
 Eindhoven University of Technology

MASTER

Fully Compiled Execution of Conjunctive Graph Queries

van de Wall, A.A.G.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8080cfb2-db00-4297-8503-901aa0d5cd45

Fully Compiled Execution of
Conjunctive Graph Queries

A.A.G van de Wall

Department of Mathematics and Computer Science
Databases Research Group

Supervisor:

Assessment Committee:

Eindhoven, March 2020

N. Yakovets

N. Yakovets
G.H.L. Fletcher
R.M. Carvalho

Fully Compiled Execution of Conjunctive GraphQueries

A.A.G VAN DE WALL
As the available amount of main-memory grows, the performance of query

evaluation is increasingly determined by the CPU costs. In the classical

iterator model, performance is poor due to lack of locality and branch mis-

predictions. Several techniques such as processing multiple tuples at one

in batches, or data-centric compilation have been proposed and shown to

be an effective solution in the relational database domain. In this work, we

apply these techniques to the graph database domain, and show that both

techniques are reasonable solutions. Furthermore, we propose an abstraction

model for reasoning about compiled query plans, and show how a query can

be compiled in its entirety using this model. Finally, we show how operators

such as merge-join, which don’t map to data-centric code very well, can still

be mapped to this model. We perform an experimental evaluation on a large

real-world graph to confirm the effectiveness of our proposed approach.

1 INTRODUCTION
Graph databases have become increasingly popular in many applica-

tion domains recently. For example, they are used to store and query

complex heterogeneous biological data [19], perform social network

analysis [18], store and query graphs containing encyclopedic data

(knowledge graphs), and other workloads that query the underlying

graph structure. Graph databases provide significant performance

advantages over traditional, relational, databases in such situations

[7].

We are primarily interested in the evaluation of sub-graph queries.

Such queries are generally described in a high-level declarative

language – such as SPARQL or RPGA, in which graph pattern are

defined. The set of sub-graphs on which the pattern of a query

matches is its output.

In this work, we are primarily interested in the part of a database

management system (DBMS) that executes the queries: the execu-

tion engine. Before a query is handed over to it, the query first goes

through a parsing and a planning stage.

Traditionally, the execution engine interprets the plan to execute.

An operator tree is laid out in memory, and the engine walks over

it executing a bit of code associated with every operator type in

the tree. Such interpreting engines primarily focus on minimizing

the amount of I/O operations, as those have historically been the

dominating factor in execution time. Due to limited availability of

main-memory, most of the time is spent on moving data from disk

up the memory hierarchy.

However, as the attainable I/O-performance has grown with the

introduction of SSDs, and the ever increasing amount of main-

memory available, I/O operations are no longer necessarily a domi-

nating factor. With sufficient memory available, entire data sets can

now fit in memory. This requires different design considerations

when building an execution engine, as the dominating factor moves

up the memory hierarchy, and memory caches have essentially

taken the place of the main-memory bottleneck-wise.

A very common way to implement query execution is to use

the Volcano model. In this model, every operator implements an

iterator interface that emits a single tuple at a time. This abstrac-

tion is however a potential performance bottleneck, as passing this

standardized interface has some associated cost, and this needs to

be done many times for every single tuple.

A common way to work around this bottleneck is Vectorization.

When it is used, operators no longer emit a single tuple at a time, but

instead emit large blocks of tuples. To keep the extra materialization

costs originating in copying from and to such blocks low, additional

tricks such as storing tuples column-wise are needed. However, they

come with additional optimization opportunities.

Rather than minimizing the cost of the operator-tree abstraction,

we can also completely get rid of it by generating code for it. This

effectively translates the operator-model into a lower level code

model, that a compiler can optimize more freely. Depending on

the optimizations performed, compilation may however be costly,

requiring caching or other measures to reduce its impact. Code

generation is also fairly complex to implement, maintain and debug.

Research Questions. The application of these different execution-

engine strategies has been researched extensively on relational

databases. This can’t be said for execution engines of graph databases.

Therefore, we try to answer the following: 1) What performance

impact does vectorization have on executing graph queries? 2) How

can compilation be implemented effectively in a graph database?

3) And finally, how does compilation affect the performance of graph

query execution?

As we answer these research questions, we furthermore con-

tribute the following:

(1) We implement a fully vectorized execution engine in a high-

performance in-memory graph database (Section 3.2),

(2) We propose a model for reasoning about generated code for

arbitrarily complex query plans (Section 3.3.2) – allowing the

compilation of complete query plans,

(3) Furthermore, we describe how operators such as merge-join

can be implemented in the data-centric code generation pro-

cess (Section 3.4.5),

(4) By using the proposed model, we implement a fully compiled

execution engine in a high-performance in-memory graph

database (Section 3.3),

(5) We perform an extensive evaluation of the effects of vec-

torized vs. compiled query executions on a large real-world

network (Section 4).

The rest of this work is organized as follows: Section 2 provides an

overview of preliminaries and background information. In Section

3, we show how vectorization and compilation were implemented.

Section 4 provides an evaluation of the different implemented tech-

niques. We then compare our implementation to related work in

section 5. And finally we conclude in Section 6

2 BACKGROUND

2.1 Query Semantics
The goal of a graph database is to answer queries with information

from a graph. In this work, we consider queries on property graphs.

2 • v/d Wall

Which are graphs where every vertex and edge have are assigned

set of labels and key-value pairs.

Such graphs are defined formally by the tuple (V ,E,η, λ,v).Where

the disjoint setsV and E are the vertices and edges respectively. The

function η : E → V ×V assigns an ordered vertex pair to every edge

– the source and the target vertex. The function λ : V ∪ E → P(L)

assigns every vertex and edge zero or more labels. And finally the

partial function v : (V ∪ E) × K → N assigns a value from N to

properties in K . For every vertex or edge in the graph, the amount

of assigned (K) is finite.

<person>

Name Jen

<company>

<worksAt>

<location><livesIn>

Name Reynholm Industries

<locatedIn> Name London

Fig. 1. An example property graph.

An example graph can be seen in Figure 1. Labels are wrapped in

angle brackets, and all vertices and edges are assigned one. Proper-

ties are shown in the tables, and all vertices have associated proper-

ties.

Formally this would be defined as follows:

V = { 0, 1, 2 }

E = { 3, 4, 5 }

η(3) = (0, 1)

η(4) = (0, 2)

η(5) = (1, 2)

λ(0) = { <person> }

λ(1) = { <company> }

λ(2) = { <location> }

λ(3) = { <worksAt> }

λ(4) = { <livesIn> }

λ(5) = { <locatedIn> }

v(0, “Name”) = “Jen”

v(1, “Name”) = “Reynholm Industries”

v(2, “Name”) = “London”

On such a graph we perform conjunctive property-graph queries

(CQ). Informally, these simply match a set of sub-graphs of the

overall graph. More formally, such a query consists out of a set of

vertex variables (V), edge predicates of the form (v1,v2,p) where
v1, v2 ∈ V define an edge between two different vertex variables,

and p : E → B defines a predicate over the edge, and vertex pred-

icates q : V → B. Such predicates can either require the edge or

vertex to be assigned a given label, or can define conditions on the

properties assigned to the vertex or edge.

The result of such a query is the set of sub-graphs for which there

exists an assignment a : V (G ′) → V (where V (G ′) are vertices in

the sub-graph) such that all vertex and edge predicates are met.

For example, we might want to know the set of people that live

in the same city as where their job is located. A graph pattern

representing this can be seen in Figure 2. If we run this example on

the example graph previously shown in Figure 1, we find that the

only sub-graph matching the pattern is the entire graph.

W

L

<locatedIn>

P

<worksAt>

<livesIn>

Fig. 2. A graph pattern describing people (P) that work in the same city as
where their job (W) is located (L).

2.2 Query Pipeline
In a typical database, a query goes through three different stages

during its life-cycle – illustrated in Figure 3. First, it is parsed and

translated into some intermediate representation, such as an AST

(Abstract Syntax Tree). Then, the best way to execute a query is

determined by the planner using statistics and heuristics – yielding a

physical plan. This plan represents, unlike the original query and its

intermediate representation, how to answer the query, whereas the

abstract representation and the query source code merely describes

a question to be answered. The physical plan consists out of operator

primitives that describe operations that can be performed, such as

hash-join and table scan. This plan is then passed on to the execution

engine, which executes it.

Query

Parser Planner

Statistics

AST Plan

Fig. 3. The different representations the query goes through before it is
executed.

For the planner to find a good plan, it needs to predict how dif-

ferent physical operators affect the performance. Only then can

the planner compare different equivalent plans. To do so, planners

generally make use of statistics about the data set collected ahead

of time. For example, the number of edges with a given label, or the

distribution of values of a property may be indicative of the size

of intermediate results generated by a join, read or filter operation.

When combining these values with a cost model that describes the

cost of physical operators given some statistics about the input, the

planner can find a good plan.

Fully Compiled Execution of Conjunctive GraphQueries • 3

2.3 The Volcano Execution Model
In the traditional, or Volcano, execution model, every operator im-

plements an iterator interface consisting out of a next method that

returns a single tuple at a time, for as long as there is more output

available. To produce one output tuple, the next method of the root

operator is called, which then calls the appropriate next method of

its children and so onward. For example, in the physical plan shown

in Figure 4, to generate a tuple of output, once the build phase is

complete, the next operator of both hash joins would be called, as

well as the next operator of the <locatedIn> Read Label operator.

Read Label
<worksAt><locatedIn>

Hash Join

Hash Join

Build

BuildProbe

Probe

Read Label

<livesIn>
Read Label

Fig. 4. A physical plan corresponding with the query in Fig. 2

The performance bottleneck of this execution model lies in the

amount of next calls that need to be made. To produce a single tuple

of output, next is called many times and control flows throughmany

different operators. Because there is no way to tell at compile time

which operator types may appear as a child of an operator type, as

the planner can arbitrarily compose operators to create a plan, all

infra-operator calls to be virtual. Meaning that to make such a call,

the address of the method needs to be looked up from the operator

type information. This requires more instructions andmemory reads

than a regular call, making it more expensive.

Furthermore, a compiler cannot inline across such a virtualmethod

boundary, making many potential optimization opportunities im-

possible. For example, when multiple operators read the same tuple

field, that data would in an ideal case be read once and then passed

by a register. But as there is a method boundary, all operators need

to read the value individually.

2.4 Vectorized Execution
A relatively simple way to reduce the cost of abstraction that comes

with the Volcano execution model, is to reduce the amount of virtual

method calls that are made when executing a plan. This can be done

by returning multiple tuples for every invocation, spreading out the

cost of the call over many tuples. For example, if we choose a block

size of 1024, we only perform one next call for every 1024 tuples.

This method does however impose additional materialization

costs, as tuple values need to be buffered before being returned in

a block. To minimize the impact of this, we can store our tuples in

a column layout. That way no data needs to be copied when the

tuple is extended. As we only need to pass pointers to the first value

of every column, and can simply pass an extra pointer and keep

existing columns.

To efficiently implement operators that perform filtering or re-

ordering operations on a block, we want to push the cost of updating

the materialization up the tree as far as possible. When done prop-

erly, we only need to do this only once when multiple subsequent

filtering operations are performed.

In order to do this, we maintain an additional column in the tuple

block if filtering is applied: the selection vector. In this vector, we

specify the indexes of the tuples that were not removed – in the order

that they should be outputted. All operators use this selection vector

when reading tuples if it is present, moving the cost of updating the

materialization to when the data is read.

If an operator does not have any filtering or reordering operators,

the selection vector can be omitted and the slots can be accessed

directly. This can also be seen as there being a default identity

selection vector that is equal to N.
An example block containing a selection vector can be seen in

Figure 5. This block contains four tuples, but as some tuples were

filtered out by some parent operator, the selection vector skips a

few numbers. Arrows are used to indicate the values the rows the

selection vector points to.

To look up the first field of the second tuple, we would first look

up the index of the second tuple in the block, which in this case

gives us the offset 2. We can then read the third field of the first

column to get the proper value.

s
0
2
3
5

Data

Fig. 5. An example tuple block

When intermediate data is stored column wise, various other

techniques also become applicable. For example, we can employ

SIMD instructions, which are instructions that operate on multiple

values at once, as data is laid out in continuous blocks of memory,

which is needed to use such data-parallel instructions effectively

[20].

Because of the column layout, we can also make use of type-

specific specialized (sub-) operators, generally referred to as primi-

tives. They only operate on the columns that they use, and have a

low degree of freedom, operating on independent (restricted) arrays

of a fixed shape. This allows the compiler to emit faster code, as

aggressive loop pipelining is possible [1].

4 • v/d Wall

An example primitive can be seen in 1. This primitive applies a

comparison operator on two columns, andwrites out a new selection

vector. The __restrict__ annotations on the arguments are used

to tell the compiler that the pointers will always point to distinct

non-overlapping blocks of memory – giving the compiler much

more freedom, as the order of writing and reading to the different

arrays is guaranteed to not affect the behavior. The actual body of

the primitive is very simple, it simply walks over the arrays and if

the predicate matches, an entry is added to the selection vector with

the row index of the matching row. When the amount of matching

rows is returned, the selection vector will contain that amount of

indexes as well.

Listing 1. An example primitive.

1 s t a t i c int f i l t e r _ i n t _ l t (

2 in t n ,

3 const u i n t 6 4 _ t ∗ _ _ r e s t r i c t _ _ l ,

4 const u i n t 6 4 _ t ∗ _ _ r e s t r i c t _ _ r ,

5 in t ∗ _ _ r e s t r i c t _ _ s e l e c t

6) {

7 in t count = 0 ;

8

9 for (in t i = 0 ; i < n ; i ++) {

10 i f (l [i] < r [i]) {

11 s e l e c t [count ++] = i ;

12 }

13 }

14

15 return count ;

16 }

As writing and maintaining such primitives for every data type

and operator is time-consuming and potentially error-prone, code

generation or meta-programming approaches can be applied to re-

duce the size of the code that needs to be maintained. For example,

we could replace the concrete type uint64_t in the previous exam-

ple with a template variable. That way we only have to write this

once and can specify the actual type that is as an argument when

the primitive is invoked.

2.5 CompiledQuery Execution
Rather than reducing the cost of the operator tree abstraction, by

amortizing the calls across operator boundaries, we can instead get

rid of the abstraction, and the boundaries that come with it. Similar

to how early DBMSs compiled all available queries ahead of time [2],

we can use the operator tree to generate code. However, unlike those

early systems, we can use JIT (just in time) compilation techniques

[8] to compile a query right before executing it.

Essentially, when we execute a query plan, we generate a bit

of code for every physical operator in the tree. This code is then

compiled, optimized and executed to generate the output.

This comes at the cost of having to compile code for every query

– which may be rather slow depending on the compiler used and

which optimizations are enabled. To circumvent this, compiled code

could be cached, and queries could be parameterized by moving

constants out to make such caching more effective.

Once the code has been generated for a plan, there are no longer

any operator boundaries in place. The compiler can thus much

more freely perform optimizations that would be impractical in

other models, as the code provides great degree of freedom. The

compiler can optimize for a specific combination of data types and

operators used. To do such a thing ahead of time, the execution

engine would need a specialized method for every combination. The

amount of such combinations grows super-linearly (exponential in

length), making it unpractical to achieve the same optimizations the

compiler’s optimizer can find, as all of these need to be compiled

and stored ahead of time.

3 APPROACH

3.1 Overview
In this work, we implement both vectorization and query compi-

lation in the preexisting graph database Avantgraph – a single-

threaded main-memory-only graph-database developed at the TU/e.

We completely replace the execution engine to support both vector-

ized and compiled execution.

3.2 Vectorization
3.2.1 Overview. We implement vectorized execution by changing

the standard iterator interface, we pass a block to write to as an

argument and return the amount of written tuples – effectively

making the parent operator responsible for the block’s memory. This

way operators can also easily add or remove columns by creating a

new block with the previous block’s column pointers, as the memory

is managed by the parent, it is guaranteed to remain valid while

passing the new block down the line.

For the parent operator to know what block to pass to a child, it

needs to be aware of the columns that are present. And whether

there is a selection vector present. To do so, the standard operator

interface is augmented with an additional method that can be used

to query the operator’s output layout. This layout maps locations

in the tuple to column indexes, and contains the data types of every

column.

3.2.2 Primitives. To implement the various operators, we make

use of reusable primitives. We define these using C++ templates

so that we only need to specify the shape of them once, and can

then plug in different data types or other constants to obtain the

specialized variants. The C++ compiler will apply expressions on

constants passed via template arguments (constant evaluation), so

we can, for example, pass in the comparison as and argument and

write a case-distinction inside the primitive that gets optimized by

removing the case distinction.

3.2.3 Hash Join. In our hash join operator, we make use of group

prefetching [3]. Again, we rely on C++ templates and constant

evaluation to generate primitives for different group sizes and with

or without a selection vector.

3.3 Query Compilation
3.3.1 Overview. To compile a query, every operator emits a bit of

code that implements the semantics of that particular operator. This

code then gets compiled, optimized and executed. This is depicted

Fully Compiled Execution of Conjunctive GraphQueries • 5

in Figure 6, the code generation process translates a plan into some

programming language, which the compiler takes as input and

translates it into optimized machine code. For the target language,

we can pick basically any general purpose programming language.

We choose to emit LLVM IR [11] (intermediate representation), both

for the reasons described below.

Compiler

Machine Code

% 8 " k w G " S e <

i w n x 6 8 w j v }

9 [n M y # 4 9 l c v

N E T s 7 (# ? C 5 \

e h 3 D b H t - S Z < >

W d I D f @ # B L # p

x c { 7 8 * ’ # e P } u

n V c d , 4) l T B v A

O \ 3 r ? j # e U - j l W

j \ . z b 4 " x ^ ! / b u

d e O X r M X u I E t

J C > h L K 3 Y T %

’ F H I M L J d }

e \ [H K C e !

x ({ 8 a e) +

c [2 t

] r e 6

K 8Target LanguagePlan

Codegen

Fig. 6. The process of translating the plan to machine code.

The well-supported C++ API lets us emit code without ever hav-

ing to fall back to a textual representation, and also supports many

low-level operations that may be difficult to express in languages

such as C or C++ by mapping more closely to commonly used

CPUs [16]. For example, LLVM natively supports SIMD instructions

that get lowered to appropriately sized SIMD instructions that are

supported by the target CPU.

Apart from having an API, it is also quite a bit faster than us-

ing a standalone compiler such as clang, or GCC [16]. To use such

a compiler, we need to emit source code as text, which then gets

parsed and transformed into some AST by such a compiler. Once

the AST is validated, such compilers then transform it into an in-

termediate representation that they pass to the compiler back-end,

which performs optimizations and lowers it into machine code. By

using LLVM IR, which is used as the intermediate language by the

clang compiler, we can most of this work, and directly invoke the

compiler back-end to optimize and lower the code.

Once we have generated the code in LLVM IR, there are no longer

any strict operator boundaries. The optimizer can freely optimize

across operators and may for example, combine predicates of differ-

ent filter operators into a single predicate and operator. To perform

such arbitrary contractions in non-compiling engines, there needs

to exist an optimized operator variant for all combinations of pred-

icates ahead of time. But as the number of variants is generally

unbounded, and the amount of variants grows exponentially with

the amount of predicates, this greatly increases the size of the code,

making it not very practical [9].

One downside of compilation, apart from the complexity of im-

plementing it, is of course the start up time. Depending on the

optimizations performed during the compilation process, the time

it takes to compile a query may very well outweigh the speedup

gained by executing it, or even take longer than actually executing

it. So, care should be taken to cache compiled plans and in execution

engines that can partially compile a plan, to only compile the parts

of a plan where it matters the most.

3.3.2 Generated Code. To translate a plan into LLVM IR, we walk

over the operator tree and generate a bit of code for every operator.

Rather than emitting code that would correspond with the Volcano

model, in which every operator pulls data from its children by calling

their next operator, we emit data-centric code in which every child

pushes the data up the operator tree. This way data can be kept in

registers as long as possible, avoiding breaking the pipeline and

spilling data to the much slower main-memory [15].

To better understand the structure of the generated code, we pro-

pose a model that lets us subdivide the generated code in smaller,

easier to understand, sections. In this model, the code consists out

of pipelines that always read from fully materialized data, and write

to fully materialized data. For example, a pipeline might read all

edges with a given label and build a hash table, or reads some index

and build a plan’s final output. Within a pipeline data may be mo-

mentarily partially materialized so that processing happens in tight

loops – better utilizing CPU pipelines [1], or to perform instructions

that require data to be in a certain shape, such as prefetching or

SIMD instructions. The areas of code between such materialization

boundaries we call stages. Because of that, these boundaries are

referred to as stage boundaries [14]. Finally, every operator may

modify the tuple as it passes from a child to the parent operator.

This final level is referred to as a step.

Buffers at stage boundaries are of a fixed-size, so special care

needs to be taken to jump to the next stage once it is full, and

to correctly resume the previous stage once it is done. It may be

useful to consider transferring control to the next stage as a function

call, the state of the registers is pushed to the stack and control is

transferred to the function. Once the function is done, the registers

are restored and the processing continues. As such resumption is

quite hard to implement when it passes through multiple operators

without actual function calls, where it is needed we keep the state on

the stack. When done using LLVM’s alloca instruction, LLVM can

translate these stack allocations to virtual registers automatically.

Count

Read Label Edges

Read Edge Property

SIMD Filter

Fig. 7. An example plan

We will illustrate the proposed model with an example. In Figure

7, a simple plan is shown. It consists out of an operator that reads all

edges with a given label, an operator that reads a property of such

an edge, an operator that filters the tuples, and finally an operator

that counts the tuples.

In Figure 8, the generated code is depicted in our model. The

operators that read from (fully) materialized data (shown in green),

6 • v/d Wall

Initialization

Pipeline

Plan

Read Materialized

Filter / Augment Tuple Operators

Materialize (Stage boundary)

Loop Condition

Read Materialized (From boundary)

Filter / Augment Tuple Operators

Materialize (Final Output)

Loop Condition

Teardown

Fig. 8. Code Generated for the example plan

are always the first operator in either the pipeline or the stage.

Operator steps that only map and/or filter are depicted yellow. The

last, or innermost, operator of a stage always writes the data in some

materialized form. Here it is depicted in blue. Such an operator in

the last stage always writes data in some fully materialized form. In

this case, it is used as the final output.

The arrows in the diagram depict noteworthy jumps between

code blocks. In the loop conditions, generated by the first operator in

every stage, control can jump to the end of the stage if nomore tuples

are remaining. The innermost operator of the first stage, writes the

data to the materialization boundary, and may thus temporarily

jump to the next stage if the buffer is full. When the stage was

entered from this operator, it will jump back to the previous stage

once it is complete, as indicated by the dotted arrow.

In some plans, there may be multiple pipelines, each with a final

materialization stage. For example, when hash join is used, the build

operator will be placed in a separate pipeline that materializes to

a hash table. However, this does not contribute much additional

complexity, as there is no jumping back to a previous pipeline.

3.4 Code Generation For Operators
In the following section, we will go over some individual and high-

light what code would be generated for each of them. For this to

be an indicative sample, we will show in-depth samples for one

operator that reads from a fully materialized state, one operator that

is an intermediate step, and one operator that materializes to some

stage boundary. For every operator, we describe both its semantics,

and a corresponding implementation.

3.4.1 Read Label Edges.

Semantics. This operator emits a tuple containing an edge ID for

every edge that has a given label.

Implementation. This operator accesses the graph, so it must be

aware of the format in which the graph’s data is laid out in memory.

In our case, every label has a continuous block of memory in which

edge IDs with that label are stored. To emit a tuple for an edge, we

only need a pointer to the first ID and the amount of IDs to loop

over them.

To get this information we make use of a small helper function

written in regular C++ shown in listing 2. It takes the address of

the graph, the label ID and returns the location and size of the edge

ID table. By making use of LLVM’s built in support for calling C

functions, all we have to do is simply take the address of the function

and define it in our LLVM module.

Listing 2. A helper function to access the edge id table.

1 s t a t i c void l a b e l E d g e s (

2 Graph ∗ g ,

3 Labe l ∗ l ,

4 u i n t 6 4 _ t ∗ l en ,

5 u i n t 6 4 _ t ∗ ∗ edges ,

6) {

7 s t d : : v e c to r < u i n t 6 4 _ t >& edges ;

8 edges = g−>edgesWi thLabe l [l −> i d] ;

9 ∗ l e n = edges . s i z e () ;

10 ∗ edges = &edges [0] ;

11 }

The actual code that is generated consists out of some initializa-

tion code – looking up the address and size of the Edge-ID table,

allocating a stack address for a counter – and a loop. The loop walks

over every address in the table and reads the stored Edge-ID.

The initialization code can be seen in listing 3. We allocate some

space on the stack for the return values of the helper functions

before calling it, and then reading the values that were written.

Finally, we allocate a counter variable and initialize it with zero.

Listing 3. The initialization code

1 %lenPtr = a l l o c a i 6 4

2 %edgesPtr = a l l o c a i 6 4 ∗

3 t a i l c a l l @labe lEdges (

4 i 8 ∗ %G, i 8 ∗ %L,
5 i 6 4 ∗ %lenPtr , i 6 4 ∗ ∗ %edgesPtr)
6 %len = load %lenPtr
7 %edges = load i 6 4 ∗ ∗ %edgesPtr
8

9 %i = a l l o c a i 6 4

10 s t o r e i 6 4 0 , i 6 4 ∗ %i

Fully Compiled Execution of Conjunctive GraphQueries • 7

The body section can be seen in listing 4. It starts by entering the

condition block. If there are no more edges to be read, it will jump

to the end of the operator (%tail). If there is at least one more edge,

control jumps to the %body block. In the body we increment the

loop counter and read the edge. After this the body of the consumer

is inserted (provided by the parent operator). Finally, we jump back

to the loop condition.

Listing 4. The body code

1 jmp %cond
2

3 %cond :

4 %offset = load %i
5 %end = cmd i 6 4 %of f s e t , i 6 4 %len
6 br i 1 %end, % t a i l %body
7

8 %body :

9 %next = add %of f s e t , 1

10 s t o r e i 6 4 %next, i 6 4 ∗ %i
11

12 %edge = g e t e l emen t p t r

13 i 6 4 ∗ %edges, i 6 4 %offset
14 %id = load i 6 4 ∗ %edge
15

16 ; < consumer >
17

18 br %cond
19

20 %ta i l :

If the consumer contains a stage boundary, it may momentarily

jump to a next stage before returning where it left off. This is gener-

ally implemented by inserting an additional basic block at the end

of <consumer>, that lets the next stage return to this operator.

3.4.2 Filter Tuple.

Semantics. This operator emits all tuples matching a predicate

that its child operator emits.

Implementation. This operator is essentially equivalent to a single
if statement with the predicate condition. So we only have to emit

code for the predicate, which gives us a boolean, and a conditional

jump that will jump over the consumer if the predicate does not

hold.

A sample of code that might be generated can be seen in listing 5.

The predicate yields a boolean variable %cond, that jumps over the

%holds block if the condition is not met. Inside the %holds block,
the consumer callback of the parent operator inserts its code.

Listing 5. The body code

1 %cond = < p r e d i c a t e >

2 br i 1 %cond, %holds, % t a i l
3

4 %holds :
5 ; < consumer >
6

7 br %ta i l

8

9 %ta i l :

3.4.3 Materialize to Column.

Semantics. This operator writes all incoming tuples to a fixed-size

buffer, momentarily continuing with the next stage once it is full.

Implementation. For this operator we need to allocate a buffer to

write to, and a counter that keeps track of how many tuples were

written. This can be inserted at the start of a pipeline. In Listing 6,

we show an example. We allocate space for a single-column buffer,

%b, and a counter, %u on the stack. We also initialize the counter by

writing zero to it.

Listing 6. Pipeline Start

1 %b = a l l o c a i 6 4 , i 6 4 64

2 %u = a l l o c a i 6 4

3 s t o r e i 6 4 0 , i 6 4 ∗ %u

Inside of the operator body code, we write the tuple to the buffer,

and jump to the next stage if it is full. We also need to add a block

so that we can resume operation if the next stage completes. An

example of this can be seen in Listing 7. We load in the current

counter value into %o and use it to write the tuple to the buffer at the
correct offset. We then increment it by one and update the counter

value. Finally we check if we have reached the buffer capacity and

jump to the start of the second stage (%stage2) if that is the case.
We also add a block (%resume) that can be used to resume operation,

and is also used in the conditional jump when the buffer is not yet

full.

Listing 7. The body code

1 %body0 :
2 %o = load i 6 4 , i 6 4 %u
3 %addr = g e t e l emen t p t r i 6 4 , i 6 4 ∗ %b, i 6 4 %o
4 s t o r e i 6 4 %tup leS lo t , i 6 4 ∗ %addr
5

6 %newUsed = add i 6 4 %usedV, i 6 4 1

7 s t o r e i 6 4 %newUsed, i 6 4 ∗ %u
8

9 %f = icmp eq i 6 4 %newUsed, i 6 4 64

10 %ful l i 1 %f , l a b e l %stage2 , l a b e l %resume
11

12 %resume :

At the end of the first stage, we insert the root operator of the

second stage, and wrap it with some code that receives jumps from

the previous stage and properly resumes it when this stage is done.

An example of this can be seen in Listing 8. We insert a block for

the second stage (%stage1), and a jump to it when the first stage

ends normally. Inside this block we use a phi instruction to keep

track of how the block was entered. This instruction assigns 0 when
entered from %stageTail0, and 1 when entered via %body0. Once
the stage completes, the switch instruction is used to jump back to

%resume or %stageTail1.

8 • v/d Wall

Listing 8. The stage tail

1 %stageTail0 :

2 br %stage1
3

4 %stage1 :

5 %src = phi i 6 4 [0 , %stageTail0] ,

6 [1 , %body0]

7

8 ; < c o d e u s i n g t h e s t a g e >
9

10 sw i t ch i 6 4 %src , l a b e l %stageTail1
11 [i 6 4 1 , l a b e l %resume]

12

13 %stageTail1 :

In these examples we rely on LLVM to translate our counter

variable from the stack to a register. Even though it is technically

possible to do this ourselves by insertingmore phi nodes and passing

the state around, this results in much more complex code. However,

LLVM has a built-in optimization pass mem2reg that takes care of
this for us. It translates instances of alloca that only have loads

and stores to phi nodes.

3.4.4 Hash Join.

Semantics. This operator is a join operator. Asmost join operators,

it combines two streams of tuples by taking the cross-product, and

then applying a filtering predicate on it.

Implementation. Rather than actually performing a cross-product,

this operator uses an equality predicate to build a hash table of one

of the tuple streams, and generates output by probing the hash table

using the other stream.

To implement this in code, we distinguish two distinct phases: the

build phase, in which the hash table is constructed, and the probe

phase, in which the hash table is queried. The first phase happens

in a separate pipeline that must be completed before probing can

occur.

For this operator, we need a hash table. It must at least support

insertion and querying all results for a given key. We chose to

implement this hash table as a part of the code generation process –

avoiding calls to C++ code where possible to avoid boundaries for

the optimizer.

The first step in implementing a hash table, is to design it. We

used an open-addressing, linear-probing for key collisions, and an

external data section for duplicate values, as this works well for

hash join [3, 14].

The exact memory layout can be seen in Figure 9 – which is

designed top be robust and cache-friendly [3]. Buckets consist out

of the following. A 64-bit status flag, the tuple values that make up

the hash key, all tuple values that are not part of the hash key, and

finally the 32-bit hash. In the case of duplicate values, the status flag

acts as a pointer to external storage. This external storage, of which

the layout is shown in Figure 10, consists out of two 64-bit numbers

that store respectively the usage and, the capacity. This header is

directly followed by tuple values that are not part of the hash key.

Status Keys Values Hash

Fig. 9. The layout in memory of a hash table bucket.

Capacity Used Values

Fig. 10. The layout of the external data.

To implement this with LLVM, struct types are created at runtime

for the part of the tuple that is in the key, the part of the tuple that

is not in the key, the external data header (size and capacity), and

finally the hash table bucket. This lets LLVM know what is going

on, and in return it provides us with type-safety.

To rehash the table, or to (re-) allocate external storage, we make

use of C++ callbacks. We pass sizes and offsets of the structs and its

fields, as they depend on the size of the tuple.

To generate the code for the pipeline that builds the hash table,

we use the “begin pipeline” callback in our plan visitor to insert the

pipeline code before the pipeline that needs the probe is executed.

The probe side does not need special attention, it simply queries the

hash table and walks over all of its results and runs the code of the

consume callback for every result.

Since the code for hash join is rather complex and unwieldy, we

will not show an actual code sample. Instead, we abstract away and

look at the code blocks that make up a plan containing a hash join –

in accordance with the proposed abstraction model. In figure 11, we

can see a schematic visualization of the compiled code correspond-

ing to a plan containing a hash join operator. It consists out of two

pipelines, one for building the hash table, and one for generating

the plan’s output.

In the building phase, for every tuple received from the build

operator, the key is extracted and a hash is calculated. This is used

to begin the probing process that will look for the correct slot. There

are two possible outcomes of probing here, either we find an empty

slot and can directly insert to it, or we find an existing slot, and

we need to append to some external data section. If we append to

a slot that was previously used, we need to check if it is inline or

not before using it. When it was inline, we allocate an external data

section and copy the inline tuple to it. If not, we check if we need

to resize the external buffer before appending to it. Not shown here

is rehashing when the table gets full, or the bookkeeping needed

for it.

During the probing phase, we also start by finding an initial probe

location using the hash, and then linearly scanning over the buckets.

However, when we find and empty slot, we know that the key does

not appear in the table. And when we find a slot matching the key,

we loop over all results and pass them to the consume callback of

the parent operator. Some care needs to be taken here to ensure the

value that is stored inline is also emitted if it was available.

Fully Compiled Execution of Conjunctive GraphQueries • 9

Allocate Hash Table

Build Operator

Compute Hash

Read Status Field

Compare Key

Key Not Equal

Check External Capacity

Extend External Capacity

Append to external

Insert Inline

Allocate External Initial

Check Have External

Build Pipeline

Probe Operator

Compute Hash

Read Status Field

Compare Key

Key Not Equal

Multiple Results

Single Result

Check Have External

Probe Pipeline

Parent Operator

Fig. 11. Schematic description of a plan containing a Hash-Join operator.

3.4.5 Iterating Operators. Some operators, most notably merge-

join, don’t really fit in the consumer-based model. For example,

merge-join proceeds with one of its inputs depending on the out-

come of a comparison. To make such operators work, we cannot

use the consumer model as described before, as the consumer does

not have any control over the operator the tuple is received from.

One way to circumvent this that doesn’t require code changes in

other operators to explicitly support this, is by using co-routines

[4]. Co-routines are functions that return (yield) multiple times –

saving the state of the execution and allowing it to be resumed. By

placing each child operator in such a function, we can easily iterate

over its output.

The saving and resuming of state, as well as allocating and freeing

of the memory in which this is done of course adds overhead. But

because LLVM has low-level support for co-routines, they can be

inlined, and the allocations moved to the stack – effectively com-

pletely getting rid of them. This lets LLVM optimize across the

iterator boundary which might not be possible with an explicitly

implemented iterator.

3.5 Implementing Code Generation
In the previous section, we have shown the code we wish to emit.

In this section, we describe how to actually do so.

3.5.1 The Plan as the Input. As input, our compiler front-end re-

ceives a plan. It consists out of an operator tree. Each node has an

associated operator type, and information about the shape of the

tuples that are emitted for a particular node. We refer to this as the

data layout.

Every slot has a globally unique identifier as it passes through the

operator tree – stored in the data layout. This allows us to uniformly

address tuples, and allows us to easily abstract away the source of

a tuple slot by hiding it in a tuple view. This also lets us pass a

view through a parent operator without having to remap it at every

operator. Though, it is important to note that such views are purely

to make code generation easy, as no actual code is generated for

them.

We also define reusable tuple formats, consisting out of a struct

type and some code generation to access it, to have a reusable way

to store materialized data. For example, we have a “dense” tuple

format that stores the values right after each other as they would be

stored in a hash table, and a “column” tuple format that decomposes

tuples into columns. They facilitate reuse between operators, and

provide code generation to write or read tuple views.

3.5.2 Generation Pass. We generate the code by first building a plan

visitor by walking over the operator tree in a depth-first manner –

at every level passing down an operator visitor. In operators that

have multiple children, each child typically receives a specialized

visitor.

The operator visitor interface contains various methods that let

it insert code at the beginning or the end of the plan, pipeline or

stage. Depending on the visitor, it may also contain a method that

will generate code that consumes a single tuple or intermediately

materialized data from a stage boundary.

The plan visitor, which is created for a subtree every time a plan

visitor is passed down, has “begin plan”, “run plan” and “end plan”

10 • v/d Wall

methods that generate setup code, the pipelines, and tear-down code

respectively.

Every visitor is responsible for calling its parent where appropri-

ate. For example, an operator may call the “begin stage” code of its

parent operator in the “end stage” code of the current operator to

implement a stage boundary, or a hash join operator may insert a

pipeline by calling the “run plan” method of the plan visitor returned

by the operator of the build-side before calling “begin plan” of the

parent.

By first constructing visitors, we generate code that is more or

less in the order it is executed, which makes local values a lot easier

to deal with, as they need to be declared before they are used. Using

the visitor pattern we can also very flexibly insert code where it is

needed, without having to break out of the abstraction.

To generate code for an operator that needs external iteration,

such as merge join, we simply create a new function for the subtree

to iterate on and pass it as the generation target as we run the

visitors.

4 EVALUATION

4.1 Dataset
All experimentswere performed on the YAGO2 dataset – a knowledge-

graph mined from Wikipedia. On this dataset, we use queries pro-

vided by queryminer. This project provides graph queries, and their

respective expected outputs, that were generated by defining a pat-

tern and then finding all label assignments that match the pattern.

For example, one might define a chain pattern of a given length,

then find all of such chains in the dataset, and store the labels of the

chain along with the amount of occurrences of that label assignment.

Every pattern thus corresponds with a class of queries of some

shape. The following patterns were available, and are used in our

queries:

(a) abcabc: A subset of the set 6-chain in which labels are re-

peated along the chain in the pattern indicated by the name.

(b) n-chain: n nodes, each with an outgoing edge, and a single

node with no outgoing edges so that a chain through all nodes

is formed.

(c) n-cycle: n nodes, each with one outgoing edge so that the

edges form cycle through all the nodes.

(d) n-star: A single node with n outgoing edges to n nodes.

(e) n-bowtie: A single node that has outgoing edges to all nodes

of n node pairs that have a single edge between them. This is

essentially a modification of n-star with added edges between
disjunct node pairs.

(f) n-fan:A single node that has outgoing connections to n nodes.
Additionally, there is a path through all of those n nodes.

Essentially, this is a modification of n-star with a path added

through all non-center vertices.

For each of these classes an example is available in Figure 12.

Vertices and edges are annotated with variables prefixed with ?. For
a sub-graph to match the pattern, every vertex in the sub-graph

maps to one or more vertex-variables, all edge-variables are assigned

a label, and the connections with the given labels exist in the graph.

?v

?w

?a

?u

?b

?t

?c

?w2

?a

?u2

?b

?t2

?c

(a) abcabc

?v

?w

?a

?u

?b

?t

?c

?w2

?d

?u2

?e

?l2

?f

(b) 6-chain

?x

?y

?p1

?z

?p2

?v

?p3

?w

?p4

?p5

(c) 5-cycle

?x

?y

?p1 ?z

?p2

?v

?p3

?w

?p4

?p6?p5

(d) 2-bowtie

?y

?x

?p1

?z

?p3

?p2

(e) 2-fan

?v

?w

?a

?u

?b

?l

?c

?m

?d

?k

?e

(f) 5-star

Fig. 12. Various query shapes.

4.1.1 Plan Generation. In order to use the queries from queryminer,

we first transform these into queries the planner and the execution

engine supports. As queryminer only provides a pattern and a set

Fully Compiled Execution of Conjunctive GraphQueries • 11

of outputs, we translate the outputs, which contain the label assign-

ments, into queries using the pattern.

We can then pass these queries to the planner and generate plans

for them. We compute all plans ahead of time and persist them to

disk, as we are only interested in the execution engine, and we use

the same plan for all execution engines.

Out of all the generated plans, we randomly sample a fixed set of

plans for every query class, as the amount of available plans is very

large.

4.2 Experiment
To compare the performance of compiled execution, we execute ev-

ery plan both in vectorized and in compiled mode, while measuring

the duration. We separately measure the time spent compiling the

plan in compiled execution mode.

Additionally, to benchmark the performance of our vectorized

execution engine, we will also run plans with different block sizes

of the vectorized engine.

Furthermore, we measure the performance impact of group pre-

fetching, which is implemented in our vectorized execution engine,

by differing the group size.

All experiments were performed using the same binary, compiled

with clang and inter procedural optimization enabled. We compile

in release mode with optimization flags -O3 -march=native, where
-O3 tells the compiler to enable optimizations, and -march=native
tells the compiler that it can use all features the CPU supports, and

that the machine code it generates does not need to work on other

machines.

4.3 Results

0.00

0.25

0.50

0.75

1.00

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query Class

M
ea

n
D

ur
at

io
n

(c
om

pa
re

d
to

 V
ol

ca
no

)

Build

block_size=1 group_size=1

block_size=1 group_size=20

block_size=1024 group_size=1

block_size=1024 group_size=20

block_size=4096 group_size=1

block_size=4096 group_size=20

Fig. 13. The average query duration, for every query class, for the different
configurations, expressed in the average duration of queries of that class in
a configuration with block size of 1 and a hash group size of 1.

4.3.1 Performance of Vectorization. To analyze the impact of vec-

torization, we calculate the average duration for all queries in a

class, for all block/group size variants. The result of this can be seen

in Figure 13. Here, and in all following figures, block_size refers

to the size of the vector, and group_size refers to the amount of

tuples to process at the same time in a hash table. So, a configuration

with a block_size of one is equivalent to the Volcano model, and

a configuration group_size of one does not use group prefetching.

In all cases, vectorization provides a significant performance boost

– halving the duration in most classes. When group prefetching is

used, an additional speedup is obtained in all classes. Having larger

blocks may slightly increase performance (such as in ABCABC or

star-2), but this is not always the case (cycle-2 and fan-2 are

examples of this).

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

0.0

0.5

1.0

1.5

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query Class

D
ur

at
io

n
(R

el
at

iv
e

to
 V

ol
ca

no
)

Build

block_size=1 group_size=1

block_size=1 group_size=20

block_size=1024 group_size=1

block_size=1024 group_size=20

block_size=4096 group_size=1

block_size=4096 group_size=20

Fig. 14. The average query duration, for every query, for the different con-
figurations, expressed in the duration of the same query in a configuration
a block size of 1 and a hash group size of 1.

We further analyze these results by inspecting the speedups on

a per-query level. This can be seen in Figure 14. Here, we plot the

distribution of individual relative durations for every query, rather

than the average per class. We see that when group prefetching is

used, not only the average, but also the worst-case performance is

improved.

4.3.2 Performance of Compilation. We also analyze the perfor-

mance impact of compilation – again, by comparing it to a Volcano

baseline. The average execution times can be seen in Figure 15,

and the overall distribution in 16. We see a significant speedup on

average, and an interesting pattern surrounding the parameterized

query classes. For larger parameter values, the relative duration

decreases, and thus the performance gained increases. This is not

universally true however, as chain-3 is higher than chain-2.
To get a clear picture of the effect of compilation on the execution

times, compared to vectorization, we express, for every query, the

execution of compiled execution, in the execution time of vectorized

execution. The results of this can be seen in Figure 17.We then group

these per class in Figure 18. Here we see that in the vectorized

configurations (block_size , 1), compiled execution is better on

average for some classes. The differences we see between different

configurations are a consequence of the differences in duration

when running queries with the vectorized engine.

12 • v/d Wall

0.00

0.25

0.50

0.75

1.00

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query Class

M
ea

n
D

ur
at

io
n

(c
om

pa
re

d
to

 V
ol

ca
no

)

Fig. 15. The average query duration when compiled, expressed in the aver-
age duration in the Volcano configuration.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

0.0

0.5

1.0

1.5

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query Class

D
ur

at
io

n
(R

el
at

iv
e

to
 V

ol
ca

no
)

Fig. 16. The average duration, for every query, when executed using the
compiling engine, expressed in the duration of the same query in the Volcano
configuration.

To better understand where this difference originates from, we

collect the amount of intermediate tuples that are processed – which

we will refer to as the total cardinality. As we use the same plan for

both engines, this will stay consistent. We define this amount as

the amount of tuples that were either materialized or filtered out by

some operator. If a tuple is simply passed through an operator, or

extended with a field, it is not counted multiple times.

The distribution of this total cardinality over different classes can

be seen in Figure 19. We see that the cardinality for the class abcabc
and the class fan-2 are the highest. These two classes also happen

to consistently achieve a speedup when using compiled execution.

To gain further insights we plot the speedup of individual queries

against the total cardinality. This is shown in Figure 20. When we

look at the variant with a block size of 1024 and a group size of 1

we can see that the low-cardinality queries tend to perform worse

block_size=4096 group_size=1 block_size=4096 group_size=20

block_size=1024 group_size=1 block_size=1024 group_size=20

block_size=1 group_size=1 block_size=1 group_size=20

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Query

D
ur

at
io

n
(R

el
at

iv
e

to
 v

ec
to

riz
ed

)

Query class

ABCABC

bowtie−2

chain−2

chain−3

chain−5

chain−6

cycle−2

cycle−5

fan−2

star−2

star−3

star−4

star−5

Fig. 17. The duration of a query when executed with the compiled engine,
expressed in the duration of the same query executed with the vectorized
engine of that configuration.

block_size=4096 group_size=1 block_size=4096 group_size=20

block_size=1024 group_size=1 block_size=1024 group_size=20

block_size=1 group_size=1 block_size=1 group_size=20

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Query Class

M
ea

n
D

ur
at

io
n

(R
el

at
iv

e
to

 v
ec

to
riz

ed
)

Fig. 18. The total relative speedup per class.

with compilation and the high cardinality queries perform better. In

the variant next to it, where group-prefetching is enabled, we see

that the vectorized engine performs better on the high cardinality

queries and worse on the low cardinality ones.

From this previous figure we also learn that there is a wide variety

of relative speedup within query classes. So to further investigate

that, we plot the relative speedup of all queries in a box plot. We

only compare compiled execution with vectorized execution here,

so we omit the variant with a block-size of one. This plot can be

seen in Figure 21.

Unlike the average execution time shown in Figure 18, the median

execution time favors vectorized executionmore inmost classes. The

lower average seems to be caused by better best-case performance

caused by compilation optimizations, which is most notable from

the ABCABC class. The relative speedup increasing for longer chains

and cycles is again visible. As we know from Figure 13 that the

Fully Compiled Execution of Conjunctive GraphQueries • 13

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●

●●●●●● ●●●●●●
●●●●●●
●●●●●● ●●●●●●

●●●●●●

●●●●●●

1e+02

1e+05

1e+08

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Class

To
ta

l C
ar

di
na

lit
y

(lo
g

n)

Fig. 19. Total Cardinality Per Class.

●

●

●
●

●

●

●

●

●●●
●
●
●
●
●●

●

●

●
●

●

●
●

●●

●

●●●

●

●

●●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●●
●

●●

●

●

●●

●
●●●

●

●●
● ●● ●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●
●●

●

●●
●

●

●

● ●

●

●
●

●

●● ●

● ●
●●●●

●●
●

●
●

●●
●●●

●●●●● ●
●
●●●●●

●

●

●

●●

●
●●●

●
●●●

●

●
●

●

●
● ●

●
●

● ●
●●●
●

●
●●● ●●
● ●● ●●

●
●

●
●

●

● ●●
●

● ●●●

●

●
●

●● ●●
●

●●

●
●●●● ●

●
●

●
●
●

●

● ●● ●●

●
●●

●
●●

●

●●● ●●
● ●

●
●●
●

●

●●
●

●
● ●●

●●
●

●
●

●
● ●

●
● ●●●

●●
●●

●
●

●●
●
●

●
●
● ●

●
●

● ●
● ●●

●

●

●

●
●

● ●
●

●

●
●

●
●

● ●●●

●

●
●

●

● ●●

●
●

● ●●

●●●
●
●●

●
●●

●

●●

●
●

●

●

●
●●●

●● ●●

●

●

●

●

●

●

●

●

●●
●

●
● ●●● ●●

● ●
●

●●
●

●

●
●

●

●●● ●

●●
●●

● ●● ●

●

●●

●

●●

●

●
●

●

●
●

●

●
●

● ●

●
●

●●
●

●
●

● ●● ●
● ●

●

●
●

●●
●

●●● ●

●

●

●

●●
●

●

●

●● ●● ●

●

●●
●
●●

●

●
●● ●

● ●●●
●

●●

●
●

●
● ● ●●●●

● ● ●

●
●

● ● ●●
●

●

●

●
●

●
●

●

● ●

●

●●

●

● ●

●● ●●

●

● ●●●●
●

●
●

● ●●

●

●

●

●● ●
● ●

●
●

●●
●●

●●

●
●

●
●

●

● ●●
●

●● ●●●●●● ●
●
●● ●
●●

●

●

●
●
●●

● ●●

●

●

●
●

●

●

●

●

●●●
●
●
●
●
●

●

●

●

●

●

●

●●

●
●

●

●●●

●●

●●

●●

●

●

●

●

●●●●

●

●

●
●

●

●

● ●
●

●
●

●

●

●●

●●
●
●

●

●
●

●●

●

●
●

●

●●
●

●
●

●
●

● ●●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●●
● ●

●
●

●

●●●

●
●●●●

●●●

●●

●

●
●

●

●

●

●
●

●●● ●
●

●● ●●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

● ● ●● ●●

● ●
●

●

●

●
●●

●

●
●

●●

●

●
●

●

● ●
● ●●

●
●

●
●●

● ●

●
●●

●
●

● ● ●● ●
●

●

●●

●

●●●
●●●

●●
●

●

●
●

●●
●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●●

●
● ● ●

●

●
●

●
●

●

●

●
●
●

●●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

● ●
●

●

●
●

●
●

●●●

●

●
●

●●
●

●

●●

● ●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●●

●
●●

● ●
● ●

●
●●

●

●

●

●●

●

●

●● ●

●

●

●

●

●
●

●●
●

●
● ●

● ●

●
●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●

● ●
● ●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●

●●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●●

●●

●
●

● ●

●

●
●

●
●

●

●●

●

●
●

●

●●

●

●

●

●●

●
●

●
●

●●

●

●

●

●● ●●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●
●

●

●

●●●●
●

●

●

●

●

●

●●

●
●

●

●●●
●
●●
●
●●

●

●

●

●

●

●●

●

●
●

●●●

●●

●●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●
●

●
●●

●

●●

●

●●
●●

●
●●

●
●

● ●
●● ●

●
● ●

●●

●
●

●●

●

● ●

●

●
●

●

●

●●

●
●

●

●●

●

●

●
● ●

●

●●
●●

●
●●●

●

●
●●

●●●

●●●●●
●●
●

●
●

●
●

●

●

●

●

●

●
●●● ●

●

●●
●

●

●

●

●
● ●

●

●

● ●

●●●

●

●
●

●

●●

● ●
●

●
●

● ●
●

●

●

● ●
●

●

●
●

●
●

●

●●

●

●
●
● ●●

●●

●●
●

●

●

●
●●

●

●

● ● ●
● ●●

●
●

●

●

●●

●

●●●
●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●
●

● ●●

●

●

●

●

●

●

●

●●
●●

●

●●●
●●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
● ●

●
●●●

●

●●
●●

●

●

●●

● ●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●●

●

● ●
●

● ●● ●●

●

●

●
●
●●

●

●

●
●

●
●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
● ●●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●

● ●

● ● ●

●

●

●
●

●

●

●

●●

●

●

● ● ●

●

●

●

● ●

●

●
●

●

●

●
●
●

●

●
●●

●

●

●●●●
●

●

●

●

●

●
●

●

●
●

●

●
●●
●
●
●
●
●●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●●

●●

●

●

●

●

●●
●
●

●

●

●
●

●

●●
●

●●

●

●
●●●

●●●
●

●●●
●

●

●

●
●

● ●
●● ●

●

●

● ●
●

●
●

●
●●

●
●

●

●●●
●

●●
●●

●
●●

●
● ●

● ●
●●●

●
●●●

●
●

●●
●●●

●
●●●● ●●●●●

●

●

●
●

●

●
●

● ●●
● ● ●●

● ●

●
●

●

●
●

● ●
●

●

●●●
●●

●
●●● ●● ● ●● ●●

●
●

●●

●

● ●●
●

● ●
●●

●

●●●● ●
●

●
●●

●
●●

●
● ●

●
●● ●●

●

● ●● ●●

●
●

●
●

●●
●

●●● ●●
● ●

●
●●
●

●

●●
●

●
●

●
●

●●
● ●
●● ●

●
●● ●●

●
●

● ●●● ●
●

●●
●●

●
●

●

●
●● ●

● ●●
●

●

●
●

●

● ●
●●

●
●

●
●●

●●
●

●

●

●

●

●

●
●

●
●

● ●●

●
●
●

●
●●

●
●● ●

●●

●
●

●

●

●
●●●

●
●

●●

●

●

●

●

●

●

●

●

●●
●

●
● ●●● ●●

● ●● ●●
●●

●

●

●

●●● ●

●●

●
●

● ●
●

●
●

●●

●

●●

●

●
●

●

●
●

●

●
●

● ●

●
●

●●
●●

●

● ●● ●
● ●

●

●
●

●●
●●●

●

●

●

● ●

●●
●

●
●

●● ●● ●

●

●● ●
●

●●

●
●● ●

● ●●●
●

●●

●
●

●
●

● ●●●● ● ● ●

●

●

● ● ●●
●

●

●

●
●

●●
●

● ●●

●
●

●

● ●

●● ●●

●

● ●●●●

●

●
●●

●●

●

●

●

●
● ●

● ●

●

●
●●

●
●

●

●

●●

●
●

●

● ●●
● ●● ●●●●●● ●

●
●●

●
●●

●

●

●
●
●●

● ●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●
● ● ●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●●●

●

●

●
●

●
●

●
●

●●

●
●●● ●

●
●

●

●
●●

●
●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●
●

●● ●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

● ●●

● ●

●

●

●

●
●●

●

●
●

●●

●

●●

●

● ●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●● ●
●

●

●●

●

●
●

●
●●●

●●
● ●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
● ●●

●

●

●
●

●
●

●

●●
●

●●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●● ●

●

●

●
● ●
●

●
●

●

●

●
●●

●

●
●

●●
●

●
●● ●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●● ●●
●

●
●●●

●

●

● ●

●

●●

● ●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ●
●

●

●

●
●

●

●
●●

●

●●●

●

●●

●
●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●●●

●

●

●

●

●

● ●

●●

●

●
●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●●

●●
●

●

● ●

●
●

●

●

●●●

●

●

●

● ●
●

●
● ●●●

●

●
●●●

●
●●

●●

●
●

●

●

●

●

●● ●

●
● ●

●

●

●
●

●

●

●

●●
● ●

●
● ●

●

●●
●

●

●
●

●

●

●

● ●

●

●●

● ●

●

●

●

●
●

●●

●
●

●●

●

●
●

●

●
●
●

●
●

●●

●
●

●

●

●
●●

●

●

●

●
● ●● ●

●

●

●●

●

●

●

●

●●
● ●●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ● ●●

●

●
●●

●● ●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

● ●
●

●
●●

●
●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●

●

●●
●●

●

●

●
●
●●

●●

●●
●

● ●
● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●●●

●

● ●

●

●

●●
●

●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●● ●●
●

●
●●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
● ●
●

●

●

● ●
●

●
●●

●

●
●
●

●

●●●
●

●

●●
●●

● ●

●

block_size=4096 group_size=1 block_size=4096 group_size=20

block_size=1024 group_size=1 block_size=1024 group_size=20

block_size=1 group_size=1 block_size=1 group_size=20

1e+04 1e+06 1e+08 1e+04 1e+06 1e+08

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Total Cardinality (log n)

D
ur

at
io

n
(R

el
at

iv
e

to
 v

ec
to

riz
ed

)

Query class

●

●

●

●

●

●

●

●

●

●

●

●

●

ABCABC

bowtie−2

chain−2

chain−3

chain−5

chain−6

cycle−2

cycle−5

fan−2

star−2

star−3

star−4

star−5

Rel vs Total Cardinality (lim, log)

Fig. 20. Speedup vs Cardinality.

performance of vectorized execution also increases for these query

classes, the performance of compilation increases more quickly.

4.3.3 Simulation. To further investigate the cause of the perfor-

mance difference between the vectorized and the compiling exe-

cution engine, we run one plan that is consistently slower in the

compiling execution engine with Valgrind’s callgrind – which is an

emulator that can simulate and collect cache and branch-prediction

misses.

The results of this can be seen in Table 1, where all simulated

values are shown. On the top we see the amount of operations were

performed, such as the amount of instructions that were read, or the

data that was read or written. Below that we see the amount of cache

misses that occurred, here L1 refers to the first layer of caching, and

LL to the last level of caching before the main-memory needs to be

accessed. Finally, we have the results of Valgrind’s built-in branch

prediction simulation.

0.0

0.5

1.0

1.5

2.0

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query Class

D
ur

at
io

n
(R

el
at

iv
e

to
 v

ec
to

riz
ed

)

Build

block_size=1024 group_size=1

block_size=1024 group_size=20

block_size=4096 group_size=1

block_size=4096 group_size=20

Fig. 21. The distribution of speedup for the query classes.

block_size=4096 group_size=1 block_size=4096 group_size=20

block_size=1024 group_size=1 block_size=1024 group_size=20

block_size=1 group_size=1 block_size=1 group_size=20

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

Query

D
ur

at
io

n
(lo

g
m

s)
Class

ABCABC

bowtie−2

chain−2

chain−3

chain−5

chain−6

cycle−2

cycle−5

fan−2

star−2

star−3

star−4

star−5

Fig. 22. The absolute amount of time spent executing queries.

As expected, most values are actually higher for Vectorized ex-

ecution, including the amount of executed instructions, as well as

the amount of data written and read. As vectorization materializes

intermediate results. Which means that the tuples are written to

memory every time an operator is passed.

Consequentially, in order to gain a performance advantage over

compiled execution, it needs to be able to make better use of the

hardware. In the simulated values we can see that the amount of Last-

Level cache misses is higher in the compiled version. On modern

machines accessing the mainmemory is much slower than accessing

values that are present in any of the caches, leading to the CPU

having to wait for values before processing can continue. Since the

vectorized execution engine uses prefetching instructions, this may

partially explain the performance difference. Apart from that, the

vectorized engine also has a different access pattern, accessing the

same hash table repeatedly, whereas the compiled engine accesses a

different table every time as a tuple flows throughmultiple hash-join

operators.

14 • v/d Wall

Compile Vectorized (1024)

Operations

Instruction Fetch 440 563 624 1 072 339 932

Data Read Access 80 074 664 289 660 417

Data Write Access 54 338 013 176 804 733

Cache-Misses

L1 Data Write Miss 6 373 882 9 777 180

LL Instr. Fetch Miss 1 195 1 775

LL Data Read Miss 9 405 687 8 459 408

LL Data Write Miss 5 675 709 6 325 669

L1 Miss Sum 21 567 284 28 925 264

Last-level Miss Sum 15 082 591 14 786 852

Branches

Conditional Branch 49 910 017 117 828 035

Mispredicted Cond. Branch 3 999 782 4 493 491

Indirect Branch 1 904 350 10 022 228

Mispredicted Ind. Branch 274 8 002

Mispredicted Branch 4 000 056 4 501 493

Table 1. The values measured by Valgrind.

0.00

0.05

0.10

0.15

0.20

Query

C
om

pi
le

 T
im

e
(s

)

Class

ABCABC

bowtie−2

chain−2

chain−3

chain−5

chain−6

cycle−2

cycle−5

fan−2

star−2

star−3

star−4

star−5

Fig. 23. Compile Time of queries.

●
●
●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●
●

●

●

●

●
●

●●

●

●
●

●
●

●

●●

●
●●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●

●●

●
●

●●

●

●

●
●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●●

●

●

●

0.05

0.10

0.15

A
B

C
A

B
C

bo
w

tie
−

2

ch
ai

n−
2

ch
ai

n−
3

ch
ai

n−
5

ch
ai

n−
6

cy
cl

e−
2

cy
cl

e−
5

fa
n−

2

st
ar

−
2

st
ar

−
3

st
ar

−
4

st
ar

−
5

Query

C
om

pi
le

 T
im

e
(s

)

Fig. 24. Compile Time of query classes.

4.3.4 Compilation Time. In the previous section we did not include

the compilation time in our measurements. We measured these

separately and can be seen in Figure 23. As these do not depend on

the build we can much more easily plot them in a box plot as seen

in Figure 24.

The compilation time differs between classes, mostly because

the plans are wildly different, resulting in different, and a different

amount of code, being emitted.

Even though the queries compile rather quickly, for short running

queries this will be a significant part of its duration. But for long-

running queries or queries that are predictable and/or callable the

time spent compiling can be gained back.

For example, the ABCABC queries would have benefited from com-

pilation, even with the additional time compiling.

5 RELATED WORK
The Volcano, or iterative model, that was previously mentioned in

the background section, was introduced by [12] and later popular-

ized by the Volcano project [6]. This model was developed with

disk-based storage in mind, but as keeping the entire data set in

main memory became feasible, the interpretation overhead of this

model has become problematic.

For this reason, the MonetDB system was developed, which fully

materializes intermediate results[13], which reduces the cost of

interpretation by crossing operator bounds only once. Later this

system was developed further, only materializing large vectors at a

time[13]. This way the cost of crossing the operator boundaries is

amortized while still having to ability to pipeline data.

When using vectorization, various techniques that operate on

multiple tuples at once become available. One of such techniques is

group-prefetching as described in [3]. By processing multiple tuples

at a time, the latency caused by cache misses can partially be hidden.

Another technique that is possible is the use of SIMD instructions

as described by [20]. These can operate on a vector of tuples and

perform operations data-parallel.

Alternatively, we can use query-compilation to avoid the interpre-

tation overhead. A primitive form of compiled executionwas used by

IBM in System R back in 1970, which used assembly code-templates

for each operator. This was later abandoned for compatibility and

complexity reasons. When compilation was reconsidered much later,

other approaches were introduced such as compiling to Java byte-

code [17], which is then optimized and executed by the JVM. Or

generating C code using code templates before handing it off to a

compiler [10]. However, in some of these approaches the operator

boundaries remain clearly visible in the generated code. In engines,

such as Microsoft’s Hekaton [5], which also generates C code as

an intermediate language, the entire plan is collapsed into a sin-

gle function, where the operator boundaries are no longer obvious.

These approaches still use an iterator model however, unlike HyPer

[15], which instead uses the data-centric consumption model, which

maps more closely to the semantics of the operators. In later work

by [14], it was shown that vectorization and prefetching can be used

in a compiled, data-centric, execution engine by introducing stage

boundaries.

In this work, we show how to generate code in LLVM IR that

fully implements all operators – barring some rarely called methods

such as memory allocation. This is unlike HyPer [15], which falls

back to C++ for complex operators such as hash-join. Furthermore,

Fully Compiled Execution of Conjunctive GraphQueries • 15

our code generation process emits code that matches our proposed

code model. Unlike HyPer, which explicitly generates produce and

consume methods, our generated code matches the structure our

proposed model.

In the evaluation section, we compare the performance of both

vectorized, and compiled execution with a Volcano engine. Like

in [9], we find that vectorized execution is better at hiding the

latency of cache misses than data-centric compiled execution, when

materialization boundaries are not used – yielding a greater speedup

compared to the Volcano model. We additionally show that is also

the case when applied to a graph database.

6 CONCLUSION
In this work, we have shown how to effectively compile complete

query plans into machine code using LLVM. We have introduced

an abstraction model to reason about generated code. And we have

shown how to effectively generate code using the proposed model

for different operators. We have also shown how materialization

barriers can be inserted, and how to integrate operators that don’t

work well with the consumer-style execution model. Furthermore,

we have shown how to generate code for a hash-join operator.

In our evaluation, we have found that both compilation and vec-

torization provide a significant speedup compared to Volcano-style

execution. The compiled approach does outperform the vectorized

engine in many query classes on average, especially for the more

complex query classes, with larger intermediate cardinalities. How-

ever, for individual queries, vectorization is still preferred in the

majority of the cases, as it can better make use of inter-tuple paral-

lelism and prefetching. A future iteration of the compiled engine

may make use of materialization barriers to implement the same

group prefetching the vectorized engine is capable of. Furthermore,

compilation adds an up-front cost. A future planner may be able to

weigh the expected speedup against the expected cost and decide

to not, or partially compile a query.

REFERENCES
[1] Boncz, P., Zukowski, M., and Nes, N. Monetdb/x100: Hyper-pipelining query

execution. 2nd Biennial Conference on Innovative Data Systems Research, CIDR
2005 (01 2005).

[2] Chamberlin, D. D., Astrahan, M. M., King, W. F., Lorie, R. A., Mehl, J. W.,

Price, T. G., Schkolnick, M., Griffiths Selinger, P., Slutz, D. R., Wade, B. W.,

and et al. Support for repetitive transactions and ad hoc queries in system r.

ACM Trans. Database Syst. 6, 1 (Mar. 1981), 70–94.

[3] Chen, S., Ailamaki, A., Gibbons, P., and Mowry, T. Improving hash join perfor-

mance through prefetching. vol. 32, pp. 116– 127.

[4] Conway, M. E. Design of a separable transition-diagram compiler. Commun.
ACM 6, 7 (jul 1963), 396–408.

[5] Freedman, C., Ismert, E., Larson, P.-Å., et al. Compilation in the microsoft sql

server hekaton engine. IEEE Data Eng. Bull. 37, 1 (2014), 22–30.
[6] Graefe, G. The volcano optimizer generator: Extensibility and efficient search.

In ICDE (1993), pp. 209–218.

[7] Have, C. T., and Jensen, L. J. Are graph databases ready for bioinformatics?

Bioinformatics 29, 24 (Dec 2013), 3107–3108.
[8] Hölzle, U. Adaptive optimization for self: reconciling high performance with

exploratory programming, 1994.

[9] Kersten, T., Leis, V., Kemper, A., Neumann, T., Pavlo, A., and Boncz, P. A.

Everything you always wanted to know about compiled and vectorized queries

but were afraid to ask. PVLDB 11, 13 (2018), 2209–2222.
[10] Krikellas, K., Viglas, S. D., and Cintra, M. Generating code for holistic query

evaluation. In In ICDE (2010).

[11] LLVM Contributors. LLVM Language reference manual, 2020.

[12] Lorie, R. A. XRM - an extended (n-ary) relational memory. Research Report / G /
IBM / Cambridge Scientific Center G320-2096 (1974).

[13] Manegold, S., Boncz, P. A., and Kersten, M. L. Optimizing database architecture

for the new bottleneck: Memory access. The VLDB Journal 9, 3 (Dec. 2000),

231–246.

[14] Menon, P., Pavlo, A., and Mowry, T. C. Relaxed operator fusion for in-memory

databases: Making compilation, vectorization, and prefetching work together at

last. PVLDB 11 (2017), 1–13.
[15] Neumann, T. Efficiently compiling efficient query plans for modern hardware.

Proc. VLDB Endow. 4, 9 (June 2011), 539–550.
[16] Neumann, T., and Leis, V. Compiling database queries into machine code.

[17] Rao, J., Pirahesh, H., Mohan, C., and Lohman, G. Compiled query execution

engine using jvm. In Proceedings of the 22nd International Conference on Data
Engineering (USA, 2006), ICDE ’06, IEEE Computer Society, p. 23.

[18] Truong, Q. D., Truong, Q. B., Dkaki, Taoufiq", e. P. C., and Barolli, L. Graph

methods for social network analysis. InNature of Computation and Communication
(Cham, 2016), Springer International Publishing, pp. 276–286.

[19] Yoon, B. H., Kim, S. K., and Kim, S. Y. Use of Graph Database for the Integration

of Heterogeneous Biological Data. Genomics Inform 15, 1 (Mar 2017), 19–27.

[20] Zhou, J., and Ross, K. A. Implementing database operations using simd in-

structions. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2002), SIGMOD ’02, Association for

Computing Machinery, p. 145–156.

