
 Eindhoven University of Technology

MASTER

Incorporating performance indicators in the decision-making process for predictive
maintenance
With an application to iXR systems at Philips

Johannesson, E.G.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ffb1dae0-8079-4bd6-87aa-d556b65e7edb

Master Thesis

Incorporating performance indicators in the
decision-making process for predictive

maintenance
With an application to iXR systems at Philips

Emil Johannesson, B.Sc.

March 22, 2020

in partial fulfilment of the requirements for the degree of
Master of Science

in Industrial and Applied Mathematics

University supervisors
Dr. Stella Kapodistria

Collin Drent, M.Sc.

Company supervisors
Maikel Boumans, B.Sc
Dr. Antonio Perrone

Executive Summary

Background Companies that produce high-valued machines are often responsible for
the maintenance of the machines. The traditional way to maintain the machines is to use
a corrective maintenance policy, which results in long downtimes and large costs. Policies
that fall under preventive maintenance try to reduce the costs and downtime of machines.
Current implementations of predictive policies are based on machine learning models that
predict imminent failures. These models do not take the operational costs, i.e. the costs
made following a certain policy, into account, but only focus on minimizing the number
of false alerts. The aim of this project is to derive and solve an optimization problem
that takes both the operational costs and precision of a policy into consideration.

The project is conducted at Philips. The interest of Philips is to reduce the maintenance
costs of their healthcare systems by preventively replacing components, but only when
a failure is imminent. The current predictive models use data from log files that are
generated by the healthcare machines and we use the same data. The project focuses on
the monitors of an iXR system, but the approach can be applied to other components as
well.

The purpose of this report is to investigate how operational costs and a target value of
a performance measure, such as the precision, can be taken into account, when obtaining
a preventive maintenance policy.

Optimization problem The report focuses on the steps taken to derive an optimization
problem to find a policy that balances the operational costs and precision measure.

The first step is to make a model to base our optimization on. Therefore, we introduce
a stochastic model describing the degradation process of the component. To determine
which features need to be described by the model, we rank the features used in a current
machine learning model for the monitor based on their predictive value. The top three
consist of two continuous features, the age and brightness, and one categorical feature.
Historical data, obtained from log files, are used to estimate the parameters in the
stochastic model.

The next step is to formulate the operational costs for a given policy. We consider two
costs, namely a cost for corrective maintenance and a cost for preventive maintenance.It
is difficult to obtain reliable estimates for the two costs and we therefore consider several
ratios of the two costs. For Philips the precision of the replacements is important and we
therefore propose two functions of the precision of a policy. Adding the operational costs
and a function of the precision gives us the optimization problem.

Executive Summary ii

Solutions The stochastic nature of the problem makes the optimization problem hard
to solve. Therefore, we restrict our analysis by only considering three types of policies.
The policies can be interpreted as curves that divide the positive quadrant of the plane
spanned by age and brightness into two. The difference between the policies is the shape
of the curve.

The first class of policies is based on thresholds for the age and brightness individually,
resulting in a rectangle. The second class are ellipse shaped curves that correspond to
the points at which the degradation process has a certain probability of being alive. The
third class consists of linear planes, which include the classifiers obtained in the current
machine learning model.

We cannot solve the optimization problem exactly and therefore we use approximations.
For the first class, we look at the age and brightness thresholds individually. We can find
both thresholds exactly and together they approximate the optimal policy in class 1. For
the second and third classes, we use Monte Carlo simulation to estimate the objective
function and to find the minimizers. The minimizers depend on the cost ratio and the
relative importance given to the precision; a low weight results in a policy with many
replacements and a high weight gives a conservative classifier with few replacements.

Results To compare the newly obtained policies with the old ones, we perform a
simulation study. In the simulation we simulate the degradation process of monitors and
apply the new and old policies. We see that the operational costs are significant lower
for the proposed policies when the relative importance of the precision is low. For a cost
ratio between the corrective and preventive replacements of 5, the decrease in cost is
fourteen percent. When the ratio increases to 10, then the decrease is more than 28%.
When more weight is put on the precision, then the performance of the new and old
policies are similar.

Conclusion In this project, we see that including the operational costs in the decision-
making process can lower the costs significantly. The price one pays for the lower costs is
that more replacements are performed and that the replacements are performed earlier.
This means that the lifetime of the components are used to a lesser extend.

The project is a start in incorporating operational costs in the decision-making process,
but other factors, such as the impact of the increased number of replacements, need to
be studied further.

Contents

Executive Summary i

Contents iii

List of Symbols v

Definitions and Concepts vi

1 Introduction 1
1.1 Main Optimization Problem . 2
1.2 Contribution of Project . 2
1.3 Outline . 2

2 Vehicle of Illustration: Big Screen Monitors 3
2.1 The Big Screen Monitors . 3
2.2 The SVM Model . 5
2.3 Feature Ranking . 5
2.4 Brief Description of Top Ranked Features 9

3 Degradation process 11
3.1 The Degradation Process . 11
3.2 Failure Mechanism . 12
3.3 Validation of Assumptions . 13
3.4 Estimations of Parameters . 16

3.4.1 Jump Process . 17
3.4.2 Values at Failure . 20

4 Policies Under Consideration 24
4.1 Class 1: Univariate Thresholds . 25
4.2 Class 2: Ellipsoids . 25
4.3 Class 3: Linear Planes . 26

5 Average Cost Criterion 28
5.1 The Average Cost . 28
5.2 Influence of Classes on Cost Criterion . 30

Contents iv

6 Performance Component 32
6.1 The Precision Measure . 32
6.2 Penalty Terms . 33
6.3 Influence of Classes on Precision . 34

7 Numerical Approximations to Solution 35
7.1 Numerical Complications . 35
7.2 Numerical Approximations . 36

7.2.1 Class 1 . 36
7.2.2 Class 2 . 39
7.2.3 Class 3 . 42

8 Comparison Of Policies 44
8.1 Training Set Comparison . 44
8.2 Simulation Study . 47

9 Relation to SVMs 50

10 Conclusion 52
10.1 Conclusion . 52
10.2 Discussion . 52

Bibliography 54

List of Figures 57

List of Tables 58

List of Algorithms 59

Appendices

A Estimates Interarrival Times and Jump Sizes 60

B Independence Tests 62

C Proof of Theorem 7.1 64

List of Symbols

σ A (preventive) maintenance policy, see Policy.

g, g(σ) The average cost and average cost of policy σ.

`, `(σ, α) Penalty function of the precision with target α when using policy σ.

α The target value of the precision.

k The weight of the penalty term in the optimization problem.

BL The base level of the monitors

BB The backlight brightness of the monitors as measured by the iXR systems.

D The degradation of a monitor, see also D.

X,Xi The interarrival times of the jump process. We assume that the
interarrival times are lognormal distributed.

Y, Yi The jumps of the jump process. We assume that the jumps are geometric
distributed with mass function P(Y = k) = p(1− p)k−1, k = 1, 2,

D(t) The degradation process. Models the state of the monitor.

D The degradation at failure.

L The working hours at failure.

E The time at which the environment switches states.

T, Ti Moment of failure (in i-th cycle), see also Failure mechanism.

S, Si, Sσ Moment that the policy σ prescribes a predictive replacement.

cp, cc The cost of a preventive and corrective replacement. We assume that
all costs regarding the replacement are captured by cp and cc.

R,Ri The cost of a replacement, either cc or cp.

N(t),M(t) Renewal process that count the number of arrivals until time t.

V (t) The total costs made until time t, i.e. the sum of all costs until time t.

h(t) The hazard rate.

F (t), f(t) Cumulative density function and probability density function.

Definitions and Concepts

TP, TN, FP, FN The true positives, true negatives, false positives and false negatives of a
binary classification.

Average cost The average cost is the total cost made in an interval divided by the length
of the interval. In this project we let the length of the interval go to infinity.

BB The backlight brightness as measures by the monitors. The backlight brightness is
one of the features in the predictive model that has the highest predictive power.
We use the degradation in the degradation process, see D.

BL The base level of the brightness of the monitors. The base level is the brightness
level that the monitors should have according to specifications.

Censored data Censored data occurs when quantities are only partially known. In the
report we deal with right censored data, where we only know that a certain quantity
is larger than the observed value.

D The degradation of a monitor, defined as the difference between the base level BL
and the backlight brightness BB, i.e. D = BL−BB. See also BB.

Degradation process The process that describes the state of a monitor. We assume that
the process is a jump process.

Environment The environment models the internal state of the monitors and is binary.
The environment takes values of 0 and 1, where a 1 indicates that something has
happened and that the monitor is failing. We assume that there is enough time to
perform a preventive replacements after the environment switches state.

Failure mechanism The failure mechanism describes how we assume the monitor to fail.
In this report we assume that a monitor fails at time T , which is the first time
that either the degradation crosses D, the working hours cross L or environment
switches.

i.i.d. Independent and Identically Distributed random variable. Each random variable
has the same probability distribution as the others and all are mutually independent.

Definitions and Concepts vii

Interarrival time The interarrival time is the time between two jumps of the degradation
process. We assume that the jumps are continuous.

Jump process A jump process is a stochastic process that has discrete movements, called
jumps, with random arrival times, called interarrival times.

Jump size The size of a jump in the degradation process. We assume that the jumps
are discrete.

Operational costs The cost made when following a policy σ. See also Average cost.

Policy A policy is a set of rules that prescribe when a component should be replaced. In
this report we consider policies that divide the working hours-degradation plane into
two: one part in which nothing is done and one part where a preventive replacement
is performed. This means that a policy can be interpreted as a classifier, so we
interchangeably use the terms policy and classifier when referring to σ.

Precision The precision is the fraction of positive predicitions that are correct, i.e.
TP/(TP+ FP). The definition translates to the number of preventive replacements
that occur in the predictive interval, which is defined as the 30 days before failure.

Predictive interval The interval of 30 days before a failure in which it is desired to have
a preventive replacement.

Predictive model A model that predicts failures of a component. A predictive model
consists of a set of rules that prescribe when a component should preventively be
replaced to minimize a given objective, e.g. minimize operational costs.

Renewal process A counting process where the time between increments are i.i.d.
distributed. The time between jumps are called interarrival times.

Running minimum The running minimum is used to model the real life data as a jump
process. In the report we consider the third running minimum, which at time t is
the third lowest value until time t.

SVM Support vector machines. A machine learning algorithm that finds a separating
hyperplane between two (or more) classes on a training set and classifies new data
points. An SVM classifier is currently used to predict failures.

WH The working hours is one of the features in the predictive model that has the highest
predictive power. In the degradation process the working hours play the role of
time.

Chapter 1

Introduction

Currently complex, highly valued healthcare machines are used in hospitals to improve
the lives of countless people. Although the machines are designed to withstand the test
of time, many components can, and will, fail at some point in time. Failures do not only
cost money for all parties involved, but also endanger the safety of the customers.

To keep the machines running, maintenance is performed. The traditional approach
is to replace machines when they fail. Currently, companies are transitioning towards
preventive maintenance policies, where components are replaced when some condition is
met. The goal is to decrease the downtime and maintenance costs of machines.

When a component is replaced after it failed, there is a long time that the machine
cannot be used. The reason for this is that the failure must be reported, a new component
must be shipped and the component must be replaced. On the other hand, when a
component is preventively replaced, which can be done outside scheduled usage, the
shipping is done while the machine is still working and valuable time is saved. A set of
rules that describe when to replace a component is called a policy.

To determine the conditions when a component should be replaced, predictive models are
developed. Currently, many predictive models are based on machine learning algorithms,
such as support vector machines (SVMs). In 2014, Sipos et al. showed the usefulness of
SVMs in predicting failures of medical systems [1]. However, the output of an SVM is a
classifier that distinguishes between working components and failing components, which
is not a policy. The classifier can be used as a policy, assigning an action to each of the
two classes, but then the classifier is used in a way for which it was not developed. SVMs
were not developed for sequential data and do not take costs attached to actions, taken
based on the classification, into account (we discuss some recent developments treating
these shortcomings in Chapter 9).

We therefore believe that improvements can be made when the costs attached to the
actions are also included in the decision-making process. Models developed for sequential
data and cost structures include Markov decision processes (MDPs), which have been used
in many applications. The authors in [2] give a survey of papers treating real applications
of MDPs. One of the applications categories in [2] is “Inspection, maintenance and
repair”, which discuss problems related to preventively replacing machines.

1.1 Main Optimization Problem 2

1.1 Main Optimization Problem

In this report we discuss one approach to extend MDPs to also take a performance
measure, similar to the ones in machine learning, into account. We thus look at two
performance indicators when evaluating a (preventive) policy σ. The first indicator is the
operational costs, i.e. the costs when following a policy σ, denoted by g(σ). The second
indicator is a function of the precision, which measures the fraction of replacements that
were performed close to the actual failure, i.e. the moment the machine fails when no
preventive maintenance is performed, and a target value α of the precision. We denote the
second performance indicator by `(σ, α). The work results in the following optimization
problem

arg min
σ∈S

{
g(σ) + `(σ, α)

}
, (1.1)

where S is the set of all policies σ. In Equation (1.1) a trade-off between the operational
costs and precision with target α is found. All quantities in Equation (1.1) are stochastic
and are based on a stochastic process that describes the state of the component.

1.2 Contribution of Project

The main novelty in this project is the optimization problem that finds a trade-off between
two performance indicators, namely the cost and the precision. Both machine learning
methods and MDPs focus on one performance indicator, but not both. Combining both
gives new insights on the relation of the two and what decision companies need to make
regarding the characteristics of their maintenance policies.

Other differences with previous work include the usage of an existing machine learning
model. We use the model to choose the variables that the stochastic process models.
The choice is based on a ranking of the features on their predictive power. Furthermore,
unlike MDPs we do not assume that certain processes follow the exponential distribution,
which gives us more flexibility to model the degradation process of the monitors.

1.3 Outline

The outline of the thesis is as follows. In the second chapter we introduce the big screen
monitors, which we use as vehicle of illustration in the report. In Chapter 3 we introduce
the stochastic process that is used to describe the state of a monitor. Chapter 4 discusses
three classes of policies that we consider in the report. In Chapter 5 we introduce the
average cost criterion, which we use to calculate the operational costs. Next, in Chapter 6
we discuss how the precision is accounted for in the optimization problem. The complete
formulation and approaches to solve the optimization problem are shown in Chapter 7.
In Chapter 8 we compare the proposed policies with the old policy via a simulation
study. In Chapter 9 we discuss some recent literature on SVMs that include one of the
performance indicators in the SVM formulation and the problems in applying the results
to our case. We end the report with a conclusion and discussion in Chapter 10.

Chapter 2

Vehicle of Illustration: Big Screen Monitors

To demonstrate the steps that one needs to take to obtain the main optimization
problem in Equation (1.1) and to compare the performance of the solution to the current
situation, we use a specific component of the iXR systems. The component that we
consider is the big screen monitor, which we introduce in this chapter.

We first discuss the usage of the big screen monitors. After that, we look at the current
machine learning implementation to predict failures of the monitors. Then we rank the
features of the predictive model based on their predictive power. In the next chapter,
we use the ranking to develop a stochastic process that models the state of the monitor
based on the three features that topped the ranking. Therefore, we end the chapter with
a brief discussion on the three topped ranked features.

2.1 The Big Screen Monitors

In this project we use the big screen monitors, see Figure 2.1, as a vehicle of illustration.
The monitors are also called FlexVision monitors, since the monitors can remember the
preferences of different doctors. The preferences determine what information is shown
where on the screen during operations, hence FlexVision (flexible vision).

The big screens are a component on iXR systems that are used for image-guided therapy,
where images are used to help doctors perform surgical procedures and therapeutic
interventions. One big advantage of image-guided therapy is that it is less invasive than
a surgery, reducing the pain, recovery time and physical trauma1.

Each iXR machine generates a lot of data while in use. The data is stored in log files,
which are send regularly to Philips. The predictive models use the data from the log files
to make predictions.

.
.

.

1See https://www.youtube.com/watch?v=pZg1Gg0tJPw for a live operation using image-guided therapy
with a Philips medical device.

https://www.youtube.com/watch?v=pZg1Gg0tJPw

2.1 The Big Screen Monitors 4

Figure 2.1: Photo of the Allura Xper FD20/10 X-ray system with the big screen in the top
right corner. Source https://www.philips.co.uk/healthcare/product/HC722029CA/

allura-xper-fd20-10-biplane-cardiovascular-x-ray-system[accessed 26-02-
2019].

Table 2.1: �

https://www.philips.co.uk/healthcare/product/HC722029CA/allura-xper-fd20-10-biplane-cardiovascular-x-ray-system
https://www.philips.co.uk/healthcare/product/HC722029CA/allura-xper-fd20-10-biplane-cardiovascular-x-ray-system

2.2 The SVM Model 5

2.2 The SVM Model

To predict failures of the monitors, a linear SVM model is used. The model is trained on
a training set, which consists of eleven features and labels corresponding to the entries.
The features can be divided in groups, including, for example, the ones connected to the
physical appearance of the image (contrast etc.), the ones related to the specific use of
the monitor (like energy used) and more general ones connected to the internal workings
of the hardware itself.

The input of the model are the eleven dimensional input vectors x containing the values
of the eleven features and the labels y, set to −1 and +1, corresponding to all the input
vectors. The output of a linear SVM is a hyperplane of the form 〈w,x〉+ b = 0, where
w is an eleven dimensional weight vector and b the bias or intercept, and is obtained by
solving the following optimization problem

min
w,b

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

(2.1)

To guarantee a solution, the formulation in Equation (2.1) includes a penalty C for
all wrongly classified data points and a slack ξ, larger that zero, that accounts for the
amount of violation of the misclassified points.

The class of a new point xnew is determined by the sign of 〈w,xnew〉+ b. The outcome
of the SVM model is thus binary; a new data point is classified as working (−1) or failing
(+1). In the latter case the data of the monitor is inspected in more detail to determine
the following actions, e.g. a possible preventive replacement. For more information on
SVMs, see, for instance, [3] and [4].

.

.
.

.

2.3 Feature Ranking

We want to develop a stochastic process that accurately models the state of a monitor
without becoming too complex with respect to the decision, since the complexity hugely
impacts the optimization complexity. To achieve an accurate and relative simple model,
we only want to use a few variables that give a lot of information about the state of a
monitor.

To find variables for the model, we turn our attention to the machine learning model
that in use. The current SVM model has eleven features; using all feature would make
the process too complex. However, not all features contribute evenly to the preventive
maintenance decision. Therefore, ranking the features on their predictive power allows us
to select the features that give the most information about the state of a monitor. Note

2.3 Feature Ranking 6

that the features are thus not chosen to fit the data, but to describe the patterns that
reflect the decision in the SVM model.

One way to rank the features in a linear SVM model is by the weight vector. We
know that the class of a new point xnew is determined by the sign of 〈w,xnew〉+ b. An
absolute higher value of a component in the weight vector means that any change in the
measurement of the corresponding feature has a higher impact on the value of the dot
product than a similar change of a component with an absolute lower weight. We thus
interpret the features with higher weights as the ones having a high predictive power.
The components of the weight vector of the model are shown in Table 2.2a.

The SHAP values give us a second way to rank the features. In [6] the authors
introduce the SHAP values, which assign an importance value to each feature. The
theory is inspired by a concept of cooperative game theory, namely Shapley values (see,
for instance, [7] for an introduction to game theory and Shapley values, in particular
Section 9.4). The SHAP values are calculated with the SVM model and explain how the
features contribute to the classification of a new point.

Just like the Shapley values, there are three desired properties that uniquely define the
SHAP values. Before we state the properties, we introduce the notation used in [6]. Let
f be the original model, which we want to explain, and let g be the explanation model.
The explanation model uses simplified inputs x′ ∈ {0, 1}M , where M is the number of
features of the model. The original inputs x are obtained by a mapping hx that converts
a binary vector of interpretable inputs into the original input space, i.e. x = hx(x′). Note
that hx depends on x.

The three properties that define the SHAP value are (paraphrased from [6])

Property 1 (Local accuracy) The explanation model g(x′) matches the original model
f(x) when x = hx(x′) and is a linear function with real coefficients φi for i =
0, 1, . . . ,M , i.e.

f(x) = g(x′) = φ0 +
M∑
i=1

φix
′
i.

The coefficient φi is called the attribution of feature i.

Property 2 (Missingness) The missingness property assures that features that are not
included do not have an attributed impact, so x′i = 0⇒ φi = 0.

Property 3 (Consistency) If the model changes such that the contribution of some
simplified input increases or stays the same regardless of the other inputs, then
the input’s attribution should also stay the same or increase. Let z′ \ i denote the
setting z′i = 0 and let fx(z′) = f(hx(z′) for z′ ∈ {0, 1}M . For any two models f and
f ′, if

f ′x(z′)− f ′x(z′ \ i) ≥ fx(z′)− fx(z′ \ i)

for all inputs z′ ∈ {0, 1}M , then φi(f
′, x) ≥ φi(f, x).

The SHAP values are given by Theorem 2.1.

2.3 Feature Ranking 7

Theorem 2.1. [Theorem 1 of [6]] There is only one possible explanation model g that
satisfies properties 1, 2 and 3 and the features attributions are given by

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z′)− fx(z′ \ i)],

where |z′| is number of non-zero entries in z′ and z′ ⊆ x’ represents all vectors z′ where
the non-zero entries are a subset of the non-zero entries in x′

Table 2.2: The eleven features of the SVM model ordered on their contribution to new
classifications.

(a) Weights of the SVM hyperplane

Feature Weight

Feature 2 −2.473·10−1

Feature 5 1.742·10−1

Feature 1 −1.737·10−1

Feature 6 1.290·10−1

Feature 4 6.770·10−2

Feature 3 6.432·10−2

Feature 7 −4.105·10−2

Feature 8 −3.891·10−2

Feature 9 −2.255·10−2

Feature 10 3.074·10−18

Feature 11 3.074·10−18

(b) Averaged Shap values.

Feature SHAP

Feature 5 2.562·10−2

Feature 2 2.380·10−2

Feature 1 6.770·10−3

Feature 6 6.033·10−3

Feature 3 3.223·10−3

Feature 4 2.258·10−3

Feature 7 2.041·10−3

Feature 8 4.864·10−4

Feature 9 3.939·10−5

Feature 10 0.
Feature 11 0.

Unlike the weight vector, the SHAP values are calculated per prediction and not for the
whole model. To obtain a ranking of the features based on the SHAP values, we divide
the training set into 10 equally sized groups using stratified sampling and use 10-fold
cross-validation. We use stratified sampling to make sure that the ratio between working
and failed monitors is constant over the groups and choose 10-fold cross-validation since
it common practice and it was used in the original training of the SVM model. We then
train an SVM model on nine of the groups and aggregate the absolute values of the
SHAP values of each prediction, see Algorithm 2.1. To train the SVM classifier we use
the R function svm() in the e1071 package [5] and the same parameter values as the
original model (see Section 2.2). We use the iml [8] package in R to calculate the SHAP
values and, apart from the sample size, which is increased to 500, use the default settings
of the function Predictor$new(). The arithmetic mean of the SHAP values per feature
are shown in Table 2.2b.

The implementation in the iml package calculates sampling-based estimates of the
SHAP values, which is discussed in detail in [9]. The idea is to use an alternative
formulation of the Shapley value that uses the ordered list of permutations of the features.
Due to the sampling, the results differ slightly between runs. However, we noticed that

2.3 Feature Ranking 8

the same conclusion, which we discuss later in this section, can be drawn from any of the
runs, so the method gives consistent results.

Algorithm 2.1: Procedure to calculate the SHAP values of each feature of
the SVM model using stratified sampling and cross-validation.

Input: Training set (TS) for big screens
Output: Arithmetic mean of the SHAP value per feature of the instances in the

training set
// Step one:Splitting

1 Make sets Fail and Normal consisting of row indices in TS corresponding to
these labels

2 Set nF = |Fail|/10 and nN = |Normal|/10
3 for i in 1 to 10 do
4 sample nF indices from Fail
5 sample nN indices from Normal
6 set i is union of both samples
7 remove sampled indices from the sets Fail and Normal

8 Distributed possible remaining indices over sets
// Step two: Determine SHAP values

9 Initialize matrix SH.tot for the SHAP values per feature
10 for i in 1 to 10 do
11 Test set is the subset of TS consisting of indices in set i
12 Training set (TN) is the rest of TS
13 Train an SVM on training set
14 for x in TN do
15 Compute vector SH with SHAP values of x
16 SH.tot[i,] = SH.tot[i,] + SH // row i in matrix SH.tot

17 Calculate the arithmetic mean per feature (column) to obtain the mean SHAP
value per feature.

A third way to rank the features is by using a forward selection procedure, based on
to the forward selection procedure in stepwise regression (see, for instance, Section 9.12.2
in [10]). The idea is to start with zero features and add one feature at the time until all
eleven features are included. In each step we train one SVM model for each feature not
yet selected where the features in the model are the ones already selected features and the
new one. The feature selected in a step is the feature that improves some classification
measure the most, see Algorithm 2.2.

The classification measure is based on the confusion matrix, see, for instance, [11], that
gives the number of true positives, true negative, false positives and false negatives of a
classification. The SVM model classifies each input vector in the training set as either
positive or negative and each classification thus falls in one of the four categories.

2.4 Brief Description of Top Ranked Features 9

Algorithm 2.2: Procedure of the forward feature selection to rank features
on their predictive power.

Input: Training set (TS) for big screens, measure M
Output: List of features selected by forward selection.

1 Split TS into a training set and test set.
2 Set AF = {1, 2, . . . , 11} // vector with all feature labels

3 Set SF = ∅ // vector with the selected features

4 while AF 6= ∅ do
5 Initialize per, constant vector of length 11 with value −10
6 for i in AF do
7 Train SVM with features SF ∪ {i} on train set
8 Calculate performance on test set according to measure M and store in

per[i]

9 k = arg max per // feature with the best performance

10 SF = SF ∪ {k}
11 AF = AF \ {k}

As classification measure, we use the precision measure for reasons that we discuss
in Chapter 6. The precision is defined as “the number of correctly classified positive
examples divided by the number of examples labeled by the system as positive” [11], i.e.

precision =
TP

TP + FP

The results of the forward selection procedure are shown in Table 2.3. In this particular
case, the order of inclusion seems arbitrary for several features, since they do not add
anything to the precision. However, including any of the bottom six features before any
of the top five does result in a slower increase, i.e. the maximum precision is reached with
more features. The order in Table 2.3 is thus consistent with the results of Table 2.2.

We see that the first two methods rank the features in almost the same order, only
feature 2 and feature 5, and feature 3 and feature 4 switch position. Both methods
indicate that features 1, 2 and 5 are the features that contribute the most. The results
of the third method support the findings of the first two. The found order importance
corresponds to the opinion of domain experts at Philips.

2.4 Brief Description of Top Ranked Features

The goal of the next chapter is to develop a stochastic process that models the state of a
monitor. We want this model to be accurate, but not too complex. We therefore choose
to use the top three ranked features, which we briefly discuss in this section.

.
.

2.4 Brief Description of Top Ranked Features 10

Table 2.3: Features as selected by the forward selection procedure based on the precision
measure. Even though Features 1 and 2 do not immediately increase the precision, they
must be included in this order to obtain the maximum precision with as few features as
possible.

Feature Increase Total

Feature 5 6.833·10−1 0.6833
Feature 2 0. 0.6833
Feature 1 0. 0.6833
Feature 3 0. 0.6833
Feature 4 0. 0.6833
Feature 9 4.749·10−3 0.6880
Feature 6 8.915·10−3 0.6969
Feature 7 0. 0.6969
Feature 8 0. 0.6969
Feature 10 0. 0.6969
Feature 11 0. 0.6969

. .

.
.

.

.
.

.
.

.
.

Chapter 3

Degradation process

In this chapter we introduce the stochastic process that we use to model the state of a
monitor. In Chapter 2 we discuss the current SVM implementation to predict failures
of the monitors. We end the chapter by discussing the three features with the most
predictive power.

In this chapter we first use the three features to formulate a stochastic process, called
the degradation process, to model the state of a monitor. We then state the failure
mechanism that we assume and look at the assumptions that we make in the formulation
and whether they are satisfied or not. We end the chapter with estimations for the
stochastic quantities of the degradation process, which we obtain by using real world
data of the big screen monitors.

3.1 The Degradation Process

We can capture two of the top three ranked features, namely the working hours and
brightness, by following the brightness over time. However, instead of looking at the
measured values of the brightness, we look at the degradation from the base level. We
define the degradation D as the difference between the base level and the measured value
of the brightness, i.e.

D = BL−BB. (3.1)

In Equation (3.1) BB is the backlight brightness as measured by the monitors and BL
is the base level.

In Equation (3.1), we see that it is mathematically equivalent to look at the brightness
or the degradation. However, there are several advantages of looking at the degradation
instead of the brightness directly. One advantage is that we can model the degradation
process, i.e. the degradation of a monitor over time, as a non-decreasing sequence starting
at zero, which allows us to drop the base level in most of the calculations.

The recorded brightness measurements vary a lot, see Figure 3.1. Following the
measurements over time would thus give us a volatile process. To obtain a stable process,
we define an envelope that follows the lower part of the measurements. The assumption
behind the usage of the envelope is that the lower values give more information about
the “real” value of the brightness. The envelope should accurately follow the lower

3.2 Failure Mechanism 12

measurements, but still be robust to some outliers, for instance, brightness measurements
of zero. An envelope that satisfies these constraints is the third running minimum. The
definition of the third running minimum at time t is the third lowest point until time t.
In Section 3.3 we discuss why we choose the third running minimum as envelope.

The brightness of a monitor starts at the base level and then decreases over time.
The degradation thus starts at zero and increases over time. We assume that, when
the brightness decreases, i.e. the third running minimum changes value, the brightness
decreases by an integer valued random variable and that the times between decreases are
continuous. We call the decreases jumps and the time between jumps interarrival times.
Furthermore, we assume that both the jumps and interarrival times are independent and
identically distributed (i.i.d.) and that the jumps and interarrival times do not depend
on each other, i.e. they are independent. Both the jumps and the interarrival times are
positive random variables. We denote the i-th jump and interarrival time by Yi and Xi,
respectively.

The assumptions allow us to model the degradation process as a jump process D(t),
given by

D(t) =

N(t)∑
i=1

Yi. (3.2)

In Equation (3.2), N(t) is the number of jumps until time t, which is given by

N(t) =

∣∣∣∣∣
{
n ∈ N+ |

n∑
i=1

Xi ≤ t

}∣∣∣∣∣ = max

{
n ∈ N+ |

n∑
i=1

Xi ≤ t

}
. (3.3)

The third feature that has high predictive value in the SVM classifier is a feature
connected to the internal workings of the hardware (feature 5). The feature takes the
values 0 and 1, where a 1 indicates that something undesirable has happened and the
monitor is about to fail. We model this feature as an environmental factor which takes
values 0 and 1. The time it takes the environment to switch from 0 to 1, denoted by
E, follows some distribution that is independent of the degradation process and has
support on the positive reals. We denote the environment at time t by Env(t). Finally,
we assume that there is enough time to schedule a preventive maintenance visit after the
environment switches.

3.2 Failure Mechanism

We assume that a monitor fails if one of three events occur: the working hours cross some
level, the brightness drops below some level (the degradation thus crosses a level) or the
environment switches. The values that the working hours and brightness need to cross
to cause a failure are random variables, which we denote by L and B, respectively (see
Figure 3.1). We define D as the amount of degradation needed to fail, which is related
to B according to Equation (3.1). We assume that L, similar to E, has support on the
positive reals and D on the closed interval [0, BL]. Finally, we assume that L, D and E

3.3 Validation of Assumptions 13

Figure 3.1: The measured brightness values over time with the third running minimum
B(t) and the values at failure of the brightness and working hours.

are independent. The time at which a monitor fails is thus given by

T = inf{t | t ∈ R,1{{t ≥ L} ∪ {t ≥ E} ∪ {D(t) ≥ D}} = 1}. (3.4)

There is one physical constraint in the model, namely the degradation must be below
the value of the base level. If this is not the case, then, by Equation (3.1), the brightness
is negative, which is impossible. However, the condition is never violated, since the
definition in Equation (3.4) ensures that the failure time occurs before the brightness
reaches 0.

3.3 Validation of Assumptions

In Section 3.1 we make some assumptions on the variables in the degradation process. In
this section we briefly discuss why the assumptions are reasonable.

The main assumption that we make is that the degradation process can be modeled
as a jump process. In the top graph of Figure 3.2, we plot the measured brightness
values for a single monitor over time (black dots) and the third running minimum (blue
line), which represents the jump process. We use the third minimum, because it is less
sensitive to single measurements than the minimum and still flexible enough to follow

3.3 Validation of Assumptions 14

changes in the measurements. The third minimum seems to follow the lower part of the
measurements well, which also holds in general, and is by construction a jump process.
The degradation process, obtained by subtracting the third minimum from the base level
(see Equation (3.1)), is thus also a jump process, see the red line in the bottom graph of
Figure 3.2.

Figure 3.2: The measured brightness values over time with the third running minimum
(blue line) and the corresponding degradation process D(t) (red line) for a monitor of an
iXR sytsem.

The other big assumption we make is that the interarrival times and jump sizes are
i.i.d. and independent of each other. To test the assumed independence, we use data
from monitors that are included in the training set used to train the SVM classifier
(for the rest of the chapter we refer to this set by training set). For each of the 518
unique monitors in the training set, we determine the third running minimum to calculate
the interarrival times and jump sizes. To test the assumptions we perform three tests
on both the interarrival times and the jumps, namely the Wald-Wolfowitz runs test
to test the randomness of the data [12], the Ljung-Box test to check whether the
data is independently distributed [13, 14] and the difference-sign test, which tests the

3.3 Validation of Assumptions 15

i.i.d. assumption of the data [14]. The Wald-Wolfowitz and difference-sign tests are
implemented in the R package randtest [15] through the functions runs.test() and
difference.sign.test(), respectively. The Ljung-Box test is performed using the
Box.test() function in R. In Appendix B the hypothesis and test statistics are shown
in detail. The testing procedure is outlined in Algorithm 3.1.

Algorithm 3.1: Procedure to calculate the fraction of null hypotheses that
are not rejected for several tests on the randomness and independence of the
interarrival times and jump sizes of the jump process. The results are shown in
Table 3.1.
Input: Set of monitors (M) and their WH and BB measurements over time
Output: Fraction of monitors that reject the null hypothesis for each test

1 for m in M do
2 Construct third running minimum of m from WH and BB measurements
3 Let n.jumps be the number of jumps in the third minimum
4 if n.jumps > 4 then

// Compute tests on both interarrival times and jumps

5 Perform Wald-Wolfowitz test and store p-value
6 Perform Ljung-Box test and store p-value
7 Perform difference-sign test and store p-value

8 Compute fraction of null hypotheses that are not rejected at a 95% confidence
level

In Table 3.1 the results of the three test are shown. We only consider monitors for
which the third minimum has at least five jumps, which leaves us with 494 monitors.
The values in the table represent the fraction of monitors that did not reject the null
hypothesis at a 95% confidence level. For instance, 80 percent of the monitors have
a sequence of interarrival times for which the Wald-Wolfowitz does not have enough
evidence to reject the randomness hypothesis. We see that for most monitors the i.i.d.
assumption on the interarrival times and jump sizes are reasonable.

Table 3.1: The fraction of monitors that did not reject the null hypotheses for the
independence tests at a 95% confidence level for the interarrival times and jump sizes
per monitor.

Test
Fraction not rejected

Interarrival Jumps

Wald-Wolfowitz 0.7996 0.8798
Ljung-Box 0.9271 0.8684
difference-sign 0.9271 0.9737

3.4 Estimations of Parameters 16

The last part of the assumption is that the interarrival times and jump sizes are
independent form each other. To test whether there is a relationship between the
interarrival times and the jump sizes, we use a set of four tests introduced by Heller,
Heller and Gorfine [16]. The null hypothesis for the tests are that two vectors, the
interarrival times and jump sizes, are independent; the alternative is that the two vectors
are dependent. The tests are implemented in the package HHG [17] in R. Since the tests are
based on pairwise distances between the samples of the two vectors, we scale the vectors
to zero mean and unit variance and consider the Euclidean distance. We use a similar
testing procedure as represented in Algorithm 3.1. The difference is that we now use
the standardized working hours and brightness measurements and use the hhg.test()

function.
The results of the tests are shown in Table 3.2. The fraction of null hypotheses that

is not rejected is similar to the non rejection rates in Table 3.1. Therefore, we draw a
conclusion along the same lines and say that independence between interarrival times
and jump sizes seems reasonable.

Table 3.2: The fraction of monitors that did not reject the null hypotheses for the HHG
tests at a 95% confidence level for the independence of the interarrival times and jump
sizes.

Test Variant Fraction not rejected

sum chi square 0.8619
sum likelihood 0.8619
max chi square 0.9095
max likelihood 0.8786

The final assumption is related to the failure mechanism of the monitors, namely we
assume that the value of the working hours and degradation at failure are i.i.d. and
independent of each other. The data available to test the assumptions are the failure
instances in the training set. Using the working hours and brightness at failure and
applying the same tests as for the interarrival times and jumps, we obtain p-values that
are all larger than 0.05. The assumptions thus seem reasonable.

3.4 Estimations of Parameters

The final step in setting up the model is to specify the distributions of the different
stochastic quantities. We first discuss the distributions for the jump process, i.e. the
distributions for the jumps and interarrival times, and then look at the values at failure.

3.4 Estimations of Parameters 17

3.4.1 Jump Process

The specification of the jump process is done in three steps: first the parameters of
several distributions per monitor are estimated, then the hypothesis that the data comes
from each of the distributions is tested and finally the parameters are selected.

To estimate the parameter of a distribution, we use maximum likelihood estimation.
Assume that X = (X1, X2, . . . , Xn) are i.i.d. random variables, each with density fθ(x),
where θ is the vector with the parameters of the distribution, and let x = (x1, x2, . . . , xn)
be a realization of X. The likelihood function L(x,θ) is the probability of the realization
x for parameter vector θ. We have that

L(x,θ) =
n∏
i=1

fθ(xi). (3.5)

The idea of the maximum likelihood estimation is to find the value of θ that maximizes the
probability of realization x, i.e. maximizing Equation (3.5) [18]. Often the log-likelihood
is considered, because the log transformation simplifies calculations.

The data for the jumps fits nicely in the above framework for maximum likelihood
estimation. However, the data for the interarrival times and the values at failure in the
training set do not. For instance, the value of the last interarrival time is not known,
since we do not know when that jump takes place. We only know that the interarrival
time is at least as big as the time since the last jump. This means that the value in which
we are interested, is only partially known. Data that is only partially known is called
censored data. When the unknown part of the data is at the end, we have right-censored
data.

The maximum likelihood estimation procedure can be adapted to censored data, see,
for instance, Chapter 2 of [19]. To this end, we assume that we have right-censored data
and that we have a binary variables r = (r1, r2, . . . , rn) indicting whether realization xi
is fully known (+1) or censored (−1). The likelihood function for a distribution F with
density function f and parameter vector θ is then given by

L(x,y,θ) =

n∏
i=1

f(xi,θ)
ri+1

2 [1− F (xi,θ)]
1−ri

2 =
∏

i : ri=+1

f(xi,θ)
∏

i : ri=−1
1− F (xi,θ). (3.6)

Note that Equation (3.5) is a special case of Equation (3.6), which we obtain when ri = 1
for i = 1, 2, . . . , n and use the fact that the empty product equals 1.

To test whether the data could be a sample from the distribution with the estimated
parameters, i.e. the maximizers of Equation (3.6), we want to perform a statistical
test with null hypothesis that the data is a sample from the specified distribution.
However, since we used the data to estimate the parameters of the distribution we
want to test against, the classical Kolmogorov–Smirnov test becomes biased towards
the null hypothesis; the result is that the test is too conservative. Therefore, we use a
parametric bootstrap procedure described in Section 2 of [20] to estimate the p-value
of the hypothesis. The test statistic used in the bootstrap procedure is the Cramér-von

3.4 Estimations of Parameters 18

Algorithm 3.2: Procedure to obtain the fraction of monitors that do not reject
the hypothesis that the data is a sample of a certain distributions. We use a
parametric bootstrap procedure to approximate the p-value. As example, we
use the interarrival time. We set nB to 1000 in the calculations.

Input: List of monitors (M), set of distributions (Dists) and nB the number of
bootstrap samples.

Output: Parameter estimates for distribution at failure of several distributions.
1 for m in M do
2 Construct third running minimum of m
3 Let n be the number of recorded interarrival times
4 Let x1, x2, . . . , xn be the interarrival times
5 Calculate the order statistics x(1), x(2), . . . , x(n)
6 if n larger than 4 then
7 for F in Dists do

8 Calculate CvM test statistic of F, TF := 1
12n +

∑n
i=1

[
2i−1
2n − F (x(i))

]2
9 Estimate the parameters θ̂ of F by maximum likelihood estimation,

i.e. maximizing Equation (3.6)
10 for i in 1 to nB do

11 Draw n random variables x̃1, x̃2, . . . , x̃n from F with parameters θ̂
12 Calculate the order statistics x̃(1), x̃(2), . . . , x̃(n)

13 Calculate CvM test statist Ti := 1
12n +

∑n
i=1

[
2i−1
2n − F (x̃(i))

]2
14 Compute bootstrap p-value, given by p = 1

nB

∑nB
i=1 1{Ti > TF }

15 Compute fraction of monitors that do not reject null hypothesis at confidence
level α

Mises (CvM) test statistic T , given by

TF :=
1

12n
+

n∑
i=1

[
2i− 1

2n
− F (x(i))

]2
,

where F is the distribution we want to test against and x(i) for i = 1, 2 . . . , n are the
order statistics of the realizations xi. The full procedure, together with the parameter
estimation per monitor, is shown in Algorithm 3.2.

We use 1000 bootstrap samples for each monitor that has at least five interarrival times
and test four distributions that have positive support, namely the exponential, Weibull,
lognormal and gamma distributions. To find the maximizers of the likelihood function we
use the functions fitdist() (non-censored data) and fitdistcens() (censored data)
from the fitdistrplus package [21] in R.

Table 3.3 shows the fraction of monitors that did not reject the null hypothesis that
the interarrival times came from the tested distribution. The highest fraction in Table 3.3

3.4 Estimations of Parameters 19

comes from the lognormal distribution and we therefore choose to model the interarrival
times as coming from a lognormal distribution.

Table 3.3: Fraction of monitors that do not reject the null hypothesis that the interarrival
times come for the given distribution at confidence level 0.05. The individual bootstrap
p-values are obtained using 1000 bootstrap samples.

Distribution Fraction not rejected

Exponential 0.1964
Weibull 0.5486
Lognormal 0.7368
Gamma 0.6235

We follow the same procedure for the jump sizes. All jumps are integer valued, so we
test some discrete distributions. We test the (shifted) geometric distribution, which has
probability mass function P(X = k) = p(1 − p)k−1 for k = 1, 2, . . . and p ∈ (0, 1), the
Poisson distribution and the negative binomial distribution. The results are shown in
Table 3.4, where we again considered monitors with at least five jumps. We see that the
geometric distribution is a good fit for many monitors and therefore choose to model the
jump sizes as coming from a geometric distribution.

Table 3.4: Fraction of monitors that do not reject the null hypothesis that the jumps
sizes come for the given distribution at confidence level 0.05. The individual bootstrap
p-values are obtained using 1000 bootstrap samples.

Distribution Fraction not rejected

Geometric 0.7237
Poisson 0.3026
Negative Binomial 0.2500

The parameter estimations for the lognormal distribution fall in a wide range, see
Appendix A. The wide range of estimations indicate that the degradation process is
monitor dependent. Similarly, the estimated parameter for the jump size distribution also
varies a lot and there seems to be no relation between the estimates for the interarrival
time and jump sizes.

For this project we select a monitor that we believe is representative for the whole
group. The parameter values of this monitor are µ = 4.198, σ = 1.401 and p = 0.6078.
The majority of monitors do not reject these parameters as the true parameters when
using the bootstrapping method. For the remainder of the report we therefore assume
these parameters to be the true parameters for all monitors, which might be a too strict
assumption.

In future work one could replace the deterministic parameters by random quantities.
Having random parameters allows the model to be more representative for all monitors.

3.4 Estimations of Parameters 20

If one uses the model for decision-making, then one can update the parameters of a
specific monitor as time goes by. One possibility is to use Bayesian updating for such a
model.

3.4.2 Values at Failure

In this section we discuss how the distributions and parameters for the working hours
at failure (L), the degradation at failure (D) and time until the environment switches
(E) are selected. In this section we use an adapted form of the training set, where all
instances of the same monitors have been averaged out. The reason for this is that
multiple instances of the failures are included in the training set, which are all labeled as
failing. These instances make the data dependent, which would not allow us to use the
maximum likelihood estimation procedure.

One problem with the data is that the reason why a monitor failed is not given. Since
we currently do not know a way to obtain the reason of failure, we use all the failures as
uncensored data for each estimation. Essentially, we combine censored and uncensored
data and therefore make a mistake in the estimations of the values at failure.

A possible solution to the problem is to collect the reasons of failure as well, which
would allow us to use the maximum likelihood estimation for right-censored data, see
Section 3.4.1). The extra data would also benefit other predictive models. A point of
future research is to develop techniques to better estimate distributions in case like this.

Working Hours Previous research (see [22]) identifies some candidate distributions to
model the working hours at failure. The proposed distributions are the exponential
distribution, the Weibull distribution, the lognormal distribution, Lai et al.’s modified
Weibull distribution [23], the Hjorth distribution [24], and the Xie and Lai’s modified
Weibull distribution [25]. In Table 3.5 the cumulative distributions function of the six
aforementioned distributions are shown.

Table 3.5: The distribution functions of the distributions under consideration for the
working hours at failure.

Distribution F (x) Parameters

Exponential 1− e−λx λ > 0

Weibull 1− e−(x/λ)
k

λ, k > 0

Lognormal 1
2 + 1

2 erf
[
lnx−µ√

2σ

]
σ > 0, µ ∈ (−∞,∞)

Lai et al.[23] 1− e−λx
βeνx λ, β, ν > 0

Hjorth [24] 1− e−δx
2/2

(1+βx)θ/β
δ, β, θ > 0

Xie and Lai [25] 1− e−(ax)
b−(cx)d a, b, c, d > 0

We again use the maximum likelihood method to estimate the parameters of each
distribution. For computational reasons we use Mathematica instead of R to maximize

3.4 Estimations of Parameters 21

the likelihood. We use the functions FindDistributionParameters (for implemented
distributions), where we increase the maximum number of iterations to a thousand,
and NMaximize (for not implemented distributions), where we manually implement the
log-likelihood.

To evaluate the models, we compare the models with the Kaplan-Meier estimator,
which is a non-parametric statistic. The Kaplan-Meier estimator estimates the survival
function, also called reliability function, of right-censored data. The survival function S
of a random variable X at point t is defined as the probability that X is larger than t,
i.e. S(t) = P(X > t) = 1− F (t). In [26] Kaplan and Meier introduce the statistic P (t),
which can be interpreted as the proportion of the population that survives beyond time t.

In Figure 3.3 we plot the Kaplan-Meier estimator and the fitted models. The Kaplan-
Meier estimator is calculated in R with the package survival [27]. In the figure we see
that the Weibull, Hjorth and Lai et al. distribution match the non-parametric estimator
better for large values of the working hours. The low values of the reliability here explain
the lower expected values of these distributions in Table 3.6.

0 5,000 10,000 15,000 20,000 25,000
0

0.2

0.4

0.6

0.8

1

Working hours (h)

R
e
li
a
b
il
it
y

Kaplan Meier estimation of lifetime

Kaplan-Meier

Exponential

Weibull

Lognormal

Hjorth

Lai et al

Xie and Lai

Figure 3.3: The Kaplan-Meier estimator and the fitted parametric models for the
working hours at failure.

3.4 Estimations of Parameters 22

To further quantify the fit, we calculate the mean squared error (MSE) of the survival
probabilities of the Kaplan-Meier estimator and the theoretical values of the fitted models.
An estimate for the MSE for distribution F with observations x1, x2, . . . , xn is given by

MSE(F) =
1

n

n∑
i=1

(KM(xi)− (1− F (xi)))
2,

where KM(xi) is the Kaplan-Meier estimate of the survival function at time xi.
We choose the Weibull distribution to model the working hours at failure, since

the estimated parameters yield a reasonable mean and the MSE is low. Furthermore,
the Weibull distribution is well understood, commonly used in modeling component
lifetime and available in most statistical software. The Lai et al. distribution also has a
reasonable mean and a lower MSE and AIC than the Weibull distribution, but the Lai
et al. distribution does not have the additional advantages of the Weibull, which is the
reason why we do not choose the Lai et al. distribution.

Table 3.6: The censored fits of the working hours at failure of the big screen monitors

Distribution Parameter Estimate Mean AIC MSE

Exponential λ 2.119×10−5 4.719×104 1.437×103 1.733×10−3

k 1.692
Weibull

λ 2.297×104
2.050×104 1.492×103 1.264×10−3

µ 1.011×101
Lognormal

σ 1.145
4.724×104 1.683×103 1.557×10−3

β 2.162×104

δ 4.902×10−9Hjorth
θ 1.942

1.787×104 1.453×103 1.713×10−3

λ 1.716×10−3

β 3.928×10−1Lai et al.
ν 1.123×10−4

1.814×104 1.413×103 5.652×10−4

a 2.120×10−5

b 1.000
c 0.

Xie and Lai

d 2.750×10−3

4.718×104 1.443×103 1.733×10−3

Degradation For the degradation values at failure, we must choose a distribution with
a bounded support, such as the beta distribution. We use Equation (3.1) to transform
the brightness values in the training set to degradation values and scale the degradation
values to the interval [0,1]. Using the scaled values we obtain, in a same way as for the
working hours, the estimates α = 1.216 and β = 0.7149 for the beta distribution.

The expected value of the degradation at failure, which is 220, seems low and the
expected value of the working hour is high for many distributions. We discuss one of the
reasons in Section 10.2, where the ratio between censored data and uncensored data in
the training set is treated.

3.4 Estimations of Parameters 23

Environment There are too few measurements in the training set of feature 5 to get
reliable parameter estimates. We therefore choose to model the time until the environment
changes state as a random variable following a Weibull distribution, just as the working
hours. We assume that a monitor fails, when feature 5 is larger than 0. We therefore
choose the parameters for the Weibull distribution such that P(E < L) is similar to the
fraction of instances in the training set for which feature 5 is larger than 0. Parameters
that satisfy the condition are λ = 50, 000 and k = 2.8, which are used in the rest of the
report.

Chapter 4

Policies Under Consideration

In this chapter we discuss some policies that prescribe when a monitor should be
replaced to minimize the objective of Equation (1.1). The idea of a policy is to replace
the monitors before a failure occurs. In Chapter 3 we make the assumption that a failure
of a monitor is caused by one of three reasons; either the working hours, the age or the
environment causes the failure. A feasible solution to the optimization problem is a set
of rules, i.e. a policy, that specifies for all possible values of the three quantities whether
a replacement should be made or not.

However, the set of policies is infinite. To see this, we only need to consider the plane
spanned by the working hours and degradation. Each policy can be seen as a curve
that divides the positive quadrant of the plane spanned into two: one part where no
preventive maintenance actions are planned and one where preventive replacements are
prescribed. The curve divides the plane into two and a policy is thus characterized by a
curve. Since there are an infinite number of curves, the set of policies is infinite.

Luckily, many feasible solutions can be discarded, since they do not specify a policy
that is interpretable or have undesirable properties. For instance, a curve that can be
crossed several times by an increasing jump process is, with our assumptions, undesirable.
In such as policy, no one-to-one relationship exists between the location on the plane
and whether a replacement has been scheduled or not. The question that remains is thus
which solutions are acceptable and how they can be ordered to decrease the complexity
of the optimization problem.

We answer that question in this chapter. Instead of removing all the undesirable
policies from the solution space, we discuss three classes that have desirable properties.
In the remainder of the report our focus is on these three classes.

All the policies we look at in this report are stationary policies, but we do not have
a guarantee that the global optimal policy is stationary. However, we do know that
for Markov decision processes, with deterministic static costs and two possible actions
per state (perform maintenance or do nothing), the optimal action is a state dependent
stationary deterministic policy. Even though our model is not an MDP, it seems reasonable
that the stationary policies at least indicate the nature of the global optimal policy.

Before we discuss the three classes, we recall one assumption made in Chapter 3, namely
that there is enough time to schedule and perform a replacement after the environment
switches from 0 to 1. A desired property is thus that a policy specifies a replacement

4.1 Class 1: Univariate Thresholds 25

after the environment switches. All policies that we discuss have this property and the
differences between the policies are thus the curves in the plane spanned by the working
hours and degradation. Because of this, we specify the curve when talking about a policy
in the remainder of the report.

The three classes that we discuss next are related to the modelling of the failures.
Each class is based on an assumption of the failure. The first class assumes that a failure
occurs after some univariate thresholds are crossed; the second class assumes that a
failure occurs when the probability of the monitor working crosses some fixed threshold;
the third class assumes that there is some linear dependence between the working hours
and degradation which describes the failure.

4.1 Class 1: Univariate Thresholds

The first class of policies is described by two thresholds: one for the working hours and
one for the degradation. We denote the thresholds by τWH and τD for the thresholds
on the working hours and degradation, respectively. Together the thresholds specify a
rectangle in the plane, see the solid blue curve in Figure 4.1. A replacement is planned
whenever the degradation process crosses either threshold. In Figure 4.1 a repair is
thus made when the degradation process (solid black line) crosses the threshold for the
working hours.

One situation in which the class 1 policies are a natural choice is a scenario where the
degradation and working hours are completely independent. Then the information one
has on either of them does not give any information on the other. Therefore, for both
the degradation and working hours a logical policy is a threshold policy.

An advantage of the policies in class 1 is that the reasons to replace a component
are clear. Even though in most settings there is no independence, the clear rules of the
policies make the policies interesting.

4.2 Class 2: Ellipsoids

The second class consists of ellipse shaped curves that represent the points in the plane
at which the probability of failure is η for some η between 0 and 1. For a given point in
time t where the degradation is d, the probability that a monitor has not failed is the
probability that neither of the three causes of failure have occurred. The probability of
being alive at point (t, d, e) is thus given by

P({L > t} ∩ {E > t} ∩ {D > D(t)} | D(t) = d,Env(t) = e)

= P(L > t)P(D > d)1{e = 0} , (4.1)

where, we can split the left-hand side due to the assumed independence. When we plot
the solutions of equalizing Equation (4.1) to a constant η, we obtain a curve in the plane
that looks like an ellipse, see the dotted red curve in Figure 4.1. A value of η close to 1
results in a curve close to the origin, while a value close to 0 results in a curve further
away.

4.3 Class 3: Linear Planes 26

0 10,000 20,000 30,000 40,000 50,000
0

50

100

150

200

250

300

350

Working hours (h)

D
eg

ra
d
a
ti
o
n
(c
d
/
m

2
)

Curves of the three classes

Class 1

Class 2

Class 3

D(t)

Figure 4.1: Possible curves of the three policy classes and a possible degradation process
from start to failure. All policies specify a replacement when the associated curve is
crossed by the degradation process.

One appealing property of the second class is that we have an easy approximation of
the fraction of monitors that is replaced preventively, namely η. The reason that it is
only an approximation is that the replacements caused by a change in the environment
are not accounted for. Furthermore, we know what the probability is that a monitor is
still alive when we want to replace it, which is helpful for the interpretability.

4.3 Class 3: Linear Planes

The third class of policies consists of linear planes, which include the classifiers obtained
by the SVM algorithm. Linear planes are given by the solutions (t, d) of the equation

t+ a · d = a · b (4.2)

for some real constants a and b. The constant b corresponds to the intercept of the plane
with the degradation axis in Figure 4.1. The solutions of Equation (4.2) lie on a line, see
the brown dashed line in Figure 4.1. In the figure, we see that the monitor failed before
the linear plane was crossed, so, in this case, corrective maintenance was performed.

One advantage of the linear planes is that they can take some dependence between
the working hours and degradation into account. Often one of the two is the dominant
factor in the policy. For instance, a plane that start at the same point as threshold for

4.3 Class 3: Linear Planes 27

the degradation of class 1 in Figure 4.1 and then slowly decreases, sees the degradation
as the dominant factor, while acknowledging that the working hours also have some
contribution to the failure occurrences. Another advantage is that the classifiers found
by the SVM algorithm are part of the third class, thus the method of the report includes
the old classifiers.

Two desired properties that all three classes have is that the curves can be described
as smooth and continuous. There are no ‘holes’ in the curves that allow sample paths of
the degradation process to never cross the curve. Neither can there be sample paths that
cross a curve multiply times, which would be undesirable with our assumptions on the
stochastic quantities. Under other assumptions, these properties could be undesired, but,
since this is not the case in the project, we do not look closer into this.

Chapter 5

Average Cost Criterion

In this chapter we discuss the first performance indicator, namely the operational
costs. We define the operational costs for a policy as the costs that are made when
following that policy. We assume that the total cost is made up of two parts: the cost
for a corrective replacements and the cost of a preventive replacement. The two costs are
assumed to cover all relevant costs to a predictive or corrective replacement, e.g. shipping
costs and loss of income due to the downtime of the system.

The operational costs for the current policy, which is based on an SVM classifier, is
presumably relatively high, since no costs were taking into account during the training of
the SVM classifier. Therefore, the related policy does not take the costs into account. In
the literature one can find methods to include the cost in a machine learning classifier,
see, for instance, [28] and [29], but these methods do not work well for our problem, which
we discuss in more detail in Chapter 9. As discussed in Chapter 1, policies obtained by
Markov decision process (MDP) or similar methods do include costs and the performance
indicator we propose is based on literature in this area.

In the following pages, we derive the general form of the performance indicator for
the operational costs and discuss the influence of the three classes of Chapter 4 on the
general form.

5.1 The Average Cost

When one follows a maintenance policy, one of two events happen to a monitor: the
monitor fails during a period where the policy prescribes that no action should be taken, or
the policy prescribes that a monitor should be replaced preventively. In the first scenario
one must perform corrective maintenance with associated corrective maintenance cost
cc. In the second scenario one performs preventive maintenance and pays the preventive
maintenance cost cp. After the monitor is replaced, the same two events can happen. We
call the time between two consecutive replacements a cycle.

The operational costs are a function of the costs made in each cycle. Two distinctions
are made in the literature on MDPs when looking at the costs (see [30]); firstly, the
replacement costs can be discounted or undiscounted; secondly, the considered time
horizon can be finite or infinite. We choose to consider undiscounted costs, i.e. we value

5.1 The Average Cost 29

the amounts cc and cp the same now as we do in several years, and look at an infinite
time horizon.

The reason for this combination is that we consider many monitors that should not be
replaced too often before newer versions, with different characteristics, replace them. Since
there are many monitors, the limiting results should give reasonable results. Furthermore,
since there are few replacements per monitor in the timespan between versions, the
discounting plays less of a role.

The lifetimes of all the monitors under Philips’ care can thus be partitioned into cycles.
The total cost for Philips in all cycles is one possible performance indicator. However, as
time progresses, the total cost would go to infinity. Fixing the number of cycles prevents
this, but then replacing all monitors immediately gives the lowest cost. Dividing the
total costs in all cycles by the total length of all the cycles, effectively measuring the
costs made per time unit, has neither of these problems and is called the average cost
criterion.

We assume that the total cost of a corrective and preventive replacement are cc and
cp respectively. We further assume that cc is larger than cp, i.e. cc > cp, and that both
are positive reals. If cc ≤ cp, then a corrective maintenance policy is always the optimal
option.

Let T denote the time at which a monitor fails (see Equation (3.4)) and S the time
when a policy prescribes a preventive replacement. The cycle length is then given by the
minimum of T and S. Because of our assumptions, the cycle lengths of all monitors are
i.i.d. and so are the costs made at the end of a cycle, which we denote by R. We can
thus consider all cycles as belonging to one monitor, which produces one long sequence
of cycles and costs. This monitor can be described by a renewal reward process, where
the cycle lengths are the interarrival times and the costs are the jump sizes. For more
information on renewal reward processes see [31], especially Section 7.4.

The total costs until time t, denoted by V (t), is given by the sum of the costs of the
cycles finished by time t, so

V (t) =

M(t)∑
i=1

Ri,

where M(t) is the number of finished cycles until time t, defined similarly as N(t) in
Equation (3.3), and Ri the costs in cycle i. To obtain the average cost, we divide the
total cost V (t) by t and let the limit go infinity. The average cost g̃ is thus defined as

g̃ = lim
t→∞

V (t)

t
. (5.1)

Theorem 5.1 gives the limiting result of Equation (5.1), which simplifies the expression
of the average cost. Generally, the theorem is defined for rewards instead of costs, but
for consistency we formulate the theorem in terms of costs. We refer to [32] (Theorem
3.6.1) for a proof of Theorem 5.1.

5.2 Influence of Classes on Cost Criterion 30

Theorem 5.1 (The elementary renewal reward theorem, Theorem 3.6.1 in [32]). Let
{M(t), t ≥ 0} be a renewal process with positive interarrival times Z1, Z2, . . . and let
R1, R2, . . . be the costs at the arrival times. Assume that E[Z] < ∞ and E[|R|] < ∞.
Furthermore, we assume that (Zi, Ri)i≥1 is a sequence of i.i.d random variables. Let

V (t) =
∑M(t)

i=1 Ri be the total cost up to time t. It holds that

g̃ = lim
t→∞

V (t)

t
=

E[R]

E[Z]
=

Expected cost per cycle

Expected length of cycle
. (5.2)

Denoting the average cost for a policy σ by g̃(σ) and remembering the fact that there
are only two possible costs per cycle, we can write the average cost of policy σ as

g̃(σ) =
ccP(T ≤ Sσ) + cpP(T > Sσ)

E[min{T, Sσ}]
, (5.3)

where the subscript in Sσ indicates that the quantity depends on policy σ.
From Equation (5.3) we deduce that only the relative value of the corrective and

preventive maintenance costs play a role for the location of the minimum and not the
actual values. We can therefore choose cp equal to 1. The value of cc then corresponds
to the ratio between the two, or, in other words, how much more expensive a corrective
replacement is compared to a preventive replacement.

A consequence of fixing cp is that the average cost will be close to 0, since we assume
that the expected cycle length is much larger than the ratio of the costs. To make it
easier to compare the average cost term with the performance term, which we discuss in
Chapter 6, we multiply the average cost with the expected lifetime of the monitor and
get

g(σ) =
ccP(T ≤ Sσ) + cpP(T > Sσ)

E[min{T, Sσ}]
· E[T] , (5.4)

which is the performance indicator that we use in the report and the first term of
Equation (1.1). Note that the definition of g(σ) ensures that g(σ) is larger than 1, since
E[min{T, Sσ}] ≤ E[T].

5.2 Influence of Classes on Cost Criterion

To evaluate the expression in Equation (5.4) for some σ we need the distributions of T
and Sσ. The first is independent of the three policy classes, which we discuss in Chapter 4,
the latter is not. However, the probability functions of both T and Sσ need an expression
for the number of jumps at time t, given by N(t). We assumed that the interarrival
times are lognormal distributed and the number of jumps at time t is therefore given
as an convolution product without a closed form. In Chapter 7 we briefly discuss the
computational problems when numerical approximating N(t) and the probability density
functions of T and Sσ.

If we would assume exponentially distributed interarrival times, then we would have a
compound Poisson process. We would then have a closed expression for N(t), but other

5.2 Influence of Classes on Cost Criterion 31

problems would still remain. For instance, the problem of finding the hitting probability
of a compound Poisson process with a linear boundary is well studied and known to be
a hard problem. For the compound Poisson process, some results are summarized in
[33]. The results in this paper rely on the exponential assumptions in the Poisson process
and are therefore not easily extended. Other research, for instance [34], has focused on
finding Laplace transforms of the first passage time density, but these results are also not
directly applicable.

Chapter 6

Performance Component

In the previous chapter we discuss the first performance indicator, namely the average
cost criterion. In this chapter we discuss how we can incorporate a second performance
measure in the decision-making process.

In this chapter we first look at the question of why we need to incorporate a second
performance measure and which measure is suitable. We then look at two different ways
to incorporate the performance measure and the theoretical formulation of the measure
under the three policy classes of Chapter 4.

6.1 The Precision Measure

Apart from saving costs, the moment of replacement is also important in the decision-
making process. The current situation at Philips is that Philips prioritizes the avoidance
of erroneous classifications that result in too early replacements, i.e. a replacement
when the component would still have functioned correctly for a long time, over missed
opportunities to replace a component preventively. Philips’ standpoint is influenced by
the wants of their customers, who are often not (yet) willing to replace components if
the old ones are still functioning satisfactory.

Policies only considering operational costs, e.g. minimizers of Equation (5.4), may
not comply to the request of avoiding too early replacements. Therefore, to comply to
the request, we need a way to measure the compliance of a policy to the request. The
measure can then be added to the average costs to find a trade-off.

To select a measure, we draw inspiration from the current SVM based model and, more
generally, from the machine learning field. In machine learning the performance of a
classifier is determined by a function of the number of true positives (TP), true negatives
(FN), false positives (FP) and false negatives (FN) on a set. Since the overwhelming
majority of measurements are of machines that are working and which are classified as
working, we do not look at all available data points when calculating the performance
measure. Instead, we look at the moment when a component is replaced. We define true
positives as preventive replacements that are performed 30 days before the component
would have failed and false positives as preventive replacements that are performed more
than 30 days before failure. The 30 days are specified by Philips in the current SVM

6.2 Penalty Terms 33

model and therefore adopted here. The interval of 30 days before a failure is called the
predictive interval.

The objective of Philips can now be formulated as minimizing the number of false
positives. In our setting, the objective can be reformulated as maximizing the precision
measure. The precision is defined as (see, for instance, [11])

precision =
TP

TP + FP
=

Number of correctly predicted failures

Total number of predicted failures
. (6.1)

6.2 Penalty Terms

There are many ways in which the precision can be included in the decision-making process.
In this project we propose to add a penalty term to the average cost of Equation (5.4),
which is based on the precision and a target value of the precision. In this section we
discuss two penalty terms and discuss their interpretation, how they differ and, where
possible, their use in other areas in the literature.

Before we introduce the penalty terms, we note that the precision is per definition
between 0 and 1, and that the average cost, defined in Equation (5.4), is always larger
than 1. To balance the two and be able to put more or less weight on the precision, we
introduce a real-valued, positive constant k. A high value of k means that we put a lot
of weight on the precision, which is done if we are more interested in fully utilizing the
lifetime of a monitor than cutting down on costs.

Let α be a target value of the precision, so α lies between 0 and 1, and let prec(σ) be
the precision obtained by policy σ. We denote a penalty function by `, which takes as
input a policy and a target value and returns a real number, so ` : S × [0, 1]→ R, where
S is the set of all policies.

The first loss function that we consider is an exponential loss function. We define the
exponential loss as

`(σ, α) = k
(

eα−prec(σ) − 1
)
. (6.2)

The −1 in Equation (6.2) ensures that policies with a precision higher than the target are
rewarded, while the others are penalized. The reward increases as the precision increases
and therefore optimal policies will have high precision values, if the weight is large enough.
One algorithm that uses an exponential loss function is the AdaBoost algorithm.

The increasing reward for higher precision values of the exponential loss may not
always be wanted. A loss function that only penalizes policies with a precision lower
than the target is the hinge loss. A penalty based on the hinge loss is

`(σ, α) = kmax{α− prec(σ), 0}. (6.3)

The hinge loss penalizes policies that have a precision lower than the target value, but
does not differentiate between policies with a higher precision. Since a higher precision
often implies a higher cost, using the hinge loss will result in an optimal policy that has
a precision close to the target, if k is large enough. The hinge loss is an common loss
function in machine learning, which is, for instance, used in SVMs.

6.3 Influence of Classes on Precision 34

For both loss functions it holds that the value of a “large enough value of k” depends
on the corrective maintenance costs cc. In Chapter 7 we discuss that there is a switching
point where the dominant term changes from the costs to the precision.

6.3 Influence of Classes on Precision

Assuming that we have the distributions of T and Sσ, then we can express the theoretical
value of the precision of a policy. Using the distributions of T and Sσ to express the
quantities in Equation (6.1), we get that

prec(σ) =
P(Sσ ≤ T ≤ Sσ + z)

P(Sσ ≤ T)
= P(Sσ ≤ T ≤ Sσ + z | Sσ ≤ T) .

The numerator represents the replacements inside the predictive interval and thus the
correctly predicted failures. The denominator represents all monitor replacements.

Chapter 7

Numerical Approximations to Solution

In the previous chapters we construct the two terms of the main optimization problem.
In the current chapter we combine the results of Chapter 5 and Chapter 6 to obtain the
optimization problem as formulated in the introduction (see Equation (1.1) in Chapter 1)
and discuss some numerical complications of solving the optimization problem. We end
the chapter with methods to approximate the solutions, which are used in the next
chapter to compare different policies.

Filling in the average cost criterion of Equation (5.4) and the exponential and hinge
loss functions stated in Equations (6.2) and (6.3) in the main optimization problem
stated in Equation (1.1), we get

arg min
σ∈S

ccP(T ≤ Sσ) + cpP(T > Sσ)

E[min{T, Sσ}]
· E[T] + kmax{α− prec(σ), 0}, (7.1)

and

arg min
σ∈S

ccP(T ≤ Sσ) + cpP(T > Sσ)

E[min{T, Sσ}]
· E[T] + k

(
eα−prec(σ) − 1

)
. (7.2)

In the rest of the chapter we discuss complications with solving the problems in
Equations (7.1) and (7.2) and how we approximate the solutions.

7.1 Numerical Complications

In theory, the problems in Equations (7.1) and (7.2) are fully known and can be solved
by some optimization method, although a unique optimal solution is not guaranteed.
However, as we discuss in Section 5.2, we lack the explicit expression of the number of
jumps at time t, i.e. N(t).

One solution is to use Monte Carlo simulation to approximate the distribution of
N(t). The found approximation can then be used to approximate the other cumulative
distribution functions. For the probability functions, one can use a finite difference formula,
e.g. the symmetric difference quotient. However, it turns out that the computational
power to reach an acceptable accuracy is too high for practical use.

7.2 Numerical Approximations 36

7.2 Numerical Approximations

Instead of approximating the distribution of N(t), we use approximations to the whole
objective function. For each class we use a different technique, which we discuss in this
section.

7.2.1 Class 1

In Section 4.1 we discuss the first class of policies, which consists of two thresholds. The
assumption here is that the working hours and degradation at failure are independent
and therefore a threshold for each of them is logical.

To approximate the thresholds, we decompose the process. For the threshold on the
working hours, we assume that failures are only caused by the aging of the monitor.
Similarly, for the degradation thresholds we assume that only the degradation causes
failures. With these assumptions we can calculate the two thresholds using the optimality
theorem stated in Theorem 7.1.

Before we give the optimality result in Theorem 7.1, we need to introduce the notion
of the hazard rate of a component. The hazard rate can be interpreted as the probability
that the component fails within the next infinitesimal time interval, given that it has
survived so far. Formally, the hazard rate is defined as (see [32]):

h(t) = lim
h→0

P(T ≤ t+ h | T ≥ t)
h

=
f(t)

1− F (t)
= − d

dx
log(1− F (t)) .

Theorem 7.1. Assume that the lifetime of a component is a positive random variable T
with distribution function FT (t). The average cost, see Equation (5.3), for a threshold σ,
which is a positive real, is given by

g̃(σ) =
ccP(T ≤ σ) + cpP(T ≥ σ)∫ σ

0 1− FT (t) dt
. (7.3)

The minimum of this function is attained at a finite σ if and only if the hazard rate has a
increasing tail. In this case it is worthwhile to do preventive maintenance. If the hazard
rate has a decreasing tail the minimum is never attained and the optimal policy is the
corrective one.

For the proof of Theorem 7.1, we refer to Appendix C. The intuition behind the result
is that if the hazard rate is decreasing a component becomes more reliable over time
and does not need to be changed. However, if the hazard rate increases, the probability
of the component failing keeps increasing and it is profitable to change the component
preventively.

7.2 Numerical Approximations 37

Threshold Working Hours For the working hours, we directly apply the theorem using
the working hours at failure, i.e. L, as the controlling distribution.

For the precision, we have that

prec(σ) =
Number of correctly predicted failures

Total number of predicted failures

=
P(σ ≤ L ≤ σ + z)

P(L ≥ σ)

=
P(L ≥ σ)− P(L ≥ σ + z)

P(L ≥ σ)

= 1− P(L ≥ σ + z)

P(L ≥ σ)
,

(7.4)

where z is the predictive interval of 30 days in which we call a replacement correct. From
the data, we estimate that the average number of working hours per day is 10, so we use
z = 30 · 10 = 300.

Filling in Equation (7.3) and Equation (7.4) in the main optimization problem gives us
an expression which we optimize using the optimise() function in R. We use the same
function to obtain the thresholds for the degradation.

In Table 7.1, the results for various cost ratios are shown. The table shows that there is
no solution for the working hours threshold for a cost ratio of 2 and k = 2. The reason for
this is that the precision dominates the objective and keeps increasing as τWH increases.
The objective therefore keeps decreasing. For larger cost ratios, the average cost starts
to dominate and we obtain a unique solution. We notice that both thresholds decrease
as the ratio increases. When we use smaller thresholds, we replace the monitor sooner.
This behavior is the same for all classes.

Threshold Degradation The univariate threshold for the degradation is a bit more
complex. The problem with the degradation is that the decision variable, i.e. the
degradation, does not contain any information on the lifetime of a monitor, which means
that we can not calculate the average cost. However, if we use the degradation process,
which includes the time, we can calculate everything.

To calculate the expected cycle length and costs, we first define the following stopping
times

Mσ = min

{
m ∈ N |

m∑
i=1

Yi ≥ σ

}
, MD = min

{
m ∈ N |

m∑
i=1

Yi ≥ D

}

M = min{Mσ,MD} = min

{
m ∈ N |

m∑
i=1

Yi ≥ min{σ, D}

}

The expected cost is then given by

E[costs] = cpP(Mσ < MD) + ccP(Mσ ≥MD) . (7.5)

7.2 Numerical Approximations 38

The probability P(Mσ < MD) can be written as

P(Mσ < MD) = P

(
Mσ∑
i=1

Yi < D

)

=
BL∑
k=1

P

(
k∑
i=1

Yi < D

)
P(Mσ = k)

=
BL∑
k=1

[
BL∑
d=1

P(d < D)P

(
k∑
i=1

Yi = d

)]
P(Mσ = k)

=

BL∑
k=1

[
BL∑
d=k

P(d < D)

(
d− 1

k − 1

)
pk(1− p)d−k

]
P(Mσ = k) .

In the last equality we use the fact that a sum of geometric random variables follows
a negative binomial distribution. We use the same fact for the probability P(Mσ = k),
which equals

P(Mσ = k) = P

(
k−1∑
i=1

Yi < σ,
k∑
i=1

Yi ≥ σ

)
=
σ−1∑
d=1

P

(
k−1∑
i=1

Yi = d

)
P(Yk ≥ σ − d) .

We can then compute Equation (7.5) by using the fact that P(Mσ ≥MD) = 1 −
P(Mσ < MD).

To calculate the expected length, we first look at the probability that M is larger
than n for n between 0 and σ − 1. Using the definitions of Mσ and MD, we obtain the
following

M > n ⇔ Mσ > n ∧ MD > n ⇔
n∑
i=1

Yi < σ ∧
n∑
i=1

Yi < D (7.6)

for n = 0, 1, . . . ,σ − 1. Using the relations in Equation (7.6), we get that

P(M > n) = P

(
n∑
i=1

Yi < σ,
n∑
i=1

Yi < D

)
=
σ−1∑
k=n

P

(
n∑
i=1

Yi = k

)
P(D > k) .

Using the facts that for any non-negative random variable Z the expectation is given by

E[Z] =
∑∞

z=0 P(Z > z) and that E
[∑N

i=1Xi

]
= E[N]E[Y] for a nonnegative integer-value

random variable N and a sequence of i.i.d. random variables X that are independent of
M , we get that

E[length] = E

[
M∑
i=1

Xi

]
= E[X]

σ−1∑
n=0

P(M > n) .

7.2 Numerical Approximations 39

The precision is, following a similar reasoning as in Equation (7.4) and using the
memorylessness of the geometric distribution, given by

prec(σ) = P

D ∈
σ,σ + Ỹ +

N(z)∑
i=1

Yi

 | D ≥ σ

=
P(D ≥ σ)− P

(
D ≥ σ + Ỹ +

∑N(z)
i=1 Yi

)
P(D ≥ σ)

= 1−

∑∞
n=0 P

(
D ≥ σ + Ỹ +

∑z
i=1 Yi

)
P(N(z) = n)

P(D ≥ σ)
,

where N(z) is the number of jumps in the predictive interval of length z. We see that we
again need P(N(z) = n), but here an empirical distribution is satisfactory. We obtain
the empirical distribution by simulating the arrival process and counting the number of
jumps at time z, see Algorithm 7.1.

Algorithm 7.1: Procedure to obtain the empirical distribution of the number
of jumps in the predictive interval.

Data: The number of simulated arrival process N , distribution of interarrival time and
length of the predictive interval z.

Result: Empirical distribution of N(z).
1 Initialize vector prob // index starts at 0, j-th entry corresponds to

P(N(z) = j)
2 for i in 1 to N do
3 Draw BL interarrival times x1, x2, . . . , xBL

4 Calculate the arrival times ATj =
∑j

k=1 xj for j = 1, 2, . . . , BL

5 Calculate number of arrivals, with arrivals =
∑BL

j=1 1{ATj ≤ z}
6 increase prob[arrivals] by 1

7 Divide prob by N

7.2.2 Class 2

For the second and third policy classes we use similar approximation methods. We
approximate the value of the objective function by simulating monitors and estimate the
objective function for different policies.

To simulate a monitor, we use the assumption that the degradation process accurately
describes the state of a monitor. Therefore, to simulate monitors we generate sample
paths of the degradation process, see Algorithm 7.2.

The simulated paths are close to the paths of the monitor chosen to represent all
monitors (see end Section 3.4.1). Since the parameters are fixed, there is less variation in
the simulated paths than in the paths of the actual data. Furthermore, our definition of
the moment of failure changes the distribution of the working hours at failure and the

7.2 Numerical Approximations 40

Algorithm 7.2: The procedure to obtain one sample path. Note that path
“continues” after it failed. One can also return a list with data up to and
including the failure.

Data: Stochastic process description
Result: One sample path

1 Draw values at failure of the process (independently)
2 Draw BL interarrival times and jump sizes (independently)
3 Calculate degradation process D(t) (Equation (3.2))
4 Determine the moment of failure T (Equation (3.4))
5 Label instances of D(t) before T as Normal and the rest as Failed
6 Return list of t, D(t), Env(t) and corresponding labels

degradation at failure. The reason for this is that the moment of failure is fixed when
one of the three events happen. The results are that the other values are conditional
on that event and that the values at failure are lower than what we expect from the
distributions chosen in Section 3.4.2. One way to prevent this is to generate the paths is
a way resembling the Brownian bridge. However, the first experiments in this direction
did not give satisfactory results and due to time limitations we decided to follow the
method we describe above instead of improving this alternative method.

To obtain an estimate for the value of the objective function, we simulate N paths,
where N is large. For each sample path we determine the cost, age and whether a
preventive replacement took place inside the predictive interval for a given policy, see
Algorithm 7.3. The estimates of the average cost is then the total cost divided by the
total age and the estimate for the precision is the number of correct replacements divided
by the total number of replacement, see Line 13 and Line 14 in Algorithm 7.3.

The policies in the second class have one parameter, namely η, which is between 0
and 1. To find the optimal parameters we estimate the objective function for values of η
between 0 and 1 with steps of 0.01. We use 104 simulated monitors.

In Figure 7.1 we see the estimates for a cost ratio between corrective and preventive
maintenance of 10, α = 0.8 and the hinge loss function. We notice two things: First,
there is an unique minimum for both values of k. Second, the location of the minimum
is dependent on the value of k. This observations confirms the discussions in Section 6.2,
where we note that relative weight of the precision impact the optimal policy. For other
values of k, the minimum will be either 0.89 or 0.03, which are the two minima in
Figure 7.1. The results for other cost ratios are shown in Table 7.1.

7.2 Numerical Approximations 41

Algorithm 7.3: Pseudo-code for the estimating the objective function of a
policy. To estimate the value of the objective for more policies, an extra for
loop around the if-statement is needed.

Input: A maintenance policy, number of sample paths (N), and values for k and α
Output: The value of he objective function for the maintenance policy

1 for n in 1 to N do
2 Generate one sample path according to Algorithm 7.2
3 full.life[n] ← time of failure
4 if replacement did not occur before failure then
5 age[n] ← time of failure
6 cost[n] ← cc
7 accurate[n] ← 0

8 else
9 age[n] ← time of replacement

10 cost[n] ← cp
11 accurate[n] ← 1{replacement in predictive interval}

12 The expectation of T is 1
N

∑n
i=1 full.life[i]

13 The average cost estimate is
∑N

i=1 cost[i]∑N
i=1 age[i]

14 The precision estimate is
∑N

i=1 accurate[i]∑N
i=1 1{cost[i]=cp}

15 Calculate the objective function Equation (7.1) or Equation (7.2)

0 0.2 0.4 0.6 0.8 1
5

10

15

20

η

O
b
je
c
ti
v
e

Value of the objective function with the hinge loss

k = 2

k = 10

Figure 7.1: The objective function for class 2 policies for a cost ratio of 10, α = 0.8 and
two values of k.

7.2 Numerical Approximations 42

7.2.3 Class 3

For the third class of policies we need to determine the slope a and intercept b of the
hyperplane t+ a · d = a · b. Similar to the second class, we approximate the objective
function by simulating monitors. The policies we test have a slope between −150 and
2000 and an intercept between −300 and 600, both using step sizes of 50. We use 104

simulated monitors.
In Figure 7.2 we see the estimated values for a cost ratio of 10, k = 2 and α = 0.8.

When we compare the figure with Figure 7.1, we see that the minimum value is higher
and the location of the minimum is less clear. For all cost ratios the objective function is
lowest for policies with a positive slope and intercept, like the hyperplane in Figure 4.1.
The results for other cost ratios are shown in Table 7.1.

The influence of k on the third class is similar to the influence of k on the second class,
i.e. a higher k gives a more conservative policy. A more conservative policy in the third
class has higher slope and intercept values.

0 500 1,000 1,500 2,000

−200

0

200

400

600

Slope (a)

In
te
rc
e
p
t
(b
)

Value of the objective function with the hinge loss

9

10

11

12

13

14

Figure 7.2: The estimated value of the objective function in the third class. The
black diamond indicates the lowest value. The ratio between corrective and preventive
maintenance is 10, k = 2 and α = 0.8.

7.2 Numerical Approximations 43

Table 7.1: The thresholds and parameters for the three policy classes for different cost
ratios between corrective and preventive replacements. We use α = 0.8 and k = 2. A “-”
means that there is no real solution to the optimization problem.

Ratio Loss Class 1 Class 2 Class 3
(WH, D) (η) (a, b)

2 hinge (-, 349) 0.03 (550, 400)
2 exponential (-, 349) 0.03 (900, 400)
5 hinge (13230, 182) 0.03 (550, 400)
5 exponential (13412, 190) 0.03 (900, 400)
10 hinge (7962, 131) 0.89 (300, 100)
10 exponential (8003, 134) 0.03 (900, 400)
50 hinge (2874, 52) 0.94 (150, 50)
50 exponential (2876, 51) 0.94 (150, 50)
100 hinge (1893, 32) 0.96 (150, 50)
100 exponential (1894, 32) 0.96 (150, 50)

Chapter 8

Comparison Of Policies

In Chapter 7 we discuss how solutions of the main optimization problem can be
numerically approximated. We see that there are big differences in the policies, depending
on the relative weight of the precision. Lower weights result in optimal policies with
many replacements, whereas higher weights favor conservative policies. The current SVM
based policy is also conservative and in this chapter we compare the old and the new
policies.

We compare the policies in two ways. We first look at the training set used to train
the SVM to see how the new policies, see Table 7.1, perform when judged purely on
their classification ability. After that, we perform a simulation study. In the study, we
simulate monitors and investigate the influence of some policies on the cost, expected
usage time per monitor, i.e. cycle length, and the number of preventive replacements.

8.1 Training Set Comparison

To get a first indication on how the policies perform, we look at the training set for
the SVM. On the training set, we compare the classification performance of the new
and old policies. For this purpose, we use the new policies, found in Chapter 7, purely
as a classifier, so data entries that fall in the region where a preventive replacement is
prescribed are classified as failed. We compare the performance with the SVM trained on
all eleven features, but also look at an SVM which only uses features 1,2 and 5. In this
way, we can see how much the SVM looses in predictive power when only three features
are used.

To compare the policies we investigate how well they classify the data, which we
measure with the accuracy, precision, recall and false positive rate (FPR) measures, see
Table 8.1 and [11]. All the measures are based on the confusion matrix of a classification,
which specifies the number of true positives (TP), false positives (FP), true negatives (TN)
and false negative (FN). The positives in the training set are the failures and the negatives
are thus the functioning monitors.

We compute the measures in similar way to the SHAP values in Section 2.3, see
Algorithm 8.1. We divide the training set into ten equally large set and use each set once
for classification and nine times for training the SVMs.

8.1 Training Set Comparison 45

Table 8.1: The definition of the performance measures that we use to compare the
classifiers.

Measure Formula Description

Accuracy
TN + TP

TN + TP + FN + FN
Fraction of correctly classified instances.

Precision
TP

TP + FP
Fraction of positive predicted instances that are positive.

Recall
TP

TP + FN
Fraction of positive instances that are predicted positive.

FPR
FP

TN + FP
Fraction of positive predicted instances that are negative.

Algorithm 8.1: Procedure to determine the performance of several policies
on the training set using 10-fold cross validation using stratified sampling as in
Algorithm 2.1.

Data: Training set (TS), 10 sets of indices as obtained in Algorithm 2.1
Result: Classification performance of policies

1 for i in 1 to 10 do
2 Test set is the subset of TS consisting of indices in set i
3 Training set is the rest of TS
4 Train an SVM on training set
5 Train an SVM on training set, only using features 1,2 and 5
6 Classify the points in the test set using the SVM classifiers
7 Classify the points in the test set using the new policies as classifier
8 Compute the accuracy, precision, recall and FPR for each classification

9 Average the accuracy, precision, recall and FPR for each policy

In Table 8.2 the results are shown. We see that the more conservative class 3 policies,
i.e. the policies (a, b) = (550, 400) and (a, b) = (900, 400), have a similar accuracy and
precision as the SVM classifier. For this reason, we will use these policies as substitutes
for the SVM in the next section. One other noticeable observation is that the performance
of an SVM trained on the three features used to develop the degradation process is
outperformed by several of the policies obtained by solving Equation (1.1).

8.1 Training Set Comparison 46

Table 8.2: The classification results on the training set when the policies are used as
classifiers (see Algorithm 8.1 for the procedure). We train two SVM classifiers: one using
eleven features and one using three features, denoted by SVM-3. A common practice is
to use the Platt scaling to obtain class probabilities out of the classifier, instead of only a
label. The class probabilities are then used to classify the data. For instance, SVM-Platt
- 0.3 classifies points with a class probability of being normal that are larger than 0.3 as
normal.

Policy Accuracy Precision Recall FPR

Class 1 - (13412, 190) 0.7106 0.6775 0.2063 0.0482
Class 1 - (1893, 32) 0.3614 0.3218 0.8805 0.8869
Class 1 - (2874, 52) 0.4030 0.3277 0.8055 0.7896
Class 1 - (7962, 131) 0.6189 0.3997 0.3448 0.2498
Class 1 - (8003, 134) 0.6174 0.3948 0.3307 0.2454
Class 2 - 0.03 0.6924 0.9157 0.0564 0.0034
Class 2 - 0.89 0.4508 0.3293 0.6746 0.6563
Class 2 - 0.94 0.3947 0.3271 0.8244 0.8109
Class 2 - 0.96 0.3780 0.3264 0.8688 0.8567
Class 3 - (150, 50) 0.4008 0.3247 0.7916 0.7862
Class 3 - (300, 100) 0.6280 0.4318 0.4803 0.3012
Class 3 - (550, 400) 0.6864 0.8812 0.0376 0.0034
Class 3 - (900, 400) 0.6864 0.8812 0.0376 0.0034
SVM-Hyper 0.6977 0.9008 0.0730 0.0034
SVM-Platt - 0.3 0.6955 0.9008 0.0659 0.0034
SVM-Platt - 0.5 0.7038 0.8148 0.1293 0.0212
SVM-Platt - 0.6 0.6894 0.6388 0.2165 0.0838
SVM-Platt - 0.7 0.5212 0.3879 0.7279 0.5781
SVM-3-Hyper 0.6864 0.8812 0.0376 0.0034
SVM-3-Platt - 0.3 0.6864 0.8812 0.0376 0.0034
SVM-3-Platt - 0.5 0.6864 0.8812 0.0376 0.0034
SVM-3-Platt - 0.6 0.6864 0.8812 0.0376 0.0034
SVM-3-Platt - 0.7 0.3235 0.3235 1.0000 1.0000

8.2 Simulation Study 47

8.2 Simulation Study

The comparison in Section 8.1 does not allow us to consider the costs. We therefore
simulate monitors and investigate the performance of the policies on the simulated data.

In Section 7.2 we discuss how we simulate monitors (Algorithm 7.2) and how we
estimate the objective function (Algorithm 7.3). We are now interested in the cost,
expected usage time per monitor and the number of preventive replacements. We can
therefore almost use the same procedure as outlined in Algorithm 7.3, but, instead of the
objective function, we calculate the individual performance indicators.

To obtain confidence intervals we use a bootstrapping procedure outlined in Section
8 of [35], see Algorithm 8.2. We construct bootstrap values by taking a random subset
of the N sample paths and calculate the quantities based on the subset. Define z0
as z0 = Φ−1(Ĝ(ξ̂)) (Equation (7.8) in [35]), where Φ−1 is the inverse of the standard
normal distribution, ξ̂ the estimated quantity, e.g. the average cost, and Ĝ the empirical
cumulative distribution function of the quantity obtained from the bootstraps. The
confidence interval for the quantity is then given by Ĝ−1(Φ(2z0 ± zα)) (Equation (7.9) in
[35]), where zα is the α-quantile of the standard normal distribution.

Algorithm 8.2: Pseudo code for the bootstrapping procedure used to obtain
a confidence interval for the average cost.

Data: age and cost vectors of the N simulated paths (see Algorithm 7.3), NB

the number of bootstraps, B the number of samples per bootstrap
Result: Confidence interval of the average cost

1 for i in 1 to NB do
2 Pick B values from 1 to N (with replacement), a1, a2, . . . , aB

3 avg.cost[i] =
∑B
k=1 cost[ak]∑B
k=1 time[ak]

4 ξ̂ =
∑N
i=1 cost[i]∑N
i=1 age[i]

5 z0 = Φ−1(Ĝ(ξ̂))

6 Confidence interval is Ĝ−1(Φ(2z0 ± zα))

In the simulation study we want to consider the same policies as in Section 8.1. However,
since we only simulate three features, we cannot use the SVM trained on eleven features
on the simulated data. As a replacement we use the conservative classifiers of class three,
which performed similar on the training set, see Table 8.2.

In the simulation we use 105 simulated monitors. The results are shown in Tables 8.3
and 8.4. We see that many policies have low precision. We discuss the reason for the
low precision in Section 7.2, where we state that for k = 2 the cost dominates the
objective function. Another reason for the low precision is the strict definition of a correct
replacement. Only replacements that take place 30 days before the failure, where each
day is a working day of ten hours, are classified as correct replacements.

In Table 8.4 we show the costs of the different policies. In general, we see that policies
with a high precision have low costs when the ratio is low. However, when the cost ratio

8.2 Simulation Study 48

Table 8.3: The performance of policies in Table 7.1. The columns show the number of
preventive replacements (# PM), the number of correct replacements, then number of
corrective replacements (# CM), the precision as calculated in Equation (6.1) and the
expected time until replacement (E[Z]). The mean time to failure of the monitors equals
14656 hours. The results are based on 105 simulated monitors.

Policy #PM # Correct #CM Precision E[Z]

Class 1 - (13412, 190) 52601 2874 47399 0.0546 10507
Class 1 - (1893, 32) 96578 857 3422 0.0089 1819
Class 1 - (2874, 52) 93770 1000 6230 0.0107 2781
Class 1 - (7962, 131) 75012 1781 24988 0.0237 7100
Class 1 - (8003, 134) 74846 1790 25154 0.0239 7132
Class 2 - 0.03 8431 6606 91569 0.7835 14616
Class 2 - 0.89 89166 1346 10834 0.0151 4158
Class 2 - 0.94 94149 1110 5851 0.0118 2742
Class 2 - 0.96 96145 1036 3855 0.0108 2061
Class 3 - (150, 50) 93431 1225 6569 0.0131 2995
Class 3 - (300, 100) 75713 2212 24287 0.0292 7057
Class 3 - (550, 400) 7264 6715 92736 0.9244 14649
Class 3 - (900, 400) 6357 6355 93643 0.9997 14656

increases, avoiding corrective replacements becomes more attractive and the best policies
from a cost perspective are the ones with lower precision. Already at a cost ratio of 5, we
see a cost decrease of fourteen percent between the best policy and the SVM substitutes.
At a cost ratio of ten, the decrease is already more than 28%. The decrease with the
other policies that have a high precision is minimal.

Another noticeable observation is that the policies of class 1, which we approximated
by the univariate thresholds and were the computationally easiest to obtain, have the
lowest costs for cost ratios of 5 and 10. For most cost ratios, the differences between the
optimal policies per class are small, especially compared to the SVM substitutes.

To investigate the accuracy of the estimates, we look at the confidence interval of a few
estimates. We look at the following policies: policy (τWH , τD) = (7962, 131) from class 1,
policy η = 0.89 from class 2 and (a, b) = (550, 400) from class 3. We use the procedure in
Algorithm 8.2 to construct 95% confidence intervals, we use NB = 5000 and B = 20, 000.

The confidence intervals are shown in Table 8.5. We see that the intervals of the class 1
and class 2 policies do not overlap with the SVM substitute (class 3 policy). We therefore
conclude that the decrease in cost is significant. If we look at the upper bound for the
class 1 and 2 policies and the lower bound of the class 3 policy, we see a decrease in costs
of 27% and 24%, respectively.

In Table 8.3 we see that the lifetimes of the monitors are utilized well and that the
precision is high for the conservative policies, including the SVM substitute. These

8.2 Simulation Study 49

Table 8.4: The precision and average cost criterion of the policies in Table 7.1 for several
cost ratios. The results are based on 105 simulated monitors.

Policy Precision Ratio 2 Ratio 5 Ratio 10 Ratio 50 Ratio 100

Class 1 - (13412, 190) 0.0546 2.0560 4.0395 7.3452 33.7911 66.8486
Class 1 - (1893, 32) 0.0089 8.3316 9.1586 10.5369 21.5639 35.3475
Class 1 - (2874, 52) 0.0107 5.5975 6.5823 8.2237 21.3546 37.7682
Class 1 - (7962, 131) 0.0237 2.5801 4.1276 6.7067 27.3398 53.1311
Class 1 - (8003, 134) 0.0239 2.5719 4.1227 6.7073 27.3841 53.2301
Class 2 - 0.03 0.7835 1.9210 4.6756 9.2666 45.9949 91.9054
Class 2 - 0.89 0.0151 3.9063 5.0518 6.9610 22.2345 41.3264
Class 2 - 0.94 0.0118 5.6576 6.5957 8.1594 20.6685 36.3048
Class 2 - 0.96 0.0108 7.3852 8.2076 9.5782 20.5434 34.2500
Class 3 - (150, 50) 0.0131 5.2146 6.1789 7.7861 20.6434 36.7150
Class 3 - (300, 100) 0.0292 2.5811 4.0943 6.6162 26.7913 52.0102
Class 3 - (550, 400) 0.9244 1.9283 4.7117 9.3508 46.4631 92.8535
Class 3 - (900, 400) 0.9997 1.9364 4.7457 9.4279 46.8851 93.7066

Table 8.5: Confidence intervals on the estimated average costs for a cost ratio of 10.

Policy Lower Estimate Upper

Class 1 - (7962, 131) 6.6064 6.7074 6.8096
Class 2 - 0.89 6.8299 6.9620 7.0938
Class 3 - (550, 400) 9.3168 9.3501 9.3812

goals of Philips are thus met. However, looking at the cost aspect of the policies, the
conservative policies are far worse.

Chapter 9

Relation to SVMs

The starting point of the project was the SVM based predictive model. We believed
that improvements could be made, if the operational costs were taken into account. We
decided to not extend the SVM formulation to consider the costs, but instead to set up a
stochastic optimization problem. The objective function of the optimization problem
incorporates two performance indicators: the operational costs and a function of the
precision. So far, we saw that the solution space of the new method is larger than the
solutions space of the old method (Chapter 4) and that the new method gives solutions
that outperform, at least cost-wise, the old solutions (Chapter 8). The remaining question
is whether we could have obtained similar results, if we had tried to extend the SVM
instead of setting up an optimization problem.

In this chapter we discuss some recent papers that extend the SVM in some way
and discuss why the methods of the papers cannot directly be applied in our setting.
We conclude that the current methods do not allow us to include the two performance
indicators in the SVM formulation to obtain a data-driven machine learning problem.

In the introduction we mention that including the operational costs in the decision-
making process could significantly lower the costs. The reason for this is that a classifier
based on the SVM algorithm, which does not take any costs into account, is used for
decision-making, where costs play a important role. In [29] they call this the sequential
process. The authors propose a simultaneous process, where a loss on the training
data, e.g. hinge loss or exponential loss, and some operational costs are combined in the
objective function. The setting in the paper is a general machine learning setting and
their definition of operational costs depends on the problem. For example, they use the
total costs of buying and repairing houses, and the total time needed to perform a certain
task as operational costs.

The difficulty in applying their approach to our setting lies with the definition of
the operational costs. To use the average cost criterion as definition enforces us to
accurately determine the moment of replacement, for which we need the whole sample
path. Including whole sample paths in the training set results in a large set which leads
to computational difficulties. To overcome the need of whole paths, we could use another
cost definition. However, the alternative definition may not include the cycle length,
which, as we discuss in Chapter 5, can lead to unwanted solutions.

Chapter 9 Relation to SVMs 51

A way to consider the costs after training a set of classifiers is described in [28]. In
the paper the authors take the operating conditions into considerations by assigning
costs to erroneous classifications. These costs are then used to find the classifier with the
lowest cost. The approach in [28] is still a sequential process and the costs only consider
erroneous classifications, which would be faulty in our case.

The study in [36] extends the objective function of the SVM algorithm to include
certain common performance measures, such as the accuracy and true positive rate.
Similar to the target α in the penalty functions in Chapter 6, the authors of [36] have a
target value. However, they include the target as a hard constraint, meaning that the
solution must satisfy the target. The advantage of this approach is that one knows that
a solution will satisfy the constraints. Disadvantages of the method include an increase
in the complexity and that the feasibility is only guaranteed if kernels are used. The
use of kernels is a common practice for SVMs, but the results are less interpretable and
therefore unwanted in the development of preventive maintenance policies. Just as the
study introducing the simultaneous process ([29]), the study focuses on non-sequential
data. To adapt the results to the setting of this report, would require whole degradation
paths to be included in the training set, which increases the computational time needed
to solve the problem even more.

Another possible building block to add the operational costs and precision in an SVM
setting are the knowledge based SVMs, which incorporate prior knowledge in the classifier,
see for instance [37, 38]. One possibility to use the techniques of knowledge based SVMs is
to include an area in the working hour-degradation plane where a preventive replacement
may not be performed. The area can be defined by domain experts, which can increase
the interpretability and trust of the found policy. Furthermore, only failures inside this
area need to be included in the training set, since they are needed to determine the
precision. For working monitors no data points in the area are needed, which reduces
the data points in the training set.

In this chapter we discuss some advancements in the literature regarding extensions
of the classical SVM formulation. The main problem with the extensions are that they
focus on including either some form of operational costs or performance measures, but
not both, and that they are developed for non-sequential data, which makes it difficult
to apply them in our setting. As the literature develops, the main optimization problem
of Equation (1.1) might be formulated as a data-driven machine learning problem.

Chapter 10

Conclusion

10.1 Conclusion

In this report, we introduce an optimization problem in order to find a preventive
maintenance policy for the big screen monitors of the iXR systems. The objective
function of the optimization problem takes the operational costs and a performance
measure into consideration.

We start by ranking the features of a current predictive model to find the features with
the most predictive power. The topped ranked features are used to build a stochastic
process describing the degradation of a monitor. In the subsequent chapters we introduce
the average costs, which we define as the cost per time unit, and penalty functions for
the precision, which are based on common loss functions in machine learning literature.
To reduce the complexity of the optimization problem, we introduce three classes of
policies with desired properties. We show how to solve the optimization problem and
in a simulation study show that we can achieve a significant decrease in the costs when
using a policy favoring low operational costs. For instance, in a scenario with a cost ratio
of 10, the decrease in cost is more than 28%. For policies that favor a high precision
there is little to no decrease in the average costs. From this we conclude that it seems
beneficial to convince customers to allow more preventive replacements for high valued
components.

10.2 Discussion

Two observations that one can make about Figure 3.2 and generally hold true for the
monitors under consideration (see also next point) were not discussed in Chapter 3,
namely the fluctuations of the measurements and the large gap. The large fluctuations
in the brightness measurements make it necessary to come up with some definition of
the “true” brightness. We chose to represent the brightness of a monitor with the third
running minimum for reasons explained in Section 3.3. The assumption behind this is
that the lower values of the brightness give a better indication of the state than the
others. However, there are some indications that this might not be true. For instance,
it seems that measurements made after a restart during the day often are higher than

10.2 Discussion 53

the measurements at the beginning of said day, which could indicate that the monitors
need more time to reach the actual brightness level than the time between turning the
monitor on and the measurement. Therefore, one could argue that the higher values give
more information about the state. The large gaps in the data influence the estimations
of the parameters of the jump process, since it is likely that there is a large jump after a
large gap.

In this report we use the replacement of the big screens as vehicle of illustration,
specifically the old version of the big screen. Newer screens are used in the same way as
the old screens, but there are some changes in the specifications. Most notable is that
the newer screens have little to no fluctuations in the brightness measurements and that
it takes longer before the measurements start to decrease. As a result, the proposed
model will not work on the new monitor versions. A possible adaption of the model is to
include an exceptional first time, meaning that the time until the first jump is differently
distributed than the other interarrival times.

In Section 3.4.1 we note that the estimates for the parameters of the interarrival times
and jumps size vary between the monitors. The variation between the monitors is not
taken into consideration in this project. In future research the fixed parameters could
instead be random to better represent the whole pool of monitors. To make decisions,
one then needs to estimate the parameters while the monitor is operating. One way to
do this is to start with some parameters, e.g. the ones used in this report, and then use
Bayesian updating to improve the estimates. The updating will have the largest impact
on monitors that degrade slowly, since, for these monitors, the updated estimates will
result in policies that preventively replace the monitor later, thus utilizing more of the
monitor’s lifetime.

The data used to estimate the distribution of L, D and E was gathered to train an
SVM model. In the maximum likelihood estimation procedure it is important that the
data is independent. We could therefore not use all the data in the training set, since
a large portion of the instances labeled as failed are dependent. The removal of the
dependent instance makes the data more unbalanced, resulting in a ratio between normal
and failure instance of 8 to 1. Collecting more data on failed machines and data on the
reason of failure could result in different and more accurate estimations.

In Chapters 4 and 7 we look into three classes of policies and find the optimal policy
in each class. The classes are selected because of their simplicity and interpretational
value, but there is not guarantee that the optimal policy is a member of one of the three
classes. Further research could focus on other policy classes and optimality theorems.

In Chapter 3 we rank the features used in an SVM model to select the three features
with the most predictive power. The degradation process is then constructed to take the
three features into consideration. Reducing the number of features will lead to a loss
in predictive power. Including more variables in the stochastic model, without losing
interpretability is another question to be answered. In the setting of the big screen
monitors, we saw that, on the training set, policies based on the three features performed
better, but there is no guarantee that this is the case in other scenarios. On the contrary,
it is likely that the performance decreases.

Bibliography

[1] R. Sipos, D. Fradkin, F. Moerchen, and Z. Wang, “Log-based predictive maintenance,”
in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, (New York, NY, USA), pp. 1867–1876, ACM,
2014.

[2] D. J. White, “A survey of applications of markov decision processes,” Journal of the
Operational Research Society, vol. 44, no. 11, pp. 1073–1096, 1993.

[3] X. Wu and V. Kumar, The Top Ten Algorithms in Data Mining. Chapman &
Hall/CRC, 1st ed., 2009.

[4] C. J. C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,”
Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[5] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch, e1071: Misc
Functions of the Department of Statistics, Probability Theory Group (Formerly:
E1071), TU Wien, 2017. R package version 1.6-8.

[6] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
Advances in Neural Information Processing Systems, pp. 4765–4774, 2017.

[7] R. B. Myerson, Game theory - Analysis of Conflict. Harvard University Press, 1997.

[8] C. Molnar, B. Bischl, and G. Casalicchio, “iml: An r package for interpretable
machine learning,” The Journal of Open Source Software, vol. 3, no. 26, p. 786, 2018.

[9] E. Strumbelj and I. Kononenko, “An efficient explanation of individual classifications
using game theory,” Journal of Machine Learning Research, vol. 11, p. 1–18, 2010.

[10] B. H. Richard M. Heiberger, Statistical Analysis and Data Display. An Intermediate
Course with Examples in R. Second Edition. Springer, 2015.

[11] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures
for classification tasks,” Information Processing and Management, vol. 45, no. 4,
pp. 427–437, 2009.

[12] A. Wald and J. Wolfowitz The Annals of Mathematical Statistics.

Bibliography 55

[13] G. M. Ljung and G. E. P. Box, “On a measure of lack of fit in time series models,”
Biometrika, vol. 65, no. 2, pp. 297–303, 1978.

[14] P. Brockwell and R. Davis, Introduction to Time Series and Forecasting. Springer
Texts in Statistics, Springer International Publishing, 2016.

[15] F. Caeiro and A. Mateus, randtests: Testing randomness in R, 2014. R package
version 1.0.

[16] R. Heller, Y. Heller, and M. Gorfine, “A consistent multivariate test of association
based on ranks of distances,” Biometrika, vol. 100, no. 2, pp. 503–510, 2013.

[17] B. B. . S. Kaufman, based in part on an earlier implementation by Ruth Heller,
and Y. Heller., HHG: Heller-Heller-Gorfine Tests of Independence and Equality of
Distributions, 2017. R package version 2.2.

[18] F. Abramovich and Y. Ritov, Statistical Theory. A Concise Introduction. Chapman
and Hall/CRC, 2013.

[19] P. Hougaard, Analysis of Multivariate Survival Data. Springer, 2000.

[20] J. G. MacKINNON, “Bootstrap methods in econometrics,” Economic Record, vol. 82,
no. s1, pp. S2–S18, 2006.

[21] M. L. Delignette-Muller and C. Dutang, “fitdistrplus: An R package for fitting
distributions,” Journal of Statistical Software, vol. 64, no. 4, pp. 1–34, 2015.

[22] C. Suijkerbuijk, “Integration of preventive maintenance and inventory management
for healthcare systems at philips healthcare,” Master’s thesis, Eindhoven University
of Technology, 2017. https://pure.tue.nl/ws/portalfiles/portal/89095742/
0808814_thesis_Corn_Suijkerbuijk_PUBLIC_VERSION.pdf.

[23] M. X. C. D. Lai and D. N. P. Murthy, “A modified weibull distribution,” IEEE
Transactions on reliability, vol. 52, pp. 33–37, 2003.

[24] U. Hjorth, “A reliability distribution with increasing, decreasing, constant and
bathtub-shaped failure rates,” Technometrics, vol. 22, pp. 99–107, 1980.

[25] M. Xie and C. D. Lai, “Reliability analysis using an additive weibull model with
bathtub-shaped failure rate function,” Reliability Engineering & System Safety,
vol. 52, pp. 87–93, 1996.

[26] E. Kaplan and P. Meier, “Nonparametric estimation from incomplete observations,”
Journal of American Statistical Association, vol. 53, pp. 457–481, 1958.

[27] T. M. Therneau, A Package for Survival Analysis in S, 2015. version 2.38.

[28] J. Korst, V. Pronk, M. Barbieri, and S. Consoli, Data Science for Healthcare:
Methodologies and Applications, ch. Introduction to Classification Algorithms and
their Performance Analysis using Medical Examples., pp. 39–73. Springer, 2019.

https://pure.tue.nl/ws/portalfiles/portal/89095742/0808814_thesis_Corn_Suijkerbuijk_PUBLIC_VERSION.pdf
https://pure.tue.nl/ws/portalfiles/portal/89095742/0808814_thesis_Corn_Suijkerbuijk_PUBLIC_VERSION.pdf

Bibliography 56

[29] T. Tulabandhula and C. Rudin, “Machine learning with operational costs,” Journal
of Machine Learning Research, vol. 14, pp. 1989–2028, 2013.

[30] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. New York, NY, USA: John Wiley & Sons, Inc., 1st ed., 1994.

[31] S. M. Ross, Introduction to Probability Models. San Diego, CA, USA: Academic
Press, tenth ed., 2010.

[32] S. Ross, Stochastic Processes. Wiley series in probability and statistics: Probability
and statistics, Wiley, 1996.

[33] “Some recent results on the distributions of stopping times of compound poisson
processes with linear boundaries,” Journal of Statistical Planning and Inference,
vol. 130, no. 1, pp. 95 – 109, 2005.

[34] M. Nyberg, T. Ambjörnsson, and L. Lizana, “A simple method to calculate first-
passage time densities with arbitrary initial conditions,” New Journal of Physics,
vol. 18, p. 063019, June 2016.

[35] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence
intervals, and other measures of statistical accuracy,” Statistical Science, vol. 1,
no. 1, pp. 54–75, 1986.

[36] E. C. P. R.-C. Sandra Beńıtez-Peña, Rafael Blanquero, “On support vector machines
under a multiple-cost scenario,” Advances in Data Analysis and Classification,
pp. 1–20, 2018.

[37] Q. V. Le, A. J. Smola, and T. Gärtner, “Simpler knowledge-based support vector
machines,” in Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, (New York, NY, USA), pp. 521–528, ACM, 2006.

[38] G. M. Fung, O. L. Mangasarian, and J. W. Shavlik, “Knowledge-based support vector
machine classifiers,” in Proceedings of the 15th International Conference on Neural
Information Processing Systems, NIPS’02, (Cambridge, MA, USA), pp. 537–544,
MIT Press, 2002.

List of Figures

2.1 Photo of the Allura Xper FD20/10 X-ray system. 4

3.1 The measured brightness values over time with the third running minimum
B(t) and the values at failure of the brightness and working hours. 13

3.2 Measurements and degradation process of real monitor 14
3.3 The Kaplan-Meier estimator and the fitted parametric models for the

working hours at failure. 21

4.1 Curves of the three policy classes. 26

7.1 The objective function for class 2 policies. 41
7.2 The objective function for class 3 policies. 42

A.1 The estimated parameters of the lognormal distribution for the interarrival
time. 60

A.2 The estimated µ parameter of the lognormal distribution for the interarrival
time versus the estimated p parameter in the geometric distribution. . . . 61

A.3 The estimated σ parameter of the lognormal distribution for the interarrival
time versus the estimated p parameter in the geometric distribution. . . . 61

List of Tables

2.1 � . 4
2.2 The eleven features of the SVM model ordered on their contribution to

new classifications. 7
2.3 Features as selected by the forward selection procedure 10

3.1 Rejection rates of the independence tests of interarrival times and jump
sizes. 15

3.2 Rejection rates of the joint independence tests of interarrival times and
jump sizes. 16

3.3 Rejection rates of possible interarrival time distributions. 19
3.4 Rejection rates of possible jump size distributions. 19
3.5 The distribution functions of the distributions under consideration for the

working hours at failure. 20
3.6 The censored fits of the working hours at failure. 22

7.1 Approximations of the solutions per class. 43

8.1 Definition of performance measures. 45
8.2 Classification performance on training set. 46
8.3 Operational results simulation study. 48
8.4 Cost results simulation study. 49
8.5 Confidence intervals on the estimated average costs for a cost ratio of 10. 49

List of Algorithms

2.1 Procedure to calculate the SHAP values of each feature of the SVM model
using stratified sampling and cross-validation. 8

2.2 Procedure of the forward feature selection to rank features on their predictive
power. 9

3.1 Procedure to calculate the rejection rate of independence tests of interarrival
times and jump sizes. 15

3.2 Procedure to calculate rejection rates for possible distributions. 18
7.1 Procedure to obtain the empirical distribution of the number of jumps. . . 39
7.2 Procedure to obtain one sample path. 40
7.3 Pseudo-code for the estimating the objective function of a policy. 41
8.1 Procedure to determine the performance of policies on the training set. . . 45
8.2 Pseudo code for the bootstrapping procedure for confidence intervals. . . . 47

Appendix A

Estimates Interarrival Times and Jump
Sizes

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

µ

σ

Parameters of interarrival times

Figure A.1: The estimated parameters of the lognormal distribution for the interarrival
time.

Appendix A Estimates Interarrival Times and Jump Sizes 61

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

µ

p

µ against p

Figure A.2: The estimated µ parameter of the lognormal distribution for the interarrival
time versus the estimated p parameter in the geometric distribution.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

σ

p

σ against p

Figure A.3: The estimated σ parameter of the lognormal distribution for the interarrival
time versus the estimated p parameter in the geometric distribution.

Appendix B

Independence Tests

B.1 Wald-Wolfowitz

The Wald-Wolfowitz runs test has the following hypothesis:

H0 The sequence was produced in a random way.

HA The sequence was not produced in a random way.

The test is performed in the following way.
Let x1, x2, . . . , xn be continuous observations with no ties and let m be the median of

the observations. Define binary variables x̃1, x̃2, . . . , x̃n as

x̃i =

{
1, if xi ≥ m
0, if xi < m.

A run is defined as a sequence consisting of the same number, so either a sequence of
zeros or a sequence of ones. For instance, the data sequence 1, 0, 0, 1, 1 has three runs.
Let N0 be the number of runs consisting of zeros and N1 the number of runs consisting
of ones.

For large sample sizes, the number of runs can be approximated by a normal distribution
with mean µ, given by

µ =
2N0N1

N0 +N1
+ 1,

and variance σ2, given by

σ2 =
2N0N1(N0N1 −N0 −N1)

(N0 +N1)2(N0 +N1 + 1)
.

We reject the null hypothesis at significance level α if

w =
N0 +N1 − µ

σ

is larger than z1−α/2 or smaller than −z1−α/2, where z1−α/2 is the 1− α/2 quantile of
the standard normal distribution.

B.2 Ljung-Box 63

B.2 Ljung-Box

The Ljung-Box test is defined as follows:

H0 The data are independently distributed.

HA The data are not independently distributed; they exhibit serial correlation.

Let x1, x2, . . . , xn be continuous observations. The test statistic for the Ljung-Box test
is given by

Q = n(n+ 2)
h∑
j=1

ρ̂2(j)

n− j
,

where ρ̂(j) is the sample autocorrelation at lag j and h is the number of lags that are
tested. The sample autocorrelation is given by

ρ̂(j) =
γ̂(j)

γ̂(0)
for − n < j < n,

where γ̂(j) is given by

γ̂(j) :=
1

n

n−j∑
t=1

(xt+j − x̄)(xt − x̄) for − j < j < j,

and x̄ is the sample mean, given by

x̄ =
1

n

n∑
i=1

xi.

The test statistic is approximated by the chi-squared distribution with h degrees of
freedom. The null hypothesis is rejected at confidence level α if Q > χ2

1−α(h), where
χ2
1−α(h) is the 1− α quantile of the chi-squared distribution with h degrees of freedom.

B.3 Difference-sign test

The difference-sign test is defined as follows:

H0 There is no trend in the data.

HA There is either an increasing or a decreasing trend in the data.

The test statistic for the difference-sign test is S, which is number of times that a
data point is larger than its predecessor, i.e. the number of values i such that xi > xi−1,
i = 2, 3, . . . , n for a sequence (x)i=1,2,...,n.

Under the null hypothesis, the expected value of S is given by µS = 1
2(n− 1) and the

variance by σ2S = n+1
12 . For large n, it holds that S is approximately normal with mean

µS and variance σ2S . We reject the null hypothesis at level α if S−µS
σS

> z1−α/2, where
z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

Appendix C

Proof of Theorem 7.1

(Proof of Theorem 7.1). For a given threshold σ, using the general relation

R = cp1{S ≤ T}+ cc1{S > T}

and the fact that S is now a deterministic random variable, given by σ, we have that

E[R] = E[cc1{min{T,σ} = T}+ cp1{min{T,σ} = σ}] = ccP(T ≤ σ) + cpP(T ≥ σ)
(C.1)

and

E[Z] = E[min{T,σ}] =

∫ σ

t=0
tf(t) dt+ σP(T ≥ σ) =

∫ σ

0
1− F (t) dt . (C.2)

For the last equality in Equation (C.2) we use integration by parts. Equation (7.3) is
obtained by inserting Equation (C.1) and Equation (C.2) in Equation (5.2).

To find the minimum of g(σ), we take the derivative with respect to σ and get

g′(σ) =
1− F (σ)∫ σ

0 1− F (t) dt
[(cc − cp)h(σ)− g(σ)] .

We cannot get a closed expression for the σ at which g′(σ) = 0, but we know that, for σ
such that g′(σ) = 0, either (cc− cp)h(σ) = g(σ) or 1−F (σ) = 0. The second case is not
interesting, because the threshold is then above the maximum lifetime of the component,
which. We then follow a corrective maintenance policy.

Now assume that we have found a σ such that g′(σ) = 0 and (cc − cp)h(σ) = g(σ).
For the second derivative, we get that

g′′(σ) =
1− F (σ)∫ σ

0 1− F (x) dx

[
(cc − cp)h′(σ)− g′(σ)

]
+
−
∫ σ
0 1− F (x) dx f(σ)− (1− F (σ))(1− F (σ))

(
∫ σ
0 1− F (x) dx)2

[
(cc − cp)h(σ)− g(σ)

]
. (C.3)

Using the fact that g′(σ) = 0 and (cc − cp)h(σ) = g(σ), Equation (C.3) reduces to

g′′(σ) =
1− F (σ)∫ σ

0 1− F (t) dt
· (cc − cp)h′(σ).

Appendix C Proof of Theorem 7.1 65

We see that if h′(σ) is negative then g′′(σ) is negative and we thus have a maximum.
Therefore, it is not worthwhile to have a preventive maintenance policy. When h′(σ) is
positive, g′′(σ) is positive and thus we obtain a minimum. In this case minimal costs are
obtained when preventive maintenance is applied.

	Executive Summary
	Contents
	List of Symbols
	 Definitions and Concepts
	Introduction
	Main Optimization Problem
	Contribution of Project
	Outline

	Vehicle of Illustration: Big Screen Monitors
	The Big Screen Monitors
	The SVM Model
	Feature Ranking
	Brief Description of Top Ranked Features

	Degradation process
	The Degradation Process
	Failure Mechanism
	Validation of Assumptions
	Estimations of Parameters
	Jump Process
	Values at Failure

	Policies Under Consideration
	Class 1: Univariate Thresholds
	Class 2: Ellipsoids
	Class 3: Linear Planes

	Average Cost Criterion
	The Average Cost
	Influence of Classes on Cost Criterion

	Performance Component
	The Precision Measure
	Penalty Terms
	Influence of Classes on Precision

	Numerical Approximations to Solution
	Numerical Complications
	Numerical Approximations
	Class 1
	Class 2
	Class 3

	Comparison Of Policies
	Training Set Comparison
	Simulation Study

	Relation to SVMs
	Conclusion
	Conclusion
	Discussion

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms
	Estimates Interarrival Times and Jump Sizes
	Independence Tests
	Wald-Wolfowitz
	Ljung-Box
	Difference-sign test

	Proof of Theorem 7.1

