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Abstract

Trucks are the predominantly used vehicles for land freight transportation in EU member countries

(EU-27), UK and in the US. Companies involved in the production or use of trucks, as well as

in the development of autonomous vehicle technologies, are looking towards automation of truck

driving as one of the solutions for increased productivity and road safety. Part of this automation

problem is the automated localization and maneuvering of trucks in the area of a distribution

center loading dock. Based on experiments performed, this work describes the localization process

of the Eindhoven University of Technology (TU/e) truck localization system and of vision-based

localization systems in general. To characterize system performance, localization accuracy and

execution time parameters are identified. Proposals are made for optimization of execution time

for localization systems that employ distributed processing.
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Chapter 1

Introduction

1.1 Motivation

Logistics is generally defined as the detailed organization and implementation of complex oper-

ations [1]. In military science it is the process of planning and executing the movement and

maintenance of military forces [2]. From a business perspective, it is the management of resource

flow between source and origin in order to meet the requirements of customers or corporations

[1]. The scope of this work is within the field of business logistics, more specifically the trans-

portation of material resources on land via trucks. Freight can also be transported via rails,

aircraft, naval transport - inland waterways or oversea. Regarding the use of trucks in the overall

logistics landscape, US Bureau of Transportation Statistics [3] reports and projects that between

63% and 65.5% of freight by tonnage in the US (domestic, import and export) was and will be

carried by trucks in the years from 2012 to 2045, as shown in figure 1.1. In the EU27 and UK,

road transportation represents between 74.6% and 76.7% of inland freight transportation mode

in tonne-kilometers [4], stats per year shown in figure 1.2. In 2017, 81.4% of EU27 and UK road

freight transport was done by vehicles with a maximum permissible laden weight of over 30 tonnes

[5]. These statistics indicate that trucks play an important role in material logistics on multiple

continents.

Logistics automation is the application of computer software or automated machinery to improve

the efficiency of logistics operations [6]. Automation can be implemented inside a warehouse

or a distribution center, involving the use of static machinery such as cranes, conveyor belts,

sorting machines or mobile robots such as an Automated Guided Vehicle (AGV). Different types

of AGVs, each with a specific job to perform such as unloading trucks, co-packing, picking orders,
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Figure 1.1: Percentage of freight by tonnage transported via trucks vs other transportation

modes in US [3].

Figure 1.2: EU27 and UK freight - modal split [4]
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checking inventory, or shipping goods. According to [7], in the future, most of these AGVs will be

mobile and self-contained but they will be coordinated through distribution center management

systems and equipped with planning software to track inventory movements and progress orders

with a high degree of accuracy. A distribution center of the future is showcased in figure 1.3.

Outside of storage facilities, automation can be implemented on delivery vehicles: drones, trucks,

underground vacuum tube trains (SpaceX Hyperloop) [8].

Figure 1.3: Distribution center concept showcasing various automated vehicles [7]

Trucks play an important role in logistics and therefore truck automation is a crucial necessity for

automation of logistics processes. Companies involved in production or use of trucks, or in the

development of autonomous vehicle technologies are looking towards automation of trucks as one

of the solutions to achieve:

• Increased efficiency - reduced fuel consumption and wear-and-tear.

• Productivity - round-the-clock operation, faster maneuvering and route planning.

• Safety - reduced blind-spot collisions, instability and loss-of-control accidents.
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A 2019 Society of Automotive Engineers (SAE) lecture [9] enumerates truck automation projects

in the US:

• US Department of Energy’s ARPA-E (Advanced Research Projects Agency - Energy) funded

projects to integrate data obtained through vehicle connectivity with external sources with

the powertrain control system, to improve fuel economy.

• The University of Minnesota, Workhorse and UPS are looking to improve fuel economy

of individual range extended hybrid delivery trucks by using cloud connectivity and data

analytics.

• Pennsylvania State University, North Carolina State University, Clemson University and

Volvo Group work on real-time, collaborative and predictive co-optimization of routing,

speed and powertrain control in Class 8 in heavy 15 ton or more trucks. The project aims

towards platooning, terrain predictive control and automation at road intersections.

• Purdue University, Cummins and Peloton aim to improve fuel consumption of class 8 trucks

using connectivity and automation-enabled control systems.

• Daimler demonstrated two-truck platooning in June 2018, has brought SAE level 2 [10]

(partially-automated) trucks into production and is aiming towards producing SAE level 4

automated trucks [11].

In Europe projects include:

• DAF, NXP Semiconductors, TNO (the Netherlands Organisation for Applied Scientific Re-

search) and Ricardo are collaborating to achieve truck platooning [12].

• Multi-brand truck platooning by Ensemble [13].

These projects represent state-of-the-art development in truck automation, however, with reference

to the SAE levels of vehicle automation, stay within Levels 1 and 2 where the driver is still

required (see figure 1.4). In [9], the authors claim that full autonomy (SAE level 5) is long to

come. Automated driving will take likely more than 10 years (as of 2019) to have a measurable

market penetration, however first use cases are expected to hit the market within the next few

years, platooning-enabled long-haul truck being the first to begin selling.

At the moment, truck automation is in its infancy [9] as only partial levels of automation have

been achieved and only for linear motion on highways. Maneuvers within a distribution center

loading dock are more complex, as they require the truck to maneuver in a more restricted, possibly
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Figure 1.4: SAE Levels of Automation [14]

obstacle-prone area. Driver-assist technologies such as forward collision warning system (FCWS),

blind spot detection system (BSDS), 360 LIDAR vision can assist drivers in their maneuvers. The

focus of this work is however on autonomous trucks, which require accurate real-time localization

to maneuver in a distribution center loading dock. Localization can be achieved in multiple ways:

• GPS - This method is already widely used to locate vehicles however it cannot achieve sub-

meter accuracy unless some method of sensor fusion is employed. This is done in [15] where

computer vision via on-board camera is combined with GPS. The method uses markers

placed near the road and assumes these markers are always visible, which is not always the

case in a distribution center loading dock.

• Odometry - These are minimalistic systems that measure rotation and velocity or wheel

rotations to obtain distance and location. They are however error-prone due to small errors

building up over time [16]. [17] use error-prone odometers and compensate for errors with

vision-sensors.

• Radio frequency - In [18], an RSSI (Received Signal Strength Indicator) approach is taken
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using Wi-Fi access points. RSSI values are however heavily affected by Wi-Fi access point

location with respect to the detected object. [19] uses RSSI based trilateration, requiring

further processing done by ANNs (artificial neural networks). [20], [21] and [22] use a 802.15.4

network to localize AGVs. [23] describes how RFID (Radio Frequency Identification) can be

achieved by using a RFID transponder embedded floor.

• Laser - [20] employs laser range finders to compensate for the insufficient accuracy of WSN

localization during docking maneuvers.

• Vision - The current work along with [24] describe how vision-based localization can be

achieved using artificial markers. Localization without using artificial markers has been

achieved in [25], where images taken by a robot are used to determine the robot location

based on a global map of images.

• Fusion - Multiple category sensor fusion can be seen in [26], which achieves localization based

on input from camera as well as Wi-Fi and laser sensors. [27] uses both error-prone inertial

sensor as well as visual input to correct the former.

In an environment where multiple vehicles and various obstacles can be present, sensor signal

interference, out-of-range and occlusion situations can occur. Furthermore, even though such

technologies can be, and some are, used for obstacle detection and localization of smaller AGVs,

trucks are harder to be detected in their entirety because of their size, and of being composed

of a tractor and at least one trailer, both for which the pose must be determined. Ideally, the

localization system will be able to estimate the pose of all trucks in the loading dock in real-time

and also detect other moving/stationed entities for hazard mitigation. For this, a sensing system

that does not suffer from interference or occlusion situations and can capture an entire truck within

sensor range is needed. A system using vision (with or without other sensors) is more likely to

fulfill such requirements, as cameras can be placed in the area above the truck maneuvering space

so that the required area can be surveyed. Tractor and trailer pose can be estimated by processing

the visual data, either with or without artificial markers, an example of the latter being detection

of a truck’s shape.

In spite of these advantages, vision-based localization systems can still suffer from inaccuracy.

Furthermore the system may be required to localize under certain real-time requirements to avoid

maneuvering trucks incorrectly. Given these issues, this work aims towards:

• Identifying the system parameters that influence accuracy and execution time.

• Exploring how a localization system can be designed and how architecture design choices

can influence system parameters.
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• Describing the localization process of the system implemented within TU/e and of any

vision-based system in general.

Before the problem is stated, the prior work found will be be described.

1.2 Prior Work

No prior work has been found with regard to localization of trucks within a distribution center

loading dock, with the exception of the work done within Hogeschool Arnhem en Nijmegen (HAN)

[24], where the localization method proposed is also vision-based and uses ArUco markers. The

pose estimation methods used within HAN [24] will be taken in consideration when discussing the

localization process and accuracy related parameters (Ch. 3).

The work done within TU/e in [28], [29], [30], [31] and [32] involve truck kinematic and path

planning models, truck maneuver virtualization and truck remote control. Little to no attention

is given to the localization system. The pose estimation process is yet to be understood and the

execution time of the truck pose information is yet to be measured. The parameters affecting pose

estimation accuracy and execution time are also not discussed.

Oma et. al [33] [34] describe an abstract fog computing model that quantifies the size of the data

sent by sensors, its reduction as a result of the processing done by fog nodes, as well as the energy

and power consumption required for data storage and processing. Oma et. al focus on analysing

the impact of data reduction on overall energy consumption. The analysis in this work will instead

focus on the impact of data reduction on overall execution time, as energy consumption of the

system is not in the scope of the current work.

Given this current state of research into the problem of truck localization the problem is stated.

1.3 Problem Statement

Truck maneuver automation is required to help mitigate hazards and improve the efficiency and

productivity of logistics operations. This includes the automation of truck maneuvers in the area

of a distribution center, which requires a localization system that detects the truck pose while

satisfying real-time and accuracy requirements. To model, validate and build such a system,

understanding of the pose estimation process, critical parameters and architectural choices is

required.
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1.3.1 Research Questions

1. How is the truck pose estimated by the TU/e Trucklab localization system and in general?

2. What are the system parameters that influence accuracy?

3. What are the system parameters that influence execution time?

4. How will a decentralized system perform in comparison to the current centralized system?

1.4 Organization of the Report

In chapter 2 the architectural choices and network protocols are discussed and the implemented

localization systems are described. Chapter 3 describes the experimental analysis of the system

in terms of accuracy and execution time. Finally, the research questions are answered in chapter

4 and proposals for improvement are given.

Experimental Analysis of Distribution Center Vision-Based Truck Localization System 9



Chapter 2

Localization Approach

When designing a localization system, one must take into consideration both the localization

method and the possible ways to implement it. This chapter focuses on describing what choices

can be made regarding architecture and network protocols, the method and tools used as well as

the current system implementation.

2.1 Architectural Choices

(a) Fog layer
(b) Centralized vs decentralized processing

Figure 2.1: Fog layer and decentralized processing [35] [36]

A localization system is comprised of a network of sensing and processing elements, that may in

turn be part of a larger network. The Internet of Things (IoT) paradigm can provide insight as

to what kind of network a localization system could be based on or part of. IoT is a system of

interrelated computing devices, mechanical and digital machines, objects, animals or people that

are provided with unique identifiers (UIDs) and the ability to transfer data over a network without

requiring human-to-human or human-to-computer interaction [37]. It involves a high degree of
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decentralization of processing and data storage as opposed to the centralized (cloud) architectures.

Machine-to-machine communication for example enables companies to facilitate work-flows in

various departments: manufacturing for controlling factory floor activity; logistics, for tracking

warehouse inventory; supply chain for linking with suppliers to track raw materials and finished

goods [38]. Recall figure 1.3 illustrating the distribution center of the future, where AGVs are

operating in an interconnected way in order to perform distribution center operations. The loc-

alization system may be implemented as part of a network consisting of many interconnected

things.

Figure 2.2: Example IoT Network Data Pipeline [39]

The introduction of a

large number of con-

nected devices requires

a scalable architecture

to accommodate them

without any degradation

of the quality of ser-

vice demanded by applic-

ations [35]. This can

be achieved by extend-

ing the functions of cent-

ralized (cloud) comput-

ing closer to the end devices via an intermediate layer known as the ”fog” (see figure 2.1a). In

the fog approach, computing is done by multiple devices and possibly also network gateways. A

distributed structure allows for more options with regards to the system functional configuration

in terms of where data is processed, communicated, stored or discarded. A possible approach is

sending only unique and critical information to the central computer, which may allow for better

real-time performance, as shown in figure 2.1b. An example functional view of a decentralized

system data pipeline can be seen in figure 2.2. When designing a localization system, there are

multiple choices that can be made regarding its architecture:

• Structural choices - number and location of sensors; processing and storage nodes, how these

are linked.

• Functional choices - which data is processed or stored, where is data processed or stored,

communication protocols.

Experimental Analysis of Distribution Center Vision-Based Truck Localization System 11



2.1.1 Network Protocols

Naturally, for data to be communicated throughout the localization system network, a communic-

ation protocol is required. In the scope of this work the protocols FireWire , Ethernet and Wi-Fi

will be described and compared. FireWire and Wi-Fi are protocols used in implementations as

part of this work. Ethernet is also described since it is the most widely used protocol, along with

Wi-Fi, for Local Area Networks (LANs) and one of the most used protocols in industrial [40] and

IoT applications [38], [39], [36], [41]. A summarized comparison of the three protocols can be seen

in 2.1.

Metric/Protocol FireWire Ethernet Wi-Fi

Max bandwidth
800 Mbps (most common)

3.2 Gbps (specified)

10 Gbps (twisted-pair)

100 Gbps (fiber-optic/coaxial)

72–600 Mbps (Wi-Fi 4)

433-6933 Mbps (wi-Fi 5)

600–9608 Mbps (Wi-Fi 6)

Max range (1 hop) 8m 100m (twisted-pair)
46m Wi-Fi 5

77m Wi-Fi 6

Topology Bus Tree Tree

Scalability Max 64 devices Virtually limitless Virtually limitless (with no channel collisions)

Transmission Broadcast only (bus) Point-to-point full-duplex Broadcast half-duplex

Table 2.1: Data transfer protocol comparison

IEEE 1394 - FireWire: The first FireWire standard [42] introduced speeds up to 400 Mbps. In

2002 [43] the technology allowed for 800 Mbps and, further on, in 2008, specifications were made

for 1600 and 3200 Mbps. In the same year however, the protocol was no longer used by Apple,

the company who commercially trademarked it as ”FireWire ”. As of today, few products still use

FireWire as Ethernet is becoming a universal protocol for networks in general [44].

IEEE 802.3 - Ethernet: Many application-specific networks use older, serial, synchronous net-

works. The trend in device industry however is towards standardization on wireless or cable Eth-

ernet based industrial protocols [38]. The twisted-pair 10 Gbps (10GBASE-T) Ethernet standard

was developed and published in 2006 [45]. Even higher speed technologies exist: standardized in

2010 [46], 40/100 Gbps Ethernet is available for fiber optic cables and short-range copper coaxial

cables [47]. Due to being a tree topology, packet-switched network, it can be increased virtually

indefinitely. Twisted-pair cable Ethernet can reach up to 100m without the need for a hub [48],

which is far better than any other major bus used in the machine vision industry. It furthermore

allows for easy interoperability with other networks, local or from across the internet.

IEEE 802.11 - Wi-Fi: Designed to seamlessly inter-operate with its wired sibling Ethernet, the

first version of the 802.11 protocol was released in 1997, and provided up to 2 Mbps link speeds.

This was updated in 1999 with 802.11b to permit 11 Mbps link speeds, and this proved popular.

12 Experimental Analysis of Distribution Center Vision-Based Truck Localization System



In 1999, the Wi-Fi Alliance formed as a trade association to hold the Wi-Fi trademark under

which most products are sold. The Wi-Fi alliance standardized generational numbering so that

equipment can indicate that it supports Wi-Fi 4 (if the equipment supports 802.11n), Wi-Fi 5

(802.11ac) and Wi-Fi 6 (802.11ax). It can operate within 2.4Ghz spectrum, 5Ghz or, in case of

Wi-Fi 6 between 1 and 6 Ghz. Channels can be shared between networks but only one transmitter

can locally transmit on a channel at any moment in time (half-duplex transmission) [49]. Max

range for Wi-Fi 5 is 46 m. Wi-Fi 6 can reach 77m in indoor occlusion [41].

With regards to scalability, the most scalable of the three is Ethernet , as FireWire operates on a

single bus and Wi-Fi only provides half-duplex transmission on a shared channel. FireWire however

is no longer under development and Ethernet and Wi-Fi standards and technologies further seek

to improve data rate, predictability and thus overall scalability of the protocol. Scalability can

be achieved by spatially separating same frequency nodes or by Carrier-sense multiple access

with collision avoidance (CSMA/CA). Wi-Fi 6 however has brought significant contributions to

scalability as explained below. In the particular case of Wi-Fi, the 6th generation Wi-Fi standard,

IEEE 802.11ax, allows for better scalability, data rate, real-time performance via the following

new technologies:

• Higher data rate is achieved by increasing the Quadrature Amplitude Modulation (QAM)

from 256 (used in Wi-Fi 5) to 1024. This adds two extra bits per symbol thus increasing

throughput by 25% (for more on QAM see [50]). Higher wireless throughput facilitated by

1024-QAM is critical to ensuring Quality-of-Service (QoS) in high-density locations such as

stadiums, convention centers, transportation hubs, and auditoriums [50]. Within our scope

it worth mentioning that, through increase in transceiver bandwidth and QAM, the standard

aims for Wi-Fi to support of 4K/8K video streaming, which is becoming the video quality

norm [50], [41].

• Higher predictability is achieved by Wi-Fi 6’s OFDMA channel access mechanism which

allows for bandwidth to be allocated according to a client’s needs, as opposed to Wi-Fi 5’s

fixed frequency OFDM (for more see [51], [41]).

• Flexible low-power device scheduling for better power efficiency is achieved via OFDMA

with Target-Wakeup Time (TWT) (see [41]).

2.2 Localization Tools

Implementation wise, truck localization is done using fiducial markers - more specifically ArUco

markers [52] - and the Open Source Computer Vision Library (OpenCV) library. This choice
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has been made because this work makes use of an already existing implementation in the TU/e

Trucklab based on pose estimation of such markers with OpenCV ArUco library. This section

gives an introduction to fiducial markers and the OpenCV library.

2.2.1 Fiducial Markers

Fiducial markers are artificial landmarks that facilitate correspondences between image points

and reference real-world coordinates. Fiducial marker systems consist of some unique patterns

along with the algorithms necessary to locate their projection in camera images. Such a system

is designed to provide a list of markers found in the image, given an input image, either static or

a frame from a video stream. The extracted information can be used in different ways, such as

triggering a certain behaviour upon marker detection or estimating the marker pose.

Before discussing fiducial marker systems, it is useful to mention that bar codes are not part of

this category. They are intended to carry information, not to localize, as is needed as a fiducial for

pose estimation applications. Other bar codes are DataMatrix, Maxicode and QR. They are not

as useful for localization as fiducial marker systems, as they do not provide enough image points

for 3D pose calculation and typically require a large area in the image, limiting the range at which

they can be used.

Figure 2.3: Sample ArUco markers [53]

Simple fiducial markers,

that carry less informa-

tion content than 2D bar

codes, are simply dots and

discs, for which the fiducial

marker system finds the

center. Related ideas are

systems that use flat cir-

cular dot or checker-board

patterns. Dots can be ex-

panded to have multiple

IDs by enclosing the in

rings. There are more ways

to enclose data can be en-

closed in circular boundar-

ies, however these can only

provide a high degree of ac-

curacy for a single point, while such systems provide low accuracy in determining the pose from
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a single marker. Square shapes however provide four salient points, which is useful both for

computing pose from a single marker and for decoding the markers [54].

The main advantage of square shaped markers is that the presence of four prominent points can

be employed to obtain the pose, while the inner region is used for identification [52]. Examples are

discussed in [55]. The author compares fiducial marker systems ARTag, AprilTag and CALTag,

with respect to resistance in case of occlusions, the latter being most resistant. In [52] the ArUco

marker system is presented, which is similar to ARTag, only has better detection in case of

occlusion. Figure 2.3 shows sample ArUco markers.

2.2.2 OpenCV

OpenCV is an open source computer vision and machine learning software library. OpenCV was

built to provide a common infrastructure for computer vision applications and to accelerate the

use of machine perception in the commercial products [56]. The system under study uses the

OpenCV ArUco library to detect and and estimate the pose of ArUco markers.

2.3 Localization Method

The localization system uses ArUco markers in order to estimate the pose of the truck tractor and

trailer. The input of the system is the pixel data from multiple cameras covering the distribution

center loading dock. The output is the estimated pose of the truck tractor and trailer with respect

to the global reference point (point (0, 0) in figure C.1). There are two types of ArUco markers

used:

• Moving markers: these markers are placed on the truck. More exactly, one above the front

axle of the tractor and one above the rear axle of the trailer. Two markers are used so that

the coordinates of both the tractor and trailer with respect to the origin can be estimated, as

well as the angle between the two. The moving markers have a side length of 13 centimeters.

• Fixed markers: these markers are used as intermediate reference points in order to determine

the global pose. They are fixed to the floor at known coordinates with respect to the global

reference. Without them, only the pose in the local camera reference can be estimated. The

pose estimation process is explained in detail in chapter 3. The fixed markers have a side

length of 20.3 centimeters.

For localization to be possible, the camera frame used must contain at least one moving and one

fixed marker. Figure 2.4 shows a simplified representation of fixed markers placed on the floor
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and moving markers on the truck. Each camera is positioned above ground, facing down, so

that there is at least one fixed marker within the camera range. There are two camera networks

used: a network of Raspberry-Pi cameras and one of FireWire cameras. They are both used

independently and no sensor fusion between a Raspberry-Pi and a FireWire camera is done in the

current implementation.

Fixed marker 
attached to floor Moving markers atatched to truck

Figure 2.4: Moving markers are localized in a frame with respect

to the location of that frame’s fixed marker

If only one camera was to be

used, covering the entirety of

the distribution center area,

fixed markers (used as inter-

mediate references) would not

have been necessary. For

an implementation where only

one camera that covers the

entire loading dock area is

used see [57], where there

are no fixed markers used

as intermediaries, but only

as destination points for the

trucks. In our case however,

one FireWire or Raspberry-

Pi camera alone does not cover the entire distribution center area and as such the global position

of the moving markers is determined using the fixed marker as intermediary.

2.4 System Implementation

Given the above descriptions of the architectural choices and localization method, the implemented

system is now described in terms of component structure and component functions.

2.4.1 Physical Components

The localization system is implemented within the Automotive Engineering Systems (AES) Truck

Lab. This is an environment where students and engineers can develop automated tractor semi-

trailer driving functionalities for use in the area of a distribution center. The localization system

is formed of the following components:

• A scaled-down autonomous truck. The automation of the truck is realized using the Tur-

tleBot3 Waffle Pi platform. The Turtlebot specifications can be seen in [58]. The truck has
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two ArUco markers fixed on top: one above the front axle of the tractor and one above the

rear axle of the trailer. These markers will be referred to as moving markers.

• A scaled-down model of a distribution center docking area, which is a replica of the Jumbo

distribution center in Veghel, Netherlands. Distribution center docking area dimensions can

be seen in appendix C.

• A set of 8 machine-vision cameras communicating to the central computer via FireWire .

Their specifications can be seen in appendix A.

• 8 markers fixed on the floor in the field of view of the 8 cameras. These markers will be

referred to as fixed markers. Each FireWire camera can detect only one fixed marker.

• A set of 6 Raspberry-Pi ’s each equipped with Pi-Camera v2.1. This work uses the Raspberry

Pi 3 Model B. The device specifications [59] can be found in appendix B. Specifications for

camera can be found in [60].

• A central computer running Ubuntu Linux with:

– Intel® Xeon(R) CPU E5-2620 v4 @ 2.10GHz processor and

– LSI Corporation FW643 [TrueFire] PCIe 1394b Controller (rev 08).

2.4.2 System Layout

The FireWire cameras and ArUco markers are placed as shown in figure 2.5, with each camera

being able to detect one fixed marker. The cameras together cover the distribution center loading

dock. Notice that there is some overlap between a camera and its neighbors, as shown by the

duplicated yellow rectangles in the middle. The Raspberry-Pi cameras are placed in a similar

fashion, with the exception that there are only 3 cameras instead of 4 per row. This is due to Pi

cameras being able to cover more area than the FireWire cameras. Some of the Pi cameras can

spot two fixed markers at once. In such situations, one of the markers was covered.

2.4.3 Network Architectures

Currently, there are two network architectures implemented:

• The centralized system uses 8 FireWire cameras to cover the distribution center area. The

cameras are connected to a central computer via a common FireWire bus. The cameras

send the frame data to the main computer which processes it, after which the estimated

pose information for each moving marker is obtained. Figure 2.6a shows a diagram of the

centralized network.
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Figure 2.5: FireWire camera and ArUco markers layout

• The distributed system uses 6 Raspberry-Pi and Pi camera pairs to cover the distribu-

tion center area. The Pi cameras are connected via a Camera Serial Interface (CSI). Each

Raspberry-Pi receives the frame data from its associated Pi camera and processes it. The

obtained pose estimation values are sent towards the main computer to be aggregated and

fused into a single pose value per moving marker. Figure 2.6b shows a diagram of the

decentralized network.

2.4.4 Software Implementations

The software implementation for both FireWire and Raspberry-Pi camera networks is done in

the C/C++ programming language and uses the OpenCV ArUco library to estimate the pose of

ArUco markers. There are multiple code implementations written. As part of this thesis, two

implementations have been used for the centralized system and one for the decentralized system.

They are described below:

• Implementations for the centralized system:

– ”Centralized-Sequential”: the central computer receives all frames from the FireWire cam-

eras and sequentially identifies and estimates the pose of moving markers present in the
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Figure 2.6: Implemented network architectures

frames. For every frame, if there is a moving marker for which the pose has been estim-

ated in a previous frame, the pose information for that frame is skipped. This is done

in order to avoid sending pose estimation information for one marker from separate

frames, which can result in inconsistent pose information.

– ”Centralized-Threaded”: the central computer assigns the receiving and processing of

the FireWire cameras to threads, with one thread for each camera. The estimated

poses are fused using averaging. Thus if the same moving marker is present in multiple

frames, its estimated pose values are averaged and the result is used.

• Implementation for the decentralized system:

– ”Distributed-Processing”: The Raspberry Pi’s receive frames from Pi cameras attached

to them and extract the marker pose from the frame data. The pose information is

then sent to the central computer which performs sensor fusion by averaging.

In the following chapters, a more in-depth analysis of the localization process and system be-

haviour is done so that the relevant parameters influencing accuracy and execution time can be

identified. Furthermore, this will provide understanding of OpenCV-based as well as general

vision-based localization processes. Finally, the architectural choice influence on execution time is

also analyzed.
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Chapter 3

Experimental Analysis

3.1 Parameters Overview

A DC truck localization system has one fundamental purpose, namely to answer the question

”where is the truck now?” and to do so in an acceptable amount of time. The analyzed system

performance is thus characterized by the accuracy of the pose information reported and the time

in which it is reported. The accuracy and execution time parameters are further split as shown in

figure 3.1.

System Performance

Delivery Time

SchedulingCommunicationProcessing

Accuracy

Camera
Intrinsics

Method
Dependent

Figure 3.1: System parameters pertaining to accuracy and execution time

3.2 Localization Process

In any vision based localization system there are cameras which capture real world images and

transform them into pixel data. This pixel data is then acquired by the localization system which

turns it into information necessary to localize the trucks relative to the reference system used.

The first factor in the data pipeline that influences accuracy are the camera intrinsic parameters.
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Physical
Space
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Data
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Result
Figure 3.2: OpenCV pose estimation process - full dataflow

These influence the pixel to physical-unit conversion of the pixel points of interest. For this thesis,

processing using OpenCV functions is described, however, regardless of processing, if there are

inaccuracies caused by lens distortion, then those inaccuracies will be propagated throughout the

data pipeline. As such, camera intrinsics are a general parameter for any vision-based localization

system. In order to determine what parameters form the camera intrinsics, as well as what

other implementation-specific parameters influence accuracy, the OpenCV ArUco marker pose

estimation process will be explained. For more information on the functions described and the

processing done by OpenCV aruco module in general see [61], [62], [53], [63], [64].

figure 3.2 shows the pose estimation process done in the current implementation. Once the frame

(pixel data) is acquired, the first processing step is the detectMarkers function, abstractly repres-

ented as DM in figs. 3.2 and 3.3. The purpose of this function is to detect markers in the provided

frame and output the marker IDs (from the dictionary) and the coordinates of each marker’s 4

corners.

DM

frame dict dP

mC

mC[i]

EPSM

mL cM dC

mId

rC

Pixels

tvec rvec

Physical
Units

Figure 3.3: OpenCV pose estimation process -

DM and EPSM

The DM function takes as input the following

parameters:

• frame data (frame): frame pixel data on

which marker detection is performed;

• marker dictionary (dict): the dictionary

that maps a marker pattern to an ID;

• detection parameters (dP): various para-

meters that can be used to customize the

detection process.

The following parameters are returned as out-

put:

• detected marker IDs (mID);

• marker corners (mC): marker corner points in (x,y) float-value pixel coordinates. This para-

meter is an array where each element is the 4-corner set of each detected marker. The order

of the corners is clockwise;
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• rejected marker candidates (rC): shapes that were found and considered but did not contain

a valid marker.

In order for the marker pose to be estimated, the marker corners must be forwarded to the

estimatePoseSingleMarkers function, represented abstractly as EPSM in figs. 3.2 and 3.3. This

function uses the marker corners, the marker length and camera intrinsic parameters in order to

output the rotation and translation vectors (which are explained by ArUco paper author in [64])

of the marker relative to the camera. The right side of figure 3.3 indicates when that the marker

data is initially in pixels (marker corners). It is EPSM that outputs rotation and translation vectors

using the unit that the marker lengths are provided in, which can be any unit the user chooses.

The EPSM function takes as input the following parameters:

• a single set of 4 marker corners, shown as mC[i], since it estimates the pose of a single

marker;

• marker length (mL): the length of the side of the marker;

• camera intrinsic parameters: camera matrix (cM) and distortion coefficients (dC).

The following parameters are returned as output:

• translation vector (tvec);

• rotation vector (rvec) in Rodrigues format.

The translation and rotation vectors are used to transfer the coordinates of a point from the

marker to the camera’s reference. These are the marker pose parameters that form the marker

pose information with respect to the camera reference system. The tvec and rvec of the moving

and fixed markers in a frame are then used to calculate the global pose of the moving markers.

In order to determine the global pose of a moving marker, the system first determines its pose

relative to a fixed marker, whose pose is known relative to the global reference. For this purpose,

the rotation and translation vectors obtained by EPSM are useful because they allow the system

to determine the pose of a marker relative to another marker. In the implementation used, the

following calculation is used to determine the pose of the moving marker with respect to the fixed

marker:

tvecm2f = Rt
f · (tvecm − tvecf ) (3.1)
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Figure 3.4: Obtaining pose of moving marker with respect to fixed marker. X is red, Y is green

and Z is blue.

The rotation matrix Rt
f is obtained by applying the OpenCV Rodrigues function (which trans-

forms a rotation vector to a rotation matrix or vice-versa) to rvecf (which is the rotation vector

of the fixed marker with respect to the camera) obtaining the rotation matrix of the marker with

respect to the camera Rf . This matrix is then transposed, obtaining Rt
f . The transposed matrix

is necessary to rotate the camera reference so that it is aligned with the fixed marker reference

system (Y pointing up and X to the right, as shown in figure 3.4b). A tvec is a vector that

translates a point from marker to camera reference and so the negative of that tvec will do the

opposite. To obtain the vector from moving to fixed marker reference (tvecm2f or A+B in figure

3.4c) we must add the tvec of the moving marker (A) with the negative of tvec of the fixed

marker (B). We thus add a vector translation from moving marker to camera reference and from

camera to fixed marker reference, therefore from moving marker to fixed marker reference.

In order to determine the coordinates of the moving marker with respect to the origin point E0,

the already known translation and rotation between fixed marker and E0 is used. Equation 3.1 is

expanded to:

tvecm2E0 = tvecE0 +RE0 · Rt
f · (tvecm − tvecf ) (3.2)

Similarly as before, we rotate and add another vector. The rotation is necessary in order to align

the fixed marker reference with that of the global reference of the DC loading dock. The rotation
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Figure 3.5: Obtaining pose of moving marker with respect to E0
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matrix RE0 ensures that the X-axis of the fixed marker reference will point up, as that is the

way the fixed markers are placed in physical space with respect to the loading dock reference

(the X-axis of the fixed markers is in same direction as the Y-axis of the loading dock). The

translation vector tvecE0 is a vector based on physical measurements of the fixed marker locations

with respect to E0. After rotating, tvecE0 and tvecm2f are added (shown in figure 3.5 as the

two light green vectors) in order to obtain the final vector (dark green) expressing the pose of the

moving marker with respect to the global reference E0, which is the final translation vector sent

towards the trucks.

3.3 Accuracy Parameters

mL mC[i] cM dC

tvec rvec

EPSM

GSMOP

mOP

SPnP

Figure 3.6: OpenCV marker pose estimation

function

It is necessary to go more in-depth regarding

the EPSM function to find out what parameters

influence accuracy in the current implement-

ation. In figure 3.6 shows the EPSM function

with the same inputs and outputs as in fig-

ure 3.3, only now two sub-functions are intro-

duced and the transition from pixel data to

real-world units is to some extent shown. First,

there is the getSingleMarkerObjectPoints

(GSMOP) function, which takes the marker

length parameter as input and outputs

the coordinates of the 4 marker corners,

in real-world units, with respect to the

marker reference system. These are calcu-

lated as: (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0),

(markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0) [61].

The first corner is the top left corner, followed by the top right, bottom right and bottom left.

Finally there is the SolvPnP (SPnP) function which returns the transformation vectors, which are

used as explained in section 3.2.

It is within the SPnP function that the camera matrix and distortion coefficients are used in

equations that to obtain the estimated tvec and rvec. The equations are shown in [62] and they

will not be further described as part of this work, as optical camera intrinsics are out of scope.

Given the study of pose estimation done by the OpenCV ArUco library, The parameters that

affect the accuracy of the current implementation are enumerated:

Experimental Analysis of Distribution Center Vision-Based Truck Localization System 25



Physical
Space

Pixel
Data Undistort

Detect
Points of
Interest

Px to Phys.
Unit

Estimate
Pose Local

Pose
Estimation

Result

DM

EPSM

Local to
Global Pose

DM P2L Pose Rel.
to FxM

TU/e

HAN

FM Based

Camera
Intrinsics

Marker
Length

Dist. and Rot.
Meas.

Estimate
Pose Global

Physical
Space

Pixel
Data

Physical
Space

Pixel
Data Undistort

Cam. Intrinsics 
+ Dist. Meas.

Camera
Intrinsics Dist. and Rot.

Meas.

GeneralFM or non-FM
Based

Pose
Estimation

Result

Pose
Estimation

Result

Camera
Intrinsics

Depends on
Method

GSMOP SPnP

Figure 3.7: Generic vision-based localization model

• Camera intrinsic parameters:

– camera matrix (cM - described in [62]);

– camera distortion coefficients (dC - described in [62]).

• Physical space parameters, which are influenced by accurate measurement and placing of

fixed markers and global origin point in physical space:

– marker lengths (mL);

– distance of marker center to global reference origin (tvecE0);

– rotation of marker reference from global reference (RE0).

Even if a different localization approach was used, the camera intrinsics remain parameters that

influence accuracy. This is because, of course, any vision-based localization system requires cam-

eras. After the pixel-data is obtained, this may or may not be undistorted and, furthermore, the

operations performed to localize points in physical world differ according to implementation, each

introducing its own accuracy-related parameters. This is shown in figure 3.7, where the imple-

mentation used by HAN [24] is also given as an example. In their case, undistortion is done before

marker detection and the moving to fixed marker estimation is done using pixel to length con-

version (P2L) with spacial calculations to determine moving marker pose relative to fixed marker

(FxM). The P2L function varies for every camera used, as it depends on the camera intrinsics. To

generate the function however, both pixel coordinates and physical space measurements were used.

The P2L function thus depends on the camera intrinsics as well as method-dependent measure-

ments. The EPSM function does not play a role in the pose estimation process. In figure 3.7, the

TU/e and HAN implementations are fiducial marker (FM) based. Other methods may or may

not be FM based.
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Device Central Computer Central Computer (1 thread) Raspberry-Pi

Time 18.22 27.77 37.03

Table 3.1: Processing time for one frame.

3.4 Execution Time Analysis

Within the current scope, execution time is the interval between the moment when the first bit

of data is sent by the sensors and the moment when the last bit has been received by the truck

network interface. The current analysis focuses on impact of processing time, communication time

and the scheduling of the two on overall execution time.

3.4.1 Processing Time

Processing time is understood as the time in the execution loop of a node necessary for data to

be processed. The execution loop refers to the loop of operations that a node in the localization

system performs. As shown in figure 3.8, the overall execution loop of the central computer in the

centralized system can be split into 3 stages:

1. IEEE1394 Communication: input communication from cameras to central PC;

2. Pixel Data Processing: processing of pixel data to obtain global pose. This stage can involve

pose information fusion for the CT implementation;

3. Image Show: displaying of images so user can see live camera feed with OpenCV axis drawn

on markers.

IEEE1394
Comm.

PxData
Proc.

Img
Show

Figure 3.8: Centralized system loop

When analyzing the processing time, one

must consider the hardware characteristics

of the system processing nodes and, further-

more, how these are used. An individual fog

node will, in most cases, have a larger pro-

cessing time for one frame than the more

powerful central computer. Table 3.1 shows the mean times for processing one frame for the

central computer and Raspberry-Pi . The value under ”Central Computer” shows the processing

time when localization is done without any explicit control of threads. ”Central Computer (1

thread)” shows the processing time when only one thread is assigned to process the frame.

With regard to how the processing node hardware resources are used, this thesis focuses on analysis

of how processing time of the central computer can be reduced through parallelism. In both the
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centralized and distributed systems, parallel processing of frame data has been implemented. For

the centralized system, parallelism is achieved such that each camera is assigned one thread (CPU

parallelism) to fetch the pixel data and process it. For the distributed system, there is one fog

node assigned for each camera.

3.4.2 Speedup of centralized processing using threads

For the centralized system both sequential and threaded processing have been implemented. This

allows theoretical estimation and measurement of actual speedup of the parallel vs. sequential

processing. The speedup upper bound can be estimated using Amdahl’s law [65]. The law is used

when the workload is fixed and processing time is reduced by the parallelization. Amdahl’s Law

is formulated in the following way:

Speedup =
1

(1− p) + p
s

(3.3)

where:

• Speedup is the overall speedup of the pixel data to global pose processing;

• s is the speedup of the code that can be parallelized;

• p is the percentage of the code that can be parallelized and benefiting from speedup s.

Threading has been applied on stages 1 and 2 of the central computer loop shown in figure 3.8.

These stages have been measured to take 81.54% of the loop duration. Threading involves using 1

thread for each camera frame, therefore 8 threads in total. This does not however mean that the

speedup s is equal to 8. Frame processing done by 1 thread is slower, as seen in table 3.1. The

time for processing one frame without threading is 18.22 milliseconds, while the time for 1 thread

is 27.77 milliseconds. The speedup s is therefore = 8·18.22
27.77 ≈ 5.25. Given these values, according

to equation 3.3, the speedup is:

Speedup =
1

(1− 0.8154) + 0.8154
5.25

= 2.94 (3.4)

The actual measured speedup of the processing loop is of 2.55. The comparison between sequential

and threaded implementations can be found in table 3.2. The table shows the mean, jitter and

standard deviation of the execution loop time measurements in milliseconds. One possible cause for

the actual speedup being lower than theoretical is thread overhead. When using threads, the mean
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Implementation Loop mean Jitter Standard Deviation

Sequential 178.92 40.41 8.46

Threaded 70.28 40.33 6.04

Table 3.2: Execution loop time measurements

C0 P0 C1 P1S0 S1 C7 P7 S7...

Sequential Implementation

C0 P0
C1 P1

C7 P7
...

Threaded Implementation

S0 S1 ... S7

thread
generation

thread 
join

time

time

F

Figure 3.9: Sequential vs. threaded processing

processing time per frame increases from 18.22 to 27.77 milliseconds, so by 65.6%. Furthermore,

occasional rises in IEEE1394 communication time were also noticed.

A visual comparison of sequential vs. threaded processing is shown in figure 3.9. Cn represents

input communication time, Pn processing time and Sn display (show) time for camera frame n.

The distributed implementation also performs fusion of pose information F.

3.4.3 Speedup achieved with fog nodes

For the distributed system, one parallel processing implementation has been realized. No parallel

vs. sequential speedup estimation or measurement has been done. The scope is in comparing

the speedup achieved from moving from a centralized to a distributed system. The performance

comparison can be found in table 3.3. The table is an extension of table 3.2, with the last row

added for the distributed implementation.

Comparing mean values, the distributed system performs 1.83 times faster than the centralized-

sequential implementation. This is not as fast as the 2.55 speedup obtained by applying threads.

The distributed implementation has a much higher loop time standard deviation than the central-

ized implementations. This is caused by the lack of system-wide synchronization of the Raspberry-
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Implementation Loop Mean Jitter Standard Deviation

Sequential 178.92 40.41 8.46

Threaded 70.28 40.33 6.04

Distributed 97.62 159.21 17.22

Table 3.3: Execution loop time measurements

Pi and central computer loops. The lack of synchronization causes high communication jitter which

contributes to raising the mean loop time. FireWire with its isochronous cyclical transmission

and Direct Memory Access (DMA) support can provide more deterministic and in this case faster

communication time than Wi-Fi. Communication and communication-processing scheduling are

discussed in the sections below.

3.4.4 Communication Time

Communication time is understood as the time in the execution loop necessary for communication

of data to be done. This is not synonymous with transmission time, which is the time necessary

for a network interface to transmit data on the network medium. Rather communication time

is measured in-code, as the time spent by a node transmitting; receiving or waiting to receive

necessary data. For the centralised system, it is the time necessary for phase 1 in figure 3.8 to be

executed. For the decentralized computer it is the time spent by the central computer receiving or

waiting for pose information from the fog nodes. In both systems, the central computer ultimately

sends the pose information towards the trucks, however for simplicity this time is included in the

processing phase.

3.4.5 Transmission time

The transmission time (Tt) between two network interfaces, assuming continuous transmission,

can be determined using the following equation:

Tt =
DataSize

Bwidth
(3.5)

where:

• DataSize is the data size of the data to be sent and

• Bwidth is the bandwidth (or data rate) allowed by the interface speed and the medium.
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Figure 3.10: Capture of UDP datagrams sent by Raspberry Pi’s

In the distributed system, the Raspberry Pi’s transmit the pose data only, not the entire im-

age data as this has already been processed. The data size is thus only 130 bytes as shown in

figure 3.10. The frame size is shown in the layer 1 section of the Wireshark screenshot (above

”Ethernet II”). The data is transmitted to the central computer using a Wi-Fi router with 150

Mbps interface. The transmission to/from router, according to equation 3.5 takes 130 · 8
150 · 106 ≈ 7

microseconds. Not accounting for residence time in router, the best case communication time

is thus 7 microseconds from Raspberry-Pi to router and 7 microseconds from router to central

computer, thus 14 microseconds in total. The worst case is 14 + 5 · 7 + 5 · 7 = 84 microseconds if

the frame is queued behind the frames of the other 5 Raspberry Pi’s.

In the case of the centralized system, the FireWire protocol is used with S400 speed (393.216

Mbps). The image size is 307200 bytes. If transmission time is calculated according to equation 3.5,

then the result would be 307200·8
393.216·106 = 6.25 milliseconds. FireWire however uses isochronous

transmission for determinism. It transmits in cycles that are split in multiple slots. Using the

IEEE1394 library libdc1394 [66], the frame size and number of packets per frame were determined,

as shown in figure 3.11. The protocol is set to send 480 packets per frame. FireWire has an average

cycle time of ≈ 125 microseconds [44]. If each camera is assigned one isochronous frame per cycle,

then the average transmission time for one frame is 125·480·10−6 = 0.06 seconds or 60 milliseconds.
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Figure 3.11: libdc1394 output describing FireWire behaviour

So far the transmission times point towards the centralized system having a slower communication

that the decentralized system. In the next section it is explained why this is not the case and how

communication-processing scheduling affects execution time.

3.4.6 Communication-Processing Scheduling

The synchronized and parallel execution of data transmission and processing tasks can have a

significant effect on overall execution time. In the case of the centralized system, the increase

in transmission time from continuous to isochronous is of 60
6.25 = 9.6. The protocol requires a

higher transmission time in order to achieve deterministic cyclical transmission. The impact of

transmission on execution time can however be minimized if parallelism is achieved with respect

to processing tasks. In the case of FireWire , interfaces can be equipped with DMA chips [67]. If

the FireWire interface uses DMA, then frame data can be transmitted to the adapter and written

to main memory in parallel with CPU operations [44]. With DMA, a dedicated data transfer

device reads incoming data from a device and stores that data in a system memory buffer for later

retrieval by the processor. This DMA process occurs transparently from the processor’s point of

view [68].
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3.4.7 Communication-Processing Parallelism in Centralized System

The current implementation is configured to use the FireWire interface DMAs. The code respons-

ible for waiting for frame data to be received and returning the memory buffer of the frame has

been measured to execute for only 0.0199 milliseconds, or approximately 20 microseconds. The

worst-case measurement is of 0.0685 or 68.5 microseconds. This is much less than the computed

average case time, which shows the speedup effect of using processing-communication parallelism.

This indicates that that operations done by DMA and CPU are in parallel. In this case the CPU

only polls the DMA and until DMA has finished writing frame data to memory, the CPU can

perform its own operations.

To further understand the DMA behaviour, tests were run where only the code responsible for

communication was run within the execution loop. For the sequential implementation, instead of

the usual C0 -> P0 -> S0 -> C1 -> P1 -> S1 -> ..., the loop was reduced to solely commu-

nication: C0 -> C1 -> C2 -> ..., similarly for parallel. The tests revealed the behaviour shown

in figure 3.12. The communication times for the first 7 camera frames were much shorter than

the last. Why the communication with the last camera is always longest in the threaded imple-

mentation is unknown, although this may be determined by the order in which the threads are

generated. Table 3.4 shows the mean communication time for both implementations for each cam

number. The last column shows the jitter, which is much lower than for best-effort communication

due to the FireWire isochronous behaviour.

Impl./Cam no. 0-6 (mean) 7 (mean) 7 (jitter)

Sequential 0.028 65.610 0.678

Threaded 0.027 66.130 0.448

Table 3.4: FireWire with DMA behaviour

The measured times indicate to the the possibility that, for the first frames, the CPU is only

polling. For the last frame, it is possible that the CPU has to wait before polling for the first

frame again. To understand the process in full, further analysis is required. The low measured

communication times for the execution loops do indeed indicate that the CPU polls for the DMA

to start the transfer of image data to memory while CPU performs tasks on that data, as shown in

figure 3.13. The figure shows what DMA and CPU behaviour could look like for both the actual

implementation and communication-only behaviour.
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Figure 3.12: FireWire with DMA behaviour
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Figure 3.13: DMA calls
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3.4.8 Synchronization Problem in Decentralized System

The lack of loop synchronization among the distributed system devices can lead to large waiting

times. As shown in table 3.3, on average the distributed system loop is measured to take 97.62

milliseconds. The standard deviation of 17.22 and jitter of 159.21 milliseconds are however much

higher than the values for the centralized implementations. Separate measurements were done

to determine the communication time spent within a loop. They show that most loop time is

spent during communication, with an average of 63.23 and a jitter of 154.31 milliseconds. As

in the centralized system situation, the impact of the communication time is not reflected by

the transmission time. For the centralized system the communication time was lower than the

transmission time, however this time it is much higher. This is due to lack of synchronization

between the central computer and Raspberry-Pi loops. The decentralized system assigns one

thread for each Raspberry-Pi such that each thread is responsible for receiving a UDP frame from

its associated Pi. The CPU must wait until all threads are done receiving the UDP frames from

the Pi’s. Thus the communication time will always be pushed up by the Pi that sends last. A

theoretical unsynchronized scheduling example is shown in figure 3.14, which is similar to the real

system behavior concerning jitter. The Raspberry-Pi schedules are shown in the RPn rows, where n

is the Raspberry-Pi number. The UDP frames that are received and sued by the central computer

are shown in blue, the dropped frames are shown in red. In this example Raspberry-Pi no. 4 sent

the pose information just a bit sooner than the start of the communication time of the computer.

This leads to its UDP frame being lost because the central computer is not listening for any frames.

Instead it must send the pose information in the next loop. The other frames are dropped because

the Raspberry Pi’s send either:

• during central computer communication time, when their associated threads have already

passed communication phase;

• during processing (P) or frame show (S) time, when the CPU is performing non-communication

tasks.

Note that in this example the central computer spends most communication time waiting rather

than receiving frames. Figure 3.15 on the other hand shows a synchronized schedule such that

communication time is reduced and waiting time is minimized. In this case all frames are received

and used. In the following chapter, proposals for achieving such a synchronized scheduling are

discussed.
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Figure 3.15: Synchronized scheduling
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3.4.9 Data Reduction

It should be noted that data reduction occurs as a result of fog node processing. The Raspberry

Pi’s process the image pixel data of 921600 bytes into pose data of 130 bytes. The data reduction

ratio is thus of 7809.23. This of course impacts the theoretical transmission time, reducing it with

the same ratio for the same bandwidth. In systems that are synchronized and where transmission

time has a heavier impact on execution time, such data reduction could reduce the execution

leading to better real time performance. This of course comes at the cost of data loss or the need

of implementing storage or transmission of data to separate hardware.
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Chapter 4

Discussion and Conclusion

Based on the experiments and analysis performed the following answers can be provided for the

research questions:

1. How is the truck pose estimated by the TU/e Trucklab localization system and in general?

The localization process consists of the following steps:

• Detect the markers within a frame.

• Extract translation and rotation vectors.

• Because multiple cameras are used, extra calculations are performed to transition from

local reference (moving to fixed marker) to global reference (moving to E0).

To generalize, when localizing, the points of interest must first be identified within the frame.

Second, these points must be used to derive localization information using physical units. In

our case, translation and rotation vectors are obtained which help derive the marker global

pose. Another case could be localizing the truck corners and deriving the truck pose based

on known distances between the corners.

2. What are the system parameters that influence accuracy?

The localization process tells us that we need to account for camera intrinsics and provide

accurate measurements. In the case of OpenCV the camera intrinsics are the camera matrix

and the distortion coefficients. Accurate measurements must be done because these are

inputs for the pixel-to-physical-unit conversion. In our case, there is the marker length

and, more importantly, the distance from fixed marker to global reference origin (E0). The

measurement between fixed marker and origin are part of the equations used for local to
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global transition. These are tvecE0 and RE0 used in equation 3.2. If the truck corners were

to be used, then accurate measurements of the inter-corner distances would have to be made.

3. What are the system parameters that influence execution time?

Execution time is the sum of the time spent by the system to process and communicate

data. Time spent processing, if done sequentially, can be improved by applying parallelism.

For the centralized system, CPU parallelism has been employed. GPU parallelism could

perhaps provide better performance, however implementing it is left for future work. Time

spent communicating can be reduced by performing it without having the CPU to stop and

wait. This is an important difference between the centralized and decentralized systems.

While transmission time for centralized is theoretically higher, the time spent by the CPU

with communication operations is much less on average than for the distributed system.

This is due to to DMA use which allows for processing-communication parallelism. The

distributed system does not perform optimally concerning communication as large waiting

times can occur due to frame information being transmitted without any kind of fog node and

central computer synchronization. For the decentralized system, if transmission time heavily

influences communication time, then transmission time can be minimized by increasing the

link bandwidth or by reducing the transmitted data size. Data reduction can be achieved

with the trade-offs of discarding data or storing it in memory and transmitting only the

essential data.

4. How will a decentralized system perform in comparison to the current centralized system?

The decentralized system without synchronization is faster than the centralized sequential

system but slower than the centralized threaded system. Further implementation work must

be done in order to measure the performance of a synchronized distributed system. Given

the time it takes for a Raspberry-Pi to process a frame (≈ 37 milliseconds), synchronization

might lead to faster execution time than the centralized threaded system. The centralized

system itself can also be further improved by implementing GPU parallelism. In terms of

scalability, the decentralized system allows for an indefinite number of devices in theory.

FireWire allows for a maximum 63 devices on the bus. If a large scale system is to be used,

bus connections could limit the number of devices used.

Given the above, this chapter will further discuss improvement proposals for the decentralized

system.
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4.1 Proposed Improvements for the Decentralized System

Standard IT network equipment such as the one used in the distributed implementation has no

concept of ”time” and cannot provide synchronization, precise transmission timing and upper

bound for delays [69]. On average, real-time constraints may be satisfied however the jitter caused

by lack of synchronization may be unacceptable, especially for safety-critical applications. In the

current context, large delays may lead to truck collisions.

4.1.1 Synchronization

For network devices to operate in unison and execute their operations at the required points in

time, clock synchronization is necessary. This can be achieved with GPS clocks however there is

no guarantee that small devices such as fog nodes have access to radio or satellite signals. The

802.1AS standard [70] describes generalized Precision Time Protocol (gPTP). The protocol can

be used to establish a common time reference between the central computer and the fog nodes, or

between the fog nodes if the latter is absent.

In an isolated network, where no other traffic is present except localization system traffic, clock

synchronization should be enough to minimize waiting time. Fog nodes can be set to transmit at

specified time intervals and thus the processing node that receives it will have a bounded waiting

time. In figure 4.1, a sample use case is shown, where fog nodes with synchronized clocks send

frames at known time intervals. The scheduling is done such that the frames arrive in constant

order 1, 2, 3, 4, however this is not always required. The router in the network does not require to

have its clock synchronized as the periodic frame arrival is ensured by the periodic transmission

by the fog nodes. For the network shown in figure 4.1, the frames received by the central computer

are shown in figure 4.2.

4.1.2 Integration with Separate Network

If the localization is to be integrated as part of a larger distribution center network, then the

data transmitted by the fog nodes may have to share the network with other traffic. This can

lead to large delays due to overcrowding or even packet loss due to buffer overflows. In order to

ensure timely arrival of localization system frames, the traffic shaping mechanisms described in

Time-Sensitive Networking (TSN) 802.1Qav [71] and 802.1Qbv [72] standards can be implemented.

802.1Qav is the standard for credit-based traffic shaping, which ensures bounded latency for two

traffic priority classes. One such maximum latency is computed in the 802.1BA standard, which

specifies LAN component standards. The bounded latencies for the two classes (A and B) are
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Figure 4.1: Sample use case with 802.1AS clock synchronization
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Figure 4.2: Periodic frame receival for central computer in figure 4.1
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Stream Class Max. end-to-end delay

A 2 ms

B 50 ms

Table 4.1: Latencies specified by 802.1BA for network employing credit-based traffic shaping

shown in table 4.1. In this case they are computed for a network using at least 100Mbps wired

Ethernet and for a maximum of 7 hops. Implementing credit-based traffic allows for assigning

more bandwidth to Audio Video (AV) streams and preventing frame loss thus preserving QoS.

The prevention of frame loss is achieved by evening out the traffic and reducing bursting and

bunching which can lead to buffer overflows. At the same time the 75% limit for AV traffic

protects the best-effort frames of separate network.

802.Qbv specifies time-aware scheduling of traffic, which allows shaping of communication into

fixed-length, repeating time cycles, similar to TDMA. Within such a cycle, exact transmission

slots can be given to each type of traffic on the network. This allows for time critical traffic to be

separated from non-critical background traffic. Figure 4.3 showcases an example network where

pose information (critical) along with other (non-critical) streams are present. The scheduling of

the router is now formed using the time-aware shaper, as shown in figure 4.4. The time required for

pose information transmission is allocated in a similar way as the isochronous traffic in FireWire .

This provides highly deterministic behaviour in the presence of non-critical background traffic.

To conclude, if the localization system is to be used in the presence of other network traffic:

• 802.1Qav is more suited if entire video streams from cameras are to be transmitted towards

processing devices for pose extraction or live streaming.

• If only pose information is to be communicated, 802.1Qbv can be used to allow hard real-time

communication delay to small scaled pose information. 802.1Qbv can also be used for video

streams however this may cause large delays for other traffic. Time-aware shaper can be

useful if separate streams are on the network, so as to provide pre-determined transmission

windows for pose information traffic.

Given the above, for the current distributed implementation, 802.1AS may be sufficient for the

Raspberry Pi’s to transmit with periodic behaviour and in synch with the central computer.
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Figure 4.3: Sample use case with 802.1Qbv implementation
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Figure 4.4: Fixed-length transmission time schedule on router in figure 4.3
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4.2 Conclusion and Future Work

As part of this work, the localization process of the TU/e truck localization system has been

explained. Based on the particular localization processes used in TU/e and in HAN, the general

process can be described. To summarize, the general process consists of point-of-interest identi-

fication followed by pose estimation and optionally local to global pose transitioning. Parameters

concerning accuracy and execution time have been identified. Accuracy is influenced by the cam-

era intrinsic parameters and by the correctness of point of interest measurements. Execution time

is influenced by processing and communication times, as well as the scheduling between the two.

Based on the experimental conclusions, improvements have been proposed to optimize the execu-

tion time of the distributed system. The improvement consists of employing clock synchronization

for the fog nodes and central computer so that periodic behaviour and synchronized transmission

can be ensured. Below, future work is proposed, divided into topics:

• Accuracy:

– In-depth analysis of camera intrinsic parameters and their effect on accuracy.

• Execution time:

– Analysis of other hardware aspects affecting frame processing time such as memory

speed.

– Exploration of speedup obtainable by other parallel processing methods such as GPU.

– Implementation of speeded up ArUco detection, as proposed in [73].

– Implementation of synchronized periodic scheduling for the distributed system.
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Appendix A

FFMV-03M2MC Specifications
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Appendix B

Raspberry Pi 3 Model B

Specifications

The Raspberry-Pi is a series of small single-board computers developed in the United Kingdom

by the Raspberry Pi Foundation to promote teaching of basic computer science in schools and

in developing countries. The original model became far more popular than anticipated, selling

outside its target market for uses such as robotics [74].

Figure B.1: Raspberry Pi 3 Model B [75]

• SoC: Broadcom BCM2837
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• CPU: 4× ARM Cortex-A53, 1.2GHz

• GPU: Broadcom VideoCore IV

• RAM: 1GB LPDDR2 (900 MHz)

• Networking: 10/100 Ethernet, 2.4GHz 802.11n wireless

• Bluetooth: Bluetooth 4.1 Classic, Bluetooth Low Energy

• Storage: microSD

• GPIO: 40-pin header, populated

• Ports: HDMI, 3.5mm analogue audio-video jack, 4× USB 2.0, Ethernet, Camera Serial

Interface (CSI), Display Serial Interface (DSI)
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Appendix C

Truck Lab Dimensions

Figure shows the DC area dimensions as reported in [28]. Its scaling ratio is 1:13.3, with a length

of 7.73 m and width of 4.87 m. There are a total of 10 docking bays and 3 parallel parking lots.

Each docking bay loading station has a width of 0.28 m. The parallel parking dimensions 1.33 x

0.27 m. There is a free space of 1.22 m between a docked truck and a parked truck. The there are

an 0.9 m wide entrance and an exit on both sides of the DC area.
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Figure C.1: DC area dimensions [28]
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