
 Eindhoven University of Technology

MASTER

Explainable Remaining Time Prediction for Business Processes

Klijn, E.L.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/b84bd4e7-bca8-4218-8ab4-42d243c85917

Explainable Remaining
Time Prediction for
Business Processes

Master Thesis

Eva Klijn

Department of Mathematics and Computer Science
Process Analytics Research Group

Supervisors:
dr. ir. D. Fahland

prof. dr. ir. B.F. van Dongen
dr. ir. A.M. Wilbik

final version

Eindhoven, March 2020

Abstract

Predictive process monitoring is a central practice in business process management that allows for
the timely identification of errors, bottlenecks or deviations in process behavior, i.e. actionable
information. Established predictive monitoring methods use event data extracted from Workflow
Management Systems in which the case is perceived as the primary element of the process and
as a result are approached under the wrong assumption that cases behave in isolation. Because
of this intra-case perspective, current predictive monitoring techniques are not able to detect
inter-case dynamics that do emerge in organizational processes such as batching. In this thesis
we address the need for the awareness of inter-case dynamics in the development life cycle of
predictive monitoring approaches specifically aimed at remaining time prediction. We propose a
first set of techniques that together introduce inter-case dynamics in the remaining time prediction
life cycle. We present techniques for identifying sub-sets of cases with high prediction errors that
are subject to these inter-case dynamics and we present techniques that use these insights to create
inter-case features and derive an inter-case evaluation specifically for inter-case dynamics caused
by batching. In an experimental setup we show that by applying this set of techniques, we are
able to improve prediction performance and a better evaluation thereof, leading to more adequate
and better explainable models and results.

Explainable Remaining Time Prediction for Business Processes iii

Preface

This master thesis is the result of my graduation project for the Business Information Systems
master at Eindhoven University of Technology, conducted within the Process Analytics group at
the department of Mathematics & Computer Science.

First of all, I would like to thank Dirk Fahland for providing me with this interesting opportunity
and his guidance throughout this entire project. It is because of his challenging questions, inspiring
ideas and incredible feedback that I was able to deliver the work that lays before you today. Thank
you for taking the time to listen to all my thoughts and answer all my questions. I would also
like to thank everyone from the Process Analytics group for welcoming me on their floor and
providing me with an environment that motivated me to push through. I would like to thank
my office buddy Rashid in particular, for always being cheerful and putting things in perspective.
Also thanks to Vadim for all the help with the PSM implementation and thanks to Anna Wilbik
and Boudewijn van Dongen for being part of the assessment committee.

I want to thank my boyfriend Bas for always supporting me and believing in me, and putting up
with me when I was stressed like hell. Having to stay indoors because of the Corona virus is not a
thrill in itself, but even less so when you have a person sitting next to you in the days towards the
deadline of her master thesis. I also want to thank my friends, especially Verena, for the support
and the fun distractions that kept me sane. Also additional thanks to Dennis for helping me with
all my coding and software problems.

Finally, I would like to thank my family for all their support and believing in me through the
course of all my studies and this endeavour in particular.

Explainable Remaining Time Prediction for Business Processes v

Contents

Contents vii

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Thesis Context . 1

1.2 Problem Statement & Research Questions . 2

1.3 Research Method, Outline & Results . 3

2 Preliminaries 5

2.1 Process Mining . 5

2.2 The Performance Spectrum . 6

2.3 Machine Learning . 7

2.4 Predictive Process Monitoring . 8

3 The Life Cycle of Remaining Time Prediction 9

3.1 Running Example . 10

3.2 Business Understanding . 10

3.3 Data Understanding . 11

3.4 Data Preparation Phase . 12

3.4.1 Data Cleaning . 12

3.4.2 Feature Engineering . 13

3.4.3 Feature Encoding . 14

Explainable Remaining Time Prediction for Business Processes vii

CONTENTS

3.5 Data Preparation for Remaining Time Prediction 14

3.5.1 Prefix Bucketing . 15

3.5.2 Prefix Encoding . 15

3.6 Modeling Phase . 16

3.7 Evaluation Phase . 17

3.8 Feedback Loop . 18

3.9 Life Cycle for Remaining Time Prediction . 19

4 Shortcomings of Contemporary Remaining Time Prediction 21

4.1 Business & Data Understanding Revisited . 22

4.2 Evaluation Revisited . 23

4.3 Shortcomings . 24

5 Including Inter-Case Features in the Remaining Time Prediction Life Cycle 27

6 Fine-Grained Error Diagnosis 31

6.1 Describing Individual Predictions . 31

6.2 Performance Spectrum with Error Progression . 33

6.3 Overlaid Performance Spectrum . 35

6.4 Subset & Subset Pattern Identification . 38

6.4.1 Select Segments . 38

6.4.2 Visualize & Inspect . 38

6.4.3 Diagnose . 39

7 Derivation of Inter-Case Features for Batching 45

7.1 Inter-Case Feature Creation . 45

7.2 Next Segment Prediction . 48

7.3 Pattern Prediction . 49

7.4 Time To Batch Prediction . 50

7.4.1 Deriving Context for Batching . 50

7.4.2 Deriving Batch Context Parameters . 51

7.4.3 Predicting the Time Until the Next Batch 52

viii Explainable Remaining Time Prediction for Business Processes

CONTENTS

7.4.4 Predicting the Batch Partition . 52

8 Derivation of an Inter-Case Evaluation for Batching 55

8.1 Measuring Interdeparture Time . 55

8.2 Introducing a Histogram-Based Evaluation . 56

8.3 Comparing Performance for Batched and Non-Batched Cases 58

9 Empirical Evaluation 61

9.1 Evaluation of Inter-Case Features for Batching . 61

9.1.1 Evaluation of Inter-Case Features Based on Predicted Classification 62

9.1.2 Evaluation of Inter-Case Features Based on Actual Classification 64

9.1.3 General Observations . 66

9.2 Evaluation of Inter-Case Feature on Additional Remaining Time Prediction Methods 68

10 Conclusions 71

10.1 Limitations . 72

10.2 Future Work . 72

Bibliography 75

Appendix 79

A Methodology Results of Running Example 79

A.1 OPS & OPS’ Visualizations of predictions of model RMp,a,x 79

A.2 Batch Parameter Derivation for S=(-, Send for Credit Collection) of RF Log . . . 82

B Inter-Case Feature Testing Results 84

B.1 Histogram Results . 84

B.1.1 Histograms of configurations I(cR) . 85

B.1.2 Histograms of configurations I(cR) . 87

B.2 OPS and OPS’ Visualizations . 89

B.2.1 Results of configurations I(cR) . 89

B.2.2 Results of I(cR) . 92

Explainable Remaining Time Prediction for Business Processes ix

List of Figures

1.1 Performance spectrum visualization of segment Add Penalty:Send for Credit Col-
lection . 2

2.1 Detailed performance spectrum example of single process segment of Road Traffic
Fine Management log . 7

2.2 Schematic representation of batching pattern . 7

3.1 The CRISP-DM life cycle . 9

3.2 Total duration of cases in the test set of the RF log 19

3.3 The current life cycle for remaining time prediction 20

4.1 Exploratory data analysis results: PS visualization of segments Create Fine:Send
Fine and Add Penalty:Send for Credit Collection 23

4.2 Exploratory data analysis results: extended PS visualization of actual outcomes
(red) overlaid with predicted outcomes (black) for segment Add Penalty:Send for
Credit Collection for prefix-length = 4 . 24

4.3 Shortcomings in the CRISP-DM life cycle for remaining time prediction 26

5.1 Extension of CRISP-DM life cycle for remaining time prediction 28

5.2 Train-test split of Road Traffic Fine Management log for the running example . . . 29

6.1 Illustration of a prediction P for the case of remaining time prediction 32

6.2 PSw/EP for P . 34

6.3 A prediction P annotated with segments . 36

6.4 Example of the first layer L1 of overlaid performance spectrum 36

6.5 Translation from predictions to segments: composition of the OPS 37

6.6 OPS (top) and OPS’ (bottom) of P for segment (B,C) and k = 2 (of our running
example from Table 6.1) . 38

Explainable Remaining Time Prediction for Business Processes xi

LIST OF FIGURES

6.7 Taxonomy of order and occurrence patterns (from [1]) 39

6.8 PSw/EP of segments Create Fine:Send Fine, Send Fine:Insert Fine Notification,
Insert Fine Notification:Insert Date Appeal to Prefecture, Insert Date Appeal to
Prefecture:Add Penalty, Add Penalty:Send for Credit Collection and Payment:Send
for Credit Collection . 41

6.9 OPS of predictions of RMp,a,x for segment Create Fine:Send Fine for k = 1 42

6.10 OPS’ of predictions of RMp,a,x for segment Create Fine:Send Fine for k = 1 42

6.11 OPS of predictions of RMp,a,x for segment Add Penalty:Send for Credit Collection
for k = 4 . 42

6.12 OPS’ of predictions of RMp,a,x for segment Add Penalty:Send for Credit Collection
for k = 4 . 42

7.1 Relation between WfMS, process and performance pattern 46

7.2 Overview of feature creation steps presented in this chapter 47

7.3 Batch in performance spectrum annotated with batching parameters 50

7.4 Illustration of an arrival period annotated with past parameter values 51

7.5 Illustration of an arrival period annotated with predicted parameters values 52

7.6 Illustration of a batch partitioned into n = 4 equal parts 53

7.7 Performance spectrum of the actual (top) and estimated (bottom) timestamps for
the segment Add Penalty:Send for Credit Collection 54

8.1 Illustration of interdeparture time measurements on the performance spectrum . . 56

8.2 Histograms of y and y of P4,test retrieved using model RMp,a,x 57

8.3 Histograms of ID and ID of P4,test retrieved using model RMp,a,x 57

8.4 Histograms of y∈R and y∈R of P4,test,∈R and of y/∈R and y /∈R of P4,test,/∈R retrieved
using model RMp,a,x . 59

8.5 Histograms of ID∈R and ID∈R of P4,test,∈R and of ID/∈R and ID/∈R of P4,test,/∈R
retrieved using model RMp,a,x . 60

9.1 Histograms of actual y∈R and predicted y∈R for I(0), I(tR(cR)) and I(p10(cR)) . . 63

9.2 Histograms of actual y/∈R and predicted y /∈R for I(0), I(tR(cR)) and I(p10(cR)) . . 63

9.3 Histograms of actual ID∈R and predicted ID∈R for I(0), I(tR(cR)) and I(p10(cR)) 64

9.4 Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(tR(cR)) and I(p10(cR)) 64

9.5 Histograms of actual y∈R and predicted y∈R for I(0), I(tR(cR)) and I(p10(cR)) . . 65

9.6 Histograms of actual y/∈R and predicted y /∈R for I(0), I(tR(cR)) and I(p10(cR)) . . 66

xii Explainable Remaining Time Prediction for Business Processes

LIST OF FIGURES

9.7 OPS’ of predictions I(p10(cR)) for segment Add Penalty:Send for Credit Collection
for k = 4 . 67

9.8 OPS’ of predictions I(p10(cR)) for segment Add Penalty:Send for Credit Collection
for k = 4 . 67

9.9 OPS’ of predictions I(tR(cR)) for segment Add Penalty:Send for Credit Collection
for k = 4 . 67

9.10 OPS’ of predictions I(tR)(cR) for segment Add Penalty:Send for Credit Collection
for k = 4 . 67

A.1 OPS of predictions of RMp,a,x for segment Send Fine:Insert Fine Notification for
k = 2 . 79

A.2 OPS’ of predictions of RMp,a,x for segment Send Fine:Insert Fine Notification for
k = 2 . 79

A.3 OPS of predictions of RMp,a,x for segment Insert Fine Notification:Insert Date
Appeal to Prefecture for k = 3 . 80

A.4 OPS’ of predictions of RMp,a,x for segment Insert Fine Notification:Insert Date
Appeal to Prefecture for k = 3 . 80

A.5 OPS of predictions of RMp,a,x for segment Insert Date Appeal to Prefecture:Add
Penalty for k = 4 . 80

A.6 OPS’ of predictions of RMp,a,x for segment Insert Date Appeal to Prefecture:Add
Penalty for k = 4 . 81

A.7 OPS of predictions of RMp,a,x for segment Payment:Send for Credit Collection for
k = 5 . 81

A.8 OPS’ of predictions of RMp,a,x for segment Payment:Send for Credit Collection for
k = 5 . 81

B.1 Histograms of actual y∈R and predicted y∈R for I(0), I(d(cR)) with different inter-
case features for d and I(tR(cR)) for method (p, a, x) 85

B.2 Histograms of actual y/∈R and predicted y /∈R for I(0), I(d(cR)) with different inter-
case features for d and I(tR(cR)) for method (p, a, x) 85

B.3 Histograms of actual ID∈R and predicted ID∈R for I(0), I(d(cR)) with different
inter-case features for d and I(tR(cR)) for method (p, a, x) 86

B.4 Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(d(cR)) with different
inter-case features for d and I(tR(cR)) for method (p, a, x) 86

B.5 Histograms of actual y∈R and predicted y∈R for I(0), I(d(cR)) with different inter-
case features for d and I(tR(cR)) for method (p, a, x) 87

B.6 Histograms of actual y/∈R and predicted y /∈R for I(0), I(d(cR)) with different inter-
case features for d and I(tR(cR)) for method (p, a, x) 87

Explainable Remaining Time Prediction for Business Processes xiii

LIST OF FIGURES

B.7 Histograms of actual ID∈R and predicted ID∈R for I(0), I(d(cR)) with different
inter-case features for d and I(tR(cR)) for method (p, a, x) 88

B.8 Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(d(cR)) with different
inter-case features for d and I(tR(cR)) for method (p, a, x) 88

B.9 OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 89

B.10 OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 89

B.11 OPS of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 89

B.12 OPS’ of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 90

B.13 OPS of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 90

B.14 OPS’ of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 90

B.15 OPS of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 90

B.16 OPS’ of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 91

B.17 OPS of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 91

B.18 OPS’ of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 91

B.19 OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 91

B.20 OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 92

B.21 OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 92

B.22 OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 92

B.23 OPS of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 93

B.24 OPS’ of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 93

B.25 OPS of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 93

xiv Explainable Remaining Time Prediction for Business Processes

LIST OF FIGURES

B.26 OPS’ of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 93

B.27 OPS of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 94

B.28 OPS’ of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 94

B.29 OPS of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 94

B.30 OPS’ of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 94

B.31 OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 95

B.32 OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send
for Credit Collection for k = 4 . 95

Explainable Remaining Time Prediction for Business Processes xv

List of Tables

2.1 Extract of BPIC 2017 log . 6

3.1 MAE in days per prefix-length for the running example 18

6.1 Example event log L1 (left) aligned with predictions P (right) 33

6.2 Example predictions P with rae calculation (left) and rae progression related to
corresponding segments (right) . 34

6.3 Selected segments and corresponding prefix-lengths of the RF log for fine-grained
error analysis . 40

7.1 Example of existing features for model RM (columns in black), features we want to
add (columns in red, blue and green) and the output side for RM (column in purple) 46

7.2 CMS results for next segment classification on testing data of the RF log for k ∈ {4, 5} 49

9.1 Results of configurations I(0), I(d(cR)) with different inter-case features for d and
I(tR(cR)) for method (p, a, x) . 62

9.2 Results of configurations I(0), I(d(cR)) with different inter-case features for d and
I(tR(cR)) for method (p, a, x) . 65

9.3 MAE of remaining time prediction methods (B,E,A) using baseline configuration
I(0) and inter-case configuration I(p10(cR)) for k = 4 69

A.1 Batch parameter values for S = (-, Send for Credit Collection) of RF log, extracted
with batch miner [2] . 82

A.2 BIi results of exponential smoothing with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for Ltrain &
Ltest . 82

A.3 W i,min results of exponential smoothing with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for Ltrain
& Ltest . 83

Explainable Remaining Time Prediction for Business Processes xvii

Chapter 1

Introduction

For an organization, the efficient and effective execution of its operational processes is essential.
To accomplish this, organizations apply business process management (BPM) practices to ensure
consistent performance and take advantage of improvement opportunities [3], such as cost or
execution time reduction. One of the central elements in BPM is process monitoring ; execution
data is recorded and analyzed to assess the performance of the process with respect to a range
of priorly chosen performance measures. When this is successfully put to practice, it allows for
the identification of errors, bottlenecks or deviations in behavior or execution time, i.e. actionable
information. This information is crucial for decision makers such that they can make the right
choices in the management of these processes, such as scheduling or resource reassignment.

Process monitoring techniques can be roughly classified into two categories: those applied on
already completed process executions - offline process monitoring - or those applied at run time
- online process monitoring. A collection of these online techniques are commonly referred to as
predictive process monitoring [4].

1.1 Thesis Context

In a business context, predictive process monitoring (PPM) allows for the timely identification of
performance problems such that decision makers can take corrective action as processes unfold.
This is accomplished by creating a predictive model based on historic data - in [5] referred to as
the offline phase - to make predictions about the future of running cases - the online phase. In
this thesis we will specifically focus on the subcategory of PPM approaches that are aimed at
predicting the remaining cycle time of a process instance.

From a technical standpoint, the development of PPM is an extensive process that requires well-
defined steps. Therefore, most approaches have roughly adopted the Cross Industry Standard
Process for Data Mining, more commonly known as CRISP-DM, which is an iterative, adaptive
process that helps fit data mining or analytical practices into the general problem solving strategy
of a business [6]. This life cycle consists of six phases: (1) business and/or research understanding,
(2) data understanding, (3) data preparation, (4) modeling, (5) evaluation and (6) deployment.

In the CRISP-DM life cycle as it is applied in PPM research (PPM life cycle), the business
understanding is commonly referred to as the research understanding and also often approached
as such. As a result, almost all works aim at improving the prediction performance of the state
of the art in some way, for instance by introducing a new method or improving upon an existing

Explainable Remaining Time Prediction for Business Processes 1

CHAPTER 1. INTRODUCTION

one. Often in concurrence, the data understanding takes place, which encompasses the collection
and (exploratory) analysis of event data, either openly available or provided by an organization,
which is exclusively extracted from Workflow Management Systems (WfMS). In a WfMS, the case
- a sequence of events that describe the path of an entity in an organizational process (e.g. an
application in a loan application process or a patient in a hospital) - is perceived as the primary
element of the process. Next, in the data preparation phase, the data payload of a case in a certain
point in the process is lifted to make it interpretable for the modeling technique in the next phase.
After a model is built, it is assessed in the evaluation phase by measuring its performance and
aligning this with the research objective. If these results are unsatisfactory, the life cycle is (partly)
reiterated by applying a feedback loop until desirable results are obtained. Once satisfactory results
have been obtained, the research objective is considered to be fulfilled and the contribution can
be presented to the research community.

We have observed that in some situations, almost all approaches still show a high prediction error.
We see this for example in [4], which is a cross-benchmark comparison of 16 primary remaining
time prediction methods based on 16 real-life event logs. This benchmark comparison showed that
the best results were obtained using a LSTM neural network as was introduced in [7]. However,
the application of this approach still resulted in a prediction error of 178.74 days on average for
the Road Traffic Fine Management (RF) log. After further inspection, we additionally discovered
that the application of a feedback loop remains undiscussed in PPM contributions, even if results
showed a high error such as this one.

To uncover the cause of this high prediction error, we have inspected the data of the RF log in
the performance spectrum miner (PSM), which is a visual analytics technique that allows users
to gain a fine-grained and unbiased insight into the performance progression of a process [8]. The
result of this inspection is depicted in Figure 1.1, where we see the progression of cases from the
activity Add Penalty to the activity Send for Credit Collection.

Figure 1.1: Performance spectrum visualization of segment Add Penalty:Send for Credit Collection

In Figure 1.1 we observe that cases are processed in batches of roughly one year apart, which
explains why there is such a high prediction error for this data set. This also shows that cases do
not progress in isolation, but they are part of a bigger whole and subject to inter-case dynamics
such as batching. However, PPM currently applies an intra-case perspective, resulting in intra-case
features and aggregates of intra-case error measurements.

1.2 Problem Statement & Research Questions

The uncovering of inter-case dynamics reveals the lack of dimensionality in contemporary remain-
ing time prediction approaches, resulting in a life cycle that is adopted under the wrong assumption
that cases behave in isolation, leading to inadequate models and inadequate results. Because of
this intra-case perspective, the evaluation measures also do not allow for the capturing of these
inter-case dynamics, resulting in no trigger of a (meaningful) feedback loop. Therefore, we address
the following main research question:

How can we increase awareness of inter-case dynamics in the life-cycle of remaining time prediction
such that it constitutes more adequate and better explainable models and results?

2 Explainable Remaining Time Prediction for Business Processes

CHAPTER 1. INTRODUCTION

For this we take a model agnostic approach, such that we can specifically focus on the input
features, the output measurements and the feedback loop that connects the two. Therefore we
split up the main research question into the following sub-research questions:

1. How can we identify problematic subsets (and their characteristics) caused by inter-case
dynamics that are not captured by current intra-case evaluation methods such that we can
trigger a possible inter-case feedback loop?

2. How can we use these subsets to derive insights for providing the model with inter-case
information, i.e. for deriving inter-case features?

3. How can we use these insights to derive a more explainable evaluation of models from an
inter-case perspective?

1.3 Research Method, Outline & Results

To address these research questions, we will first make a comprehensive inventory of the phases
of the life cycle for remaining time prediction and discuss related work along these phases. We
will additionally illustrate the concrete steps that are taken in these phases by using a running
example based on a primary method.

Based on the observations we make, we will make an inventory of the shortcomings that are
currently present in the remaining time prediction life cycle. Based on these shortcomings we will
make an inventory of what is exactly necessary to increase the awareness of inter-case dynamics
in contemporary remaining time prediction. This inventory will consist of various methods with
which we propose to enhance this life cycle:

1. We first address the feedback loop by providing methods for an inter-case error analysis.
These methods will receive the inter-case perspective from the business and data under-
standing and apply this to the output measurements retrieved from the evaluation phase.
By applying these methods, we wish to trigger a meaningful feedback loop that introduces
the inter-case perspective to the main phases of the life cycle.

2. Once such an inter-case perspective is obtained, we want to transfer it to the modeling phase
such that we can build a model that gives more adequate and better explainable performance
results. For this we address the creation of inter-case features by providing a method that
leverages this inter-case perspective into a concrete feature interpretable for a remaining
time prediction method. We will do this specifically for the inter-case dynamics caused by
batching.

3. We also want to introduce this inter-case perspective to the evaluation phase. For this
we provide evaluation methods that better respect the inter-case perspective. We again
specifically do this for the inter-case dynamics caused by batching.

In the end we apply these methods on a primary approach for remaining time prediction in an
experimental setup. We show that we can identify problematic segments subject to inter-case
dynamics and thereby trigger a feedback loop. By creating inter-case features based on these
insights and using these in the prediction, we show that we can improve the prediction performance.
We also show that we can use these inter-case insights to better evaluate prediction performance
w.r.t. inter-case dynamics and are thereby able to increase the explainability of the model and
the results. In the end we use the best inter-case feature to show that we are also able to improve
the prediction performance of other remaining time prediction approaches.

Explainable Remaining Time Prediction for Business Processes 3

CHAPTER 1. INTRODUCTION

Chapter 2 introduces the necessary background knowledge. Chapter 3 discussed the life cycle of
remaining time prediction and Chapter 4 present the shortcomings we observe in this life cycle.
Chapter 5 introduces an inventory of the steps we propose to address these shortcoming with, of
which the corresponding methods are introduced in Chapters 6 to 8. We evaluate these methods
in Chapter 9 and conclude in Chapter 10.

4 Explainable Remaining Time Prediction for Business Processes

Chapter 2

Preliminaries

The remaining time prediction approach that we focus on as well as the reasoning and method-
ologies that we present draw concepts from both the machine learning and the process mining
discipline. This chapter introduces the various concepts that are used in the remainder of this
thesis.

2.1 Process Mining

Process mining [9] is a discipline that uses event data recorded in Workflow Management Systems
(WfMS) to derive useful insights about business processes. In a WfMS, this event data consists
of sequences of events that describe the executions of activities of an entity in an organizational
process (e.g. an application in a loan application process or a patient in a hospital), also called a
case.

Each recorded event has a number of attributes. Three of these are mandatory, namely the event
identifier indicating which activity was observed, case classifier indicating in which case it was
observed and the timestamp indicating when it was observed. An event can also carry additional
data attributes in its payload, which can be either static or dynamic. Static attributes or case
attributes are attributes of which the values are shared for all events belonging to the same case
(e.g. the type of loan in a loan application process or the age of a patient in a hospital). Contrarily,
dynamic attributes or event attributes are attributes which values change across the executions
of events (e.g. the status of an application in a loan application process or the specialist that is
treating the patient in a hospital).

An event can also carry additional data attributes in its payload, which can be either case attributes
or event attributes. Case attributes are attributes of which the values are shared for all events
belonging to the same case (e.g. the type of loan in a loan application process or the age of a
patient in a hospital). Contrarily, event attributes are attributes which values change across the
executions of events (e.g. the status of an application in a loan application process or the specialist
that is treating the patient in a hospital). For analysis, case attributes are in some sense static
(because they hold through the entire case) and event attributes are in some sense dynamic.

A non-empty sequence of events σ = 〈e1, ..., en〉 that all refer to the same case make up a trace
and a set of completed traces together make up an event log L. For process prediction, we want
to make predictions for cases of which the outcome is yet unknown, meaning we need a set of
uncompleted traces. An incomplete trace or prefix can be created by taking the first k events

Explainable Remaining Time Prediction for Business Processes 5

CHAPTER 2. PRELIMINARIES

from a complete trace using a prefix function hdk(σ) = 〈e1, ..., ek〉, with k ≤ n. If we take all
possible prefixes of our input event log L, we end up with the prefix log L∗ of L.

In Table 2.1 we have included a simplified extract from the BPIC 2017 log that originates from a
loan application process as an example. Each row corresponds to a single event execution, which,
in this log, relates to either of two cases: A_17 and A_98. The other case attributes are Amount
and Loan Goal and the event attributes are Activity, Time and Resource. Attributes are typically
also distinguished based on data type such that they can be preprocessed accordingly for the
prediction model. We distinguish between numerical and categorical data types. In Table 2.1,
Amount and Time are numerical attributes and Case ID, Loan Goal, Activity and Resource are
categorical attributes.

Case ID Amount Loan Goal Activity Time Resource

A_17 15.000 Car Create Application 21-5-2016 13:10:11 User_1
A_17 15.000 Car Accepted 21-5-2016 13:10:11 User_1
A_17 15.000 Car Complete 21-5-2016 13:17:36 User_1
A_17 15.000 Car Validating 24-5-2016 14:05:29 User_19
A_17 15.000 Car Pending 30-5-2016 13:08:51 User_118
A_98 25.000 Home Impr. Create Application 15-7-2016 12:36:20 User_49
A_98 25.000 Home Impr. Submitted 15-7-2016 12:36:20 User_49
A_98 25.000 Home Impr. Accepted 15-7-2016 12:40:18 User_49
A_98 25.000 Home Impr. Complete 15-7-2016 12:45:01 User_49
A_98 25.000 Home Impr. Validating 21-7-2016 16:13:09 User_120
A_98 25.000 Home Impr. Denied 27-7-2016 13:58:56 User_75

Table 2.1: Extract of BPIC 2017 log

The executions of the first case A_17 result in the (simplified and abbreviated) trace σ =
〈Cre,Acc, Com, V al, Pen〉. The prefixes of solely this trace would be 〈Cre〉, 〈Cre,Acc〉, 〈Cre,Acc,
Com〉, 〈Cre,Acc, Com, V al〉 and 〈Cre,Acc, Com, V al, Pen〉.

2.2 The Performance Spectrum

The performance spectrum (PS) is a data structure and analytics technique introduced by Denisov
et al. [1] that allows users to gain a fine-grained and unbiased insight into the performance
progression of a process. This is achieved by the mapping of all observed flows between two
processing steps over time without any prior aggregation, as illustrated in Figure 2.1.

Let us consider event log L and two activities that are observed to occur in sequence, a and b. The
PS describes how cases transition from a to b over time t, also called the segment (a, b). Whenever
in a case a is directly followed by b, i.e. if we observe 〈..., a, b, ...〉 in the corresponding trace, we
observe an occurrence of this segment taking place from time ta (moment of occurrence of a) to
time tb (moment of occurrence of b). To visualize the occurrences of these segments, the life cycle
events a and b are fixed as ya and yb on the y-axis and the time t is projected on the x-axis, as
also illustrated in Figure 2.1. Each occurrence of a segment is then plotted as a line from (ta, ya)
to (tb, yb).

6 Explainable Remaining Time Prediction for Business Processes

CHAPTER 2. PRELIMINARIES

Figure 2.1: Detailed performance spectrum example of single process segment of Road Traffic Fine
Management log

If we add a line from (ta, ya) to (tb, yb) for all observations 〈..., a, b, ...〉 in all cases of L, then we
get a visualization depicting all occurrences of segment (a, b), of which an example for the Road
Traffic Fine Management log is illustrated in Figure 2.1.

Figure 2.2: Schematic representation of batching pattern

The arrangement of the lines in Fig. 2.1 forms distinct patterns which can be classified by a
taxonomy [1]. In this thesis we will revisit one of these patterns in extensive detail, which is
the batching pattern. The taxonomy defines batching as FIFO behavior where batching occurs
at either the preceding step a, the succeeding step b or both. We will focus on the case where
batching occurs at the succeeding step b, called batch(e) [1]. On the performance spectrum, this
will show up as lines starting at various points on ya and converging to a more or less single point
in time on yb, as can also be identified in Fig. 2.2.

2.3 Machine Learning

Machine learning is a scientific discipline centered around algorithmic techniques that allow the
computer to learn from data [10]. A machine learning algorithm requires a data set containing past
observations, such that it can synthesize the underlying relationships to either predict a specific
outcome or label, or to find patterns in the data, referred to as supervised - and unsupervised
learning, respectively. For the purpose of predictive process monitoring, in which we aim to
predict an outcome, we will solely focus on supervised learning.

A supervised learning algorithm requires a data set of past observations that can be used as
training data. This is the data that the algorithm will learn from, such that it can later be applied
to new observations. Each entry in such a data set consists of a set of independent variables or
predictors x = (x1, ..., xn) and a dependent variable or label y. The goal is to fit a prediction model
such that it provides a mapping x → y with a minimal error, which can later be used to assign
labels to new data. For a supervised learning task, two types of models are defined, namely a
regression model and a classification model. The former is used for predicting continuous outcomes
and the latter is used for predicting discrete outcomes. While this thesis is about remaining time
prediction, which constitutes a continuous outcome and therefore requires regression models, we
solely wish to evaluate and improve these the methods that use these models and do therefore not
care for the type of regression model. However, we do touch upon some of them in the following
chapters, such as random forest and extreme gradient boosting.

Explainable Remaining Time Prediction for Business Processes 7

CHAPTER 2. PRELIMINARIES

2.4 Predictive Process Monitoring

In the process mining discipline, there is a specific branch that focuses on operational support or
the monitoring of a process. Here, the performance of a process is assessed with respect to certain
performance measures by means of the recording and analyzing of execution data. When this is
applied at run time to retrieve insights about the future of process executions, it is often referred
to as online process monitoring or predictive process monitoring.

Predictive process monitoring (PPM) is centered around predicting an outcome or a certain per-
formance measure of a case in the future, based on its history. The moment at which a prediction
is made determines what is known about the history of the process execution, since the moment
at which the prediction is made determines how much information is available for the prediction:
the prefix already observed and the information carried by this prefix. Based on this knowledge,
the prediction model aims to reason about a certain outcome at a moment in the future, which
can be a continuous outcome, such as the time until completion, or a discrete outcome, such as
the acceptance of a loan application. The development of the component X that performs this
predictive reasoning is at the core of PPM and also subject of this thesis.

8 Explainable Remaining Time Prediction for Business Processes

Chapter 3

The Life Cycle of Remaining Time
Prediction

The aim of this chapter is to describe the current state of the art of the development of component
X for remaining time prediction methods. For this, the emphasis will lie on the development life
cycle: the steps followed to come from a problem statement and some input data to a proposed
solution. As mentioned in the introduction, we take the CRISP-DM life cycle as a point of
reference. CRISP-DM stands for Cross Industry Standard Process for Data Mining and is a
referred to as a robust, well-proven industry standard process for data mining and analytics
projects [11]. Its life cycle consists of six phases and is depicted in Figure 3.1.

Figure 3.1: The CRISP-DM life cycle

To clearly illustrate this life cycle and also other concepts in the remainder of the thesis, a running
example is introduced in Section 3.1. Sections 3.2 to 3.7 elaborate on the first five phases of the
CRISP-DM life cycle and its application in remaining time prediction. Section 3.8 discusses the
iterative aspect of this life cycle depicted by the anticlockwise arrow in the CRISP-DM model,
which we will refer to as the feedback loop. The last phase - deployment - is left out intentionally,
since this is not commonly covered in research but mostly left to industry.

Explainable Remaining Time Prediction for Business Processes 9

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

3.1 Running Example

In the following sections we will discuss how existing literature on PPM addresses the different
CRISP-DM life cycle phases. To make the discussion and limitation of current approaches to
develop PPM models concrete, we illustrate for each phase which steps have been performed
and documented by a concrete PPM learning method and data set as a running example. In
this section, we explain how we selected the method and the data set on which we illustrate the
approach.

In the remainder of this thesis, this running example will additionally serve to support our reas-
oning, illustrate concepts and methodologies and evaluate those.

Approach

For the selection of the approach, we will turn to a benchmark for remaining time prediction
methods [4], of which the authors have made most of their implementations available at https://
github.com/verenich/time-prediction-benchmark. The benchmark provides a clear overview
of the approaches that have been introduced over the years and its focus is to present a comparison
thereof. This comparison solely encompasses methods from primary studies and their techniques
exclusively relate to prefix bucketing and prefix encoding, which are data preparation steps specific
to process prediction problems which will be elaborated on in Section 3.5 and modeling.

The benchmark covers process-aware approaches, such as transition systems and stochastic Petri
nets, and non process-aware approaches, such as deep learning and machine learning algorithms.
Since the second category was more easily accessible and implementable, we selected a machine
learning based running example. Additionally, the machine learning approaches follow a more
"traditional" data mining workflow than the other approaches and will therefore serve well as an
illustration of the CRISP-DM life cycle. The available machine learning implementations included
configurations of different prefix bucketing techniques, prefix encoding techniques and algorithms.

Since the goal of this running example is to demonstrate the process of developing a remaining
time prediction approach that improves upon the current state of the art in some way and the
benchmark contains a collection of approaches that have all done just that, we randomly selected
one configuration. In Sections 3.5 and 3.6 we elaborate on the bucketing-, encoding and modeling
technique that we selected for our running example.

Data Set

In addition to the implementations, the authors of the benchmark have also made available the
pre-processed data sets that they have used. We have chosen to use the log which had the highest
prediction error in the benchmark results, which is the Road Traffic Fine Management Log [12].

3.2 Business Understanding

The initial phase covers the business understanding or, as it is in some cases called, research
understanding. In this phase, the context of the problem is defined, as well as the requirements

10 Explainable Remaining Time Prediction for Business Processes

https://github.com/verenich/time-prediction-benchmark
https://github.com/verenich/time-prediction-benchmark

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

and constraints under which the problem is to be solved [11]. In research, this is usually an open
problem that has not been investigated before or contributions to existing solutions.

In remaining time prediction, various types of works have been introduced and almost all aim
at improving upon the prediction performance of the state of the art in some way. Most works
focus on the prediction accuracy, but some also focus on other performance measures, such as the
scalability of a solution [13]. The approaches that have been introduced over the years all roughly
fall into one or more of the following three categories: they aim to improve prediction perform-
ance by (1) introducing (a combination of) modeling techniques novel in the area of remaining
time prediction [14, 7, 15, 16, 17, 18], (2) extending existing techniques by incorporating a new
combination of encoding or bucketing techniques [19, 20, 16, 17] or (3) enriching the data, such as
the inclusion of context data in [19] or the extraction of inter-case data in [21]. Some approaches
do not fall into exactly one of these categories but introduce a combination of these solutions.

As for the actual business understanding, nothing is mentioned in PPM literature. What we do
see is that these prediction methods are almost all exclusively approached under the view of a
single process in which each process execution (case) is handled in isolation from all other cases.
These methods are therefore also directed towards the predictions of single case outcomes and
their performance is also measured as such.

Running Example (from [4])

Understanding: Understanding of the research that has been done in the area of remaining time
prediction and seeing an opportunity for improvement through the application of a novel combination
of bucketing and encoding techniques.

Objective: Improving upon the remaining time prediction accuracy of the current state of the art.

3.3 Data Understanding

The research or business understanding is usually covered in concurrence with the second phase:
data understanding. This phase encompasses the collection, description, qualitative- and explor-
atory analysis of data [11]. In a business context, the selection of data is fairly straight forward,
since in for an organization aiming at remaining time prediction of their process, it is inherently
known which data to consider and design the method for. However, the collection of this data
is rather complex as most data is scattered across many systems. Contrarily, in research, there
is no limitation to one specific process/data, but one can choose from whatever is available. In
this case, the complexity does not lie in the collection of the data but in the selection: how to
actually select an adequate set of event logs for a specific PPM approach. The next paragraph will
elaborate more on this with respect to remaining time prediction. Finally, further qualitative- and
exploratory analysis is done to ensure that the data quality and contents are sufficient to reach
the business or research goal. While this data understanding step is usually never mentioned in
research unless it serves the purpose of the study, it is of equal importance in academia as it is in
industry.

For data selection in remaining time prediction, but also for PPM in general, currently no stand-
ard procedure exists. Some works include a motivation when introducing their data set selection,
while others leave this out entirely. This variation across the different approaches seems to mainly

Explainable Remaining Time Prediction for Business Processes 11

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

depend on the research problem. Works that aim at improving the model itself usually do not
motivate their selection choices, they mainly aim for a reliable and generalizable solution and
therefore try to include multiple data sets, such as has been done in []. Approaches that focus
more on the data itself typically select data of processes which show characteristics that indicate a
possible benefit from the approach. Such as for example in [21], where a hospital event log is used
for the inclusion of inter-case features (the amount of patient at an ICU at a specific moment in
time as an additional predictor) or in [19], where an event log of a harbour is used for the inclusion
of context features (the amount of containers in the harbour at a specific moment in time as a
predictor). For this second category, the data understanding phase is most likely more extensive
than for the first category.

Running Example (from [4])

Collection & motivation: As stated in Section 3.1, a data set of an Italian traffic fine management
process was chosen. This data set is openly available at [link] and it was chosen to demonstrate an
increase in prediction accuracy by applying a proposed new method.

Description: The Road Traffic Fine Management (RF) log consists of 150,370 cases, 561,470 events
and 11 unique activities over a period of 12 years. Cases in the log have a mean length of 3.734
activities and a mean duration of 341.676 days. In the log, for each trace 4 case attributes and 10
event attributes are recorded.

Preparatory analysis: For the qualitative analysis, the data was checked for missing values and
inconsistencies. For the exploratory analysis, we assume that some basic process discovery was
applied to get an overview of the process, its attributes and its statistics.

3.4 Data Preparation Phase

The third phase - data preparation - consists of a set of tasks to prepare the data for building
a model. The terms for the different tasks vary significantly across the literature, therefore here
we will use multiple sources and extract a general description. Data preparation usually starts
with data cleaning, which is followed by a collection of procedures which are commonly put under
the denominator feature engineering. For standard data mining problems, this is concluded by
feature encoding, where data is converted to make it interpretable for the algorithm used in the
next phase. For problems that concern event data, additional steps are necessary to convert the
sequences of events to features of constant size such that they can be used as input for a prediction
model. Since these procedures are very specific to remaining time prediction and PPM in general,
we discuss them in Section 3.5.

Additionally, it is important to state here that with respect to remaining time prediction, the
implementation of the data preparation phase varies a lot across the different proposed meth-
ods. Most process-aware approaches do not use any data attributes apart from control-flow data,
whereas non process-aware approaches almost always include (a selection of) non control-flow
data attributes. Therefore, for the first category, this phase is often entirely skipped, while for the
second category, a significant amount of time is spent here.

3.4.1 Data Cleaning

The data cleaning is usually a result of the qualitative analysis from the data understanding phase.
There may be values missing, entries could be erroneous or inconsistent across the data set; data
cleaning is a collection of techniques that deal with these deficiencies [22]. These are very custom
procedures and not explicitly discussed in PPM research. While this is possibly a relevant topic for

12 Explainable Remaining Time Prediction for Business Processes

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

improving remaining time prediction approaches, it is outside the scope of this thesis and therefore
we will not discuss it any further.

3.4.2 Feature Engineering

Where data cleaning aims to improve the usability of the data, feature engineering aims to in-
crease its usefulness. In research, a lot of different terms and explanations are given for these
data preparation procedures, therefore, for simplicity, we will put all these techniques under the
denominator feature engineering: the transformation, selection, extraction and creation of features
from raw data into a format that is suitable to deliver sufficient and useful results [23, 22].

Data Reduction

In order to improve the quality of the data, its size often needs to be reduced. This is firstly
achieved by applying feature selection techniques, which evaluate the relevance of each feature
with respect to the label, based on which irrelevant features can be discarded. Example procedures
that have been observed in PPM research are the elimination of attributes that cross-correlate
with other attributes or the elimination of attributes that have constant values across all entries,
as has been done in [4].

Another way to reduce the amount of information in a data set, is by applying feature transforma-
tion techniques. These typically entail the replacement of original features with a function thereof,
discarding unnecessary information in the process. An example of this application can be found
in [4], where rarely appearing categorical values in a set of many are marked as ’other’, reducing
the amount of information for that data attribute.

While these data reduction techniques are valuable to mention in a benchmark, they remain
undiscussed in other prior studies on PPM. While this is usually left out because it does not serve
the prior study’s purpose, it does not benefit the reproducibility.

Data Extension

A second way to improve the usefulness of the data is by enriching it with new features. Feature
extraction is a technique that closely resembles feature transformation, but instead of replacing
the original feature, an additional feature is created. Moreover, instead of only using a single data
attribute to create new features, a combination of attributes can be used, making it a bit more
sophisticated than simple transformation procedures. Examples are the extraction of the weekday
or hour of the day from the timestamp [4, 7], or extracting the time since the last event by using
the current and previous timestamp, as have been applied in [7, 14].

Feature creation is a more complex way to extend the data with additional features. Where feature
extraction techniques can more or less be applied automatically, feature creation is applied manu-
ally. It demands extensive analysis of the data and usually encompasses multiple transformation
steps, sometimes using additional tooling. In [21], a set of techniques is presented that together
realize the derivation of a so-called inter-case feature. The resulting feature reflects for each case
the amount of cases that are in temporal proximity at that moment in time.

In this thesis, we are going to add new features to our prediction model by applying a combination
of these aforementioned types of feature creation steps.

Explainable Remaining Time Prediction for Business Processes 13

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

3.4.3 Feature Encoding

In standard data mining problems, the last part of the data preparation phase encompasses feature
encoding, which are a set of procedures to make the data set interpretable for the (machine learning)
model. This is a fairly simple process of converting between various data types to improve their
portability with respect to the algorithm that is to be used [22]. Operations are isolated to
one specific data attribute and often include conversions from categorical or time series data to
numerical data.

One of the most frequently used encoding techniques is one-hot encoding, which is also applied in
[4]. When applying one-hot encoding, each categorical feature is converted into multiple columns,
each being one possible value of that feature. The value of each feature is then expressed by a 1
in the corresponding value-column and zeros in all other columns of that feature.

Throughout this thesis, we will adhere to these standard approaches for feature encoding.

Running Example (from [4])

The approach chosen was built in a Python 3.7 environment and therefore the data set needed to
be prepared accordingly. For this, the authors [4] first converted the XES formatted log into a CSV
format to be able to import it in Python. Since the reasoning/analysis behind the data preparation
process was not elaborated on, the following will also solely describe the processing itself.

Data cleaning: Missing values and inconsistencies had already been removed in the pre-processed
log.

Feature Engineering:

• Feature selection: The attributes matricola, paymentAmount and totalPaymentAmount were
eliminated based on cross-correlation with other attributes or constant values across all entries.

• Feature transformation: For the attributes vehicleClass, lastSent, notificationType and dis-
missal, values of entries that rarely appeared were marked as ’other’.

• Feature extraction: The attributes month, weekday and hour were extracted from the time-
stamp and the attribute duration was extracted by subtracting the timestamp of the previous
activity from that of the current activity.

• Feature creation: No feature creation was applied.

Feature encoding: The numerical features were kept as is and categorical features were encoded
using one-hot encoding.

3.5 Data Preparation for Remaining Time Prediction

Contrary to traditional data mining practices, process prediction problems demand additional
steps to prepare the data for the modeling phase. These procedures are much more extensive and
complex and very specific to the area of remaining time prediction, and PPM in general. While we
still attribute this to data preparation, it substantively deviates from the traditional CRISP-DM
life cycle and is therefore separately described in this section.

A first step is prefix extraction, where an event log is converted into a prefix log, containing all
possible prefixes of each trace in the log or a subset thereof [24]. This is succeeded by prefix
bucketing and prefix encoding, which are discussed in the next subsections.

14 Explainable Remaining Time Prediction for Business Processes

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

3.5.1 Prefix Bucketing

In most existing remaining time prediction methods, prefixes are divided into several smaller
training data sets, i.e. buckets, for which a separate prediction model is trained. The intention
is that each of these smaller training sets contain cases with similar properties, which can have a
positive effect on the prediction quality [25]. For remaining time prediction, mostly the following
approaches are considered:

• Single bucketing. Considers all prefixes to be in the same bucket and thus trains a single
prediction model on the entire prefix log, as has been applied in [20, 21, 7].

• Prefix length bucketing. Training data is divided into buckets such that each bucket contains
prefixes of the same length, as has been applied in [17].

• Cluster bucketing. A clustering algorithm is applied to group the prefixes into clusters, which
are represented as buckets. This approach has been used in [13, 19].

• State bucketing. This approach only applies when a process-aware method is used as a
prediction model. Here, all prefixes are divided into buckets that correspond to the state
that they are in and for each state, a separate prediction model is trained. This approach
was used in [16].

In this thesis, we remain agnostic to the type of prefix bucketing. However, since we will not use
implementations of process-aware approaches, we will not consider state bucketing.

3.5.2 Prefix Encoding

The last step of data preparation encompasses prefix encoding, where a function is applied to
convert each prefix into an abstraction thereof. Various approaches have been introduced, of
which a selection is usually made depending on the bucketing method in the preceding step and
the modeling method that is chosen in the subsequent phase.

In process-aware approaches, prefixes are usually converted into an abstraction that can be mapped
to a state in a model. This was first introduced in [15], where so-called log abstraction functions
are used to convert prefixes into state representations, which can be sequences, sets or bags over
one or more event properties. Similar abstraction functions are used in [13, 19, 16, 14], where the
original approach was extended with additional modeling configurations. Alternatively in [17], a
so-called backtracking algorithm [26] is used to determine the current state of each trace in the
log.

In non process-aware approaches, prefixes need to be converted into feature vectors of constant
size such that they can be used as input for a statistical model or machine learning model. The
encoding of sequences into features for remaining time prediction was first introduced in [27],
where control-flow information is encoded into feature-outcome pairs. [28] is a first work that
incorporates the data payload by treating traces as complex symbolic sequences and introduces
different types of prefix encoding techniques, which have been refined in [24]:

• Last state encoding. Only event attributes of the last m events are considered, as has been
applied in [20, 16].

• Aggregation encoding. All events since the beginning of the trace are considered, but various
aggregation functions are applied to keep the feature vector size constant, as has been applied
in [20].

Explainable Remaining Time Prediction for Business Processes 15

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

• Index-based encoding. Event attribute values of all events are concatenated such that no
information is lost, as has been applied in [17].

While we do consider prefix-length related features in this thesis, we remain agnostic to the type
of prefix encoding.

Running Example (from [4])

Since the benchmark paper presented primary approaches that all have improved upon prediction
accuracy at the time of their publication, we have chosen one of these approaches as a running
example, with the following configurations:

Prefix bucketing: After converting the event log to a prefix log using all possible prefixes of all
traces, prefix-length bucketing was applied.

Prefix encoding: Prefixes were encoded using aggregate encoding. For this, each numerical event
attribute was aggregated by taking the mean, maximum, minimum, sum and standard deviation of
all observed values. Each categorical event attribute was aggregated by counting the number of times
each value has appeared for each attribute.

3.6 Modeling Phase

In the modeling phase, the prepared data is used to build a model in order to actually solve the
business problem or fulfill the research objective. For this, a modeling technique needs to be
selected first. In a business context, this must be a technique that is proven robust and satisfies
the requirements and constraints of the business goal. While the same applies in PPM research,
the contribution often concerns the modeling technique itself. In that case the technique is not
actually chosen but developed.

Over the years, a lot of different techniques have been introduced in the area of remaining time
prediction. These approaches are often categorized on their process-awareness. Process-aware
approaches use an explicit representation of a process model in the prediction, such as transition
systems [15], stochastic Petri nets [14] or queuing models [18]. Non process-aware approaches
do not use an explicit representation of the process model, such as machine learning algorithms
[21, 20], neural networks [7] or statistical models [29, 30]. A third category of approaches ap-
plies a combination of the two, i.e. hybrid approaches, where decision points in a process model
representation are enriched with non process-aware models (such as statistical models or other)
[19, 17, 16].

When a modeling technique is chosen, the model needs to be built, evaluated and tuned. For
process-aware approaches this often encompasses the mining of transition systems (or other process
model representations) and evaluating several metrics, such as fitness and precision [9]. As a result
of this evaluation, the model can be tuned further to find the model that delivers the best results.
For the non-process aware approaches that encompass machine learning, the building of a model is
often known as training. Features from the data preparation phase are used as input to a machine
learning algorithm that tries to learn a model that generalizes on the input features to fit a certain
label [11]. Subsequently the model is evaluated using an accuracy metric such as the MAE or
RMSE (because for remaining time we are only dealing with regression models) and can then be
tuned using grid search or cross validation in order to find the model that delivers the best results.

This evaluation must not be mistaken with the evaluation in the next phase. In this phase,
evaluation is exclusively performed to ensure good model performance, whereas in the evaluation
phase, the approach itself is evaluated with respect to the business or research goal.

16 Explainable Remaining Time Prediction for Business Processes

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

In this thesis we will use two machine learning algorithms, i.e. random forest and extreme gradient
boosting. These are both ensembles of learning trees (in our case regression trees), which are meta-
algorithms that combine several regression trees into one predictive model which is proven to yield
better predictive performance [11]. We will also use grid search to tune our model parameters,
for which a "grid" of values is specified and models are built for each value combination to find
the optimal one [11]. However, we only want to focus on the input and the output side of these
models. Therefore we take a model agnostic approach and treat these models as a black box in
the remainder of this thesis.

Running Example (from [4])

In the benchmark experiment, the machine learning based approaches were all based on random
forest or extreme gradient boosting. Since the latter was the best performing, we chose the extreme
gradient boosting algorithm for our running example. For this algorithm, the Python library for
XGBoost was used, which was already available in the benchmark implementation.

We split the RF log into a training and a test set using a temporal split. For this the cases are
ordered according to their start time and the first 80% are used for training and the last 20% are
used for testing, resulting in Ltrain and Ltest.

We used grid search (also available in the implementation) to tune the parameters of the gradient
boosting algorithm using different chucks of Ltrain. When the optimal parameters were found, we used
the entire training data Ltrain for training the final model. This results in remaining time prediction
model RMp,a,x, based on prefix bucketing, aggregate encoding, and extreme gradient boosting, or
method (p, a, x) in short.

3.7 Evaluation Phase

When a model has been built that delivers the desired performance, it is assessed in detail in the
evaluation phase, with the emphasis on the business or research goal. When the results of the
evaluation are not desirable, (part of) the cycle is reiterated based on some form of error analysis,
which we will call the feedback loop. Alternatively, in the deployment phase, the final model is
put to production and is thereafter monitored and maintained in order to consistently guarantee
desirable performance and validity.

In evaluation procedures, the goal is to assess whether the business or research goals are met.
While in PPM practice, the goal is to select and tune the best performing method, in research
the goal is usually to improve upon the performance of the current state of the art. In both cases,
careful evaluation is crucial. To do this, the new method is compared to a baseline to verify an
increase in performance. In research, the choice of this baseline method heavily depends on the
proposed solution under which the research problem is to be solved. Based on the types of solutions
that have been proposed in PPM research, as have been elaborated on in Section 3.2, different
types of baseline selections have been been applied. When the goal is to introduce a new modeling
method or improve upon an existing one, it is usually compared to similar methods or the method
that it aims to improve upon, respectively. When the proposed solution is directed towards the
configuration of input data, the method remains fixed, while the proposed data configuration is
compared to a standard configuration.

When a baseline method has been established, the proposed solution can be tested. This is
accomplished by running both the baseline- and proposed prediction model(s) on a set of unseen
data and measuring their performance, which, in PPM, is usually assessed in terms of accuracy.
In the case of the prediction of continuous variables, such as the remaining cycle time, accuracy is
assessed using an error metric such as the mean absolute error (MAE) or the root mean squared

Explainable Remaining Time Prediction for Business Processes 17

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

error (RMSE). For both of these metrics, first the error is calculated for each prediction separately,
after which all of error values are aggregated into a single value by calculating some form of the
mean, depending on the metric in question.

In this thesis, we will later evaluate the performance of various features and various methods w.r.t.
a baseline (this running example). We will do this both w.r.t. the MAE but also w.r.t. other
performance measures we will introduce later on.

Running Example (from [4])

As stated in Section 3.1, the approach for this running example is a primary study and was an
improvement upon the current state of the art at the moment of its publication. Therefore a baseline
is omitted and solely the results of the running example will be presented.

The model was trained using the first 80% of the cases and tested using the last 20% of the cases.
The model’s accuracy was evaluated using the MAE, of which the results are depicted in Table 3.1,
for each corresponding prefix-length.

Prefix length 1 2 3 4 5
MAE 325.10 176.38 227.38 202.92 47.18

Table 3.1: MAE in days per prefix-length for the running example

3.8 Feedback Loop

When the results of the evaluation are unsatisfactory, some form of error analysis is performed and
(part of) the cycle is reiterated. This process is not formalized and usually driven by intuition. In
most cases, the business- or data understanding is revisited, which commonly leads to additional
operations or changes in the data preparation or modeling phase. In other cases, a different
evaluation method might be necessary, such that it is better aligned with the research problem. In
research, reiterations are usually not considered to serve the purpose of the study and are therefore
never reported on. However, developing a prediction model intrinsically is an iterative process, so
for most methods, reiteration of the cycle will almost definitely have been part of its development.

Running Example (from [4])

Table 3.1 presents the final results of the running example, which are also the results under which
the authors of the corresponding work considered their research problem to be solved. This means
that they did not deem another feedback loop necessary and all possible reiterations have evidently
been executed prior to obtaining these results. We made use of the word "possible", because nothing
is actually reported on reiterations.

Moreover, while the authors did solve their research problem, we cannot oversee the fact that these
results still show a very high error. In Figure 3.2 we have depicted a histogram with the total duration
of all cases in the test set. While we can observe that there are quite some cases that have a duration
> 400 days, the majority of the cases have a duration < 200 days. From this it is clear that even an
MAE of 100 days would already be unacceptable. However, Table 3.1 shows that most errors are far
above 100 days. These two observations lay the groundwork for the next chapter.

18 Explainable Remaining Time Prediction for Business Processes

CHAPTER 3. THE LIFE CYCLE OF REMAINING TIME PREDICTION

Figure 3.2: Total duration of cases in the test set of the RF log

3.9 Life Cycle for Remaining Time Prediction

In the preceding sections we have made an inventory of the different steps that are currently
executed in the development process for remaining time prediction methods along the CRISP-DM
life cycle. We have adopted this life cycle and made some modifications to embed established
steps for the development of remaining time prediction methods. The resulting overview of the
life cycle for remaining time prediction is depicted in Figure 3.3.

Explainable Remaining Time Prediction for Business Processes 19

Figure 3.3: The current life cycle for remaining time prediction

Chapter 4

Shortcomings of Contemporary
Remaining Time Prediction

In the previous chapter, the development process of remaining time prediction methods was presen-
ted along the phases of the CRISP-DM life cycle. What we first have observed is a lack of (reporting
on) the feedback loop. In remaining time prediction, and research in general, results are never
obtained in a single go and feedback loops are part of a development process by default. However,
as not only observed in the running example but also in the other primary studies, the application
of a feedback loop is never elaborated on, let alone mentioned in PPM. While one could argue that
it is a "hidden" step of which the reporting does not serve the purpose of the study, this iteration
in the CRISP-DM cycle is still there for a reason. It serves as a link from the evaluation back to
the business- and data understanding and documentation of its underlying reasoning can provide
valuable insights into the decision making process.

This brings us to our second observation. We have roughly observed that all primary studies
discussed were aimed at introducing novel prediction methods that return a higher accuracy than
existing ones. For most works, this resulted in a small increase in accuracy compared to existing
approaches. While there was achieved what was aimed for, the running example still shows a
significant error, as was illustrated in the previous chapter. Specifically, when viewing the results
for the RF log of all primary methods presented in the benchmark, the best performing method
still had an average MAE of 178.74 days against a mean case duration of 341.68 days [4]. This
indicates that some important information might be overlooked. This, combined with the fact
that no further iteration was reported despite these high errors, could even indicate a lack of (a
meaningful) feedback loop.

This chapter will re-evaluate the way in which this life cycle is currently applied, casting a critical
eye on its application in current process prediction methods. For this, we will dive deeper in its
application and again use the running example as illustration. Section 4.1 will revisit the business
and data understanding phases to get a better understanding of the context of the problem.
Section 4.2 will reiterate and link these findings to the current evaluation results and, to conclude,
Section 4.3 will provide an overall assessment of what details are fundamentally overlooked in
current remaining time prediction approaches.

Explainable Remaining Time Prediction for Business Processes 21

CHAPTER 4. SHORTCOMINGS OF CONTEMPORARY REMAINING TIME PREDICTION

4.1 Business & Data Understanding Revisited

What all approaches have in common, is that they do not devote much of their reporting to the
business and data understanding phase. Therefore this section will re-evaluate this process and,
based on this, extend it for the running example such that it better captures the context of the
problem and the data itself.

Business Understanding

When considering the business understanding, proposed solutions predominantly encompass new
methodologies and their "business" understanding is actually more directed towards research (for
example in [7], where there is a certain need for improvement of the current state of the art and
the contribution is a method that delivers this), which also explains why it is often defined as such.
While taking this research perspective is undoubtedly important, the actual business perspective
is often overlooked. Existing remaining time prediction papers motivate their research with a
practically relevant application, but do not discuss various important elements of the practical
application: business processes. Therefore, the earlier defined research understanding will here
be extended with an actual business understanding, which is in this case an understanding of
the elements of the process itself. For this, since we cannot actually talk to employees of the
organization, we will take the general concept of a business process as a point of reference.

In a business process, a case or process execution is usually perceived as the primary element of
the process and it is therefore also approached as such. These process executions typically rely on
multiple actors and machines in an organization which participate in multiple process executions
but have a limited capacity. This means that which actors will be involved in the handling of
the process is not dependent on the data of the process alone but is heavily influenced by the
availability of actors and system resources, their workload, their choices of ordering all their work
from multiple processes, and the collaboration among actors and machines for working on multiple
processes.

These inter-case dynamics that do emerge in organizational processes are currently not recognized
in the business understanding and therefore also not looked for during the data understanding,
suggesting that the current results might be misleading.

Data Understanding

As illustrated in Section 3.3, the emphasis in the data understanding phase for PPM mostly lies in
motivating choices for certain data sets such that they permit for reliable and generalizable results
of the new techniques proposed. While this is certainly justified, additional data understanding
procedures usually remain untreated. Since each data set brings about a different set of char-
acteristics and as these characteristics for the most part make up the context of the problem to
be solved, they must be taken into account. The redefined business understanding suggests that
additional exploratory data analysis is necessary to discover how these inter-case dynamics play
out in the data, such that we can gain insights into how this might influence the overall process
and affect the evaluation results.

For this we will use the performance spectrum miner (PSM) [8]. We have imported the RF log
in the PSM and specifically searched for patterns that describe behavior of cases together that
cannot be accounted for by cases in isolation. The two most significant observations of an inter-
case dynamic are the segments shown in Figure 4.1. These observations both satisfy the conditions
for the batching on end pattern defined by [1], which emerges when the succeeding processing step
of that specific segment applies batch processing.

22 Explainable Remaining Time Prediction for Business Processes

CHAPTER 4. SHORTCOMINGS OF CONTEMPORARY REMAINING TIME PREDICTION

Figure 4.1: Exploratory data analysis results: PS visualization of segments Create Fine:Send Fine and
Add Penalty:Send for Credit Collection

The first activity that applies batch processing is the activity Send Fine, which shows this batching
on end pattern in the segment Create Fine:Send Fine. Here, where we see two distinct perform-
ance classes: cases that are non-grouped and fast going and cases that are processed in batches
at arbitrary moments in time. The second is the activity Send for Credit Collection, which shows
this batching on end pattern in the segments Add Penalty:Send for Credit Collection, Appeal to
Judge:Send for Credit Collection, Notify Result Appeal to Offender:Send for Credit Collection, Pay-
ment:Send for Credit Collection, Receive Result Appeal from Prefecture:Send for Credit Collection
and Send Appeal to Prefecture:Send for Credit Collection. All these segments show identical beha-
vior and for this reason we have chosen to include only one. This is the segment Add Penalty:Send
for Credit Collection, where we observe a single performance class: cases that are periodically
processed in batches.

To get a more detailed understanding of the significance of these dynamics, we have made use of
the recently introduced batch miner [2], which is a tool that for each segment partitions the traces
into batches and outputs various statistics thereof. The output showed that from the 69% of the
traces that include the activity Send Fine, 97% are processed in batches. For the activity Send for
Credit Collection, which is present in 39% of the traces, we can clearly see that all are processed
in batches.

4.2 Evaluation Revisited

In the previous we have seen that a significant amount of traces is processed in batches. The fact
that so many cases are influenced by this inter-case dynamic might explain why we find such a high
error for this event log. To analyze this in more detail, we use an extension of the performance
spectrum to overlay the actual outcomes with their corresponding predictions for the segment
Add Penalty:Send for Credit Collection for the predictions for prefixes of length 4, as shown in
Figure 4.2. This visualization will be elaborated on in more detail in Chapter 6, but here we
already show its results to support our reasoning.

The black lines in the top half of Figure 4.2 represent the actual progression of cases in the
segment Add Penalty:Send for Credit Collection and the black lines in the bottom half of Figure
4.2 represent the actual progression of cases in the remainder of the process after Send for Credit
Collection. For the latter case we only observe a black line going down at the end of a batch,
this has to do with the zero time lapse in the remainder of the process since in this case, Send
for Credit Collection actually is the last activity. The red and blue lines that overlay these black
lines represent the predicted progression of cases from the activity Add Penalty - their point of
prediction - until the end of the process. This visualization will be elaborated on in more detail
in Chapter 6.

Explainable Remaining Time Prediction for Business Processes 23

CHAPTER 4. SHORTCOMINGS OF CONTEMPORARY REMAINING TIME PREDICTION

Figure 4.2: Exploratory data analysis results: extended PS visualization of actual outcomes (red)
overlaid with predicted outcomes (black) for segment Add Penalty:Send for Credit Collection for

prefix-length = 4

What we can see here is is that the predictions do not at all reflect the batching behavior that is
present in the log. We see that some cases are predicted as faster than others (as is also the case
with batch processing), but this does not coincide with the actual outcomes, nor do they converge
in a similar way. From this we can conclude that the prediction model RMp,a,x has not picked up
on the collective behavior that is present in the data set. Additionally, the batch miner also found
that the batch processing of this segment occurred at regular intervals, roughly one year apart.
This means that the error of the predictions we see in Figure 4.2 can easily be as high as half a
year, which is very likely to explain the magnitude of the overall prediction error.

Finally, when we recall this aggregate prediction error that corresponds to the prefix length in
Figure 4.2, an MAE of 202.92 days for k = 4, all it can tell us is that the prediction model is not
very accurate (for this k), yet it does not at all reflect the fact that it is caused by these batching
mechanisms. The reason is that these measures are an aggregate of intra-case outcomes (outcomes
of cases in isolation) and because of that, these measures fall short when we are trying to approach a
business process that encompasses inter-case dynamics. This results in rather superficial evaluation
results and does therefore not constitute the insights necessary for a meaningful feedback loop.

4.3 Shortcomings

By revisiting the business and data understanding, we have uncovered the presence of inter-case
dynamics in business processes and their event data. By using this knowledge in the evaluation
process, we were able to explain the prediction error on a level other than inference from data
preparation or modeling choices, but by direct observation of how predictions compare to the
actual outcomes - the ground truth.

Figure 4.3 is an abstracted version of the current life cycle of remaining time prediction that was
presented in Figure 3.3. We have additionally highlighted the shortcomings that we identified in
the previous sections.

First is the lack of attention to the business understanding phase. By not respecting the organiz-
ational perspective from the start, fundamental process characteristics are not recognized and are
subsequently overlooked in the data understanding phase. This results in an intra-case and there-
fore incomplete perspective for the remainder of the life cycle, (1) in Figure 4.3. This intra-case
perspective leads to a prediction model that does not recognize inter-case dynamics and will as a
result also return outcomes that do not reflect inter-case behavior.

24 Explainable Remaining Time Prediction for Business Processes

CHAPTER 4. SHORTCOMINGS OF CONTEMPORARY REMAINING TIME PREDICTION

Second is that the evaluation method is not tailored towards inter-case behavior, (2) in Figure
4.3. Because the prediction performance is measured for each case in isolation and this result is
aggregated, we will never uncover the fact that we overlook the presence of inter-case behavior.
Additionally, when we solely assess this aggregated result we will never initiate a feedback loop
that addresses this problem.

Third, we have observed that authors do report their reasoning behind how they have come to
their final solutions in terms of reiteration, i.e. feedback loop. What can be seen from the results
presented in the previous sections is that a lack of attention to this particular part of the life
cycle can lead to the overlooking of critical features, causing bad prediction performance. Based
on this, one could argue that an actual phase or box is missing in the CRISP-DM model on the
anticlockwise arrow depicting this feedback loop in Figure 3.1. The missing or superficiality of
this feedback loop is depicted by (3) in Figure 4.3.

Based on this, the goal is to better outline the evaluation and feedback loop for remaining time
prediction methods, such that these better capture the inter-case dynamics that are intrinsic to a
business process. This will be the foundation for the remainder of this thesis.

Explainable Remaining Time Prediction for Business Processes 25

Figure 4.3: Shortcomings in the CRISP-DM life cycle for remaining time prediction

Chapter 5

Including Inter-Case Features in the
Remaining Time Prediction Life
Cycle

In Chapter 3, the general development process of contemporary remaining time prediction methods
was outlined along the line of the CRISP-DM life cycle and Chapter 4 focused on the phases where
these approaches have fallen short. The latter was specifically aimed at the absence of inter-case
dynamics in the decision making process along the way.

This chapter will provide a general overview of the details we propose to extend various steps
of this life cycle with. These additional details are all aimed at refining the feedback loop and
thereby incorporating the notion of inter-case dynamics in the decision making process, such
that shortcomings originating from these dynamics can be diminished in the future. Figure 5.1
illustrates a global overview of these refinements along the line of the life cycle for remaining time
prediction as was presented in Chapter 3. In this figure, we distinguish the current - intra-case -
flow (in grey) from the new - inter-case - flow (in blue).

The first step towards a remedy for this problem is the refining of the feedback loop. We want to
take the inter-case perspective we have obtained by revisiting the business and data understanding
phases and contrast this with the evaluation output. By linking the business/data understanding
to the evaluation, we induce a meaningful feedback loop that is currently missing at (3) in Figure
4.3. By re-evaluating the outcomes from an inter-case perspective, we can diagnose what inter-
case dynamic might be the cause for a certain prediction error. To achieve this, we want to
compare the actual outcomes to the predicted outcomes for all cases together at an individual
level without any form of aggregation, using techniques that can actually reveal these inter-case
dynamics. During this analysis, we want to find a problematic subset of predictions that ignore
some form of collective behavior that can be seen in the actual outcomes. Once such a subset is
identified, we need to determine the actual mechanics or pattern that is the source of this behavior.
As discussed, these steps require the knowledge obtained from revisiting the business and data
understanding phase, as well as the output of the evaluation phase. Therefore, in Figure 5.1, we
have merged these steps into the aggregate step fine-grained error diagnosis and positioned it
accordingly. This will be the core of Chapter 6.

Once we have found what inter-case dynamic is the source of the problem, we not only want
to incorporate it in the prediction model, but we also want to be able to better measure the
performance with respect to this uncovered dynamic. Therefore we define two steps that can

Explainable Remaining Time Prediction for Business Processes 27

CHAPTER 5. INCLUDING INTER-CASE FEATURES IN THE REMAINING TIME
PREDICTION LIFE CYCLE

be followed in parallel. The first encompasses a methodology for inter-case feature creation.
Incorporating such a feature in the prediction model will help in better predicting the behavior
of a case and therefore also its outcome. While the overall method we present is general, we
concretely show how to do this for the inter-case dynamics that are caused by batching. The
output of this step will be used in the data preparation phase and is in Figure 5.1 positioned as
such. This derivation of inter-case features for batching will be the core of Chapter 7.

The second parallel step encompasses the extending of the current evaluation process. When we
have uncovered what kind of inter-case behavior is present, we can match the evaluation method
and/or metrics such that we not only can asses the prediction performance in terms of intra-case
outcomes, but also in terms of inter-case outcomes. Because we concretely show how to create
features for batching, this evaluation method will also be aimed at inter-case dynamics caused by
batching. The output of this step will be used in the evaluation phase and therefore, in Figure 5.1,
this derivation of an inter-case evaluation for batching is also positioned accordingly. This
step will be the core of Chapter 8.

Figure 5.1: Extension of CRISP-DM life cycle for remaining time prediction

28 Explainable Remaining Time Prediction for Business Processes

CHAPTER 5. INCLUDING INTER-CASE FEATURES IN THE REMAINING TIME
PREDICTION LIFE CYCLE

Running Example

In the following chapters, we will again use method (p, a, x) and the RF log from our running example
for illustration of the proposed steps in this chapter. For this we will give a brief recap of how the
model RMp,a,x is built and what parts of our training and testing data of the RF log we need for
the steps in the following chapters.

As explained earlier, for the training and testing of RMp,a,x, the RF log was partitioned into a
training and a test set using a temporal split of the log as was also done in [4]. For this the cases
are ordered according to start time and the first 80% are used for training and the last 20% are used
for testing, resulting in Ltrain and Ltest. We train model RMp,a,x according to method (p, a, x) [4]
using prefixes hdkσ ∈ Ltrain to predict label y, i.e. the remaining time. Then, we use model RMp,a,x

to predict for each prefix hdkσ ∈ Ltest the remaining time y.

Figure 5.2: Train-test split of Road Traffic Fine Management log for the running example

In Figure 5.2 we have depicted the train/test split indicating which subsets are required for which
steps/chapters. Chapter 6 encompasses fine-grained evaluation techniques for which we naturally
solely use our testing data. Specifically, we will use the complete traces in Ltest and their corres-
ponding outcomes y. Chapter 7 encompasses deeper understanding of the process and therefore for
this chapter we make use of both Ltrain and Ltest, but we do not care for outcomes y. Finally,
Chapter 8 again encompasses evaluation methods and we will there also solely use Ltest and their
corresponding outcomes y.

Explainable Remaining Time Prediction for Business Processes 29

Chapter 6

Fine-Grained Error Diagnosis

This chapter presents the first steps towards the inclusion of inter-case dynamics in the remaining
time prediction life cycle. The objective is to analyze the output of the evaluation phase from
an inter-case perspective such that we can uncover possible inter-case dynamics that cause high
prediction errors. For this, we will analyze the prediction output by contrasting the predicted
outcomes with the actual outcomes on a fine-grained level. Since all cases are unique and all
prefixes of these cases are unique, every prediction that we make, be it for training or testing, is
also unique. To be able to analyze the errors for these predictions on an individual level, we first
establish some terminology in Section 6.1. The actual methodologies that serve this fine-grained
analysis are presented in Sections 6.2 and 6.3.

Section 6.4 elaborates on the actual process of identifying subsets of high error cases that do not
conform to inter-case patterns we also can observe in the data. When we have identified such a
pattern and thereby the context for a high prediction error, we can use this knowledge to improve
the prediction model itself and extend its evaluation, which will be the topics of Chapters 7 and
8, respectively.

6.1 Describing Individual Predictions

In this section we establish some terminology to describe individual predictions. We define an
individual prediction as the reasoning step that is performed about a specific prefix of a trace
σ = 〈e1, ...en〉 to predict an outcome as close as possible to the actual outcome. To clearly define
all related concepts, we define the following terms:

• Prefix hdk(σ) = 〈e1, ..., ek〉: the partial trace that carries the information used as input for
the predictive reasoning.

• Prediction Phdk(σ): the predictive reasoning step, defined by its input, i.e. prefix.

• Predicted outcome yP : the predicted outcome for the remaining time made by the pre-
dictive reasoning step Phdk(σ).

• Suffix tln−k(σ): the partial trace that carries the information yet unknown at the predictive
reasoning step Phdk(σ).

• Actual outcome yP : the actual outcome for the remaining time, derived from the suffix

Explainable Remaining Time Prediction for Business Processes 31

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

of Phdk(σ), available only after the trace finished, i.e. for training or testing, but not at the
moment of the predictive reasoning step itself.

• Moment of prediction tP : the moment in the trace at which the predictive reasoning step
took place, i.e. the time at which the last event of the prefix that defines Phdk(σ) is observed.

• Point of prediction (intra-case) ek: the point in the trace at which the predictive reasoning
step took place. From an intra-case perspective, i.e. the perspective of a case, this is the
last observed event in the prefix that defines Phdk(σ).

• Point of prediction (inter-case) a: the point in the process at which the predictive reas-
oning step took place. From an inter-case perspective, i.e. the perspective of the process,
this is a shared point of prediction across traces, i.e. a set of prefixes where their kth events
have something in common, e.g. have the same activity, i.e. a common prediction point.
We will use this later on to align multiple predictions over time based on their moment of
prediction, such that we can lift intra-case perspectives to an inter-case perspective.

In the following, we just write P for a predictive reasoning step Phdk(σ) if the specific prefix is clear
or not relevant, e.g. when discussing a set of predictions. Figure 6.1 illustrates these concepts for
the case of remaining time prediction.

Figure 6.1: Illustration of a prediction P for the case of remaining time prediction

To illustrate the concepts and definitions of this chapter, we introduce a technical example (not
related to the running example). This example comprises a small event log L1 along with a
corresponding set of predictions P, depicted in Table 6.1, left and right, respectively, to show how
the predictions relate to the events in the log. We firstly see that tP always corresponds to the
timestamp of the last event in the corresponding prefix. We also see that yP is simply calculated
by subtracting tP from the final timestamp of the corresponding trace. The last column, yP , is the
result of a reasoning step, which in this case was chosen to illustrate typical errors in prediction
models.

32 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

Table 6.1: Example event log L1 (left) aligned with predictions P (right)

Case ID Activity Timestamp Prefix k ek tP yP yP

1 A 1 〈A〉 1 A 1 6 10
1 B 2 〈A,B〉 2 B 2 5 2
1 C 5 〈A,B,C〉 3 C 5 2 3
1 D 5 〈A,B,C,D〉 4 D 5 2 2
1 E 7 〈A,B,C,D,E〉 5 E 7 0 1
2 A 3 〈A〉 1 A 3 11 14
2 B 5 〈A,B〉 2 B 5 9 11
2 C 8 〈A,B,C〉 3 C 8 6 7
2 E 14 〈A,B,C,E〉 4 E 14 0 2
3 A 5 〈A〉 1 A 5 12 11
3 E 7 〈A,E〉 2 E 7 10 8
3 B 14 〈A,E,B〉 3 B 14 3 4
3 C 17 〈A,E,B,C〉 4 C 17 0 0

6.2 Performance Spectrum with Error Progression

The first method for a fine-grained error-analysis that we present is the performance spectrum with
error progression (PSw/EP). The goal of this method is to understand where along an entire case
prediction errors arise. We want to achieve this by analyzing the progression of the prediction
error over the course of a trace. Specifically, we want to use the original structure of the PS (see
Chapter 2) and add special color coding for each segment observation to indicate a certain type
of error progression. This method does not require any input parameters and solely uses the set
of predictions P as input data.

Let us again consider a prediction P . Each prediction P was made in a particular trace σ, at a
particular prefix hdk(σ). This means that for a trace σ of length |σ|, we can extract |σ| prefixes
and as a result we also have |σ| predictions P1...P|σ|. To analyze the progression of the prediction
error over the course of a trace, we want to compare each pair of subsequent predictions, resulting
in |σ|−1 comparisons. Since we compare predictions between subsequent processing steps and for
each trace we have |σ| − 1 segments, we can link each comparison to an occurrence of a process
segment.

Each comparison consists of a pair of remaining time predictions Phdk(σ) and Phdk+1(σ) made at
time tk and tk+1, respectively, corresponding to the points of prediction ek and ek+1, respectively.
These subsequent points of prediction ek and ek+1 can be translated into the process segment
(ek, ek+1). For the occurrence of segment (ek, ek+1) for each σ, we want to evaluate whether the
error increased or decreased (or remained equal) after its completion. To do this, we first compute
the errors at points ek and ek+1. This results in an error εk = yP

hdk(σ)
− yP

hdk(σ)
at point ek and

an error εk+1 = yP
hdk+1(σ)

− yP
hdk+1(σ)

at point ek+1. Because the purpose of this method is to
solely compare the magnitude of these errors, we subsequently take their absolute values |εk| and
|εk+1|. Finally, because it is very likely that the error will decrease as the prefix length increases,
i.e. more is known about a trace, we will take the absolute errors relative to the actual outcomes:
raek = |εk|/yP

hdk(σ)
and raek+1 = |εk+1|/yP

hdk+1(σ)
. As a result, for the occurrence of segment

(ek, ek+1) we have raek and raek+1, corresponding to step ek and ek+1, respectively.

Now we can derive the error progression for this segment occurrence, which we will do by evaluating
whether the error went up or down as a result of the segment. We classify each segment occurrence
(ek, ek+1) with a decreasing error if raek > raek+1, with an increasing error if raek < raek+1 and,
in the exceptional case, with an unchanged error if raek = raek+1.

Explainable Remaining Time Prediction for Business Processes 33

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

We do this for all prediction pairs of all cases and as a results we end up with a classification
that for all segment occurrences of all cases separately indicates whether the error increased or
decreased as a result of it.

The next step is to use this classification to visualize the error progression over time. For this we
want to make use of the PS [1], which allows us to classify each segment occurrence with a color,
by coloring each segment occurrence based on our own error progression classification. A segment
occurrence that results in an error decrease will be colored red and a segment occurrence that
results in an error increase will be colored blue.

To illustrate these steps, we use the predictions from Table 6.1. For each prediction we first
calculate the rae, depicted in Table 6.2 (left), then we check for each subsequent pair whether the
rae increased or decreased (or remained equal), depicted in Table 6.2 (right). By checking the
prediction points of the corresponding predictions, we can link this progression to its corresponding
segment occurrence, also depicted in Table 6.2 (right).

Table 6.2: Example predictions P with rae calculation (left) and rae progression related to corresponding
segments (right)

Case ID Prefix ek yP yP rae Segment Progression rae

1 〈A〉 A 6 10 0.667
1 〈A,B〉 B 5 2 0.600 (A,B) ⇓
1 〈A,B,C〉 C 2 3 0.500 (B,C) ⇓
1 〈A,B,C,D〉 D 2 2 0 (C,D) ⇓
1 〈A,B,C,D,E〉 E 0 1 ∞ (D,E) ⇑
2 〈A〉 E 11 14 0.272
2 〈A,B〉 B 9 11 0.222 (A,B) ⇓
2 〈A,B,C〉 C 6 7 0.167 (B,C) ⇓
2 〈A,B,C,E〉 E 0 2 ∞ (C,E) ⇑
3 〈A〉 A 12 11 0.083
3 〈A,E〉 E 10 8 0.200 (A,E) ⇑
3 〈A,E,B〉 B 3 4 0.333 (E,B) ⇑
3 〈A,E,B,C〉 C 0 0 0 (B,C) ⇓

Figure 6.2 illustrates the PS visualization of the error progression over time, corresponding to the
event log from Table 6.1 and the classification from Table 6.2. Additionally, Figure 6.8, which
will be discussed later on, shows an actual PS visualization with error progression. As with the
standard PS, segments can be ordered along a trace variant and as such, the error progression can
be followed along the trace variant.

Figure 6.2: PSw/EP for P

In a PSw/EP diagram, the lines in x,y show the actual progression of cases over time on the level

34 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

of process segments. The color of each of these segment occurrences indicates the progression of
the error of the prediction model along the line of a case. From this we can see whether there
is a correlation between particular features in x,y (cases over time) and errors by seeing multiple
occurrences that follow similar patterns in x,y showing similar error colors.

In terms of analysis, we encounter two types of error progression (we do not consider the excep-
tional case where the error remains equal). An error decrease after a certain segment occurrence
(a, b) means that the observation of b by the prediction model decreased the error, which could
suggest that activity b carries some uncertainty which is apparently resolved after its completion.
An error increase after a certain segment occurrence (a, b) means that the observation of b by
the prediction model increased the error, which could suggest that the learning about activity b
increases uncertainty about the remainder of the trace. Of these two progression types, only an
error decrease can tell us something about uncertainty within the segment (a, b) itself. Therefore,
to discover patterns that could be critical in explaining prediction errors, we will exclusively focus
on segment occurrences classified with an error decrease.

Finally, a prediction model usually predicts up until a specific prefix length kmax. This also
limits our analysis to prefixes up until kmax, resulting in segments that do not have corresponding
predictions and therefore no error progression classification. These segments will have a grey color
to indicate they must be excluded from the analysis.

6.3 Overlaid Performance Spectrum

Section 6.2 introduced how we can visualize the progression of the error along an entire case, but
here the goal is to understand how the behavior of the predicted outcomes compares to that of the
actual outcomes. For this we present the overlaid performance spectrum (OPS). The aim of this
method is to enable an unbiased, fine-grained analysis of predictions by visualizing their predicted-
and actual behavior in the remainder of the process, i.e. their suffix. As we have previously seen,
the PS can show such behavior of all cases over time. Therefore, we want to visualize these
predicted and actual outcomes in the context of the PS as well.

First, since we aim for a fine-grained analysis of the predictions, we want to visualize only a single
process segment (a, b) at a time. Specifically, because we want a shared point of reference among
the predictions such that we can compare them, we want to only visualize those predictions that
traverse segment (a, b) in their next step. Second, since our objective is to also minimize our
bias, we only want to visualize predictions of equal prefix-length k at a time. This is because the
more events are contained in a prefix, i.e. the larger k, the more information we have about the
corresponding case and the more we can tell about its future, i.e. the more accurate predictions
we can make, which would result in an unfair comparison if different prefix-lengths k are involved.

We first bucket the predictions based on prefix-length, e.g. predictions Pk are predictions with
prefixes 〈e1, ..., ek〉 of the same length k. As cases evolve in different ways, i.e. each bucket Pk
contains predictions with different prediction points ek, we "sub-bucket" the predictions based on
the prediction point ek. For the possible prediction points a1...am, we consider the sub-buckets
Pk,a1 ⊆ Pk...Pk,am ⊆ Pk. Each Pk,ai contains all the predictions of Pk that have ek = ai. At this
instant, each Pk,ai contains predictions with a different next activity ek+1. Therefore we again
sub-bucket the predictions, this time based on next activity ek+1. For the possible next activities
b1...bm, we consider the sub-buckets Pk,ai,b1 ⊆ Pk,ai ...Pk,ai,bm ⊆ Pk,ai . Each Pk,ai,bj contains all
the predictions of Pk,ai where the next segment will be (ai, bj) and that have prefix-length k.

For each prediction in Pk,ai,bj we now have a shared point of reference, namely the start time
of the corresponding trace within segment (ai, bj) will be equal to the moment of prediction:

Explainable Remaining Time Prediction for Business Processes 35

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

tai = tP = tek . We also have the actual timestamp of the next step tbj = tek+1
, actual moment the

process ends tk + yP = te|σ| and the moment the process is predicted to end te|σ| = tP + yP . We
recall that in the PS each case through a segment (a, b) is a line from (ta, a) to (tb, b). We want
use this to map the timestamps relating to a prediction P onto process segments. We will write
(b, e|σ|) for the segment from b until the actual end of the case and (b, e|σ|) for the segment from b
until the predicted end of the case. Figure 6.3 illustrates such a mapping from a prediction P to
segments (a, b), (b, e|σ|) and (b, e|σ|). Using this mapping, we can plot the predicted outcomes yP
against the actual outcomes yP in x,y for each prediction in Pk,ai,bj .

Figure 6.3: A prediction P annotated with segments

Figure 6.3 shows how we want to visualize the values tek+1
, yP and yP w.r.t. tP in the PS. For

properly analyzing the behavior of yP w.r.t. yP , we want to overlay the segment that visualizes
the actual value yP with the segment (b, e|σ|) (b, e|σ|) that visualizes the predicted value yP , such
that they can be compared to each other directly. For this we introduce layers.

First Layer

The OPS takes the segment (a, b) as a starting point, which is equal to (ek, ek+1) for all predictions
P ∈ Pk,a,b. This segment S1 describes the actual behavior of the predictions from step ek to step
ek+1, illustrated in blue in Figure 6.5. Because the chances are high that ek+1 is not the last
activity in the overall process and since we aim to predict when the process ends tek + yP and not
when the second activity of a process segment occurs tek+1

, we need to extend S1 so that we can
describe the remainder of the behavior after ek+1. We will do this by adding a segment S2 below
S1. S2 is illustrated in green in Figure 6.5 and describes the actual behavior of the predictions
from step ek+1 to the final step e|σ|. S1 and S2 together form layer L1 in the OPS.

Figure 6.4: Example of the first layer L1 of overlaid performance spectrum

Layer 1, containing S1 and S2, visualizes the actual behavior from tP until the end of the process.
Figure 6.4 shows an example of L1, in which the black lines show the actual progressions in x,y of
two predictions.

36 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

Figure 6.5: Translation from predictions to segments: composition of the OPS

Second Layer

The layer L2 of the OPS will visualize the predicted behavior of our predictions. We want to
analyze the behavior by visualizing not only the predicted outcomes but also the errors following
S1, i.e. the errors after the next step (ek, ek+1). We propose two variants for visualizing the
predictions: OPS from ek + 1 until e|σ| and OPS’ from ek until e|σ|. For each of these cases, we
select one segment to put on top of L1. Figure 6.6 shows an overlay of L1 (from Figure 6.4) with
these alternatives for L2, which we will explain in detail in the following.

OPS. For this variant, we visualize the predicted outcome yP for the segment (ek+1, e|σ|) as a line
from tek+1

to te|σ| , meaning we take the actual execution of ek+1 into account. This segment S3
describes the predicted behavior of a prediction P from step ek+1 to step e|σ|. This way we can
analyze the deviations between the actual and predicted outcomes that result from the segment
(ek, ek+1) under consideration. This segment shares both the first and last step of S2 and will
therefore be laid over this segment, as illustrated in yellow in Figure 6.5.

OPS’. For this variant, we visualize the predicted outcome yP for the segment (ek, e|σ|) as a line
from tek to te|σ| . This segment S3’ describes the predicted behavior of a prediction P from step
ek to step e|σ|. Because this segment shares the first step with S1 and the last step with S2, this
segment will be laid over both of these segments of L1, as illustrated red in Figure 6.5.

To increase understandability, we also introduce a way to color code the predicted segment oc-
currences in S3 and S3’. When the outcome is overpredicted, i.e. it exceeds the actual outcome,
the predicted segment occurrence will be coded in red. Alternatively, when the outcome is un-
derpredicted, i.e. it predicts a value smaller than the actual outcome, the predicted segment
occurrence will be coded in blue.

Figure 6.6, which we have used to illustrate the different layers in the previous, is actually the
result of this method applied to the technical example from Table 6.1, using segment (B,C) and
prefix-length k. The set of predictions P2,B,C ⊆ P only include case 1 and 2, because for case 3
the segment (B,C) does not occur at k = 2. Case 1 is underpredicted and shown in blue and case
2 is overpredicted and shown in red. Additionally, Figures 6.9 to 6.12, which will be discussed
later on, show actual OPS and OPS’ visualizations for two different process segments of the RF
log.

Explainable Remaining Time Prediction for Business Processes 37

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

Figure 6.6: OPS (top) and OPS’ (bottom) of P for segment (B,C) and k = 2 (of our running example
from Table 6.1)

6.4 Subset & Subset Pattern Identification

Once we have the methods in place, we can analyze the predictions to possibly uncover behavior
that is not captured by the prediction method. We aim to do this by uncovering subsets of
predictions of which the collective behavior of predicted segment occurrences does not match the
collective behavior of the actual segment occurrences.

6.4.1 Select Segments

For this process we first need to identify which segments we want to analyze. When we consider
the entire set of predictions that relate to an actual event log, we have a significant amount of
segments to consider. For example, the RF log counts 70 unique process segments. To reduce this
search space, we only consider segments that occur significantly often in the log. We believe that
identifying errors in segments that occur often in the log will likely be more valuable in yielding
improved prediction results than identifying errors in segments that occur less often.

6.4.2 Visualize & Inspect

The next step is to visualize the OPS and PSw/EP for these selected segments. Because we
build upon the visual analytics technique from [1], which allows to visually detect patterns in
the performance progression of a process, we can inspect the OPS and PSw/EP for patterns of
interest.

38 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

6.4.3 Diagnose

In the end our goal is to analyze visualizations such as Figures 6.9 to 6.12 and diagnose the source
of a prediction error by finding patterns in them. To help in systematically identifying these
patterns, we refer to the taxonomy defined in [1]. This taxonomy defines various patterns that
can visually be deducted from the PS and each of these patterns can be matched to an occurrence
of process behavior, which in most cases is collective, i.e. a result of cases together. A selection
of the patterns that relate to the order of the lines and their occurrences is depicted in Figure
6.7. We will use this taxonomy as a basis for identifying discrepancies in groups of predicted and
actual segment occurrences.

Figure 6.7: Taxonomy of order and occurrence patterns (from [1])

The following two paragraphs shortly describe how we generally wish to detect the uncaptured
inter-case behavior depending on the error analysis methods we have presented in Sections 6.2
and 6.3. From this analysis, we retrieve a pattern R for segment S as a relevant pattern, i.e.
R is a result of inter-case behavior captured in the actual progressions and not captured in the
predicted progressions of cases. This pattern R for segment S we will use as input for the derivation
of inter-case features and inter-case evaluation in Chapters 7 and 8, respectively.

PSw/EP When considering the PSw/EP, we want to find critical segments, i.e. segments of
which its completion results in an error decrease, because exactly for these segments we in the
end also want to also decrease the error at the start. To identify an inter-case behavior worth
investigating, we need to check for these critical segments whether they show an inter-case pattern.
If this is the case, such an inter-case pattern is most likely not picked up and might be the cause
of the high prediction error at the moment preceding such a segment.

OPS When considering the OPS, we can actually compare the predicted and actual segment
occurrences since these are both visualized. For this we follow the following procedure:

1. We identify the most significant segments and for each available prefix-length k we can create
an OPS and an OPS’.

2. For each of these structures, we aim to find patterns in the actual segment occurrences that
are a result of inter-case dynamics, for example described by one of the patterns in Figure
6.7.

3. If we observe such a pattern, we evaluate whether the predicted segment occurrences also
follow this pattern. We do this by listing the characteristics of the observed pattern in the

Explainable Remaining Time Prediction for Business Processes 39

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

group of actual segment occurrences and contrasting these with the characteristics of the
group of predicted segment occurrences. If these do not match, the prediction method has
apparently not picked up on the inter-case behavior that caused the pattern and incorpor-
ating it in the prediction might reduce the error of the prediction model.

While this process can be carried out quite systematically, it is important to keep in mind that
we are still trying to deduct these subsets and its patterns visually and are thus susceptible to the
user’s interpretation.

Running Example

Here we will apply the two methods presented in this chapter to our running example and combine
the outcome of these two analysis steps. If we then find the same pattern in each step, i.e. using the
OPS/OPS’ and the PSw/EP, the pattern is most likely relevant.

As discussed in Chapter 5, we have run model RMp,a,x from [4] for each prefix hdk(σ) ∈ Ltest and
extracted all information related to each individual prediction (see Section 6.1) such that we now
have a set of predictions Ptest. This we can then use as input for the visualization methods presented
in this chapter.

Select segments

Our first step is to select the segments we want to consider, which relates to the step discussed in
Subsection 6.4.1. We have loaded the RF log in the PSM and selected the segments that had the
most observations. For the PSw/EP, this is sufficient, but for the OPS, we also need to consider for
each of these segments for which of the prefix lengths they apply. For example for segment Create
Fine:Send Fine we only have to consider k = 1, since it does not occur later in the prefix for any
of the traces. As was also done in the original experiment, we only consider prefixes up to length
5. The resulting segments and corresponding prefix lengths are depicted in Table 6.3. Some of these
combinations only had a very small amount of predictions, these are depicted in brackets. The same
goes for the segment Insert Fine Notification:Add Penalty, since this segment exclusively shows global
FIFO behavior and will not add anything meaningful to this analysis.

Table 6.3: Selected segments and corresponding prefix-lengths of the RF log for fine-grained error
analysis

Segment k = 1 k = 2 k = 3 k = 4 k = 5

Create Fine:Send Fine ×
Send Fine:Insert Fine Notif. × (×)
Insert Fine Notif.:Add Penalty (×) (×)
Insert Fine Notif.:Insert Date Appeal to Pref. × (×)
Insert Date Appeal to Pref.:Add Penalty × (×)
Add Penalty:Send for Credit Collection × (×)
Payment:Send for Credit Collection ×

Visualize and inspect PSw/EP

We visualize the PSw/EP for the all the segments from Table 6.3 using the method we introduced
in Section 6.2. The result is depicted in Figure 6.8. For the observations depicted in grey no
classification was available. This is because the classification was solely made for the testing data
while the observations at the start of the third to fifth segment are of cases that started before the
point of the temporal train/test split and are therefore still part of the training data. As for the last
segment in Figure 6.8, the corresponding activities occur at k = 5 and k = 6. Since mode RMp,a,x

only predicts for k ≤ 5, we have no prediction output for k = 6 which means no error progression
can be calculated and therefore we are also not able to classify the observations within this segment.

40 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

Figure 6.8: PSw/EP of segments Create Fine:Send Fine, Send Fine:Insert Fine Notification,
Insert Fine Notification:Insert Date Appeal to Prefecture, Insert Date Appeal to Prefecture:Add

Penalty, Add Penalty:Send for Credit Collection and Payment:Send for Credit Collection

We first observe that all segment occurrences in the segment Create Fine:Send Fine are colored blue,
meaning that after the segment Create Fine:Send Fine the error exclusively goes up. This could
be caused by the fact that the prediction error is just very low when only Create Fine is known.
However, we also think that this could be caused by the fact that, for all traces, after the activity
Send Fine occurred, the process either immediately ends (which is the case for 13.6% of the traces) or
continues for three or more activities (84.4% of the traces), meaning that the difference in remaining
time is very substantial between the two possible outcomes, which can result in a relatively higher
error compared to when only Create Fine is known.

In the segment Send Fine:Insert Fine Notification, we observe two patterns: batching on start and no
batching (cases going straight through). We see that the non-batched on start cases predominantly
result in the error going down. The reason for this could be that these cases are processed very fast,
something that the prediction model does not capture at the prediction point Send Fine (as can be
seen from the projected predictions in the OPS and OPS’ visualizations in the previous), resulting
in a higher error. However, no hard conclusions can be drawn from this. The segments Insert Fine
Notification:Insert Date Appeal to Prefecture and Insert Date Appeal to Prefecture:Add Penalty show
batching on start and batching on end behavior, respectively. However, nothing conclusive can be
said, since the classification w.r.t. the error progression does not reflect a specific pattern.

The final classified segment, Add Penalty:Send for Credit Collection, exclusively shows batching on
end behavior and the predominant amount of observations are classified with a higher error before
this segment than after. This implies that the insight into this segment results in an increase in
prediction accuracy.

Visualize and inspect OPS and OPS’

Next, we visualize both an OPS and an OPS’, as introduced in Section 6.3, for each of the frequent
segment and prefix-length combinations, i.e. those not in parentheses, from Table 6.3 using the
predictions Ptest. The resulting visualizations can be found in Appendix A.1 and the four most
significant observations, which we also identified as interesting based on the PSw/EP, are depicted

Explainable Remaining Time Prediction for Business Processes 41

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

here in Figures 6.9 to 6.12.

Figure 6.9: OPS of predictions of RMp,a,x for segment Create Fine:Send Fine for k = 1

Figure 6.10: OPS’ of predictions of RMp,a,x for segment Create Fine:Send Fine for k = 1

Figure 6.11: OPS of predictions of RMp,a,x for segment Add Penalty:Send for Credit Collection
for k = 4

Figure 6.12: OPS’ of predictions of RMp,a,x for segment Add Penalty:Send for Credit Collection
for k = 4

We recall that the black lines show L1, i.e. the actual segment occurrences in the next segment and
the segment of the next step until the end of the case. The red and blue lines show L2, i.e. the

42 Explainable Remaining Time Prediction for Business Processes

CHAPTER 6. FINE-GRAINED ERROR DIAGNOSIS

predicted segment occurrences from the next activity until the end of the case or from the prediction
point until the end of the case, in the OPS and OPS’, respectively.

We firstly observe a batching on end pattern in Create Fine:Send Fine that we can only detect in
L1, i.e. the actual segment occurrences, and not in L2, i.e. the predicted segment occurrences, which
could indicate that the model has not picked up on this. However, Create Fine:Send Fine solely
occurs at k = 1, i.e. in the beginning of the process, meaning that a lot can still occur along the
way and thus the batching might not even be reflected anymore by the actual outcomes at the end
of the process. Therefore it is hard to determine whether this activity could be the cause for the
high prediction error. For Add Penalty:Send for Credit Collection we also detect a batching on end
pattern in L1 that is not detectable in L2, but in this case it occurs at k = 4, thus here the fact that
the model did not detect batching may be the cause for the high error.

In the other OPS and OPS’ visualizations for the RF log shown in Appendix A.1, we observed:

• Unordered behavior in L2 of both the OPS and OPS’ for all segments (see Figures 6.9 to 6.12
and A.1 to A.8).

• Three to four points in time in L2 where the lines are more concentrated in the OPS (see
Figures 6.9 to 6.12 and A.1 to A.6).).

• A seemingly equal amount of red and blue lines in L2, of which the red lines occur mostly after
the batches are processed and the blue lines before (see Figures 6.9 to 6.12, A.1 and A.2).).
This indicates overprediction of cases that arrive in the last half of a batch and underprediction
of cases that arrive in the first half of a batch (as we can very clearly observe in Figure 6.12).

• Black lines that follow a batching pattern in S2 for OPS’ of segments prior to the Send for
Credit Collection activity (see Figures 6.9, 6.10 and A.1 to A.6). This batching pattern precisely
coincides with the batching pattern in S1 of segment Add Penalty:Send for Credit Collection
(see Figures 6.11 and 6.12).

Diagnose: Identifying S and R with high impact on error

Based on the analysis using both the introduced methods, we can determine what inter-case dynamic
is the cause of this high prediction error. The two best candidates were the segment Create Fine:Send
Fine and Add Penalty:Send for Credit Collection, because these both showed black lines forming a
batching pattern that was not picked up by the red/blue lines. However, for Create Fine:Send Fine
we cannot draw any hard conclusions because it occurs to early on in the process, therefore, in the
remainder, we will solely focus on Add Penalty:Send for Credit Collection. As we have also seen,
the batching pattern not only applies to the segment Add Penalty:Send for Credit Collection, but
also to other segments that end with Send for Credit Collection. This means that the input for the
next phase is the batching pattern and all segments that end with Send for Credit Collection. We
will write (-,SC) as short hand for all these segments. This results in the input R =batch(e) and
S=(-,SC).

Explainable Remaining Time Prediction for Business Processes 43

Chapter 7

Derivation of Inter-Case Features for
Batching

In Chapter 6 we introduced a methodology to help identify inter-case patterns that cause high
prediction errors. While this method can yield many different patterns as output, in this chapter
we will only consider the batching pattern. In this chapter will use these insights from Chapter 6 to
derive inter-case features to help reduce prediction errors caused by batching, which is the second
step towards the inclusion of inter-case dynamics in the life cycle of remaining time prediction as
is indicated in Figure 5.1. While the overall method we present is general, we concretely show
how to do this for the inter-case dynamics caused by batching.

As discussed in Chapter 3, feature creation is a complex way to extend the input data with
additional features and is usually performed manually. It demands extensive analysis of the data
and in most cases encompasses multiple transformation steps and in some cases requires additional
tooling. Since each machine learning problem is different and so many possible choices can be
made regarding steps/techniques/tooling for feature creation, there is no standardized process to
approach it. Even more, feature creation is often referred to as being more of an art than science,
since it requires human intervention in creatively mixing the existing features [31].

Because there is no standardized process for creating features from input data, let alone for inter-
case features for batching, Section 7.1 presents the choices about the steps that we make for the
creation of inter-case features for batching and the justification thereof. Sections 7.2 to 7.4 will
elaborate on these steps in detail, along with illustrations of these steps applied to the running
example.

7.1 Inter-Case Feature Creation

The objective is to create inter-case features for batching such that prediction errors caused by
batching dynamics can be reduced. In Chapter 3 we found a high prediction error for the RF log
using the baseline model RMp,a,x and in Chapter 6 we found that cases that traverse a particular
segment S within specific batching patterns R are subject to these high prediction errors. We want
to reduce this error prior to the occurrence of such a segment S = (a, b) containing pattern R. We
aim to do this by leveraging these process and inter-case insights, i.e. S and R from Chapter 6,
into an estimate that for each case that has reached activity a, i.e. is at the top part of segment
S, tells us how long that case will spend in S, which we can then add as a feature for a remaining
time prediction model such as RM .

Explainable Remaining Time Prediction for Business Processes 45

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

As described, we specifically want to create features for prefixes that have segment S in their
next step, such that the arrival time of that case within that segment is known at the moment
of prediction. This is especially important for a segment subject to inter-case dynamics, since
the time a case will spend in such a segment is highly dependent on the arrival time of that case
within that segment, e.g. when a case arrives late in a batch instance, its time in that segment
will be much shorter than when it would arrive early.

Before we explain how we want to leverage S and R for engineering features that predict how much
time a case spends in S due to R, we first want to explain where an inter-case pattern such as
batching (in a segment S) originates from. A pattern R can actually be traced back to the WfMS
that the event data comes from, as described in Chapter 2. Such a WfMS does not only take care of
the routing of cases, i.e. the control-flow, but also takes care of resource assignment, scheduling,
queuing disciplines and decision logic. The managing of these non control-flow aspects brings
about a large set of rules that result in underlying process mechanisms not explicitly recorded in
the event log. These mechanisms, such as for example FIFO or batching, turn up on the PS in
the form of a pattern. Figure 7.1 illustrates how a WfMS relates to an event log that is used for
prediction and in turn relates to a pattern. To create features that explain these mechanisms, we
want to "reverse engineer" this uncovered pattern back to its origin: the rules that this pattern
originates from. When we are leveraging process and inter-case insights, i.e R and S from Chapter
6, we are thus essentially uncovering these WfMS rules. If we have these rules, we can use them to
create features which we can provide to the prediction model such that it can make more informed
predictions for cases subject to these rules.

Figure 7.1: Relation between WfMS, process and performance pattern

Table 7.1: Example of existing features for model RM (columns in black), features we want to add
(columns in red, blue and green) and the output side for RM (column in purple)

Activity Time cS cS cR cR d d

X1 X2 X3 ... Xn Xn+1 Xn+1 Xn+2 Xn+2 Xn+3 Xn+3 y y

A 21-5 13:17 0 1 0 0 - - 127 130
C 24-5 14:05 1 1 1 1 254 210 270 256
C 30-5 13:08 1 1 1 1 187 156 178 206
C 15-7 12:36 1 1 0 1 - 142 287 301
B 21-7 16:13 0 0 0 0 - - 301 247
C 27-7 18:04 1 1 1 0 203 - 183 191
C 05-8 12:20 0 0 0 0 - - 93 80
A 06-8 21:00 0 0 0 0 - - 45 44

Table 7.1 shows an example table of features used to train a remaining time prediction model
RM . The columns in black show the existing intra-case features. We want to leverage S and R

46 Explainable Remaining Time Prediction for Business Processes

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

by consecutively adding columns to the existing features that indicate for each prefix (1) whether
it will go through segment S, red column in Table 7.1, (2) whether it will also go through pattern
R, blue column in Table 7.1, and (3) how long it will last in S as a result of the pattern R,
green column in Table 7.1. Conceptually, we can then use these three features as additional input
features to learn a new, better prediction model for the remaining time y (purple column in Table
7.1).

The creation of each of these new features Xn+1 (indicating that prediction P will go through S,
written as cS for short), Xn+2 (indicating that prediction P will go through pattern R in S, written
as cR), Xn+3 (for the time until the batch is processed, written as d) requires its own prediction
models CMS , CMS,R and TM , respectively. Figure 7.2 gives an overview of the different steps
necessary to build these models (offline) and the steps that need to be executed at run time.

Figure 7.2: Overview of feature creation steps presented in this chapter

In the offline phase, we need to:

1. Create a bucket of prefixes that all have ek = a, based on segment S = (a, b) we retrieve
through the error analysis from Chapter 6.

2. Learn a classification model CMS that predicts whether a prefix at prediction point a will
go through segment S (Section 7.2).

3. Learn a classification model CMS,R that predicts whether a prefix that goes through segment
S will also go through pattern R (Section 7.3).

4. Create a model for predicting (an abstraction of) the remaining time until the prefix is
processed in a batch (Section 7.4).

5. Create a model for predicting the remaining time RM

Explainable Remaining Time Prediction for Business Processes 47

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

In the online phase, we need to:

1. Take the features X1...Xn to predict cS using model CMS .

2. Take the features X1...Xn, cS to predict cR using model CMS,R.

3. Take the features X2, cR to predict d using model TM .

4. Take features X1...Xn, d(cR) to predict the remaining time y using model RM . Here we
specifically choose to only use the feature d in the prediction if cR = 1. Prefixes for which
cR = 0 will not get a feature d, therefore we will write d(cR).

Since we are trying to create features for event data, which is subject to time, we can for each
prediction during the online phase only use the knowledge of the process up until that point. Take
for example prediction P , highlighted in orange in Figure 7.1. If we want to create a feature for
P , we can only use the data up until the moment of prediction tP . But when we derive these
rules from batching pattern R found in Chapter 6, we use the entire event log and thus also
knowledge that we do not have at tP . However, we assume these rules in the WfMS apply to the
entire process and were already in place preceding the recording of the event log, meaning that
for our own evaluation, we can assume that even for predictions at the start of this event log, this
knowledge was already available.

7.2 Next Segment Prediction

In this section, we address the learning of a classification model CMS to predict whether a case
will go through a particular segment S. Through the error analysis in Chapter 6, we have received
a segment S and based on this we have selected prefixes P from a bucket of prefixes B that all
have reached segment S = (a, b), i.e. of which their common prediction point is a. We need to
select the subset PS ⊆ P (rows in the Table 7.1) that will all go through segment S, i.e. will
have activity b in their next step. To determine what prefixes need to be in PS , we use event log
filtering to check for each prefix’ suffix whether ek+1 = b.

Once we know what prefixes need to be in PS , we need to create a data set for training a classi-
fication model CMS that predicts whether a case will be in segment S next. We take the prefixes
P and add a positive label (expressed by a 1) for each prefix ∈ PS and add a negative label
(expressed by a 0) for each prefix /∈ PS . When each prefix is labeled, we train a classification
model CMS using features X1...Xn to predict label cS (short for Xn+1) as illustrated in Table
7.1. Essentially, training a model to predict whether a case will be in a certain next step is next
activity prediction, for which various methods have already been introduced [16, 7]. Since the
choice of such a method is not specific to the problem of creating inter-case features we address
here, we will not discuss this any further.

Now that we have classification model CMS , we need to determine whether the output is reliable
enough such that we can use it as input for the next step. We evaluate reliability of the model not
only based on accuracy but also based on precision. We do this because the time a case spends
within a segment can vary significantly per segment. When we classify a prefix to be part of a
"slow" segment while it is actually part of a fast going segment, we will in the end be giving our
remaining time prediction model RM the complete opposite information than that it should get.
Such an example of a false positive can completely disturb a model RM and therefore also its
reliability. Therefore if the output of a classification model CMS turns out to be unreliable, the
feature cS should be discarded.

Once we have built a reliable classification model CMS , we can use it at runtime to predict cS from
input features X1...Xn. This outcome will then be passed to the next prediction model CMS,R.

48 Explainable Remaining Time Prediction for Business Processes

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

Running Example

The input from the fine-grained error diagnosis from Chapter 6 is S=(-,Send for Credit Collection
(SC)) and R=batch(e). Our first step is to detect which prefixes in L will go through the segment (-
,SC). We used the Pandas library in Python to label each prefix of k ∈ {4, 5} with a label for whether
Send for Credit Collection will occur in the next step. This results in two sets of labeled prefixes for
training L∗4,train and L∗5,train and two sets of labeled prefixes for testing L∗4,test and L∗5,test. We will
only build models for k ∈ {4, 5}, because only for these k the next step of the prefix goes through
(-,SC).

To build the classification model, we used the implementation of the benchmark for outcome-
oriented predictive process monitoring from [24], which is available at https://github.com/irhete/
predictive-monitoring-benchmark. Similar to RMp,a,x, we have chosen a prefix bucketing method,
aggregate encoding method and an extreme gradient boosting algorithm. We have applied hyper-
parameter optimization (which was also available in the benchmark implementation) using our own
labeled training data. After optimizing the parameters using grid search [11], we trained classification
models CM4,(-,SC) and CM5,(-,SC) using L∗4,train and L∗5,train. We tested the models using L∗4,test
and L∗5,test, of which the results are depicted in Table 7.2.

Table 7.2: CMS results for next segment classification on testing data of the RF log for k ∈ {4, 5}

Model TP TN FP FN Accuracy Precision

CM4,(-,SC) 8791 1520 2739 1351 0.716 0.762
CM5,(-,SC) 46 4011 209 276 0.893 0.180

We can see that there is a large difference in the results for the different models. While CM4,(-,SC)

has a higher precision, CM5,(-,SC) has a higher accuracy. We consider the accuracy of CM4,(-,SC) still
acceptable, but the precision of CM5,(-,SC) is too low. Therefore we will only consider CM4,(-,SC)

and at runtime only make a classification cS ∈ {0, 1} for prefixes of length k = 4 and not for prefixes
of length k = 5.

7.3 Pattern Prediction

In this section, we address the learning of a classification model CMS,R to predict whether a case
will go through a specific pattern R. In Section 7.2 have selected prefixes PS ⊆ P that will all go
through segment S, i.e. of which their prediction point and next step are a and b, respectively.
We need to select the subset PS,R ⊆ P (rows in the Table 7.1) that will all be part of R, i.e. part
of a batch. To determine which prefixes will be in PS,R, we use the batch miner [2] to detect for
each prefix whether its next segment is part of a batch.

We add labels to each prefix PS,R similar to as described in Section 7.2. We train a classification
model CMS,R using features X1...Xn, cS to predict label cR (short for Xn+2) as illustrated in
Table 7.1 and evaluate it based on accuracy and precision.

Once we have built model CMS,R, we can use it at runtime to predict cR from input features
X1...Xn, cS , which will be passed to the next prediction model TM .

Running Example

In this step we would have to build a classification model that predicts for all prefixes that go through
S=(-,SC), whether they will also be subject to R=batch(e). In our case, all cases that traverse the
Send for Credit Collection activity are batched, meaning that we do not need to build a classification

Explainable Remaining Time Prediction for Business Processes 49

https://github.com/irhete/predictive-monitoring-benchmark
https://github.com/irhete/predictive-monitoring-benchmark

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

model in this step and we can directly use the classification cS , i.e. cR = cS ∈ {0, 1}. We can now
use cR as input to the third prediction model in the next section.

7.4 Time To Batch Prediction

In this section, we address building a model TM for predicting a certain "distance" or time from
the arrival of a case until it is batched. In Section 7.3 we have selected a set of prefixes PS,R ⊆ P
that are part of the pattern R in segment S at their moment of prediction tP . We want to predict
for all these prefixes how long they will be in S subject to R. Since we will only consider the
batching pattern for R, we need to predict how long each case will wait in S until it is processed
in a batch, which we will define as the predicted time to batching tR.

To predict tR, we want to build a remaining time prediction model for batching TM . This model
uses features X2, i.e. the start time of a case in segment S, and cR, i.e. the classification of whether
the case will be in R, as input. This model needs to somehow leverage the starting location of
cases in R, i.e. their moments of prediction tP (which is also X2), into a prediction d (short for
Xn+3). Therefore we want to provide it with some context of the batching pattern R that each
case will be in (7.4.1 and 7.4.2), such that it can predict, given the starting time of that prefix in
S, in which next batch that case will be processed and when it will be processed, from which we
can then derive the time until batching tR (7.4.3). As an alternative to the concrete value tR, we
also propose an abstracted form of this estimate p (7.4.4).

7.4.1 Deriving Context for Batching

We first need to determine which parameters we need to describe to build a prediction model TM .
These parameters need to describe the batching behavior such that we can provide the model with
a specific batching context. Therefore, we will use a couple of the batching parameters defined
by [2], illustrated in Figure 7.3. At the top of the segment we can see the time at which the
first case arrives in a batch ti,start and the time at which the last case arrives in a batch ti,end.
At the bottom of the segment we can see the batch moment, i.e. the time BMi at which the
batch is processed and the time BMi−1 of the previous batch. From each of these points we can
derive parameters that together describe the triangular shape of this batch and its position w.r.t.
the preceding batch. The batch interval BIi = BMi −BMi−1 is the time between two successive
moments of batching and the minimum waiting timeWi,min is the waiting time of the last arriving
case in batch bi [2].

Figure 7.3: Batch in performance spectrum annotated with batching parameters

50 Explainable Remaining Time Prediction for Business Processes

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

We can also see from Figure 7.3 that there are batches overlapping. When this happens, we cannot
distinguish which cases will be part of the fist batch and which will be part of the next batch based
on their moment of prediction alone and we will therefore not take this into consideration.

7.4.2 Deriving Batch Context Parameters

Next, we want to make this batching context concrete by deriving the values for each of these
parameters such that we can build a training set. For this we will use the batch miner from [2].
This tool can take a segment from the PSM data [8] as input and returns among others BMi, BIi
and Wi,min of each batch bi in that segment. As a result, we have perfect knowledge about which
cases belong in which batch and when each batch is going to be processed.

However, since we are dealing with time, the information that we really have at tP is limited to
that of the last batch that is processed bi−1, namely BMi−1, BIi−1 and Wi−1,min. Figure 7.4
illustrates an arrival period between two consecutive batch moments BMi−1 and BMi of which
all cases have the same information about the context parameters of all batches up until the last
closing batch. When we have a case arriving in such an arrival period, i.e. tP > BMi−1, we want
to know the parameters of the batch bi that correspond to this arrival, not those of the preceding
batch bi−1.

Figure 7.4: Illustration of an arrival period annotated with past parameter values

We want to derive the parameter values of a current batch bi from the parameter values of the
preceding batches b1, ..., bi−1 by the use of forecasting. Forecasting encompasses a collection of
techniques that aim to construct a time series model that estimates a trend in the data [32].
We want to use these techniques to create a model that can forecast BIi and Wi,min based on
past observations BIh...BIi−1 and Wh,min...Wi−1,min, respectively. While traditional forecasting
techniques assume data that is recorded at fixed intervals, e.g. the monthly sales or market growth,
the parameter BI encompasses the interval itself, which has varying lengths and is thus not fixed.
However, since this is the target we actually want to forecast, we will for this case overlook this
discrepancy.

Multiple forecasting techniques have been introduced, but for simplicity, we will only consider the
two most basic trend estimation methods [32]. The first, moving averages, takes into account a
specific number of past observations and computes the average, which will then be the forecast
for the next period. The second, exponential smoothing, contrary to moving averages, does not
weigh the past observations equally, but instead uses a smoothing factor α to assign exponentially
decreasing weights over time, with 0 < α < 1. The higher the values of α, the more weight is
assigned to recent observations and the lower the values of α, the less responsive they are to recent
changes. By using the actual intervals from the training data, we can evaluate which forecasting
technique or which α performs best by comparing it with the actual lengths of the intervals and
choose the best configuration.

Explainable Remaining Time Prediction for Business Processes 51

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

Based on this method, we can create forecasting models FBI and FWmin for BI and Wmin, re-
spectively. We now want to use these forecasting models to derive all necessary parameters for
the context of R. First we forecast BIi and W i,min, which we then use together with the previous
batch moment BMi−1 to derive the forecasted point in time until which cases will still be included
in the current batch: ti,end = BMi−1 + BIi − W i,min. Figure 7.5 again illustrates an arrival
period, this time annotated with all previously derived parameters.

Figure 7.5: Illustration of an arrival period annotated with predicted parameters values

7.4.3 Predicting the Time Until the Next Batch

Now that we have all the necessary parameters, we can use these to predict the time until batching
tR for each case that arrives in S based on its arrival time, i.e. its moment of prediction tP . For
each of these cases, we consider the parameter values that are known for the period it arrives in,
for which we again refer to Figure 7.5.

Within such an arrival period, cases can end up in the current batch bi (see ase 1 in Figure 7.5)
or in the next batch bi+1 (see case 2 in Figure 7.5). If a case arrived in the current batch bi, i.e.
tP ≤ ti,end, we predict tR = BMi−1 + BIi − tP . If a case arrived in the next batch bi+1, i.e.
tP > ti,end, we predict tR = BMi−1 + 2 · BIi − tP . In the exceptional case where BIi is much
longer than BIi and the next batch moment BMi is therefore still not known, we additionally
need to check for cases that arrive after the arrival of the last case of the second next batch
ti+1,end = BMi−1 + 2 ·BIi −W i,min. In this case, tR = BMi−1 + 3 ·BIi − tP .

7.4.4 Predicting the Batch Partition

In addition to tR, we also want to create features using an abstraction of the "distance" until the
next batch. Figure 7.6 shows how we want to derive this abstraction.

We want to divide a batch bi into n equal parts and then we want to derive in which of these
parts a case arrived based on the arrival time of that case within S, i.e. the moment of prediction
tP . For this we need to know the length of the period in which cases arrive in batch bi, i.e.
the time from ti,start to ti,end, which we will define as BI ′i, also illustrated in Figure 7.6. The
time the first case of bi arrives is the same as the time the last case of bi−1 arrives and therefore
ti,start = ti−1,end = BMi−1 −Wi−1,min. The predicted time the last case of bi arrives ti,end we
have already derived in the previous subsection. Now we can predict the length of the arrival
period of bi as follows: BI ′i = ti,end − ti−1,end.

52 Explainable Remaining Time Prediction for Business Processes

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

Figure 7.6: Illustration of a batch partitioned into n = 4 equal parts

To know in which part of bi to partition a case, we want to know its arrival time within this arrival
period BI ′i, which we will define as tP,BI′ . This is the time that has lapsed since the first arrival
of a case within bi and the arrival time of the case in question, i.e. tP,BI′ = tP − ti,start, also
illustrated in Figure 7.6. Then we derive for each case in which of the partitions of bi it arrived by
using the fraction fP = tP,BI′/BI ′i. If fP < (1 ·BI ′i)/n the case arrived in the leftmost partition
(annotated with 4 in Figure 7.6), if fP < (2 · BI ′i)/n the case arrived in the second to leftmost
partition (annotated with 3 in Figure 7.6) and so on. The partition that each case arrives in we
will use as the predicted batch partition pn, where n is the number of partitions. These numbers
are decreasing towards BMi, since the actual time towards that moment is also decreasing and
would therefore be better interpretable for a machine learning algorithm.

Figure 7.6 shows how the arrival period BI ′i is partitioned into n = 4 equal parts and additionally
highlights the arrival of a case. In this example, we would create a feature with value 3 for case 1.

Running Example

From the previous step, we receive a set of prefixes P(-,SC),batch that are all subject to pattern
R =batch(e) in segment S =(-,SC). For each of these prefixes we are going to predict the time until
batching tR or the batch partition pn with n ∈ {4, 8, 10, 20}, which will in the end be used as input
d for model RM .

Deriving Context Parameters

For this we have applied the batch miner from [2], such that we can extract BMi, BIi and Wi,min

for each batch in the segment (-,Send for Credit Collection) of the RF log. The results are depicted
in Table A.1. We subsequently applied exponential smoothing using α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for
BIi and Wi,min and calculated the MAE of these forecasts. The results are depicted in Tables A.2
and A.3. We found α = 0.3 to have both the lowest MAE for Wmin as well as for BI and we will
use these forecasts to calculate the parameters of each current batch bi.

Predicting the time until the next batch

We have for each prefix in P(-,SC),batch predicted tR using the last batch moment BMi−1 and the
forecasts of the current batch BIi, Wi,min. To illustrate the result of these predictions, we have
created a new event log where we replaced the actual timestamps for Send for Credit Collection with
our predicted timestamps. This event log we loaded in the PSM and the results for the segment Add
Penalty:Send for Credit Collection are presented alongside the actual segment in Figure 7.7.

As can be seen, the forecasted batch moments and actual batch moments coincide quite nicely.
Unfortunately, somewhere after half of the time span we can see that there is quite a long batch
interval that our forecasts have not yet picked up on and there the batch moments do not correspond
to one another. But since our smoothing parameter of α = 0.4 assigns quite some weight to recent
observations, the long batch interval is picked up on and the length of the forecasted batch intervals

Explainable Remaining Time Prediction for Business Processes 53

CHAPTER 7. DERIVATION OF INTER-CASE FEATURES FOR BATCHING

increases a bit and as a result the forecasted batch moments coincide again with the actual batch
moments. We will report on exact errors of this method used in a remaining time prediction approach
in Chapter 9.

Figure 7.7: Performance spectrum of the actual (top) and estimated (bottom) timestamps for the
segment Add Penalty:Send for Credit Collection

Abstracting the time until the next batch

In addition to the tR, we also want to create features using the predicted batch partition pn. For
this we have predicted batch partitions using n ∈ {4, 8, 10, 20}. The results of this we unfortunately
cannot show on the PS.

As a result of these two methods and the pattern classification we retrieved in Section 7.3, we have
created a set of inter-case features d ∈ {tR, p4, p8, p10, p20}. The result of selecting one of these as an
additional feature for the remaining time prediction model will be presented in Section 9.1.

54 Explainable Remaining Time Prediction for Business Processes

Chapter 8

Derivation of an Inter-Case
Evaluation for Batching

In Chapter 6 we introduced a methodology to help identify inter-case patterns that cause high
prediction errors. In this chapter we will use these insights to derive an inter-case error evaluation,
which is the third step towards the inclusion of inter-case dynamics in the life cycle of remaining
time prediction as is indicated in Figure 5.1.

Currently, performance of remaining time prediction methods have solely been evaluated using the
MAE, which is an aggregate of all prediction errors of the remaining time. However, the inter-case
dynamics (such as batching) that were uncovered in Chapter 6 clearly very much dominate the
control-flow and case-level outcomes. Therefore, and also because we have presented methods for
including inter-case features, e.g. batching, in the prediction model, we deem it consistent that
predictions can be also measured from this batching perspective.

To manage that, we first want to introduce an additional measure that better respects these
batching dynamics that are part of a process, which will be presented in Section 8.1. Second, as
we have previously mentioned, the MAE of the predicted remaining time is just a single number and
does not give any meaningful insights into its underlying distribution. In Section 8.2 we introduce
the use of histograms to visualize the remaining time measurements and those of the measure we
introduce in Section 8.1. Finally, in Section 8.3 we will split up these sets of measurements into
those of cases that were part of a batch and those that were not part of a batch, such that we can
compare the performance among these two sets of cases.

8.1 Measuring Interdeparture Time

When we evaluate the accuracy of the remaining time prediction of a process by calculating the
MAE, we use a set of predicted remaining times and a set of actual remaining times and for each
case separately compare the actual value yP to the predicted value yP . However, as has been
discussed multiple times now, we are dealing with a process where it is inherent that cases behave
as a collective as opposed to in isolation. While separately these outcomes all say something about
a case individually, together they can say something about:

• The behavior of the process at a moment in time, e.g. a lot of cases to be predicted to end
at approximately the same time as a result of batching.

• The order of cases being processed, e.g. cases to be predicted to end in the same or reverse
order as a result of FIFO or LIFO, respectively.

Explainable Remaining Time Prediction for Business Processes 55

CHAPTER 8. DERIVATION OF AN INTER-CASE EVALUATION FOR BATCHING

Because we focus on batching we want to evaluate the first of these two; we want to evaluate if
cases that go through a segment with batching are generally predicted to end up closer together.
We want to do this my measuring the interdeparture time between cases, which is the amount
of time that lapses between two successive end times of cases in the process. An example of the
interdeparture time is illustrated on a PS segment in Figure 8.1, where the top of the segment is
the point of prediction ek and the bottom of the segment is the end of the process e|σ|.

For a set of predictions P = P1...Pn, we want to compare the interdeparture times of cases using
their actual end times to the interdeparture times of cases using their predicted end times. The
given predictions P = P1...Pn give n actual end times te|σ1| ...te|σn| and n predicted end times
te|σ1| ...te|σn| . If we sort the actual and the predicted end times, we obtain two sequences t1...tn
and t1...tn of actual and predicted end times, respectively. From these sequences we get n − 1
actual interdeparture times IDi = ti+1 − ti and predicted interdeparture times IDi = ti+1 − ti.

Figure 8.1: Illustration of interdeparture time measurements on the performance spectrum

As can already be seen in Figure 8.1, cases that are in the same batch have an interdeparture
time of 0, whereas cases in two subsequent batches have an interdeparture time equal to BIi
of the second batch. If the behavior of a process with batching is predicted accurately, then
the interdeparture times of the predicted outcomes must also reflect this, i.e. lots of near zero
interdeparture times and some long interdeparture times.

8.2 Introducing a Histogram-Based Evaluation

We have a set of predictions P = P1...Pn with n actual remaining times y1...yn and n predicted
remaining times y1...yn which we directly retrieved from model RM . We have also derived n− 1
actual interdeparture times ID1...IDn−1 and n − 1 predicted interdeparture times ID1...IDn−1
using the method in the previous section.

We now want to take both of these sets of measurements and compare the predicted against the
actual values. Instead of calculating the error for each P and aggregating this error over all P ,
we want to create histograms. This way we can avoid a one-on-one comparison of actual and
predicted outcomes that the interdeparture time measure does not allow, and, above all, it allows
us to gain insights into the underlying distributions.

We first create one histogram for all actual remaining times y1...yn and one histogram for all
predicted remaining times y1...yn. This could for example reveal that the outcomes of a prediction
model more or less converge to some mean, while in reality there is a large variance in these
outcomes, which we will also discover in our running example later on.

56 Explainable Remaining Time Prediction for Business Processes

CHAPTER 8. DERIVATION OF AN INTER-CASE EVALUATION FOR BATCHING

We also create histograms for all actual interdeparture times ID1...IDn−1 and one histogram
for the predicted interdeparture times ID1...IDn−1. If batching would be present, the actual
interdeparture times should reflect a high frequency of short interdeparture times (within a batch)
and some longer interdeparture times (between the batches), as also illustrated by ID in Figure
8.1. If the histogram of the predicted interdeparture times does not reflect this, it could indicate
that the prediction model has not detected the batching mechanism.

In addition to these histograms, we would also like to measure the difference between the distri-
butions of the predicted and actual outcomes. We aim to do this by calculating their statistical
distance by means of the earth mover’s distance emd.

Running Example

As discussed in Chapter 5, we have run model RMp,a,x from [4] for each prefix hdk(σ) ∈ Ltest with
k = 4, resulting in a set of predictions P4,test. We choose k = 4 because this is the step in the process
at which the batching occurs.

From P4,test we extract all actual and predicted remaining times and we calculate the actual and
predicted interdeparture times as described in Section 8.1. The histograms for y and y are depicted
in Figure 8.2 and the histograms for ID and ID are depicted in Figure 8.3

Figure 8.2: Histograms of y and y of P4,test retrieved using model RMp,a,x

Figure 8.3: Histograms of ID and ID of P4,test retrieved using model RMp,a,x

In Figure 8.2 we observe that y is mostly distributed between 0.2 ·108 and 0.7 ·108 with peaks around
0.45 · 108 and 0.55 · 108. While y has the same peak at around 0.45 · 108, it shows two other peaks at
0.05 ·108 and 0.65 ·108. Additionally, y also shows several observations between 0.8 ·108 and 1.1 ·108,
as opposed to y. As we already expected to see in this case for batching behavior, y shows a much
higher variance than y. We will elaborate more on this in the next running example section.

Explainable Remaining Time Prediction for Business Processes 57

CHAPTER 8. DERIVATION OF AN INTER-CASE EVALUATION FOR BATCHING

In Figure 8.3 we observe similar peaks close to 0 for both ID and ID. However, ID shows some
observations > 4000, while ID does not show observations > 550. This indicates a discrepancy in
departure behavior we will further elaborate on in Section 8.3.

For both of the underlying distributions of the predicted outcomes, we have also computed the
emd. For the distributions of the remaining time, emdy = 10 · 106 and for the interdeparture time,
emdID = 2.71. These values are additionally depicted in Figures 8.2 and 8.3. For now, we can make
no use of this metric, because we are currently only evaluating the baseline itself. Later it will be used
to evaluate and compare the performance of different created features in prediction model RMp,a,x.

8.3 Comparing Performance for Batched and Non-Batched
Cases

In Sections 8.1 and 8.2 we have introduced an additional measure for comparing predicted and
actual outcomes of the interdeparture time as well as those of the remaining time. We now want
to split up these sets of measurements into those of cases that were part of a batch and those that
were not part of a batch, such that we can evaluate the performance of a model RM specifically
for batched cases and non-batched cases. If we can see a clear difference in the distributions of
predicted outcomes for batched and non-batched cases, the prediction model was apparently able
to make a distinction. If this difference is substantial and reflects the characteristics of batching,
it could imply that the prediction model has picked up on the batching mechanism.

We have predictions P from a bucket B of predictions that we wish to evaluate. We need to select
the subset P∈R ⊆ P that will be batched and the subset P/∈R = P \P∈R that will not be batched.
To detect which cases will be in a batch, we will again use the batch miner from [2] to label each
P ∈ P after which we create the subsets based on this labeling.

We now have subsets P∈R = {P∈R,1...P∈R,l} and P/∈R = {P/∈R,1...P/∈R,m} with l + m = n that
have l predicted and actual remaining times of batched cases y∈R,1...y∈R,l and y∈R,1...y∈R,l and
m predicted and actual remaining times of non-batched cases y /∈R,1...y /∈R,m and y/∈R,1...y/∈R,m.
Then, using these four sets of measurements we again create histograms and calculate the emd,
such that we can evaluate the performance of the prediction model specifically for batched and
non-batched cases. Additionally, we calculate the MAE of the remaining time for batched cases
MAE∈R =

∑l
i=1(|y∈R,i − y∈R,i|)/l and non-batched cases MAE/∈R =

∑m
i=1(|y /∈R,i − y/∈R,i|)/m.

Next, following the method from Section 8.1, we derive for P∈R l−1 predicted and actual interde-
parture times ID∈R,1...ID∈R,l−1 and ID∈R,1...ID∈R,l−1 and derive for P/∈R m− 1 predicted and
actual interdeparture times ID/∈R,1...ID/∈R,m−1 and ID/∈R,1...ID/∈R,m−1. We use these four sets
of measurements again to create histograms and calculate the emd. Contrary to the remaining
time measure, we cannot calculate the MAE of the batches and non-batched interdeparture time,
because this measure does not allow for a one-on-one comparison.

Running Example

We take predictions P4,test from the previous running example in Section 8.2 and we use the batch
miner to split these up in subsets P4,test,∈R ⊆ P4,test that will be batched and the subset P4,test,/∈R =
P4,test \ P4,test,∈R. From each of these subsets we extract all actual and predicted remaining times
and we calculate the actual and predicted interdeparture times following the method described in
Section 8.1.

The histograms for the predicted and actual remaining times of batched cases, y∈R and y∈R, and of
non-batched cases, y/∈R and y/∈R, are depicted in Figure 8.4.

58 Explainable Remaining Time Prediction for Business Processes

CHAPTER 8. DERIVATION OF AN INTER-CASE EVALUATION FOR BATCHING

Figure 8.4: Histograms of y∈R and y∈R of P4,test,∈R and of y/∈R and y/∈R of P4,test,/∈R retrieved
using model RMp,a,x

In Figure 8.4 we can more clearly see where the differences we observed in Figure 8.2 originate from.
We see that the distributions of y∈R and y∈R are quite similar. They differ slightly, since y∈R shows
a higher peak at 0.45 · 108 than y∈R. Also, y∈R shows a second peak at 0.67 · 108, whereas y∈R
already shows its second peak at 0.55 · 108.

Contrarily, the distributions of y/∈R and y/∈R are completely different. The histogram for y/∈R shows
a distribution similar to that of y∈R, whereas the distribution of y/∈R is very much skewed to the left,
indicating that the remaining times outside of a batch are on average much shorter. We additionally
calculated the MAE of the remaining time for P4,test,∈R and P4,test,/∈R, which are 149.4 days and
330.5 days, respectively.

When we compare Figure 8.4 to Figure 8.2, we observe that distribution of y for model RMp,a,x

(Figure 8.2) resembles the distribution of y∈R more than the distribution of y/∈R, i.e. it ignores the
left tail of y/∈R in Figure 8.4. However, the peaks in y∈R are still in the wrong places compared to
y∈R.

In Figure 8.5 we have depicted the histograms for the predicted and actual interdeparture times of
batched cases, ID∈R and ID∈R, and of non-batched cases, ID/∈R and ID/∈R.

Similar to y∈R and y/∈R, the distributions of ID∈R and ID/∈R are also very much alike. We can also
spot a clear difference between the distributions of ID∈R and ID/∈R, just like we could earlier for
y∈R and y/∈R. We see that ID∈R is either 0 or > 9000, which is a result of all ID∈R within a single
batch and the remainder ID∈R between two batch instances, respectively.

Altogether, we discovered that the model RMp,a,x picks up on the high processing times of batched
cases and therefore on average predicts high remaining times for all cases. While this has a positive
effect on the model’s performance for batched cases, it results in overprediction of the non-batched
cases, as can also be seen from their MAE of 330.5 days. This has a negative effect on the overall
performance of model RMp,a,x. In terms of batching behavior, the model has not picked up on
the 0 length interdeparture times of batched cases, or the long interdeparture times between batch
instances.

Explainable Remaining Time Prediction for Business Processes 59

CHAPTER 8. DERIVATION OF AN INTER-CASE EVALUATION FOR BATCHING

Figure 8.5: Histograms of ID∈R and ID∈R of P4,test,∈R and of ID/∈R and ID/∈R of P4,test,/∈R
retrieved using model RMp,a,x

For all of the above methods, it is important to keep in mind the fact that these histograms are
only meant to compare how outcomes of a prediction model RM are distributed and not compare
the actual performance of RM . For instance, if two histograms that are compared show overlap,
this overlap is only the result of a similar frequency of that measurement, but does not imply a
one-on-one relation between the predictions that correspond to those measurements.

60 Explainable Remaining Time Prediction for Business Processes

Chapter 9

Empirical Evaluation

In the previous chapters we presented several methodologies to extend the life cycle of remaining
time prediction with. First, in Chapter 6 we introduced how to uncover inter-case mechanisms
that cause high prediction errors in a remaining time prediction model RM by performing a
fine-grained error analysis. In Chapter 7 we have shown how to use these insights to derive inter-
case features specifically for inter-case mechanisms caused by batching and in Chapter 8 we have
proposed additional inter-case evaluation steps that better respect these batching mechanisms.

In this chapter we will evaluate the results of these methodologies on our running example (method
(p, a, x) and RF log) and on other methods. We have already performed a fine-grained analysis on
the prediction results of the model (see running example in Chapter 6) and based on these insights,
i.e. presence of batching in the Send for Credit Collection activity, we have created several inter-
case features from which we can select one as an additional feature as input to method (p, a, x) (see
running example in Chapter 7). In Section 9.1 we will assess the quality of each of these features
based on the performance of method (p, a, x) with that selected feature using the evaluation steps
proposed in Chapter 8. When we have found the best performing inter-case feature, we will test
its performance on 17 additional methods in Section 9.2.

For the training and testing of the models for each of the inter-case features and prediction meth-
ods, we have again made used of the benchmark implementation available at https://github.
com/verenich/time-prediction-benchmark [4]. For the creation of the inter-case features, the
inter-case assessment and all other tasks we describe in the following, we have created additional
scripts in Python which are available at https://doi.org/10.5281/zenodo.3732446.

9.1 Evaluation of Inter-Case Features for Batching

In the running example of Chapter 7 we have illustrated how to build models CMS,R and TM
required to create an inter-case feature d(cR) for prefixes of k = 4 that capture the batching
mechanism R present in the segment S=(-,SC). Based on this method we created five inter-
case features d: the predicted time until batching tR and the predicted batch partition pn with
n ∈ {4, 8, 10, 20}.

The main aim of this section is to find the inter-case feature d(cR) that yields the best remaining
time prediction performance. Additionally, we also want to evaluate what happens when we have
perfect knowledge on whether a prefix will be in a batch, i.e the actual classification cR, or perfect
knowledge on the actual time until batching d = tR, or both. Therefore, we first create one

Explainable Remaining Time Prediction for Business Processes 61

https://github.com/verenich/time-prediction-benchmark
https://github.com/verenich/time-prediction-benchmark
https://doi.org/10.5281/zenodo.3732446

CHAPTER 9. EMPIRICAL EVALUATION

additional inter-case feature d = tR, which is the actual time until batching. We subsequently use
these six inter-case features (five inter-case features d and inter-case feature d) to derive five inter-
case features d(cR) and inter-case feature d(cR) based on the predicted pattern classification and
five inter-case features d(cR) and inter-case feature d(cR) based on the actual pattern classification.

To compare the performance of these inter-case features, we want to view the prediction method
(p, a, x) as a black box and create a different input configuration I per inter-case feature to use
as input to (p, a, x). In 9.1.1 we will evaluate the performance of method (p, a, x) for input
configurations I created for the features based on the predicted classification cR. In 9.1.2 we will
evaluate the performance of method (p, a, x) for different input configurations I created for the
inter-case features based on the actual classification cR.

9.1.1 Evaluation of Inter-Case Features Based on Predicted Classifica-
tion

We want to assess the performance of each of the inter-case features we created in the running
example of Section 7.4 based on the predicted classification cR. For this we used model CMS,R

to derive cR for each prefix hd4(σ) ∈ Ltrain ∪ Ltest. Based on this classification cR we derived
inter-case features d(cR) with d ∈ {tP , p4, p8, p10, p20} and "cheat" inter-case feature d(cR) with
d = tR, where tR is the true time until batching.

We first create baseline configuration I(0) = X1...Xn without an inter-case feature. Then, for each
inter-case feature d(cR) we create input configuration I(d(cR)) = X1...Xn, d(cR) and for inter-case
feature tR(cR) we create input configuration I(tR(cR)) = X1...Xn, tR(cR).

For using each input configuration I, we train a model RMp,a,x,I using prefixes hd4(σ) ∈ Ltrain
to predict label y. We subsequently deploy each model RMp,a,x,I to predict the remaining time
y for configuration I of prefixes hd4(σ) ∈ Ltest, resulting in |I| sets of predictions PI . Following
the inter-case evaluation from Chapter 8, we use these sets of predictions to calculate for each I
the MAEy, emdy and emdID for all cases, cases ∈ R and cases /∈ R, depicted in Table 9.1. We
additionally created histograms of y∈R, y /∈R, ID∈R and ID/∈R for all I, depicted in Appendix
B.1.1.

Table 9.1: Results of configurations I(0), I(d(cR)) with different inter-case features for d and I(tR(cR))
for method (p, a, x)

MAEy MAEy∈R MAEy/∈R emdy emdy∈R emdy/∈R emdID emdID∈R emdID/∈R

I(0) 202.92 149.37 330.46 9.99 ·106 3.29 ·106 2.72 ·107 3.62 3.52 7.32

I(tR(cR)) 236.32 183.07 363.15 1.14 ·107 4.31 ·106 2.97 ·107 4.19 3.49 7.36

I(p4(cR)) 219.60 165.32 348.89 1.02 ·107 3.65 ·106 2.85 ·107 3.78 3.19 6.74

I(p8(cR)) 184.19 120.70 335.43 9.56 ·106 3.40 ·106 2.76 ·107 3.96 3.71 5.98

I(p10(cR)) 180.06 117.64 330.93 9.07 ·106 3.91 ·106 2.72 ·107 3.64 3.56 5.42

I(p20(cR)) 181.38 118.85 330.32 9.42 ·106 3.29 ·106 2.72 ·107 4.13 3.61 6.91

I(tR(cR)) 91.18 35.97 222.69 5.04 ·106 2.23 ·106 1.77 ·107 3.71 3.47 6.77

In Table 9.1 we see that both I(tR(cR)) and I(p4(cR)) do not improve upon I(0) at all. In
Figures B.1 and B.2 we see that y∈R and y /∈R are both significantly more overpredicted than the
baseline I(0), which also explains that all MAEy and emdy values are higher for both of these
configurations. However, the emdID∈R of I(p4(cR)) is the lowest of all configurations, which we
can also detect in the corresponding histogram in Figure B.3, where it somehow detected a large
batch interval at around ID∈R = 8500, similar to the actual outcomes.

62 Explainable Remaining Time Prediction for Business Processes

CHAPTER 9. EMPIRICAL EVALUATION

In the results of Table 9.1, we can also observe that I(p8(cR)), I(p10(cR)) and I(p20(cR)) yield
comparable performance. In terms of the MAEy, MAEy∈R , MAEy/∈R , all of these configurations
improve upon I(0). We can see in Figures B.1 and B.2 that, contrary to I(tR(cR)) and I(p4(cR)),
the peaks in configurations I(p8(cR)), I(p10(cR)) and I(p20(cR)) are a bit more shifted towards
the left as is also the case for the actual outcomes. As for the interdeparture times, we can derive
from Table 9.1 that I(p8(cR)), I(p10(cR)) and I(p20(cR)) are all not able to improve upon I(0)
for emdID and emdID∈R , which is also reflected in Figure B.3. However, these configurations do
perform better than I(0) for emdID/∈R , as can also be seen in Figure B.4, where they are better
able to detect the shorter interdeparture times that emerge outside of a batch.

When we again consider Table 9.1, we see that I(p10(cR)) has the best overall performance of the
configurations with the predicted inter-case features. We want to compare this performance with
our cheat feature I(tR(cR)) and therefore we additionally depicted the results of y∈R, y /∈R, ID∈R
and ID/∈R for I(0), I(p10(cR)) and I(tR(cR)) in Figures 9.1 to 9.4.

Figure 9.1: Histograms of actual y∈R and predicted y∈R for I(0), I(tR(cR)) and I(p10(cR))

Figure 9.2: Histograms of actual y/∈R and predicted y/∈R for I(0), I(tR(cR)) and I(p10(cR))

In Table 9.1 we see for both the MAE and emd that I(tR(cR)) is able to capture y, y∈R and
y /∈R quite nicely, which is also reflected in the histograms in Figures 9.1 and 9.2. While the
distribution of y∈R for I(tR(cR)) closely resembles the actual distribution of y∈R, the distribution
of y /∈R still needs some shifting to the left for it to resemble the actual distribution of y/∈R. When
we compare I(0), I(p10(cR)) and I(tR(cR)) in Figures 9.1 and 9.2, we see that for both y∈R and
y/∈R, the distributions of I(p10(cR)) seem to lie somewhere in between those of I(0) and I(tR(cR)).
However, this is not reflected by the emdy∈R and emdy/∈R .

Similar to the other configurations, Figure 9.3 shows that I(p10(cR)) and I(tR(cR)) both have
distributions of ID∈R that less resemble the actual distribution than the distribution of I(0).
However, also similar to other configurations, Figure 9.4 shows that the distributions of ID/∈R
for I(p10(cR)) and I(tR(cR)) better resemble the actual distribution than the distribution of the
baseline, as is also reflected by the emdID/∈R .

Explainable Remaining Time Prediction for Business Processes 63

CHAPTER 9. EMPIRICAL EVALUATION

Figure 9.3: Histograms of actual ID∈R and predicted ID∈R for I(0), I(tR(cR)) and I(p10(cR))

Figure 9.4: Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(tR(cR)) and I(p10(cR))

9.1.2 Evaluation of Inter-Case Features Based on Actual Classification

In the previous section we assessed the performance of each of the inter-case features we created
in the running example of Section 7.4, based on their predicted classification cR. In this section
we want to make this assessment based on the actual classification cR. This way, we can evaluate
the influence of our predicted classification on the performance of the inter-case features d and
inter-case feature d.

For this we use the actual classification for each prefix hd4(σ) ∈ Ltrain ∪ Ltest. We again
derive inter-case features, this time using cR, resulting in inter-case features d(cR) with d ∈
{tP , p4, p8, p10, p20} and "cheat" inter-case feature d(cR) with d = tR, where tR is the true time
until batching.

For each inter-case feature d(cR) we create input configuration I(d(cR) = X1...Xn, d(cR) and for
inter-case feature tR(cR) we create input configuration I(tR(cR)) = X1...Xn, tR(cR).

For each input configuration I, we train a model RMp,a,x,I using configuration I of the prefixes
hd4(σ) ∈ Ltrain to predict label y. We subsequently deploy each model RMp,a,x,I to predict the
remaining time y for configuration I of prefixes hd4(σ) ∈ Ltest, resulting in |I| sets of predictions
PI . For each PI we calculate the MAEy, emdy and emdID for all cases, cases ∈ R and cases /∈ R,
depicted in Table 9.1. We additionally created histograms of y∈R, y /∈R, ID∈R and ID/∈R for all
I, depicted in Appendix B.1.2.

What first strikes is that the performance for y of almost all I(cR) in Table 9.2 is significantly
better than the performance of their counterparts I(cR) depicted in Table 9.1. This is of course no
surprise, since for this assessment we gave our configurations the actual information on whether
prefixes would be part of a pattern or not. For the best performing configuration of Table 9.1, i.e.
I(p10(cR)), we see that its corresponding configuration based on the actual pattern classification
I(p10(cR)) yields an error decrease of almost 40 days for the MAEy. We see that this is mostly due
to the error decrease of almost 125 days for the MAEy/∈R , as opposed to the slight error decrease
of only 4 days for the MAEy∈R . We see similar error decreases of MAEy, MAEy∈R and MAEy/∈R
for the other configurations I(cR) compared to their counterparts I(cR). However, for the emdID,

64 Explainable Remaining Time Prediction for Business Processes

CHAPTER 9. EMPIRICAL EVALUATION

Table 9.2: Results of configurations I(0), I(d(cR)) with different inter-case features for d and I(tR(cR))
for method (p, a, x)

MAEy MAEy∈R MAEy/∈R emdy emdy∈R emdy/∈R emdID emdID∈R emdID/∈R

I(p10(cR)) 180.06 117.64 330.93 9.07 ·106 3.91 ·106 2.72 ·107 3.64 3.56 5.42

I(tR(cR)) 178.64 166.53 207.49 8.14 ·106 6.64 ·106 1.31 ·107 3.81 3.02 7.34

I(p4(cR)) 180.08 167.26 210.60 7.41 ·106 5.48 ·106 1.34 ·107 4.14 3.73 7.01

I(p8(cR)) 142.10 114.30 208.32 6.74 ·106 4.61 ·106 1.33 ·107 4.07 3.65 6.80

I(p10(cR)) 140.88 113.35 206.45 6.96 ·106 4.95 ·106 1.32 ·107 3.88 3.66 6.26

I(p20(cR)) 140.38 111.57 209.01 6.67 ·106 4.49 ·106 1.33 ·107 3.88 3.35 7.08

I(tR(cR)) 67.8 11.78 201.36 3.77 ·106 4.01 ·105 1.26 ·107 4.38 3.30 9.04

emdID∈R and emdID/∈R , we see a decrease in performance for almost all of the configurations,
of which the most significant decrease is that of emdID/∈R . Even more surprising, the largest
performance decrease of emdID/∈R is for configuration I(tr(cR)), which is actually the most precise
inter-case feature we have used, i.e. the actual time until batching based on the actual pattern
classification.

What we secondly observe is that the performance differences among configurations I(cR) (see
Table 9.1) are quite similar to the performance differences among configurations I(cR) that we
see in Table 9.2. We again see that I(tR(cR)) and I(p4(cR)) are the worst performing, as is also
similarly reflected in Figures B.5 and B.6. But also in this assessment, one of these two configur-
ations (this time I(tR)(cR)) performs best in terms of emdID∈R (in 9.1.1 this was configuration
I(p4)(cR)).

In Table 9.1 we can also spot similarities for I(p8(cR)), I(p10(cR)) and I(p20(cR)), among which the
performance is quite similar, just as in Table 9.1. We also see these similarities for the distributions
of remaining times in Figures B.5 and B.6 as well as for the distributions of the interdeparture
times in Figures B.7 and B.8. Again here, I(p10(cR)) and I(p20(cR)) are the best performing (of
the configurations that used a prediction d). Since the configuration with p10 was also the best
performing of those derived from cR, we will here stick with I(p10(cR)) as the best performing
configuration.

We additionally depicted the results of y∈R, y /∈R for the baseline I(0), I(p10(cR)) and the con-
figuration with the cheat inter-case feature I(tr(cR)) in Figures 9.5 and 9.6. Interestingly, the
distributions of y∈R for the configurations based on the actual classifications cR resemble the
actual outcomes less than the distributions of y∈R for the configurations based on the predicted
classifications cR, which is also reflected by the higher emdy∈R . However, the distributions of y /∈R
did shift more towards the actual distribution, as is also reflected by the lower emdy/∈R .

Figure 9.5: Histograms of actual y∈R and predicted y∈R for I(0), I(tR(cR)) and I(p10(cR))

Explainable Remaining Time Prediction for Business Processes 65

CHAPTER 9. EMPIRICAL EVALUATION

Figure 9.6: Histograms of actual y/∈R and predicted y/∈R for I(0), I(tR(cR)) and I(p10(cR))

9.1.3 General Observations

In the previous subsections we have contrasted the performance of different input configurations
I using a variety of evaluation measurements and histograms. These input configurations in their
turn included a variety of inter-case features that allowed us to assess the performance of these
inter-case features on a remaining time prediction method (p, a, x). Based on this assessment,
we first discuss some general observations regarding the accuracy of the inter-case features itself
and thereby also the influence of the models CMS,R and TM on the accuracy of these features.
Second, we discuss the inter-case features created using both model CMS,R and TM and motivate
the choice for the final inter-case feature we will use in the next section. For completeness, we
additionally created an OPS and OPS’ that correspond to the results of each created feature,
which can be found in Appendix B.2 and Figures 9.7 to 9.10.

Feature accuracy

In Section 9.1 we have generally observed that if we provide the remaining time prediction model
with more accurate information on the batching mechanism, i.e. information on whether a prefix
will be part of a batch or how long the prefix will be in a batch, the performance of the model
increases. This makes sense, because predicting something based on something that is actually
incorrect will most likely also lead to incorrect outcomes. We see this for our cheat features based
on the actual classifications cR, for our cheat features with the actual time until batching tR and
even more so for our feature tR(cR) that has both.

Furthermore, we have observed that if we give the model more (accurate) information on the
time until batching, the model’s performance predominantly increases for batched cases. We first
observe this in Table 9.1, where the MAEy∈R decreases when we add predictions of the time
until batching/batch partition, while the MAEy/∈R stays the same (or increases slightly). We also
observe this in Table 9.2, where the MAEy∈R decreases significantly when we use the actual time
until batching tR, while the MAEy/∈R only decreases slightly.

Conversely, when we give the model more certainty on whether a case is in a pattern of not,
i.e. we give the actual classification cR, we observe a significant increase in performance for the
non-batched cases. Specifically, when we compare the MAEy/∈R of configurations I(cR) from Table
9.1 to those of classifications I(cR) from Table 9.2, we observe a decrease of roughly 120 days on
average. Additionally, when we compare the emdy/∈R from Table 9.1 to the corresponding emdy/∈R
from Table 9.2 we also observe a significant decrease.

All of the above concerns results of configurations that carry information that we in reality never
have up front, but it does give us a perspective on what is the ideal situation and what more
can still be gained. Therefore, we want to contrast the results of the best performing non-cheat
inter-case feature p10(cR) with more "ideal" results, e.g. p10(cR), tR(cR) and tR(cR). The OPS’
for the results of these configurations are depicted in Figures 9.7 to 9.10.

66 Explainable Remaining Time Prediction for Business Processes

CHAPTER 9. EMPIRICAL EVALUATION

Figure 9.7: OPS’ of predictions I(p10(cR)) for segment Add Penalty:Send for Credit Collection for
k = 4

Figure 9.8: OPS’ of predictions I(p10(cR)) for segment Add Penalty:Send for Credit Collection for
k = 4

Figure 9.9: OPS’ of predictions I(tR(cR)) for segment Add Penalty:Send for Credit Collection for k = 4

Figure 9.10: OPS’ of predictions I(tR)(cR) for segment Add Penalty:Send for Credit Collection for
k = 4

Unfortunately, from the predictions in the OPS’ in Figure 9.7 we observe that the model for
configuration I(p10(cR)) was still not able to pick up on the batching pattern, similar to our baseline
configuration (see Figure 6.12). While Figure 9.7 does show predictions going faster than others

Explainable Remaining Time Prediction for Business Processes 67

CHAPTER 9. EMPIRICAL EVALUATION

(as is also the case with batching), these do not coincide with the actual outcomes, nor do they
converge in a similar way. When we consider the result of the corresponding configuration based
on the actual classification I(p10(cR)) in Figure 9.8, we observe that the predictions converge a bit
more, but they still do not form a batching pattern. However, the predictions of our configurations
with the actual time until batching tR in Figures 9.9 and 9.10 do form clear batching patterns. In
Figure 9.9 we can see that some predictions still not form a batching pattern, which is most likely
a result of the use of the predicted classification cR. However, in Figure 9.9 we do see that the
predictions that do not form a batch are predicted to go faster than the predictions in Figures 9.7
and 9.8 that also do not form a batch, meaning that the model with configuration I(tR(cR)), is
already better able to distinguish the differences in remaining time for batched and non-batched
cases. In Figure 9.10 we see the results of our ideal input configuration using the actual time until
batching tR and the actual classification cR, of which the predictions form a clear batching pattern
that closely resembles the actual batching pattern.

Prediction based inter-case features

We first found that the inter-case feature tR, i.e. the prediction of the remaining time until
batching, is the worst performing feature we created (both using cR and cR). We think this is
because it is a prediction in time units, which takes a lot of different values in a very large range,
and is therefore hard to interpret for a machine learning algorithm. However, the cheat feature
tR with the actual time until batching, which also takes values in time units, did yield good
performance results. Based on this we assume that the combination of a value in time units and
the fact that these values are predictions themselves, results in a decrease in performance.

Contrarily, the machine learning algorithm seems to react quite well to the inter-case features
based on batch partitions pn. Where the performance for p4 was almost as bad as that for tR,
the performance improved when we used more partitions, i.e. larger n. However, when we used
n = 20 the performance started to decrease slightly. Based on this we assume that we need a
certain level of abstraction, i.e. not too many partitions, but a too low level of abstraction, such
as n = 4, will not provide the model with the information necessary for predicting the remaining
process time.

While some features clearly led to better performance than others, we still do not see a lot of
difference when we compare the OPS and OPS’ visualization in Figures B.9 to B.18 and we most
definitely do not see the predictions forming a batching pattern in any of these visualizations.
When we compare the created features d based on the actual classification cR in Figures B.21
to B.30, we do see that the predictions of the inter-case features d = pn with higher n already
start to converge a bit more like a batching pattern. While the predictions still do not resemble a
batching pattern, the configuration I(p10) yielded the best performance out of the configurations
created using both model CMS,R and TM and we will therefore use this configuration to evaluate
its performance on other remaining time prediction methods.

9.2 Evaluation of Inter-Case Feature on Additional Remain-
ing Time Prediction Methods

In Section 9.1 we have evaluated the performance of different inter-case features on remaining time
prediction method (p, a, x). Based on this evaluation, we have selected configuration I(p10(cR)),
which consists out of features X1...Xn, p10(cR) where p10(cR) is the inter-case feature created
based on a predicted classification cR using model CMS,R and a predicted batch partition p10
using model TM . This configuration yielded an overall performance increase of 22.86 days for the
MAEy.

68 Explainable Remaining Time Prediction for Business Processes

CHAPTER 9. EMPIRICAL EVALUATION

In this section we want to evaluate how this configuration performs on other remaining time
prediction methods. For this we will again use the benchmark implementation from [4], which
consists of different bucketing methods, encoding methods and machine learning (ML) algorithms.
We have selected the cluster-, prefix- and single bucketing methods, the aggregate-, index- and last
state encoding methods (see Section 3.5) and the extreme gradient boosting and random forest
ML algorithms (see Section 3.6). By using combinations of each of these bucketing methods B,
encoding methods E and ML algorithms A, we derived 17 additional remaining time prediction
methods (B,E,A) (we already used the method with prefix bucketing p, aggregate encoding a
and extreme gradient boosting x, i.e. (p, a, x), in our running example and Section 9.1).

We want to evaluate the performance of configuration I(p10(cR)) on each of these methods
(B,E,A) by comparing it to the performance of our baseline I(0). For each input configur-
ation I ∈ {I(0), I(p10(cR))} and method (B,E,A), we train remaining time prediction model
RMB,E,A,I using configuration I of the prefixes hd4(σ) ∈ Ltrain to predict label y. We sub-
sequently deploy each model RMB,E,A,I to predict the remaining time y for configuration I of
prefixes hd4(σ) ∈ Ltest, resulting in 2 sets of predictions PI for each method (B,E,A). For all
these sets of predictions we have calculated the overall MAE, depicted in Table 9.3.

Table 9.3: MAE of remaining time prediction methods (B,E,A) using baseline configuration I(0) and
inter-case configuration I(p10(cR)) for k = 4

Method Bucketing Encoding ML Algorithm I(0) I(p10)

(c, a, x) Cluster Aggregate Xgboost 196.50 182.07
(c, i, x) Cluster Index Xgboost 202.64 186.35
(c, l, x) Cluster Laststate Xgboost 191.77 183.27
(p, a, x) Prefix Aggregate Xgboost 202.92 180.06
(p, i, x) Prefix Index Xgboost 197.90 192.84
(p, l, x) Prefix Laststate Xgboost 200.27 183.14
(s, a, x) Single Aggregate Xgboost 200.26 197.95
(s, i, x) Single Index Xgboost 199.40 208.45
(s, l, x) Single Laststate Xgboost 186.36 192.12
(c, a, r) Cluster Aggregate Random forest 200.73 179.74
(c, i, r) Cluster Index Random forest 202.15 202.19
(c, l, r) Cluster Laststate Random forest 226.38 199.98
(p, a, r) Prefix Aggregate Random forest 201.89 180.71
(p, i, r) Prefix Index Random forest 204.96 200.77
(p, l, r) Prefix Laststate Random forest 225.47 203.86
(s, a, r) Single Aggregate Random forest 201.87 195.53
(s, i, r) Single Index Random forest 206.04 211.90
(s, l, r) Single Laststate Random forest 230.25 203.04

Our general observation from Table 9.3 is that the inter-case configuration leads to an increase
in performance for almost all methods (B,E,A). This increase in performance varies from a
somewhat insignificant MAE decrease of only 2.31 days for method (s, a, x) to a MAE decrease of
27.21 days for method (s, l, r).

We observe that methods including cluster bucketing or prefix bucketing all lead to increases in
performance when using the inter-case configuration. However, methods including single bucketing
show varying results. While (s, l, r) shows the most significant MAE decrease for all methods,
(s, i, x), (s, l, x) and (s, i, r) show an increase of the MAE varying from roughly 5 to 9 days.
Apparently, the performance of a method where prefixes are partitioned into a single bucket
highly depends on the encoding method or ML algorithm. In terms of encoding methods, we

Explainable Remaining Time Prediction for Business Processes 69

CHAPTER 9. EMPIRICAL EVALUATION

observe the most significant performance increases when aggregate or last state encoding is used,
as is the case for methods (p, a, x), (c, a, r), (c, l, r), (p, a, r), (p, l, r) and (s, l, r), where we see
at least a decrease of 20 days for the MAE. Of these two encoding methods, aggregate encoding
exclusively leads to error decreases, while last state encoding in some cases results in some error
increases. As for index encoding, only the method (c, i, x) shows a significant performance increase
when using the inter-case configuration, while the other methods with index encoding show similar
performance or decreases in performance.

When considering the bucketing and encoding methods together, we observe that the combina-
tions (c, a,A), (c, l, A), (p, a,A), (p, l, A) all lead to significant performance increases, while the
combination (s, i, A) always results in a performance decrease. We think that the partitioning
of prefixes into buckets with other similar prefixes (either based on prefix-length or based on a
cluster), already gives the bucket of prefixes some structure that later positively influences the
effect of the inter-case feature. For instance in the current situation, where we have created a
feature for prefixes of length k = 4 and we use prefix-length buckets, we already have filtered out
a lot of prefixes for which we do not need this inter-case feature, making it better interpretable
for the ML algorithm. In the case of using a single bucket, the ML algorithm receives prefixes of
varying lengths and with varying characteristics. If some of these prefixes have inter-case features
and some have not, the ML algorithm will have a much harder time making a distinction than it
would in the case where irrelevant prefixes have already been filtered out.

When we consider the two ML algorithms, we observe that extreme gradient boosting in general
performs better than random forest. When we compare the performance for I(0) to that for
I(p10(cR)), we see that performance increases are on average higher when using random forest.
Apart from that, we see similar increases/decreases in performance among the two ML algorithms
depending on the bucketing and encoding methods. We think this is not surprising, since random
forest and extreme gradient boosting are both tree ensemble methods. While they still differ in
the way the trees are built, we do not think that this difference in structure significantly influences
the interpretation of the inter-case feature.

70 Explainable Remaining Time Prediction for Business Processes

Chapter 10

Conclusions

In this thesis, we have analyzed the state of the art in remaining time prediction along the phases
of the CRISP-DM life cycle and observed that this life cycle is adopted under the wrong assump-
tion that cases progress in isolation. We have shown how this intra-case perspective results in
inadequate models and inadequate predictions. Based on this, we addressed the need for the
awareness of inter-case dynamics in the life cycle of remaining time prediction.

We have made an inventory of the steps necessary to increase awareness of inter-case dynamics
in this life cycle. Based on this we first presented methods for an inter-case error analysis that
together enable a trigger of an inter-case dynamic aware feedback loop. We subsequently presented
methods that transfer these inter-case insights into the main life cycle, specifically aimed at inter-
case dynamics caused by batching. For this we introduced methods for inter-case feature creation
for batching and an inter-case evaluation for batching.

We have applied these methods to a primary remaining time prediction approach and were able
to identify subsets of cases subject to inter-case dynamics caused by batching that led to an
inadequate model and inadequate predictions. Based on these subsets and their characteristics
we were able to create inter-case features and an inter-case evaluation that better respect these
inter-case dynamics caused by batching. We evaluated the performance of the different inter-case
features using the inter-case evaluation and were able to better explain the influence of inter-case
dynamics on the prediction outcomes and, using the best performing inter-case feature, were able
to decrease the MAE of the primary remaining time prediction method by 22.86 days. We finally
evaluated the performance of this best performing inter-case feature on 17 other remaining time
prediction methods and were able to decrease the MAE for 14 of these methods and decrease the
MAE with more than 15 days for 8 of these. Based on this we consider our main and sub-research
questions answered and our research objective fulfilled.

Despite the previous, we still want to address the following. In this thesis, we have come up with
methods to increase inter-case awareness in case-centered prediction models that use case-centered
features and output case specific prediction results. This feels a bit contradicting, given that inter-
case dynamics are not case specific, but they actually apply to all cases together. Because of this,
we think it is necessary to consider whether it is in some situations, e.g. certain types of processes
or certain types of organizations, even logical to try to predict case-specific outcomes. This is of
course an entirely new research problem in itself, but it does give us some food for thought on the
way remaining time prediction - and PPM in general - is currently approached.

Explainable Remaining Time Prediction for Business Processes 71

CHAPTER 10. CONCLUSIONS

10.1 Limitations

The first limitation is one of validity. While all data sets and method implementations used in
this thesis are available and all results and visualizations are thus reproducible, the interpretations
of those might not be. This concerns the OPS visualizations that have up until now only been
analyzed in this research and therefore the interpretation in this thesis is currently the only one.
While this process can still be carried out quite systematically, these inter-case patterns still need
to be deducted visually, leading to a possible different interpretation if this process were to be
carried out by someone else.

The second limitation concerns the earliness of the predictions we make. Since one of the main
goals of predictive process monitoring concerns the timely identification of errors, bottlenecks and
other deviations, the aim of most methods is to improve prediction performance early on, i.e. for
cases that have not yet progressed far into the process. For the specific case of the RF log, we
observed inter-case dynamics caused by batching that at the earliest occur after the fourth activity
in the process. For this reason we only created features for prefixes that are at the start of this
step, i.e. k = 4 and as a result do not improve prediction performance for prefixes of length k < 4.
It would be better to incorporate this feature also for smaller prefix-lengths, but in these cases, we
do not yet know the exact arrival time of that case within a batching pattern. Since this arrival
time is crucial when predicting how a case progresses subject to batching, we are at the moment
not yet able to incorporate such inter-case features prior to the start of such mechanisms.

The third limitation, somewhat related to the previous, is that our method is currently very
much limited to creating features for mechanisms that arise towards the end of a process. This
is due to the fact that we are dealing with remaining time prediction and those predictions only
concern the end of the process, not the steps in between. Because of the output of this type
of prediction, i.e. a single number for the remaining time, the overlaid performance spectrum
also only visualizes these predictions until the end, not until the end of certain activities. As a
result, if an inter-case mechanism occurs early on in the process and a lot of activities still need
to occur, its corresponding pattern might very well not even be reflected anymore in the end, as
was the case with the batching pattern in the segment Create Fine:Send Fine, making it hard
to determine whether that mechanism is the cause of a high prediction error. If we were able to
know the predicted remaining time of a case within a segment, we would be much better able to
analyze whether the high prediction error is caused by the mechanism in that particular segment.
However, this would be remaining time prediction until the next step and not remaining cycle time
prediction until the end of the process. In that sense, the fact that we are dealing with remaining
time prediction until the end of the process limits the degree in which we can perform an inter-case
error analysis.

10.2 Future Work

A first direction for future work is to improve the accuracy of the current created inter-case
features. As we have shown, we were able to improve the prediction error using these features.
However, for their creation, we first used a classification model and on top of it, we used a model
that predicts the time until batching. Both of these prediction models already produce an error
on their own, but when put on top of one another, these errors pile up. We have also evaluated
more ideal scenario’s in which we provided the inter-case features with more accurate information
on the batching mechanisms. An avenue for future work would be to improve these prediction
components, or even completely replace them with something different, to get closer to the desired
situation we have sketched with these more accurate inter-case features.

72 Explainable Remaining Time Prediction for Business Processes

CHAPTER 10. CONCLUSIONS

A second direction for future work is to apply the proposed methods to other types of remaining
time prediction approaches. In this thesis, we have specifically addressed approaches with different
bucketing and encoding techniques, but in the end, all were based on a machine learning algorithm.
As we have already discussed, there are also approaches based on process model representations,
neural networks or other modeling techniques. Testing the techniques proposed in this thesis on
other methods would increase their validity.

A third direction for future work is the inclusion of other inter-case dynamics to the life cycle of
remaining time prediction. The pattern taxonomy in [1] already defines a lot more patterns other
than batching that are worthy to investigate. For example in an instance of the LIFO pattern,
where the order of cases is actually switched around and where, as a result, the first arriving
case waits the longest and the last arriving case waits the shortest. If current remaining time
prediction approaches are not aware of batching mechanisms, they will most likely also not be
aware of LIFO mechanisms. The inclusion of other types of inter-case patterns might very well
increase the prediction performance of remaining time prediction methods as well.

A fourth direction is to address the problem of not only making predictive process monitoring more
explainable w.r.t. dynamics between process instances, but also w.r.t. other types of dynamics.
These process instances not only rely on each other and on resources, but also on materials, other
systems and even on other processes for that matter, which cannot be discovered when analyzing
the path of a single case. As the process analytics literature lacks concepts and models for such
multi-dimensional process dynamics, a future avenue would be to make a start with deriving these
patterns and concepts that can describe these multi-dimensional process dynamics from event
data.

Explainable Remaining Time Prediction for Business Processes 73

Bibliography

[1] V. Denisov, D. Fahland, and W. M. P. van der Aalst, “Unbiased, Fine-Grained Description
of Processes Performance from Event Data,” in BPM 2018, vol. 11080 of LNCS, pp. 139–157,
Springer, 2018. xii, 6, 7, 22, 34, 38, 39, 73

[2] E. L. Klijn and D. Fahland, “Performance Mining for Batch Processing Using the Performance
Spectrum,” Lecture Notes in Business Information Processing, vol. 362 LNBIP, pp. 172–185,
2019. xvii, 23, 49, 50, 51, 53, 58, 82

[3] M. zur Muehlen and R. Shapiro, Business Process Analytics, pp. 137–157. Springer Berlin
Heidelberg, 08 2010. 1

[4] I. Verenich, M. Dumas, M. La Rosa, F. M. Maggi, and I. Teinemaa, “Survey and Cross-
Benchmark Comparison of Remaining Time Prediction Methods in Business Process Monit-
oring,” ACM Trans. Intell. Syst. Technol., vol. 10, July 2019. 1, 2, 10, 11, 12, 13, 14, 16, 17,
18, 21, 29, 40, 57, 61, 69

[5] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business Process
Management. Springer, 2013. 1

[6] D. T. Larose and C. T. Larose, Discovering Knowledge in Data: An Introduction to Data
Mining. USA: Wiley-Interscience, 2014. 1

[7] N. Tax, I. Verenich, M. La Rosa, and M. Dumas, “Predictive Business Process Monitoring with
LSTM Neural Networks,” in Proceedings of the 29th International Conference on Advanced
Information Systems Engineering (CAiSE), pp. 477–492, Springer, 2017. 2, 11, 13, 15, 16,
22, 48

[8] V. Denisov, E. Belkina, D. Fahland, and W. M. P. van der Aalst, “The Performance Spectrum
Miner: Visual Analytics for Fine-Grained Performance Analysis of Processes,” in BPM 2018
Demos, vol. 2196 of CEUR Workshop Proceedings, pp. 96–100, CEUR-WS.org, 2018. 2, 22,
51

[9] W. M. P. van der Aalst, Process Mining: Data Science in Action. Springer, 2 ed., 2016. 5, 16

[10] R. Khanna and M. Awad, Efficient Learning Machines: Theories, Concepts, and Applications
for Engineers and System Designers. Apress, 04 2015. 7

[11] D. Sarkar, R. Bali, and T. Sharma, Practical Machine Learning with Python: A Problem-
Solver’s Guide to Building Real-World Intelligent Systems. USA: Apress, 1st ed., 2017. 9, 11,
16, 17, 49

[12] M. De Leoni and F. Mannhardt, “Road Traffic Fine Management Process.” Dataset, 2015.
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5. 10

Explainable Remaining Time Prediction for Business Processes 75

BIBLIOGRAPHY

[13] E. Cesario, F. Folino, M. Guarascio, and L. Pontieri, “A Cloud-Based Prediction Framework
for Analyzing Business Process Performances.,” in CD-ARES, vol. 9817 of Lecture Notes in
Computer Science, pp. 63–80, Springer, 2016. 11, 15

[14] A. Rogge-Solti and M. Weske, “Prediction of Business Process Durations Using Non-
Markovian Stochastic Petri Nets,” Information Systems, vol. 54, pp. 1–14, 2015. 11, 13,
15, 16

[15] W. M. P. van der Aalst, M. H. Schonenberg, and M. Song, “Time Prediction Based on Process
Mining,” Information Systems, vol. 36, no. 2, pp. 450–475, 2011. 11, 15, 16

[16] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni, “Time and Activity Sequence Predic-
tion of Business Process Instances,” Computing, vol. 100, pp. 1005–1031, 2016. 11, 15, 16,
48

[17] I. Verenich, H. Nguyen, M. La Rosa, and M. Dumas, “White-Box Prediction of Process Per-
formance Indicators via Flow Analysis,” in Proceedings of the 2017 International Conference
on Software and System Process, ICSSP 2017, pp. 85–94, Association for Computing Ma-
chinery, 2017. 11, 15, 16

[18] A. Senderovich, M. Weidlich, A. Gal, and A. Mandelbaum, “Queue Mining for Delay Predic-
tion in Multi-Class Service Processes,” Information Systems, vol. 53, pp. 278–295, 2015. 11,
16

[19] F. Folino, M. Guarascio, and L. Pontieri, “Discovering Context-Aware Models for Predicting
Business Process Performances,” in On the Move to Meaningful Internet Systems: OTM 2012,
(Berlin, Heidelberg), pp. 287–304, Springer Berlin Heidelberg, 2012. 11, 12, 15, 16

[20] M. De Leoni, W. M. P. van der Aalst, and M. Dees, “A General Process Mining Framework for
Correlating, Predicting and Clustering Dynamic Behavior Based on Event Logs,” Information
Systems, vol. 56, pp. 235–257, 2016. 11, 15, 16

[21] A. Senderovich, C. Di Francescomarino, and F. M. Maggi, “From Knowledge-Driven to Data-
Driven Inter-Case Feature Encoding in Predictive Process Monitoring,” Information Systems,
vol. 84, pp. 255–264, 2019. 11, 12, 13, 15, 16

[22] C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015. 12, 13, 14

[23] A. Zheng and A. Casari, Feature Engineering for Machine Learning: Principles and Tech-
niques for Data Scientists. Wiley & Sons, 2nd ed., 2018. 13

[24] I. Teinemaa, M. Dumas, M. La Rosa, and F. M. Maggi, “Outcome-Oriented Predictive Process
Monitoring: Review and Benchmark,” ACM Transactions on Knowledge Discovery from Data,
vol. 13, no. 2, pp. 1–57, 2019. 14, 15, 49

[25] I. Verenich, Explainable Predictive Monitoring of Temporal Measures of Business Processes.
PhD thesis, Queensland University of Technology, 2018. 15

[26] R. Andrews, S. Suriadi, M. T. Wynn, A. H. ter Hofstede, A. Pika, H. H. Nguyen, and
M. La Rosa, “Comparing Static and Dynamic Aspects of Patient Flows via Process Model
Visualisations,” 2016. 15

[27] B. F. van Dongen, R. A. Crooy, and W. M. P. van der Aalst, “Cycle Time Prediction: When
Will This Case Finally Be Finished?,” Lecture Notes in Computer Science, vol. 5331 LNCS,
pp. 319–336, 2008. 15

[28] A. Leontjeva, R. Conforti, C. Di Francescomarino, M. Dumas, and F. M. Maggi, “Complex
Symbolic Sequence Encodings for Predictive Monitoring of Business Processes,” in Business
Process Management, vol. 1, pp. 297–313, 2015. 15

76 Explainable Remaining Time Prediction for Business Processes

BIBLIOGRAPHY

[29] A. Pika, W. M. P. van der Aalst, C. J. Fidge, A. H. M. ter Hofstede, and M. T. Wynn, “Pre-
dicting deadline transgressions using event logs,” in Business Process Management Workshops
(M. La Rosa and P. Soffer, eds.), (Berlin, Heidelberg), pp. 211–216, Springer Berlin Heidel-
berg, 2013. 16

[30] A. Pika, W. M. P. van der Aalst, C. J. Fidge, A. H. M. ter Hofstede, and M. T. Wynn,
“Profiling event logs to configure risk indicators for process delays,” in Advanced Information
Systems Engineering (C. Salinesi, M. C. Norrie, and Ó. Pastor, eds.), (Berlin, Heidelberg),
pp. 465–481, Springer Berlin Heidelberg, 2013. 16

[31] J. P. Mueller and L. Massaron, “Machine learning: Creating your own features in data.” 45

[32] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting. Springer,
3rd ed., 2016. 51

Explainable Remaining Time Prediction for Business Processes 77

Appendix A

Methodology Results of Running
Example

A.1 OPS & OPS’ Visualizations of predictions of model RMp,a,x

Figure A.1: OPS of predictions of RMp,a,x for segment Send Fine:Insert Fine Notification for k = 2

Figure A.2: OPS’ of predictions of RMp,a,x for segment Send Fine:Insert Fine Notification for k = 2

Explainable Remaining Time Prediction for Business Processes 79

APPENDIX A. METHODOLOGY RESULTS OF RUNNING EXAMPLE

Figure A.3: OPS of predictions of RMp,a,x for segment Insert Fine Notification:Insert Date Appeal to
Prefecture for k = 3

Figure A.4: OPS’ of predictions of RMp,a,x for segment Insert Fine Notification:Insert Date Appeal to
Prefecture for k = 3

Figure A.5: OPS of predictions of RMp,a,x for segment Insert Date Appeal to Prefecture:Add Penalty
for k = 4

80 Explainable Remaining Time Prediction for Business Processes

APPENDIX A. METHODOLOGY RESULTS OF RUNNING EXAMPLE

Figure A.6: OPS’ of predictions of RMp,a,x for segment Insert Date Appeal to Prefecture:Add Penalty
for k = 4

Figure A.7: OPS of predictions of RMp,a,x for segment Payment:Send for Credit Collection for k = 5

Figure A.8: OPS’ of predictions of RMp,a,x for segment Payment:Send for Credit Collection for k = 5

Explainable Remaining Time Prediction for Business Processes 81

APPENDIX A. METHODOLOGY RESULTS OF RUNNING EXAMPLE

A.2 Batch Parameter Derivation for S=(-, Send for Credit
Collection) of RF Log

Table A.1: Batch parameter values for S = (-, Send for Credit Collection) of RF log, extracted with
batch miner [2]

i BMi BIi (days) Wi,min (days)

1 09-04-2001 23:00 - 315
2 09-04-2002 23:00 365 315
3 10-01-2003 00:00 275 225
4 10-01-2004 00:00 365 230
5 25-12-2004 00:00 350 209
6 28-02-2006 00:00 430 274
7 28-02-2007 00:00 365 274
8 29-03-2009 23:00 760 251
9 14-10-2010 23:00 564 412
10 25-03-2012 23:00 528 301
11 23-04-2013 23:00 394 330

Table A.2: BIi results of exponential smoothing with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for Ltrain & Ltest

i BIi α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

Ltrain 1* 365*
2 365 365.00 365.00 365.00 365.00 365.00
3 275 365.00 365.00 365.00 365.00 365.00
4 365 320.00 365.00 338.00 347.00 356.00
5 350 342.50 342.50 346.10 350.60 356.90
6 430 346.25 342.50 347.27 350.48 356.21
7 365 388.13 344.38 372.09 366.38 363.60
8 760 376.56 366.25 369.96 366.11 363.73
9 564 568.28 371.41 486.97 444.89 403.36

MAEtrain 91.01 91.01 96.83 100.36 105.43
Ltest 10 528 566.14 469.84 510.08 468.71 419.42

11 394 547.07 517.99 515.46 480.57 430.28
MAEtest 95.60 95.61 69.69 72.93 72.43

82 Explainable Remaining Time Prediction for Business Processes

APPENDIX A. METHODOLOGY RESULTS OF RUNNING EXAMPLE

Table A.3: W i,min results of exponential smoothing with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for Ltrain & Ltest

i Wi,min α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

Ltrain 0* 7560*
1 7560 7560.00 7560.00 7560.00 7560.00 7560.00
2 7560 7560.00 7560.00 7560.00 7560.00 7560.00
3 5401 7560.00 7560.00 7560.00 7560.00 7560.00
4 5521 6480.50 6696.40 6912.30 7128.20 7344.10
5 5017 6000.75 6226.24 6494.91 6806.76 7161.79
6 6577 5508.88 5742.54 6051.54 6448.81 6947.31
7 6577 6042.94 6076.31 6209.18 6474.45 6910.28
8 6024 6309.97 6276.60 6319.52 6494.96 6876.96
9 9888 6166.98 6175.56 6230.87 6400.77 6791.66

MAEtrain 1213.93 1230.48 1234.27 1218.11 1347.47
Ltest 10 7224 8027.50 7660.54 7328.01 7098.21 7101.29

11 7920 7625.75 7485.92 7296.80 7123.37 7113.56
MAEtest 548.87 435.31 363.60 461.21 464.57

Explainable Remaining Time Prediction for Business Processes 83

Appendix B

Inter-Case Feature Testing Results

This appendix chapter contains the results of the different input configurations I used for the
inter-case feature testing on method (p, a, x) in Section 9.1. Section B.1 contains the histogram
results and Section B.2 contains the OPS and OPS’ visualizations.

B.1 Histogram Results

This appendix section contains the histograms of different input configurations I. Section B.1.1
contains the results of the input configurations I(cR) that have inter-case features based on the
predicted classification and Section B.1.2 contains the results of the input configurations I(cR)
that have inter-case features based on the actual classification.

84 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

B.1.1 Histograms of configurations I(cR)

This subsection contains histograms of the actual and predicted remaining times of cases part of
a batch y∈R (Figure B.1) and cases not part of a batch y /∈R (Figure B.2) and histograms of the
actual and predicted interdeparture times of cases part of a batch ID∈R (Figure B.3) and cases
not part of a batch ID/∈R (Figure B.4).

Figure B.1: Histograms of actual y∈R and predicted y∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Figure B.2: Histograms of actual y/∈R and predicted y/∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Explainable Remaining Time Prediction for Business Processes 85

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.3: Histograms of actual ID∈R and predicted ID∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Figure B.4: Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

86 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

B.1.2 Histograms of configurations I(cR)

This subsection contains histograms of the actual and predicted remaining times of cases part of
a batch y∈R (Figure B.5) and cases not part of a batch y /∈R (Figure B.6) and histograms of the
actual and predicted interdeparture times of cases part of a batch ID∈R (Figure B.7) and cases
not part of a batch ID/∈R (Figure B.8).

Figure B.5: Histograms of actual y∈R and predicted y∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Figure B.6: Histograms of actual y/∈R and predicted y/∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Explainable Remaining Time Prediction for Business Processes 87

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.7: Histograms of actual ID∈R and predicted ID∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

Figure B.8: Histograms of actual ID/∈R and predicted ID/∈R for I(0), I(d(cR)) with different inter-case
features for d and I(tR(cR)) for method (p, a, x)

88 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

B.2 OPS and OPS’ Visualizations

Similar to Section B.1, this section contains the OPS and OPS’ results of different input config-
urations I. Section B.2.1 contains the results of the input configuration I(cR) and Section B.2.2
contains the results of the input configurations I(cR).

B.2.1 Results of configurations I(cR)

This subsection contains the OPS and OPS’ visualizations of PI of all input configurations I(cR).

Figure B.9: OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.10: OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.11: OPS of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Explainable Remaining Time Prediction for Business Processes 89

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.12: OPS’ of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.13: OPS of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.14: OPS’ of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.15: OPS of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

90 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.16: OPS’ of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.17: OPS of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.18: OPS’ of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.19: OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Explainable Remaining Time Prediction for Business Processes 91

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.20: OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

B.2.2 Results of I(cR)

This subsection contains the OPS and OPS’ visualizations of PI of all input configurations I(cR).

Figure B.21: OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.22: OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

92 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.23: OPS of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.24: OPS’ of predictions of I(p4(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.25: OPS of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.26: OPS’ of predictions of I(p8(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Explainable Remaining Time Prediction for Business Processes 93

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.27: OPS of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.28: OPS’ of predictions of I(p10(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.29: OPS of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.30: OPS’ of predictions of I(p20(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

94 Explainable Remaining Time Prediction for Business Processes

APPENDIX B. INTER-CASE FEATURE TESTING RESULTS

Figure B.31: OPS of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Figure B.32: OPS’ of predictions of I(tR(cR)) and method (p, a, x) for segment Add Penalty:Send for
Credit Collection for k = 4

Explainable Remaining Time Prediction for Business Processes 95

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Context
	Problem Statement & Research Questions
	Research Method, Outline & Results

	Preliminaries
	Process Mining
	The Performance Spectrum
	Machine Learning
	Predictive Process Monitoring

	The Life Cycle of Remaining Time Prediction
	Running Example
	Business Understanding
	Data Understanding
	Data Preparation Phase
	Data Cleaning
	Feature Engineering
	Feature Encoding

	Data Preparation for Remaining Time Prediction
	Prefix Bucketing
	Prefix Encoding

	Modeling Phase
	Evaluation Phase
	Feedback Loop
	Life Cycle for Remaining Time Prediction

	Shortcomings of Contemporary Remaining Time Prediction
	Business & Data Understanding Revisited
	Evaluation Revisited
	Shortcomings

	Including Inter-Case Features in the Remaining Time Prediction Life Cycle
	Fine-Grained Error Diagnosis
	Describing Individual Predictions
	Performance Spectrum with Error Progression
	Overlaid Performance Spectrum
	Subset & Subset Pattern Identification
	Select Segments
	Visualize & Inspect
	Diagnose

	Derivation of Inter-Case Features for Batching
	Inter-Case Feature Creation
	Next Segment Prediction
	Pattern Prediction
	Time To Batch Prediction
	Deriving Context for Batching
	Deriving Batch Context Parameters
	Predicting the Time Until the Next Batch
	Predicting the Batch Partition

	Derivation of an Inter-Case Evaluation for Batching
	Measuring Interdeparture Time
	Introducing a Histogram-Based Evaluation
	Comparing Performance for Batched and Non-Batched Cases

	Empirical Evaluation
	Evaluation of Inter-Case Features for Batching
	Evaluation of Inter-Case Features Based on Predicted Classification
	Evaluation of Inter-Case Features Based on Actual Classification
	General Observations

	Evaluation of Inter-Case Feature on Additional Remaining Time Prediction Methods

	Conclusions
	Limitations
	Future Work

	Bibliography
	Appendix
	Methodology Results of Running Example
	OPS & OPS' Visualizations of predictions of model
	Batch Parameter Derivation for =(-, Send for Credit Collection) of RF Log

	Inter-Case Feature Testing Results
	Histogram Results
	Histograms of configurations
	Histograms of configurations

	OPS and OPS' Visualizations
	Results of configurations
	Results of

