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Abstract

Power gating is a widely used technique for low power circuit design, which involves se-
lectively shutting-down regions of an integrated circuit, dropping its power consumption to
nearly zero, and all while the rest of the chip remains in operation. It may seem as a win-win
strategy, however its implementation comes at a cost in a variety of aspects, some of them
being power consumption, area and performance. An important body of research has focused
on applying this technique and finding the limits on where this technique can be applied.
Let it be in terms of scale and granularity, speed and frequency of switching on and off, etc.
Thus, it has been of particular interest to explore this technique in the particular context of
re-configurable fabrics.

This research explores power-gating as for reducing energy consumption in coarse-grained
re-configurable architectures (CGRA) with the aim of exploring the effects of granularity
decisions in this regard. For this end, a method is proposed in order to evaluate power-gating
on a cell-to-cell basis, considerably outperforming traditional power-gating strategies. This
method substantially extended the reach of power gating in the interconnect network, without
compromising the interconnect’s functionality. Finally, both area and power trade-offs are
analyzed in the back-end stage of a CGRA’s development.



Chapter 1

Introduction

In the past years, the use of application-specific embedded systems has reached the point
of becoming a basic need in order to satisfy the market demands for cost, performance and
power of newer designs. The industry has increasingly adapted the use of (re)configurable
architectures in design flows to reduce the time and costs incurred to bring a product to the
market, and integrated on high-performance computing devices.

In this section, we will introduce the concept of re-configurable architectures and more
importantly, Blocks, the CGRA designed by the TU/e, which will ber where the focus of this
research is. We will also discuss general techniques for power optimization, finalizing with
the project problem statement ultimately driving this thesis project.
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1.1. RE-CONFIGURABLE ARCHITECTURES

Traditional CPU’s have taken us a long way as the workhorse driving most of our devices,
ranging from high-end supercomputers, normal computers and smartphones, to small micro-
controllers. The one feature that these processors have in common is their capacity for run-
ning virtually any type of operation given their rich instruction sets. This completeness comes
however at a great cost in terms of power efficiency and speed. This has become a more present
challenge as the complexity and computational power that real-time applications require to
be effective. Be it visual processing applications, digital signal processing, or multi-variable
simulations.

For this reason, the use of application specific integrated circuits started to take over
those individual applications, by sacrificing a rich instruction set, and having a streamlined
hardware structure, they were able to outperform CPU’s by orders of magnitude in both
performance and power consumption.

The rise of application specific integrated circuit presented a much more effective way of
dealing with different computational challenges as they can perform several orders of mag-
nitude faster, and more efficiently energy-wise than a multi-purpose chip on similar tasks.
However, ASIC’s strenght in performance would quickly be shadowed by their lack of flexibil-
ity. This gap has given way to re-configurable architectures, which would promise near-ASIC
performance by mimicking the hardware of an ASIC. However they bring these benefits at the
cost of an interconnect area overhead, and lower power efficiency. Different granularities of re-
configurable chips have been proposed and have reached various levels of industry use, being
the most popular the field-programmable gate arrays (FPGA), and the coarse-grained re-
configurable architectures (CGRA). This research is focused on a version of CGRA developed
by the TU/e.

Figure 1.1: Qualitative Flexibility-Performance localization. Source: [7]

1.1 Re-Configurable Architectures

Reconfigurable architectures have increasingly been adopted by industries due to its capacity
of adapting an architecture to accelerate defined applications; much like an ASIC, however
reversible. This provides a significantly higher performance in both speed and energy utiliz-
ation [40]. This trend can be supported by looking at the increased use of Xilinx’s and now
Intel’s FPGA’s, as well as a broad range of more coarse grained versions of them. Sometimes,

3



1.1. RE-CONFIGURABLE ARCHITECTURES

Figure 1.2: Multi-granularity based CGRA definition and comparison. Source: Wijtvliet et
al. 2017 [40].

and depending on the type of applications intended, FPGA’s can reach better power and
performance numbers by locally reducing its per-bit reconfigurability, hence increasing the
granularity of its building blocks (see fig. 1.1. for example, the use of multiple DSP’s in a
standard in FPGA structures.

1.1.1 The CGRA

CGRA’s have steadily earning a position between the full reconfigurability of FPGA’s and
less customizable options, and the major reason for this consists in the recurrent use of pre-
determined functions that need acceleration which can be implemented in an ASIC-fashion,
but wrapped around a re-configurable layer to support it. The boundaries between ASIC’s
and programmable architectures in modern processor designs are becoming less and less clear
as they implement hybrids and accelerators for specific applications.

CGRA’s are more generally defined as a reconfigurable architecture that uses hardware
flexibility to adapt the data-path at runtime to the application. Hence it becomes an array
of configurable functional units that are also spatially programmable. Some academics have
proposed methodologies to classify different types of CGRA’s to come up with a more ro-
bust definition, therefore bringing to light: a) The wide variety of current CGRA designs,
and b) The broad possible range of applications in which CGRA’s can shine respect to other
architectures for a particular application. Wijtvliet et al. [40] proposed a mix of spatial and
temporal granularity metrics to classify a wide range of existent CGRA’s, see figure 1.2.

This shift back towards more coarse grained accelerators could mark a trend that will
provide hybrid FPGA architectures, or namely completely coarse-grained reconfigurable ar-
chitectures (CGRA’s) a space in the market [40] as a more efficient, cheaper, and potentially
easier to configure alternative to current FPGA alternatives. It is hard to directly compare
CGRA’s with FPGA, given that the first has many varieties proposed where few have made
it commercially [7].

.
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1.1. RE-CONFIGURABLE ARCHITECTURES
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Figure 1.3: Closer look at the structure of Blocks, based on [40]

1.1.2 CGRA-Blocks

The CGRA utilized in this study is called Blocks: a design developed at the Eindhoven
University of Technology, which as described by its Wijtvliet, M. as ”is somewhere between
reconfigurable processors and coarse grained re-configurable architectures”. This architecture
was designed as a fabric of reconfigurable processors (RP’s) that act in a SIMD-VLIW fashion,
however with the possibility of extensive explicit bypassing controlled by a specially designed
interconnect network that communicates every RP through pre-runtime configured switch-
boxes. Figure 1.3 shows the generic structure of Blocks, and one of its main features; the
presence of a dual interconnect network. In order to achieve power reduction, the instruction
and data paths have separate networks through which they propagate to each of its functional
units. This separation allows to reduce the size of the data interconnect, and to exploit
instruction re-use.
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1.2. PROJECT PROBLEM STATEMENT

1.2 Project problem statement

As it has been mentioned in this chapter, the performance that CGRA’s can achieve is compar-
able to that an application specific design. However CGRA’s are rather power-hungry mainly
due to their massive interconnect network. This issue has been brought up and is one of the
main concerns regarding CGRA-based embedded systems [19]. And many strategies have
been put in place in order to mitigate the CGRA’s power consumption: either by performing
the standard power reduction methods discussed in annex .2, or through architecture-specific
strategies such as the the interconnect solution in Blocks, or by power-gating sections of the
CGRA as it has been applied to FPGA’s [5]. For this reason, power gating was chosen as
the strategy to study as it targets the most dominant source of power consumption in deep-
nanometer designs: leakage. Additionally, power gating is a strategy that involves a careful
consideration on the architecture it is applied to, the granularity at which it can be applied,
and the ways it can be used effectively. Thus, being an area of research with the potential of
bringing novelty while attempting to solve a major challenge in the advance of the CGRA as
a standard platform.

Power gating has become almost mandatory in VLSI designs since the leakage is a dominat-
ing factor in newer CMOS technologies. It has become specially interesting for re-configurable
architectures, where based on the mapping of a function major parts of the architecture re-
mains unused. Power gating comes with logic overhead besides the required power switches
themselves, and this overhead logic needs to provide logical isolation and valid logic signals
while turned off for each of the switched modules’ outgoing wires. This leads us to having to
seriously investigate the granularity at which power gating can be applied. This is specially
the case with in coarse grain re-configurable hardware, where there are very clear function-
al/logical dependencies between coarse-grain blocks.

It is for the reasons just argued, that power gating that it has been taken as the most relev-
ant strategy to reduce the power in newer technologies using accelerators and re-configurable
fabrics. The case of the CGRA developed at the Technical University of Eindhoven, would
make of a suitable test subject to analyze the trade-offs regarding the granularity at which
power gating can be applied. This is a topic in which there is not yet a consensus, or a
systematic way to quantify the actual impact of power gates.

The problem statement is then an optimization question:
[MQ] At which granularity, in terms of functional units within the context of the coarse
grained re-programmable architecture (CGRA), should power gating be applied to be benefi-
cial for power. Analyzing the existing power-switching strategies applied in the industry, and
providing results in the context of existing benchmarks and algorithms.

This analysis will weigh present trade-offs based on performance, area, energy savings, and
possible flexibility implications of the different granularity settings for these algorithms, and
taking into account the overhead of all relevant modifications involved in its implementation.

The relevant sub-questions go then as follows:

[SQ1] Analyze the implementation of power gating from the perspective of functional units,

6



1.2. PROJECT PROBLEM STATEMENT

and determine whether is should be added as a default feature of all functional units in
the CGRA, investigate the main variables involved and argument a position.

[SQ2] In terms of Floorplanning and the overall physical design, is what is the impact of the
different power switching strategies, and how do they compare with the literature in
the context of the CGRA?

[SQ3] Quantify the overhead coming from isolation cells, and control logic that may be re-
quired.

[SQ4] Can power gating on the CGRA be controlled dynamically e.g. switching functional
units on and off during execution? Analyze and quantify. If that were beneficial, how
should it be controlled?

1.2.1 Planning

In order to answer these questions, the next chapters are organized as follows:

Chapter 2 introduces the state of the art study on what concerns power gating, analyzing
the different aspects that need to be taken into account, as well as drafting an idea of
what results were to be expected when applying them to the CGRA.

Chapter 3 introduces the main metrics that will be used to evaluate the power gating
strategies adopted in terms of energy and area.

Chapter 4 will review everything related to the workflows and models used to generate
the metrics that we need to evaluate. Starting from the specifics of the designs used, tests
groups and flows. Finally it introduces the Path traversal algorithm used to optimize
power gating in the CGRA.

Chapter 5 showcases the results in terms of the metrics generated by the different
strategies applied, the impact that the path traversal algorithm had in the test groups,
the overall metrics CGRA-wide both dynamically as well as by switching the CGRA
entirely off.

Chapter 6 finally summarizes the results and contrasts it with the initial objectives,
highlighting the progress that this research made, as well as the future work that needs
to take place.

7



Chapter 2

State of the art analysis

Thus far, this report lit upon what the current trends in low-power designs are, (excluding
fully sub-threshold designs), and motivated a research question based on the granularity of
power switches on a re-programmable fabric. This section will now place the focus onto latest
research in the field of power gating, trying to map what alternatives are out there that may
help answer the problem statement. The section will begin with some identified trends, then
pass onto some guidelines on the design of power gates in terms of width and other paramet-
ers, to then the start drawing a power model for the different case-base that this research will
have, all within the context of 40nm-TSMC technology.

8



2.1. CURRENT TRENDS IN POWER GATING

2.1 Current trends in power gating

As introduced in section .2.3.3 and in the problem statement, power gating, or power gating,
is one of the most attractive and well adopted techniques for power saving in nanometer tech-
nology nodes, we have many of today’s microprocessors actually applying block-level power
gating when the processors are idling [21].

It is however paramount to being able to apply power gating during the activity of these
cores, as generally a small portion of them will be active, accelerators, certain IO’s and even
parts of the memory could be power switched, hence fine-grained run-time power gating
(FRPS or FRPG) has been explored [20] to preserve power in a much smaller temporal and
spatial granularity. Fine-grained run-time power gating generally depends on a small bit of
control circuitry, and has been applied to memories [35], functional units in microprocessors
[16] and re-configurable architectures [26].

An interesting option to fine-grained run-time power gating, or perhaps a complement,
consists in the use of state retention within the power gated blocks (see fig. 2.5), however
this solution tends to be quite expensive both in terms of power and area. For this reason,
smart classification of registers either via netlist analysis or formal methods [13] have allowed
to apply retention to only a subset of the registers that would otherwise be introduced in a
block. This state retaining method allows for a stop in processors when for example a cache
miss occurs and the processor is stalled, then quickly recover from where it left off after the
issue has been solved.

In terms of power gating for memories: memories contribute to nearly half of the leakage
in deep-nanometer circuits, however they often cannot afford loosing their state and generally
a state-retention based power gating scheme would turn to be too expensive area-wise. Thus,
a multi-mode power gating strategy was proposed [11]. It consists of a much bigger switch
cell, which supports namely 3 modes: On, while active; Sleep while they are off but with
memory retention enabled; and Off for completely shut-off. This has also been explored in
prior master projects at the TU/e, by Groot [14] who proposed a switch capable of dropping
the voltage of a module low enough to reap benefits in leakage, but high enough to allow
registers to be able to keep their state.

There is very limited research particularly concerning power gating in CGRA’s, however
the closest neighbour to this architecture family are FPGA’s, which present a substantially
more developed literature in terms of granularity and control. Bsoul [4] explored different
ways in which the interconnect could be included into the power-gating scheme and invest-
igated dynamic power gating. Additionally, research on power gating in FPGA’s generally
aims to target the interconnect networks in their designs, on the one side because the blocks
within an FPGA are genearlly hard-IP blocks, but also because the interconnect network is
one of the main sources of power consumption. Partial and total inclusion of the interconnect
structures around particular logic clusters have been proposed [5]. The range of solutions seen
in FPGA’s do not directly apply to the CGRA, however they face similar issues and therefore
their approach in their case seems to lay a solid starting point for tackling the challenges (and
pros) that the CGRA presents.

9



2.2. IMPLEMENTING A POWER GATE CIRCUIT

To summarize this quick overview of the main trends with respect to power gating:

1. Leakage keeps growing.

2. Most modern microprocessors apply it at a coarse level, as a standby/ sleep mode,
however fine granularity seems to be making big steps due to:

(a) Vertical integration of power gating in the design flows (eg. Compiler-based power
gating + Hardware-based opwer gating).

(b) Better partitioning algorithms and selective use of state retention.

3. Improvements in power gating for memories has led to various new multi-mode power
switches.

4. Power gating research in CGRA’ is still very poor, however there is a much more mature
knowledge revolving FPGA research, where schemes have been proposed to power-gate
at different granularities, as well as including ways of controlling the power gated blocks
at run-time.

2.2 Implementing a power gate circuit

The modeling, and latter implementation of power gates require a number of design decisions
that need to carefully be revised, This section will present some of the main challenges that this
process takes, and what possibilities are in place to take this research into an implementation,
as shown in figure 2.1.

Figure 2.1: Diagram showing the main structures involving a power gating scheme: the
controller on the left, the switches themselves (headers and footers on top and bottom of M
respectively), the isolation cells on the outputs of the module M, and the always-on block
representing the set of non-switched modules.
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2.2. IMPLEMENTING A POWER GATE CIRCUIT

In the following sections, we will turn into discussing the more practical parts of power
gating, treading ever closer to what the final implementation should be.

2.2.1 Sizing of a power gate

The simplest possible way to visualize a power gate is to think about a single single transistor,
either PMOS or NMOS (header and footer respectively), then, we can extend this to an array
of transistors that act in synchrony as a single switch by inducing a high resistance when the
gates are closed. It is used to power gate certain parts of a circuit that are currently not in
use. Generally, these sleep transistors are high-Vt.

It is important to remember that the ’optimal’ power gating strategy (if any) will depend
on specific goals and the actual chosen CMOS technology. Some of these variables are have
to do with the use of header and/or footer; if there is any bias; the chosen transistor size and
other layout implementation details. We also have to put our search into the context of 40nm
bulk CMOS.

Commonly, the minimal sizing of a sleep transistor will depend on the current that the
power-gate circuit can draw, and the acceptable IR drop. The following size calculations have
been described for both NMOS [1], and for PMOS [17].

We will now perform the estimations for a PMOS. To simplify the analysis, we assume
that a single power gate will be used per gated block. We start our analysis by determining
the delay of a normal gate delay (eg, in the absence of a PG).

τd =
CLVDD

(VDD − VT l)α
(2.1)

where CL is the load capacitance, VT l is the threshold voltage of the (low-Vt) transistor,
and α is the velocity saturation index which is technology dependent. Now, in the presence of
a sleep transistor, the gate propagation delay inside the power gated block can be calculated
as:

τPGd =
CL(VDD − VPG)

(VDD − VPG − VT l)α
(2.2)

where VPG is the voltage drop on the power gate. Now, we would like to find the V PG
DD

such that the delay of the transistor without power gates were equal to the delay of the power
gated case:

τd =
CLVDD

(VDD − VT l)α
=

CL(VDD − VPG)

(V PG
DD − VPG − VT l)α

(2.3)

For simplicity, we shall assume α = 1, hence the ’supply increase ratio’ η is:

η =

(
V PG
DD

VDD
− 1

)
(2.4)

Having this relation, we can define the voltage drop in terms of VDD, which will help us in
the next steps:

11



2.2. IMPLEMENTING A POWER GATE CIRCUIT

VPG = ηVDD (2.5)

Assuming that the PG operates in its linear region, its current can be expressed as:

IPG = µpCox
W

L

[
(V PG
DD − VTh)VPG −

V 2
PG

2

]
(2.6)

Where if we substitute VPG as in equation 2.5, we will get:

(
W

L

)
PG

=
IPG

µpCoxηVDD(V PG
DD − VTh − 0.5ηVDD)

(2.7)

This relation puts puts in evidence how the size of the transistor is a function of VDD, and
the voltage drop across the power gate (through ηVDD), finally we can calculate the minimal
power gate size if we take IMAX = IPG, where IMAX is the maximum switching current that
the circuit will draw. Repeating the same process, we can get the expression for the size of
an NMOS-PG as:

(
W

L

)
PG

=
IPG

µnCoxηVDD(V PG
DD − VTh)

(2.8)

often, µCox is replaced by the value for trans-conductance β, which makes:

(
W

L

)
PG

=
IPG

βηVDD(V PG
DD − VTh)

(2.9)

where β is the transistor trans-conductance, η is the max relative IR drop, and V PG
DD−VTh is

the gate-drive voltage. If we now look back at the models presented in section .1, we can start
doing the exercise of which power gate would be required for a particular block capacitance.

2.2.2 Trade-offs and break-even point

The implementation of power gates comes at a considerable overhead, as it will require the
insertion of wide-enough power switches that will supply of a stable VDD and VSS regardless
of: a) the voltage drop induced by the transistor itself, b) the current draw that the circuit
will have during its active period. This switches will still have a certain resistance, and hence
burn extra active power, as well as introduce extra power consumption when switching on
and off a virtual supply (either VDD or VSS). This introduces an overhead that in principle,
should be compensated by the gains of reduced leakage power (see fig 2.2).
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2.2. IMPLEMENTING A POWER GATE CIRCUIT

Figure 2.2: The power profile of a curcuit with power gating. Source: Kondo 2014 [20]

Most work available present the idea of a break even point (BEP), in which they look
towards compensating the overhead that the PG introduces [20, 32]. In this particular case,
the overhead is modeled as EsleepOH and EwakeupOH , where the energy gain is a function of
the time in which the circuit it in shutoff mode Esleep(t).

Esavings = Esleep(t)− (EsleepOH + EwakeupOH) (2.10)

Niedermeier [28] digs a little deeper into the breakdown of overhead, not only including
the extra power used while switching on and off, but rather including explicitly the impact of
architectural changes and supporting cells onto the design, expanding on the active power of
isolation cells, and other modules. Here, (EsleepOH + EwakeupOH) = Eoverhead is defined by:

Eoverhead = tdown ∗ (Pswitch,leak + Piso,leak + PSR,leak)

+ tactive ∗ (Piso,active + ∆PSR,active)

+ ttotal ∗ Padd.modules
+N ∗ Epoweron

(2.11)

Indeed, the power gating is worth it only if Esavings ≥ Eoverhead.
Since the implementation of the power gates to be done in this project is going to be

a mainly hardware-based solution. Other software-based trade-off and analysis schemes are
going to be omitted. The logic behind this analysis however, seems to show quite some clarity
about how the power gates’s performance will be evaluated power-wise.

As was just mentioned, and added into the trade-offs variables; the implementation of
power gates often requires a number of other cells, circuit infrastructure, and control mech-
anisms to become a viable option. The additions that are required are:

1. Decap cells: in order to avoid the power noise caused by the simultaneous switching of
IO buffers and logic. The addition of decap cells can considerably reduce the transition
noise. The decap cells commonly use on-chip non-switching capacitors Cckt or thin-
oxide capacitors Cox [17]. Depending on the noise distribution of the chip or the block
in question, decap are distributes around and within the chip to pull noise back to
a determined margin. A high capacitance from decap cells is generally used in high
performance chips.
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2.2. IMPLEMENTING A POWER GATE CIRCUIT

Figure 2.3: Illustration on the insertion of decap cells to denoise a power gated block.

Some of the calculation on how much decoupling, and where it should be located, is
presented in the work of [17], where an iteration greedy algorithms and identification of
highest noise sensitivity are used to place the necessary decap.

2. Isolation cells: These are simple registers or combinatorial cells that are connected at
the outputs of the gated block to prevent the floating outputs of the cut-off circuit
to change any states on the parts of the chip that are active. These cells are in the
always-on domain and depending on the design and the amount of power islands to be
gated, could generate a considerable amount of power overhead [28], there are generally
3 types of standard isolation cells: pull-up, pull-down and with a latch to preserve the
last output of the gated block. This last one is generally only used in tandem with
state-retention across the power gated block, which can be connected to scan chains or
other ’state retention schemes’.

Figure 2.4: schematic of a simple clamp isolation cell

3. Retention registers: one of the challenges of power gates, is that the state of the block
that has been shut-off looses its state, since memories and registers are not capable of
keeping their information while powered off [33]. Hence, special retention cells have
been adopted in most of the commercial standard libraries (eg. TMSC), to support the
State retention power gating (SRPG).
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Figure 2.5: Illustration of the schematic of a retention cell. Here, a conventional master-slave
D-FF is modified for data retention. Here, the when when the power-gated cells (denoted by
GL) are shut down, the information is moved to an adjacent latch that is within the always-on
domain. Source: Seomun, 2009 [33].

The use of SRPG requires an extra duplicate of the state latches that need to be re-
tained, thus, the area increases by about an unavoidable 30-50% per retained register
[33]. This also poses a great challenge in terms of routing overhead, as some of this
registers have to be located sometimes deep within shut-off territory [13], as well as
reducing the power-saving effectiveness in contrast to a traditional PG scheme.

A more advanced version of SRPG is selective-SRPG or SSRPG, which is done by
only choosing and retaining the registers that are essential for retaining the state of a
power-gated block. This assumes that only a small subset of the gated FF’s is actually
essential for a system-wide state retention, which often has its limitations. Some of the
processes in which SSRPG is based consist in the classification of a design’s FFs to be
power gated [12].

2.3 Fine grained vs. Coarse grained

One of the first decisions that the architect has take when planning power gating, is the issue
of granularity. Literature often describes granularity as fine and coarse, depending on whether
the power gate is located already as part of each standard cell in the library to be used [18].
However this definition has shifted over time as a) per-cell power gating doesn’t seem to
justify the overhead that it involves, and b) The literature has shifted the understanding of
fine-grained power gating (FGPG) to the order of hundreds of cells, whereas coarse-grained
power gating (CGPG) generally ranges in the thousands of cells. Our understanding of
granularity could have a distinction on the basis of a functional unit in the CGRA. Meaning
that FGPG may involve 1 functional units or less, while CGPG would involve an array of
functional units.

2.3.1 Fine-grained power gating

in the case of the smallest possible fine-grained power gating, the power-gate is located inside
the standard cell, and since it has to be able to supply the worst case current required by
that particular cell, the resulting size of that FGPG ends up being comparable to that of the
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cell itself; even up to x2-4 of the original cell size [18]. It is important to note that for FGPG
footer cells are preferred above headers, for the simple reason that NMOS transistors have
roughly twice as higher carrier mobility than PMOS transistors, which will proportionally
impact the required size of the power gate in question (see equation 2.9), however, due to
their increased mobility, NMOS power gates will present more leakage current than PMOS
(see equation 8).

One of the advantages of fine-grained power gating is that the design of each power gate
individually has very little problems, as the timing impact of the IR drop can be quite pre-
dictable, this means that FGPG could be, if it were included in the standard cell libraries,
deployed using a ’normal’ design flow. However the sizable amount of overhead could barely
justify the use of power gates per cell, also specially because most power-gated circuits use at
least 8-bit architectures. It becomes then almost natural to group cells into coarser islands
and still call it Fine-grained.

2.3.2 Coarse-grained power gating

In coarse-grained power gating (CGPG), a block of gates is switched by one or a group of
power cells. Generally they are placed forming a ring around the gated block or they are
distributed within the actual block [18]. This method has been the most used in the past
years, as it does not require the extreme area overheads used in fine-grained power gating,
however it presents different challenges in regards to the number and size of power gates
required for gating a given block. This is due to the difficulties in estimating the worst case
current that the gated circuit will draw from the switches.

Figure 2.6: structure of a ring and column based power gating techniques

Each of the two methods have their advantages and disadvantages, and it will ultimately
be a decision of the designer, on which of the two shall take place. However, this structural
CGPG decision will have implications on further design decisions.
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2.3.2.1 - Ring-based coarse-grained power gating

It generally is a good option for small logic blocks where the voltage drop across the switch
transistors and the V VDD mesh can be easily managed.

+ Simpler power plan due to the separation between the Virtual VDD and the actual VDD.
Sleep transistors are not mixed with the other logic cells.

+ Has little negative impact on placement and routing.

– It does not support retention registers (as the whole block is completely cut from VDD).

– Adds a much more significant extra cost compared to a grid approach.

2.3.2.2 - Grid-based coarse-grained power gating

This is a more suitable alternative when large logic blocks are being power gated, as it would
supply the V VDD (V VSS) with a better distribution.

+ The switches have to drive smaller portions of the V VDD every time, compared to the
ring based power gating.

+ Requires fewer/ smaller sleep transistors for a similar IR drop. Then again, it is because
the V VDD’s are are of much smaller depth.

+ Permanent power supply is available across the power-down domain areas.

+ it provides a better trickle charge distribution for management of in-rush current.

+ has less impact on the area of a power gated block.

– It requires changes on the cell routing and physical synthesis.

– Adds much more complexity to the power routing needs of the design.

There are variations of Grid based implementations of power gates, such as column based
and row based. These, they are good for reducing the voltage drop across the V VDDs but
they impact placement and lower metal layers on the design.

The optimal style will depend on:

1. Design.

2. Library being used and the type of switches available.

3. The technology being targeted and its specific leakage characteristics.

4. The performance and power goals of the design.

5. The use of legacy or highly optimized IP.
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Chapter 3

Metrics

The last section in the analysis has to do with the design itself on a back-end perspective,
this is a more practical and therefore a slightly less explored area experimented with on the
research. Its results would shed some extra light and weights on the trade-off analysis of
power switches from both a power and a floorplanning perspective.
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3.1 Area overhead (AO)

As presented in section 2.2, we will discuss the two common schemes for used by designers and
their trade-offs, namely the ring-based and column-based power switch insertion, additionally,
a derivative of the column-based method, generally called the ”checkerboard” method. The
first thing we need to find out is how many power switches does the module M require. This
information can be obtained by different ways given the tools available and the information
that can be gathered from the technology libraries of the TSMC40nm libraries. The most
straightforward way of collecting the information about the module M, would be to collect
the capacitance, activity factors and energy consumption from Innovus’ reports and replicate
the 1st order model presented above.

Using the power reports from Innovus, we can collect capacitance, power consumption and
the activity factor on which those were calculated. We can thus estimate that the power that
the switches need to provide in the worst case as power(M)/α, in other words, the module
power in case of a 100% chance of activity. With that, the translation from power to required
current just requires a division over the supply voltage Vdd. Since we are using both headers
and footers, we repeat the exercise on both cases:

NrPS = (AP (M)/α)/min(IPS) (3.1)

Where the IPS is the current that the power switch can provide given a designer defined
IR drop of 5%. Now, knowing how many power switches of every type we would need, we have
to distribute it between big and small making sure there are enough small power switches
to ensure that the rush-in current stays below a 5x the normal current threshold through a
stepped wake-up chain. Having the number of headers and footers of each type to be used
for module M, we can analyze the area impact of adding them to the design: The easiest way
would be to add the area of the power switches and isolation cells:

AOtotal = AOPS +AOISO

AOtotal =
∑

areaPS +
∑

areaISO
(3.2)

While this analysis holds for the isolation cells, the area overhead of power switches depend
on the type of insertion implemented, we therefore will calculate the AOring and AOcols for
the ring, column and checkerboard types of switch insertion separately, and therefore is it
where the analysis will go. Now, the different methods end up collecting basically the same
information and can help contrast the results of each other. We will lean towards the first
method in this case as we have a way of simulating on the same principles.

3.1.1 Ring-based power switching

Ring-based power switching, as its name indicates, and as discussed in chapter 2, all power
switches are inserted around module M , hence creating a ring around it, as shown in figure
3.1.
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(a)
(b)

Figure 3.1: Area overhead (AOring) of a ring-based power switch insertion on the area of M.
in theory (a), and in practice (b) generated in Cadence Innovus.

Knowing the number of switches needed and assuming a distribution on all 4 sides of
M, we can define h(PSside) and w(PSside) as the maximum height and width of all power
switching cells in a particular side plus the separation between the M and the power switches,
defined as haloM :

h(PSside) = max(h(PSside)) + haloM

and

w(PSside) = max(w(PSside)) + haloM

Now, we can estimate AOring of as follows:

for the sides:

w(M) ∗ h(PStop) +

w(M) ∗ h(PSbot) +

h(M) ∗ w(PSle) +

h(M) ∗ w(PSri)

and the corners:

h(PStop) ∗ w(PSle) + h(PStop) ∗ w(PSri) +

h(PSbot) ∗ w(PSle) + h(PSbot) ∗ w(PSri)

3.1.2 Column-based power switching

In the case of column based, the switches are placed inside the module M, hence avoiding
the requirement for a complete construct around the module as a ring-based scheme would
require. This method generally requires less area to be implemented, but increases the routing
complexity, as seen in figure 3.3 with respect to 3.1.
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(a) (b)

Figure 3.2: Area impact of a column-based power switch insertion on the area of M. in theory
(a), and in practice (b) generated by Cadence Innovus.

We can estimate calculate the area impact of the power as, given a COL = nr of PS
columns in M, and the width of a column defined as the maximum width of the power
switches belonging to that particular column (PScol).

w(PScol) = max(w(PScol)) + haloM

with makes the area overhead (AO) for columns:

AOcol =
COL∑
i

h(M) ∗ w(PSi) (3.3)

3.1.3 ”Checkerboard” power switching

This technically consists in a variation of the column-based power switching, however it
places the power switches on every column in a vertical distance to each other, allowing for
the blockage that would have been otherwise across the whole column to be interrupted,
thus allowing for a minimal area impact on power switching. For this effect, we now hace to
calculate the area overhead ao per-switch s, and with halo = 1.68um:

aos = (ws + 2 ∗ halo) ∗ (hs + 2 ∗ halo) (3.4)

Where the total overhead of the ”checkerboard” switching is the sum of all N individual
overheads:

AOcheck =
N∑
i

aoi (3.5)
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(a) (b)

Figure 3.3: Area impact of a column-based power switch insertion on the area of M. in theory
(a), and in practice (b) generated by Cadence Innovus.

3.2 Energy analysis

Energy is probably the prime reason why power switches are installed, however they do present
certain drawbacks in this regard. Citing Niedermejer [28], the complete energy savings of a
power switch scheme could be calculated as:

Esavings = Pmod,leak ∗ tdown +N ∗ Epowerdown (3.6)

with N: nr of trantisitons from on to off and Eoverhead is defined by:

Eoverhead = tdown ∗ (Pswitch,leak + Piso,leak + PSR,leak)

+ tactive ∗ (Piso,active + ∆PSR,active)

+ ttotal ∗ Padd.modules
+N ∗ Epoweron

(3.7)

Sufficient data will be gathered to make this calculation applied to the case of the CGRA,
and tested for different modes/granularities of power switching. The results generated will
be contrasted to those of a flat design and conclusions can be taken from there.

3.3 Performance

The measured performance of the design given the insertion of power switches is heavily
dependent on the impact that the chosen IR drop of the power gated modules have in the
critical paths of the design. Therefore topics like timing analysis have receded to a second
level of importance to this research. However what the designer would have to weigh during
this process is to estimate how much speed is he/she willing to give up given the chosen IR
drop for which the power gating structure is put in place.

For the effects of this research, we make the assumption that performance will react solely
based on said IR drop, and a simple way to estimate it is by using another first order model
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for the charging and discharging of an inverter.

Being an inverter’s discharge time (tpHL) estimated linearly as the what pull-down network
(NMOS) takes to discharge the load capacitance at the gate. Being the same inverter’s charge
time (tpLH) estimated linearly as what the pull-up network (PMOS)takes to charge the load
capacitance at the gate.

TpLH =
CL ∗ Vdd

Wp

Lp
∗ µp(Vdd − VTp)2

TpHL =
CL ∗ Vdd

Wn
Ln
∗ µn(Vdd − VTn)2

(3.8)

If in either case, we multiply Vdd by a factor a < 1, and rearrange the equations, we get:

TpLH =
CL

Wp

Lp
∗ µp

∗ Vdd ∗ a
(Vdd ∗ a− VTp)2

TpHL =
CL

Wn
Ln
∗ µn

∗ Vdd ∗ a
(Vdd ∗ a− VTn)2

(3.9)

Note that Wx, Lx, µx, CL are all constants. We can see on the right hand side of the
equations that solving for zeros gives us that VT /Vdd < a < 1. This give us an asymptotic
relationship between Vdd and propagation delay. This is of course not the case in real life,
but grossly illustrates the effect of such a change. Considering that we are using LVT cells
with VT = 0.48V , Vdd = 1.1V , and an IR drop of 5%, we can estimate a propagation delay
increase of:

no IR delay = 1.1/(1.1− 0.48) = 1.774

IR delay = 0.95 ∗ 1.1/(0.95 ∗ 1.1− 0.48) = 1, 849

% increase = 4.249%

(3.10)

In this case, it seems that the difference between Vdd and the VT of the standard cells
allowed for a performance cost smaller than the IR drop, however this is not the case when
we use HVT cells (VT = 0.65V ):

no IR delay = 1.1/(1.1− 0.65) = 2.444

IR delay = 0.95 ∗ 1.1/(0.95 ∗ 1.1− 0.65) = 2, 646

% increase = 8.23%

(3.11)

Where the performance cost is now almost doubled for the same IR drop.

The calculations shown in the above example were put in place to illustrate how the
designer could estimate the impact of his/her IR drop’s decision, however the results of this
research have taken that as a granted and fixed value of 5%. And since we can’t assert that
the changes in performance are going to be what was calculated in the example, we can
assume that whatever the real impact is, it will remain constant across our test-groups and
benchmarks.
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Chapter 4

Methodology

Having outlined the main metrics used in this research for area and power of power gating, the
purpose of this chapter is to show the methodology used to gather and mix the information
collected for its different parts. Since the data came from varied sources: namely a set of
tools as well as documentation. There is a high overlap between them. Information as the
power characteristics of the power switches and isolation cells come mainly from TSMC’s
documentation and liberty (.lib) files, which are also used by the cadence tools used, namely
Genus, Innovus, Virtuoso and their respective sub-tools.
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4.1 Tested designs

This research was conducted on two benchmark versions of the CGRA blocks, one of relatively
small size, and on a bigger scale, these designs went through the design and P+R flows that
will be discussed further in this same chapter, for different combinations of power switched
modules, and performed one at a time in order to avoid the possible impact that power is-
lands may have on each other, they were all contrasted with a simple flat design of every type.

1. Binarization scalar dynamic: The smallest of the CGRA benchmarks used was the
implementation of a binarization algorithm, consisting in a 3x3 grid of functional units
and an extra layer of switchboxes (see 4.1).

2. FFT parallel dynamic: A more upscale version of the CGRA containing 5x more FU’s
than the initial benchmark, this design will prove useful to test the granularity of power
switching on the CGRA, as well including the MUL functional unit, which was not
available in the binarization benchmark (see 4.2).

Figure 4.1: Binarization scalar dynamic CGRA architecture.
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Figure 4.2: FFT parallel dynamic CGRA architecture.

4.2 Test groups

As mentioned, in the beginning of the section, there are 3 test groups consist in a) only
switchboxes, b) only functional units, and c) extended functional units. In here we will
briefly go through what we will find in each one of them, and give the cumulative measures
on them based on the two benchmarks used; Binarization and FFT.

4.2.1 Switchboxes

They are the most numerous modules, accounting for [63-65]% of the CGRA’s logic on both
benchmarks used (excluding memory). They also account for with the most variability in their
possible configurations, and subsequently in the number of cells, and outputs they present.

1. Control switchboxes: are the smallest, and their size in the benchmarks used ranges
between [40 - 572] cells. Their number of outputs range between [33-321].

Control SWB min max average median

cells 40 572 296.67 255

area 69.38 932.33 542.61 539.78

oports 33 321 100.64 97

2. Data switchboxes: the bulk of the CGRA interconnect, their size ranges between [110-
4834] cells. Their number of outputs range between [49-449].

data SWB min max average median

cells 110 4834 2255.65 1451

area 196.62 7563.09 3778.17 2868.97

oports 49 449 309.12 353
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The immense variability that they present depends uniquely on how many paths does the
switchbox need to support. In the case of the smaller ones it would be just a redirection,
where on the biggest ones it would support redirection from/to either cardinal point, as well
as connections from and to 2 different FU’s. For this same reason, the results of switchboxes
were separated in 5 intervals depending on their number of instances:

Module instances count

swb 500 i <= 500 7

swb 1000 500 < i <= 1000 5

swb 1500 1000 < i <= 1500 12

swb 2000 1500 < i <= 2000 15

swb 3000 2000 < i <= 3000 7

swb 4000 3000 < i <= 4000 5

swb 4000+ 4000 < i 24

4.2.2 Functional units

They are computing part of the CGRA, accounting for the resting [35-37]% of the CGRA’s
logic. They present just a handful of different functional units, namely: IMM, ID, ALU,
MUL, RF and LSU, which account for every module needed to make a processor. Limited
in number as they are, there is much less variability involved: where IMM and ID’s are less
than 200 cells, most other FU’s are in the 2000 cell size.

FU min max average median

cells 74 2290 1161.23 812

area 334.22 6924.99 3210.86 1851.49

ports 46 238 95.87 66

In terms of the results that will be presented in the following chapters, the functional
units were grouped throughout both benchmarks based on their type:

Module count

mul 9

lsu 10

abu 2

rf 1

id 16

imm 4

4.2.3 Extended functional units

They are the same functional units that were counted before, but extended using the path
traversal algorithm, to select the biggest possible number of cells from their respective switch-
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boxes, without altering the functionality of the interconnect. The results were rather positive,
And the measured data on them can be found in the following table.

FU+ min max average median

cells 196 3379 1977.92 1893

area 477.22 8418.98 4821.31 3842.93

ports 46 238 95.87 66

In terms of the results presented in the next chapter, the extended functional units were
grouped in the same way as the functional units as shown in the prior section.

4.3 First order power switch

Based on the work of Groot, 2007 [14] a first order model of the power gated module M was
generated. Where the core will represent the a module named ”M”. We will use a first order
approximation of the core’s behavior as composed by a resistor, a capacitor, and a current
source. Where: VDDV represents the voltage of the core during active period, it equals VDD
minus the voltage drop across the power switch, and VSSV represents the virtual ground of
the core (see fig.4.3).

Figure 4.3: First-order model for the core.

Where the current source IDC represents the dynamic power consumption of the core.
During simulations, the current source is either turned into an open switch to simulate in-
activity, or into a current source that will compete with the supply provided by the header (and
the ground of the footer), here α represents the switching activity and f the circuit frequency:
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Idc = αCcore ∗ V 2
DDV ∗ f (4.1)

the capacitor Ccore represents the total capacitance of the core:

Ccore = Cdecap +
∑

gate∈core
Cgate (4.2)

and the resistor Rleak is the calculated resistance of the core, from which we can model
the leakage current Ileak:

Rleak =
VDDV
Ileak

(4.3)

In the model, the total energy used during wake-up can be approximated as equation 4.4,
being twakeup the total time it takes Ccore to charge up to VDDV :

Ecorecharge =

∫ twakeup

0
VDDV ∗ i(t)dt = V 2

DDV ∗ Ccore (4.4)

With this model, it is possible to generate a baseline estimation of the charging and
discharging behavior in different operating modes. The models described in this section were
implemented using cadence RC (Virtuoso) and tested for the various ranges that the analyses
may require. Some of the handles moved to simulate the possible requirements were:

1. Number/type of power switches: The switches available vary in their size and their
capacity to supply power to the VDDV and VSSV , the decision on type and numbers
were based on the current required to cover for a determined voltage drop.

2. Delay: Although the schematic shown in figure 4.4 contains buffers between the gates,
it was simpler to model the delay directly by assigning a delay on the enable of each
power switch. Additionally, the delay was useful to balance the behavior of headers and
footers, as well as to keep the rush-in current in check.
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Figure 4.4: Illustration of the test model using a variable number of switches which for a
determined Weff , they may have different rush-in current characteristics due to the size, and
the signal delay of the switches used. This model, adjusted for switch number; size; and delay,
will be used to calculate the transient behavior of the switches used later on in this research.

After all parameters were set, we could sweep through variables. Since this method
would not be able to use the power switches, but only simulate HVT -CMOS of similar
characteristics, it presented a good way of double checking that the design decisions were
made correctly. For example: those done on a number and size of power switches for module
M was taken in order to ensure a maximum IR drop of 5%, since all characterizations were
used in worst case, pretty much all the tests shown a compliant IR drop in the simulations
when running the first order model.

4.4 Synthesis workflow

The Synthesis of the different CGRA versions was scripted in TCL and executed by Cadence
Genus v19.11.000. The flow uses some of the features from the stylus version of the tool
(newest versions available), that allow for a multi-mode, multi-corner synthesis which can be
kept consistent throughout both Front-end and Back-end development of the CGRA design.
The design flow consists in a series of steps, summarized in figure 4.5 and detailed below.
Additionally, the scripts used in this case can be found in the annexes to this report.
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Figure 4.5: Genus synthesis flow used in the report. The traditional flow (light grey on
the left) was replaced by the more complete MMMC flow, allowing for a more consistent
power-aware development throughout both front- and back-end

- read mmmc: corresponds to reading the multi-mode, multi-corner file, libraries for
best, worst and typical conditions are defined for all cells in the design, defining a set
of operating views consisting of combinations of temperature, voltage, libraries and rc
corners.

- read lef : reads the different physical characteristics of each layer in the libraries, as
well as their dimensions and combinations corresponding for each library cell.

- read hdl andelaboration: imports the design written in HDL language, generally VHDL
or/and verilog, then elaborates the design, i.e. checks the consistency of the design for
errors, unconnected IO’s and other unresolved declarations.

- read def : further checks for consistency, this time between the elaborated design and
the DEF files, which contains physical information.

- read power intent: imports the CPF file, which contains all the command necessary
for a low power design, this file contains the definition of the separate power domains
and their correspondence to which instances in the design. It also isolation, switches
and level shifter cells and rules. likewise, if the plan is to make a flat design, certain
steps here are omitted.
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- init design: The tool here steps through the defined MMMC objects, the design, and
the power requirements, building the full design and leaving it ready for manipulation,
e.g synthesis.

- syn map: Can also be preceded by syn generic, which synthesizes the design and gener-
ates a full netlist in HDL code. The syn map step maps the generic gate-level synthesis
to the technology libraries provided in the beginning of the synthesis.

- syn opt: optimizes de design to try match the timing and power constraints.

- simulation: runs the testbench of the CGRA and generates a toggle count file (TCF),
which can be fed back to genus in order to make a more precise power and timing
analysis. If The constraints are still within bounds, the design can be exported for the
back-end development.

- reports/analysis: generate preliminary results using the TCF from the simulations.
Items like cell area of a module are now well known, as well as some ideas on power and
timing.

- export to innovus: write the design in a ready-to-use format for Innovus stylus (v19.11.000),
which will pass on the MMMC data, as well as the CPF power configurations.
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4.5 Back-end and testing workflow

Starting with a design generated on genus, we use a 2-tool approach to simulate and generate
the required results with regards to our power switches. First, a flat floorplan is generated
and tested, which will provide the most precise information on items like total capacitance of
a module including nets, accurate path delays and power consumption values.

Note that the Back-end flow was not completed entirely as for performing post-route
simulation and signoff due to issues with a malfunctioning memory macro that the design uses
as a global memory (TSDN40LPA8192X32M8M ). Hence a toggle feed to Innovus could not
be generated to calculate the most accurate power and timing results. The most information
attainable consisted in static analyses post routing-optimization which use a constant activity
factor across the whole logic. These results provide however sufficient data in terms of power
consumption, leakage, and certain paths that can be tested individually. Additionally, the
scripts used in this case can be found in the annexes to this report.

Figure 4.6: Innovus back-end flow

The used flow goes as follows:

- import design: the output from Genus is read, importing the design and all its defined
configurations, settings and constraints, this means that of a low-power design flow is not
needed in Innovus anymore, other than in terms of floorplan and the rest of back-end. It
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is worth noting that the CPF configuration can be also edited and re-applied in case of
modification on power domains, or re-assignation of instances to/from a power-switched
domain.

- place macros: as its name indicates, corresponds to the physical allocation of memory
modules and other fixed modules. The process is very similar in the case of a flat or a
power switched designs, depending of course on which module(s) are to be gated. If the
latter is the case, then additional power domains have to be allocated as blocks, setting
up their target density from a start.

- Place and connect PS : This part has to be done before route sppecial is performed, here
the switches are placed in either a ring or column configuration and have to be connected
with their respective VDD, VSS, TVDD and TVSS. Once that step is performed along
with the power rings and lines of the design, we can proceed to run special route, which
will introduce the VDD and VSS of every row and every power domain with their
respective macro power nets. If the design is flat, the procedure is relatively standard:
insert rings, rows and special route.

- placement : Corresponds to the placement of all the standard cells in the design, along
with preliminary routing connections, however none of those are fixed.

- cts: inserts the clock tree and tests the design for timing violations, this prioritizes the
clock hence the routed put during placement will be removed if needed.

- route: only after the clock tree has been successfully inserted, the routing of the rest of
the logic takes place, this is also a rather automated step.

- post route opt: this step cycles through the nets of the routed design checking for timing
violations (for both hold and setup), and performs the required changes in order to fix
them. This process can take several iterations to get a clean output and will have more
difficulty in designs that are more dense.

- static reports: after the optimizations have taken place and the design has no viol-
ations, parasitic capacitances are extracted and reports are generated. They include
breakdowns in power consumption, timing, area, capacitance and so on. These reports
are then used to simulate the transient behavior of the switched module.

- V irtuoso: Having the data about the module, we can calculate the number and type
of power switches used and run a simulation on a first order model when charging and
discharging the module. Here, items like the Max. immediate current (MIC) can be
generated and changed by adding proper delay between the switches and building a
”switch propagation tree”. This simulation would give us the detail of the switch power
consumption, as well as the nr of cycles that it would take to wake up.

The results of this final analysis can be used to feed the back-end development on
a following run, providing the proper information on buffers; signal propagation; nr of
cells; IR drop, etc. which in turn can lead to modifications in the floorplan, power-switch
methodology used and maybe even timing constraints.
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4.6 Power switching granularity: the path traversal method

The decision around granularity of power switching is highly architecture dependent for pretty
much every time that it is attempted. The case case of the CGRA is no exception. And as
with other configurable architectures, generally the isolated case of power gating one single
functional unit (or LUT / DSP slice in case of an FPGA) generally will have little impact on
the network and its traffic. However as one adds more functional units to the power-gated
pool, parts of the interconnect start becoming unused, leaving the opportunity of saving their
idle leakage if they were power gated. Since the decision on where and what to allocate to the
power islands becomes static: How do we conciliate extending the reach of the pool starting
on an idle functional unit to other modules; either fully or partially; without sacrificing the
possibility of re-configuration? In other words, is it possible to power switch the interconnect
aware of the functional units’ state at a given time? We explore here 2 possible answers:

1. Yes: put a switch on every switchbox independently and leave it to the power controller.

2. Maybe: if we manage to partially extend the switches’ reach by checking every cell
individually.

In the case of the first answer, it will simply become the justification for a test group where
the switchboxes are tested individually, in what we could call a naive approach towards the
interconnect.

To answer the second question: the path traversal method aims to check on a cell-by-cell
basis, and determine whether they qualify for being power switched or not. To do this a
simple algorithm has been put in place to establish the maximum granularity possible given
a minimally sized ”seed”. It works as follows:

- We define a cell c, as a construct composed of two lists, one for input cells (cin) and
outputs cells (cout). Being cin and cout represented as a list of other cells that are connected
to the the input and output of c respectively. Likewise, we can take the inputs and outputs
of a set of cells, as the union of all inputs and outputs of the cells in the set. - We define
a module M, containing any number of cells. - We define a seed S, as a set of outputs in a
module M, this is a list of special cells that only contain a list of inputs (Sin).
- Given M and S, we now accumulate all the cells backwards in the path towards S until there
are no more cells to add, defining the set K of candidate cells:

let (C0 ⊆M); ∀ c ∈M ; (c ∈ Sin =⇒ c ∈ C0)

let (C1 ⊆M); ∀ c ∈M ; (c ⊆ C0in =⇒ c ∈ C1)

let (C2 ⊆M); ∀ c ∈M ; (c ⊆ C1in =⇒ c ∈ C2)

...

let (Ci ⊆M); ∀ c ∈M ; (c ⊆ C(i− 1)in =⇒ c ∈ Ci)
i ∈ N

K ≡ C0 ∪ C1 ∪ ... ∪ CN

(4.5)
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Having accumulated all the cells that are part of the paths leading to S, We now check for
every cell in K that its outputs connections are self contained in K, and if so, they belong to
the power switch set PS. In other words, we want to select the cells that belong exclusively
to paths leading to S:

∀ c ∈ K; ∀ cellout ∈ c; cout ∈ K −→ c ∈ PS (4.6)

Implementing this algorithm took a functional-before-efficient approach, as it requires a
massive amount of iterations and re-iterations lists of cells in M. In fact, this naive imple-
mentation has a worst case scenario of O(n!). For a set K containing n cells, every cell’s next
cell should be present in K in order for it to stay; however if at any point in time a cell needs
to be removed from the set, then all formerly marked cells need to be checked again. So for
n cells with n output cells, it could take up to n! checks if always the last output of the last
cell were not contained in K.

Fortunately, the modules in the CGRA are of a manageable size (up to 5000 cells), allowing
for the checks to complete in a reasonably low time. Additionally, given the inherently
modular structure of any circuit design, it can be run throughout big designs by turning one
module’s inputs as the seeds for the next one. figure 4.7 illustrates an example of applying the
method on a circuit using Out1 as the seed. The whole process begins with the Cx subgroups
that were added while propagating all the cells whose path led to the seed, then adding it all
on a single pool K. Then we check for every cell in K, that its output cells are also contained
in K, else we have an escaping path. If that is the case, then remove said cell from K and
try again until all cells are checked. What is left on K will correspond to the largest path(s)
exclusively towards the seed, and our qualifying cells to be power switched.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.7: Example of the path-traversal algorithm proposed and used for power switch
assignation.
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Figure 4.8: The objective of the path traversal method is to expand the power-gated area
farther from the functional unit into the interconnect, without altering the functionality of
the interconnect.

Naturally, if all outputs of a selected set are defined as seeds, the whole of the set will
be switched which in this case often justifies switching a whole functional unit. This method
is proposed to extend that to part of the switchboxes connected to it. This would allow us
for a bigger switch-off area without changing functionality when cutting the power to any
particular functional unit (see figure 4.8). Since the size of the switchboxes varies from a 100
and 5000 cells depending on how it was generated and what type of connections it supports,
the results of this addition could end up having an important impact on power consumption.

4.7 Control

One of the biggest advantages of power switching on the CGRA, is that its behavior is de-
terministic, meaning that at any particular time, we should be able to know the state of each
of its functional units. This means that the control logic needed to run the power switches
timely is minimal. In fact, the activation of power switches could be triggered the same way
the algorithms are implemented in the PASM code developed for the CGRA. This allows for
implementing dynamic power-switch control rather easily. while constraining the shut-off and
waking-up times to a limited number of clock cycles, we could send power-switch instructions
directly into the PASM code and exploit any long idle periods.

Additionally, in case that the CGRA is not needed at all as an accelerator, we could im-
plement a CGRA-wide power switch controlled by the main processor, normally an ARM or
RISC5 processor as it has been proposed in some official designs including a CGRA. This is
indeed a very attractive possibility as accelerators are generally idling for long periods before
jumping into activity.
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Chapter 5

Experimental results

Having defined the research approach and all the gears that this report used to gather data and
reach conclusions, we will proceed to the tests themselves. Every dot in the graphs represent
different power-switching settings, applied on both benchmarks, the settings correspond to
the following:

1. Functional units only (FU): picking every single functional unit independently based on
its outputs

2. Switchbox only (SWB): This case grouped both data and control switchboxes for the
analysis, namely because control switchboxes are generally extremely small.

3. Extended functional units (FU+): using the path-traversal algorithm proposed in chapter
(4), every FU switching was extended to its respective pair of data/control switchboxes.

This chapter will begin in section 5.1, which presents the results of the path-traversal
algorithm proposed in the methodology, applied to the functional units to form the extended
functional unit test-group. Section 5.2 briefly summarizes the impact that isolation cells
had in each of the test-groups, as it will be a crucial factor in determining whether power-
gating would be effective in each case. Section 5.3 shows the area impact of power-gating
throughout all groups. Section 5.4 constructs the complete energy analysis and shows the
break-even points in the tests made. Section 5.5 applies power gating dynamically in both
benchmarks. And finally, section 5.6 summarizes the area and power analyses when applied
to the complete CGRA.
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5.1 Path traversal method

One of the test groups proposed in the methodology section, consisted in an algorithmic
extension of the power island around a single functional unit. This extension is designed to
maximize the number of cells switched off when a functional unit is, without altering the
functionality of the interconnect network. Hence it would allow the designer to maintain the
maximum flexibility in terms of running different applications and configurations. The results
of the extensions on the functional units are shown in figures 5.1 with absolute results, and
figure 5.2 for relative results.

Figure 5.1: Impact of the path traversal method to extend the reach of a FU’s switch decision
in terms of instance area.

Figure 5.2: Same path traversal method impact measured as a fraction of the functional
unit. As can be seen, relatively small functional units doubled in size while keeping the same
amount of isolation.

5.2 Isolation

As discussed in chapter 2.3, isolation cells can have a significant impact on the power con-
sumption of the modules that have been power gated. As shown in figures 5.3 functional
units require a rather low number of isolation cells, due to having a single array of outputs to
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their respective switchbox, this is not the case of instruction decoders and immediate units
because they are functional units too small to disseminate the impact of isolation. Finally, the
switchboxes are the complete opposite of what happened to the functional units, where the
arrays of outputs go from 2 to 6, and the only logic involved corresponds to the configuration
and redirection of traffic needed.

(a)

(b)

Figure 5.3: Proportion of isolation cells required for power-gating every particular module.

5.3 Area Overhead (AO)

Testing all different PS settings the combinations on the benchmarks, one can note that
there is a clear benefit to scaling the power switching to bigger island, where the asymptotic
minimum overhead corresponds to the set distance between the adjacent power domains. For
the tests, the distance between power domains was set to: halo = 1.68um.
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Figure 5.4: Area impact of power switching in floorplanning.

Figure 5.5: Area impact of power switching relative to the size determined for the module M.

As it can be seen in both figure 5.4, and 5.5, there are areas with more and less data
density: on the X axis has to do with the type of functional units tested, where certain sizes
had much more recurrence than others. and the jumps in the Y axis corresponds to the
assignation of power switches to the modules in every case. This assignation is based on the
power characteristics of the modules and the power switches available for it, where roughly,
one big power switch will replace 15-20 smaller switches, provided that this change would
leave enough small switches available for waking up slowly (hence limiting the voltage drop
on the main power domain).
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5.4 Energy impact

In this section, we broke the analysis into all the different states in which the switched module
M will go through, there are two constant states and two transient states, and these will be
first addressed separately, and later on combined to make an energy analysis.

1. Steady states: represent sustained activity of module M (Active mode), and when the
module M is switched off (Sleep mode) . The data for these states was generated by
Innovus after place and route.

2. Transient states: represent the switching from Active mode to Sleep mode (Sleep), and
the switching from Sleep mode to Active mode (Wakeup). The transient analysis data
for every point is generated by Virtuoso / Spectre using the first order model.

5.4.1 Steady state: Sleep mode

During inactivity we assume that the module has gone into an off state, then, the only relev-
ant power consumption corresponds to the leakage of the switches and isolation cells. Figure
5.6 shows the total impact of the power switches and isolation cells on the modules tested,
and figure 5.7 shows the relative reduction of power gating onto the leakage of the modules
tested.

In the case of the power switches themselves, their leakage across all three groups averaged
a 6.88% of the benchmark and ranged between [3.18% − 19.13%], leaving the field open for
a substantial reduction potential. However, the gains in power from the switches are quickly
eroded by the inclusion of isolation cell; and this is where the test groups differ the most, as
the isolation cells averaged 10 times that of the switches, 68.71%.

It seems that the switchboxes (fig. 5.6 and 5.7 ) themselves are not great candidates for
power gating, given the fact that too many outputs require too many isolation cells that end
up canceling the initial gains, or plainly making it even worse. This is also the case of some
small functional units that have a relatively high number of outputs, these being instruction
decoders (ID) and immediate units (IM). In the case of LSU’s, even though the number of
isolation cells is by far the highest among all FU’s, their size allow for them to compensate
for that extra overhead by providing relatively more gains when switched, the proportions of
isolation cells to each functional unit was discussed in section 5.2.
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(a)

(b)

(c)

Figure 5.6: Absolute leakage on sleep for a) functional units, b) extended functional units,
and c) switchboxes.
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(a)

(b)

Figure 5.7: Relative reduction of leakage leakage on sleep for a) functional units, and b)
switchboxes. Calculated as 100% minus the proportion of leakage of the switches and isolation,
with respect to the leakage of the module switched.

In the case of the functional units, smaller immediate units and instruction decoders
neither seemed to be able to compensate their isolation overhead. Interestingly, the cases of
FU’s extended using the path traversal method (seen with a ”+”) had, without exception,
better results than the non extended ones, and the reason for this improvement is simple: the
number of isolation cells remained constant, therefore the incremental cost of every added
cell is only the leakage from the extra power switches, which have proven to be extremely
efficient. This can be more clearly seen in figure 5.7 where the relative leakage reductions are
shown. If we separate the results of each group, we get that the weighed leakage reductions
are:

- Switchboxes: 3.12%

- Functional units: 75.9%

- Extended functional units: 85.64%
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5.4.2 Steady state: Active mode

For analyzing the power consumption in active mode, both leakage and dynamic power of
the module M were including the isolation overhead were collected. Similarly to the leakage,
the impact is heavily dependent on the number of isolation cells present in M. From figure
5.8 one can see results consistent to those of the leakage analysis, leaving the switchboxes
at seemingly greater loss than gain. And in terms of the other functional units; instruction
decoders (ID) and LSU’s seem to loose more due to their higher number of isolation cells
relative to their original number of cells (as shown in section ??).

(a)

(b)

(c)

Figure 5.8: Absolute values on active mode power for a) functional units, b) extended func-
tional units, and c) switchboxes.
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The weighed average power increase for each group was:

- Switchboxes: 143.22%

- Functional units: 13.54%

- Extended functional units: 9.59%

Even though the extended functional units have a higher power consumption in activity,
the introduction of the isolation cells generated a substantially lower increase in their power.
This is better shown in figure 5.9, where in the smallest functional units, the relative increase
was cut by half, and remained consistently lower throughout the FU’s. Conversely, sheer size
could not save the switchboxes, where the power numbers were prohibitively high for most of
them.

(a)

(b)

Figure 5.9: Relative values for power increase during active mode for a) functional units and
extended functional units, and b) switchboxes. Calculated as 100% minus the proportion of
leakage of the switches and isolation, with respect to the leakage of the module switched.

5.4.3 Transient states: Wake-up and Shut-off

Having calculated the static states using the data generated by Innovus, we further generated
the information to feed the first order model used to estimate the transient behavior of our
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switched module. The results were plotted, and as expected from the simplicity of our estim-
ation model, the relation between capacitance and the wake-up energy was rather apparent
(see figure 5.10). The results were consistent to the well known model for capacitors charge:
Q = C ∗ V .

Figure 5.10: The wake-up energy results were similar to charging a single capacitor, the
slight variations on the results come from the modelled resistance, thus leakage, in the core.
This figure shows wake-up power instead of energy to facilitate its comparison with the other
states, it was done so by taking the wake-up period as three clock cyces (30ns)

Having the data from the transient analysis we can now estimate the total power con-
sumption throughout an entire cycle of sleep and activity. Hence adding up the energy savings
and the overhead as described in the metrics 3 we calculate that, on a single on-off cycle:

Esavings = Pmod,leak ∗ tdown + Epowerdown ∗N (5.1)

being N = 1, and Eoverhead is:

Eoverhead = tdown ∗ (Pswitch,leak + Piso,leak)

+ tactive ∗ Piso,active + Ewakeup ∗N
(5.2)

We need to know the relation between tactive and tsleep, so that Eoverhead < Esavings, and
when replacing the different values on each side, we obtain:

tactive ∗ Piso,active < tsleep ∗ (Pmod,leak − Pswitch,leak − Piso,leak) + (Epowerdown − Ewakeup) ∗N

Piso,active <
tsleep
tactive

∗ (Enet savings) +
c

tactive
(5.3)

If we separate Epowerdown − Ewakeup and group then in a constant c, as well as calling
Enet savings = Pmod,leak − Pswitch,leak − Piso,leak, we can note that as time passes, the con-
stant c becomes less relevant to the analysis (in the tests, it had a net vale equivalent of a
couple clock cycles worth of energy), This leaves us with the relation:

tactive
tsleep

>
Enet savings
Piso,active

(5.4)
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This is in principle the same relation proposed in the research prior to the study, ac-
commodated to the particular case of the CGRA, where no state retention, nor a control
infrastructure were used.

5.4.4 Break - even point

Having applied the calculations, the break-even points per each tested module are presented
in 5.12 for the functional units and their extended versions. It is clear to see the great im-
pact that the path traversal method had on the CGRA, where now without exception every
functional unit can be optimized given the constraints of the algorithms used and the activity
that they present.

Since the behaviors in the CGRA are of deterministic nature, the designer can now pre-
cisely know whether each functional unit would benefit from power switching by comparing
the expected activity against the allowable ratios of their BEP.

Figure 5.11: The break-even point calculated on the functional units with respect to their
extended versions, now shows the real performance of the path traversal method to increase
the gain from power switching in the CGRA.

Conversely, the results for the switchboxes showed negative values for the great majority,
meaning that there is no solution to the relation proposed earlier, as both leakage and power
during activity have increased. This closes of the question of viability of power switching in
what concerns switchboxes.
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Figure 5.12: the break-even point for most switchboxes was negative, meaning that there is
no possibility of producing any gains because both the leakage and the power during active
mode have increased with respect to the non-switched version.

5.5 Dynamic power-gating

Having calculated the break-even points in all cases, we can conclude that the extended func-
tional units (FU+) are, without exception, a better implementation of power gating when
compared to the other two test groups. It would be therefore interesting to see how it could
be applied on the actual benchmarks we have begun with. On each benchmark, the idle times
of every functional unit can be identified by looking at the PASM code controlling the CGRA.

One of the biggest advantages of power switching on the CGRA, is that its behavior is
deterministic, meaning that at any particular time, we should be able to know the state
of each of its functional units. This means that the control logic needed to run the power
switches timely is minimal, therefore the behavior of dynamic power gating can be easily
estimated in each of the benchmarks.

5.5.1 FFT

Having analyzed the instructions on which the FFT runs, the gaps in activity that are long
enough to merit power savings were selected and tested using the models developed in this
research. Figure 5.14 shows the loop in which the parallel FFT occurs, highlighting the
possibilities for power gating, where green corresponds to energy saving, and yellow represents
transients states (where energy is consumed), as well as the red areas, which are times of
activity, or gaps between activity too small to fit a power-gating cycle.
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Figure 5.13: PASM configuration of the parallel FFT algorithm, highlighting opportunities
for switching off dynamically.

As it can be seen from the figure, the accumulate -branch unit (abu) and a single alu loop
are idle on all 63 cycles that the algorithm takes, except for a couple of instructions. Less
optimally but still promising are the 8 multiplier units (mul) and 8 more ALU’s. The colored
columns indicate in green: where power gating provides savings in leakage; yellow: that the
functional unit is in a transient state either turning on or off; and red: that the functional
unit is busy or does not have enough time to switch off before having to switch on again. This
can be seen in the 2 last columns, where even though there are windows of 3 clock cycles,
that is exactly the time on which the FU’s are configured to switch on/off, thus not being
able save energy, in fact, they would consume more energy that way.

Figure 5.14: green: functional units that were dynamically switched. yellow: switchboxes
that were partially switched, along with their corresponding functional unit.
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Even having selected a reduced set of functional units, the energy savings on the CGRA
accounted for 14%. was calculated using the same methodology used to calculate the break-
even points, though this time, since the power is calculated in a window of 63 clock cycles,
the energy consumed during all transitions becomes very relevant. Another point to highlight
is the fact that 4 instruction decoders, namely the ones controlling the power switched func-
tional units could potentially also be power switched along with their slave functional units.
Should this be done, the power savings would increase by an extra 2%, however this would end
up falling into the designer’s choice on implementing the power switch control mechanisms:
should it be integrated into every FU’s as an instruction, then we would need to keep the
decoders on to control the switches; should it be controlled by an additional functional unit,
would allow for switching both instruction decoders and functional units alike.

5.5.2 Binarization

In the case of our smaller benchmark, the binarization algorithm, we find ourselves in a much
smaller instruction loop, meaning that the CGRA is much more active if compared to the
FFT, as shown in figure 5.15. There are however still opportunities to power off the relevant
functional units on certain intervals. Similarly to the case of the the FFT, the results presented
omitted switching the immediate units and the instruction decoders, under the assumption
that the power switches would be controlled by instructions on the functional units.

Figure 5.15: PASM configuration of the binarization algorithm, highlighting opportunities for
switching off dynamically.

And having applied power gating in the functional units identified in the pasm code, and
their respective modules in the architecture are shown in figure 5.16. This strategy led to a
7.6% energy reduction on the CGRA, value calculated using the same methods on which the
rest of this report is based.
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Figure 5.16: The units in green have been power-gated accordingly in the times their PASM
code allows, and the switchboxes highlighted in yellow have been partially switched together
with their respective functional unit.

5.6 Static power gating

The last strategy tested corresponds to the simple fact of switching the entire CGRA, this is a
very relevant solution that could be implemented together with the dynamic power-switching
strategies. Additionally, this is a chance of minimizing the power consumption of a chip
where the CGRA is utilized as a hardware accelerator. Assuming that local memories are
not required to maintain their state, the CGRA is power switched excluding only the global
memory block. In terms of area, we calculate the Overhead of each method reviewed and
present it as a percentage of overhead relative to the CGRA’s area. As seen in the table, the
bigger the module, the smaller the overhead.

In terms of power, using the same methods discussed above, it was possible to calculate
the Break-even point between active time and sleep time. It important to note that since the
CGRA as a whole contains a relatively small number of outputs, the number of isolation cells
in both benchmarks was only 240, which has an almost negligible impact on the active power
and leakage on both designs. In case of binarization, the ratio was similar to that of an ex-
tended multiply functional unit. However the massive size of the FFT allows to reducing the
impact of isolation to a barely noticeable level, allowing for power consumption 30x smaller
when the CGRA is switched off.

Benchmark Cell count. Cell area (mu2) AO ring AO col AO C.board

FFT 236,215 459,677.94 2.49% 2.35% 2.09%

Binarization 20,341 44,392.12 8.05% 7.56% 4.77%

Table 5.1: Area overheads of the power switching methods researched: ring, column and
checkerboard floorplans were applied on the entire CGRA fabric placed with the model at
70% cell density.
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Benchmark Leak p. reduction Active p. increase BEP (Ta/Ts)

FFT 96.83% 0.44% 50.19

Binarization 93.98% 3.19% 6.58

It is important to note that even though the power-switched FFT seems to win in every
front, it still depends on having long sleep times, as the power savings increase over time as
the module slowly discharges through the power switches. Similarly, it would require a much
longer wake-up period in order to avoid instability in the supply when switching it on. This
issue would depend heavily on the use-case of the CGRA alongside a general processing unit,
therefore it was not further tested.
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Chapter 6

Conclusion

As integrated circuits become more specialized in the form of accelerators, more power-hungry
and shifting towards leakage, it has become paramount to find and implement efficient and
scalable ways to save energy through architectural decisions. This has become increasingly
challenging as the use of re-programmable hardware has been stepping steadily into the spot-
light on modern processors. This lead to the following research questions:

[MQ] At which granularity, in terms of functional units within the context of the coarse
grained re-programmable architecture (CGRA), should power gating be applied to be
beneficial for power.

[SQ1] Analyze the implementation of power gating from the perspective of functional units,
and determine whether is should be added as a default feature of all functional units in
the CGRA, investigate the main variables involved and argument a position.

[SQ2] In terms of Floorplanning and the overall physical design, is what is the impact of the
different power switching strategies, and how do they compare with the literature in
the context of the CGRA?

[SQ3] Quantify the overhead coming from isolation cells, and control logic that may be re-
quired.

[SQ4] Can power gating on the CGRA be controlled dynamically e.g. switching functional
units on and off during execution? Analyze and quantify. If that were beneficial, how
should it be controlled?

In order to answer this questions, we went through a process summarized in the next
section.
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6.1 Summary

In chapter 1 the context of this research was presented, we introduced the concept of re-
configurable hardware and the CGRA. Highlighting Blocks, the CGRA developed by the
TU/e. Similarly, the issue of power was raised and the use of power-gating was presented as
one possible solution, as well as a possible contribution in what research concerns. This lead
to the research questions mentioned above.

Chapter 2 dives deeper into the challenges and complexities that power gating has to offer,
touching on topics like the sizing of the power switch, and the ways of implementing them.
Having established the general trade-offs that granularity presents in terms of area and power,
and the concept of a break-even point that weighs the energy savings and overhead, we can
set constraints in terms of a circuits’ activity on which power gating would be an admissible
strategy at all.

Chapter 3 establishes the main metrics on which the research results would be evalu-
ated given the technology used. The area overhead consists on the impact that the different
techniques of power-switch insertion have on a power-gated block, as well as their ways of
calculating them. The energy metrics establish the measuring of power for the energy savings
as well as for the overhead of power gates, leading to the calculations of the break-even point
for this particular context, this section also explains why performance was not one of the main
topics of this research as its results are a derivative of a design decision that for effects of
this research, remained constant: The voltage drop across the switches. A simple first order
estimation on an inverter does however illustrate what the designer should expect to have in
terms of performance, given a decision in terms of voltage drop. .

Chapter 4 walks through the testing environment starting by the designs used: namely
CGRA designs as accelerators for 2 algorithms: namely a simple binarization function, using
a grid of 3x3 functional units; and a parallel FFT implementation that uses a grid of 12x4
functional units. Then the test groups separated all the functional units and switchboxes of
the benchmarks into three: switchboxes independently; Functional units independently, and
the newly added extended functional units group which is the result of an optimization pro-
posed later in the same chapter. As the benchmarks and test groups have been established,
now the first order model is defined, tested using Cadence’s Virtuoso tool, and used as the
source of data for the transient behavior of the power gated blocks, namely the waking-up and
the shutting-off transitions. The next steps consisted in establishing a workflow in Cadence’s
Genus tool for synthesis in which the power gates, their supporting power domains and isol-
ation rules are established. Since synthesis does not take the power switches themselves into
consideration, back-end design took place using Cadence’s Innovus tool in order to do floor-
planning, placing, routing and optimizing the design, to generate the relevant information to
feed back into the first order model and establish a method to systematically determine the
number and type of power switches used, as well as the transient behavior of the power-gated
circuit for evaluation. Finally, our methodology introduces an path traversal algorithm based
on a binary search, that aims to answer the main research question about finding the best
possible granularity of power gating in a CGRA, doing so by selecting exclusive paths within
a module, that lead exclusively to a set of outputs that we defined as a seed.
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Chapter 5 begins by showing the impact that the path traversal algorithm had in extend-
ing the reach of a power switched functional unit into the interconnect network, showing that
we could shut-off up to more than double the number of cells without extra overhead, should
we decide to switch off a particular functional unit, later to highlight the use of isolation cells
in each of the test groups, as isolation is most definitely the defining factor for determining
the viability of power-gating. The general results in terms of area and power are then presen-
ted, aggregating the functional units of both into test groups mentioned above. We managed
to show the area costs that power switching have at different granularities by establishing a
relation between area overhead and circuit size. And we went through every step mentioned
in the methodology to construct the break-even points for every functional unit and achieving
several important points:

1. Presented the trade-offs in area an power that power gating bring on different granu-
larities within the boundaries of a functional unit, meaning sizes ranging from less than
100 cells in case of the smallest switchboxes, up to more than 5000 in the case of the
biggest switchboxes, passing through the complete set of functional units available to
the CGRA, excluding memories.

2. A method was presented to optimize the insertion of power switches, bringing consid-
erable power reductions increasing the viability of power switching dynamically.

3. The issue of control is discussed and made assumptions on, however no actual imple-
mentation was made.

4. A usable workflow was developed along this research, allowing the implementation of
power switches in future projects.

The results chapter concludes with coming back to seeing the big-picture of this analysis,
returning to the energy savings using fine-grained power gating dynamically, putting the res-
ults generated on a functional-unit basis to the test. Interestingly, even extended functional
units do not qualify for power gating if their utilization is high, or if its idle periods are too
fragmented. It was shown that even when a fraction of the functional units in the CGRA are
power-switched, there are significant power savings even during activity, reducing the energy
consumption of the FFT by 14%, and that of the binarization by 7.6%. Finally, the question
of statically switching off the entire CGRA was brought to discussion, highlighting how well
does power-gating behaves when the overhead is low and the size of the power island grows.
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6.2 Closing remarks

In this thesis, we have presented and evaluated some of the mainstream methods of applying
power gating under specific technology constraints, as well as for a specific type of architec-
ture. And the reason of this research consisted in taking the first steps onto applying and
consistently including power switching onto the coarse-grained re-configurable architecture
developed by the Eindhoven’s University of Technology. A method for evaluating the energy
impact of power gating was re-applied to this particular case and put some light on the po-
tential benefits of power gating in the coarsest granularity that allows for no trade-offs in
terms of the resulting flexibility of the CGRA fabric and its interconnect.

In what concerns the research questions, we managed to establish a way to calculate
tradeoff’s and earnings of power gating at different granularities, doing so by implementing a
physical design, and including all overhead coming from the switches and isolation cells. This
answers the main question as well as three of the sub-questions presented.

The final sub-question was answered and tested upon, showing that there are significant
power savings if power-gating were controlled dynamically while an algorithm is computing,
2 possibilities were discussed however not implemented, in terms of how would power-gating
be controlled: either as an instruction within the CGRA, or via an additional functional
unit that would orchestrate it. Finally we tested switching off a complete CGRA, showing
the potential power savings it would bring and motivating its use-case. It was however not
further tested.

6.3 Future work

Since this project’s ambitions went through covering an extensive number of issues worth
researching, there are many issues that for the sake of simplicity were assumed as either a
design constraint or a requirements, however some of these topics could be targets of future
project and/or research, some of the most important are:

1. Design in smaller technologies: This particular project was planned to be done in 40nm,
however there are several projects that are being taken on using smaller and also differ-
ent technologies (FSOI, finFET) in which leakage keeps dominating, therefore making
power-gating a very attractive option. Thus, as the CGRA gets replicated into other
technology nodes, the challenges seen in this particular research may come afloat just
as much as new challenges may come to light.

2. The control problem: As it was noted along this report, the issue of control on the CGRA
was touched and speculated upon, with the exception of simple externally controlled
power switches. Regrettably, no dynamic control strategy was implemented, and as it
was discussed, there could be several ways to make it take place, and all the options
would have their trade-offs. For example: if the control of power gates were added as
functional units’ instruction, then the instruction decoder should remain on. Conversely
if an external power controller is put in place, the instruction decoders could be switched
off together with their respective functional units, but other challenges would take place
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instead as for making sure that the power-switch signal propagates on time, that the
controller remains in low utilization, etc.

3. The variables on transient behavior of the design: There is a consistent amount of
research touching on the transient behavior of power switches and their switched blocks,
and the discussion generally circles around stability, power switch signal distribution and
minimization of rush-in current. These topics were established as reasonable constraints,
however no optimization, nor great deal of research went into this field.

4. Dropping first-order models: probably one of the reasons why the transient behavior
was taken more superficially comes from the fact that the transient behavior was mod-
elled using very simple models. Next steps would certainly begin from reliable and
simple models, but a great deal of complexity can be added to its analysis for further
improvement.

5. implementing power-gating on a SoC: Even though this project was initially meant
to take place in a SoC implementation of the CGRA, it was later rolled back onto
simpler benchmarks. Combined versions of the CGRA could be beneficial for testing
combinations of power switches acting dynamically (and internally to the CGRA), and
more statically e.g. controlled by an external chip. This would allow us to explore the
limits on how much power can be saved using this strategy.
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.1. SOME POOWER-ANALYSIS ELEMENTS

.1 Some poower-analysis elements

Energy consumption, in its principle consists in the amount of charge that passes through the
circuit in a given period of time, or after a certain activity (or inactivity) period.

E =

∫ ∞
0

CV (
dVc
dt

)dt =
1

2
CV 2 (1)

This simple model is true as long as we apply a step voltage with no swing. Now, if we
put ourselves in the simples of CMOS circuits, the inverter, we can determine the energy
dissipation in terms of transitions, where the power P = Etransition ∗ Ntransitions, where a
transition can be a T0−>1 or T1−>0, just like a circuit clock would do. This means that
per clock cycle we would always have a positive and a negative edge, meaning that power
dissipation in a circuit would be:

P = CV 2f (2)

Where f represents the clock frequency applied to the circuit. Equation 2 can be general-
ized to 3 by adding an activity factor 0 ≤ α ≤ 1 that will determine the amount of switching
that a circuit will be estimated to have. The accuracy of this addition largely depends on
how precisely the activity estimations are.

P = αCV 2f (3)

Since in reality we are dealing with clock transitions that are not ideal, the positive and
negative edges on the transition generally cause a small SC current as for a small window
of time, both the pull-up and the pull-down networks (PMOS and NMOS respectively) are
conducting. The short circuit power can be modeled as:

CSC = k(a
τin
τout

+ b) (4)

where a and b are technology related parameters, and k is a function of supply [27],
threshold voltages and transistor sizes. Then using the same capacitor charge model from
equation 3, we can express the short circuit capacitance as:

PSC = CSCV
2
DDf (5)

For an idling circuit, there is still going to be current leaking through, some of the effects
modulating this phenomenon are the diffusion currents, the drain-induced barrier lowering
(DIBL), the gate-induced drain leakage (GIDL), tunneling through the gate oxide and other
static sources of leakage (bias, drain-substrates). The impact of leakage is actually one of
the greater concerns in sub-micron CMOS technologies as it is becoming a constantly larger
portion of the total power consumption of an integrated circuit [31, 17]. The static power can
be modeled as:

Pstatic = (IDC + Ileak)VDD (6)

where IDC is static current, Ileak is the leakage current, and VDD is the supply voltage.
It is quite important to remember what factors dominate leakage specifically, as will be a
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recurring topic in further sections:

Ileak = Ids0e
(VGS−VT+δdVDS)

nvT (1− e
−VDS
vT ) (7)

where Ids0 is source current at threshold voltage, VGS is the gate voltage, VT is the threshold
voltage, δdVDS is an approximation of the effect of drain-induced barrier lowering on the
threshold voltage, vT is the thermal voltage constant, and n is a process dependent term af-
fected by the depletion region characteristics (normally within 1.3−1, 7 for CMOS processes)[39].
where Ids0 can be estimated in function 8, where β is transconductance, and e1.8 is an empir-
ical constant [39]:

Ids0 = βv2T e
1.8 (8)

Other types of transistor leakage include gate leakage (GIDL), and other sources of IDC
such as tunneling through the depletion region, bias-induced leakage, junction leakage, band-
to-band tunneling, etc [39]. Finally, our circuit power consumption can be calculated as
function 9.

P = α(CL + CSC)V 2
DDf + (IDC + Ileak)VDD (9)

where again α is the switching activity, CL is the load capacitance, CSC is the short circuit
capacitance, f is the frequency, IDC is the static current, and Ileak is the leakage current.
This, in other words, boils down to:

P =
energy

operation
∗ rate+ static power (10)

.2 Related work in power optimization techniques

There is a myriad of different techniques that can be applied to at its different design stages,
and the purpose of this section is introduce the most relevant ones for this particular re-
search, this list is based on the classifications presented in [27], where optimizations are
divided between active and static power optimizations. These optimizations however almost
never only affect one or the other, but rather both.

.2.1 Active power

As its name indicates, this type of optimizations attempt to improve the active- or dynamic-
power consumption of a particular circuit, these decisions will however still have an important
impact on static power consumption. To put in perspective, the only difference between the
power and the energy, is that the latter is the aggregate of the active power, throughout the
duration of a determined routine.

Pactive = αCLVswingVDDf (11)

For effects of our analyses, we will assume that the voltage swing Vswing is equal to the
supply voltage VDD, which takes us straight back to equation 3.
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.2.1.1 Multi-supply Voltage Domains

Multi-supply voltage domain is a quite effective technique used to reduce both dynamic and
leakage power in nowadays CMOS chips [6]. This approach leverages the quadratic effect of
supply voltage in the power consumption of a circuit (see eq. 3). This approach consists
of partitioning the design into separate voltage domains, each operating at its own voltage
level depending on its timing requirements. Here, islands where critical paths are located
are assigned a high supply voltage to maximize its performance (VDDH), where non-critical
domains are assigned a lower voltage, to exploit their slack as power savings (VDDL), this
approach allows for saving power without compromising on system performance.

In the case that the circuit is an ultra low-power design, the possibility of having sections
of it operating in sub-threshold and near sub-threshold regimes can become an important
and valuable addition to the scheme [29]. The implementation of MSVD often requires the
insertion of level shifter cells (LS’s) on the boundaries between the logic at different supplies,
the use and design of LS’s will heavily depend on what supplies the circuit will have, specially
if there is sub-threshold involved [23].

To illustrate the impact of MSVD, designs with 2 up to 3 voltage domains are compared
to the single domain case, where adding an extra power domain drastically reduces power in
a circuit, but the effect does quickly saturate due to the extra overhead and infrastructure
that every extra power domain requires [27].

Figure 1: The addition voltage domains reduce the circuit’s power, but the effect quickly
saturates, yet an additional power domain just gives a fraction (5-10%) of what the savings
the first one provided. Source: Rabaey, 2009, [27].

.2.1.2 Transistor sizing

If we look at our simple power model in eq. 3, the next group of optimizations has to do with
the choice of load capacitances CL along the different paths of a circuit, the principle is rather
simple: more drive strength gives a speed-up of the circuit but also increases its switching
power. Likewise, smaller C ′Ls reduces the power consumption but also degrades the circuit
speed. This methodology can be used to both speed up critical paths and to collect energy
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savings without loosing performance.

A great deal of these optimizations are solved via iterative optimization runs by common
IC design tools or constrained optimization problems [3, 30], making use of rich technology
libraries, who have several gate design options for every type of combinatorial operation,
for example larger and more complex gates would reduce overall capacitance at the price of
speed, whereas other combinations may prioritize speed over power. The main takeaway of
this type of optimization is that the designer counts with a set of options to map a particular
function into logical gates, and is able to generate different ”profiles” depending on what the
main design objectives are; whether it is focused on low energy, high performance, or a point
in between.

.2.1.3 Activity and structural modifications

The reduction of the activity factor α comes along with a series of different optimizations and
transformations regarding circuit topology. Some of them are factoring and restructuring:

1. Restructuring: is the optimization in which converging logical paths are given similar
delays, allowing to tackle dynamic hazards. There are two main ways of restructuring a
circuit: the first one corresponds to permuting cells from one of the paths to the other,
whenever the function could remain unaffected, and when this is not possible, the next
step is to insert delay buffers in paths that are hazardous due to path imbalance. This
process is mostly automated and are considered a standard step in the back-end part
of a design.

2. Factoring: corresponds to the transformation of certain logical expressions used in a
gate or a group of gates, to an equivalent combination of gates that may be simpler,
reduce capacitance or simply save energy by balancing the circuit. This optimizations
are commonly visualized directly onto a logical expression, where purely logical trans-
formations (de Morgan, factorization, distributivity, etc.) help in determining a new
topology.

Figure 2: Illustration of circuit balancing through restructuring (up) and buffer insertion
(down). Source: Low power design essentials, Rabaey, 2009 [27].
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.2.2 Static-power optimizations

Some of the most energy efficient designs have a considerable portion of leakage energy, in
some the that portion reaches up to 40% of the total power consumption of a design [16],
this is mainly driven by the consistent lowering of the threshold voltages and gate insulator
thickness in smaller technologies, impacting exponentially in the sub-threshold leakage cur-
rent [38, 22].

Leakage has passed to be one of the main topics in circuit design, where it has become an
increasingly difficult challenge to reduce it [27], it has also become a source of opportunities to
designs that are pushing the limits of ultra-low VDD [29, 42]. Some of the solutions proposed
to maintain the efficiency of transistors in deep nanometer scales are changes in the design,
such as different channel lengths; in the manufacturing process, such as reduced amount of
doping or variations on the gate insulation [10]. In more extreme cases, a different flavor
in the technology itself; such as FDSOI, finFET, etc. Since our focus will remain within
the boundaries of 40nm-bulk technology, we will not discuss about other technologies in this
section.

As was just mentioned, there are series of leakage-targeting optimizations, and although
most of them have a direct impact on threshold voltage, which in turn has an exponential
impact on leakage (see eqn. 13). They have a wide range of results in both active behavior
(performance, power).

.2.2.1 Increasing channel length

The principle behind the changing of the channel length is rather simple; the longer L becomes,
the higher the VTH becomes, hence the leakage also drops (see eq. 13). This measure has
been proposed ultra low-power deep nanometer technologies, where in order to accommodate
the slower down-scaling of gate oxide thickness the gate length should scale down in the same
fashion. A higher channel length does come at a cost: as the gate capacitance increases, so
does the active power.
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Figure 3: Illustration of the effect of channel length on threshold voltage and active energy,
in the context of 90nm technology. Source: Rabaey, 2009 [27].

Additional measures to raise the threshold voltage are reducing the amount of doping
applied to the substrate [31, 15], since substrate and halo doping affect almost linearly the
threshold voltage of a transistor, hence having an important impact in sub-threshold leakage
power.

.2.2.2 Circuit stacking

Circuit stacking is a very effective strategy against leakage, as it reduces also exponentially
reduces the leakage of a circuit as the leakage of one transistor becomes the supply of the
next one and so on, however it cannot always be applied, as it is limited to topology changes
that maintain functional equivalenc.

.2.2.3 Multi-threshold libraries

Use of multi-threshold cells: modern libraries have nowadays 3 versions of their normal cells
meant for different objectives on a design, they naturally are libraries are named depending
on their threshold voltage. Thus, HVT, SVT, and LVT for high-, standard- and low-threshold
cells. These libraries are also generally made using some of the technology related techniques
here mentioned, for example: HVT cells may have thicker gate oxides, longer channels and
reduced doping. In the next section, figure 4 shows the differences that multi-threshold cells
present in terms of leakage and speed, while also including the dynamic optimization of body-
biasing.

.2.3 Dynamic optimizations

Out of the optimizations that have briefly been discussed, this section will aim to present those
strategies that combine some of these and apply them dynamically, or at runtime. These op-
timizations tend to be, more efficient, more resilient however they often add a considerable
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overhead in terms of control, distribution, retention of data, etc. The solutions discussed in
this section are a) dynamic body biasing, b) clock gating and c) power gating. These three
approaches are generally used together with the voltage islands generated by the MSVD ap-
proach. Different permutations of these methodologies are used to tackle the power challenge,
as to selectively increase the threshold of a group of logic cells to reduce its leakage; limiting
the clock activity to spread onto unused parts of a design; or completely cutting off an idling
region of a chip.

.2.3.1 Body biasing

Namely reverse body biasing (RBB) has been a common measure to reduce sub-threshold
current by means of raising the threshold voltage of the biased transistors [24, 9]. The effect
of body-biasing on the threshold voltage is presented in [9], but for simplicity, we will stick
to its linear approximation [27]:

VTH = VTH0 − γVBS (12)

Where γ is a fixed parameter. Thus, the updated calculation of sub-threshold leakage can
be obtained by slightly modifying our expression in 13:

Ileak = Ids0e
(VGS−VT+δdVDS+γdVBS)

nvT (1− e
−VDS
vT ) (13)

The use of FBB ad RBB is still a powerful tool to improve circuit performance by speeding
a circuit in active period (FBB) and reducing its leakage during inactivity [9]. It has also
been used to narrow down best- and worst-case delays in the synthesis process, yielding total
area reductions [25].

The effect of body-biasing however is negatively affected by thinner gate-oxides, shorter
gate lengths and smaller VT ’s [9]. This means that the efficiency of BB would drop with the
deep nanometer technologies. This has been reflected in a reduction of nearly half on the
gains in active and leakage power for 40nm with respect to 90nm [24]. In some cases, RBB
even presented increased leakage for reverse-biased HVT cells. see figure 4.

The use of body biasing is a standard in most technology libraries, and regardless of
its efficiency reduction in deep nanometer technologies, it still can improve the underlying
challenges of downscaling [37]. Thus, most commercial libraries have body contacts for both
PMOS and NMOS have a well tap which is either left connected to VDD and VSS (PMOS
and NMOS) for the non-biased case, and to a particular voltage domain in the case of MSVD
[38], in some cases, even variable VBB schemes have been presented [34] estimating optimal
thresholds to match a performance in, for example, variable temperature conditions [41].

.2.3.2 Clock gating

The principle of clock gating came up as the preferred way to keep the clock distribution
away from parts of the chip that were idling for long periods of time. Having an important
impact on active power of a chip. For example, (Bonhomme, 2006) demonstrated how by
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Figure 4: Frequency vs leakage chart for cells with BB=[0.5-1.1]V. The graph shows that
for RBB specially in SVT and HVT cells, the attainable leakage reductions are becoming
quite limited, where the most room for improvement in terms of leakage goes to LVT cells,
whereas leakage reductions quickly saturate in SVT, and even increases in the case of HVT
cells. Source: Meijer 2009 [24].

clock gating the design-for-testability” (DFT) circuitry [2], the power of a circuit could be
slashed by up to 64%. Figure 5 shows some of the basic clock-gated circuit designs.

(a)

(b)

Figure 5: Designs of CGC vary by using variations with set-Reset latch, where a the single
bit memory will indicate whether the clock clkout will spread. a) basic structure of a CGC.
b) structure of a conventional CGC. Source: Durgam 2013, [8]

The principle and the control used for CGC’s is rather simple, but its complexity occurs
when placing it throughout the clock-tree synthesis. This is a process that has been embedded
in many design flows, and its implementation heavily relies on algorithmic optimizations to
merge - permute and relocate clock gate cells throughout the clock three during synthesis [36].
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In the CGRA-Blocks, there are CGC’s in place to shut-off whole regions and functional
units from the clock distribution. This has helps a great deal to reduce average active power,
however it does not tackle the leakage issue.

.2.3.3 Power gating

The principle of power-gating (see fig 6) consists in placing a large transistor, or a series of
smaller ones, between VDD and/or VSS of a logic block, providing an individual power do-
main that can be isolated from the always-on supply (and ground). This creates an intermedi-
ate power distribution network, namely VVDD for virtual-VDD, and VVSS for a virtual-VSS.

Nowadays, with the increasing use of on-chip accelerators, the activity in these areas be-
comes more predictable, and generally these big accelerators will idle for long periods. In the
case of CGRA-Blocks, different sets of FU’s will act as standalone accelerators making this
method a very attractive one to reduce leakage power. For example it has been shown that
the leakage of a circuit could be cut by 47% while incurring in an only-header scheme, on a
4 and 5% of total area and active power respectively [17].

Figure 6: Simple schematic of a header and footer cells around a module M.

.3 Power Switch characterization

As opposed to the case with isolation cells, the power switches require a bit more explanation
in order to be characterized and that is the reason for the existance of a section dedicated to
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Cell Inputs
DC Current (mA)
Min Max Avg

Header DI
Input 1 1.06 3.48 2.27
Input 2 0.02 0.08 0.05

Footer DI
Input 1 -1.51 -2.46 -1.99
Input 2 -0.09 -0.14 -0.12

Table 2: Summary table of best- and worst- case current supply capacity for Headers and
footers, assuming an IR drop of 5% across the power switch in question.

them (again!) but now in the context of the technology utilized. Thus this section will briefly
define the different aspects of the power switches that are relevant for further analyses and
decisions as well being used as the base of models presented further. The data here gathered
was taken from the available power-switch liberty libraries and documentation. This partic-
ular case uses the TSMC 40nm libraries on the worst-case condition, which is characterized
as:

Corner Slow-slow

Temperature 125oC

Voltage 0.99V

The power switches used and characterized for this research corresponded to those de-
scribed in table 6, and whose names were simplified for clarity.

Simplified name Cell type Characteristics Cell name

HDRSID1 Header, single-input, Pdrive = 1 HDRSID1BWP12TM1PHVT

FTRSID1 Footer, single-input, Pdrive = 1 FTRSID1BWP12TM1PHVT

HDRDID1 Header, double-input, Pdrive = 1 HDRDID1BWP12TM1PHVT

FTRDID1 Footer, double-input, Pdrive = 1 FTRDID1BWP12TM1PHVT

Table 1: Power switch cells tested, and their nomenclature used in the research

.3.1 Current capacity

The current DC current characteristics of every power switch has been extracted from the
TSMC liberty files (.lib), providing directly a relationship between the input voltage, output
voltage and current.

Looking at the plots in figure 7, Every line here represents the voltage at the input, which
we will assume to be between 0.99 and 1.21V as the voltages considered acceptable between
the best-, and worst-case scenarios. Thus, the lines that fall in the range were highlighted
with a thicker blue line.

To bound the possible currents that the switches can provide, a 5% IR drop was determ-
ined, hence the boundaries on the X-axis are now located between the same BB-WC scenarios,
with a 5% variation on them. The intersections of these boundaries make an area of operation
where the min and max values were taken.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Current capacity plots for footer cells and header cells based on input voltage (color
bar) and output voltage (x-axis). First row: single-input headers and footers. Second-third
row: 2-input switch cells. The Vin in the range [0.99, 1.21] were highlighted as blue lines,
likewise the Vout in said range were highlighted vertically on the x-axis including a 5% voltage
drop across the switch. The red horizontal lines show the DC values on those intersections,
marking the min and max DC values found for that interval.
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.3.2 Leakage

Leakage of the power switches as represented in the TSMC documentation, only takes into
account the leakage of the paths between the input(s) and output(s) of the power switches,
However they will be used to complete the leakage measurements from the models used in
the methodology (4). The selected cells’ leakage can be seen in table 3.

Cell name (simplified)
Leakage

min (nW) average (nW) max (nW)

HDRSID1 0.130 0.135 0.140

FTRSID1 0.137 0.140 0.143

FTRDID1 0.319 0.392 0.465

HDRDID1 0.302 0.369 0.436

Table 3: Leakage of the selected PG cells. Cell names were simplified with respect to the
original: Where HDR/FTR indicates the type of cell, SI/DI indicates whether it is a single-
or double-input cell, and DX indicates the drive power. Source: TSMC40nm Documentation

.3.3 Dimensions

The area impact on a design when inserting power switches is one of the most important costs
that reflect monetarily in a design, therefore it is important to be able to estimate what that
impact is going to be given different implementations of power gates. In this section, we will
only address the dimensions of the different power switches used, as the area impact will be
discussed later.

The area of each of the cells can be found in the cell libraries provided by TSMC, whereas
the dimensions were obtained through Cadence Innovus, the dimensions of the selected power
switches are presented in table 4.

Cell name (simplified) area (um2) height (um) width (um)

FTRDID1 10.35 2*1.68 3.08

HDRDID1 29.17 2*1.68 8.68

HDRSID1 12.23 2*1.68 3.64

FTRSID1 2.82 1*1.68 1.68 height

Table 4: Table with power switch dimensions made with data from TSMC’s cell libraries. It
is worth noting that the height of the cells is measured in nr of rows it uses, which for 12-track
corresponds to 1.68um

.3.4 Gate delay

The gate delay corresponds to the time that it takes for an edge to propagate from the input
pin until the output pin of a PG cell, namely from the point the input edge raises/falls to
50%, until the respective output edge raise/fall to 50% . This delay will be used to later
on evaluate the switch-on and switch-off delays on a power switched block. The propagation
delay is modeled in the TSMC documentation as equation 14:
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Tworst = Tintrinsic + F ∗ Cload (14)

where

Tworst = propagation delay at Worst case (125oC) (ns)

Tintrinsic = the intrinsic delay of each cell/path (ns)

F = load delay factor (ns/pF)

Cload = total output load capacitance (pF)

The delay models in the TSMC documentation present 3 groups of equations, depending
Cload/Cigate, which is the ratio between load capacitance at the output (Cload), and the input
gate capacitance (Cigate). The three groups combined make a single delay curve composed of
3 intervals which are detailed in table 5. The resulting plots for a 2-input header and footer
cells are presented in figure 8.

Cload/Cipin
Group 1 <= 2

Group 2 2 <x <= 10

Group 3 10 <x

Table 5: Equation intervals for modeling propagation delay

in order to present the analysis framework, we will arbitrarily decide for 2Cinput <
Cload <= 10Cinput which would place us in the middle section of the propagation delay
estimation models, or in ”Group 2”. Even though the latter implementations of the power
gates use a simple daisy chain connecting all the power switches in increasing size order, this
decision will provide us with a more pessimistic view which in general design terms is more
desirable than a too optimistic one.
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(a) (b)

(c) (d)

Figure 8: Propagation delay using the 3-stage models described in the TSMC documentation,
presented for single- and double-input header (left) and footer cells (right) for paths IO1 and
IO2. for both Low-High (LH) and High-Low (HL) transitions
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.3.5 Switching power

The power given in the TSMC documentation corresponds to the output pin power consump-
tion on the cell when the respective pin changes state, the active power estimations are given
on the same 3-group basis as the propagation delay was presented. Using a similar 3-group
model from the TSMC documentation, the power consumption of a single- and double-input
switches are represented in figure 9.

(a) (b)

(c) (d)

Figure 9: Active power of header (top) and footer (bottom) cells, where the power on the
path IO1 is depicted on the left (a,d) and the power on the path IO2 is depicted on the center
(b,e). Curiously the power consumption of both pins are almost identical, their models match
in great measure but their difference is depicted on the left.

As seen in figure 9 the active power consumption of each cell is rather stable among its
pins, this information will help us calculate the trade-offs on the insertion of power gates, but
still does not answer the questions regarding the design of a gated module, these will come
the further the framework is developed.
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.4 Isolation cell characterization

The use of isolation cells was described in chapter 2, they tie all output paths of the switched
module to either 0 or 1 in order to prevent unexpected behavior down those paths caused by
having an otherwise dangling set of outputs. The isolation cells used from the TSMC libraries
have 2 inputs: a data input I, and an enable ”ISO”, and one output ”Z”. A subset of the
available isolation cells was selectes, each type vary in their drive power, as the outputs of a
power switched block may have a relatively high fanout, and as with the case of the power
switches, they have been characterized on their worst case corner.

Similar to the power switches, the names of the cells used in this report are simplified
versions of the ones presented in the TSMC libraries, just for simplicity and readability. the
nomenclature used is presented in table.

Simplified name Cell type Characteristics Cell name

ISOHID2 Iso to 1,Pdrive = 2 ISOHID2BWP12T40M1PLVT

ISOHID4 Iso to 1,Pdrive = 4 ISOHID4BWP12T40M1PLVT

ISOLOD2 Iso to 0, Pdrive = 1 ISOLOD2BWP12T40M1PLVT

ISOLOD4 Iso to 0, Pdrive = 1 ISOLOD4BWP12T40M1PLVT

Table 6: Isolation cells used, and their nomenclature used in the research

.4.1 Leakage

Leakage for isolation cells is also obtained from the TSMC documentation, and is described
in table 7.

Cell name (simplified)
Leakage (nW)

Min Avg Max

ISOHID2 15.96771 21.06084 28.24807

ISOHID4 30.71693 34.47088 37.99739

ISOLOD2 14.61419 21.03096 28.75779

ISOLOD4 25.21779 32.88731 44.0453

Table 7: cell leakage for isolation cells with Driving power 2 and 4 on their different paths
I-Z (IO1) and ISO-Z (IO2)
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.4.2 Propagation delay

The propagation delay of the isolation cells, as well as with the power switches, is described in
a set of 3 equations depending on the ratio between input and load capacitance as described
in table 5, the behaviors of the selected cells are shown in figure 10.

(a) (b)

(c) (d)

Figure 10: Propagation delay models for cells of driving power 2 (top) and 4(bottom)
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.4.3 Active power

The estimation of active power is determined using the 3-equation models presented on the
TSMC, and also described in table 5, the plots of the respective models on the selected cells
are presented in figure 11

(a) (b)

(c) (d)

Figure 11: Models for power consumption on cells with drive power 2 (top) and 4 (bottom),
for their paths I-Z (IO1) and ISO-Z (IO2)

.4.4 Dimensions

The dimensions of the selected isolation cells are shown in table 8 and was collected from
TSMC’s liberty files (.lib). All isolation cells have the same height of one row (1.68um) hence
the area depends directly on the width of the each of the cells.
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Cell name (simplified) area (um2) height (um) width (um)

ISOHID2 1.6464 1.68 0.98

ISOHID4 2.352 1.68 1.4

ISOLOD2 2.352 1.68 1.4

ISOLOD4 3.0576 1.68 1.82

Table 8: Isolation cell dimensions for driving power 2 and 4

.5 The switched module characterization

Having defined the characteristics of the switches and isolation cells, as well as a model for
their transient behavior, we have to characterize the module/set of cells that we want of
switch off. It is in this phase where we can select the granularity of the scheme, and therefore
attempt to answer our main research question.

.5.1 Area / density

The area of the module M is defined by a simple relation, namely:

areaM =

∑C(M)
i areai
Dtarget

(µm2) (15)

where,

C(M) is the set of cells in module M,

areai is the area of cell i,

Dtarget is the target cell density of module M.

We can assign any aspect ratio a:b given a particular target density d%, by solving for x,
and later assigning a*x and b*x to width and height.

x =
areaM
(a+ b)

(µm) (16)

with

heightM = roundup1.68(
√
areaM )

This roundup on the height dimension is done automatically by the design tools, adding
a small variation to the area in the range [0 − 1.68] ∗ widthM . This small variation can be
mitigated in the design tools by specifying the dimensions of M in terms of width and height
rather than in terms of density and aspect ratio.

.5.2 Capacitance

This information is necessary to estimate the the power-on and power-off times and consump-
tion, as well as to calculate the number of power switches needed to achieve a particular IR
drop. We define the capacitance of module M as the sum of the capacitances of all cells and
nets inside M.
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CapM =

C(M)∑
i

capi +

N(M)∑
j

capnj (17)

where,

C(M) is the set of cells in module M,

capi is the capacitance of cell i,

N(M) is the set of nets in module M,

capnj is the capacitance of net j.

1

2 s e t c p f v e r s i o n 2 .0
3

4 ##################################
5 # Def ine Library s e t t i n g s
6 #################################
7

8 d e f i n e l i b r a r y s e t −name l i b s wc − l i b r a r i e s $opcon wc
9 d e f i n e l i b r a r y s e t −name l i b s t c − l i b r a r i e s $ opcon tc

10 d e f i n e l i b r a r y s e t −name l i b s b c − l i b r a r i e s $ opcon bc
11

12 ##############################
13 ## PG and i s o l a t i o n c e l l s
14 #################################
15 d e f i n e i s o l a t i o n c e l l \
16 − c e l l s {ISOHI∗} \
17 −v a l i d l o c a t i o n to \
18 −enable ISO
19 d e f i n e i s o l a t i o n c e l l \
20 − c e l l s {ISOLO∗} \
21 −v a l i d l o c a t i o n to \
22 −enable ISO
23

24 #####################
25 ## Headers & Footers
26 #####################
27

28 d e f i n e p owe r sw i t c h c e l l \
29 − c e l l s {HDRSI∗} \
30 −power switchab le TVDD \
31 −power VDD \
32 −s t a g e 1 enab l e !NSLEEPIN \
33 −s tage 1 output !NSLEEPOUT \
34 −type header
35

36 d e f i n e p owe r sw i t c h c e l l \
37 − c e l l s {HDRDI∗} \
38 −power switchab le TVDD \
39 −power VDD \
40 −s t a g e 1 enab l e !NSLEEPIN2 \
41 −s tage 1 output !NSLEEPOUT1 \
42 −type header
43

44 d e f i n e p owe r sw i t c h c e l l \
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45 − c e l l s {FTRSI∗} \
46 −ground switchab le TVSS \
47 −ground VSS \
48 −s t a g e 1 enab l e SLEEPIN \
49 −s tage 1 output SLEEPOUT \
50 −type f o o t e r
51

52 d e f i n e p owe r sw i t c h c e l l \
53 − c e l l s {FTRDI∗} \
54 −ground switchab le TVSS \
55 −ground VSS \
56 −s t a g e 1 enab l e SLEEPIN2 \
57 −s tage 1 output SLEEPOUT1 \
58 −type f o o t e r
59

60

61 ######################
62 # Design part o f the cp f
63 #####################
64 s e t d e s i g n CGRA Top
65

66 # Create g l oba l net s and pins
67 c r ea t e power ne t s −nets VDD −vo l tage $ t c v o l t a g e
68 c r ea t e power ne t s −nets TVDD −vo l tage $ t c v o l t a g e −

e x t e r n a l s h u t o f f c o n d i t i o n { iPG s igna l }
69 c r ea t e g round ne t s −nets VSS
70 c r ea t e g round ne t s −nets TVSS −e x t e r n a l s h u t o f f c o n d i t i o n { iPG s igna l }
71

72 # Create power domains
73 create power domain \
74 −name {PD1} \
75 −de f au l t
76 create power domain \
77 −name {PD2} \
78 − i n s t an c e s {POWER SWITCHED INSTANCE LIST} \
79 −base domains {PD1} \
80 −s hu t o f f c o nd i t i o n { iPG s igna l }
81

82 c r e a t e g l o b a l c onn e c t i o n −domain {PD1} −net {VDD} −pins VDD
83 c r e a t e g l o b a l c onn e c t i o n −domain {PD1} −net {VSS} −pins VSS
84 c r e a t e g l o b a l c onn e c t i o n −domain {PD2} −net {TVDD} −pins TVDD
85 c r e a t e g l o b a l c onn e c t i o n −domain {PD2} −net {TVSS} −pins TVSS
86

87 update power domain −name {PD1} −primary power net VDD −pr imary ground net VSS
88 update power domain −name {PD2} −primary power net TVDD −pr imary ground net

TVSS
89

90 #################################
91 # Def ine Nominal Condit ions & modes
92 ##################################
93

94 c r e a t e nomina l c ond i t i on −name ON STATE −vo l tage $ t c v o l t a g e
95 c r e a t e nomina l c ond i t i on −name OFF STATE −vo l tage 0 .0 −s t a t e o f f
96

97 update nomina l cond i t ion −name ON STATE − l i b r a r y s e t { l i b s t c }
98 update nomina l cond i t ion −name OFF STATE − l i b r a r y s e t { l i b s t c }
99
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100 create power mode −name PM1 \
101 −domain condi t ions ”PD1@ON STATE PD2@ON STATE” −de f au l t
102 create power mode −name PM2
103 −domain condi t ions ”PD1@ON STATE PD2@OFF STATE”
104

105 #################################
106 ### I s o l a t i o n and PS ru l e s
107 #################################
108

109 c r e a t e i s o l a t i o n r u l e −name i r 1 \
110 − i s o l a t i o n c o n d i t i o n ” iPG s igna l ” \
111 −from PD2 −to PD1 \
112 − i s o l a t i o n ou t pu t high \
113 − i s o l a t i o n t a r g e t to
114 upd a t e i s o l a t i o n r u l e s \
115 −names i r 1 \
116 − l o c a t i o n to \
117 −p r e f i x i s o r u l e 1
118

119 c r e a t e powe r sw i t ch ru l e \
120 −name psr1 \
121 −domain PD2 \
122 −ex t e rna l power ne t VDD
123 update power sw i t ch ru l e \
124 −name psr1 \
125 − c e l l s {HDRSI∗} \
126 −p r e f i x PSHDR
127

128 c r e a t e powe r sw i t ch ru l e \
129 −name psr2 \
130 −domain PD2 \
131 −ex t e rna l g round ne t VSS
132 update power sw i t ch ru l e \
133 −name psr2 \
134 − c e l l s {FTRSI∗} \
135 −p r e f i x PSFTR
136

137 ########################
138 # Def ine opera t i on co rne r s
139 ########################
140

141 c r e a t e op e r a t i n g c o r n e r −name wc rcworst \
142 − l i b r a r y s e t l i b s wc \
143 −proce s s 1 \
144 −vo l tage $wc vo l tage \
145 −temperature 0
146

147 c r e a t e op e r a t i n g c o r n e r −name bc r cb e s t \
148 − l i b r a r y s e t l i b s b c \
149 −proce s s 1 \
150 −vo l tage $ bc vo l t age \
151 −temperature 125
152

153 ##########################
154 # Design Ana lys i s view
155 ##########################
156

86



.6. GENUS SYNTHESIS FLOW - SYNTHESIS.TCL

157 c r e a t e a n a l y s i s v i ew −name wc AV rcmax hold PM1 \
158 −mode PM1 \
159 −domain corners ”PD1@wc rcworst PD2@wc rcworst”
160 c r e a t e a n a l y s i s v i ew −name AV bc setup PM1 \
161 −mode PM1 \
162 −domain corners ”PD1@bc rcbest PD2@bc rcbest”
163

164 end des ign

.6 Genus Synthesis flow - synthesis.tcl

Snap of the Genus synthesis flow used in the report, variables and other settings have been re-
moved from the original code in order to improve readability, making this code non functional
as-is.

1

2 ####################################################
3 ## Library setup
4 #####################################################
5

6 s e t db / . i n i t l i b s e a r c h p a t h { . . /$ LIB DIR}
7 s e t db / . s c r i p t s e a r c h pa t h { . }
8 s e t db / . i n i t h d l s e a r c h p a t h { . . . / s r c sour c e s }
9 se t des ign mode −proce s s 40

10

11 : : l e g a c y : : s e t a t t r i b u t e i n i t b l a c kbox f o r und e f i n e d true /
12 : : l e g a c y : : s e t a t t r i b u t e w r i t e v l o g empty modu l e f o r l o g i c ab s t r a c t f a l s e /
13

14 source ” . / s c r i p t / t e ch s e t t i n g s t smc40 . t c l ”
15

16 s e t db / . l i b r a r y ”$opcon wc $ opcon tc $ opcon bc”
17 s e t db / . l e f l i b r a r y $ t e c h l e f
18 s e t db / . c a p t a b l e f i l e $ r cw captab l e s
19

20 #######################################################
21 ## Load Design
22 #######################################################
23 source s c r i p t / read hd l . t c l
24

25 read mmmc ./ s c r i p t /mmmc. t c l
26 e l abo ra t e $DESIGN
27

28 check des i gn −unreso lved ${DESIGN}
29

30 i n i t d e s i g n
31 r ead power in t ent −module $DESIGN −cp f cp f / des ign . cp f
32

33 ######################################################
34 ## Const ra int s Setup
35 ######################################################
36 d e f i n e c l o c k −per iod $CLOCK PERIOD −name CLK { iC lk } −mode ∗
37

38 wr i t e hd l −g ene r i c
39 r epor t t iming − l i n t −verbose
40
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41 #######################################################
42 ## Synthe s i z ing to g ene r i c
43 #######################################################
44

45 commit power intent
46

47 s yn gene r i c
48 report summary
49 wr i t e hd l −g ene r i c
50

51 ########################################################
52 ## Synthe s i z ing to gate s
53 ########################################################
54

55 syn map
56

57 report summary
58 r epor t dp
59

60 #########################################################
61 ## Optimize N e t l i s t
62 #########################################################
63

64 syn opt
65

66 t ime i n f o OPT
67 report summary
68

69 #################################
70 ### wri t e the mapped des ign and sdc f i l e
71 #################################
72

73 puts ”Write Design and Ne t l i s t ”
74

75 wr i t e d e s i gn −base name
76 wr i t e d e s i gn −innovus
77 wr i t e s d f −edges check edge −setuphold s p l i t
78

79 puts ”Write r epo r t s ”
80 r epor t area
81 r epor t t iming
82 r epor t gate s
83 r epor t d e s i g n r u l e s
84

85 r epor t power −power mode PM1
86 r epor t power −power mode PM2
87

88 r epor t summary
89

90 puts ” Fina l Runtime & Memory . ”
91

92 wr i t e sd c −view wc AV rcmax hold
93

94 puts ”============================”
95 puts ” Synthes i s F in i shed . . . . . . . . . ”
96 puts ”============================”
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.7 Innovus - floorplan.tcl

snap of the Innovus floorplan flow used in the design, variables and other settings may have
been removed from the original code in order to improve readability. note that the variable
”MODE” was used as a dummy variable to determine whether the intended flow would use
a ring or a column configuration.

1

2 ##############################
3 ## Plan block placement ##
4 ##############################
5

6 source s c r i p t / f l oo rp l an mac ro s . t c l
7

8 #####################
9 ## Plower Planning ##

10 #####################
11 i f {$MODE ==” r ing ”} {
12 source . / s c r i p t / f loorp lan power r ingPG . t c l
13 } e l s e {
14 source . / s c r i p t / f loorp lan power co lPG . t c l
15 }
16

17 #################################
18 ### in s e r t power Switches
19 ##################################
20

21 i f {$MODE ==” r ing ”} {
22 source . / s c r i p t / f l oorp lan add r ingPG . t c l
23 } e l s e {
24 source . / s c r i p t / f l oorp lan add co lPG . t c l
25 }
26

27 #################################
28 ### Save database
29 ##################################
30

31 wri te db DB/$ OUTPUTS PATH/ f loorp lan PG . enc
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.8 Innovus placement.tcl

1 ##########################
2 ## Setup Timing opt ions ##
3 ##########################
4

5 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup tc AV rcnom} −hold {
bc AV rcmin hold wc AV rcmax hold}

6 s e t i n t e r a c t i v e c o n s t r a i n t mod e s [ a l l c on s t r a i n t mode s −a c t i v e ]
7

8 #####################
9 ## Timing Derat ing ##

10 #####################
11

12 source . / s c r i p t / t im ing de ra t e . t c l
13

14 ######################
15 ## Place the Design ##
16 ######################
17

18 s e t db p lan des i gn boundary p lace t rue
19 s e t db p l a n d e s i g n e f f o r t high
20 s e t db p l an de s i gn f i x p l a c ed mac r o s f a l s e
21 p lan de s i gn
22

23 ####################
24 ## Pin Assignment ##
25 ####################
26

27 a s s i g n i o p i n s −move f ixed p in −pins ∗
28 s e t db p l an de s i gn in c r ementa l t rue
29 s e t db p l a n d e s i g n e f f o r t high
30 p lan de s i gn
31

32 s e t db f i n i s h f l o o r p l a n a c t i v e o b j s { core macro}
33 s e t db f i n i s h f l o o r p l a n d r c r e g i o n o b j s {macro macro halo hard blockage min gap

co r e spac i ng }
34 s e t db f i n i s h f l o o r p l a n a d d b l o c k a g e d i r e c t i o n xy
35 s e t db f i n i s h f l o o r p l a n o v e r r i d e f a l s e
36

37 p l a c e d e s i gn
38

39 #########################
40 ## PreCTS Optimizat ion ##
41 #########################
42

43 opt de s i gn −p r e c t s −inc rementa l
44

45 ###################
46 ## Report Timing ##
47 ###################
48

49 t ime des i gn −p r e c t s
50 wri te db placement . enc
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.9 Innovus cts.tcl

1 ##########################
2 ## Setup Timing opt ions ##
3 ##########################
4

5 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup} −hold {bc AV rcmin hold}
6 s e t db t im ing ana l y s i s t yp e OCV
7 s e t db t im ing ana l y s i s c pp r both
8 s e t db t im ing ana l y s i s c h e ck typ e setup
9

10 #####################
11 ## Timing Derat ing ##
12 #####################
13

14 source . / s c r i p t / t im ing de ra t e . t c l
15

16 #########################
17 ## ClockTree Synthes i s ##
18 #########################
19

20 c cop t de s i gn −c h e c k c t s c o n f i g
21 c cop t de s i gn −r e p o r t d i r . /$ REPORTS PATH/ c t s r e p o r t s /
22

23 s e t i n t e r a c t i v e c o n s t r a i n t mod e s [ a l l c on s t r a i n t mode s −a c t i v e ]
24 s e t p r opaga t ed c l o ck [ a l l c l o c k s ]
25

26 ##########################
27 # PostCTS opt imiza t i on ##
28 ##########################
29

30 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup} −hold {bc AV rcmin hold}
31 opt de s i gn −po s t c t s −r e p o r t d i r $ REPORTS PATH/ t im ing r epo r t s / c t s −

r e p o r t p r e f i x ctsSetup
32

33 ###################
34 ## Report Timing ##
35 ###################
36

37 t ime des i gn −po s t c t s −num paths 10 −r e p o r t d i r $ REPORTS PATH/ t im ing r epo r t s /
c t s

38 t ime des i gn −po s t c t s −hold −num paths 100 −r e p o r t d i r $ REPORTS PATH/
t im ing r epo r t s / c t s

39

40 wri te db DB/$ OUTPUTS PATH/ c t s . enc
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.10 Innovus route.tcl

1 ##########################
2 ## Setup Timing Options ##
3 ##########################
4

5 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup tc AV rcnom} −hold {
bc AV rcmin hold wc AV rcmax hold}

6 s e t i n t e r a c t i v e c o n s t r a i n t mod e s [ a l l c on s t r a i n t mode s −a c t i v e ]
7 s e t p r opaga t ed c l o ck [ a l l c l o c k s ]
8 s e t db t im ing ana l y s i s t yp e OCV
9 s e t db t im ing ana l y s i s c pp r both

10 s e t db t im ing ana l y s i s c h e ck typ e setup
11

12 #####################
13 ## Timing Derat ing ##
14 #####################
15

16 source . / s c r i p t / t im ing de ra t e . t c l
17

18 ############################
19 ## Route Clock Nets F i r s t ##
20 ############################
21 s e t r o u t e a t t r i b u t e s −nets ${CLKPORTNAME} −bo t t om pr e f e r r ed r ou t i n g l a y e r 3 −

t o p p r e f e r r e d r o u t i n g l a y e r 4 −p r e f e r r e d e x t r a s p a c e t r a c k s 1
22

23 s e t db r ou t e d e s i g n c on cu r r e n t m in im i z e v i a c oun t e f f o r t ” high ”
24 s e t db r ou t e d e s i g n an t enna d i od e i n s e r t i o n f a l s e
25 s e t db r o u t e d e s i g n r e s e r v e s p a c e f o r mu l t i c u t t rue
26 s e t db r o u t e d e s i g n s e l e c t e d n e t o n l y t rue
27 s e t db r o u t e d e s i g n s t r i c t h o n o r r o u t e r u l e ” f a l s e ”
28 s e t db r o u t e d e s i g n w i t h s i d r i v e n true
29 s e t db r ou t e d e s i gn w i th t im ing d r i v en true
30

31 r o u t e g l o b a l d e t a i l
32

33 s e t db r o u t e d e s i g n s e l e c t e d n e t o n l y f a l s e
34 r o u t e g l o b a l d e t a i l
35

36 #######################
37 ## Route S igna l Nets ##
38 #######################
39

40 s e t db r ou t e d e s i g n d e t a i l p o s t r o u t e swap v i a mul t i cu t
41 s e t db r o u t e d e s i g n d e t a i l u s e mu l t i c u t v i a e f f o r t high
42

43 f i x v i a −min cut
44 r ou t e de s i gn −v i a op t
45

46 ###################
47 ## Report t iming ##
48 ###################
49 t ime des i gn −pos t r ou t e
50 t ime des i gn −pos t r ou t e −hold
51

52 wri te db route . enc
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.11 Innovus post route opt.tcl

1 ##########################
2 ## Setup Timing Options ##
3 ##########################
4

5 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup tc AV rcnom} −hold {
bc AV rcmin hold wc AV rcmax hold}

6 s e t i n t e r a c t i v e c o n s t r a i n t mod e s [ a l l c on s t r a i n t mode s −a c t i v e ]
7 s e t p r opaga t ed c l o ck [ a l l c l o c k s ]
8 s e t db t im ing ana l y s i s t yp e OCV
9 s e t db t im ing ana l y s i s c pp r both

10 s e t db t im ing ana l y s i s c h e ck typ e setup
11

12 c r e a t e ba s i c pa th g r oup s
13 get path groups ∗
14

15 s e t db de layca l equ iva l ent wave fo rm mode l propagat ion
16 s e t db delaycal combine mmmc none
17

18 s e t db o p t p o s t r o u t e f i x g l i t c h t rue
19 s e t db o p t p o s t r o u t e f i x c l o c k d r v true
20

21 #####################
22 ## Timing Derat ing ##
23 #####################
24

25 source . / s c r i p t / t im ing de ra t e . t c l
26

27 #############################
28 ## Remove Std F i l l e r Ce l l s ##
29 #############################
30

31 d e l e t e f i l l e r −p r e f i x FILL
32

33 #############################
34 ## Post Route Optimizat ion ##
35 #############################
36

37 opt de s i gn −pos t r ou t e
38 opt de s i gn −pos t r ou t e −setup − i n c r
39

40 s e t don t u s e [ g e t l i b c e l l s ∗DEL∗ ] f a l s e
41 s e t dont touch [ g e t l i b c e l l s ∗DEL∗ ] f a l s e
42 opt de s i gn −pos t r ou t e −hold
43 opt de s i gn −pos t r ou t e −hold − i n c r
44

45 #############################
46 ## In s e r t Std F i l l e r Ce l l s ##
47 #############################
48

49 a d d f i l l e r s −b a s e c e l l s $ f i l l e r c e l l s −p r e f i x FILL −check drc t rue −
ch e ck v i a en c l o s u r e t rue −check min ho le t rue −power domain {PD1}

50 a d d f i l l e r s −b a s e c e l l s $ f i l l e r c e l l s −p r e f i x FILL −check drc t rue −
ch e ck v i a en c l o s u r e t rue −check min ho le t rue −power domain {PD2}

51

52 opt de s i gn −pos t r ou t e
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53 opt de s i gn −pos t r ou t e −hold
54

55 ############
56 # Report
57 ############
58

59 i f {$MODE == ” f l a t ” } {
60 source . / s c r i p t / r e p o r t f l a t . t c l
61 } e l s e {
62 source . / s c r i p t / r epor t pg . t c l
63 }
64

65 #####################
66 # Write outputs
67 #####################
68

69 w r i t e n e t l i s t −e x c l u d e l e a f c e l l s $ OUTPUTS PATH/optRoute . v
70 w r i t e n e t l i s t −e x c l u d e l e a f c e l l s $ OUTPUTS PATH/optRoute . phys . v −phys
71

72 wr i t e s d f −view tc AV rcnom −no escape −edges check edge −d e l im i t e r . $
OUTPUTS PATH/optRoute . sd f t yp

73 wr i t e s d f −view wc AV rcmax setup −no escape −edges check edge −d e l im i t e r . $
OUTPUTS PATH/optRoute . sd f r cw

74 wr i t e s d f −view bc AV rcmin hold −no escape −edges check edge −d e l im i t e r . $
OUTPUTS PATH/optRoute . s d f r c b

75

76 e x t r a c t r c
77 w r i t e p a r a s i t i c s − s p e f f i l e $ OUTPUTS PATH/${TOP DES NAME} . s p e f t yp
78 w r i t e p a r a s i t i c s − s p e f f i l e $ OUTPUTS PATH/${TOP DES NAME} . spe f r cw
79 w r i t e p a r a s i t i c s − s p e f f i l e $ OUTPUTS PATH/${TOP DES NAME} . s p e f r c b
80

81 wri te db . /DB/$ OUTPUTS PATH/ po s t r ou t e op t . enc
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.12 Innovus report.tcl

1

2 s e t a n a l y s i s v i ew −setup {wc AV rcmax setup tc AV rcnom} −hold {
bc AV rcmin hold wc AV rcmax hold}

3 s e t i n t e r a c t i v e c o n s t r a i n t mod e s [ a l l c on s t r a i n t mode s −a c t i v e ]
4 s e t p r opaga t ed c l o ck [ a l l c l o c k s ]
5 s e t db t im ing ana l y s i s t yp e OCV
6 s e t db t im ing ana l y s i s c pp r both
7 s e t db t im ing ana l y s i s c h e ck typ e setup
8

9 c r e a t e ba s i c pa th g r oup s
10 get path groups ∗
11

12 s e t db de layca l equ iva l ent wave fo rm mode l propagat ion
13 s e t db delaycal combine mmmc none
14 s e t db o p t p o s t r o u t e f i x g l i t c h t rue
15 s e t db o p t p o s t r o u t e f i x c l o c k d r v true
16

17 #####################
18 ## Timing Derat ing ##
19 #####################
20

21 source . / s c r i p t / t im ing de ra t e . t c l
22 t ime des i gn −pos t r ou t e −num paths 10 −r e p o r t d i r $ REPORTS PATH/ t im ing r epo r t s

/ po s t r ou t e −r e p o r t p r e f i x op route s e tup
23 t ime des i gn −pos t r ou t e −hold −num paths 10 −r e p o r t d i r $ REPORTS PATH/

t im ing r epo r t s / po s t r ou t e −r e p o r t p r e f i x op route ho ld
24

25 ########################
26 # Report power
27 ########################
28 r e s e t p owe r a c t i v i t y
29 report power −view tc AV rcnom −o u t f i l e $ REPORTS PATH/power repor t s /

power rpt typ . txt
30 report power −view wc AV rcmax setup −o u t f i l e $ REPORTS PATH/power repor t s /

power rpt wc . txt
31 report power −view bc AV rcmin hold −o u t f i l e $ REPORTS PATH/power repor t s /

power rpt bc . txt
32

33

34 #repor t the capac i tance o f a l l nets , ( python to parse on module M)
35 report power −view tc AV rcnom −cap −o u t f i l e $ REPORTS PATH/power repor t s /

cap rpt . txt
36

37 #power o f i s o l a t i o n c e l l s
38 report power − i n s t s ∗ i s o r u l e ∗ −view wc AV rcmax setup −o u t f i l e $ REPORTS PATH

/ power repor t s / i s o powe r rp t . txt
39

40 #power o f the module M
41 report power − i n s t s ∗ a l u i n s t ∗ −view wc AV rcmax setup −o u t f i l e $

REPORTS PATH/power repor t s / a l u i n s t powe r . txt
42

43 # power o f a l sw i t che s ( however i t i s a l r eady inc luded in the module M)
44 report power − i n s t s ∗PSFTR∗ −view wc AV rcmax setup −o u t f i l e $ REPORTS PATH/

power repor t s / pg power rpt . txt
45
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46 #c e l l area o f the module M
47 r epo r t a r e a −h in s t CGRA Core inst/CGRA Compute Wrapper inst/CGRA Compute inst/

a l u i n s t −o u t f i l e $ REPORTS PATH/pg area . txt
48

49 #f l o o r p l a n area o f PD2 = module M
50 get db [ get db groups ∗PD2] . area
51

52 #get the t o t a l area o f a l l i s o l a t i o n c e l l s
53 s e t to t 0 . 0
54 s e t i s on r 0
55 f o r each { c e l l s } [ get db [ get db i n s t s ∗ i s o r u l e ∗ ] . area ] {
56 s e t to t [ expr $ to t + $ c e l l s ]
57 s e t i s on r [ expr $ i s on r +1]
58 }
59 puts ” t o t a l area o f $ i s on r ISO c e l l s i s $ to t \n”
60

61 #de t a i l e d energy per switch
62 r epo r t i n s t powe r [ get db i n s t s . name ∗PSFTR∗ ] −o u t f i l e $ REPORTS PATH/

pg ins t power . txt
63 r epo r t i n s t powe r ∗ i s o r u l e ∗ −o u t f i l e $ REPORTS PATH/ i s o i n s t p owe r . txt
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.13 Some design querying functions used (tcl)

1

2 ## dec l a r e f unc t i on s
3 ####################
4 proc count s e t { s e t } {
5 s e t a 0
6 f o r each output $ s e t {
7 i n c r a
8 }
9 re turn $a

10 }
11 proc g e t o u t c e l l s { c e l l hinst boundary name } {
12 #globa l hinst boundary name
13 re turn [ get db [ get db [ get db $ c e l l . p ins − i f { . d i r e c t i o n == out } ] . net . l oads .

i n s t − i f { . parent . name == $hinst boundary name } ] − i f { . name != ∗
rCon f i g r eg ∗} ]

14 }
15

16 proc g e t i n c e l l s { c e l l hinst boundary name } {
17 #globa l hinst boundary name
18 s e t aux [ get db [ get db $ c e l l . p ins − i f { . d i r e c t i o n == in } ] . net . d r i v e r s − i f

{ . name != ∗ iC lk ∗} ]
19 s e t aux2 [ get db $aux . i n s t − i f { . parent . name == $hinst boundary name } ]
20 s e t aux3 [ get db $aux2 − i f { . name != ∗ rCon f i g r eg ∗} ]
21 re turn $aux3
22 }
23

24 proc back propagate { l i s t hinst boundary name } {
25 f o r each item $ l i s t {
26 s e t n r o u t c e l l s [ c ount s e t [ g e t o u t c e l l s $ item $hinst boundary name ] ]
27 #puts ”$ item has −−> $ n r o u t c e l l s ”
28 s e t matches 0
29 f o r each o c e l l [ g e t o u t c e l l s $ item $hinst boundary name ] {
30 f o r each o t h e r c e l l $ l i s t {
31 i f {$ o c e l l == $ o t h e r c e l l } {
32 #puts ”match ! ! ”
33 i n c r matches
34 }
35 }
36 }
37 s e t broke 0
38 i f {$matches >= $ n r o u t c e l l s } {
39 #puts ”matches $matches vs $ n r o u t c e l l s −−> $ item +++++++”
40 } e l s e {
41 puts ”matches $matches vs $ n r o u t c e l l s −−> $ item −−−−−−−”
42 s e t rem [ l s e a r c h $ l i s t $ item ]
43 s e t l i s t [ l r e p l a c e $ l i s t $rem $rem ]
44 s e t broke 1
45 break
46 }
47 }
48 i f { $broke == 0 } {
49 re turn $ l i s t
50 } e l s e {
51 back propagate $ l i s t $ hinst boundary name
52 }
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53 }
54

55 proc append c e l l s { l i s t input } {
56 f o r each c e l l $ input {
57 lappend l i s t $ c e l l
58 }
59 re turn $ l i s t
60 }
61

62 proc p r i n t { l i s t } {
63 f o r each item $ l i s t {
64 puts $ item
65 }
66 }
67

68

69 proc ge tpo r t s { t a r g e t h i n s t } {
70 s e t t a r g e t s [ get db h i n s t s $ t a r g e t h i n s t ]
71 s e t p o r t l i s t {}
72 f o r each ta r g e t $ t a r g e t s {
73 s e t por t s [ get db $ ta r g e t . hports − i f { . d i r e c t i o n == out } ]
74

75 f o r each port $ por t s {
76 #puts $ port
77 lappend p o r t l i s t $ port
78 }
79 }
80 re turn $ p o r t l i s t
81 }
82

83 proc g e t a r e a { l i s t } {
84 s e t f u l l l i s t {}
85 f o r each t $ l i s t {
86 s e t t o ta r ea [ get db $ t . area ]
87 lappend f u l l l i s t ”$ t a r e a : $ to ta r ea ”
88 re turn $ f u l l l i s t
89 }
90 }
91

92 proc g e t p s c e l l s { hinst boundary name seed name } {
93

94 s e t n r c e l l s [ c ount s e t [ get db [ get db h i n s t s $ hinst boundary name ] . i n s t s ] ]
95 i f {$ seed name == ” a l l ”} {
96 s e t s eeds [ get db [ g e tpo r t s $ hinst boundary name ] . hnet ]
97 } e l s e {
98 s e t s eeds [ get db [ get db h i n s t s $ hinst boundary name ] . hnets $ seed name ]
99 }

100

101 i f { [ c ount s e t $ seeds ] == 0} {
102 puts ” could not f i nd seeds by name $seed name”
103 re turn 0}
104 s e t 1 l a y e r c e l l s [ get db $ seeds . net . d r i v e r s . i n s t − i f { . parent . name == $

hinst boundary name } ]
105

106 s e t l a s t l i s t $1 l a y e r c e l l s
107 s e t done 0
108 s e t counter 0
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109 s e t supe r s e t {}
110 s e t supe r s e t [ append c e l l s $ supe r s e t $1 l a y e r c e l l s ]
111

112 f o r { s e t i 0} {$ i < 50} { i n c r i } {
113 s e t c u r r e n t l i s t [ g e t i n c e l l s $ l a s t l i s t $ hinst boundary name ]
114 s e t c u r r e n t l i s t [ l s o r t −unique $ c u r r e n t l i s t ]
115 s e t supe r s e t [ append c e l l s $ supe r s e t $ c u r r e n t l i s t ]
116 puts [ c ount s e t $ c u r r e n t l i s t ]
117 s e t l a s t l i s t $ c u r r e n t l i s t
118 }
119

120 s e t supe r s e t [ l s o r t −unique $ supe r s e t ]
121 s e t count2 [ count s e t $ supe r s e t ]
122 puts ”The count : $ n r c e l l s −> $ count2 ”
123

124 s e t c l e a n l i s t {}
125 s e t c l e a n l i s t [ back propagate $ supe r s e t $hinst boundary name ]
126 s e t count3 [ count s e t $ c l e a n l i s t ]
127 puts ” Fina l count : $ n r c e l l s −> $ count2 −> $ count3 a f t e r back propagat ion ”
128

129 re turn $ c l e a n l i s t
130 }
131

132

133 #fo r s e t the search parameters
134 s e t seed name ”oRIGHT oLEFT”
135 s e t hinst boundary name ∗CGRA Compute inst/SWB∗
136 s e t t a r g e t s [ get db [ get db h i n s t s $ hinst boundary name − i f { . name != ∗ bu f f e r

∗} ] − i f { . name != ∗PREFIX∗} ]
137 pr in t $ t a r g e t s
138

139 #do the search
140

141 s e t f u l l l i s t {}
142 f o r each seed $ seed name {
143 f o r each t $ t a r g e t s {
144 s e t t o ta r ea [ get db $ t . area ]
145 s e t n r c e l l s [ c ount s e t [ get db $ t . i n s t s ] ]
146 # puts $ n r c e l l s
147 s e t pow dyn [ get db $ t . power dynamic ]
148 s e t pow leak [ get db $ t . power leakage ]
149 s e t pow tota l [ get db $ t . power to ta l ]
150

151 #run the path t r a v e r s a l
152 s e t t e s t [ g e t p s c e l l s [ get db $ t . name ] $ seed ]
153 s e t n r p s c e l l s 0
154 s e t n r p s c e l l s [ c ount s e t $ t e s t ]
155

156 s e t psarea 0
157 s e t pspow dyn 0
158 s e t pspow leak 0
159 s e t pspow tota l 0
160

161 f o r each c e l l $ t e s t {
162 i f {$ c e l l != 0} {
163 s e t psarea [ expr $ psarea + [ get db $ c e l l . area ] ]
164 s e t pspow dyn [ get db $ t . power dynamic ]
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165 s e t pspow leak [ get db $ t . power leakage ]
166 s e t pspow tota l [ get db $ t . power to ta l ]
167 }
168 }
169 lappend f u l l l i s t ”$ t : $ n r c e l l s −> $ n r p s c e l l s // a r e a : $ to ta r ea −> $ psarea //

pow to ta l : $ pow tota l −> $ pspow tota l // pow dyn: $pow dyn −> $pspow dyn //
pow leak : $ pow leak −> $pspow leak ”

170 #lappend f u l l l i s t ”$ t : $ n r c e l l s −> $ n r c e l l s // a r e a : $ to ta r ea −> $ to ta r ea //
pow to ta l : $ pow tota l −> $ pow tota l // pow dyn: $pow dyn −> $pow dyn //
pow leak : $ pow leak −> $pow leak ”

171 }
172 }
173

174 pr in t $ f u l l l i s t
175

176 f o r each t $ t a r g e t s {
177 s e t por t s [ get db $ t . hports − i f { . d i r e c t i o n == out } ]
178 puts $ por t s
179

180 puts ”$ t por t s −> [ c ount s e t $ por t s ] ”
181 }
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