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Abstract

The goal of this master project is to develop a predictive modelling method that can be used
for data for which there are multiple distinct groups within the overall population. This method
should cluster the data and fit a predictive model to each of the resulting clusters. A statistical
framework will be used that can construct a mixture model that is able to accomplish this task
by solving a likelihood maximisation problem. The EM algorithm will be used to find a solution,
which results in an iterative algorithm that can in turn cluster the data using soft labels, and
fit a predictive model to each cluster. This method will also provide what will be called the
cluster probability functions, which can assign any new set of features to the existing cluster.
As concrete examples, linear regression will be looked at to model the individual clusters, and
two different methods will be used to cluster the data, namely logistic regression and a kernel
smoothing method. For this last method, a strategy will be constructed that can automatically
find the optimal value of the bandwidth parameter that regularises the method.

The argument will be made that this method can be used as a general predictive model that can
model non-linear relationships between target value and features, and that no assumption about
different sub-populations in the data are necessary to use it. Two important problems related to
the developed method, namely choosing how to initialise it and how to select the optimal number
of clusters, will be looked at, and this will result in a strategy that provides a solution to both.
To make the developed method able to use more general predictive modelling techniques as basis
functions, the likelihood maximisation problem will be adjusted to instead allow a loss function
to be minimised. The result of all this is a general algorithmic framework that can perform
clusterwise predictive modelling on a given dataset. This framework is very flexible, as users
can decide which methods to use to estimate the cluster probability functions, and to model the
different clusters. Regression trees will be looked as an example of this last category. Furthermore,
ensembling will be looked at as a way of improving the accuracy of the predictive models. Finally,
the performance of these methods will be looked at by testing them on three open dataset. The
conclusion of these experiments is that these methods are very powerful, and perform similarly or
better than a number of popular regression techniques, such as random forests and support vector
regression.
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Chapter 1

Introduction

Throughout their lives, people will regularly find themselves in situations where they are required
to make decisions under uncertainty. A farmer might ask himself ”What is the best day to start
planting crops?”A stockbroker will have to decide ”Which stock will provide the greatest return
in investment?” And a doctor will often be faced with the question ”Which treatment should a
use for my patient?” Questions like these show that there is a great demand for methods that can
make accurate predictions using the information that is available to us. Concurrently, the recent
developments in technologies such as the internet and high speed computers make the amount of
data available to us that could by used to make such predictions grow exponentially. This has led
to an increased interest in predictive modelling, the study wherein one tries to make predictions
of a certain outcome based on a mathematical model.

Such predictive models are typically build by looking at historical data. A dataset that can be
used to build such a model should contain a collection of past cases, where for each case the
target variable you wish to predict is includes, as well as a number of features, certain measurable
characteristics that are specified for each case. For example, an ice cream seller wishing to predict
how many ice creams they are going to sell today can look at how many they sold during the past
couple of moths. The target variable would then be the number of ice creams sold, and relevant
features might be for example the temperature, the amount of rain and the day of the week. By
seeing how in the past a certain target value was related to the value of the features, we can make
a prediction how, based on the current values of those features, which outcome seems most likely.

Over the years, many different models that can be used for predictions have been developed, all
with their own assumptions and constraints, strengths and weaknesses. The goal of this final
project is to look into one particular family of predictive models that assumes that there might
be some sort of heterogeneity in the data. In other words, we assume that there are a number of
different ”groups” or ”clusters” in the data and it appears that for each cluster a different model
leads to more accurate predictions. This can be caused, for example, when the data comes from
different sources, but the source of each data point is unknown to us.

As an example of this, let us look a the famous Iris data set due to Fisher [14]. In this data set,
the sepal length, sepal width, petal length and petal width, all in cm, are given for 150 irises,
those colourful flowers with their characteristic petal structures. Let us say that we want to make
a model that can predict the petal width of an iris given its sepal width. One of the simplest
models we can use for this is a linear regression model, where we assume that the relation between
these variables is linear. In Figue 1.1a, such a linear model is computed for the Iris data set.
As you can see, this model does not capture the relationship between these variables very well,
which means that any predictions we make using this model will likely not be very accurate. The
samples in the Iris data set are actually from three different species of iris, namely of the ”Iris

Predictive Modelling via Simultaneous Model Fitting and Clustering 1



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: A plot of the data from the Iris data set, where the petal width is plotted as a function
of the sepal width. Least-square linear regression has been applied to have been drawn trough the
points. In (a), all the points are considered to be homogeneous, and therefore only one model is
used for all points. In (b), the points are coloured according to which species of iris they belong to.
Blue points are for ”Iris setosa”, red for ”Iris versicolor” and green for ”Iris virginica”. For each
species, a different model is build and drawn.

setosa”, ”Iris virginica” and ”Iris versicolor” types. If we made a separate linear model for each
species separately, which is visible in Figure 1.1b, we capture the relationship between sepal and
petal width much better. Consequently, if we knew the species of Iris for which we want to predict
its petal width belongs to, we can make a much more accurate prediction.

The above example shows that recognising that there are multiple clusters in the data can greatly
improve the accuracy of a predictive model. However, the cluster membership might not always be
available in the data set. For example, the order list of a hardware store might not include whether
the buyer is a professional builder or just a DIY enthusiast, while we expect these two groups to
have very different consumer behaviour. In such cases it might still be possible to estimate for
each data point which cluster it belongs to. An important question to ask then is: Is it possible
for a a model that estimates the cluster membership to get a similar performance to a model that
knows the true clusters? To answer this question, we will explore a number of models that are able
to make such estimations. They will cluster the data and build a predictive model for each cluster
as well as provide a way to assign a new data point to one of the clusters. We will look at the
strengths and weaknesses of these models, and test their performance on a number of data sets.
Furthermore, their performance will be compared to that of other popular predictive modelling
techniques.

1.1 Formalisation

Before we can look at specific predictive models, we need to formalise this idea of having multiple
clusters in the data. Furthermore, we need to introduce some important concepts and notations.

1.1.1 The Mixture Model

In order to construct a predictive model, we need to make some assumptions about how the data
is generated. We will assume that the features X (generally a vector, i.e. X = (X1, X2, . . . , Xd))
are elements of a space called the feature space X , and the targets Y of a space called the target
space Y. In the standard statistical learning framework, we assume that the feature/target com-

2 Predictive Modelling via Simultaneous Model Fitting and Clustering



CHAPTER 1. INTRODUCTION

binations (X,Y ) are randomly drawn from X ×Y according to some joint probability distribution
PXY . This is likely a reasonable assumption, as we typically expect that some feature/label com-
binations are more common than others. Another way of looking at this is by saying that X is
drawn randomly from X according to the marginal distribution PX , and we are interested in the
conditional distribution of Y given X, denoted by PY |X .

For the type of models we will consider in this thesis, we modify this framework slightly by
assuming that there are k distinct clusters in the data. We can do this by making the assumption
that, alongside the feature/target couple, our data is specified by another random variable denoted
by Z with Z ∈ Z = {1, 2, . . . , k}. This random variable determines to which cluster that data
point belongs to. The result of this is that our data is categorised by the feature/target/cluster
combination (X,Y, Z), drawn randomly from X ×Y×Z according to some probability distribution
PXY Z .

For each possible value of Z we assume that the probability distribution of (X,Y ) is different. For
j ∈ {1, 2, . . . , k}, let vj : X → Y denote the probability density function (PDF) of Y , given X = x
and Z = j. Furthermore, we assume that Z |X is distributed categorically and we define the
function h : X → [0, 1]k, so that h(x) is a k-dimensional vector which represents this categorical
distribution. It has components given by

hj(x) = P(Z = j |X = x), (1.1)

for j ∈ {1, 2, . . . , k}. From here on out, we will call hj(x) the cluster probability functions. The
assumption made here is that the probability of a data point belonging to a specific cluster is
dependent on the features. Consequently, there are regions within the feature space where it
is more likely to find data belonging to a particular cluster than to the other clusters. This
assumption will be quite important when making predictions, because it allows us to appoint new
data points to clusters based on the values of their features.

We can now define the PDF of Y given X = x as

w(y |x) =

k∑
j=1

hj(x)vj(y |x), (1.2)

Which gives us the statistical model of our data. Such models that combine multiple different
models are typically called mixture models.

1.1.2 The Predictive Model

As stated before, our goal is to make predictions based on the features. Formally, we to construct
a prediction rule f : X → Y that takes as input a feature vector X and returns a prediction Ŷ . We
say that Ŷ is an estimate of the true target Y , and we want to construct f(X) in such a way that
Ŷ is a ”good” estimate of Y . But how do we define what is a ”good” estimate? To this end we
introduce the loss function L(Ŷ , Y ), which gives a measurement to how ”different” the estimate
Ŷ is from the true outcome Y . If, for example, the target space consist of two distinct outcomes,
i.e. Y = {0, 1} we can use the 0/1 loss function

L(ŷ, y) =

{
1 if ŷ 6= y

0 if ŷ = y
,

where ŷ and y are realisations of Ŷ and Y respectively. In this thesis, we will focus mainly on

Predictive Modelling via Simultaneous Model Fitting and Clustering 3



CHAPTER 1. INTRODUCTION

regression problems, which is when the target is (part of) the real line. The most commonly used
loss functions for such problems is the squared error loss function

L(ŷ, y) = (ŷ − y)2. (1.3)

We want to construct a predictive model that has a low loss on average, to this end we can define
the statistical risk

R(f) ≡ E[L(f(X), Y ], (1.4)

where (X,Y ) ∼ PXY . We can now define the learning problem as finding a prediction rule that
has a small risk.

The function that minimises the squared error risk is

f∗(x) = E[Y |X = x], (1.5)

and is called the regression function. The proof that this expression minimises the squared error
risk is included in Appendix A. If we know that our data is generated by a mixture model with a
known PDF, we get the the prediction rule

f∗(x) =

k∑
j=1

hj(x)E[Y |X = x, Z = j], (1.6)

where Y |X = x, Z = j has PDF vj(y |x). Furthermore, we define gj(x) = E[Y |X = x, Z = j],
the regression function of cluster j.

The problem is that we generally do not know the precise distribution of our data. We we will
need to estimate this using a set of historical data called the training data. Let Dn ≡ {xi, yi}ni=1

denote the available training data, where we make the assumption that xi and yi are realisations of
Xi and Yi respectively, which in turn are i.i.d. copies of (X,Y ). Note that the cluster membership
is not given in this training data. We will be focusing our attention on situations where we expect
there to be distinct clusters in the data, but where the cluster membership is not given in the
available data.

We see that estimating the distribution of a mixture model consists of two parts. We will need to
estimate the cluster probability functions hj(x), as well the regression functions of the individual

clusters gj(x). Let ĥj(x;Dn) and ĝj(x;Dn) denote these estimates, where the extra variable Dn

is added to emphasise that these estimates are dependent on our training data. From now on this
variable will be dropped from these functions, and the convention will be used that a hat (∧) over
a function will denote that it is an estimate constructed using training data. Using these estimates
we can construct the prediction rule

f̂(x) =

k∑
j=1

ĥj(x)ĝj(x). (1.7)

Since it is a combination of multiple model, this prediction rule is also a type of mixture model.
Prediction rules of this form will henceforth be called clusterwise predictive models. In the fol-
lowing chapters we will develop a general method for constructing ĥj and ĝj , but before that we
will take a look at existing literature that deals with such mixture models.

4 Predictive Modelling via Simultaneous Model Fitting and Clustering



CHAPTER 1. INTRODUCTION

1.2 Related Literature

There already exists an extensive amount of literature related to the construction of mixture
models on a given dataset for a wide variety of contexts and goals. In the statistical community,
most research has been conducted towards estimating the densities of the individual clusters
for the model in Equation (1.2), often considering unconditional density functions only (see e.g.
McLachlan and Peel [27]). Mixture models of this type have found considerable use as a form
of density estimation, as the set of all normal mixture densities is dense in the set of all density
functions under the L1 metric [23], and as a popular tool for clustering and classification [29]. This
has made it an important concept for data analysis and inference as well as discriminant analysis,
image analysis, and survival analysis in a ton of different fields [26]. As they do not consider data
that is distributed conditional on any features, they cannot be used for prediction purposes.

An extension of these type of models are clusterwise linear regression models [10], which assume
that the PDFs of the individual clusters vj(y |x) in Equation (1.2) are normal density functions
with a conditional mean equal to a linear combinations of features, i.e. the models that describe
each cluster are considered to be linear regression model. These models are typically used for data
analysis purposes, and since they, in their general form, do not provide a way of assigning any
new data point to an existing cluster, their usefulness for predicting is limited.

A number of methods for constructing mixture models for the specific purpose of prediction have
been developed. Perhaps the most commonly seen one is the decision tree [18, Section 9.2], which
can be used for both regression and classification purposes. They work by repeatedly splitting the
feature space in rectangular regions, and in each regions fitting a constant function that minimises
some loss function. This procedure can be represented using a tree structure, where internal nodes
correspond to a splitting of a region in the feature space, and the end nodes each correspond to
one of the clusters found in the data. Decision trees are popular because they are very flexible and
easy to interpret, and often require little data preparation. However, the shape of clusters they
can find is limited to box-shaped regions. Furthermore, the final model it fits to each of the found
clusters is a constant function, meaning that more complicated relationships between target and
features within a cluster cannot be modelled well. This also means that the final predictive model
is not continuous, having non-smooth transitions between each cluster.

The method of Hinging Hyperplanes [4] works by approximating a function using a number of
hinges. A hinge is a combination of two hyperplanes that are continuously joined together. The
method works by first fitting a single hinge to the data, and computing the residual error. Then,
another hinge is added to the model by fitting a hinge to the errors. This procedure is repeated
until some convergence criterion, such as a maximum number of hinges, is reached. The clusters
this method implicitly finds can be viewed as the regions in the feature space where a single
hyperplane is fitted to. This method can be viewed as a more refined versions of decision trees,
since it produces a continuous regression function where data in each resulting cluster is modelled
by a linear function. Nevertheless, it can still only model clusters of limited amount of shapes,
namely ones that are polyhedric in shape.

A method that allows for more flexible cluster shapes is k-plane regression [24], which is similar to
the k-means clustering method. Just like in that method, data is repeatedly clustered according
to which of the current k models it is closest to, and then models are fitted to each cluster.
Wherein k-means clustering these models are the average positions of each point in the cluster,
in k-plane regression they are the linear models fitted to the cluster members. The modified
version of this method clusters the data according to both the distance to each linear model as
well as to each cluster centre. This procedure results in a piecewise linear function that is not
necessarily continuous. A problem with this method, however, is that it clusters data according
to absolute cluster membership, in other words when this model is given in the form of Equation
(1.7), ĥj(x) ∈ {0, 1}. It uses hard clustering rather than soft clustering. We know, however, that
the rule that minimises the mean squared error risk is a weighted average of the predictions given

Predictive Modelling via Simultaneous Model Fitting and Clustering 5



CHAPTER 1. INTRODUCTION

by the individual models, using the probability of belonging to each cluster as the weights. A
method that uses soft clustering might therefore be preferred for making predictions

The method that approaches mixture models used for predictive modelling most closely to the way
they have been introduced in Section 1.1 is perhaps that of the Mixture of Experts [20]. In this
method, the feature space is split in a number of regions by functions known as the gates. These
gates are originally given by the softmax functions, which provide a soft partitioning of the data.
In each of these regions, a predictive model, known as the experts, is fit to the data. Classically,
these experts are linear models, but a number of different models that have also shown favourable
results, such as Gaussian Processes [40]. Mixture of Experts can also be used for classification
problems, in which the experts are, for example, logistic regression models or support vector
machines [40]. An extension of this method successively applies gates to split the feature space in
smaller regions is known as the Hierarchical Mixture of Experts method [21]. This method can
be seen as a generalisation of the decision tree, which allows for splits not parallel to a coordinate
axis, fits a more general model to each cluster, and provides a smooth transition between the
models of the different clusters.

Gitman et. al. developed a method called Predictive CLR [16] that modifies clusterwise linear
regression by incorporating a classification method that can assign a new data point, for which the
target value is unknown, to an existing cluster, making this method usable for prediction purposes.
In that same paper, they also propose a different adjustment to clusterwise linear regression where
data points are assigned to clusters based on the value of a categorical feature that is known at
test time. They named this second approach Constrained CLR. Furthermore, they found out that
building an ensemble of different models that all use different initial values can greatly improve
the performance of these models.

6 Predictive Modelling via Simultaneous Model Fitting and Clustering



Chapter 2

Mixture Models in the Statistical
Context

To find a way of constructing a clusterwise predictive model, we will take a look at how the PDF
of a mixture distribution is typically learned from data. In most research conducted towards such
distributions, a slightly simpler form is given as their definition. Primarily, the data is assumed to
be generated according to an unconditional PDF. In other words, there is no assumed relationship
between the target Y and some number of features X. Consequently, the probabilities describing
the categorical distribution PZ are assumed to be constants. Let ζj for j ∈ {1, 2, . . . , k} with∑k
j=1 ζj = 1 denote these probabilities. For practical consideration, we assume that the densities

of the individual clusters vθj (y) are known up to a vector of parameters θj . We can now express
the PDF of this simplified form of a mixture model as

wΨ(y) =

k∑
j=1

ζjvθj (y), (2.1)

where Ψ = (ζ1, . . . , ζk, θ1, . . . , θk) is the parameter vector that characterises the mixture density,
with Ψ ∈ Ω, i.e. Ω is the parameter space. We see that finding an estimate for this density comes
down to finding estimates for the components in Ψ.

We will look at how the parameter estimates are typically found for this model, and use this method
as an inspiration to find parameter estimates for the more general model given by Expression (1.2).
One of the earliest attempts to compute a mixture of densities dates back to a paper from 1894 by
Karl Pearson [31]. However, as noted by McLachlan and Peel ([27] section 1.1.3), it was not until
more efficient ways of computing the parameter estimates using maximum likelihood methods
were developed in the 1960s and 1970s that mixture models became popular. Monumental was
the paper by Dempster et. al. [9] from 1977, which described a method known as the Expectation
Maximisation (EM) algorithm which can be used as a very general and efficient way to compute
the maximum likelihood of a mixture density model. We will now look at how this method works.

2.1 The Maximum Likelihood Solution

Maximum likelihood estimation (MLE) is a popular method of estimating the unknown parameter
values of a probability distribution. It works by, given a set of data, maximising the likelihood
function, a measure of how probable that data is under the given model. Given a data set {yi}ni=1,
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we can express the likelihood function of the model in Expression (2.1) as

L(Ψ) =

n∏
i=1

k∑
j=1

ζjvθj (yi), (2.2)

As an example, we look at the case where k = 2 and vθj (y) are the PDFs of the univariate normal
distribution with unknown parameters. We can express its likelihood function as

L(Ψ) =

n∏
i=1

(
ζ1

1√
2πσ2

1

exp

(
− (yi − µ1)

2

2σ2
1

)
+ (1− ζ1)

1√
2πσ2

2

exp

(
− (yi − µ2)

2

2σ2
2

))
, (2.3)

where, since we know that ζ1 + ζ2 = 1 and we therefore need to estimate only one of these
parameters, we replace ζ2 by ζ1− 1. We see that there are five unknown parameters that we need
to find, i.e. Ψ = (ζ1, µ1, µ2, σ1, σ2). Maximising this likelihood function is, however, very hard
because it is not a convex function of the parameters. If the clustering of the data were known,
maximising this expression would be quite easy. This is precisely the type of problem the EM
algorithm is suitable for.

2.1.1 The Expectation Maximisation Algorithm

As defined by McLachlan and Krishnan, the EM algorithm is a procedure to find the MLE in
situations where we have incomplete data [25, Section 1.5.1]. This includes cases where there
is missing data, but also situations where one or more variables are not observed, such as the
cluster membership in the case of mixture models. The EM algorithm is appealing to be used in
situations where finding the MLE using only the incomplete data is very difficult, but would be
straightforward if we had the complete data.

If we go back to the mixture of normal distributions, we can say that the data set {yi}ni=1 is
the incomplete data, and the set {(yi, zi)}ni=1 is the complete data set, with zi realisations of Zi,
which are i.i.d. copies of Z. Using this complete data, we can define the complete data likelihood
function

Lc(Ψ) =

n∏
i=1

(
1{Zi = 1}ζ1

1√
2πσ2

1

exp

(
− (xi − µ1)

2

2σ2
1

)

+ 1{Zi = 2}(1− ζ1)
1√

2πσ2
2

exp

(
− (xi − µ2)

2

2σ2
2

))
, (2.4)

which has the property that within the product, one term will always be zero. It is often easier to
maximise the log of the likelihood function. Due to the non decreasing nature of the log-function,
the parameter values that maximise the log likelihood function are the same maximum as those
that maximise the original likelihood function. For our example, the log likelihood function is
given by

8 Predictive Modelling via Simultaneous Model Fitting and Clustering
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`c(Ψ) ≡ logLc(Ψ) =

n∑
i=1

(
1{Zi = 1}

(
log ζ1 −

1

2
log(2π)− log σ1 −

(yi − µ1)
2

2σ2
1

)

+ 1{Zi = 2}

(
log(1− ζ1)− 1

2
log(2π)− log σ2 −

(yi − µ2)
2

2σ2
2

))
.

If we had access to the cluster memberships {zi}ni=1, maximising this function would be straight-
forward. Since we do not have it available to us, we need to come up with a strategy to deal with
this missingness. This is where the EM algorithm comes into play. The central idea of this al-
gorithm is that, although we cannot compute the log likelihood, we can still compute its expected
value conditioned on the observed data. This also requires some initial guess of the parameters
Ψ(0). We define

Q(0)(Ψ) ≡ EΨ(0) [`c(Ψ) | {yi}ni=1].

We can then maximise this Q(0)(Ψ) with respect to Ψ to get a new estimate Ψ(1). Using this new
estimate, we can calculate a new expected value of the log likelihood Q(1)(Ψ) which we are then
able to maximise, repeating the process.

We can see that at iteration t + 1 of the algorithm, we perform two steps. The E-step where we
find an expression for Q(t)(Ψ) given by

Q(t)(Ψ) = EΨ(t) [`c(Ψ) | {yi}ni=1], (2.5)

and the M-step where we maximise this expression with respect to Ψ to get a new estimate Ψ(t+1).
In other words, we find

Ψ(t+1) = arg max
Ψ∈Ω

Q(t)(Ψ). (2.6)

In these formulas and from here on out, the superscript (t) denotes a parameter or function
estimate at step t of the EM algorithm.

It is shown by Dempster, Laird, and Rubin that the incomplete likelihood is not decreasing at
each iteration of the EM algorithm, meaning that as long as this likelihood function is bounded
from above, the sequence of solutions found at each iteration of the EM algorithm is guaranteed to
converge to a local maximum of the likelihood function [9]. We can then define the final parameter
estimate as

Ψ̂ = lim
t→∞

Ψ(t)

For our example of the two normal mixtures, Equation (2.5) is given by
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Q(t)(Ψ) = EΨ(t) [`c(Ψ) | {yi}ni=1]

= EΨ(t)

[
n∑
i=1

(
1{Zi = 1}

(
log ζ1 −

1

2
log(2π)− log σ1 −

(yi − µ1)
2

2σ2
1

)

+ 1{Zi = 2}

(
log(1− ζ1)− 1

2
log(2π)− log σ2 −

(yi − µ2)
2

2σ2
2

))∣∣∣∣∣ {yi}ni=1

]

=

n∑
i=1

(
PΨ(t)(Zi = 1 |Yi = yi)

(
log ζ1 −

1

2
log(2π)− log σ1 −

(yi − µ1)
2

2σ2
1

)

+ PΨ(t)(Zi = 2 |Yi = yi)

(
log (1− ζ1)− 1

2
log(2π)− log σ2 −

(yi − µ2)
2

2σ2
2

))
.

(2.7)

We can use Bayes’ theorem to compute the probabilities in the above equation:

p
(t)
i1 ≡ PΨ(t)(Zi = 1 |Yi = yi)

=
PΨ(t)(Zi = 1)PΨ(t)(Yi = yi |Zi = 1)

PΨ(t)(Yi = yi)

=
ζ
(t)
1 v

(t)
θ1

(yi)

ζ
(t)
1 v

(t)
θ1

(yi) + (1− ζ(t)1 )v
(t)
θ2

(yi)
,

and similarly

p
(t)
i2 ≡ PΨ(t)(Zi = 2 |Yi = yi)

=
(1− ζ(t)1 )v

(t)
θ2

(yi)

ζ
(t)
1 v

(t)
θ1

(yi) + (1− ζ(t)1 )v
(t)
θ2

(yi)
.

In order to maximise Equation (2.7), we simply need to compute the partial derivatives with
respect to the parameter, and set them equal to zero. This way we get the solutions

ζ
(t+1)
1 =

∑n
i=1 p

(t)
i1∑n

i=1

(
p
(t)
i1 + p

(t)
i2

) =
1

n

n∑
i=1

p
(t)
i1 ,

µ
(t+1)
j =

∑n
i=1 p

(t)
ij xi∑n

i=1 p
(t)
ij

,

And finally

σ
(t+1)
j =

√√√√√∑n
i=1 p

(t)
ij

(
xi − µ(t)

j

)2
∑n
i=1 p

(t)
ij

.
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2.1.2 A General Solution

In the above section we saw that the EM algorithm gives us a simple iterative procedure to find
the MLE solution of the parameters in a simple mixture of normal distributions. We now want to
use this method to get a general solution for a mixture distribution that can be used for predictive
modelling. To this end we will again look at the mixture model given by Expression (1.2), were we
will assume that the the densities of the clusters vθj (y |x) are known up to a vector of parameters
θj . This leads to the expression of the mixture model

wΨ(y |x) =

k∑
j=1

hj(x)vθj (y |x), (2.8)

which has the likelihood function

L(Ψ) =

n∏
i=1

k∑
j=1

hj(xi)vθj (yi |xi). (2.9)

In the context of the EM algorithm, the training data {(xi, yi)}ni=1 are the incomplete data, and
the cluster memberships {zi}ni=1 are the missing data. We can now define the complete data
likelihood function as

Lc(Ψ) =

n∏
i=1

k∑
j=1

1{Zi = j}hj(xi)vθj (yi |xi), (2.10)

and its respective log likelihood function as

`c(Ψ) = logLc(Ψ) =

n∑
i=1

k∑
j=1

1{Zi = j}(log hj(xi) + log vθj (yi |xi)). (2.11)

To perform the E-step, we use equation 2.5:

Q(t)(Ψ) = EΨ(t) [`c(Ψ) | {(xi, yi)}ni=1]

= EΨ(t)

 n∑
i=1

k∑
j=1

1{Zi = j}(log hj(xi) + log fθj (yi |xi))

∣∣∣∣∣∣ {(xi, yi)}ni=1


=

n∑
i=1

k∑
j=1

PΨ(t)(Zi = j |Xi = xi, Yi = yi)(log hj(xi) + log vθj (yi |xi)).

We use Bayes’ theorem to compute the probabilities in the above equation:

p
(t)
ij ≡ PΨ(t)(Zi = j |Xi = xi, Yi = yi)

=
PΨ(t)(Yi = yi |Xi = xi, Zi = j)PΨ(t)(Zi = j |Xi = xi)

PΨ(t)(Yi = yi |Xi = xi)

=
h
(t)
j (xi)v

(t)
θj

(yi |xi)∑k
l=1 h

(t)
l (xi)v

(t)
θl

(yi |xi)
.

(2.12)
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Using this we can write Q(t)(Ψ) as

Q(t)(Ψ) =

n∑
i=1

k∑
j=1

p
(t)
ij (log hj(xi) + log vθj (yi |xi))

=

 n∑
i=1

k∑
j=1

p
(t)
ij log hj(xi)

+

k∑
j=1

(
n∑
i=1

p
(t)
ij log vθj (yi |xi)

)
.

(2.13)

This means that we have split the optimisation problem in two parts that can be solved independ-
ently. It therefore becomes convenient to introduce some new notation

Q(t)
c (h) =

n∑
i=1

k∑
j=1

p
(t)
ij log hj(xi) (2.14)

Q
(t)
mj(θj) =

n∑
i=1

p
(t)
ij log vθj (yi |xi), (2.15)

where the subscripts c and m stand for ”cluster” and ”model”, respectively. In the M-step we
need to solve k+1 optimisation problems to obtain the components of Ψ(t+1).

Firstly, for each j ∈ {1, 2, . . . , k}

θ
(t+1)
j = arg max

θj∈Θ
Q

(t)
mj(θj), (2.16)

where Θ is the parameter space of the conditional density function. The solutions to these op-
timisations are, of course, dependent on the family of models between the features and label we
consider. Lastly, we need to find

h(t+1) = arg max
h∈H

Q(t)
c (h), (2.17)

with H the class of cluster probability functions that we consider. The performance of our pre-
dictive model is actually very dependent on how we select this class. If we take H as the class of
all functions that have range [0, 1]k and abide to

∑k
j=1, the solution to this is simply

hj(x)(t+1) = p
(t)
ij for all j ∈ {1, 2, . . . , k} if ∃i : x = xi, (2.18)

and hj(x)(t+1) arbitrary if it is not. This, of course, is not very useful for prediction purposes, as
it does not tell us how to choose hj(x) outside of the training data. So clearly, in order to make
sensible predictions, we need to impose some sort of conditions on h.

If we assume that h is independent of x, i.e. the class H contains only constant functions, the
solution to Equation (2.17) is [26]

hj(x)(t+1) =

∑n
i=1 p

(t)
ij

n
,
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which again is not very useful for making predictions, since it does not involve the features meaning
that these are constant functions. Clearly, choosing H in a smart way is very important for making
accurate predictions.

We see that, computationally, the only things necessary during the E-step are solving for the p
(t)
ij

using Equation (2.12). In this way, the two steps of the EM algorithm solve precisely the two
problems that have been identified for mixture models. During the E-step, the data is clustered
according to which model best describes that feature/target pair. During the M-step, for each
cluster, the parameters are tuned using Equation (2.16) so that the corresponding model describes
the patterns in that cluster well. During the M-step, the functions hj(x) are also constructed using
Equation (2.17).

2.2 Clusterwise Linear regression

As a concrete example of how to find the solution to Equation (2.16), we will look at clusterwise
linear regression, a common use of mixture models. In this method, we assume that the relation
between the features x ∈ Rd and the target y ∈ R given that Z = j can be modelled using a linear
function

y = βj0 + βj1x1 + · · ·+ βjdxd + εj ,

where εj ∼ N (0, σj). We see that the parameter vector θj = (βj0, βj1, . . . , βjd, σj). For our
training set, define

y =


y1
y2
...
yn

 and A =


1 x11 . . . x1d
1 x21 . . . x2d
...

...
. . .

...
1 xn1 . . . xnd

 . (2.19)

The conditional PDF of observation (Xi, Yi) given Zi = j is

vθj (yi |xi) =
1√

2πσ2
j

exp

−
(
yi −

∑d
l=0 βjlail

)2
2σ2

j

 (2.20)

where aij denote elements in A, where indexing of the rows begins at 1 and of the columns at 0.
We use this to write Expression (2.12) as

p
(t)
ij =

h
(t)
j (xi)v

(t)
θj

(yi |xi)∑k
l=1 h

(t)
l (xi)v

(t)
θl

(yi |xi)

=

h
(t)
j (xi)

σ
(t)
j

exp

(
−
(
yi−

∑d
l=0 β

(t)
jl xil

)2

2σ
2(t)
j

)
∑k
m=1

h
(t)
m (xi)

σ
(t)
m

exp

(
−
(
yi−

∑d
l=0 β

(t)
mlxil

)2

2σ
2(t)
m

) , (2.21)

We now write Equation (2.15) as
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Q
(t)
mj(θj) =

n∑
i=1

p
(t)
ij log vθj (yi |xi)

= −1

2
log(2π)

n∑
i=1

p
(t)
ij − log σj

n∑
i=1

p
(t)
ij −

1

2σ2
j

n∑
i=1

p(t)ij
(
yi −

d∑
l=0

βjlail

)2
 .

(2.22)

To find the values βj that maximise this expression, we calculate its partial derivatives with
respect to βjl and set them equal to zero:

∂Q
(t)
mj(θj)

∂βjl
=

n∑
i=1

p
(t)
ij air

(
yi −

d∑
l=0

βjlail

)
= 0, r = (0, 1, . . . , d)

or

n∑
i=1

d∑
l=0

p
(t)
ij airailβjl =

n∑
i=1

p
(t)
ij airyi.

If we define

W
(t)
j =


p
(t)
1j 0 . . . 0

0 p
(t)
2j . . . 0

...
...

. . .
...

0 0 . . . p
(t)
nj

 and βj =


βj0
βj1
...
βjd

 ,

we can write the above expression as

ATW
(t)
j Aβj = ATW

(t)
j y,

where the superscript T denotes the transpose of a matrix or vector. So, during the M-step we
calculate a new estimate of βj for each j ∈ {1, 2, . . . , k} using (as long as the matrix A has full
rank, see e.g. Bingham and Fry [3, Section 3.2])

β
(t+1)
j =

(
ATW

(t)
j A

)−1
ATW

(t)
j y. (2.23)

To find an estimate for σj , we first write Equation (2.7) using the matrix notation as

Q
(t)
mj(θj) = −1

2
log(2π)

n∑
i=1

p
(t)
ij − log σj

n∑
i=1

p
(t)
ij −

1

2σ2
j

(
y −Aβj

)T
W

(t)
j

(
y −Aβj

)
.

We differentiate this expression with respect to σj and set it equal to zero to find

∂Q
(t)
mj(θj)

∂σj
= −

∑n
i=1 p

(t)
ij

σj
+

(
y −Aβj

)T
W

(t)
j

(
y −Aβj

)
σ3
j

= 0
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which, using the new estimates of for βj , gives us

σ
(t+1)
j =

√√√√√(y −Aβ(t+1)
j

)T
W

(t)
j

(
y −Aβ(t+1)

j

)
∑n
i=1 p

(t)
ij

. (2.24)

If we compare these solutions with those of regular linear regression (e.g. the book by Bingham
and Fry [3, Section 3.2]), we see that they are actually very similar, with the exception that each
data point gets a weight according to the inferred cluster probabilities.

We also need a way to find h(t+1) given h(t) by solving Equation (2.17), using a sensible class H.
In the next chapter which will look at some ways of doing this.

Let v̂j(y |x) = vθ̂j (yi |xi) be our final estimates of the PDFs of Y given that X = x and Z = j

for all j ∈ {1, 2, . . . , k}. We know that E[Y |X = x, Z = j] = xTβj , so we can give the prediction
rule for clusterwise linear regression using Expression (1.7) as

f̂(x) =

k∑
j=1

ĥj(x)xT β̂j . (2.25)

2.2.1 Discussion

Linear models make a lot of sense to be used as the basis block function that is fit to the in-
dividual clusters. They have a single solution that can be found analytically, meaning that the
computational load required to fit this model to a dataset is very low, even for big datasets. A
disadvantage is that it makes very strict assumptions about the relationship between target and
features, namely that it is linear and that residuals are normally distributed. For many datasets,
these assumptions will not hold and an ordinary least squares linear regression will often perform
poorly at making predictions. Using them within a mixture model can mitigate this issue, as
we can essentially split the feature space in regions in which the relationship between target and
features is roughly linear, meaning that linear regression works well for modelling the individual
clusters.

Of the methods discussed in Section 1.2, linear functions are also the most commonly used basis
function to plot to the found clusters. The Hinging Hyperplanes, k-plane regression, Predictive
and Constrained CLR, and the original Mixture of Experts methods all use them in some way.
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Chapter 3

Estimating the Cluster
Probability Functions

It is clear that the performance of any prediction rule that is based on mixture models depends
greatly on how well we are able to estimate the cluster probability functions hj . As is discussed in
Section 2.1.2, we need to impose some conditions on the family of functions H that we consider. In
this section, we will look at two methods of estimating these functions and see what their strengths
and weaknesses are.

3.1 Logistic regression

One possible way of finding estimates of hj is to use logistic regression, a method typically used for
classification problems . In logistic regression, we estimate the posterior probabilities that sample
xi belongs to cluster j by assuming that the logit transformations of these probabilities can be
expressed via linear functions [18, Section 4.4]. Because all probabilities have to sum up to one,
it is conventional to express the probabilities of k− 1 clusters relative to one reference cluster [19,
Section 8.1]. If we use the last cluster as this reference, we get

log
P(Z = 1 |X = xi)

P(Z = k |X = xi)
= γT1 xi

log
P(Z = 2 |X = xi)

P(Z = k |X = xi)
= γT2 xi

...

log
P(Z = k − 1 |X = xi)

P(Z = k |X = xi)
= γTk−1xi,

with γj = (γj0, γj1, . . . , γjd)
T , with d the amount of features in the dataset. We further define

P(Z = k |X = xi) = 1 − P(Z 6= k |X = xi) = 1 −
∑k−1
j=1 P(Z = j |X = xi). It is easy to see that

these equations guarantee that the probabilities sum up to one and remain in [0, 1], precisely what
we want for hj . We can find explicit expressions for the functions hj by rewriting the above as
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hj(xi) = P(Z = j |X = xi) =
eγ

T
j xi

1 +
∑k−1
l=1 e

γTl xi
, j = 1, 2, . . . , k − 1

hk(xi) = P(Z = k |X = xi) =
1

1 +
∑k−1
l=1 e

γTl xi
.

(3.1)

We see that, in order to find a solution to Equation (2.17), we need to find estimates of the
parameters

γ =


γ10 γ20 . . . γk−10
γ11 γ21 . . . γk−11

...
...

. . .
...

γ1d γjd . . . γk−1d

 .

that maximise Q
(t)
c (h). Unfortunately, no analytical solution exists for this problem, meaning

that we have to use a numerical optimisation technique to get the parameter estimates. The most
commonly used technique for logistic regression is the Newton-Raphson method [18, Section 4.4.1].

3.1.1 The Algorithm

Using the Newton-Raphson method, we can find that getting estimates for γ comes down to
repeatedly solving the iterative formula

γ(s+1) =

(
∂2Q

(t)
c (γ(s))

∂γ∂γT

)−1(
∂2Q

(t)
c (γ(s))

∂γ∂γT
γ(s) − ∂Q

(t)
c (γ(s))

∂γ

)
, (3.2)

in which the superscript (s) denotes the parameter estimates after iteration s of the logistic
regression algorithm. The first order partial derivatives can be expressed using matrix notation as

∂Q
(t)
c (γ)

∂γ
= AT (P ′ −H ′),

where A is as in 3.1, and P ′ and H ′ are the matrices of size n × k − 1 with elements pij and

hj(xi) for 1 ≤ j ≤ k − 1, respectively. Although γ and ∂Q
(t)
c (γ)/∂γ are technically matrices, we

can express them as one-dimensional column arrays by appending each consecutive column below
the first. This allows us to give the second order partial derivatives as a two-dimensional array,
and we can express the Newton-Raphson method in terms of conventional matrix multiplication
operations. These second order partial derivatives are given by

∂2Q
(t)
c (γ)

∂γ∂γT
=


−ATW 1A ATW 12A . . . ATW 1(k−1)A

ATW 21A −ATW 2A . . . ATW 2(k−1)A
...

...
. . .

...

ATW (k−1)1A ATW (k−1)2A . . . −ATW k−1A

 ,

in which
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W j =


hj(x1)(1− hj(x1)) 0 . . . 0

0 hj(x2)(1− hj(x2)) . . . 0
...

...
. . .

...
0 0 . . . hj(xn)(1− hj(xn))

 ,
and

W jq =


hj(x1)hq(x1) 0 . . . 0

0 hj(x2)hq(x2) . . . 0
...

...
. . .

...
0 0 . . . hj(xn)hq(xn)

 .
The full derivation of these equations is included in Appendix A.

To start the algorithm, we need some initial guess of the values of γ. The most convenient option
for this would be to use the estimate found during the previous iteration of the EM-algorithm,
since the optimal parameter value is probably not going to change much between iterations. For
the first iteration, we can simply initialise the method by setting γ = 0, the zero vector.

There are multiple strategies we can use to stop the algorithm. First of all, we can define a
stopping criterion that defines when we consider the algorithm to have converged. Since the goal

of the Newton-Raphson method is to find a root of ∂Q
(t)
c (γ)/∂γ, it is common in literature to use

the norm of the gradient vector for early stopping. In this thesis, we will stop the algorithm when

∥∥∥∥∥∂Q(t)
c (γ)

∂γ

∥∥∥∥∥
∞

< τ.

In other words, when all components of the gradient of Q
(t)
c (γ) are below a certain threshold, we

consider its maximum to be found.

Unfortunately, the estimates might not actually converge. It is possible that we keep ”jumping”
around a local maximum, but never actually converge to it. We will therefore also set a maximum
number of iterations. Furthermore, some parameter values might actually tend to infinity, which
will cause integer overflow errors. A simple solution to this is to keep the parameter estimates
constant whenever their size exceeds some threshold that is known to cause such errors. Of course,
this precise threshold is dependent on the used data set and the used computational program.

3.1.2 Discussion

As mentioned before, logistic regression is a popular method to estimate the probabilities in a
conditional categorical distribution, conditioned some features, often in the context of classification
problems. It has the advantage that it provides a simple set of formulas that describe h, and there
are no hyper-parameters that need to be tuned. A disadvantage of this method is that it makes
pretty strict assumptions about the shapes of the cluster functions. Specifically, it assumes that all
clusters are linearly separable, while in reality this will often not be the case. The typical solution
that is used to solve this problem is to adjust the feature space by adding transformations of the
available features. For example, when X = R2 and the two features are denoted by x1 and x2,
we can add x21, x22 and x1x2 to our data set, and use the logistic regression algorithm with these
five features. This allows us to find clusters separated by conic sections, i.e. ellipses, hyperbolas
and parabolas. A different strategy that is more congruent with the use of mixture models, is to
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(a) (b)

Figure 3.1: The cluster probability functions in (a) are used to sample points from two linear
models, leading to the point cloud in (b).

increase the number of clusters k. This way we can split up the non linearly separable clusters
into smaller ones which can be separated by linear functions. Increasing k does however carry the
risk of overfitting, as it makes it more likely that the method finds clusters containing very few
data points. Another disadvantage of logistic regression is that it requires an iterative method to
find solutions. Since the EM algorithm is also iterative and we need to find the logistic regression
parameter estimates in each iteration of the EM algorithm, computational times can become very
long for large data sets.

In the original formulation of the Mixture of Experts methodology, the functions that define the
clustering in the data, called the gates, are given by the Logistic Regression Equations (3.1) [40].
The only difference is that for Mixtures of Experts, the values of hj(x) are not considered to

be probabilities, and hence the constraint
∑k
j=1 hj(x) = 1 is not used. This means k sets of

parameters can be found. Nevertheless, predictions are still made using Equation (1.7). It is not
clear whether this difference has a significant effect on the resulting predictive model. Furthermore,
Gitman et. al. suggested the use of logistic regression as a classification method that can be used
to cluster the data in their Predictive CLR method, alongside random forests.

3.1.3 Example

Now that we have discussed the theoretical aspect of using logistic regression, we can take a look
at how it performs on a simple example using generated data. We will be using clusterwise linear
regression to model the individual clusters. This experiment, and all other experiments that will
appear in this thesis, are performed using the Python programming language [38].

Data was generated from a mixture of two monovariate linear models that have cluster probability
functions h1 and h2 generated by two Gaussian functions, with parameters µ1 = 3, σ1 = 1.2,
µ2 = 6 and σ2 = 1.2, that are normalised by dividing them by the sum of both. This results in
the functions visible in Figure 3.1a. The linear models used are

y1 = 2x+ ε1 y2 = 15− x+ ε2,

with ε1 ∼ N (0, 0.7) and ε2 ∼ N (0, 1.2). n = 1000 independent features are generated uniformly
within [0, 10]. The targets are generated by sampling from y1 with probability h1(xi) and y2 with
probability h2(xi) for all i ∈ {1, 2, . . . , n}. This results in the point cloud visible in Figure 3.1b.
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(a) The found cluster probability functions together
with the real cluster probability functions.

(b) The found linear models. The colour gradient
of the points indicate the inferred probability of be-
longing to each cluster.

(c) The found regression function together with the
Bayes optimal regression model.

(d) The actual clustering of the data.

Figure 3.2: The results from making a predictive model using mixture models. Logistic regression
is used to estimate the cluster functions.

A predictive model is constructed for this data using k = 2, where logistic regression is used to
estimate h and clusterwise linear regression to estimate g1 and g2. The EM algorithm is ran for
100 iterations, and each logistic regression algorithm for a maximum of 20 iteration. The results
of this is visible in Figure 3.2. We see that the methods was able to find the two linear models
and can approximate the true clustering functions rather well. The resulting model is presented
alongside the Bayes regression function, which is the model that minimises the expected risk given
in Expression (1.6). We see that the found regression model is very similar to the Bayes optimum
function, which indicates that the found model will have a performance that is very close to
optimal.

We will now look at an example where the two clusters cannot be separated by a linear hyperplane.
We do this by adjusting the parameters of the Gaussian functions used to create the cluster
probability functions to µ1 = 4, σ1 = 0.5, µ2 = 6 and σ2 = 1, which results in the function visible
in Figure 3.3a. The corresponding set of data points is visible in Figure 3.3b. Since the two
clusters are now no longer linearly separable, the logistic regression method is no longer able to
find the correct clusters if we choose k = 2, which we can see in figure 3.4. We can, however, easily
solve this problem by choosing k = 3, for which the results are visible in Figure 3.5. We see that,
essentially, we split one of the ’true’ clusters in two, resulting in three clusters that are linearly
separable and can therefore be modelled using the logistic regression functions. This example
shows that increasing k can indeed solve the problem where the ’true’ clusters in the data are not
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(a) (b)

Figure 3.3: The clustering functions in (a) are used to sample points from two linear models,
leading to the point cloud in (b).

(a) The found cluster probability functions together
with the real cluster functions.

(b) The found regression function together with the
Bayes optimal regression model.

Figure 3.4: The results from making a predictive model using mixture models. Logistic regression
with k = 2 is used to estimate the cluster functions.

linearly separable.

For comparison, the clusterwise regression function is again fit using k = 2, but for the logistic
regression model, the squared values of the original features x2i for all i ∈ {1, 2, . . . , n} are added
as a second feature. This will allow this model to find non linear cluster boundaries. The results
can be seen in Figure 3.6, where we see that this strategy is also successful in finding the correct
clusters. It seems that for this simple scenario both methods of dealing with the constraint that
simple logistic regression cannot deal with non-linear cluster boundaries, work well. Which of the
two methods works best will depend on the given problem, and trying both, or a combination of
both, is likely the best strategy. Nevertheless, from here on out we will not use the method of
including transformations of the features, since the main interest in this thesis is to see how well
the method of increasing k works.
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(a) The three cluster probability functions that the
method finds.

(b) The found regression function together with the
Bayes optimal regression model.

Figure 3.5: The results from making a predictive model using mixture models. Logistic regression
with k = 3 is used to estimate the cluster functions.

(a) The found cluster probability functions together
with the real cluster functions.

(b) The found regression function together with the
Bayes optimal regression model.

Figure 3.6: The results from making a predictive model using mixture models. Logistic regression
with k = 2 is used to estimate the cluster functions. The squared values of the original features
are added as extra features in order to create non linear cluster boundaries.
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3.2 The Kernel smoothing method

Instead of solving the optimisation problem 2.17 outright, we can also try to estimating the cluster
probability functions hj non-parametrically. This will enable us to model these functions without
making strong assumptions about their shape. As an example, we will consider a kernel smoothing
method.

In this method, we estimate hj(x), the probability of a target point x being in cluster j, by taking
the weighted average of the cluster probabilities pij for i ∈ {1, 2, . . . , n} in the training set. We
want to give more weight to those training samples that are close to the target point, in other
words, we want the weights to scale negatively with the distance between the points ‖x − xi‖,
where ‖·‖ denotes the Euclidean norm. We can achieve this by using a kernel function Kλ(x, xi),
where λ can be considered to be a smoothing parameter. A simple kernel is, for example, the
boxcar kernel

Kλ(x, xi) =

{
1 for ‖x− xi‖≤ λ
0 for ‖x− xi‖> λ

,

but since it is not continuous, the resulting estimate ĥj(x) is not smooth. We therefore prefer to
use kernels that are continuous. Two popular choices are the Epanechnikov kernel

Kλ(x, xi) =

1−
(
‖x−xi‖

λ

)2
for ‖x− xi‖≤ λ

0 for ‖x− xi‖> λ
,

and the Gaussian kernel

Kλ(x, xi) = e
−
(
‖x−xi‖

λ

)2

.

Using these kernels, we can estimate hj(x) at iteration t+ 1 of the M step of the EM algorithm by

taking the kernel weighted sum of all p
(t)
ij for i ∈ {1, 2, . . . , n}, scaled by the sum of these weighted

sums for all j ∈ {1, 2, . . . , k}. In other words, we can express these estimates as

h
(t+1)
j (x) =

∑n
i=1 p

(t)
ij Kλ(x, xi)∑k

j=1

∑n
i=1 p

(t)
ij Kλ(x, xi)

=

∑n
i=1 p

(t)
ij Kλ(x, xi)∑n

i=1Kλ(x, xi)
∑k
j=1 p

(t)
ij

=

∑n
i=1 p

(t)
ij Kλ(x, xi)∑n

i=1Kλ(x, xi)
.

(3.3)

We see that method guarantees that
∑k
j=1 h

(t)
j = 1 and h

(t)
j ∈ [0, 1], since all p

(t)
ij ∈ [0, 1] as well.

The last line in the expression above is actually the same as the one used in Nadaraya-Watson

regression [18, Section 6.1], where the probability estimates p
(t)
ij act as the targets.

The question remains, which kernel function should we use? The most important difference
between the Epanechnikov and Gaussian kernel is that the former has a finite support, meaning
that only training points within a distance λ of the target point are used in the calculation. The
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Gaussian kernel on the other had has infinite support, so every data point will be used. This
means that using the Gaussian kernel can potentially lead to longer computation times compared
to the Epanechnikov kernel. However, when data is sparse it might happen that there are no
training data points within a distance λ away from a new data point x, meaning that ĥj(x) will
be undefined for this point when the Epanechnikov kernel is used. For this reason, the Gaussian
kernel seems a better fit, and it is this kernel function that will be used in experiments using this
method. Bear in mind that when we implement the kernel smoothing method, we need to deal
with finite computer precision, meaning that even when we use the Gaussian kernel, ĥj(x) can be

undefined for some points. In those situations, we will set ĥj(x) = 1
k .

To use these kernel functions, we have to compute the distance between points in the feature
space. This means that the range of values each feature can have greatly affects the value of the
kernel function. To see why this is the case, image we are building a predictive model on a data
set with two features, x1 and x2, with he values of x1 ∈ [0, 10], and the value of x2 ∈ [1000, 10000].
When we compute the distance between any two data points in this dataset, the value of x2 is
going to dominate, and the value x1 will have very little effect! To rectify this, we can scale the
values of the parameters. A simple way of doing this is to subtract the mean value of each column
in the data set from the values in that column, and then divide it by the standard deviation of
the values in the column. This causes the values of all features to be centred around 0, and have
a standard deviation of 1. The result of this is that each feature will have the same importance
when we compute the kernel function value between points.

As discussed by Larry Wasserman, the precise kernel used makes little difference in terms of
estimating a function [39]. What is important is the choice of the bandwidth parameter λ. The
bigger λ is, the more weight we give to training data points far away from the target point, which
leads to a smoother function. This means that λ acts as a regularisation parameter that determines
how smooth the estimate of hj is. If we choose λ too small we risk overfitting the data, while
choosing a value too big can lead to underfitting. At the extremes, choosing λ ↓ 0, we essentially
get back the ”bad” estimate in Expression (2.18). On the other hand, if we were to take λ→∞,
we estimate hj as a constant function.

3.2.1 Discussion

The kernel smoothing method discussed here is nonparametric and we make very few assumptions
about the shape of hj . This has the benefit that the estimation functions can be very flexible,
meaning that it has the potential to model more complicated cluster structures. It does, however,
mean that we do not solve 2.17 outright, and hence are not maximising the complete data likelihood
function. This means we are no longer using the proper EM algorithm, rather we are using a
method that is inspired by it.

The kernel smoothing method does not ”learn” a model, rather it takes some weighted average
of the training data to make an estimate for a new data point. This has the potential of long
computation times during evaluation if the used training data set is large. This method is also
controlled by a regularisation parameter λ, which we need to optimise somehow. Methods that
attempt to do this will be discussed in Section 3.2.3.

To the best of the author’s knowledge, no other method that builds a predictive model by clus-
tering the data a fitting a model to each cluster uses a non-parametric method such as the kernel
smoothing method to cluster the data.
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3.2.2 Example

In a similar way as we did for the logistic regression method, we will now take a look how the kernel
smoothing method performs at estimating the cluster probability functions. For this purpose, we
will again look at the generated data set from Figure 3.3. A regression model is build, using
the Gaussian kernel and k = 2, for three different values for the bandwidth parameter, namely
λ = 0.02 which leads to an overfitted model, λ = 2 which underfits the data, and finally λ = 0.4,
which seems just about right for this data set. The result of this are visible in Figure 3.7. This
example shows that choosing the right value for λ is paramount in making an accurate predictive
model.

To see the what the effect is of the bandwidth of the kernel function, a test set of size 100,000
is generated using the same model as the training data. For various values of λ, the clusterwise
regression model is trained on the training set, and the mean squared error (MSE) is calculated
on both data sets using

MSE(λ) =
1

n

n∑
i=1

(yi − ŷi(λ))2,

where ŷi(λ) indicates the estimate given by the clusterwise regression function with bandwidth
λ. The result of this is visible in Figure 3.8, where the blue line corresponds to the scores of the
training set, the orange line of the test set and the horizontal black line indicates the Bayes score,
the mean squared error calculated on the test set using the Bayes regression function. We see the
MSE of the training set will only decrease as the value of λ gets smaller, but the MSE of the test
set has a minimum which is almost the same as Bayes score.

3.2.3 Choosing the Bandwidth Parameter

We see that the kernel smoothing method is regularised by the bandwidth parameter λ. It is clear
that choosing the right value for λ is very important for making good predictions. But how do
we decide what the best choice of λ is? We want to choose this parameter so that the resulting
predictive model f̂λ minimises the statistical risk R(f̂λ), defined in Equation (1.4). Note that
the distribution PXY is generally unknown, making it impossible to calculate the true risk. It is,
however, possible to estimate the risk with the use of a set of training data. let Dn ≡ {xi, yi}ni=1

denote the available training data. A popular method for estimating the true risk for a given
training set is the use of cross-validation. In this method, the training set is randomly split in
C different ”folds”. Then, the data in C − 1 of these folds is used to train the model. The
mean squared error is then calculated on the data in the remaining fold, giving an estimate of the
expected risk. This procedure is repeated for each fold, giving us C different estimates. We then
take the average of these to get a final estimate which we call the cross-validation score CV .

If we define c : {1, 2, . . . , n} → {1, 2, . . . , C}, an indicator that specifies for each data point to
which fold it belongs to, we can define the cross-validation score CV as

R̂(λ) = CV (f̂ , λ) ≡ 1

n

n∑
i=1

L(f̂
−c(i)
λ (xi), yi),

where f̂
−c(i)
λ denotes the model trained using the data from all but the cth fold. We can then

choose the best value of λ using

λ∗ = arg min
λ

R̂(λ). (3.4)
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(a) The found cluster functions together with the
real cluster functions, for λ = 0.02.

(b) The found regression function together with the
Bayes optimal regression model.

(c) The found cluster functions together with the
real cluster functions, for λ = 2.

(d) The found regression function together with the
Bayes optimal regression model.

(e) The found cluster functions together with the
real cluster functions, for λ = 0.4.

(f) The found regression function together with the
Bayes optimal regression model.

Figure 3.7: The results from making a predictive model using mixture models. The kernel smooth-
ing method with k = 2 and three different values for λ is used to estimate the cluster functions.
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Figure 3.8: Comparison of the mean squared error, computed on both the training and test sets,
for different values of λ. The horizontal black line denotes the Bayes score.

A thing to be aware of when using cross-validation is that it gives a biased estimate of the true
risk. The performance of most predictive modelling methods is dependent on the sample size of
the used training data set. The bigger the sample size, the better the method performs. During
cross-validation, we essentially reduce the size of the the training data set to C−1

C times its original
size, meaning that the cross-validation score is biased upwards. Increasing C will reduce this bias,
but will lead to longer computation times.

A logical limit to cross-validation is to take C = n, where each fold consists of just one sample.
This is often called leave-one-out cross-validation (LOOCV) and it has a minimal bias. The main
drawback of LOOCV is that it can be computationally intensive, because it often requires the
model to be retrained n times using n − 1 training points. Luckily, a more computationally
efficient technique exists in situations where the estimation methods for hj and fθj are linear
fitting methods, that is methods where the training data estimates ŷ can be expressed as

ŷ = L(x)y,

where the matrix L(x) is called the hat matrix [15]. For most linear fitting methods, we can
express the LOOCV estimate ŷ−i, where the sample {xi, yi} is left out of the training data, using

ŷ−i =
1

1− Lii

n∑
l=1
l 6=i

Lilyl. (3.5)

This means that it is not necessary to compute the matrix L−i for each step of the LOOCV
procedure. Unfortunately, even though is also a linear fitting method, the above equation does
not hold for the clusterwise predictive model considered in this Section. However, we can still use
it if the methods to estimate hj and/or fθj are linear fitting methods for which the equation holds.
For kernel smoothing methods (proof is given in Appendix A) and linear regression models [36],
the equation does hold. We can write the estimates of the training data using Equation (2.25) as
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ŷ =

k∑
j=1

ĥj(x)�AβTj

=

k∑
j=1

Kp̂j �A
(
ATW jA

)−1
ATW jy

=

k∑
j=1

Kp̂j �Hjy,

where we use � to denote the componentwise multiplication of two vectors of the same length. K
is the scaled kernel matrix with elements

Kij =
Kλ(xi, xj)∑n
l=1Kλ(xi, xl)

,

p̂j = (p̂1j , p̂2j , . . . , p̂nj)
T and Hj are the hat matrices defined as Hj = A

(
ATW jA

)−1
ATW j .

With this notation, we can find the expressions of the LOOCV estimates as

(3.6)

ŷ−i =

k∑
j=1

1

1−Kii

 n∑
l=1
l 6=i

Kilp̂lj

 1

1− (Hj)ii

 n∑
l=1
l 6=i

(Hj)ilyl


=

1

1−Kii

k∑
j=1

1

1− (Hj)ii

 n∑
l=1
l 6=i

Kilp̂lj


 n∑
l=1
l 6=i

(Hj)ilyl

 .

We can choose a number of different values for λ, run the EM algorithm until the convergence
criteria is met and perform LOOCV to get R̂(λ) and choose the ”optimal” value of λ using 3.4.
However, it might be the case that the value of λ that minimises the estimated risk is different at
every iteration of the EM algorithm. It is therefore also an option to choose the best value of λ
at each iteration. This way we might find a better solution than we would by keeping λ constant.
Of course, this will increase the computation time needed for training the model. A compromise
might be to only compute the optimal value of λ once every few iterations.

Another question is, how do we decide which values of λ to check? We can keep the values
that we check the same each iteration, but perhaps it is better to automatically adapt these
values. During the first few iterations of the EM algorithm, the parameter estimates will change
significantly. This will make it likely that the optimal value of λ of two successive iterations can
potentially also change a lot. On the other hand, for later iterations the parameter values will
only change a little and we suspect that the optimal value of λ also does not change a lot each
iteration.

A possible strategy is to, at iteration t + 1, do a local search around the optimal value found at
at the previous iteration λ(t). A possible set of values to be evaluated are

{
λ(t)

1 + cs
, λ(t), λ(t)(1 + cs)

}
with 0 < c < 1,
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and with

s =

t∑
l=1

(
1{λ(l) = λ(l−1)} − 1

2
1{λ(l) 6= λ(l−1)}

)
,

so that we look at the previous optimal value, one smaller value and one greater value. The
advantage of using this set of estimates for λ is that we can find a very precise estimate the value
that minimises the LOOCV score. s gives a measure of how often we find the same ”optimal”
value of λ. The higher the value of s, the smaller the interval of values of λ that we evaluate. The
negative term in this sum is added to insure that, in the case where the optimal value changes
between successive iterations of the EM algorithm, we do not risk ending up with a ”bad” estimate
because we still allow the distance between checked values to increase. The reason for the extra
factor 1

2 is that we want s to still grow from one estimate of λ to another, that are similar distances

away from the optimal value, which will cause a loop where the two situations λ(l) = λ(l−1) and
λ(l) 6= λ(l−1) keep alternating each other.

3.2.4 Verification

We obviously want to verify that the method discussed above indeed finds the optimal value of λ.
To this end, this method is tested on the synthetic dataset from the previous example, where we
used λ(0) = 0.7 and c = 0.75. The optimal value of λ found this way is 0.286, which if we look at
Figure 3.8 does seem to be around the value that minimises the MSE of the test set.

In Figure 3.9a, we see how the value of λ that the method chooses changes at each iteration. It
seems that for the first few iteration, a small value of λ is chosen. This is probably because during
the first few iterations, the models of the individual clusters do not fit data very well yet, so the
cluster probability functions need to have large fluctuations to capture any structure in the data.
After this initial period, we see the optimal value slowly converge to the real optimal value.

Figure 3.9b shows how the LOOCV score changes per iteration of the algorithm. We see that
for the first few iterations this score barely changes, after which there suddenly is a huge jump.
Finally, after this jump the score slowly converges. It seems that the score does not change much
after about 20 iterations, even though the optimal value of λ has not been found yet. However,
in Figure 3.8 the MSE function of the test set does seem almost constant for 0.2 ≤ λ ≤ 0.4,
which would explain this. We can conclude that the described method of automatically finding
the optimal value of λ does work for this synthetic data set.

3.2.5 Note of Caution

There is an issue with the way we perform cross validation here that is important to note. When
we are fitting a model that can make a prediction about a target value based on some features, it
is very important that no information about the the target value is used as input of the model.
During the M-step of iteration t of the algorithm, we fit a model that estimates the target based

on the features and cluster probability estimates p
(t−1)
ij . Each of these estimates was computed

during the previous iteration of the algorithm using the entire dataset. In other words, the are

function of all data points, i.e. p
(t−1)
ij ({xl, yl}nl=1). When we perform LOOCV, we estimate yr

using ŷ−r given by Equation (3.6), which we see is a function of all p
(t−1)
ij . But this means that

ŷ−r is also a function of the entire dataset, including yr! This means that we build a predictive
model that uses the value we wish to predict as an input. The result of this is that the LOOCV
score computed this way might not have the properties typically enjoyed by the classical LOOCV
score. In particular, it might not be a good estimate of the true risk.
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(a) Progression of the optimal value of λ found via
LOOCV at each iteration

(b) Progression of the LOOCV mean squared error
at each iteration.

Figure 3.9: The results from using the automatic bandwidth selection method for the kernel
smoothing method.

The question remains if this is actually a bad thing. We know that we cannot use the LOOCV
score computed this way as an indicator of how well our predictive model will perform on a new
data set. This, however, is not the reason we calculate these scores. We use them to find the
optimal value of λ, and it can still be used for this purpose if the biases are independent of this
bandwidth parameter. It is hard to verify if this is the case, but based on the example above and
other experiments that have been performed, it does seem to be the case.
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Algorithmic Considerations

Until now, we established a theoretical framework centred around the idea of building a predictive
model under the assumption that there are multiple distinct clusters in the data. We developed
a statistically motivated method of constructing a predictive rule for such data, which splits the
problem in two parts. Firstly, we need to construct a function that can cluster the data based
on the values of the features, and secondly we will need to make predictive model for each of the
clusters. We have already seen some concrete examples of how to perform both parts, and we
have seen that they work for some simple examples using synthetic data.

In order to present a robust and general algorithm that can be used to build a predictive model for a
given data set, however, there are still a number of aspects that we need to consider. Specifically,
we will need to decide how to initialise the method and how to choose the optimal number of
parameters. But firstly, it will be argued that the method we have developed can be used in more
situations than we have until now assumed.

4.1 Modelling Non-Linear Functions

In the introduction of this thesis, we gave as the motivation behind developing clusterwise pre-
dictive models that in some datasets there might be some sort of heterogeneity in the data. There
are a number of sub-groups in the data, and for each of these groups, a different model performs
better at making predictions. Which of these groups each data point belongs to might not be given
in the dataset, and therefore needs to be learned by the method. However, for a given dataset it
might be hard to determine whether or not there actually are any sub-populations, and even if
there are, it does not necessarily mean that a different predictive model needs to be used for each
of these groups. Furthermore, it might be impossible to distinguish the different groups from one
another using only the values of the features. Considering all this, it seems that the developed
method has limited use. The goal of this section is to argue that this is actually not the case. To
use this method, there does not necessarily need to be specific sub-groups in the data.

Clusterwise predictive models can also be used as a general tool to model non-linear relationships
between target and features. To see an example of this, consider the following dataset. Let, for
all i ∈ {1, 2, . . . , n} the relationship between target y and feature x be given by

yi = sinxi + εi,

with εi ∼ N (0, σ). Clearly, a linear model will not perform well on this dataset. If we used
clusterwise linear regression, however, we can essentially break up this data in smaller subsets
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(a) The found cluster probability functions. (b) The found linear models. The colours of the
data points correspond to the linear model it has
the highest inferred probability of belonging to.

(c) The found regression function together with the
Bayes optimal regression model.

Figure 4.1: The results from making a predictive model using clusterwise linear regression. Lo-
gistic regression is used to estimate the cluster probability functions.

that each can be approximated by a linear model. An example of this is shown in Figure 4.1,
where a clusterwise linear regression model with k = 5, using logistic regression to find the cluster
probability functions, is fitted to data that is generated using the equation above for one period,
with σ = 0.2. As we can see, the resulting regression function can approximate the Bayes regression
function, which is obviously given by fBayes = sinx, rather well. Of course, we could have used
polynomial regression with degree 3 for this dataset as well. For datasets with more features
and a more complicated non-linear relationship between target and features, however, polynomial
regression might not perform well, and in those situations using a clusterwise predictive model
might be better.

For comparison sake, let us see how the clusterwise linear regression performs on this dataset
while using the kernel smoothing method to estimate the cluster probability functions. In Figure
4.2, we can see that this leads to very different linear models. The clusters in the data that this
method finds can still be modelled well using linear functions, but they are no longer linearly
separable. One consequence of this that we can see in these figures is that the linear models
can be almost perpendicular to the gradient of the resulting regression function, which for this
dataset means that the final model does not perform well near the boundaries of the range of
the data, as can be seen in Figure 4.2c. This seems to indicate that models that use the kernel
smoothing method to estimate hj might perform badly at extrapolating. These experiments once
again show the difference between logistic regression and the kernel smoothing method when it
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(a) The found cluster probability functions. (b) The found linear models. The colours of the
data points correspond to the linear model it has
the highest inferred probability of belonging to.

(c) The found regression function together with the
Bayes optimal regression model.

Figure 4.2: Each figure corresponds to the linear models that were found in the Iris dataset, for
four different random initialisations.

comes to estimating the cluster probability functions.

4.2 Initialisation

In Section 2.1 we saw that the EM algorithm requires some initial estimate of the parameter
values. If we were to start with the E-step, we would need to have initial estimates of hj(xi) for
all i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . , k}, as well as initial guesses of the model parameters.
For clusterwise linear regression this would be βj and σj for all j ∈ {1, 2, . . . , k}. Alternatively,
we could start the algorithm at the M-step, which means that we only need to have an initial
estimates for pij for all i ∈ {1, 2, . . . , n} and all j ∈ {1, 2, . . . , k}. Because of the need to have
initial guesses for less values, and because the initialisation problem does not change for different
methods to model the clusters, starting with the M-step seems preferable and it is this strategy
that we will henceforth consider.

As is discussed in Section 2.1.1, the EM algorithm finds a local maximum of likelihood function.
This function, however, will likely contain many maxima, and the one the algorithm finds will not
necessarily correspond to the best predictive model. The way we initialise the methods determines
which local maximum and therefore which final predictive model we find, making initialisation an
important aspect of the algorithm. In fact, many initialisations will lead to a bad clustering. An
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(a) (b)

(c) (d)

Figure 4.3: The results from making a predictive model using clusterwise linear regression. The
kernel smoothing method is used to estimate the cluster probability functions.

example of this can be seen in Figure 4.3, where clusterwise linear regression models were fitted to
the Iris dataset visible in Figure 1.1. Each plot corresponds to the linear models that were found
for a different random initialisation. We see that only the models in 4.3 cluster the data in a way
that is similar to the ”true” clustering, which is visible in Figure 1.1b. A bad clustering might
lead to a bad predictive model, which highlights the need to find an initialisation method that
leads to a good final model.

4.2.1 Initial Estimates of the Cluster Probabilities

This does leave us with the question: what method should we use to initialise the EM algorithm?
Since we will start at the M step, we will need initial guesses for pij for all i ∈ {1, 2, . . . , n} and
all j ∈ {1, 2, . . . , k}. There are, of course, many ways of getting these. One solution might be to

set all these probabilities to be equal, i.e. p
(0)
ij = 1

k . The problem with this is strategy is that this
actually corresponds to a stationary point of the likelihood function. When all probabilities are
the same, for each cluster the exact same model will be learned and hence the probabilities that
each data point belongs to the clusters will remain the same. This stationary point, however, is
a very unstable solution as it does not correspond to a local maximum. We can therefore easily
circumvent this by adding a small deviation to each probability. We can, for example, choose

p
(0)
ij = 1

k + εij with εij ∼ Unif(−0.01, 0.01) for 1 6= j < k, and p
(0)
ik = 1−

∑k−1
j=1 pij .
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Another strategy is to make the probabilities completely random. This means that we generate
qij ∼ Unif(0, 1) and normalise them to get probabilities pij =

qij∑k
j=1 qij

. Because the initial clusters

will be quite different, this method might have a decreased chance of finding multiple clusters with
the same model. The large degree of randomness can mean that different initialisation lead to a
very different model and hence a different performance.

It is also possible to pre-cluster the data using a conventional clustering method such as k-means
[18, Section 13.2.1] or hierarchical clustering [18, Section 14.3.6]. These are hard clustering meth-

ods that will assign each data to exactly one cluster, meaning that all p
(0)
ij ∈ {0, 1}. If we want

soft labels, or probabilities of belonging to each cluster, we can use a fuzzy clustering method,
such as fuzzy c-means clustering [2].

We need to remember that the clustering in clusterwise predictive modelling is different from the
way we usually define clustering. In the traditional sense, each cluster is expected to be somewhat
localised and distinct from the other clusters. In the clustering we get using mixture models,
this may not be the case. If we for example look at the dataset in Figure 3.3, we see that the
cluster that is described by the linear model with the negative slope essentially consists of two
separate areas where points are dense. Because of this, these conventional clustering methods will
have a hard time of recognising it as a single cluster. It therefore remains to be seen whether the
clustering found using these clustering methods will lead to a good predictive model.

4.2.2 Estimating Model Performance

In order to compare the models that result from different initialisations, we need some kind of
metric of their performance. We could compare them based on their likelihood scores. This,
however, is not a good strategy as a higher likelihood does not necessarily correspond to a better
predictive model. As a matter of fact, the model that reaches the global maximum of the likelihood
function will typically perform poorly at making predictions. To see why this is the case, imagine
for example that we try to construct a clusterwise linear regression model on a dataset with a

single feature and with k = 2. From Equation (2.22), we can see that limσ1↓0Q
(t)
m1(θ1) will become

infinite when yi = β̂10 + β̂11xi ∀i : pi1 > 0, which will be the case when one cluster contains only
two data points. Obviously, a predictive model fitted to only two data points will typically not
perform well, so a prediction made for a new data point assigned to cluster 1 will often be poor.
It is therefore better to compare models resulting from different initialisations using an estimate
of their risk.

In Section 3.2.3, we introduce the notion of cross validation as a way of estimating the risk
of a model. Unfortunately, using cross validation to compare models resulting from different
initialisations is not a good idea. To see why this is the case, it is important to realise that
the final model resulting from a certain initialisation is inherently connected to the used training
set. If we added or removed some points from the dataset, but kept initial estimate values the
same otherwise, we might get a completely different final model. Applying this concept to cross-
validation, where we split our data set in C smaller sets with C−1

C n points each, it is easy to see
that the models that will be learned on each of these sets can be very different from one another,
and from the model that would be found with the same initialisation values on the entire data
set. This means that the CV scores will not be representative for the risk of the model found for
the entire set.

A possible solution would be to split the available data in two different sets, namely a training set
and a verification set. We can then train a model using the training set, and get an estimate of
their risk by calculating the mean squared error on the verification set.
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4.2.3 Experiments

We will now use this method of splitting the data set in a training and verification set to get an
idea of how the prediction models resulting from the different initialisation methods discussed in
Section 4.2.1 compare. We will once again be using the Iris data set introduced in Chapter 1 for
this. The benefit of experimenting on this dataset is that we know for sure that there are distinct
clusters in the data, namely the three different species of the flower. This dataset contains four
measurements made on 150 different irises, namely the sepal length, sepal width, petal length and
petal width, all in cm. We will be using the first three of these as the features, and the last one,
the petal width, as the target we wish to predict.

The dataset is randomly split in a training and validation set with sizes nt = 100 and nv = 50
respectively. For each initialisation method described above, a predictive model is constructed on
the training set using clusterwise linear regression models using both cluster probability function
estimation methods, with k = 3, the true number of clusters in the data. The mean squared error
is then computed using the verification set. Since the initialisation methods using almost equal
initialisation values and completely random initialisation values contain randomness, we want to
see if there is much difference between different random initial values. The experiments using
these methods will therefore be repeated 50 times.

In these experiments, the k-means and hierarchical clustering implementation from the scikit-learn
library [32]. For the fuzzy c-means clustering, the implementation by Madson Luiz Dantas Dias
[11] will be used.

The results are visible in Figure 4.4, where the found scores of the experiments regarding the
methods containing randomness are summarised by boxplots, with the length of the whiskers a
maximum of 1.5 times the interquartile range. There are a number of things to notice in these
figures. First of all, the scores acquired from using the kernel smoothing method to estimate the
cluster probability functions are on average better than the ones for which logistic regression is
used. This seems to indicate that the three different clusters are not linearly separable. Another
thing to notice is that the range of the found MSE scores is very big. For comparison, the empirical
risk found using the same test/verification split is 0.0342 when fitting a regular linear regression
regression model on the entire training set, and when we fit a linear regression model to each
species of flower separately, we get an MSE of 0.0215. From this we see that the performance
of the models resulting from clusterwise linear regression can range from being much worse than
simple linear regression, to being almost as good as that of linear regression models when the
real clustering is known. This again highlights the extreme importance of the initialisation of the
method.

Another thing to notice is that initialisation via pre-clustering generally leads to good models,
but in both sets of experiments, the best models where actually found using the methods with
randomness in the initialisation. Lastly using almost equal initialisation values seems to, on
average, lead to better models than the completely random initial values.

These experiments have only been conduction on the Iris dataset. However, for all the datasets
on which clusterwise predictive modelling has been tested, the large variance in the performances
of the models that are acquired with different initialisations has been observed. It seems that the
more features the dataset has, the greater this variance is. In the Example in Figure 4.3, shows
how different initialisations can lead to different clusterings. Nevertheless, in that example only
one feature of the data is considered, and all four initialisations will lead to rather similar final
model. In Chapter 6 we will look at some datasets that contain up to 13 features, and there a
very large variance in performances have been observed. Some models fit to those datasets had
empirical losses found on the validation set that were multiple orders of magnitude greater than
that of the best model. Unfortunately, it is hard to make figures that shows two very different
final models, that are acquired from two similar initialisations, as this only happens for high
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(a) Using logistic regression to estimate the cluster
probability functions.

(b) Using the kernel smoothing method to estimate
the cluster probability functions.

Figure 4.4: The results from trying different methods of choosing initial cluster probabilities. The
experiments using near equal and completely random initial probabilities are repeated 50 times, and
their results are given by boxplots.

dimensional datasets.

4.2.4 The Initialisation Strategy

From these experiments, it seems that there is no clear best strategy in regards to choosing initial
estimates for each pij . The wide range of empirical risks found underlines the importance of being
able to verify the model performance.

A general strategy to find a good initialisation can be as follows. First, randomly split the available
data in a training and a validation set. Secondly, train a number of models on the training set using
different initialisations. Pre-clustering can be good first choices for this, followed by initialisation
with a near equal probabilities. Lastly, choose the model that has the lowest mean squared error
computed on the validation set. Testing a larger amount of initialisations, of course, increases to
probability of finding a good model, but will increase computation time. It is therefore up to the
practitioner to decide how many initialisations they want to check.

It is important to note that the empirical risk calculated on the validation set of our final model
is a biased estimator of the true risk, since we have tested multiple models on this data set. To
see why this leads to a bias, see for example the explanation by Brownlee [7]. To get an unbiased
estimate of the risk, we would need a third independent data split, called the test set. This means
that we would need to split our original data set in three different parts, the training set to train
the models, the verification set to choose the best initialisation, and the test set to assess the
performance of our final model. When we only have a small amount of data available to us, this
method might not be ideal, since the three resulting datasets can be very small and might therefore
not be a good representation of their population.

4.3 Finding the Optimal Number of Clusters

An important parameter of clusterwise prediction models, and of all methods that cluster the
data in some way, is the number of clusters k. In the context of mixture models, it is easy to see
that this parameter controls the complexity of the model. The more clusters we have, the more
structure in the training set we can capture. This means that, were we to choose a high value for
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k, we risk overfitting. On the other hand, choosing k too low can result in underfitting the data.
It is clear that k is a regularisation parameter.

The question remains, how do we choose the best number of clusters? Since it is such an important
issue, a great deal of research has already been conducted towards answering it [28]. When mixture
models are used for the purpose of density estimation, the Bayesian-Schwarz Information Criterion
(BIC) [35] is often used to choose the number of clusters, because under mild conditions, it does
not underestimate the true number of clusters asymptotically [22]. Furthermore, Roeder and
Wasserman have shown that a density estimate that uses the BIC to select the number of clusters
is consistent [34].

For the other popular use of mixture models, clustering the data, there does not seem to be a
consensus. In cluster analysis, the way the data gets clusters is very dependent on the goal one
wishes to accomplish with the clustering. Hence, it is hard to come up with one technique that
will work for all goals. Some methods that are commonly used penalised likelihood methods such
as the AIC and the BIC, likelihood ratio tests and the use of cross-validation. However, these
methods are not ideal for the use in clusterwise predictive modelling. As is discussed in Section
4.2.2, the likelihood of the model is not representative for the performance of the model at making
predictions, making any method that relies on it, such as the likelihood ratio test or information
criteria such as the AIC, not ideal. In that same section it is also argued that cross-validation
leads to problems, since the models found on each fold can be vastly different. For this reason, it
is likely a good idea to have a separate training and validation set, and use the empirical risk to
choose the optimal value of k

We could find the optimal value of k per iteration. One way of doing this would be, at iteration
t with current estimate of the optimal number of clusters k(t), see if k(t) + 1 or k(t) − 1 clusters
leads to a better model. This means that one needs to split one cluster into two, or merge two
of them. Both approaches raise some difficulties. When splitting one cluster into two, we need
to decide what part of the weight of each data point that the parent cluster has goes to each
child cluster. There does not seem to be an easy way to do this, and dividing up this weight
randomly between the new clusters seems unlikely to lead to a better model. On the other hand,
when we merge two clusters we can simply give the new cluster the combined weight of the two

original clusters for each data point. The problem, however, is that this requires us to check
(
k(t)

2

)
different combinations each iteration, which can greatly increase the required computation time.
The choice is therefore made to run the whole EM algorithm for different values of k, and choose
its optimal value based on the mean squared error computed on the validation set.

In the strategy for choosing the optimal initialisation values outlined in Section 4.2.1, we split the
available data in a training, validation and test set. We can easily modify this strategy by testing
models with different initialisations and different values of k. We then assess the performance of
each model on the validation set and choose the model which the best performance. Finally the
test set can be used to get an unbiased estimate of the statistical risk of the final model.

4.3.1 Experiments

We want to test this strategy, and to this end we will once again run a number of experiments
on the Iris data set, using the same training/validation set. Clusterwise linear regression models
are once again build using both methods of estimating h(x). The experiments are repeated with
different initial values, first using the three clustering methods described in Section 4.2.1 and
after that, 50 times with the method using near equal cluster probabilities, also described in that
section. These sets of experiments are performed for 2 ≤ k ≤ 8. The results can be seen in Figure
4.5, which shows the best MSE found on the verification set using all resulting models, for each
value of k separately. The found MSE using regular least squares linear regression is also included
in these figures at k = 1, since this corresponds to having all data in the set be in the same cluster.
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(a) Where the cluster probability functions are es-
timated using logistic regression.

(b) Where the cluster probability functions are es-
timated using the kernel smoothing method.

Figure 4.5: The best mean squared error found on the verification set for different numbers
of clusters k, for both methods of estimating the cluster probability functions. The experiments
are repeated using different initialisation methods, and the best scores for each value of k are
presented in these graphs. The scores found for k = 1 result from using ordinary least squares
linear regression on the entire dataset.

Since k is a regularisation parameter, we expect that, as k increases, the risk of the models initially
decreases, and after reaching a minimum to start increasing. This pattern can indeed be seen in
these figures. For the experiments where logistic regression is used, it is more clear than for
the ones using the kernel smoothing method. The most likely reason for this is that the cluster
probability functions that result form the kernel smoothing method can be more flexible, meaning
that there can be very small clusters in the data for which the value of hj(x) is low for all x ∈ X ,
meaning that they have only little effect on the risk of the model.

These experiments seem to confirm that the strategy to find the optimal number of clusters
outlined above makes sense. A practitioner can, for example, start with k = 2, test multiple
different initialisations and choose the model with the best empirical risk. Then, repeat this
procedure for k = 3, k = 4, etc. When the empirical risk of the best model stops decreasing, or
starts increasing, the optimal value of k will be known. Of course, the found value of k might
correspond to a local minimum, so it remains to the practitioner’s discretion to decide how many
values they want to test before they can conclude when the optimal value has been found.
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General Algorithmic Approach

Our goal is to construct an algorithm that can build a predictive model on any given dataset.
The goal of this chapter is to give the general framework of this algorithm. It will be a framework
rather than a complete algorithm, because its users can decide what class of cluster probability
functions H and predictive models G they want to use. The strategy derived in the previous
chapter will enable us to choose the most important parameters of the method automatically, and
will be part of this framework.

5.1 Using General Loss Functions

The body of the algorithmic framework will be similar to that of the EM algorithm that finds the
parameters in a mixture distribution, described in Section 2.1.2. The derivation of that algorithm
was statistical in nature, and relied on the class of predictive models G to be regression functions
that are defined as the expectation of the target Y , given the features X. This means that the
underlying conditional probability density functions of Y given X need to be known.

In the predictive modelling literature, however, there are a great number of methods that do not
rely on some conditional probability distribution to build a predictive model, but rather do this
by minimising the empirical risk function outright. If we want to use any of such methods in
this algorithm, we cannot use Equations (2.12) and (2.16), meaning that we need to adjust the
iterative method described in Section 2.1.2 to allow us to use a loss function to find new estimates
p
(t+1)
ij and g

(t+1)
j based on the current estimates p

(t)
ij and g

(t)
j . h(t+1) will still be found based on

h(t) using Equation (2.17) or using the kernel smoothing method.

Let Lmodel : Y × Y → R be the loss function that determines the performance of the predictive
model gj(x) in cluster j. We can now adjust Equations (2.16) by realising that the loss function
that is implicitly being used in those equations is the negative log likelihood, in other words
Lmodel(gj(xi), yi) = − log vθ(yi |xi). We could easily use a different loss function within this
equation, resulting in the optimisation problem

g
(t+1)
j = arg min

g∈G

(
n∑
i=1

p
(t)
ij Lmodel(g(xi), yi)

)
,

which is equivalent to a weighted empirical risk minimisation. This also means that we can use a
clusterwise prediction model for classification problems, we just need to use the appropriate loss
function. We can use the same relation between the conditional PDF and the loss function to

40 Predictive Modelling via Simultaneous Model Fitting and Clustering



CHAPTER 5. GENERAL ALGORITHMIC APPROACH

change Equation (2.12) to

p
(t+1)
ij =

h
(t+1)
j (xi)e

−Lmodel(g
(t+1)
j (xi),yi)∑k

l=1 h
(t+1)
l (xi)e

−Lmodel(g
(t+1)
l (xi),yi)

.

After the algorithm has converged, we can construct a final prediction rule f̂(x). If the loss
function used as a metric of the model performance is convex in its arguments, the prediction rule
in Equation (1.7) can be used. If it is not, it might be better to make predictions based on the
cluster with the highest probability, i.e. use

f̂(x) = ĝj(x), ∀l : hj(x) ≥ hl(x) (5.1)

We also saw an example of estimating the cluster probability functions that does not use Equation
(2.17), namely the kernel smoothing method. It is unclear if the kernel method can be interpreted
as a minimiser of empirical risk, and if so, what loss is implicitly being considered. Nonetheless,
this shows that even for estimating h we are not restricted to using only the likelihood function.

We can write the total loss, which will call the clusterwise prediction loss LCP, after iteration t of
the algorithm as

LCP(f (t)(xi), yi) =

k∑
j=1

p
(t)
ij log h

(t)
j (xi) +

k∑
j=1

p
(t)
ij Lmodel(g

(t)
j (xi), yi)

meaning that the empirical clusterwise prediction risk at that iteration is given by

R
(t)
CP(f) =

1

n

n∑
i=1

 k∑
j=1

p
(t)
ij E

[
log h

(t)
j (xi)

]
+

k∑
j=1

p
(t)
ij E[Lmodel(g

(t)
j (xi), yi)]

 .

This is the empirical risk that is being optimised at each M-step by the algorithm. This will
generally be different from the empirical risk that uses the loss function we wish to optimise
L(ŷ, y). For this reason, and using the same arguments as in Section 4.2.2, the value of this
empirical risk cannot be used to assess the true performance of the predictive model.

5.2 The Algorithmic Framework

We now have all the pieces in place to summarise the entire algorithmic framework in detail.

1. Choose a class of predictive models G with a respective loss function Lmodel, and a class of
classification models H. Furthermore, choose a loss function that is to be used to assess the
final predictive model L.

2. Split the dataset in a training set Dτ = {(xi, yi)}nτi=1, and a validation set Dv = {(xi, yi)}nvi=1

3. Choose an initial k, such as k = 2.

4. Choose an initialisation. Either pre-cluster the data using an existing clustering method or

choose p
(0)
ij = 1

k + εij with εij ∼ Unif(−0.01, 0.01) for 1 6= j < k, and p
(0)
ik = 1−

∑k−1
j=1 pij .
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5. Compute for all j ∈ {1, 2, . . . , k}

g
(t+1)
j = arg min

g∈G

(
nτ∑
i=1

p
(t)
ij Lmodel(g(xi), yi)

)
.

6. Compute

h(t+1) = arg max
h∈H

 nτ∑
i=1

k∑
j=1

p
(t)
ij log hj(xi)

 .

7. Compute for all i ∈ {1, 2, . . . , nτ} and all j ∈ {1, 2, . . . , k}

p
(t+1)
ij =

h
(t+1)
j (xi)e

−Lmodel(g
(t+1)
j (xi),yi)∑k

l=1 h
(t+1)
l (xi)e

−Lmodel(g
(t+1)
l (xi),yi)

.

8. We can use the empirical clusterwise prediction risk on the training set to determine whether
the algorithm has converged or not. To this end compute

R
(t+1)
CP,t (f

(t+1)
kl ) =

1

nτ

nτ∑
i=1

 k∑
j=1

p
(t+1)
ij log h

(t+1)
j (xi) +

k∑
j=1

p
(t+1)
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 .

9. Go back to step (5), and repeat until the empirical risk on the training set no longer decreases,
or until the maximum number of iterations has been reached. After this, we can construct
a predictive model using Equation (1.7) or (5.1). Denote this final model by f̂k1, f̂k2, etc.

10. Go back to step (4), and repeat for the desired number of initialisations to be checked.

11. For all the constructed models, compute the empirical risk on the validation set using

R̂v(f̂kl) =
1

nv

nv∑
i=1

L(f̂kl(xi), yi),

and select the model the model with the smallest empirical risk

f̂k = arg min
f̂kl

R̂v(f̂kl).

12. Choose a different value for k, such as knew = kold + 1. Repeat the entire procedure for this
new k, beginning from step (4).

13. We can stop and say we found the best model when the empirical risk stops dropping for
higher values of k, i.e. when

R̂v(f̂kold) > R̂v(f̂knew).

We can now choose the best model using

f̂ = arg min
f̂k

R̂v(f̂k).

This algorithm does not specify how to perform steps (5) and (6), hence it should be viewed as a
framework for an algorithm rather than a complete algorithm.

Of course, there are are many possible adjustments that could be made. For example, the desired
value of k might be known beforehand, meaning that we do not need to check multiple values.
It might be naive to stop the algorithm when R̂v(f̂k) starts increasing, as it might again start
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to decrease for even bigger values of k. It is therefore likely a good a idea to check more values
of this parameter to see the overall trend. In low dimensional problems, or when k is small, it
can be possible that different initialisations will always lead to the same model. This was, for
example, observed in the data visible in Figures 3.1 and 3.3. In those situations, it is obviously
not necessary to build multiple models with different initialisations.

We can see that this model is not particularly efficient. It requires many different models to be
constructed on the dataset, and most of these will be ”thrown away”. It is therefore advised to
have the classes of models G andH to be relatively simple, and preferably have analytical solutions,
as this will greatly reduce the computational load. As we saw for the kernel smoothing method,
if the models of the individual clusters, or the cluster probability functions themselves, contain
hyper-parameters to be tuned, cross validation can be used to adaptively find their optimal value.
This cross-validation, however, can also increase computational times a lot, meaning that methods
that contain such hyper parameters might not be ideal.

A huge factor in determining the computational cost necessary to perform the algorithm in its
current form, is the amount of initialisations that are checked. Obviously, the more we check the
greater the probability is that a good initialisation is found, but also the greater the computational
times will be. This naturally leads to the question, how many should we check? There does not
seem to be concise answer to this question. From experimenting with this algorithm, it seems the
the variance in performance of the models acquired from different initialisations is greater when
data is sparse, the feature space is high dimensional and when k is big. Perhaps an adaptive method
that chooses the amount of initialisations to be checked bases on the distribution of performance
of the models can be used. This, however, has not been tested in this final project.

5.2.1 Ensemble

The great amount of randomness in models produced by different initialisations make clusterwise
predictive models great candidates to be used as the individual learners within a learning ensemble
[33]. The principle idea behind building an ensemble is that we can combine many different
predictive models to get better better estimates than is possible using any of the individual models.
Perhaps the simplest form of a learning ensemble in a committee, in which we take the unweighted
average of the members of the committee (f̂1, f̂2, . . . , f̂m). In other words, the ensemble model
estimate of feature x is

f̂ensemble(x) =
1

m

m∑
i=1

f̂m(x).

Since in the algorithmic framework above we are already required to build multiple different
models, creating an ensemble does not increase the computational load much, unless of course we
want to include more models in our ensemble.

How do we decide which models to include in our committee? We know that some of the clusterwise
predictive models that are learned on the training set will perform very poorly on an independent
validation set. We can use as a simple heuristic to include only models that perform better at
prediction that regular linear regression does, that is have a lower empirical risk calculated on the
validation set than the linear regression model that is trained on the training set. The idea behind
this heuristic is that we expect any ”good” clusterwise predictive model to perform at least better
at making predictions than regular linear regression would.
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5.3 Regression Trees

Now that we have the general algorithmic framework complete, we can see how it works using a
method to model the individual clusters other than linear regression. The choice is made to test
regression trees. In this method, the feature space is split inM rectangular regions R1, R2, . . . , RM ,
and the prediction rule for a data point is given by

ĝ(x) =

M∑
m=1

cm1{x ∈ Rm},

e.g. all data points that fall in the same region get the same prediction. The value of cm that will
minimise the squared error loss is equal to the average value of the targets of the data points in
the training set that fall in region m, in other words

cm = ave(yi |xi ∈ Rm).

An example of this can be seen in Figure 5.1. For a more detailed description of this method, and
a way of constructing a regression tree on a data set see, for example, The Elements of Statistical
Learning [18, Section 9.2.2].

Regression trees are a popular method for predictive modelling. They are intuitive and easy to
understand, even for non-experts. Furthermore, they can handle both numerical and categorical
data, are scalable to large datasets, can handle outliers and missing data, and relevant features are
automatically selected. A drawback, however, is that their performance is often not great. This is
in part due to the non-smooth nature of the regression functions they produce, which can be seen
in Figure 5.1. When regression trees are used in a clusterwise predictive model, smooth transitions
between different trees can be made, which should make the resulting regression functions smoother
and, hopefully, achieve a better performance than is possible with a single tree.

5.3.1 Regularisation

Regression trees are regularised by their size, i.e. by the amount of regions M the feature space
is divided in. Obviously, choosing a good value for this parameter is very important for making
predictions. Just like the bandwidth parameter λ in the kernel smoothing method, we can choose
the optimal value of M adaptively, at each iteration of the algorithm. This will again be done by
comparing the cross-validation score as a metric for the model performance for different values of
M , and selecting the value that minimises this score.

Since the kernel smoothing method is a linear fitting method, a computationally efficient method
for doing leave-one-out cross-validation exists. A regression tree is not a linear fitting method, and
hence the method described in Section 3.2.3, unfortunately. For this reason it is probably better
to use C-fold cross-validation on bigger datasets. On iteration t+ 1 of the algorithm, we can do a
local search around the optimal value found at the previous iteration. A possible set of values to
check is thus

{M (t) − 1,M (t),M (t) + 1}.

When regression trees are used in a clusterwise predictive model in combination with the kernel
smoothing method to estimate the cluster probability functions, the optimal value of both λ and
M will need to be found. This means that, at each iteration, 9 combinations of parameter values
will need to be checked, which will have quite an effect on the computation cost.
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Figure 5.1: An example of a regression tree. The upper left image shows a partitioning of
the feature space that is not possible to get with a regression trees, since the regions are not all
rectangular in shape. The upper right image shows a partitioning that is possible to get. The lower
left image shows how the partitioning of the feature space can be represented by a tree structure.
The lower right image shows the final prediction model for this regression tree. Reprinted from
The Elements of Statistical Learning by Hastie et. al. [18].
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5.3.2 Example

We will now test the clusterwise predictive model that uses regression trees to model the individual
clusters on the synthetic dataset visible in Figure 3.3. Both logistic regression and the kernel
smoothing method will be used to estimate the cluster probability functions, using k = 3. The
regression tree implementation from the scikit-learn library [32] will be used, which uses the CART
algorithm [6] to construct the trees. This implementation allows the user to give sample weights
to data points, meaning that weighted empirical risk minimisation is possible. For convenience
sake, the size of the tree will be determined by a single parameter, namely the amount of regions
M the feature space is split in, controlled by the max leaf nodes parameter in the scikit-learn
implementation. The adaptive method to find its optimal value described above will be used.

The results from using logistic regression are visible in Figure 5.2. We see in Figure 5.2b that
the three regression trees seem to divide themselves over the point cloud, but each tree does
cover it for the entire domain. The result of this is that no distinctive clusters can be found
that can be modelled using logistic regression functions. We see in Figure 5.2a that the found
cluster probability functions are almost horizontal lines, with almost the same value for all three
functions. This means that the final predictive model, visible in Figure 5.2c is essentially the
unweighted average of the three trees, which results in a regression function very similar to a
regression tree with M = 10, instead of the smooth functions we hoped for. We have to conclude
that building a clusterwise predictive model using regression trees in combination with logistic
regression does not produce something that is very distinct from what can be achieved by building
a single tree to the data.

So what about using this method in combination with the kernel smoothing method to estimate the
cluster probability functions? The result of that experiment can be seen in Figure 5.3. As we can
see, the individual regression trees have a very similar structure as before. The found probability
cluster functions, however, are now completely different. These functions are all over the place,
and we can no longer distinguish distinct clusters in the data. Nevertheless, these functions do
cause smoother transitions between the different regions in the feature space, meaning that the
final regression function is smoother than it would be when a single regression tree is used. As can
be seen in Figure 5.3c, the final model is relatively smooth, and approximates the Bayes optimum
function quite closely.

5.3.3 Discussion

We have seen that when a clusterwise predictive model is build using linear functions as the
building block model, each individual function typically models part of the data well, and the rest
not. This means that the feature space gets divided in distinctive regions, each in which a different
function is used to model the data. The cluster probability functions determines the location of
the regions, and also ensures smooth transitions between them. When regression trees are used
as the basis function, however, the interpretation of the final model becomes very different. The
k trees seem to divide themselves over the range of the target value for the entire domain of the
features. This means that we can no longer talk about distinctive clusters that are found in the
data. In this scenario, the cluster probability functions determine, for each x ∈ X , in what ratio
the average of the trees should be taken as to minimise the chosen loss function. This requires
very flexible functions, meaning that logistic regression cannot be used. The kernel smoothing
method, on the other hand, seems appropriate for this task.

The result of this is that clusterwise predictive models that using regression trees are not as
interpretable as ones that use linear functions, or even as single regression trees. These models
should therefore be considered to be black-box s. Nevertheless, their performance at predicting is
what we care about most, and how well they do at that will be looked into in the next chapter.
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(a) The found cluster probability functions. (b) The found regression trees.

(c) The resulting regression function together with
the Bayes optimal regression model.

Figure 5.2: The results from making a clusterwise predictive model using regression trees to model
the individual clusters. Logistic regression is used to estimate the cluster probability functions.
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(a) The found cluster probability functions. (b) The found regression trees.

(c) The resulting regression function together with
the Bayes optimal regression model.

Figure 5.3: The results from making a clusterwise predictive model using regression trees to model
the individual clusters. The kernel smoothing method is used to estimate the cluster probability
functions.
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It seems that in the literature of methods that build a predictive model by clustering the data
and than model each clusters, the use of regression trees has not before been suggested to fit to
the individual clusters. However, a number of popular predictive modelling methods exist that
combine multiple decision trees into a single model. For example, the random forest, which is the
average of a large number of trees that are each fit to a bootstrap sample of the training set, often
using a subset of the available features [5].
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Chapter 6

Assessment of Performance

We have developed a general algorithmic framework that enables us to build a clusterwise pre-
dictive model for a given dataset. Throughout this thesis, we have seen a number of experiments
performed on simple datasets, were this general method is shown to work well. Of course, we want
to know how well this method works for more complicated, real world datasets. In particular, we
want to see how its performance compares to that of other methods that in some way cluster the
data and build models for each cluster, like the ones discussed in Section 1.2, as well as some other
popular predictive models. The decision was made to test this method on the three open datasets
that are also used in the paper by Gitman et. al., who tested various versions of the Predictive
CLR and Constrained CLR methods they developed, as well as the k-planes regression method
[24]. Those three datasets are the Boston Housing [17], the Abalone [30] and the Auto-mpg [37]
datasets.

6.1 Datasets

The three used datasets are all publicly available through, e.g., the UCI Machine Learning repos-
itory [13]. The Boston Housing set contains data on 506 neighbourhoods in various areas around
the city of Boston. It contains 13 features, and the target value is the median house price of the
neighbourhood. The Abalone dataset contains data from a study conducted towards abalones, a
type of mollusc with a peculiar ear-shaped shell lined of mother of pearl. It contains 4177 data
points with 6 numerical features and one categorical one, namely the sex which can be ”male”,
”female” or ”infant”. This last feature will be encoded with two dummy variables, one for ”male”
and one for ”female”. The target value is the amount of rings in the shell, which is an indicator
of the age of the abalone. The last data is the Auto-mpg dataset which contains data on 398
types of cars. The target value is the fuel consumption of the car, measured in miles per gallon.
There are 8 features, one which is the name of the car which we ignore, since it is unique for each
instance. One of the remaining 7 features is the origin of the data. Apparently, data comes from
three different sources. Again, two dummy variable will be used to encode this categorical feature.
This dataset contains 6 missing values in the ”horsepower” column. Their values are imputed
with the median value of this column, which is 93.5. This is perhaps a naive way of dealing with
this missingness, but since there is so little missing data, this simple solution is likely adequate.

As is discussed in Section 3.2, we will scale all features by subtracting the mean and dividing by
the standard deviation. Each dataset will be randomly split in a training set, validation set and
test set with sizes equal to 50%, 25% and 25% of the data respectively.
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6.2 Experiments

We will now test on these datasets the performance of the three clusterwise predictive modelling
methods that have been discussed throughout this thesis, namely the ones that use linear regression
to model the individual clusters, both using logistic regression and the kernel smoothing method
to estimate the cluster probability functions, and the version using regression trees to model
the individual clusters and the kernel smoothing method for the cluster probability functions.
Furthermore, we will test ensemble versions of all of these methods.

We will compare the performance of the clusterwise predictive models to that of a number of pop-
ular regression methods. Firstly, we want to test how their performance compares to their building
block methods, that is ordinary least squares linear regression and regression trees. Furthermore,
we will test random forests, k-nearest neighbours [18, Section 2.3.2] and support vector regression
(SVR) [12]. For all of these methods, except for linear regression, the implementation from the
scikit-learn library will be used. The optimal hyper-parameters of these methods will be found
using a grid search, where for each parameter combination in the grid the model will be build on
the training set and their performance is assessed on the validation set. Finally, for the model
with the best performance, the empirical risk is calculated on the test set.

For the regression tree and random forest method, the parameters that will be optimised are the
maximum number of regions to divide the feature space in, the minimum number of samples that
each region needs to contain and, for the random forest method, the number of features considered
when constructing the individual trees. Furthermore, in the random forest method the number of
trees is set to 100. In the k-nearest neighbours method, the parameters used in the grid search
are the amount of neighbours k, and p, the coefficient in the Minkowski distance used to find
the k nearest neighbours. Furthermore, data points are weighted by the inverse of their distance.
The parameters that are found for the support vector regression method are ε, the threshold
parameter, where the loss between the true target y and prediction ŷ scales linearly if |ŷ − y|> ε,
and is 0 otherwise, and C, the regularisation parameter that gives a squared L2-norm penalty to
|ŷ − y|−ε, if this difference is greater than 0. All other parameters in these methods are kept at
their defaults. The optimal parameter values that were found this way are given in Appendix B.

An important part of the algorithmic framework is to test multiple different initialisations. Each
non-ensemble clusterwise predictive modelling method will be initialised using the three pre-
clustering methods discussed in Section 4.2.1, alongside a number of random initialisations. Be-
cause the computational times needed to construct the models is much greater when the kernel
smoothing method and/or regression trees are used compared to when logistic regression or re-
gression trees are used, the decision is made to test different amounts of random initialisations
for the methods. For the methods using linear models and logistic regression to estimate the
cluster probability methods, 50 random initialisations are checked. For the other two methods,
10 are checked except for the tree based method tested on the Abalone data set, for which only 5
random initialisations are checked. These experiments are repeated for different values of k, until
the value of this parameter that yields the best performance on the validation set is found. For
the ensemble based methods, a larger number of models are fitted using different initialisations
for the found best value of k. Again, the three pre-clustering methods and a number of random
initialisations are used. For the clusterwise linear regression methods, 200 random initialisations
are used, except for the version using the kernel smoothing method, where only 100 are made
for the Abalone dataset. For the tree based method, 100 random initialisations are used for the
Boston housing and Auto-mpg sets, and 50 for the Abalone dataset.

Gitman et. al. [16] used these same datasets to test the performance of their Predictive CLR
method, both using logistic regression and random forest to cluster data, and their constrained
CLR method as well as the k-plane regression method. They also tested ensemble versions of
all these methods. Furthermore, they also tried random forests, support vector regression and
ordinary least squares linear regression. They used a grid search to find optimal parameter values,
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Table 6.1: The results of the experiments conducted to assess the performance of the different
clusterwise predictive models. For three different datasets the found mean squared error computed
on the test set for the best model found using each method are presented. The ”method” column
denotes which version of the clusterwise predictive modelling methodology is used, with ”Linear”
and ”Tree” denoting whether linear regression of regression trees are used to model the individual
clusters, and ”Logistic” and ”Kernel”denote whether the cluster probability functions are estimated
using logistic regression or the kernel smoothing method. Furthermore, the results acquired form
using a number of popular regression models on these datasets is also included. The best results
for each dataset, both from clusterwise predictive models and from the other methods, have been
highlighted.

Method Boston housing Abalone Auto-mpg

Linear/Logistic 17.79 4.448 9.547

Linear/Logistic Ensemble 13.07 4.320 9.171

Linear/Kernel 17.29 5.006 9.073

Linear/Kernel Ensemble 15.85 4.963 8.966

Tree/Kernel 15.12 7.917 14.42

Tree/Kernel Ensemble 14.14 8.597 12.71

Linear regression 22.52 5.044 11.07

Regression Tree 18.72 6.057 12.32

Random Forest 11.00 4.947 11.56

k-nearest neighbours 22.86 5.790 11.73

SVR 13.27 4.607 10.96

Table 6.2: The optimal number of clusters k found on all datasets, for all the non-ensemble
clusterwise predictive models.

Method Boston housing Abalone Auto-mpg

Linear/Logistic 5 10 3
Linear/Kernel 3 4 6
Tree/Kernel 4 4 6

using 5 repetitions of 10-fold cross validation. Since they did not test the final models on an
independent test set, however, their reported values have a bias. They also do not mention how
they initialise their method, other than saying that it is ”random”. Nevertheless, we can use the
values they report as an indicator of how our methods compare to theirs.

The found mean squared errors of the best model found for each method, computed on the test
set, for all three datasets, are presented in Table 6.1. The optimal amount of clusters that were
found for each method, for each dataset, are given in Table 6.2. Figures showing the lowest mean
squared error found on the validation sets for different value of k have been included in Appendix
B. This appendix also contains the amount of models that are included in each of the tested
ensembles.

52 Predictive Modelling via Simultaneous Model Fitting and Clustering



CHAPTER 6. ASSESSMENT OF PERFORMANCE

6.3 Discussion of Performance

There are a number of things that we can learn from these results. First of all, building an
ensemble of different clusterwise predictive seems to increase the performance of the method most
of the time. This difference does seem to vary between datasets. For the Boston housing set, the
difference is the most substantial. The effect seems to be least significant on the Abalone dataset,
for which the performance of the tree based method actually decreased when using an ensemble.

Another thing to notice is that there is no clear winner between the three different clusterwise
predictive modelling methods we tested. In fact, on each dataset a different method led to the best
performance. This seems to indicate that the dataset is quite important in regard to how well each
method performs. We can also see that the performance of the basic predictive model can be an
indicator of the performance of the mixture model that uses it. On the Boston housing set, where
a single regression tree led to a lower mean squared error than linear regression, the tree-based
clusterwise predictive models performed better than the linear model-based methods. These last
models, however, performed better on the other two data sets, on which linear regression led to a
better performance compared to a single regression tree.

We can also see from these results that the clusterwise predictive models have a good performance
overall, when we compare it to the popular regression techniques. On the abalone and Auto-mpg
sets we can see that some versions of clusterwise predictive models achieved a better performance
than all of these conventional methods, and on the Boston housing set only Random Forest and
SVR performed better. This seems to indicate that clusterwise predictive models are quite powerful
and useful.

If we compare the results from the experiments conducted for this thesis with the ones from the
paper by Gitman et. al., we see that the results are quite comparable. This is not very surprising
since our methodologies share a lot of similarities. Only on the Boston housing do the experiments
conducted by Gitman et. al. result in significantly better performance. We do have to keep in
mind though that our methods of testing the algorithm differ somewhat, meaning that the results
cannot be compared one-to-one. Overall, we cannot conclude that either of our methodologies of
constructing a predictive model is significantly better than that of the other, but the algorithmic
framework we developed is more flexible.

6.4 Interpreting the Final Models.

A big advantage of clusterwise predictive models that use linear regression as basis function to fit
to the clusters is that they are interpretable. The data points get clustered in groups for which
the same predictive model fits the data well. We expect that the members of each cluster are in
some way similar to one another. In the introduction of this thesis way gave as motivation behind
researching these methods that there might be some sub-populations in the data. This means
that, when we fit a clusterwise predictive model, looking at the clusters that are found and their
corresponding linear model, we might be able to recognise these sub-populations and perhaps gain
some insight about how they differ from one another, and what the important features of each
of these are. Of course, as is argued in Section 4.1, the different clusters that are found do not
necessarily all correspond to a sub-population.

In this section we will take a closer look at the final models acquired using clusterwise linear
regression to see if we can gain any of such insights for the datasets that we have studied. The
found parameter values as well as the average feature and target values and the size of each cluster
are given in tables in Appendix B. Here, data points are assigned to a cluster when they have the
greater inferred probability of belonging to that cluster than to the other clusters. As we saw in
Section 5.3, the interpretation of the method that uses regression trees to model the individual
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clusters is quite different, and it seems that this method is not very interpretable. The models
found using this method will therefore not be looked at here. Note that, since the main interest
in this final project is making predictions, these analyses of the acquired models are not very
extensive.

6.4.1 Boston housing

For the Boston housing dataset, using logistic regression to estimate the logistic regression func-
tions, five clusters were found. Cluster 1 contains, on average, the neighbourhoods with the
highest median value of homes. It contains neighbourhoods with low crime rate, little industry,
and houses with large amounts of rooms. We can see that the value of the ”chas” parameter,
which corresponds to a dummy variable indicating whether or not the neighbourhood is next to
the Charles River or not, is very high for this cluster. However, non of the neighbourhoods that
have the greatest inferred probability of belonging to this cluster are located next to this river,
meaning that this parameter is not very significant. We can also see that the parameters concern-
ing crime rate and average number of rooms per dwelling have a larger magnitude for this cluster
than for the others. Clusters 2, 3 and 4 correspond, on average, to neighbourhoods that contain
lower valued houses. We can see that the found absolute parameter values are generally lower
than for Clusters 1 and 5, which contain more expensive neighbourhoods. This seems to indicate
that there is a greater variance in median value of a house between richer neighbourhoods than
between poorer ones. The price of neighbourhoods in Cluster 5 seems to be influenced the most
by the accessibility to radial highways, the proportion of residential land zoned for lots over 25,000
sq.ft. and the full-value property-tax rate, whereas for the other clusters these features are not as
impactful. It seems that this cluster contains the oldest neighbourhoods of the area. Furthermore,
the parameter value of the feature that gives the proportion of black people per town is much
smaller for Cluster 1 and 5, compared to the the poorer clusters. Coincidentally, the members of
Clusters 1 and 5 also have the average greatest proportion of black people of all the clusters

When the kernel smoothing method is used to estimate the cluster probability functions, we
get quite different results. Firstly, only three clusters are found. Based on the feature values
though, all three clusters seem somewhat similar. The average house price is the greatest for the
neighbourhoods in Cluster 3, and its corresponding model also has the greatest parameter values,
which seems to affirm the notion that the median house value between richer neighbourhoods
varies more than between poorer neighbourhoods. In that Cluster, the most the features that
have the greatest parameter values are the full-value property-tax rate, the accessibility to radial
highways and the distances to five Boston employment centres. For Cluster 2, this is the average
number of rooms per dwelling, which has a very low value for the other two clusters. Finally,
for Cluster 1, which contains on average the poorest neighbourhoods, the most impactful feature
seems to also be the average number of rooms per dwelling.

6.4.2 Abalone

Ten clusters were found in the Abalone dataset when logistic regression was used to estimate the
cluster probability functions. It seems that four main groups exist among the clusters. Clusters
1, 6 and 10 contain, on average, the oldest abalones. It seems that the biggest molluscs are not
necessarily the oldest. In fact, the heaviest and largest abalones are found more commonly in
Clusters 2, 4, and 7, which have a lower average amount of rings than those in the first group.
Clusters 5, 8, and 9 are the three clusters with the lowest average age. As expected, these clusters
contain mainly infant molluscs, which are also generally smaller and lighter. Cluster 3 seems to be
a separate group, containing abalones that are on the smaller and lighter side, but also relatively
old.
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The first group, containing older molluscs of moderate size and weight, seems to have have the
biggest parameter values. For these, the weight related features seem to have the greatest import-
ance. For the members of Clusters 2, 4, 7, which are generally bigger abalones of moderate age,
the size of the shell seems to be as impactful as the weight of the abalone in determining the age.
For the group containing the youngest molluscs, again the weight related parameter value are the
largest. Finally, for Cluster 3, the feature with the largest parameter value is the length of the
shell.

When the kernel smoothing method was used to estimate the cluster probability functions, only
four clusters were found. Based on the average amount of rings of the members in each clusters,
there is some difference between the clusters, with Cluster 1 containing the oldest abalones, and
Clusters 3 and 4 the youngest. Based on their feature values though, all four clusters seem similar.
Looking at the found coefficient values of the found linear models, we again see that they are the
highest for the cluster that contains on average the oldest molluscs. For Clusters 1, 2 and 3,
the parameters of the weight related features have the largest magnitudes, and for Cluster 4 the
features with the largest parameter values are the size related ones.

6.4.3 Auto-mpg

Finally, let us take a look at the clusters that were found in the auto-mpg dataset. When logistic
regression is used to estimate the cluster probability function, three clusters are found. Cluster 1
has the highest average mileage per gallon. It contains cars that have a low amounts of cylinders,
a small engine and low weight. For the cars this cluster the amount of horsepower and the year
it is build seem to have a larger impact on their fuel consumption than for the other clusters.
Exactly half of the cars in this cluster come from Source 3, and only a few from Source 1. The
cars in Cluster 2 have the worst fuel consumption on average, not surprising since it contains cars
with big engines with many cylinders, and high weight and amount of horsepower. Almost all cars
in this cluster come from Source 1. Relative to the other clusters, the amount of cylinders and
the origin of the data seem to have a large impact on the mileage per gallon of the cars in this
cluster. Contrary to the other two clusters, the weight of the car does not seem to have a large
impact on fuel consumption for members of this cluster. Finally, the cars in cluster 3 seems to be
somewhere in between those of Clusters 1 and 3 in terms of fuel consumption as well as for most
feature values. The data from more than half of the cars in this cluster come from Source 1, and
similar amounts from the other two origins. The feature with the largest parameter value for this
cluster seems to be the weight of the car, same as it is for Cluster 1.

When the cluster probability functions are estimated using the kernel smoothing method, six
clusters are found. Based on the average feature values, Clusters 1 and 3 seem to be similar,
containing heavy cars with big engines that perform badly in terms of fuel consumption. Clusters
4 and 6 contain the cars with a high mileage per gallon, and both consist of light, less powerful
cars. Lastly, Clusters 2 and 5 seem to contain cars that are roughly in the middle of this spectrum.
Based on this, it seems that the same three main sub-populations found in the last experiment are
also found here, except they are all split in two clusters. Looking at the found parameter values
of the linear models, it seems that the two clusters that belong to the same sub-populations can
have quite different models. It seems that logistic regression was not able to properly split these
sub-populations in two, while the kernel smoothing method was. This might be the reason why
this last method performed better.
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Conclusions

We started out this project with the goal of constructing a mathematical model that can make
predictions on a statistical population which contains some sort of heterogeneity. That is, mul-
tiple sub-populations exist within the overall population, and for each of these groups a different
predictive model performs well. The goal of the method we developed was to cluster the data, and
for each cluster fit a predictive model. These separate models can then be combined into what is
known as a mixture model.

In finding a method of estimating the parameters in such a mixture model, we sought inspiration
in the statistical literature, where mixture model have long been an important tool for density
estimation and model based clustering. We managed to write this task as a likelihood maximisation
problem, which we solved using the EM algorithm. This gave us a general method that allows us
to construct a predictive model given what we called the cluster probability functions, and a basis
predictive model that can perform predictions on each separate cluster. A natural choice for such
a model was linear regression, which led to the notion of clusterwise linear regression.

As concrete examples of methods that could be used to construct the cluster probability functions,
we looked at logistic regression and the kernel smoothing method. This first method is parametric
and tries to separate clusters using hyperplanes, which limits the shapes of clusters it can found.
The kernel smoothing method is non-parametric and can find clusters of much more flexible shapes.
We saw that this last method is regularised by the bandwidth parameter λ, and we developed a
methodology for finding the optimal value of this parameter using leave-one-out cross-validation
at each iteration of the EM algorithm.

The argument was made that the developed methodology can be used as a general method of
constructing a non-linear model. This means that there does not necessarily need to be hetero-
geneity in the data to use the method. In order to generalise the idea of clusterwise predictive
into an algorithmic approach, there are a number of questions that need to be answered. We
looked at how to initialise the EM algorithm, and saw that different initialisations could lead to
vastly different predictive models, with a huge range of performances. We concluded from this
that it would be necessary to try multiple different initial values and verify the performance of the
resulting model on an independent validation set, enabling us to choose the best model. In terms
of choosing the optimal number of clusters k in the dataset, the best strategy seems to be to test
multiple different values of this parameter and to plot the validation scores of the best model for
each value. When a clear minimum is found in this plot, we can assume that it corresponds to
the optimal number of clusters.

The strategy of fitting a clusterwise predictive model relied on likelihood maximisation, limiting the
type of models that can be fit to the individual clusters. Fortunately, we could easily change this
procedure to allow the use of general loss functions, opening the door to the use of any predictive
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modelling technique in the method. As an example of this, we looked at a mixture model combining
multiple regression trees using the kernel smoothing method to estimate the cluster probability
functions, and saw that this results in regression functions that are a lot smoother than those
acquired from a single tree, which could lead to significantly improved performance. Furthermore,
the idea was coined to build an ensemble of multiple clusterwise predictive models to further
increase their predictive ability.

Finally, we looked at how the performance of the developed methods compares to that of a
number of popular regression technique on some open datasets. The results of these experiments
were promising, and the developed method of clusterwise predictive modelling seems like a very
powerful technique. In these experiments, we also saw that building an ensemble of multiple
methods does indeed lead to a better performance than is possible to get using only one model.

7.1 Strengths and Weaknesses

The greatest strength of the developed algorithmic framework is that it very versatile. Practi-
tioners can decide for themselves which techniques to use to model the individual clusters, and to
construct the cluster probability function. This means that the method can easily be customised
to fit many different situations, problems and goals. This also means that the user has great
control over the complexity of the model. When simpler building block techniques, such as linear
regression and logistic regression, are used, the resulting model becomes very interpretable while
still being very flexible. When more complex modelling techniques, such as the kernel smoothing
method and regression trees, are used, the method becomes less interpretable, but will be able to
model more complex patterns in the data.

Looking at the potential weaknesses of clusterwise predictive models, the greatest one seems to
be that there is no good way of initialising the method that guarantees that the resulting model
performs well at making predictions. The solutions that we came up with, to test many different
initialisations, works but it does require constructing many different models, which has a significant
effect on the computational load. Furthermore, since we always need to keep part of our dataset
separate to validate the models, we have less data available to train the model. We also cannot
retrain the model on the entire dataset when a good initialisation has been found, because we
don’t know which initial values to use for the new points and even if we did know, we have no
guarantee that this will lead to the same final model.

Another big weakness of this method currently is the required computational load. Even without
considering that the algorithmic frameworks requires training many different models on the same
dataset, its iterative nature means that it will take much more time to fit the predictive model
compared to many other techniques. When the used basis functions also have hyper parameters
that need to be tuned, the computational load increases even further, since this means that cross-
validation has to be applied many times. Even when computationally efficient methods exist for
this, such as for clusterwise linear regression using the kernel smoothing method to estimate the
cluster probability functions, this effect can be quite significant. For reference, the experiments
in Chapter 6 conduction on the Abalone data that use the kernel smoothing method all took
over 4 hours to complete on an off-the-shelf laptop. One should keep in mind that that the used
implementation was not very optimised.

7.2 Suggestions for Future Research

Since the developed method is more of a algorithmic framework rather than a strict algorithm,
there are many possible variations of it possible. In this thesis we have only looked at regression
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problems. The method could also easily be used for classification problems, it only requires using
the appropriate class of models G to fit to the individual clusters. For example, we could use
a method that attempts to solve a binary classification problem using a separating hyperplane,
such as logistic regression and support vector machines. In this context, the cluster probability
functions will split the feature space into regions in which the two classes can be separated by
such hyperplanes. This makes clusterwise predictive modelling an alternative method of estimating
non-linear decision boundaries with these methods, other than, for example, using higher order
terms for logistic regression or the kernel trick for support vector machines.

In a similar way that we generalised the fitting of the predictive models using loss functions in
Section 5.1, we can generalise step 6 in the algorithmic framework in Section 5.2 by recognising
that the loss function that is minimised there is the cross-entropy loss. We could exchange this
expression to the minimisation of a general loss function, meaning that any classification method
can be used to estimate the cluster probability function. For example, support vector machines
could be used by using the hinge loss.

The expression in step 7 of the algorithmic framework is an estimate of the true probability that
sample i belongs to cluster j after iteration t+ 1. We could, however, generalise this estimate by
including a learning rate η. This leads to

p
(t+1)
ij =

h
(t+1)
j (xi)e

−ηLmodel(g
(t+1)
j (xi),yi)∑k

l=1 h
(t+1)
l (xi)e

−ηLmodel(g
(t+1)
l (xi),yi)

.

this allows us to regularise the final predictive model more, but it does mean that there is another
parameter that needs to be tuned, which leads to a greater computational load.

Feature selection is typically an important aspect in constructing a good predictive model, but we
have not discussed this aspect in this thesis. It is easy to image that the optimal set of features
is different in each cluster. Deriving a strategy to find this optimal set in a clusterwise fashion
might therefore greatly increase the performance of clusterwise predictive modelling.

The developed methodology shares a lot of similarities with the Mixture of Experts method.
The clusterwise predictive model that uses logistic regression to estimate the cluster probability
functions and linear regression to model the clusters is very similar to the original form of the
Mixture of Experts method. However, a lot of modifications of this method have been studied, such
as incorporating multiple levels of cluster functions, the use of different basis functions, multiple
ways to find the optimal model structure and methods other than the EM algorithm to construct
the final model [40]. Nevertheless, some ideas that have been discussed in this thesis have not
been attempted for the Mixture of Experts method, such as the use of a non-parametric method to
cluster the data, the adaptive method of finding the optimal parameter values in the used models
and the use of regression trees to model the clusters. It would be interesting to see how these
ideas work in combination with these modifications of the Mixture of Experts methodology.
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Appendix A

Various Proofs

A.1 Proof of Equation (1.5)

Proof. Let f : X → Y be any prediction rule (without loss of generality assume it is not random).
We have

R(f) = E
[
(f(X)− Y )2

]
= E

[
E
[
(f(X)− Y )2

∣∣X]]
= E

[
E
[
(f(X)− E [Y |X] + E [Y |X]− Y )2

∣∣X]]
= E

[
E
[
(f(X)− E [Y |X])2

∣∣X]
+ 2E [(f(X)− E [Y |X])(E [Y |X]− Y ) |X] + E

[
(E [Y |X]− Y )2

∣∣X]
= E

[
E
[
(f(X)− E [Y |X])2

∣∣X]
+ 2(f(X)− E [Y |X])× 0 + E

[
(E [Y |X]− Y )2

∣∣X]
= E

[
(f(X)− E [Y |X])2

∣∣X]︸ ︷︷ ︸
>0

+R(f∗).

Thus R(f) ≥ R(f∗) for any prediction rule f .

A.2 Derivation of Equation (3.2)

Proof. First, rewrite the log likelihood function of Expression 2.14 as
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(A.1)

where we also changed the argument of Q
(t)
c to γ to emphasise that those are the parameters

we wish to estimate. To maximise this expression, we differentiate with respect to γr for all
f ∈ {1, 2, . . . , k} and set it equal to zero

∂Q
(t)
c (γ)

∂γj
=

n∑
i=1

(
p
(t)
ij xi −

xie
γTj xi

1 +
∑k−1
l=1 e

γTl xi

)
=

n∑
i=1

xi(p
(t)
ij − hj(xi)) = 0, for j = 1, 2, . . . , k − 1.

(A.2)

Since we cannot solve this problem analytically, we need to use a numerical optimisation technique.
A powerful iterative method that can be used to find a root of a function is the Newton-Raphson
method. In this method, the root of a function f(x) is approximated by starting with some initial
guess x(0) and estimating the function with a linear function at this point using its first order
Taylor series, and finding the point where this linear function is zero, i.e.

f(x(0)) + f ′(x(0))(x− x(0)) = 0.

If we solve this for x we find

x = x(0) − f(x(0))

f ′(x(0))
.

We can then take x(1) = x as the new estimate of the root of f(x), and repeat this procedure,
resulting in the iterative formula.

x(s+1) = x(s) − f(x(s))

f ′(x(s))
,

where the superscript (s) denotes the estimate after iteration s. When a number of assumptions
are met, this algorithm will converge to a root of the function f(x) [1].

In the case of finding solutions to Equation (A.2), the Newton-Raphson algorithm is
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γ(s+1) = γ(s) −
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. (A.3)

The second derivative of Q
(t)
c (γ) with respect to γj and γTq is dependent on whether j = q or not.

When j = q, it is given by
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and when j 6= q by
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We can now construct a simple iterative algorithm that finds a local maximum of Expression
(A.1). For convenience, it will be expressed using matrix multiplication. We can write Expression
for (A.2) this way as

∂Q
(t)
c (γ)

∂γ
= AT (P ′ −H ′),

where A is as in 3.1, and P ′ and H ′ are the matrices of size n × k − 1 with elements pij and

hj(xi), respectively. Although γ and ∂Q
(t)
c (γ)/∂γ are technically matrices, we can express them

as one-dimensional column arrays by appending each consecutive column below the first. This
allows us to express the second derivatives as a two-dimensional array, and we can express the
Newton-Raphson method in terms of conventional matrix multiplication operations.

In order to write the expression for ∂2Q
(t)
c (γ)/∂γ∂γT in matrix form, we first define
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W j =
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Now, we can write
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which gives us the expression
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The term
(
∂2Q(t)

c (γ(s))
∂γ∂γT

)−1
∂Q(t)

c (γ(s))
∂γ in Expression (A.3) can, in some cases, be very small which

leads to numerical inaccuracy due to round-off errors [8]. We will therefore use the slightly different
form
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,

which gives us the iterative formula we sought.
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A.3 Proof of Equation (3.5) for
the Kernel Smoothing Method

Proof. We can give the general form of the prediction rule given by Nadaraya-Watson regression

analogously with Equation (3.3), writing ŷ(x) = h
(t+1)
j (x) and yi = p

(t)
ij , as

ŷ(x) =

n∑
i=1

Kλ(xi, x)∑n
r=1Kλ(xr, x)

yi.

So that we can express the LOOCV estimate of data point (xi, yi) as

ŷ−i =

n∑
l=1
l 6=i

Kλ(xl, xi)
n∑
r=1
r 6=i

Kλ(xr, xi)
yl

=

n∑
l=1
l 6=i

Kλ(xl, xi)∑n
r=1Kλ(xr, xi)−Kλ(xi, xi)

yl

=

n∑
l=1
l 6=i

Kλ(xl,xi)∑n
r=1Kλ(xr,xi)

1− Kλ(xi,xi)∑n
r=1Kλ(xr,xi)

yl

=

n∑
l=1
l 6=i

Lil
1− Lii

yl

=
1

1− Lii

n∑
l=1
l 6=i

Lilyl.
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Appendix B

Experimental Setup

B.1 Optimal Hyperparameter Values

As is discussed in Section 6.2, the optimal values of the hyperparameters of the non-clusterwise
predictive modelling methods are found via a grid search. The values that were found this way
are:

Boston housing

• Regression tree: max leaf nodes = 26, min samples leaf = 8

• Random forest: max leaf nodes = 49, min samples leaf = 2,
max features =

√
n features

• k-nearest neighbours: p = 7, n neighbors = 2

• Support vector regression: ε = 0.4 and C = 140

Abalone

• Regression tree: max leaf nodes = 50, min samples leaf = 16

• Random forest: max leaf nodes = 109, min samples leaf = 4,
max features = n features

• k-nearest neighbours: p = 2, n neighbors = 11

• Support vector regression: ε = 1.2 and C = 100

Auto-mpg

• Regression tree: max leaf nodes = 63, min samples leaf = 1

• Random forest: max leaf nodes = 75, min samples leaf = 1,
max features = n features

• k-nearest neighbours: p = 1, n neighbors = 5

• Support vector regression: ε = 0.7 and C = 100
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B.2 Optimal Number of Clusters

The figures below show the influence of the amount of clusters k on the validation scores.

(a) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using logistic re-
gression.

(b) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

(c) For the method that uses a regression tree to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

Figure B.1: The best mean squared error found on the verification set for different numbers of
clusters k, for the Boston housing dataset
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(a) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using logistic re-
gression.

(b) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

(c) For the method that uses a regression tree to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

Figure B.2: The best mean squared error found on the verification set for different numbers of
clusters k, for the Abalone dataset
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(a) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using logistic re-
gression. k = 2 did not lead to stable results and is
therefore excluded.

(b) For the method that uses linear regression to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

(c) For the method that uses a regression tree to
model the individual clusters, and where the cluster
probability functions are estimated using the kernel
smoothing method.

Figure B.3: The best mean squared error found on the verification set for different numbers of
clusters k, for the auto-mpg dataset
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B.3 Amount of Models in the Ensembles

The amount of models that were below the performance threshold and are included in each of
the ensemble methods are given in the table below. Note that on the Abalone dataset, no model
using the kernel smoothing method to estimate the cluster probability methods performed better
than simple linear regression, so the threshold was increased to 5.3 for the method using linear
regression as basis model, and 10 for the regression tree based method.

Method Boston housing Abalone Auto-mpg

Linear/Logistic Ensemble 86 189 123

Linear/Kernel Ensemble 102 28 198

Tree/Kernel Ensemble 27 20 75

B.4 Found Clusterwise Regression Models

In the following tables, the found parameter values of the linear regression models found by the
best clusterwise predictive models acquired from the experiments in Chapter. Furthermore, the
amount of data points that have the greatest inferred probability of belonging to each cluster,
as well as the mean feature and target values of those points, are included as well. The average
feature values are of the unscaled features. To get a description of each feature, see the respective
data repository.
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Table B.1: The coefficient values of each linear model found for the Boston Housing dataset,
where logistic regression is used to estimate the cluster probability function.

Coefficient Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Intercept 71.6239 22.0313 20.2417 20.1406 -9.96114

Crim -58.4987 -1.29293 -4.16685 -1.01464 -6.48431

Zn 0.26357 -1.73316 0.550313 1.00148 -26.9686

Indus 0.411438 0.0527926 -0.167711 1.63955 3.9374

Chas 259.564 0.176366 0.0372985 0.745033 -0.136107

Nox 0.0895774 -4.43947 0.586153 0.0780161 -7.55418

Rm 7.8666 0.106476 2.82875 3.63894 2.091

Age -3.39959 -3.96013 -2.19881 -0.251191 12.7562

Dis -1.28602 -3.57487 -1.89754 -0.495841 -7.39604

Rad 1.28919 3.70496 2.83711 -0.0554287 28.8313

Tax -3.91165 -2.89525 -1.72754 -0.851645 -16.8762

Ptratio -2.24231 -2.04228 -0.532055 -1.23905 -11.6104

Black -9.70285 -0.770217 1.38795 1.23886 -9.25765

Lstat 0.605685 -2.03449 -0.682873 -4.2529 -13.214

Table B.2: The average feature and target values and size of each cluster found in the Boston
Housing dataset, where logistic regression is used to estimate the cluster probability function.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Crim 0.188824 10.0998 1.05606 4.40987 4.49214

Zn 30.9167 1.53191 7.84021 19.8778 0.909091

Indus 3.78738 15.4915 10.2886 11.7544 15.5055

Chas 0 0.0638298 0.0309278 0.177778 0.136364

Nox 0.482452 0.608298 0.533793 0.555222 0.644773

Rm 7.20879 5.79413 6.0789 6.41691 6.462

Age 51.2024 92.0043 61.3196 63.1422 94.95

Dis 4.31915 2.81842 4.04121 4.55974 2.07031

Rad 4.69048 16.5532 5.73196 9.91111 17.0455

Tax 275.69 533.66 342.897 431.356 534.818

Ptratio 16.6167 19.383 18.8041 18.6667 18.6045

Black 389.289 356.795 364.404 356.596 384.503

Lstat 6.44643 19.6528 11.8978 11.8393 10.6332

Medv 35.7 16.0 20.3 21.7 28.9

Size 42 47 97 45 22
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Table B.3: The coefficient values of each linear model found for the Boston Housing dataset,
where the kernel smoothing method is used to estimate the cluster probability function.

Coefficient Cluster 1 Cluster 2 Cluster 3

Intercept 21.8295 22.2426 22.8704

Crim -1.09308 0.419531 -3.86636

Zn 1.75469 -0.218291 2.46913

Indus 0.355984 -1.16377 7.19375

Chas 0.13212 0.258022 1.62876

Nox -1.36986 0.123011 -5.25493

Rm 3.79415 6.83767 0.608284

Age -0.308676 -3.1987 -1.29835

Dis -1.65769 -2.5144 -8.71839

Rad 0.036829 2.00163 10.8277

Rax -0.674673 -1.45349 -12.974

Ptratio -1.97645 -1.97607 -2.86368

Black 1.05016 1.21903 -0.10625

Lstat -1.73482 1.82999 -8.68144

Table B.4: The average feature and target values and size of each cluster found in the Boston
Housing dataset, where the kernel smoothing method is used to estimate the cluster probability
function.

Feature Cluster 1 Cluster 2 Cluster 3

Crim 4.10771 2.21486 4.11047

Zn 12.0931 12.488 11.4044

Indus 11.212 9.82024 11.7137

Chas 0.0490196 0.060241 0.102941

Nox 0.548451 0.53589 0.579118

Rm 6.21013 6.30333 6.45679

Age 62.6078 69.5241 76.4191

Dis 4.22739 3.66025 3.25893

Rad 7.91176 7.59036 13.4559

Tax 388.01 361.181 463.882

Ptratio 18.9716 17.9554 18.4824

Black 360.56 375.709 367.82

Lstat 11.9094 12.9998 12.0806

Medv 21.1 23.3 25.6

size 102 83 68
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Table B.5: The coefficient values of each linear model found for the Abalone dataset, where
logistic regression is used to estimate the cluster probability function.

Coefficient 1 2 3 4 5 6 7 8 9 10

Intercept 10.3 8.1 10.4 8.4 9.2 10.4 8.6 9.1 8.7 13.0

Length 1.1 -1.3 4.3 0.8 1.4 -0.9 -1.4 2.1 0.2 1.0

Diameter 0.5 1.3 -0.9 2.8 0.5 1.8 1.1 -1.1 1.2 1.0

Height 1.5 1.0 -1.0 1.0 -0.5 -0.1 1.0 1.0 0.4 -0.1

Whole weight 5.9 2.8 0.0 -4.5 7.4 9.2 1.0 3.4 4.4 11.5

Shucked weight -4.9 -2.3 -2.1 1.2 -4.2 -5.7 -0.3 -1.6 -3.8 -7.0

Viscera weight -2.8 -0.2 0.3 1.1 -2.3 -1.8 0.8 -1.8 -0.2 -4.3

Sex: female -0.1 0.8 1.1 0.5 -0.3 0.3 -0.4 -0.1 -0.5 0.8

Sex: male -0.1 0.8 0.4 -0.2 0.6 -0.4 -0.7 -0.2 -0.1 0.5

Table B.6: The average feature and target values and size of each cluster found in the Abalone
dataset, where logistic regression is used to estimate the cluster probability function.

Feature 1 2 3 4 5 6 7 8 9 10

Length 0.57 0.62 0.43 0.59 0.51 0.47 0.58 0.41 0.40 0.54

Diameter 0.44 0.49 0.35 0.46 0.39 0.37 0.46 0.31 0.30 0.43

Height 0.16 0.17 0.12 0.15 0.13 0.11 0.16 0.11 0.11 0.16

Whole weight 0.98 1.22 0.53 1.01 0.68 0.63 0.96 0.57 0.58 0.89

Shucked weight 0.38 0.51 0.20 0.46 0.31 0.26 0.49 0.27 0.26 0.35

Viscera weight 0.21 0.27 0.11 0.23 0.15 0.13 0.21 0.12 0.11 0.20

Sex: female 0.30 0.57 0.29 0.06 0.24 0.47 0.33 0.15 0.29 0.28

Sex: male 0.62 0.42 0.64 0.70 0.08 0.18 0.44 0.23 0.17 0.44

Rings 12.5 9.9 9.8 9.8 8.2 10.1 8.9 7.6 6.5 14.9

Size 134 313 159 223 398 139 149 232 87 254
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Table B.7: The coefficient values of each linear model found for the Abalone dataset, where the
kernel smoothing method is used to estimate the cluster probability function.

Coefficient Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept 13.1022 9.50239 8.71896 9.03005

Length -0.653901 -0.276903 1.88981 -1.07668

Diameter 2.33484 3.167 -0.94483 0.923798

Height 0.471804 -1.24141 0.00133938 3.11591

Whole weight 11.3495 10.2332 4.28548 -0.710304

Shucked weight -9.08068 -8.87736 -2.32932 -0.447487

Viscera weight -2.37521 -1.99962 -1.41399 0.279656

Sex: female 0.319759 0.355656 0.312927 -0.219074

Sex: male 0.621903 0.712232 0.288879 -0.212015

Table B.8: The average feature and target values and size of each cluster found in the Abalone
dataset, where the kernel smoothing method is used to estimate the cluster probability function.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4

Length 0.520929 0.529136 0.531515 0.512344

Diameter 0.407493 0.412761 0.413723 0.39808

Height 0.144336 0.139795 0.142654 0.134181

Whole weight 0.831637 0.831351 0.869685 0.788263

Shucked weight 0.350372 0.345975 0.382538 0.351557

Viscera weight 0.180158 0.179751 0.190577 0.172245

Sex: female 0.353982 0.327273 0.272308 0.267071

Sex: male 0.351032 0.440909 0.367692 0.341426

Rings 13.6 10.4 8.7 8.7

Size 339 440 650 659
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Table B.9: The coefficient values of each linear model found for the Auto-mpg dataset, where
logistic regression is used to estimate the cluster probability function.

Coefficient Cluster 1 Cluster 2 Cluster 3

Intercept 20.9419 23.6317 21.3287

Cylinders 2.7243 -3.17144 1.00917

Displacement 0.797433 -0.877339 -0.837559

Horsepower -5.43802 -0.723479 -0.729198

Weight -6.19564 -0.371986 -7.88939

Acceleration 0.703285 -1.62928 -0.455186

Model year 4.28373 1.54112 1.66155

Origin: 1 -1.31474 -4.4255 0.932244

Origin: 2 0.658091 -2.16214 -0.79533

Table B.10: The average feature and target values and size of each cluster found in the Auto-mpg
dataset, where logistic regression is used to estimate the cluster probability function.

Feature Cluster 1 Cluster 2 Cluster 3

Cylinders 4.125 6.32609 5.35593

Displacement 109.458 258.25 168.458

Horsepower 77.9688 122.766 97.3475

Weight 2415.56 3474.86 2668.66

Acceleration 17.3521 14.8891 14.8864

Model year 78.4583 74.7717 75.3729

Origin: 1 0.1875 0.967391 0.542373

Origin: 2 0.3125 0.0108696 0.237288

Mpg 30.7 18.6 23.9

Size 48 92 59
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Table B.11: The coefficient values of each linear model found for the Auto-mpg dataset, where
the kernel smoothing method is used to estimate the cluster probability function.

Coefficient Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Intercept 22.9017 21.9799 22.444 22.0717 23.1206 22.7784

Cylinders -3.79569 -0.865199 -2.19833 1.83784 0.598303 6.26181

Displacement -2.53687 1.05886 1.40586 4.36493 -6.64082 -7.38378

Horsepower 1.92351 1.32777 -1.52078 -7.00099 -2.36871 -4.44452

Weight -0.69752 -7.49506 -2.11299 -6.43442 1.98459 -6.35145

Acceleration -0.71111 0.969715 -1.06883 -0.578526 -1.74963 -0.447791

Model year 1.10389 0.932988 1.35204 3.31279 1.9389 2.88896

Origin: 1 -3.1253 1.38217 -2.01811 -1.37886 -2.0575 -3.8499

Origin: 2 -2.54946 -0.698587 -0.458213 0.961343 -0.746989 -0.371621

Table B.12: The average feature and target values and size of each cluster found in the Auto-mpg
dataset, where the kernel smoothing method is used to estimate the cluster probability function.

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

cylinders 6.16949 5.54839 6.41667 4.75 5.3913 4.38235

Displacement 234.441 191.065 262.833 137.786 198 131.676

Horsepower 111.559 103.516 138.771 89.5357 103.478 81.5294

Weight 3214.78 2965.03 3504.12 2580.32 3025.7 2516.41

Acceleration 15.1508 15.3484 13.7417 16.0786 16.0478 16.5353

Model year 75.0169 74.1935 73.75 77.9643 76.5652 78

Origin: 1 0.79661 0.548387 0.708333 0.214286 0.826087 0.705882

Origin: 2 0.0508475 0.258065 0.125 0.25 0.130435 0.176471

Mpg 20.0 21.0 19.0 27.6 22.2 30.0

Size 59 31 24 28 23 34
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