score measures the agreement
of positive instances between two predictions on the same
image, as

SJ(W ′i ,W
′′

i ) =
n11

n01 + n10 + n11
(7)

where
n01 = |{xij |(ŷ′ij = 0 ∧ ŷ

′′

ij = 1)}|

n10 = |{xij |(ŷ′ij = 1 ∧ ŷ
′′

ij = 0)}|

n11 = |{xij |(ŷ′ij = 1 ∧ ŷ
′′

ij = 1)}|

So, the score uses the binary labels of the predictions.
Binary metrics may suit binary predicting instance classifiers,
but measuring agreement from probabilities requires first a
conversion to binary predictions. Such a conversion leads to
information loss, but also makes the stability score dependent
on the threshold for the conversion.

In the context of feature selection, Kuncheva investigates a
stability score to measure the agreement between two sets [26].
Acknowledging the Jaccard index as a viable option, Kuncheva
demonstrates another major drawback: the method assigns a
high stability value even when stability is highly likely by
chance. To counteract artificial inflation of the stability score,
a metric is proposed where high stability values are attained
only after surpassing the stability by chance. The proposed
score has the general form:

SC(P,Q) =
Observed(k)− E(k)

max(k)− E(k)
, (8)

where k is the amount of overlap between the two subsets,
P and Q. The novelty of the metric resides in the correction
term E(k). We observe a similar correction E(k) in several
other measures, such as Adjusted Rand Index [27] and Cohen’s
kappa statistic [28]. Finally, the stability score is required to
be monotonically increasing, unsupervised, have limits, and
preferably correct for chance [12] [26].

D. Deep learning architectures for MIL
Architectures for MIL tasks encompass different types of

layers. The most commonly employed are convolutional layers,
sometimes followed by pooling layers [29]–[32]. In contrast,
[33] employs only fully connected layers integrated with
residual connections.

The existence of large organized databases such as ImageNet
[34] enabled various deep and very deep neural net architec-
tures, which capture detailed features and greatly boost per-
formance. In medical images, transfer learning from different
tasks and/or domain is also used to improve performance of the
classification tasks [35]–[38]. Architectures with pre-trained
neural networks are used in segmentation and localization
tasks in weakly supervised settings [30], [31]. The influence
of transfer learning is evident where successful localization
of objects is achieved without bounding boxes during training
time [31]. Hence, a representative architecture of the common
MIL models has convolutional or fully connected layers, and
possibly transfers knowledge from another domain or task.

E. Evaluation Metrics
Parallel to the stability, it is of utmost importance to estab-

lish the general performance of the model used in terms of
classification and localization capabilities.

1) Localization performance: Localization performance
demonstrates a model’s skill on instance level. Instance level
evaluation, however, can be achieved only in the presence
of images with instance labels. These images are denoted as
xi|bboxi. By comparing the provided bounding boxes with the
instance predictions, the DICE coefficient [39] (Equation 9)
and the accuracy from the Jaccard index (Equation 6) can be
computed.

DICE(P,Q) =
2|P ∩Q|
|P |+ |Q|

(9)

Depending on its design, an instance classifier may predict
region of abnormality with coordinates of the location. Then
the predictions are binary and can be directly used to compute
the DICE score (Equation 12) and the Jaccard index (Equation
13). On the other hand, an instance classifier can predict
probability for each instance, which means that all instances
first should get a binary representation. By setting a threshold
of the raw probabilities, instances are divided into ‘positive’
and ‘negative’ for the class-related problem:

ŷij =

{
1, iff f(xij) ≥ T (binary)

0, otherwise

}
(10)

Furthermore, when instance predictions are probabilities, the
anomalous regions can be discrete. Regardless, the positive
predictions in a bag are treated as a single anomalous region.
In addition, an instance has the ‘positive’ label as long as it is
within the boundaries of the annotation:

yij =

{
1, iff xij ∈ BoundingBoxi

0, otherwise

}
(11)

Figure 2a and 2b illustrate how probability predictions are
converted to binary predictions on an exemplary bag. 2c and
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2d depict the instance labeling from available segmentation,
and 2e illustrates the computation of true positive (TP), false
positive (FP) and false negative (FN) instances.

(a) (b)

(c) (d)

(e)

Fig. 2: Computation of TP and FP and FN from probability
predictions (a) Instance predictions in a bag (b) Binary predic-
tions after thresholding of 0.5 (c) Ground truth segmentation in
red, negative labels in white. (d) Conversion from segmentation
to binary labels (e) TP is the overlap of predictions and labels
in bright red; instances in light red are FP or FN instances;
white has both negative prediction and label

TP =
∑
j

1 {yij = ŷij = 1}

FP =
∑
j

1 {yij = 0 ∧ ŷij = 1}

FN =
∑
j

1 {yij = 1 ∧ ŷij = 0}

The DICE score is:

DICE(xi|bboxi) =
2TP

2TP + FP + FN
(12)

The Jaccard index is:

Jacc(xi|bboxi) =
TP

TP + FP + FN
(13)

Jacc(xi|bboxi) is a continuous score per image with value
between 0 and 1. Interpreting a prediction as accurate with
respect to the label is not immediately apparent. Hence, a
threshold T(Jacc) is used for computing the accuracy of
the localization performance:

Accuracy(xi|bboxi) =

{
1, if Jacc(xi|bboxi) ≥ T (Jacc)

0, otherwise

}
(14)

2) Classification performance: Unlike localization, classifi-
cation performance is measured for all bags due to their label
availability. Finally, classification performance is represented
with Area under the ROC curve (AUC) [40] between the
bag labels and bag predictions AUC(Y , Ŷ ). AUC value is
computed using the false positive rate and the false negative
rate, which makes it suitable to both balanced and imbalanced
datasets.

III. PROPOSED METHODS

Although a stability score is already proposed by Cheplygina
et al. [12], the score may be weak. Agreement between sets
of predictions may not be captured accurately for instance
classifiers predicting probabilities. For instance classifiers with
binary output, high stability may be measured as a result
of random agreement between the sets. That is why we
propose several alternative measures, which we analyze and
choose for further experiments. Finally, the following sections
examine stability scores for binary and probability predictions,
respectively.

A. Stability scores for binary predictions

We propose several alternative scores for assessing the
stability for binary predictions. An overview of the proposed
methods, with their weaknesses and strengths is presented in
Table Ia. The notation below follows the constituted notation,

n00 = |{xij |W ′ij = 0 ∧W
′′

ij = 0}|

and
N = n00 + n01 + n10 + n11

1) Positive Overlap (PO): The overlap coefficient, also
known as the Szymkiewicz–Simpson coefficient [41], is sug-
gested as a measurement sensitive to the size of the sets
compared. Contrary to the Jaccard index, which stays invariant
despite of the set sizes, the overlap coefficient is influenced
by the set sizes. The set sizes are the same when comparing
predictions on one and the same bag. However, considering
only the positive predicted instances of the two classifiers,
the assumption of equivalence of the two set sizes no longer
holds. Then, the two sets have varying sizes and the overlap
coefficient may be a better fit. The stability score (SPO)
proposed is:

SPO(W ′i ,W
′′

i ) =
n11

min(n10, n01) + n11
(15)

Limits: SPO ∈ [0, 1]. SPO = 0 is attained when n11 = 0, and
SPO = 1 when n11 = N . Although the overlap coefficient
takes the set sizes into account, the maximum value of the
score can be achieved even if there is a large discrepancy
between the sets, as long as one of them is a complete subset
of the other. Thus, we conclude that this score is actually not
a good measure of stability.
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2) Adjusted Positive Overlap (APO): Inspired by the general
score in Equation 8, we adjust Equation 15 and derive stability
score SAPO:

SAPO(W ′i ,W
′′

i ) =
n11 − E(n11)

min(n1∗, n∗1)− E(n11)
, (16)

where n1∗ = |{xij |W ′ij = 1}|, n∗1 = |{xij |W
′′

ij = 1}|.
Considering n11 ∼ B(N, p) is a binomially distributed random
variable with probability p, and N is the total number of
instances in the bag, the expected mean value is:

E(n11) = pN

where p is the probability of positive labels from both W ′i
and from W

′′

i , denoted with p
′

and p
′′

:

E(k) = p
′
p

′′
N

In addition, we know that: p′ =
n1∗
N

and p′′ =
n∗1
N

.

Limits: SAPO ∈ [1 − N, 1]. SAPO = 1 − N for full
disagreement when n01 = N − 1, n10 = 1. With such a limit,
the score diverges, which makes it less suitable for measuring
stability. Moreover, similarly to SPO, SAPO is 1 as long
as one of the sets is a complete subset of the other one.
Thus, this measure is discarded as well as it is not a suitable
measure of stability.

3) Heuristic Adjustment of Positive Jaccard (HAPJ): First,
let us assume an extreme scenario. A bag is predicted with
distinct positive instances by two classifiers, such that there
is no overlap between the two sets of positive predictions.
However, if the total positive predictions from both classifiers
n∗1 + n1∗ are more than the total instances in a bag N , as
n∗1+n1∗ > N , then it must be that at least N−(n∗1+n1∗) are
positive predictions, which are overlapping. So the correction
with such a heuristic is:

SHAPJ(W ′i ,W
′′

i ) =

=
n11 −max(n∗1 + n1∗ −N, 0)

n10 + n01 + n11 −max(n∗1 + n1∗ −N, 0)
(17)

Limits: SHAPJ ∈ [0, 1]. SHAPJ yields a maximum value
1 as long as n11 ≤ n00, and n10 = n01 = 0. Minimum
SHAPJ can be attained for n11 = 0, and n10 > 0 ∨ n01 > 0.
Additionally, in cases where all the predictions from both
classifiers agree: for n00/n11 = N , then SHAPJ = NaN. It is
important to note that the metric is suitable for extreme cases
when the positive instance predictions are abundant. Else,
if the positive predictions from both sets are less or equal
than N , the metric is equal to positive Jaccard, which was
proposed initially by Cheplygina et al. [12].

4) Adjusted Positive Jaccard (APJ): In a similar manner to
Equation (8), the positive Jaccard index can be corrected for
chance:

SAPJ(W ′i ,W
′′

i ) =
n11 − E(n11)

n10 + n01 + n11 − E(n11)
(18)

where n11 ∼ B(N, p), n11 is a binomially distributed
random variable with probability p, and N is the total number
of instances in the bag. The expected mean value is

E(n11) =
n1∗n∗1
N

.
Limits: SAPJ ∈ [−0.333, 1]. Exact proof of the limits

can be found in Appendix A. The minimum is attained at
n01 = n10 = 1 and n11 = n00 = 0, while the maximum
value is achieved for n01 = n10 = 0 and n11 = n00 = 1.
It is important to note that the score is undefined for the
case where all the predictions from both classifiers agree:
for n00/n11 = N then SAPJ = NaN. However, for another
extreme case where one of the classifiers predicts only one
class, while the other classifier yields only predictions from
the contrary class (n01/n10= N), then the score SAPJ is
0. Although derived in another way, we acknowledge that
adjusted positive Jaccard resembles Cohen’s Kappa statistics
[42] on positive instances.

5) Adjusted Jaccard (AJ): With the correction for chance,
the overlap of positive and negative instances can be a relevant
stability measure. This can be very suitable to imbalanced bags
with numerous negative instances. The correction decreases the
superficial inflation expected due to the negative overlap.

SAJ(W ′i ,W
′′

i ) =

=
n11 + n00 − E(n11)− E(n00)

n00 + n01 + n10 + n11 − E(n11)− E(n00)
(19)

with n11, n00 ∼ B(N, p) and E(n11) and E(n00) as:

E(n11) =
n1∗n∗1
N

E(n00) =
n0∗n∗0
N

Limits: SAJ ∈ [−1, 1]. The minimum is attained at
n01 = n10 = 1 and n11 = n00 = 0. The maximum value can
be achieved for n01 = n10 = 0 and n11, n00 > 0 (proof of
the limits can be found in the appendix A). It is important
to note that the score is undefined for the case where all the
predictions from both classifiers agree: for n00/n11 = N
then SAJ =NaN. However, for another extreme case where
one of the classifiers predicts only one class, while the other
classifier yields only predictions from the contrary class,
then the score SAJ is 0. Finally, we recognize that adjusted
Jaccard is identical to Cohen’s Kappa statistics.

All of the aforementioned scores comply with the prop-
erties defined by Cheplygina et al. [12] and Kuncheva
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[26]. Firstly, SAPJ , SAHPJ , SAJ are monotonically increas-
ing, where SAJP and SAHPJ grow with positive prediction
agreement, while for SAJ the monotonic increase is with re-
spect to positive and negative prediction agreement. Secondly,
the scores have limits, although each of them has a distinct
lower limit. In addition, all scores have a correction for chance.
Lastly, stability can be measured in an unsupervised manner
as no ground truth labels are needed.

B. Stability score for probability predictions
The previous measurements are highly appropriate for al-

gorithms predicting bounding boxes, but classifiers yielding
probability predictions cannot use them directly. Instead, prob-
abilities are aggregated to binary labels based on an arbitrary
threshold (e.g. 0.5). The major drawback of a threshold is that
everything, above (or below) it, is treated equally, and essential
raw prediction data is lost, preventing accurate evaluation
between two raw sets. Thus, we propose the following methods
for stability measures for probability predictions. An overview
of the stability scores is in Table Ib.

1) Pearson’s product moment correlation coefficient:
Pearson correlation coefficient [43] measures correlation
with respect to the linearity between pairs of data points.
The coefficient relies, however, on the assumption that the
data points have normal distribution. However, instances in
a bag may not have a normal distribution, making Pearson
correlation coefficient rather inaccurate.

2) Spearman rank correlation coefficient: Unlike Pearson,
Spearman rank correlation coefficient [44] is a nonparametric
test, making no assumptions about the distribution of the
underlying data. The coefficient does not use raw data, but
ranks the observations to evaluate the correlation coefficient.
Furthermore, this test is capable of detecting monotonic
relationships between the observations without assuming
their normal distribution. The formula of Spearman rank
(see in Table I) does not provide intuitive explanation of
the meaning of the score, but Spearman rank measures
deviations between the ranks. From the formula it becomes
apparent that the score is sensitive to small number of large
deviations between ranks; and it is not harsh on high number
of small deviations between ranks. For the medical imaging
context, small deviations in the prediction ranks are tolerated
between classifiers, as no two classifiers will be exactly
the same. However, large deviations between ranks would
potentially mean conflicting localization of abnormality,
further increasing the suitability of Spearman coefficient.
Thus Spearman coefficient is regarded as a good stability score.

3) Kendall’s tau: Similar to Spearman rank correlation,
Kendall’s tau [45] is a non-parametric correlation test. It
measures correlation in terms of concordant pairs.
A pair (ar, br) is defined as concordant with respect to another
pair (as, bs) when: (ar−as)(br−bs) > 0. Analogously, (ar, br)
is discordant if (ar−as)(br−bs) < 0. The Kendall’s tau score
can be seen as the ratio between concordant and discordant
pairs. Measuring concordant and discordant pairs in the context

of stability can be quite intuitive. The score measures whether
a classifier ranks instances as another classifier with the
same relative probability to the other instances in the bag.
As long as one classifier tends to give repeatedly lower or
higher probabilities to all the instances within the bag, the tau
correlation is not going to be influenced. Furthermore, having
large value differences within the pair is not influencing the
correlation.

C. Kappa Weakness

As earlier noted, the adjusted positive Jaccard and the
adjusted Jaccard are closely related to Cohen’s kappa statistic.
And that is why it is important to explain a peculiar behavior
of Cohen’s kappa, stated in paradox cases [46].
Feinstein and Cicchetti [46] describe the phenomena in terms
of symmetry and balance. Symmetry is a property of two clas-
sifiers, where both classifiers predict the same ratio to positive,
and to negative labels. Balance is the property where both
classifiers predict each class with equal ratio. So Feinstein and
Cicchetti [46] show that in settings of symmetrical classifiers
(n0∗ = n∗0, and consequently n1∗ = n∗1), the kappa statistic
considerably penalizes imbalanced classifiers (n0∗ >> n1∗ or
n0∗ >> n1∗) for the same number of agreement instances.
Thus, a paradox arises. The second paradox is observed in
imbalanced, but asymmetrical settings. This occurs when each
classifier predicts predominantly one class, but the predomi-
nant class of the two classifiers is not the same. The imbalance
in classes leads to a minimal correction of the expected value
and as a results, the kappa value is higher than in settings of
symmetrical imbalance.

Table II shows the influence of balance to the adjusted
Jaccard and the adjusted positive Jaccard for the same positive
agreement. Table IIa introduces the case of symmetrical bal-
anced classifiers, while Table IIb shows symmetrical imbalance
classifiers. Both stability scores are demonstrating lower scores
in imbalanced settings. Table III, on the other hand, shows the
influence of symmetry on SAJ and SAPJ for fixed agreement.
Again the behavior correspond to the phenomena described -
symmetrical imbalanced receive lower score than asymmetrical
imbalanced classifiers.

In conclusion, the adjusted Jaccard and the positive Jaccard
exhibit the similar weakening behavior as kappa in rela-
tion with symmetry and balance of the confusion matrix of
the predictions. The paradoxical situation described earlier
makes an interpretation of kappa value problematic [46]–
[49]. Additionally, while the conflicting cases are caused by
the correction introduced in the kappa statistic, Cicchetti and
Feinstein [48] and Hoehler [49] clearly state the significance
of the correction. Furthermore, to mitigate the counter-intuitive
behaviour, Byrt et al. [47] suggest an alternative of the Co-
hen’s kappa, correcting for symmetry and balance. However,
symmetry-free and balance-free agreements are rather theo-
retical, changing the original situation measured [49]. Finally,
considering more information additional to the kappa value
helps understanding the presence of balance and symmetry
[47], [48]. The additional scores, applicable for the adjusted
Jaccard and the adjusted positive Jaccard, are total agreement
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TABLE I: Overview of stability indices for (a) binary predictions (b) probability predictions
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C
la

ss
ifi

er
1

Classifier 2
0 1 Total

0 40 10 50
1 10 40 50

Total 50 50 100
(a)

C
la

ss
ifi

er
1

Classifier 2
0 1 Total

0 0 30 30
1 30 40 70

Total 30 70 100
(b)

TABLE II: Balanced classifiers with SAJ = 0.6 and SAPJ =
0.43 vs imbalanced classifiers with SAJ = −0.43 and SAPJ =
−0.18

C
la

ss
ifi

er
1

Classifier 2
0 1 Total

0 20 20 40
1 20 40 60

Total 40 60 100
(a)

C
la

ss
ifi

er
1

Classifier 2
0 1 Total

0 20 35 55
1 5 40 55

Total 25 75 100
(b)

TABLE III: Symmetrical imbalanced classifiers with SAJ =
0.17 and SAPJ = 0.09 vs Asymmetrical imbalanced with
SAJ = 0.24 and SAPJ = 0.14

ratio (TAR), and positive agreement ratio (PAR) and negative
agreement ratio (NAR) [48]:

TAR =
n11
N

(20)

PAR =
2n11

2n11 + n01 + n10
(21)

NAR =
2n00

2n00 + n01 + n10
(22)

Additionally, the difference between the positive and the
negative agreement ratio as well as n0∗−n1∗ are computed to
establish the presence of balance and symmetry and how they
influence the result.

D. Learning from segmented images
To help neural networks recognize the region of interest,

learning from segmented images can be achieved in a super-
vised manner [32]. This is achieved by employing separate
pooling methods for segmented and non-segmented images.
The pooling operators in Equation 1 to 5 are used for deriving
bag predictions of non-segmented images. For segmented
images, the pooling method is changed such that the core
of the operator is preserved, but the pooling is executed in
a supervised manner. Li et al. use a modified NOR (Equation
5) [32]:

Ŷi =
∏
j∈Ni

ŷij
∏

j∈Ni\Si

ŷij , (23)

where Si is the set of instances within a segmentation, and
Si = {xij |yij = 1}.
Later in our experiments, we examine the difference in the

stability results between different pooling operators, and it is
important to synchronize the pooling of segmented images
with the global pooling operator. Max pooling (Equation 1)
for images with available instance labels is:

Ŷi = max
j∈Si

(ŷij)

Mean pooling (Equation 2) for segmented images is modified
to:

Ŷi =
1

Ni

∑
j∈Si

ŷij +
∑

j∈Ni\Si

(1− ŷij)


LSE pooling (Equation 4) for images with available local
labels is:

Ŷi =
1

r
log

 1

N

∑
j∈Si

exp (rŷij) +
∑

j∈Ni\Si

exp (r(1− ŷij))


IV. EXPERIMENTAL SETUP

In this section we introduce to the architecture, datasets and
exact details for the conduction of the following experiments.

A. Model
A good representative architecture in MIL should be chosen

as the baseline. Another requirement when choosing a baseline
architecture is its capability for predicting instance labels, since
we are exploring the stability of instance predictions. However,
we acknowledge that performance of a single architecture
cannot represent all deep learning architectures for MIL.

Li et al. [32] describes such a common architecture. The
model uses a pre-trained ResNet [50] for feature extraction,
followed by a max pooling layer which preserves the features
locality and results in down-sampled features of instances.
Subsequently, two convolutional layers are used. Figure 3
shows the building blocks of the architecture. The novelty
resides in training from images with or without annotated seg-
mentation via weak supervision. Including the limited number
of segmented images demonstrated a clear advantage in terms
of performance [32]. Finally, the model yields a prediction on
instance level, which is consequently aggregated to a bag label.
In addition, the model’s performance is tested on a publicly
available dataset [51] which eases the replication of the model.

Fig. 3: Summarized view on the architecture proposed in [32].

The original model solves multi-label classification on 14
different lung diseases for every image. Our re-implementation
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of the model based on the paper, however, focuses on binary
classification. Finally, unlike the original architecture, we do
not use L2 regularization as the model did not suffer from
overfitting.

B. Datasets
The following datasets are used in the experiments as they

are public and some provide images with annotated instances,
which can be used in the baseline model:

NIH Chest X-Ray Dataset [51], referred to as X-Ray dataset:
comprised of X-Rays with 14 common thorax disease cat-
egories (cardiomegaly, pneumonia, etc.), includes more than
100,000 multi-label scans from 30,000 patients. While the
majority of the data is annotated on an image-level, little under
1000 images are annotated with exact coordinates of a lung
disease. This is the dataset used in [32].

In binary classification settings, the X-Ray dataset popula-
tion is no longer representative for the chosen classes because
it becomes overwhelmingly negative. Instead, we consider all
images of patients who have at least a single positive image for
the specified class category. In this way, the class imbalance is
preserved without having an overpowering number of negative
labels. This dataset includes few segmentation images for some
classes. The main prerequisite for choice of class prediction
is the availability of segmentation images, which are used in
training and evaluation phase. Hence, the first classification
is on cardiomegaly detection. In addition, we have arbitrarily
chosen another class - effusion detection to test and generalize
the model performance. This class is not used in the stability
experiments.

MURA dataset [52]: consists of a large number of X-Ray
imagesTbones. Some of the present classes are elbow, finger,
forearm, and hand. In total there are 7 classes. This dataset con-
tains only image-level annotations. From the MURA dataset
we have arbitrarily chosen to conduct the experiments on the
shoulder class.

Pascal VOC, from 2005 [53]: a relatively small dataset
of about 1000 photos of cars, bicycles, motorcycles and
people. We have decided to predict cars to yield a binary
problem. Some images have segmentations, which are used
for evaluating the instance performance.
Table IV shows the exact statistics of bags and instances in
each dataset and class.

Dataset Class Bags Instances

X-Ray Cardiomegaly 2722+, 14742- 146 bags
× 256 inst.

X-Ray Effusion 13056+, 37693- 149 bags
× 256 inst.

MURA Shoulder 4446+, 4211- -

Pascal
VOC Cars 335+, 826- -

TABLE IV: Dataset population for each class. The effusion
class is only used for generalization of the baseline results.

C. Preprocessing

Firstly, the accepted input size is 512 ×512. Images from
the X-Ray dataset originally had a size of 1024 ×1024, so
they are decreased to size of 512 ×512 pixels. Images from
MURA and Pascal VOC, on the other hand, have varying
size. Images with at least one axis larger than 512 pixels are
first proportionately scaled down. Their larger side is set to
512 pixels, and zero-padding is used for the smaller side.
For images smaller than 512 pixels on both axes we have
used zero-padding for enlarging the image. Furthermore, all
the images are normalized between [−1, 1] values.

D. Train-test splitting

With far less observations for the images without segmen-
tation it is decided that it is more beneficial to keep 80%
of the data for training and 20% for testing. Similarly, the
images with segmentation are limited so they are divided
into 80%/20% training to test split, as described to be most
beneficial [32].
The publishers of the MURA dataset publicly provide training
and validation set. The validation set is used as testing set, and
the original training set we divide into training and validation
with 80%/20% ratio. Furthermore, patients with multiple scans
in MURA and X-Ray are only in the training or in the testing
dataset.

E. Method for measuring stability

Fig. 4: 5 classifiers are trained with very similar dataset. The
predictions of each classifier is compared with the other 4 to
compute the stability score

To measure stability, we train 5 very identical classifiers.
To preserve similarity of the training set, each classifier uses
95% subset of the whole training data to train. The test dataset
is fixed. The stability scores are pairwise measurements, so a
score is a result of comparing the predictions of 2 classifiers
on the same image. Ultimately, comparing all classifiers’
predictions for each image derives the stability score of the
each image across all classifiers.
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F. Choice of Stability Score
After initial analysis we have eliminated some of the pos-

sibilities for measuring stability. So for binary predictions
stability can be measured with the adjusted positive Jaccard
and the adjusted Jaccard, and probability predictions can
be measured with Kendall’s tau and Spearman correlation
coefficient. We perform correlation analysis, similar to the
experiments performed by Taha and Hanbury [54], between the
stability scores. We used the pairwise Pearson’s correlation and
the Spearman rank correlation coefficients to examine the sta-
bility indices. Results yield correlation coefficients of 0.98 and
0.99, between adjusted positive Jaccard and adjusted Jaccard,
and between Kendall’s tau and Spearman, respectively. The
extreme pairwise correlation coefficients allow us to conclude
that the choice of a score within each group is rather superficial
- adjusted positive Jaccard is interchangeable with respect to
adjusted Jaccard, and Kendall’s tau is no more informative
than Spearman rank correlation. Thus no information loss
occurs if one of the score within each group is ignored.
Eventually, we have chosen to use adjusted positive Jaccard
for measuring stability and Spearman correlation coefficient
for the consecutive experiments.

G. Stability variability with threshold
The current classifier yields probability instance predictions,

and that is why, a stability score for binary and probability
predictions can be used. However, using a stability score for bi-
nary label requires first to convert the probability predictions to
binary. The choice of threshold for this conversion influences
the stability score, but the degree of influence it not known.
Instead of choosing an arbitrary threshold for converting to
binary predictions, first we examine the stability sensitivity to
threshold choice. Performing experiments where the threshold
for binary conversion is changed from 0.1 to 0.9 with a step
size of 0.1 show that there is a general tendency of the stability
to decrease with increase of the binary threshold. However, the
observed stability decrease is quite steady, and no rapid jumps
are observed. So the results confirm that a threshold of 0.5 is
a reasonable choice, which is used further in the experiments.

V. EXPERIMENTS AND RESULTS

In this section the stability is examined on several datasets.
Furthermore, we investigate the stability in relation to the
performance on bag and instance level, and the effect of the
common pooling operators.

A. Baseline Model Results
Based on the evaluation metrics in Section II-E, Table V

shows the results obtained from the baseline model on a 5-
fold cross validation. We use T(binary)=0.5 in Equation
10 for converting to binary predictions, and T(Jacc)=0.1
in Equation 14. In addition, the table includes results of Li et
al. [32] on the architecture with the X-Ray dataset with the
same values of T(binary) and T(Jacc). Because we use
the architecture for a single class prediction, the model is not
exactly the same as the described by Li et al. That is why the

results of the two experiments are not directly comparable.
However, their results are a reference to the model we have
trained.

Class AUC DICE Accuracy
Cardiomegaly 0.73 ± 0.01 0.52 ±0.10 0.72 ± 0.13
Cardiomegaly
Reference. [32] 0.80 ± 0.01 - 0.98 ± 0.02

Effusion 0.75 ± 0.01 0.28 ±0.02 0.66 ± 0.08
Effusion
Reference [32] 0.87 ± 0.01 - 0.87 ± 0.03

Shoulder 0.84 ± 0.01 - -
Cars 0.99 ± 0.01 - -

TABLE V: Performance evaluation from 5-fold cross valida-
tion. Bag performance: AUC and instance performance: DICE
coefficient and accuracy from the Jaccard index. Accuracy is
a result from Jaccard threshold of 0.1.

B. Illustrative Example
Figure 5 shows several images and their predicted local-

ization. Furthermore, the histogram for each image depicts
the frequency of each instance to be predicted as positive.
Ultimately, perfectly stable classifiers are expected to predict
the same instance as positive or negative for the models
trained. As a result, the histogram for an image should have
the instances of each image predicted either 0 or 5 times as
positive. So any instance predicted between 1 and 4 times as
positive highlights the instability of the models. In the example
in Figure 5a is the most stable bag from the X-Ray dataset.
Even in such a stable example (SAPJ = 0.81, SS = 0.79),
the histogram is far from perfect. Around 110 instances are
predicted positive at least once, with the majority predicted
all 5 times positive. However, nearly 30% from all positive
instances are classified as positive less than 5 times, illustrating
the need for more stable classifiers.

In contrast, the most stable bag in the MURA dataset (in
Figure 5b) expresses nearly perfect stability (SAPJ = 0.93,
SS = 0.92), under a caveat. The letter markers on the X-ray
scan are predicted as positive. An average performing bag,
illustrated in Figure 5c, shows that positive instances include
the shoulder, but also X-ray letter markers and padding. This
phenomena is frequently observed across other bags in the
dataset, highlighting the low quality of the predictions.

Figure 5f is among the most stable bags in the Pascal VOC
and is well performing on instance-level (DICE = 0.74).
The classifiers localize consistently, always including the car,
but the predicted area is larger than the object even on such
a well performing example. Figure 5g shows an average
performing bag. The classifiers exaggerate the locations of
the car, reflected in a low DICE coefficient (DICE = 0.29).
Its SAPJ score is mediocre, but its SS shows relatively high
stability (0.51 and 0.82, respectively). Furthermore, this bag
fairly represents images with padding in the Pascal VOC,
where the predictions always encompass the whole image and
often part of the padding, as well.
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(a) SAPJ = 0.81, SS = 0.79

(b) SAPJ = 0.93, SS = 0.92

(c) SAPJ = 0.66, SS = 0.89

(d) SAPJ = 0.49, SS = 0.59, DICE = 0.78± 0.03

(e) SAPJ = 0.10, SS = 0.20, DICE = 0.41± 0.29

(f) SAPJ = 0.91, SS = 0.84, DICE = 0.74± 0.03

(g) SAPJ = 0.51, SS = 0.82, DICE = 0.29± 0.05

Fig. 5: (a) most stable bag from X-Ray, (b) most stable bag from MURA, (c) unstable bag from MURA, (d) bag with good
localization from X-Ray (e) bag with unstable but well localizing predictions from X-Ray
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C. Stability
This section discusses stability performance based only on

images with positive label. Figure 6 depicts the average pair-
wise stability score between classifiers on the X-Ray dataset.
Furthermore, average SAPJ varies between 0.16 and 0.33. As
a reference, adjusted positive Jaccard with over 250 instances
in a bag has values between 0 and 1 (see appendix A). Thus,
a stability score between 0.16 and 0.33 can be considered to
be in the lower range of the scores. Furthermore, adjusted
positive Jaccard also contains undefined values, which cannot
be interpreted in the average results. The ratio of positive
images with an undefined score constitutes less than 10% of all
positive images. Although this percentage may be somewhat
high, we consider that the rest of the images (about 500
images) give a good estimation of the stability reported.

Generally, the Spearman coefficient is between -1 and 1.
The sign of the score demonstrates the positive or negative
correlation, while the absolute value (between 0 and 1) is
used for the evaluating the correlation strength. An absolute
value of 0 is interpreted as no correlation found between the
observations. At the upper range, a value of 1 demonstrates
extreme correlation. The results in our experiment, however,
averages the raw values, not the absolute. Computed in this
way, the average coefficient varies between little under 0.24
to about 0.45. While such results are evidence of somewhat
correlated predictions, they do not exhibit strong stability. This
conclusion aligns with the results from the adjusted positive
Jaccard.

(a) (b)

Fig. 6: Pairwise stability measurement across 5 classifiers on
X-Ray dataset (a) adjusted positive Jaccard (b) Spearman rank
correlation coefficient

The stability scores on the MURA and on the Pascal VOC
dataset, on the other hand, indicate quite stable predictions.
Figure 7 shows the pairwise stability between the 5 trained
models on the MURA. The average adjusted positive Jaccard is
around 0.60 for most classifiers, with under 2% of NaN values.
The average Spearman rank correlation is 0.84, supporting
medium to substantial stability. Similar stability is observed on
the Pascal VOC, shown in Figure 8 - with mean SAPJ = 0.54
and mean SS=0.82.

In addition, Table VI presents the mean stability scores and

(a) (b)

Fig. 7: Pairwise stability measurement across 5 classifiers on
MURA dataset (a) adjusted positive Jaccard (b) Spearman rank
correlation coefficient

(a) (b)

Fig. 8: Pairwise stability measurement across 5 classifiers on
Pascal VOC dataset (a) adjusted positive Jaccard (b) Spearman
rank correlation coefficient

the compounding terms of SAPJ from Equation 20, 22, 21.
From the table we can understand the positive agreement and
class prevalences. The negative signs of f ′(n∗0 − n∗1) and
f

′′
(n0∗−n1∗) demonstrate prevalence of negative predictions,

suggesting symmetrical imbalance between classifiers in both
datasets. The magnitude of the difference indicates the degree
of imbalance. In the X-Ray dataset, the low stability score
SAPJ seems to be caused by the low positive agreement
ratio, together with the strict correction caused by symmetrical,
but highly imbalanced predictions. In contrast, the MURA
dataset exhibits higher positive agreement ratio. Symmetrical
imbalanced predictions are observed here as well. The negative
predictions are again prevailing, but they are less dominant,
resulting in less severe imbalance. So, higher SADJ is a result
of the higher positive agreement ratio and the less severe
prediction imbalance.
The predictions from Pascal VOC, on the other hand, are rel-
atively balanced. This is explainable considering the example
of a common prediction in Figure 5g. Table VI contains the
aggregated mean values of the compounding terms. However,
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Dataset mean SS mean SAPJ TAR PAR NAR f ′(n∗0 − n∗1) f ′′(n0∗ − n1∗)
X-Ray 0.32 0.23 0.86 0.37 0.91 -191 -147
MURA 0.84 0.61 0.93 0.84 0.94 -106 -103

Pascal VOC 0.82 0.54 0.86 0.87 0.79 0 27

TABLE VI: Mean Spearman and mean adjusted positive Jaccard and its compounding terms

from the raw values in Table XI), it is clear that some
predictions are asymmetrically imbalanced. Finally, balanced
or imbalanced asymmetrical predictions lead to less harsh
correction in the SAPJ . As a result, SAPJ is slightly higher
than the same positive agreement would be in imbalanced or
symmetrical predictions.

Finally, the stability varies for each dataset from low to
somewhat substantial. The results raise concerns about the
quality of localization, and show the necessity of measuring
stability.

D. Stability and Instance Performance

The stability scores are designed as an unsupervised measure
to check for consistency of instance localization. To evaluate
the scores, we compare the stability scores and the instance
performance for each bag. These experiments are conducted
only on limited bags with available instance-level annotation.
There are 28 and 55 bags with instance-level annotations in
the X-Ray and in the Pascal VOC, respectively.

Firstly, we compute for each bag the DICE coefficient
(Equation 12) between the ground truth instance labels and the
predictions. Next, the stability score per bag is computed. It is
important to note that the stability is a pairwise measurement
- so each bag has a stability score for each combination of two
classifiers. That means that per bag there are 10 stability scores
for all combinations of the 5 classifiers examined. On the other
hand, there are 5 DICE coefficients - 1 for each classifier and
the ground truth annotation. The mean results are derived by
averaging the available measurements (10 stability scores, and
5 instance DICE scores).

The results from the X-Ray dataset are shown in Figure 9
with stability in terms of adjusted positive Jaccard (Figure 9a),
and in terms of Spearman correlation (Figure 9b). The initial
deduction is the linearity between both of the stability scores
and the DICE coefficient. On closer inspection, we differen-
tiate two clusters of bags. However, the cluster separation is
more pronounced and concise with adjusted positive Jaccard.
Nonetheless, one of the clusters identified is in the central
upper part of the figures. Bags situated there have significant
mean DICE coefficient, and relatively higher stability score.
What is more important is that these bags exhibit lower
standard deviation of DICE than the rest, showing that all 5
classifiers perform relatively well on these bags.

The other cluster is situated on the left side of the figures.
The bags populating it look more heterogeneous with respect
to mean DICE. Bags in this cluster have mean DICE from low
to reasonably high, but majority of them show large standard
deviation of DICE coefficient. The large standard deviation is
evidence that some of the classifiers are localizing well, while

(a)

(b)

Fig. 9: Stability score of each bag against its instance perfor-
mance in the X-Ray dataset.

others are performing worse on the bag. Figure 5e is a prime
example of a bag with high standard deviation. From the figure
it is apparent that the contributors to the DICE score are only
2 or 3 classifiers. The stability scores is rather low (SAPJ =
0.12, SS = 0.30) and it is good to see that discrepancy between
classifiers is reflected in lower stability score.

The results in Figure 10 show bags from the Pascal VOC
dataset and their average stability score and the corresponding
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(a)

(b)

Fig. 10: Stability score of each bag against its instance perfor-
mance in the Pascal VOC dataset.

DICE coefficient. Similar to the X-Ray dataset, Figure 10a
suggest some linearity between localization performance and
the stability scores. We observe that bags with higher DICE
(and small standard deviation) tend to have a higher stability
score SAPJ . The plot of SS (Figure 10b) shows that all the
bags are stable, independent of their localization performance.
For bags with low DICE, this clearly demonstrates the con-
sistent localization on the wrong place - an example is Figure
5g.

Finally, Table VII shows the average results of the stability
scores against the instance performance. From the aggregated
results it becomes clear that the X-Ray dataset is mediocre on
the localization, but the predictions are unstable. On the other
hand, localization performance of Pascal VOC is poorer than
on the X-Ray, but the localizations are more far more stable.

Dataset SAPJ SS DICE coefficient
X-Ray 0.23 ± 0.17 0.34 ± 0.20 0.48 ± 0.10

Pascal VOC 0.64 ± 0.17 0.88 ± 0.08 0.40 ± 0.20

TABLE VII: Mean stability scores and instance performance
on images with available instance-level annotation

E. Stability and Bag Performance
It is interesting to investigate the relation between the

stability and the performance on bag level - shown in Figure
11. The plot shows some linearity between the stability and
the bag performance, but the correlation cannot conclude any
causality between the two. In addition, all datasets have decent
to very good performance on bag level (bag AUC above 0.7).
However, their stability scores are not high. Models from the
X-Ray have bag AUC of 0.7, but their stability scores are
in the lower range. The models from the Pascal VOC dataset
perfectly perform on bag level with AUC of 1, but the stability
score show medium to substantial stability. So, the stability
scores are not as high as the bag AUC, which implies the need
for more stable algorithms. Finally, doing evaluation only on
bag level may be misleading. It is important to incorporate
stability in the evaluation metrics and use its score to support
the assessment of the quality of the localization.

Fig. 11: Average stability and average bag AUC

F. Pooling Operators Stability
Initial experiments are performed on the NOR (Equation

5) pooling operator. However, since the aggregating function
derives the bag prediction, the choice of pooling operator
directly influences the training and the learning. In this section
we investigate how models with different pooling operators
perform with respect to the stability. Table VIII shows the
results of the stability scores. For completeness, we include
the performance on bag level. Furthermore, we include the
instance performance based on the limited available bags with
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Dataset Pooling Operator SAPJ SS bag AUC DICE
X-Ray NOR 0.23 ± 0.06 0.32 ± 0.06 0.74 ± 0.01 0.48 ± 0.10
X-Ray Mean 0.12 ± 0.10 0.24 ± 0.16 0.74 ± 0.01 0.36 ± 0.10
X-Ray LSE, r=1 0.13 ± 0.10 0.20 ± 0.15 0.74 ± 0.01 0.36 ± 0.06
X-Ray LSE, r=0.1 0.12 ± 0.03 0.23 ± 0.06 0.74 ± 0.01 0.38 ± 0.05
X-Ray Max 0.02 ± 0.04 0.09 ± 0.18 0.72 ± 0.01 0.11 ± 0.07
MURA NOR 0.66 ± 0.15 0.88 ± 0.07 0.83 ±0.01 -
MURA Mean 0.32± 0.09 0.74 ± 0.09 0.83 ±0.01 -
MURA LSE, r=1 0.34 ± 0.11 0.75 ± 0.09 0.83 ± 0.01 -
MURA LSE, r=0.1 0.34± 0.09 0.74 ± 0.09 0.83 ± 0.01 -
MURA Max 0.15 ± 0.15 0.42 ± 0.42 0.78 ± 0.01 -

Pascal VOC NOR 0.54±0.05 0.82 ± 0.04 1 ± 0.00 0.40 ± 0.20
Pascal VOC Mean 0.36 ± 0.04 0.77 ± 0.06 1 ± 0.00 0.22 ± 0.12
Pascal VOC LSE, r=1 0.38 ± 0.06 0.74 ± 0.05 0.99 ± 0.01 0.24± 0.14
Pascal VOC LSE, r=0.1 0.37± 0.07 0.73 ± 0.04 1 ± 0.00 0.22 ± 0.13
Pascal VOC Max 0.09 ± 0.03 0.25 ± 0.04 0.91 ± 0.04 0.15 ± 0.06

TABLE VIII: Results of different pooling methods. Stability scores and bag AUC are computed on the whole test set, but DICE
coefficient is derived only from bags with instance labels.

instance-level annotation. These bags are under 1% in X-Ray
and under 25% in Pascal VOC. So the instance performance
provides a glimpse about the models’ localization, but it is not
representative.

For the experiments, we test NOR (Equation 5), Mean
(Equation 2), Max (Equation 1) and flexible LSE operator
(Equation 4). We use two values of the hyperparameter with
the flexible LSE operator (Equation 4). With r = 1 the pooling
operator is an estimation of the Max, and with r = 0.1 it is
an estimation of the Mean.

The NOR operator has the most stable predictions. A twofold
decrease of the stability is observed with Mean and LSE (with
both value of r). Furthermore, in all 3 datasets, the two opera-
tors have identical stability, bag and instance performance. The
similarity in the results is expected with LSE with r = 0.1 as
it is an approximation of the Mean. However, LSE with r = 1
is an approximation of the Max, but LSE shows more stable
behavior and better performance on bag and instance level.
Although the Max operator has somewhat lower bag perfor-
mance, its instance performance and stability are far poorer
than the other operators. Finally, it is important to note that
all datasets agree in the results of pooling operator stability.
Furthermore, the most stable operator has the best bag and
instance performance. However, bag performance is somewhat
invariant to different operators. The instance performance, on
the other hand, varies with the pooling operator. So it seems
that the most stable operators are the ones achieving the best
localization. However, the results cannot be conclusive due to
the limited images used for evaluating instance performance.

VI. DISCUSSION

A. Results

Experiments studying the relation between the instance
performance and the stability scores reveal important aspects
of the stability scores. The relation between the stability
and localization performance is different in the two datasets.

However, we observe that bags, whose instances are consis-
tently well localized (high mean DICE coefficient with small
standard deviation) are with the highest SADJ and are among
the highest SS . This confirms the soundness of the stability
scores.

Designing stability measures as a surrogate for unsupervised
instance predictions does not mean that stable models are good
at localization. Furthermore, linearity between the stability
score and localization is found, but the correlation should not
be confused for causality. The results from the Pascal VOC are
evidence of it. In both graphs of Figure 10, there are bags with
relatively high stability score, but low DICE coefficient. These
are bags, where the localization is incorrect but consistent. In
this regard, the score is rightfully reflecting their prediction
consistency.

Finally, while good performance and stability does not imply
good localization, stability is a prerequisite for good localiza-
tion. Thus, low stability in models with good performance can
be seen as a first indicator of inaccurate localization.

With the designed scores, we measure the stability on 3
datasets. The results demonstrate that predictions are not very
stable. Furthermore, results show linearity between the bag per-
formance and the stability. We observe that the models which
perform better on a bag level are also more stable, suggesting
that the stability increases together with better performance on
the bag level. Despite of the linearity observed, the stability
is still not high. Models with perfect bag performance are
moderately stable. This highlights the need to measure stability
in MIL models, and to tailor more stable models. The relation
between stability and bag performance, however, contrasts with
earlier findings, which show a trade-off between stability and
bag performance [12]. However, differences in the results are
expected due to the fundamental differences in the algorithms
compared. Cheplygina et al. [12] use several algorithms, some
of which are bag embedded classifiers, while others maximize
margins in the hyperplanes to determine the instance labels.

While measuring linearity between bag performance and
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stability, Table VIII shows that the same bag performance
can have varying stability according to the pooling operator
used. This demonstrates the importance of choice of pooling
operator. The NOR operator shows the highest stability. The
operator treats the instances within a bag as independent bino-
mial variables, which does not hold. Our hypothesis, however,
is that this operator compared to the others is more suited to
the underlying data. From the formula of the NOR (Equation
5), the bag prediction becomes high probability as long as
there are some positive instances. Here we assume using
normalized or logarithmic prediction values, else underflow
can occur. In contrast, the Mean operator averages all the
instance predictions, so in order to have a bag label of ‘1’, all
the instances should be ‘1’. The operator forces more instances
to be positive. So Mean is suitable to bags with a high
number of positive instances. Otherwise Mean exaggerates the
number of positive instances and the model may learn co-
occurring noise, which introduces instability. Similar behavior
is expected of the flexible LSE operator with r = 0.1, which
estimates the Mean. On the other hand, using Max, bags are
predicted as ‘1’ as long as a single instance is predicted as
positive. This pooling is expected to suit bags with very few
positive instances. Otherwise, it is likely that a single distinct
instance is predicted as positive from all positive instances.
This can lead to high bag performance, but not to stable
predictions. Finally, although estimation of the Max, LSE with
r = 1 behaves more similarly to the Mean and LSE with
r = 0.1. We believe that the similarity comes from the formula,
which considers all instance predictions for deriving the bag
label. Positive instances on each bag in the three datasets are
neither abundant, nor highly limited, making Max, Mean, and
LSE operator less suitable and, thus, less stable.

Throughout all the experiments we measure stability with
Spearman rank correlation coefficient and the adjusted positive
Jaccard. Due to their different formulas the two scores are not
identical. Pearson’s correlation test shows varying degree of
correlation between the two scores of different classifiers. This
is evidence that the two scores are complementary. Spearman
correlation is always higher than the adjusted positive Jaccard,
as it considers both positive and negative instances in a bag,
and it does not have the correction of SAPJ . However, SS

score can be much higher than SAPJ in some cases - such
as some bags in Figure 5g and Figure 10. So one should be
aware of the inflation in SS score.

B. Limitations of the proposed stability measurements

The adjusted positive Jaccard can have an undefined value
when all instances in both bags are predicted with the same
label. So there are two scenarios: all instances by both clas-
sifiers are predicted as 1) positive, or as 2) negative. One
can reason that both of these scenarios are trivial and that a
more meaningful value can be assigned. A viable argument is
that when all predictions of two classifiers are the same, then
the stability score should be at its maximum, demonstrating
perfect stability. On the other hand, these two scenarios are
quite extreme in the context of an abnormality localization. In
the case of only negative predictions by both classifiers, one

may argue that there is nothing positive to compare and as such
the stability score is 0. Analogously, only positive predictions
by both classifiers mean 100% agreement on the localization,
and as such the stability score should be 1. However, there are
counter arguments as well. Assigning a stability score of 1 for
only positive predictions does not consider that both classifiers
may be yielding the same label on all instances for all bags,
thus the model has no predictive power. The controversy of
such an assignment might be evidence that replacement with
more meaningful value should not be done at all. So this
remains the main limitation of the stability score.

However, undefined values cannot be used in any algebraic
operations, excluding them from the stability score of the
whole population. That is why it is crucial to keep track of their
total number when drawing conclusions. In addition, finding
the cause of undefined values may provide helpful insights
about the models.

The adjusted positive Jaccard corrects for chance, so it is
no longer a ratio between agreement of two classifiers, which
makes the score less intuitive, and any interpretation of the
score should be carefully handled.

The results from the Spearman correlation coefficient are
reported as is. Although a more descriptive interpretation of
the coefficient values is more conclusive about the degree of
correlation, the interpretation among fields varies greatly [55],
making any interpretation possibly misleading.

C. Considerations
1) Measuring stability: In our work we have focused on

the stability of positive bags. The reason for this is that we
focus on the stability of localizing abnormalities and the main
prerequisite of measuring one is its presence. Furthermore,
the adjusted positive Jaccard is tailored to measure positive
instance predictions, so the score is not suited to negative bags.
The adjusted Jaccard could be used for measuring stability on
all images, but it is designed to measure positive images. Ulti-
mately, measuring bags with only negative instance predictions
results with SAJ = NaN, which does not provide any insights.
So for measuring stability in negative images, a better suited
score should be proposed.

As mentioned earlier, the strength of Spearman correlation
is evaluated from the absolute value of the coefficient. How-
ever, when computing average stability, we do not comply
with these instructions. The reason for this is that negative
correlation indicates change in different directions between
two predictions. This phenomenon in and of itself is evidence
of instability. Hence, we consider that the negativity of the
correlation coefficient should not be omitted.

2) Quality of datasets: While we have used several datasets
to generalize our results, there are some differences between
the datasets that could influence the outcome of the exper-
iments. The X-Ray dataset includes a very limited number
of images with segmentation (under 1%). These images are
included in the training of the network as it has been shown
to be beneficial [32]. However, in the MURA dataset, no
segmentations are available and thus cannot be used during
training. The Pascal VOC dataset contains masks for some im-
ages. However, we train entirely weakly supervised because the
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training set is quite small (under 400 car images) and keeping
the ratio of segmented images of around 1% means having 3
segmented images. Such a low number of segmentation images
cannot be representative and bias is introduced in the training.
So no segmentation images are used. Furthermore, using no
segmentation images makes the dataset more similar to the
medical datasets, where segmentation images are scarcely
provided.

Another difference between the datasets is the angle of the
objects on the images. In the X-Ray dataset, the images always
consists of a frontal chest scan. In MURA, on the other hand,
the scans are done from different angles (see Figure 5b and
Figure 5c). Pascal VOC contains even more variability, where
images of cars are taken at various viewpoints and scales.

In the preprocessing step we use zero-padding to enlarge
any image dimension, which is smaller than the desired input.
We used zero-padding instead of interpolation as interpolation
may distort the image patterns in the process. There are some
repercussions of using distorted images - a possible outcome
is that the abnormality may not be recognized. What is more,
the architecture can be mislead to learn the wrong presentation.
In contrast, zero-padding demonstrates no negative effect on
performance [56].

Another difference is that MURA and, particularly some
images in Pascal VOC, contain lower resolution images. Using
padding for smaller size images means that there are fewer
instances that should be activated, as the rest of the instances
will be on the padding. However, lower proportion of positive
instances in some positive bags may be a reason for bad
performance, and maybe unstable behavior [8].

We believe that the limited number of segmented images
used during training, the similarity between the images and
their higher resolution can be the main reasons for better lo-
calization on the X-Ray dataset. Thus the lack of segmentation
during training, the variability in scale and perspective as well
as the low resolution could account for the efforts of the
models to exaggerate the positive predictions in the MURA
and Pascal VOC datasets.

In addition, Oakden-Rayner raises awareness about the
quality of the annotation in the X-Ray dataset, where 10% to
30% lower values of positive labels are reported than actually
present on the images [57]. The deviation between labels and
visual content can inevitably confuse training the network,
influencing both the bag performance and the stability.

D. Future and Outlook
The research in this project can evolve in several directions.

Future improvements may involve the architecture, the stability
score, or the loss function. However, these improvements have
the ultimate goal of creating more stable and well performing
on instance level models. Similarly to the Max operator, with
supervised bounding boxes, where the bag label is equal to
the prediction of the most discriminate instance, Zhu proposes
taking the k largest abnormal probabilities as positive instances
[58]. All the other instances (N−k) are considered as negative.
In this way, the pooling operator forces negative instances to
have low abnormal probability, and positive instances to have

high probabilities. This approach sounds quite reasonable as
it may combat with predicting as many instances as positive.
This solution has several caveats with it. Firstly, the choice of k
requires a prior knowledge about the abnormality. Furthermore,
taking fixed k instances as most discriminate assumes that an
abnormality has a fixed size. That means that abnormalities
scanned at different angles, or variability of the abnormality
size are not accounted for. Alternative pooling could be based
on the most discriminate region [59].

Carbonneau et al. [8] shows that proportion of positive
rate, relation between instances, and noise in the bag are
just some properties of datasets which has an influence on
the performance. So it may be beneficial designing a pooling
operator or a loss function where those characteristics are
considered.

A common technique of boosting models’ performance is
using an ensemble of models [60]. A solution towards more
stable classifiers may be using an ensemble of weights for
determining the weights of the final model.

A more robust approach to detecting local abnormalities can
be achieved with a two-stage learning. In the first stage, the
most discriminate regions are detected, which are consequently
used in the second stage to boost the localization [59].

VII. CONCLUSIONS

In this paper alternative ways to measure stability are
presented as an unsupervised measurement of localization.
The novelty resides mainly in the concept of measuring
how stable predictions are when localizing abnormalities in
multiple instance learning. The experiments are evaluated
with a common deep learning architecture for MIL and on
3 public datasets, two of which are large medical datasets.
The results show that models are not very stable, even in
cases with perfect bag performance. This is evidence of
the importance of measuring stability, and reporting it in
addition to the evaluation metrics. Our proposed stability
scores can be applied to all fields and data, as long as
algorithms are trained in multiple instance learning settings.
Finally, the current research on the topic is immature,
so there is more to be explored and developed. Future
work should focus on exploring how to make algorithms
more stable and well localizing. Source code is available at
https://github.com/romanovar/evaluation_MIL.
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APPENDIX A
PROOF OF STABILITY SCORE LIMITS

A. Adjusted Positive Jaccard

SAPJ(W ′i ,W
′′

i ) =
n11n00 − n01n10

n00n11 − n01n10 + (n10 + n01)N
,

Let A denote for short the numerator in the score, and B
be the denominator, such A := n11n00 − n01n10; and B :=
n00n11 − n01n10 + (n10 + n01)N . In addition, the following
constraints apply:

1) n00, n11, n01, n10 ≥ 0
2) n00 + n11 + n01 + n10 = N
3) N ≥ 1
4) ensuring denominator is always is non-zero:

n00n11 − n01n10 + (n10 + n01)N 6= 0

1) Minimum Value: So the strategy for finding minimum
value of the score is outlined with two simultaneous targets.
Firstly, we should note that the smallest number for SAPJ

is achieved if the score is negative, which can be achieved
only via the numerator. Secondly, a minimum SAPJ is ac-
complished if the numerator’s absolute value is maximized,
while the denominator is minimized.

Sub-goal I:A < 0 (24)

Sub-goal II: minB ∧max |A| (25)

To achieve A < 0 in 24, it is enough that n00 = 0 ∨ n11 = 0.
In addition, n00 = 0∨n11 = 0 contributes to Equation 25. As
a result

SAPJ =
−n01n10

−n01n10 + (n01 + n10)N
(26)

Despite the score dependency on the exact distribution of
all instances, which we do not consider in depth at this point,
we see that the stability score attains a minimum value at low
N, and it converges around 0 with large N.

If we consider |SAPJ | from (26), the problem can be
seen as solving maximization problem. We maximize n01n10,
while minimizing −n01n10 + (n01 + n10)N . Acknowledge
that minimizing N also leads to lower denominator in (26),
so n00 = n11 = 0, leading to minN = (n01 + n10). So next,
to find minimum value assume SAPJ ≤ −1, hence:

− 1 ≥ −n01n10
−n01n10 + (n01 + n10)(n01 + n10)

(27)

Rewriting the expression we derive to:

(n01 + n10)2 ≤ 2n01n10

It quickly becomes apparent that the left side of inequality
has quadratic growth in contrast to the linear growth on the
right side, and the inequality holds only if n01 = n10 = 0.
However, for non-trivial case where N > 0, the inequality
leads to contradiction. That concludes that it must be that
SAPJ > −1. Another observation is that the numerator’s
absolute value cannot grow larger that the denominator as the

absolute score value decreases with the increase of (n01+n10).
So keeping min(n01 + n10) = 2 and max(n01n10) = 1, then
arg maxn01n10

|SAPJ | = {1, 1}. So the minimum value of
SAPJ = −0.333.
Here, it is important to note that from 26 it is apparent that
for large N, limN→∞SAPJ = 0.

2) Maximum Value: The maximum value of the score can
be outlined with two simultaneous targets. One is finding a
maximal positive value of the numerator, while minimizing
the value of the denominator.

Sub-goal I:A > 0 ∧maxA (28)

Sub-goal II: minB (29)

Equation 28 can be achieved by considering n01n10 = 0.
Considering 29 with respect to these variables, B is minimized
if we minimize n01+n10 such that n01+n10 = 0. That results
in n01 = n10 = 0 and SC =

n11n00
n11n00

= 1

3) Monotonicity: Finding the positive and negative intervals
of the first derivative of SAPJ in respect of n11 can show us
the values for which the function is monotonically increasing.
Firstly we use the quotient rule for differentiation:

∂

∂x

f(x)

g(x)
=
g(x)f ′(x)− f(x)g′(x)

g(x)2

to find the first derivative of SAPJ .

Let u = n11n00−n01n10 and v = n00n11−n01n10+(n10+
n01)(n00 + n11 + n10 + n01). Hence:

∂

∂n11
SAPJ =

v ∂u
∂n11

(u)− u ∂v
∂n11

(v)

v2

where

v
∂u

∂n11
(u) = v ∗ n00

and

u
∂v

∂n11
(v) = u ∗ (n00 + n01 + n10)

After simplifying the arithmetic steps we derive to:

v
∂u

∂n11
(u)− u ∂v

∂n11
(v) = (n01 + n10)(n01 + n00)(n10 + n00)

and

v2 = (n00n11−n01n10+(n10+n01)(n11+n10+n01+n00))2

Despite the multiple elements involved we observe that
the derivative is always positive for n11 > 0, such

∂
∂n11

SAPJ(n11) > 0. From this we can conclude that the func-
tion is monotonically increasing with respect to the positive
overlap observed.
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B. Adjusted Jaccard

SAJ(W ′i ,W
′′

i ) =
2n11n00 − 2n01n10

2n11n00 − 2n01n10 + (n01 + n10)N
(30)

Let A denote for short the numerator in the score, and B be
the denominator, such A := 2n11n00 − 2n01n10; and B :=
2n00n11−2n01n10 +(n10 +n01)N . In addition, the following
constraints apply:

1) n00, n11, n01, n10 ≥ 0
2) n00 + n11 + n01 + n10 = N
3) N ≥ 1
4) ensuring denominator is always is non-zero:

2n00n11 − 2n01n10 + (n10 + n01)N 6= 0

1) Minimum Value: In a similar manner to adjusted positive
Jaccard, we can show that negative and minimum score is
achieved when n11 = n00 = 0 such that:

SAJ(W
′
i ,W

′′
i ) =

−2n01n10

−2n01n10 + (n01 + n10)(n01 + n10)
(31)

Next, assume that SAJ ≤ −1 leading to:

−2n01n10 + (n01 + n10)(n01 + n10) ≤ 2n01n10

and simplifying it to:

(n01 + n10)2 ≤ 4n01n10 (32)

From 32 it is derived that:

n201 + n210 ≤ 2n01n10 (33)

From the simplified version in 33, we see that SAJ ≤ −1
only for n01 = n01 = 1. For any larger value of n01 or n10
the inequality will no longer hold and as such the score score
decreases. In addition, smaller value of n01 or n10 decreases
the stability score. So the minimum value of SAJ = -1 is
found for n11 = n00 = 0 and n01 = n01 = 1.

2) Maximum Value: The strategy is again similar to what
we see in the adjusted positive Jaccard. The lower bound of
the score can be outlined with two simultaneous targets. One
is finding a maximal positive value of the numerator, while
minimizing the value of the denominator.
Maximizing the denominator by setting n01n10 = 0. Further-
more, the denominator is minimized with respect to these
variables if we minimize n01 + n10. As a result, we set:
n01 + n10 = 0.
So for n01 = n10 = 0 and SAJ =

2n11n00
2n11n00

= 1.

3) Monotonicity:
Let u = 2n11n00 − 2n01n10 and
v = 2n00n11 − 2n01n10 + (n10 + n01)(n00 + n11 + n10 + n01).

Finding the positive and negative intervals of the first derivative
of SAJ in respect of n11 and n00 show us the values for which the
function is monotonically increasing. We show separately the mono-
tonicity with respect of n00 and n11. Firstly, we prove monotonicity
regarding n00. We apply the quotient rule from Equation A-A3:

∂

∂n00
SAJ =

v ∂u
∂n00

(u)− u ∂v
∂n00

(v)

v2

where
v

∂u

∂n00
(u) = 2v ∗ n11

and
u

∂v

∂n00
(v) = u ∗ (2n11 + n01 + n10)

After simplifying the arithmetic steps, we derive to:

v
∂u

∂n00
(u)− u

∂v

∂n00
(v) =

2(n2
01n10+n2

01n11+n01n
2
10+2n01n10n11+n01n

2
11+n2

10n11+n10n
2
11)

and

v2 = (2n00n11− 2n01n10 + (n10 +n01)(n00 +n11 +n10 +n01))
2

Despite the multiple elements involved we observe that the derivative
is always positive for n00 > 0, such ∂

∂n00
SAJ(n00) > 0. From this

we can conclude that the function is monotonically increasing with
respect to the positive overlap observed.

Finding the derivative in a similar manner with respect to n11, we
find that:

v
∂u

∂n11
(u) = 2v ∗ n00

and
u

∂v

∂n11
(v) = u ∗ (2n00 + n01 + n10)

and
v

∂u

∂n00
(u)− u

∂v

∂n00
(v) =

2(n01n
2
00+n10n

2
00+n2

01n00+2n01n10n00+n2
01n10+n01n

2
10+n2

10n00)

Similarly, we observe that the derivative is always positive for
n11 > 0, such ∂

∂n11
SAJ(n11) > 0. From this and the monotonicity

in respect to n00, we can conclude that the function is monotonically
increasing with respect to the positive and negative overlap observed.

APPENDIX B
COMPOUNDING TERMS OF THE ADJUSTED POSITIVE

JACCARD

To gain insights about the stability score with the adjusted positive
Jaccard, we compute several additional scores [48]. We use the
previously declared equations for total agreement ratio (Equation
20), positive agreement ratio (Equation 21) and negative agreement
ratio (Equation 22). The tables below show the non-aggregated
compounding terms of the adjusted positive Jaccard. Each row is a
result of the pairwise comparison between classifiers. The aggregated
results in Table VI represent fairly well the raw results on the X-Ray
dataset (Table IX) and on the MURA dataset (Table X). However,
Table XI reveals situations of nearly perfectly balanced predictions,
and situations with asymmetrical imbalanced predictions between
classifiers.
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Classifier # Classifier # TAR Kappa SAPJ PAR NAR PAR-NAR f ′(n∗0 − n∗1) f ′′(n0∗ − n1∗)
1 2 0.88 0.26 0.17 0.32 0.93 -0.59 -219 -188
1 3 0.86 0.24 0.16 0.30 0.92 -0.60 -219 -167
1 4 0.81 0.24 0.15 0.31 0.88 -0.56 -219 -133
1 5 0.82 0.23 0.16 0.29 0.89 -0.59 -219 -142
2 3 0.86 0.31 0.219 0.375 0.91 -0.53 -188 -167
2 4 0.87 0.47 0.36 0.53 0.92 -0.38 -188 -133
2 5 0.85 0.36 0.26 0.43 0.90 -0.46 -188 -142
3 4 0.85 0.42 0.32 0.49 0.91 -0.41 -167 -133
3 5 0.86 0.41 0.31 0.47 0.91 -0.42 -167 -142
4 5 0.86 0.48 0.37 0.55 0.91 -0.35 -142 -133

TABLE IX: Compounding terms of SAPJ on the X-Ray dataset.

Classifiers # Classifiers # TAR Kappa SADJ PAR NAR PAR-NAR f ′(n∗0 − n∗1) f ′′(n0∗ − n1∗)
1 2 0.93 0.78 0.66 0.84 0.94 -0.11 -115 -106
1 3 0.92 0.76 0.63 0.82 0.93 -0.11 -115 -91
1 4 0.93 0.77 0.65 0.82 0.94 -0.12 -115 -106
1 5 0.94 0.80 0.68 0.84 0.95 -0.11 -115 -108
2 3 0.92 0.77 0.65 0.84 0.93 -0.10 -106 -91
2 4 0.93 0.79 0.68 0.85 0.95 -0.10 -106 -108
2 5 0.93 0.78 0.67 0.84 0.94 -0.10 -106 -106
3 4 0.93 0.79 0.67 0.85 0.94 -0.10 -91 -108
3 5 0.92 0.77 0.65 0.84 0.94 -0.10 -91 -106
4 5 0.93 0.79 0.68 0.84 0.95 -0.10 -108 -106

TABLE X: Compounding terms of SAPJ on the MURA dataset.

Classifier # Classifier # TAR Kappa SADJ PAR NAR PAR-NAR f ′(n∗0 − n∗1) f ′′(n0∗ − n1∗)
1 2 0.86 0.68 0.55 0.86 0.82 0.04 -17.83 5.16
1 3 0.83 0.60 0.50 0.84 0.76 0.08 -17.83 8.37
1 4 0.86 0.69 0.55 0.87 0.81 0.06 -17.83 35.06
1 5 0.81 0.58 0.46 0.83 0.74 0.09 -17.83 36.24
2 3 0.89 0.73 0.60 0.89 0.84 0.04 5.16 8.37
2 4 0.89 0.72 0.59 0.89 0.83 0.06 5.16 35.06
2 5 0.87 0.70 0.56 0.88 0.81 0.07 5.16 36.24
3 4 0.84 0.61 0.48 0.86 0.75 0.11 8.37 35.06
3 5 0.85 0.65 0.52 0.86 0.78 0.08 8.37 36.24
4 5 0.89 0.72 0.59 0.91 0.81 0.10 35.06 36.24

TABLE XI: Compounding terms of SAPJ on the Pascal VOC dataset.
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