
 Eindhoven University of Technology

MASTER

Side-channel attacks on embedded cryptography libraries

Szanto, J.B.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/3fabd664-024f-498a-bb2d-699512879288

Eindhoven University of Technology

Department of Mathematics and Computer
Science

Side-channel attacks on embedded
cryptography libraries

Author:

Justin Szanto

Supervisors:

Dr. Boris �Skori¢

Dr. Georgios Selimis

Dr. Roel Maes

Defence date: April 17, 2020

Abstract

The topic of this thesis is side-channel analysis (SCA) of cryptography on em-
bedded devices. In this thesis we investigated the SCA resistance of two popular
embedded cryptography libraries; mbedTLS and MicroECC. We explore the use
of TVLA as a testing methodology for side-channel leakage and test several coun-
termeasures for AES. Through practical attacks we show that both mbedTLS
and MicroECC do not contain su�cient countermeasures against power-based
side-channel attacks. The main contributions of this thesis are a new attack
on MicroECC and suggestions for improved side-channel testing methodology
based on TVLA.

Acknowledgements

This thesis concludes my journey at Eindhoven University of Technology. A
journey, which started o� as a �rst year student pursuing a combined bachelor's
in Mathematics and Computer Science, now comes to an end with this master's
degree in Information Security Technology. Before we dive in to the full scienti�c
extend of this thesis I would like to thank the people that helped me reach this
point.

First and foremost, I would like to thank my supervisors, this result would
never have been possible without them. I would like to thank Boris �Skori¢
for his support and guidance during the project. Furthermore, I would like to
thank my company supervisors Roel Maes and Georgios Selimis from Intrinsic
ID. Thanks for coaching me along the way, the interesting discussions we had
and for the many meetings which we had to keep me up to speed. I would like
to thank Berry Schoenmakers for taking the time to be on my thesis defense
committee.

The next group of people I would like to thank are all my colleagues at Intrinsic
ID. Thanks for always being available to help and for providing me with a stim-
ulating and sociable environment wherein I could work on my thesis. I hope our
paths will cross again in the future. A special thanks to Pradeep Venkatacha-
lam for occasionally brainstorming with me about with my experiments and for
checking in on my progress once in a while.

I would like to thank Tanja Lange and Benne de Weger for making me enthusias-
tic for cryptography and security during my studies. Their teaching, enthusiasm
and invitations for various conferences and symposiums resulted in my choice
to pursue a masters in security.

I would also like to express my gratitude to MedApp for employing me for
the past 4 years and providing me with valuable work experience alongside my
studies. Even though I had to turn down their o�er for a graduation internship,
I still am glad I could help them in their mission to make the world a healthier
place.

Aside from all the serious business, I also would like to thank all the friends I
made along the way. Thanks to the wonderful group of people at student sports
association All Terrain making my time at the TU/e even more enjoyable and
active. Also thanks to GEWIS for the many extracurricular and social activities.

Of course there are many other people who helped me over the course of the
past years. Thank you, everyone who I did not mention here for making this
thesis possible.

Last, but de�nitely not least, I would like to thank my parents, my sister and
the rest of my family for their continued support during my studies.

1

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Our contribution . 8
1.3 Outline . 8

2 Background 9
2.1 Cryptography . 9

2.1.1 Advanced Encryption Standard 9
2.1.2 Elliptic Curve Cryptography 12

2.2 Attacker model . 15
2.3 Power-based side-channel attacks 16

2.3.1 Power models . 16
2.3.2 Simple power analysis . 17
2.3.3 Di�erential power analysis 17
2.3.4 Correlation power analysis 18
2.3.5 Template attacks . 20
2.3.6 Online template attacks 20
2.3.7 Horizontal attacks . 20

2.4 Test Vector Leakage Assessment 21
2.4.1 Non-speci�c TVLA . 21
2.4.2 Higher order TVLA . 22
2.4.3 The ISO 17825 standard 22
2.4.4 TVLA con�dence level . 22

2.5 Side-channel countermeasures . 23
2.5.1 AES countermeasures . 23
2.5.2 Threshold cryptography 23
2.5.3 ECC countermeasures . 24

2.6 Oscilloscope bandwidth and sample rate 24

3 Experimental setup 25
3.1 Hardware . 25

3.1.1 Chipwhisperer . 25
3.1.2 Picoscope based setup . 27

3.2 Veri�cation . 27
3.2.1 CPA attack . 28

3.3 Sample rate considerations . 28
3.4 Environmental e�ects . 29
3.5 TVLA considerations . 29

2

CONTENTS

3.6 Filtering and alignment . 29

4 Side channel analysis of AES 31
4.1 Analyzing AES in ECB mode . 32
4.2 AES forward tables . 32
4.3 Analyzing AES in CTR mode . 34
4.4 Protecting Mbed TLS against side-channel attacks 35

4.4.1 A masked AES implementation 35
4.4.2 A threshold AES implementation 36
4.4.3 The hybrid threshold scheme 38

5 Side channel analysis of ECC 41
5.1 Attacking MicroECC . 41

5.1.1 Finding the cause of the leakage 42
5.1.2 Leakage veri�cation . 44
5.1.3 A new attack without a trigger 45
5.1.4 A horizontal attack on MicroECC 46

6 Conclusion 49
6.1 TVLA conclusions . 49

6.1.1 Future work on TVLA . 49
6.2 AES conclusions . 50

6.2.1 Future work on AES . 50
6.3 ECC conclusions . 50

6.3.1 Future work on ECC . 50

A Threshold multiplication scheme correctness proof 57

3

List of Figures

2.1 Schematic overview of a single encryption round using forward
tables. 11

2.2 Electronic Codebook (ECB) mode encryption 12
2.3 Counter (CTR) mode encryption 12
2.4 A schematic representation of the device under attack 15
2.5 The partial guessing entropy of an attack on an AES key. Each

line corresponds to one byte of the key. 19
2.6 A basic 2-share linear threshold scheme, R represents a randomly

generated value. 23

3.1 Chipwhisperer based easurement setup 26
3.2 Picoscope based measurement setup 26
3.3 TVLA of TinyAES running on the Chipwhisperer, using 500

traces. One line is given for each run, the red points indicate
leakage which was found in both runs. 27

4.1 TVLA of AES-128-ECB using 2500 traces 31
4.2 PGE for the CPA attack on the Mbed TLS AES implementation 32
4.3 The correlation of the best keyguess at every point in time 33
4.4 The hamming weight of each output of the S-box plotted against

the hamming weight of the corresponding forward table value . . 33
4.5 TVLA of AES-128-CTR using 2500 traces 34
4.6 TVLA of the AES-128-ECB with boolean masking using 10,000

traces . 35
4.7 The mask refresh operation. R1, ...Rn are randomly generated

values. 37
4.8 TVLA of our threshold AES-128-ECB using 2500 traces 39
4.9 The hybrid threshold scheme. 40
4.10 TVLA of our hybrid threshold implementation using 10000 traces 40

5.1 TVLA plot of the uECC testBit function using an alternating bit 42
5.2 Mean power consumption of the testBit function 43
5.3 Side by side comparison of the generated assembly code corre-

sponding to the C code given above. The only di�erence in the C
code on the right side is a lack of the line trigger_low(). In the
assembly code various things change which already occur above
the line which was removed. 44

5.4 TVLA of the uECC testBit function using an alternating bit . . 45

4

LIST OF FIGURES

5.5 Mean power consumption of the testBit function 46
5.6 Traces corresponding to the �rst 58 iterations of the scalar mul-

tiplication . 47
5.7 Traces corresponding to the �rst 58 iterations of the scalar mul-

tiplication . 48
5.8 Left . 48

5

Notation index

The mathematical symbols and abbreviations used throughout this thesis are
given below.

Mathematical symbols and functions
⊕ Bitwise exclusive OR.
+ Integer addition.
· Integer multiplication.
× Scalar multiplication on an elliptic curve.
‖ byte concatenation.
≪ left bitwise cyclic shift
ROT8(x) 8-bit bitwise cyclic shift.
HW(x) The hamming weight of a bitstring x.
RKi The AES roundkey for round i.
S(x) The value of the AES substitution box applied to x
k[i] The ith bit of an integer k

Abbreviations
SCA Side-channel analysis
AES Advanced Encryption Standard.
ECB Electronic Code Book mode
CTR Counter mode
TVLA Test Vector Leakage Assessment
TLS Transport Layer Security
MSB Most signi�cant bit
LSB Least signi�cant bit
ECC Elliptic-curve cryptography
ECDSA Elliptic-curve Digital Signature Algorithm
ECDH Elliptic-curve Di�e Hellman
MS Mega samples (106 samples)
SAD Sum of Absolute Distances
IV Initialization Vector

6

Chapter 1

Introduction

This thesis is the result of the graduation project for the Information Security
Technology master at Eindhoven University of Technology (TU/e). The grad-
uation project was carried out at Intrinsic ID in Eindhoven between October
2019 and March 2020.

1.1 Motivation

Embedded devices are becoming increasingly pervasive in today's society. The
global market for internet of things (IoT) devices is expected to grow to 248
billion dollars by the end of 2020 [1]. Securing those devices is an ongoing prob-
lem. One of the challenges involved in securing these devices is authentication.
It is often di�cult to securely provision the device with cryptographic keys at
the time of manufacturing [2]. To overcome these and other issues, Physical Un-
cloneable Functions (also known as Physical One-Way Functions) (PUFs) can be
used. PUFs were �rst introduced by Pappu et al. in 2002 [3] as a solution to this
problem. Currently various commercial solutions are already available to solve
such problems using PUFs. Solutions include Intrinsic ID's software (Broad-
key) and hardware (Quiddikey) products which have been shipped to over 170
million devices to date [4]. Other companies supplying PUF technology include
Verayo, Pufsecurity and Enthentica.

Even if there is no way in which secret keys can be directly extracted from a
device, there still are other threats which could expose these keys to an attacker.
On embedded devices one of the threats is power-based side-channel attacks.
Power-based side-channel attacks were �rst found by Kocher et al. in 1999 [5]
and since then have been slowly evolving.

In this thesis we research whether publicly available encryption software libraries
are secure against power-based side-channel attacks. We analyze the AES im-
plementation in ARM's mbedTLS library [6] and the full MicroECC [7] library.
We aim to determine whether we can �nd and exploit side-channel leakage using
relatively low-cost (< $1000) equipment.

One of the methods used for analyzing side-channel leakage is Test Vector Leak-

7

CHAPTER 1. INTRODUCTION

age Assessment (TVLA) [8]. Through an extensive literature study we explore
the limitations of this method and determine the best way to use it in practice.

Besides studying side-channel attacks and leakage detection, we also focus on
countermeasures against side-channel attacks. We evaluate the usefulness and
performance of various countermeasures on AES implementations.

We also evaluate various experimental countermeasures provided by Intrinsic
ID. These results have been ommited from the public version of this thesis due
to con�dentiality agreements with the company.

1.2 Our contribution

In this thesis we experimentally show that the Mbed TLS library is not se-
cure against power-based side-channel attacks. We propose modi�cations to
the Mbed TLS library to make it secure against side-channel attacks, namely
by using a threshold scheme which splits the computation of AES in to multiple
parts. Furthermore, we investigate the side-channel security of MicroECC and
introduce a new attack in which the Montgomery ladder implementation can be
broken using only one power trace from the victim device.

1.3 Outline

This thesis is divided into six chapters. In chapter 2 the required background
information is given. An overview is given of the attacker model, cryptography,
side-channel attacks and countermeasures. In chapter 3 we give more details
about our experimental setup and explain how it was validated to perform cor-
rect measurements. We also show the use of TVLA as a testing method for
side-channel leakage. In chapter 4 we present our results on the side-channel
evaluation of the AES implementation in Mbed TLS and possible countermea-
sures to make it resilient against side-channel attacks. In chapter 5 we discuss
our attack on MicroECC and the use of TVLA on ECC. We end with chapter 6,
which gives our conclusions, a discussion of the results and pointers for future
work.

8

Chapter 2

Background

2.1 Cryptography

In this section we introduce the cryptographic algorithms and protocols used
throughout this thesis.

2.1.1 Advanced Encryption Standard

The advanced encryption standard (AES) is a symmetric block cipher initially
proposed by John Daemen and Vincent Rijmen in [9]. It was standardized
in [10] by the National Institute for Standards and Technology (NIST). The
cipher can process 128-bit blocks using keys of 128, 192 or 256 bits. All steps in
AES operate on a 16-byte state X, which can be represented by a 4x4 matrix.
AES consists of a sequence of 10, 12 or 14 rounds depending on whether the key
k is 16, 24 or 32 bytes. The key k is expanded into 16-byte round keys RKi.
To describe the remainder of the cipher we use the following notation:

• RKi,j denotes the j
th byte of the round key for round i, where j ∈ [0, 15].

• Xj denotes the j
th byte of the state, where j ∈ [0, 15].

The state X is initialized with the input to the cipher, after which the following
four steps are applied to it in each round.

1. AddRoundKey: In this step the round key RKi is XOR'ed with the
state X.

2. SubBytes: Each byte of the state is individually transformed through
using the S-box. The S-box is a non-linear mapping from an 8-bit input
to an 8-bit output. Both the input and the output can be interpreted
as a polynomial in GF(2) by using the bits as coe�cients. The S-box is
computed by �nding the multiplicative inverse of the input in GF(28) and
subsequently applying to following a�ne transformation to it.

x⊕ (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 3)⊕ (x≪ 4)⊕ c (2.1)

In which x is the multiplicative inverse and c is a constant de�ned by
01100011.

9

CHAPTER 2. BACKGROUND

3. ShiftRows: In this step the bytes of X are permuted according to the
following �xed permutation.

X0 X1 X2 X3

X4 X5 X6 X7

X8 X9 X10 X11

X12 X13 X14 X15

X0 X1 X2 X3

X4X5 X6 X7

X8 X9X10 X11

X12 X13 X14X15

4. MixColumns: MixColumns is an invertible non-linear transformation
performed on the columns of X. The kth column of the output of the
MixColumns step can be represented by the following matrix multiplica-
tion in GF(28).

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

X4k

X4k+1

X4k+2

X4k+3

 , k ∈ [0, 3] (2.2)

In the last AES round the MixColumns step is omited and replaced by an
additional AddRoundKey step.

AES forward tables

On 32-bit architectures, AES is often implemented using forward lookup ta-
bles, sometimes also refered to as T-tables. This approach was described in the
original AES proposal in [9], however it was never included in the o�cial speci�-
cation. The main idea is to use a single lookup table which returns the combined
output of the SubBytes, ShiftRows and MixColumns steps. In a forward table
a single byte input is mapped to 4 bytes of output.

We shall now give a brief explanation of this implementation. At compile time,
or if desirable at runtime a set of 4 lookup tables Tk : {0, 1}8 → {0, 1}32 are
generated. The lookup tables are de�ned by the following equations.

T0[x] = 2 · S(x) ‖ S(x) ‖ S(x) ‖ 3 · S(x), (2.3)

T1 = ROT8(T0), T2 = ROT8(T1), T3 = ROT8(T2) (2.4)

Similar tables are generated for decryption, however for now we shall only focus
on encryption. For the actual encryption operation, all data is split in to 32-bit
words, each representing four bytes of either plaintext, round-keys or the AES
state. We now use the following notation to the de�ne all further operations:

• R̃Ki,j denotes the j
th word of the round key for round i.

• X̃j denotes the j
th word of the state.

10

CHAPTER 2. BACKGROUND

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

T0

Lookup table

T1

Lookup table

T2

Lookup table

T3

Lookup table

⊕RKi,0 ⊕RKi,4 ⊕RKi,8 ⊕RKi,12

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

⊕
⊕

⊕
⊕

Figure 2.1: Schematic overview of a single encryption round using forward
tables.

A schematic overview of this operation is given in �gure 2.1. For some operations
we need to retrieve a single byte from a word, this is denoted using the array
index operator, i.e. X̃j [k] denotes the kth byte from X̃j . An AES round now
only consists of the following two steps.

1. AddRoundKey: Equivalent to the traditional implementation, every
word of the round key R̃Ki is XOR'ed with the state X̃.

2. Table lookup: The output of the AddRoundKeys step is used for a table
lookup in the previously generated tables. A set of four table lookups is
performed to compute one word of the output. The result of the tables
lookups is combined using the XOR operation. The kth word of the state
is now de�ned by the following equation.

T0[X̃k[0]]⊕ T1[X̃(k+1) mod 4[1]]⊕ T2[X̃(k+2) mod 4[2]]⊕ T3[X̃(k+3) mod 4[3]]
(2.5)

AES modes of operation

In a block cipher like AES the mode of operation is an algorithm which applies
block cipher operations in a certain order to produce ciphertexts. For decryption
the algorithm inverts this process. The most basic mode, given in �gure 2.2,
is Electronic Codebook (ECB) mode. In ECB mode each block of plaintext is
encrypted independently of the other blocks. An issue with this mode is the lack
of di�usion. If two blocks of plaintext are the same, then their ciphertext also is
the same. A more commonly used alternative to ECB mode is Counter (CTR)
mode [11]. Counter mode, given in �gure 2.3, e�ectively turns a block cipher
in to a stream cipher. In CTR mode a random nonce is generated before the
encryption starts. This nonce is combined with a counter which increments after

11

CHAPTER 2. BACKGROUND

Figure 2.2: Electronic Codebook (ECB) mode encryption

Figure 2.3: Counter (CTR) mode encryption

every block which is encrypted. The combination of the nonce and the counter
is encrypted, the resul is XOR'ed with the plaintext to obtain the ciphertext.
Since the counter increases, every ciphertext is guaranteed to be di�erent. In
total �ve encryption modes are standardized in [11]: ECB, CBC, OFB, CFB,
CTR. More modes exist for authentication and authenticated encryption. In
this thesis we only use ECB and CTR mode.

2.1.2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC), �rst introduced in [12], is public-key cryp-
tography based on elliptic curves over �nite �elds. An elliptic curve is a set of
all points (x, y) with coordinates in a �nite �eld K which satisfy the following
equation.

y2 = x3 + ax+ b a, b ∈ K (2.6)

This equation expresses the curve in a�ne coordinates, other representations
also exist and will be covered later on. To perform an addition R = P + Q on
an elliptic curve the formulas given in equation 2.7 can be used. For P 6= Q,

we have λ =
yQ−yP
xQ−xP

. If P = Q then we have λ =
3x2

P+a
2yP

, in which a is one

of the curve parameters corresponding to the curve as de�ned in equation 2.6.
Division is performed by computing the modular inverse in K.

xR = λ2 − xP − xQ, yR = λ(xP − xR)− yP (2.7)

12

CHAPTER 2. BACKGROUND

Scalar multiplication

In all ECC operations point multiplication is an important step. Scalar mul-
tiplication is de�ned by taking k ∈ N\{0} and multiplying it with a point
P = (xP , yP) on an elliptic curve.

Scalar multiplication algorithms

Using the addition formulas from equation 2.7 we can de�ne algorithms to per-
form multiplications. The naieve approach would be to use a repeating loop
of additions to perform multiplication. However, this would be very ine�cient
for a large scalar. A very basic e�cient algorithm for performing scalar mul-
tiplication is the double and add algorithm, which is given in algorithm 2.1.

Algorithm 2.1: Double and add.

1 input : k , P, n

2 output : k× P

3 begin

4 R← R
5 for i← n− 2 down to 0 do

6 R← 2R
7 i f k[i] = 1 then

8 R← R + P
9 end

10 end

11 return R0

12 end

Another, more commonly used algorithm is the Montomery ladder [13], which
is given in algorithm 2.2.

Algorithm 2.2: Montgomery ladder.

1 input : k , P, n

2 output : k× P

3 begin

4 R0 ← P
5 R1 ← 2P
6 for i← n− 2 down to 0 do

7 R1−k[i] ← R0 + R1

8 Rk[i] ← 2 · R1−k[i]

9 end

10 return R0

11 end

The main advantage of the montgomery ladder, which will become more evi-
dent later on, is that it always takes the same amount of time to compute the
multiplication. The idea behind the montgomery ladder is that always the same
computations are done, irregardless of the value of k. The only thing determined
by k is the location in which the result of a computation is stored.

ECDLP

Given k × P , recovering k is considered a hard problem, since division is not
de�ned over elliptic curves. This problem is also known as the Elliptic Curve
Discrete Logarithm Problem (ECDLP). The security of a all ECC cryptosystems
depends on the attacker's inability to solve the ECDLP and therefore inability
to recover k.

13

CHAPTER 2. BACKGROUND

Alternative coordinates

Performing additions and doublings in a�ne coordinates requires modular inver-
sions (in order to compute λ), which is a costly operation in terms of computing
resources. To overcome this issue alternative point representations can be used,
which remove the need for modular inversions. The following two methods can
be used to represent an a�ne point (x, y) as (X,Y, Z) with X,Y, Z ∈ K.

• Standard projective coordinates [14]: x = X
Z , y = Y

Z , Z 6= 0

• Jacobian projective coordinates: x = X
Z2 , y = Y

Z3 , Z 6= 0

ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA) [15] is an elliptic-
curve variant of the Digital Signature Algorithm (DSA) [16]. To create a digital
signature using ECDSA the following parameters are used.

• A base point G on the curve, which serves as a generator for a subgroup
of points on the curve.

• The order of G given by n.

• A randomly chosen private key p.

• A public key Q = p×G.

• The message hash e.

Given theses parameters an ECDSA signature is computed in the following way.

1. Generate a unique and cryptographic secure random value k.

2. Compute the curve point (x, y) = k ×G.

3. Compute r = x mod n. If r = 0, then restart from step 1.

4. Compute s = e+p·r
k mod n. If s = 0, then restart from step 1.

5. The signature is now given by the pair (r, s).

If an attacker can recover the value of k, then the private key p can trivially be
computed using p = s · k − e.

ECDH

Elliptic-curve Di�e�Hellman (ECDH) [17] is a key-agreement protocol used to
establish a shared secret between two parties. It is an elliptic-curve variant
of the Di�e-Hellman protocol [18]. To describe the ECDH protocol we use
the same parameters as de�ned for ECDSA. Suppose Alice and Bob want to
establish a shared secret. Alice has a keypair (pA, QA) and Bob has a keyparir
(pB , QB), the protocol then proceeds as follows.

1. Alice and Bob agree on a curve and a generator G to use for the key
exchange.

2. Alice and Bob exchange their public keys QA = pA×G and QB = pB×G.

3. Alice computes (x, y) = pA ·QB and Bob computes (x, y) = pB ·QA.

14

CHAPTER 2. BACKGROUND

AES

ECDSA

Secure key storage

Plain Text

Message Digest

Cipher Text

Signature

Encryption key

Keypair

Figure 2.4: A schematic representation of the device under attack

4. Both parties now have the same shared secret given by x.

2.2 Attacker model

In the context of power-based side-channel attacks we adopt the standard at-
tacker model for cryptographic hardware, as described in [19]. In this model
we distinguish between active/passive attacks and invasive/semi-invasive/non-
invasive attacks.

Passive attacks
In this type of attack, the attacker can not in�uence any of the data processed

by the device. The attacker can only observe the behavior of the device. It
only is possible to record power traces of the device under normal operation.
The attacker can gain knowledge of plaintexts or chiphertexts processed by the
device.

Active attacks
In this type of attack, the attacker can in�uence the data processed by the

device. The attacker can provide input to the device within the range of valid
inputs for the device.

Invasive attacks
In an invasive attack the attacker can physically modify the device in any way

needed for the attack. Generally these attacks involve depackaging the chip and
removing all protective layers on the chip. After this is done, either signals are
read out directly from the chip (passive attack) or signals are altered to change
the behavior of the chip (active attack).

15

CHAPTER 2. BACKGROUND

Semi-invasive attacks
In a semi-invasive attack the attacker can modify the device, however the

passivation layer on the chip is always preserved, so no direct contact with the
surface of the chip is made.

Non-invasive attacks
In a non-invasive attack the attacker can not physically modify the device.

Only existing interfaces on the device are utilized for the attack. This means
that this attack leaves no traces on the device and generally does not require
any expensive equipment to perform.

We assume attacker can perform an active, non-invasive attack on the device. A
schematic overview of the device under attack is given in �gure 2.4. The device
is considered to be a black-box for the attacker; the attacker can not obtain
any cryptographic keys from the device. The attacker can also not observe any
intermediate outputs of computations done by the device. In addition to this
basic model we make the following assumptions:

• The attacker can perform a standard chosen-plaintext attack or a chosen-
ciphertext attack on the AES module. The attacker can provide any
plaintext or ciphertext as input to the device and observe the device as it
processes it in either an encryption or decryption operation.

• The attacker can perform a chosen-plaintext attack on the ECDSA mod-
ule. The attacker can provide any plaintext as input and observe the device
as it processes it during a signing operation. In addition the attacker can
observe the resulting signature.

• The attacker can initiate an ECDH key agreement with any public key.

• The attacker can make an unlimited number of queries to the device.

• The software of the device can not be modi�ed by the attacker in any way.

• The attacker can not inject any faults in to the device.

2.3 Power-based side-channel attacks

Our attacker model as described in 2.2 assumes an attacker who is able to
capture power consumption traces from the device under test (DUT). Side-
channel attacks rely on di�erences in power consumption depending on the
information being processed the DUT. In this section we introduce the attacks
which are used in this thesis.

2.3.1 Power models

A power model is a model which models the power consumption of a device
based on which data the device is processing. In the following attacks, picking
an accurate power model is of great importance for an e�cient attack. When
choosing a power model we are interested in a value which correlates to the
power consumption of the device rather than the actual power consumption
of the device. The following three power models are the most commonly used
models for side-channel attacks.

16

CHAPTER 2. BACKGROUND

Hamming weight
The hamming weight model assumes that a device consumes more power

when a 1 is stored in a bit versus when a 0 is stored in a bit. It is most often
used to model the power consumption of a circuit which makes use some sort of
data or address bus. Computing the hamming weight over a hypothetical value
being processed yields the power model.

Hamming distance
The hamming distance model assumes that a device consumes more power

when a bit changes than when it stays the same. The model assumes that no ad-
ditional power is consumed when a bit does not change. The power consumption
is computed by computing the di�erence between two subsequent intermediate
values. On CMOS circuits this model is more realistic than the hamming weight
model. However it also is more di�cult to use, since it requires knowledge about
two subsequent intermediate values rather than one. If we assume that an in-
termediate value is changed from 0 to our hypothetical value, then this model
is equivalent to the hamming weight model.

Switching distance
The hamming distance model makes the assumption that a 1 → 0 change

and a 0 → 1 change consume the same a mount of power. In practice this
proves to be incorrect. For this reason the switching distance power model was
introduced [20]. This model assigns a value of 1 to a 0 → 1 change and a value
of Φ to a 1 → 0 change. This value is also referred to as the Switching Distance
Factor. A comparison of these power models can be found in [21].

2.3.2 Simple power analysis

Simple Power Analysis (SPA) was introduced by Kocher in 1996 [22]. By ana-
lyzing a single power trace, it is often possible to distinguish between operations.
If the execution path of an algorithm depends on some secret data the attacker
can often recover this data just by looking at the power trace. Using the trace
it is possible to recover the path which the algorithm took and using that the
attacker can recover the secret data which was being processed. This attack
only works if there is some kind of dependency between the data being pro-
cessed and the execution path of the algorithm. Eliminating such a dependency
is usually quite straightforward, therefore we shall study more advanced attacks
in the next sections.

2.3.3 Di�erential power analysis

Di�erential power analysis (DPA) was introduced by Kocher et al. in 1999 [5].
DPA attacks use a large number of power traces and analyze the power con-
sumption at a �xed moment in time. For a successful DPA attack the attacker
needs to know which algorithm the DUT is running and the attacker needs
to know either the ciphertext, the plaintext or some intermediate value of the
algorithm. The attack consists of the following steps.

1. Collecting power traces: A large number N of power traces must be
collected while the DUT is performing either an encryption or decryption

17

CHAPTER 2. BACKGROUND

operation. All traces must be aligned such that every point on each trace
corresponds to the same point in the algorithm. For the attack to be
succesful a large number of di�erent input values for the algorithm should
be used.

2. Modeling an intermediate value: The attacker chooses an intermedi-
ate value of the algorithm which under attack. This intermediate value
should be chosen such that its output can be predicted based on the input
to the algorithm and a small part of the key. The following hypothesis is
used in DPA; depending on the least signi�cant bit (LSB) of this interme-
diate value, small variations in the power consumption may be observed
at a certain point in time.

3. Splitting traces: Let pi denote the plaintext input for trace i and let kj
denote a guess for a single byte of our key. For each trace and for every key
guess the attacker computes the intermediate value denoted by f(pi, kj).
For every key guess kj the traces are split into two groups depending on
the value of the LSB of f(pi, kj).

4. Di�erence of means: For every key guess the attacker computes the
mean of each group of traces for every point on the trace. This should give
a single trace for each group. Next the attacker computes the di�erence
between these two traces, giving us a single trace for each key guess.

5. Recovering the key: In the traces obtained in the previous step some
peaks indicating a large di�erence in power consumption between the two
groups may be visible. The trace containing the largest peaks is most
likely the one corresponding with the correct key guess. The above steps
can be repeated for every key byte until the entire key has been recovered.

The above process describes the original DPA attack. Variations to this attack
exist, such as the one described in [19], which uses the hamming weight rather
than the LSB to separate traces.

2.3.4 Correlation power analysis

Correlation power analysis (CPA) is an attack similar to DPA, introduced by
Brier et al. in [23]. The attack aims to model the power consumption of the
DUT using the hamming distance or hamming weight power model. Similar to
DPA, the key again is split into multiple subkeys and a power model is made
for every key guess for each subkey. The attack consists of the following steps.

1. Collecting power traces: This should be done in the same way as in
DPA. However generally far less traces are required for CPA.

2. Modeling an intermediate value: Similarly to DPA the attacker again
needs to choose an intermediate value to attack. The in�uence of this
intermediate value on the power consumption is modeled using one of the
power models described in section 2.3.1.

3. Pearson's correlation coe�cient: For each trace and key guess the
attacker models the power consumption based on the input (or output).
Using Pearson's correlation coe�cient the attacker determines the correla-
tion between each key hypothesis and the observed traces at every point

18

CHAPTER 2. BACKGROUND

on the trace. Pearson's correlation coe�cient is given by the following
equation.

ri,j =

∑n
d=1(hd,i − h̄i)(td,j − t̄j)√∑n

d=1(hd,i − h̄i)2
∑n
d=1(td,j − t̄j)2

(2.8)

In this equation:

• i ∈ [0, 255] represents a guess for a single byte of the key.

• ri,j refers to the value of the correlation coe�cient for key guess i at
point j on the trace.

• n refers to the number of captured traces.

• td,j refers to point j in trace d.

• hd,i refers to the modeled power value for key guess i and trace d.

• t̄j represents the mean value of point j across all traces.

• h̄i represents mean value of the modeled power value for key guess i
across all traces.

Now for each key guess and point on the trace there is a correlation value
which tells us how well our key guess correlates to the actual power con-
sumption over all traces.

4. Selecting a key guess: For every subkey the attacker chooses the key
guess which has the highest correlation at any point on the trace. I.e.
maxi∈[0,255],j∈[1,n]ri,j .

Figure 2.5: The partial guessing entropy of an attack on an AES key. Each
line corresponds to one byte of the key.

19

CHAPTER 2. BACKGROUND

Partial guessing entropy

The partial guessing entropy (PGE) can be used as an indication how many
traces are needed to recover a key using a CPA attack. We use the PGE as
de�ned by [24]. We can rank the guesses for each byte of the key based on their
correlation value. The PGE is de�ned as the rank of the correct key. We can
plot the rank of each key byte as a function of the number of traces used in the
attack. An example of such a plot is given in �gure 2.5. The PGE gives us the
number of guesses required to guess the correct key.

2.3.5 Template attacks

Template attacks were introduced by Chari et al. in [25] as a very powerful attack
requiring only a few traces from the target device. The attack is a pro�ling
attack in which the attacker �rst creates a model of the DUT by experimenting
with such a device that he has in his possession and uses the model to recover a
secret key from the victim's device. The attack consists of the following steps.

1. Collect pro�ling traces: Using a copy of the device under attack the
attacker need to capture a large amount of traces. These traces must use
varying plaintexts and secret keys.

2. Picking points of interest: By studying di�erences in the traces, the
attacker attempts to select a couple points at which the traces di�er the
most between di�erent secret keys.

3. Building a model: Using the collected power traces the attacker builds a
model for the power consumption of the device. The most basic way to do
this is to create two equally sized groups of traces. One group corresponds
to a certain bit of the key being equal to 1 and in the other group it is
equal to 0. By taking the mean of both groups the attacker creates two
templates. The model used in the template attack is a collection of at least
two di�erent templates corresponding to various private bits or bytes.

4. Template matching: Now on the victim's device the attacker captures a
single power trace and choose the template which best matches the trace.

2.3.6 Online template attacks

Online template attacks (OTA) are a variant of template attacks introduced
in [26] and [27]. In an OTA the template building and template matching phase
is interleaved. If a target device performs a repetitive operation then the trace
captured from the target device can be used to further improve an existing
template

2.3.7 Horizontal attacks

Horizontal power analysis, introduced in [28], is another attack which only re-
quires a single trace. Whereas vertical attacks such as DPA and CPA compare
the same time sample across multiple traces, horizontal attacks compare multi-
ple segments of the same trace. If a device performs a repetitive operation and
the attacker can make some assumptions about the intermediate values, then a
horizontal attack can be performed.

20

CHAPTER 2. BACKGROUND

2.4 Test Vector Leakage Assessment

Test Vector Leakage Assessment (TVLA) is a testing method used to assess
whether a device may be susceptible to side channel attacks. It was �rst in-
troduced in 2011 by Goodwill et al. [8]. The test gives a level of statistical
con�dence whether the device under test (DUT) has exploitable leakage. It
does not tell us whether it is possible to exploit this leakage in practice or how
di�cult it will be to exploit it.

The assessment is done by collecting two groups of traces from the DUT which is
running some sort of cryptographic algorithm taking a secret key and plaintext
as input. Every trace covers one execution of the algorithm. The secret key is
the same in every trace. The plaintext switches between two options. The traces
are grouped based on the plaintext. These two groups of traces are compared for
similarity. If they contain statistically signi�cant di�erences then that indicates
some form of leakage. To check whether the two groups of traces are di�erent
Welch's t-test is used. This test is an adaptation of the Student's t-test which
works better on samples with unequal sizes and variances. Welch's t-test is
given in equation 2.9. We denote the mean of group j at point i on the trace
by µi,j , the variance by σi,j and the size of the group by Nj . The value of the
t-test at point i on the trace is denoted by Ti.

Ti =
µi,1 − µi,2√
σ2
i,1

N1
+

σ2
i,2

N2

(2.9)

The statistic is calculated for every point in a trace. The null hypothesis is
that the two groups have identical mean and variance. This hypothesis can be
evaluated for every point in time on a trace. In literature a threshold of Ti > 4.5
is proposed to reject the null hypothesis. This implies 99.9999% con�dence that
the di�erence between the two traces is not caused by some random noise. I.e.
for a random variable T following the Student's t-distribution: P(Ti > 4.5) <
10−5.

2.4.1 Non-speci�c TVLA

The test described above is also called a speci�c TVLA. It is speci�c in the sense
that we create two groups based on a speci�c plaintext input value. The traces
are categorized by one of the intermediate values of the algorithm, therefore
the secret key must be known in order to perform this test. Furthermore we
must know exactly which algorithm is being used on the DUT. This approach
has some disadvantages. For instance, we may �nd some leakage which is only
present under these speci�c plaintext inputs. Furthermore, the two plain texts
might contain some bits which are equal, causing us to not discover some leakage.

In the case of a non-speci�c TVLA one group has a �xed plaintext and the other
group has random plaintexts. Both groups again correspond to the same �xed
secret key, but this time we don't need to know this key in order to group the
traces. In [29] the authors argue that non-speci�c TVLA is superior to speci�c
TVLA.

21

CHAPTER 2. BACKGROUND

2.4.2 Higher order TVLA

TVLA can also be used to test for higher order side channel leakage, such as
the attacks originally introduced by Messerges in [30]. Methods for higher order
TVLA are described in [31].

2.4.3 The ISO 17825 standard

In 2016 the ISO 17825 standard named �Testing methods for the mitigation of
non-invasive attack classes against cryptographic modules� [32] was published.
This standard aims to provide a full testing methodology for conformance testing
in the context of side-channel leakage. The standard recommends TVLA as the
sole method to test for side-channel leakage.

This standard appears to be only generally available standard of its kind. Ex-
isting standards such as the Common Criteria and EMVCo only provide re-
quirements in terms of side-channel resistance, but do not provide any testing
methodology.

In [33] Whitnall and Oswell analyze the ISO 17825 standard and provide some
well-versed criticism on some parts of the standard. They also provide some
recommendations of their own to improve the standard. Their most important
conclusions are that following the standard to the letter gives a very high prob-
ability of a false positive. To overcome this they recommend to use additional
well established statistical methods to reduce the error rate and to supplement
the test with a method to con�rm the leakage which is found by the test.

2.4.4 TVLA con�dence level

The original TVLA paper recommends a con�dence level of 1−10−5 for the test.
This implies a false-positive (type I error) rate of 10−5. The only other formal
recommendation for the con�dence level is 0.95 in the ISO 17825 standard, which
implies a lower false-negative (type II error) rate. This however poses another
problem, which is explained in more detail in [33] and [34]. The con�dence
level which is used applies for every point on the trace. Therefore, the overall
con�dence level depends on the length of the trace. If we have a very long trace,
i.e. millions of points, the type I error rate approaches 1. In [34] a proposal
is given for choosing the con�dence level based on the number of traces. This
proposal is given by

α′ = 1− (1− α)1/n,

in which α represents the overall con�dence level, n the number of points on
a trace and α′ represents the con�dence which should be use to evaluate the
hypothesis at every single point on the trace.

22

CHAPTER 2. BACKGROUND

2.5 Side-channel countermeasures

Countermeasures are modi�cations to a cryptographic implementation which
aim to make a side-channel attack more di�cult.

2.5.1 AES countermeasures

To protect an AES implementation from side-channel attacks a wide range of
countermeasures have been developed. Most software-based countermeasures
are based on one of the following principles:

1. Boolean or multiplicative masking of secret values [35], [36], [37], [38].

2. Secret sharing schemes (threshold cryptography) [39], [40], [41].

3. Randomising the order of operations.

4. Insertion of dummy instructions.

Similar countermeasures can also be implemented in hardware. In this thesis we
only focus on software countermeasures. Arguably the �rst two countermeasures
are the most e�ective, whereas the last two simply aim to complicate a side-
channel attack rather than protecting fully against it.

2.5.2 Threshold cryptography

Figure 2.6: A basic 2-share linear threshold scheme, R represents a randomly
generated value.

A threshold scheme, also known as a secret sharing scheme was introduced
independently by Shamir [42] and Blakely [43]. The idea is to split a secret x in
to n shares y0, y1, ...yn−1, such that x can be easily reconstructed using k ≤ n
shares, but having k − 1 shares reveals no information at all about x. In the

23

CHAPTER 2. BACKGROUND

context of threshold cryptography we extend this scheme to all cryptographic
operations. Every computation is computed on at most k − 1 shares, such that
the output of each operation can never reveal any information about x. This
property makes threshold schemes very useful as a countermeasure against side-
channel attacks. Since choosing k = n makes it the most di�cult to reveal x,
we will focus only on threshold schemes for which k = n. Furthermore we use a
very simple sharing scheme which splits x in to shares using the XOR operation,
i.e. x = y0⊕ y1⊕· · ·⊕ yn−1. A basic example of this threshold scheme is shown
in �gure 2.6.

2.5.3 ECC countermeasures

In ECC implementations most e�orts are put into protecting the scalar multi-
plication algorithm. The double-and-add algorithm described in Section 2.1.2
contains a conditional branch on every bit of the scalar, which makes it vulner-
able to timing side-channel attacks. To thwart this, most ECC implementations
make use of a constant-time multiplication algorithm. An example of such an
algorithm is the Montgomery ladder which is given in algorithm 2.2.

Randomized projective coordinates

A constant time multiplication algorithm may still be vulnerable to DPA at-
tacks, such as the attack described in [44]. To protect against these attacks a
commonly used countermeasure is the use of randomized projective coordinates.
Projective coordinates such as de�ned in Section 2.1.2 have the nice property
that they are not unique, i.e.:

(kX, kY, kZ) ≡ (X,Y, Z) ∀k ∈ N\{0}. (2.10)

Before every scalar multiplication a new radomized k can be chosen to randomize
the coordinates. Therefore every trace will be di�erent and a DPA attack will
no longer work.

2.6 Oscilloscope bandwidth and sample rate

For our experiments we make use of a Digital Storage Oscilloscope (DSO).
This type of oscilloscope digitally captures a signal by sampling it at a �xed
sample rate. The sample rate of an oscilloscope is expressed in megasamples
per second (MS/s) or gigasamples per second (GS/s). Based on the samples
captured, a trace representing the original signal can be reconstructed. The
Nyquist-Shannon sampling theorem [45] tells us that if a signal has no frequen-
cies greater than B Hertz, that we can reconstruct the signal by sampling at
a frequency of 2B samples per second. The bandwidth of an oscilloscope is
de�ned as the maximum frequency which can be captured by the oscilloscope.
If a signal contains frequencies beyond the bandwidth, the captured trace will
be distorted.

24

Chapter 3

Experimental setup

3.1 Hardware

To perform our research we used the two side-channel evaluation setups de-
scribed in this section.

3.1.1 Chipwhisperer

Chipwhisperer is an open-source hardware and software toolchain for side-channel
power analysis and glitching attacks. For our analysis we used a Chipwhisperer
lite board [46] as pictured in �gure 3.1. This board consists of an OpenADC
based oscilloscope used for capturing traces and a removable target board con-
taining a STM32F3 ARM Cortex M4 CPU to be attacked. The target board
contains convenient connections for analyzing the power consumption, capturing
a trigger signal and performing clock glitching. From within the code running
on the target we can raise a trigger pin which is connected to the trigger input
of the scope. The Chipwhisperer's OpenADC scope synchronizes its sample
rate with the clock of the target automatically. This allows us to easily capture
well-aligned traces. In our experiments we found the following limitations of
this device.

Maximum sample count: Due to limited resources on the board we can
capture at most 24400 samples with the scope. For short algorithms this su�ces,
however for longer operations such as ECC this is not su�cient.

The sampling rate: The on board scope by default samples at 4x the clock
speed of the target. Since the target runs at 7.37Mhz, this gives us a sampling
rate of 29.538 MS/s. In theory the sampling rate can be con�gured up to
96 MS/s, however in our tests this caused the board to crash. Therefore it
is still uncertain whether this actually is a possibility. The Chipwhisperer's
documentation does not provide any further details on this. This sampling rate
might be su�cient for our STM32F3 target, but for targets running at a higher
clock speed it is too slow.

25

CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.1: Chipwhisperer based easurement setup

Figure 3.2: Picoscope based measurement setup

26

CHAPTER 3. EXPERIMENTAL SETUP

3.1.2 Picoscope based setup

In order to overcome some of the limitations of the Chipwhisperer we also built
a setup based on the Picoscope 2207B. This still is a relatively low cost setup,
but provides many more capabilities than the Chipwhisperer. The setup used
is given in �gure 3.2. Our target consists of a STM32F3 board mounted on a
Chipwhisperer UFO board by NewAE. The UFO board facilitates side channel
analysis of the target board by providing several facilities. It provides a stable
3.3V power source for the STM32F. Furthermore it contains a shunt resistor
along with an ampli�er to measure the current running through the target.
Lastly it provides various connections to the target board, such as JTAG and
the possibility to add an external clock signal.

The picoscope has a sample bu�er of 500MS and can capture at a sample rate
up to 1GHz. In practice, since we are using the two channels, our sample rate
is limited to 500MS/s.

3.2 Veri�cation

Before we perform any experiments using the aforementioned experimental se-
tups, we need to verify that they function correctly. To do this we capture
some traces using an AES implementation which is known to be vulnerable to
side-channel attacks and describe the results here for both setups. The AES im-
plementation which we attack is tiny-AES-c [47]. The methods described here
will be used in all other experiments throughout this thesis, unless stated oth-
erwise. We compiled the AES implementation using the gcc-arm-none-eabi

Figure 3.3: TVLA of TinyAES running on the Chipwhisperer, using 500
traces. One line is given for each run, the red points indicate leakage which
was found in both runs.

27

CHAPTER 3. EXPERIMENTAL SETUP

compiler from the GNU ARM Embedded Toolchain [48]. We used the default
compiler options for the STM32F3 target. For the Chipwhisper we used a sam-
pling rate of 29.5 MS/s, on the Picoscope we used a sampling rate of 125 MS/s.
We performed the TVLA as described in section 2.4. We captured 500 traces,
each covering the full 10 rounds of AES, the results of the TVLA can be found
in �gure 3.3.

3.2.1 CPA attack

To verify that the leakage which was found in the TVLA can also be exploited
we launched a CPA attack. For the CPA attack we use a power model based on
the output of the S-box in the �rst round of AES. This same attack is described
in detail in [19]. We denote the ith byte of the plaintext input by pi and the ith

byte of the key guess by ki. According to the model, the power consumption Pi
is given by

Pi = HW (S(pi ⊕ ki)). (3.1)

Using this power model we are able to successfully recover the AES key using
around 50 traces on the Chipwhisperer. When using the Picoscope for the attack
we need around 100 traces for a successful attack. This is most likely because
the traces captured with the Chipwhisperer are aligned better than the traces
captured with the Picoscope.

3.3 Sample rate considerations

For an optimal measurement setup it is important to choose the optimal sample
rate. If we choose a sample rate which is too high then we store a lot of redundant
data which leads to slower processing. If our sample rate is too low then we
may not capture any leakage. On the Chipwhisperer the highest possible sample
rate is 29.5 MS/s, which translates to 4 samples for every clock cycle. Since we
only can capture at most 25000 samples with the Chipwhisperer, sampling at a
lower rate does not make any signi�cant di�erence in terms of storage.

The Picoscope can capture up to 64 million samples at a rate of 500MS/s. Since
we used the Picoscope to capture longer traces, choosing the optimal sample
rate makes a big di�erence. The bandwidth of the Picoscope is 70 MHz. By
the Nyquist-Shannon sampling theorem it would not be useful to sample at a
rate higher than 140 MS/s. However, according to the documentation of the
Picoscope the sampling rate may need to be around 5 times greater than the
bandwidth [49]. The maximum frequency of the signal from the target could
also be lower than 70Mhz, which implies that a lower sample rate might also be
su�cient.

Due to these uncertainties we decided to experimentally determine the optimal
sample rate. It is important to note that the sample rate on the Picoscope can
only be chosen from a set of prede�ned values: 32, 64, 125, 250 and 500 MS/s.
To determine the optimal sample rate we performed a TVLA on the vulnerable
AES implementation at all of these sample rates. Between 32, 64 and 125 MS/s
we see a clear increase in the amount of leakage found by the TVLA. Between
125, 250 and 500 MS/s we do not see any di�erence. Therefore we chose 125
MS/s as the sample rate to use for the remainder of our experiments.

28

CHAPTER 3. EXPERIMENTAL SETUP

3.4 Environmental e�ects

If we capture a lot of traces subsequently, then we notice that they are not always
vertically aligned when we overlay them. We observe that the mean power value
slowly decreases over time. Our hypothesis is that this is caused due to the chip
warming up during operation. To test this hypothesis we performed a couple
of tests by cooling the chip to around −20◦C and capturing a set of traces. In
this set of traces we see a signi�cant change in the power value as the chip heats
up to room temperature again. We did not research this e�ect any further as it
was not relevant for our side-channel analysis. To compensate for this e�ect we
regularize all our traces. Given a trace t of length n, in which tj denotes the jth
point on the trace, the regularized trace t′ is given by the following equation.

t′j = tj −
1

n

n∑
i=1

ti (3.2)

This results in all traces having a mean power value of 0.

3.5 TVLA considerations

In Section 2.4.4 we covered the fact that TVLA can produce false-positives on
longer traces. To reduce the false-positive rate we use the following solution.
All TVLA tests are performed twice. If leakage occurs at the same point in
both tests, then we consider it to be actual leakage rather than a false-positive.

3.6 Filtering and alignment

In order to remove high frequency noise from our traces we can apply a low-pass
�lter to the traces. We experimented using a Butterworth low-pass �lter [50].
In the CPA attack and TVLA measurements �ltering is not necessary; the noise
on the traces can be compensated by capturing more traces. Since we did not
want to risk losing information by �ltering we did not apply any �ltering in
any of the TVLA tests or CPA attacks. In the single trace attack described in
Chapter 5 we did apply �ltering, which is explained in more detail in Chapter
5.

Alignment

In most cases we found our traces to be aligned very well due to the accurate
trigger setup and stable clock signal on the STM32F3. In CPA and TVLA
measurements a slight misalignment of traces can be compensated by capturing
more traces. To test how well the traces are aligned we used the Sum of Absolute
Distances (SAD) metric. If we have two traces t1 and t0 of length n, the SAD
value is given by the following sum.

n∑
j=1

|t1,j − t2,j | (3.3)

The jth point on trace i is given by ti,j . A low SAD value indicates that the
traces are aligned well. In practice we do not compute the SAD over the entire

29

CHAPTER 3. EXPERIMENTAL SETUP

trace, but over a smaller segment. For instance a section of the trace which
should be the same across all traces.

30

Chapter 4

Side channel analysis of AES

In this chapter we investigate the side-channel security of ARM's Mbed TLS
library [6] and of several side-channel countermeasures. Mbed TLS is a very
commonly used embedded TLS library and therefore interesting to attack. In
this chapter we explore how resilient the AES implementation of this library is.
We consider 128-bit AES in electronic code book (ECB) mode and the more
commonly used counter (CTR) mode. Lastly we explore the e�ectiveness of
several countermeasures.

Mbed TLS does not include any countermeasures against power-based side-
channel attacks by default and therefore should be easy to attack using basic
side-channel attacks.

Figure 4.1: TVLA of AES-128-ECB using 2500 traces. One line is given for
each run, the red points indicate leakage which was found in both runs.

31

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

4.1 Analyzing AES in ECB mode

We compiled the AES implementation of Mbed TLS using default compiler
options for our STM32F3 target. For our measurements we used the Chipwhis-
perer, sampling at 29.5 MS/s. Next we performed the TVLA as described in
Section 2.4. We captured 2500 traces, each covering the full 10 rounds of AES.
The results of the TVLA can found in �gure 4.1.

As expected, we observe multiple excursions above the 4.5 threshold. Therefore
there is a very strong indication that side channel leakage is present. To verify
that we can exploit this leakage we launch the CPA attack as described in
Section 3.2.1.

Figure 4.2: PGE for the CPA attack on the Mbed TLS AES implementation.
Each line represents one key byte.

Using this attack we were able to recover the full key using around 500 traces.
To illustrate how many traces are needed for this attack the PGE is given in
�gure 4.2. In �gure 4.3 the correlation value of the correct key guess is plotted
for every point on the trace. We observe many excursions at the beginning of
the trace which appears to con�rm that we actually are attacking the S-box
output and not another part of the algorithm.

4.2 AES forward tables

Many modern AES libraries, including Mbed TLS, make use of forward tables.
Since with this aproach the S-box is no longer explicitly computed, one might
expect that the aforementioned CPA attack on the S-box would no longer work.
However, since each entry in the forward table is a linear combination of multiple

32

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

Figure 4.3: The correlation of the best keyguess at every point in time. Every
line corresponds to one byte of the key.

Figure 4.4: The hamming weight of each output of the S-box plotted against
the hamming weight of the corresponding forward table value.

S-box values, there exists a strong correlation between the S-box output and the
forward table output. This correlation can also be seen in �gure 4.4.

33

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

The observed results imply that using a single attack we can attack both conven-
tional AES implementations and implementations using forward lookup tables.

Figure 4.5: TVLA of AES-128-CTR using 2500 traces. One line is given for
each run, the red points indicate leakage which was found in both runs.

4.3 Analyzing AES in CTR mode

Attacking AES in counter mode presents a few new challenges. In counter mode
the �rst round will always be the same and the IV which is used is unknown
to the attacker. For a succesful attack on AES in counter mode we need to
gather one long consecutive trace rather than many small traces which only
cover one iteration. Due to the limited sample length on the Chipwhisperer this
was not a posibility. Therefore we chose for an approach which we will refer
to as simulated counter mode, in which the IV is known to us. For this we the
same AES-ECB implementation as used in Section 4.1. We again capture a
large number of single-block traces. However, instead of providing the actual
plain text as input we provide an IV combined with an incrementing counter
value as input. This gives us power traces each corresponding to a consecutive
iteration of AES in counter mode. As an added bene�t this approach saves a
lot of alignment work.

In order to perform a TVLA we also need to make some changes. In CTR
mode AES acts as a stream-cipher. Therefore the input plaintext is only used
in an XOR operation with the output of AES; it is not provided as input to
the �rst AES round. If we simply apply standard TVLA, then we only test the
leakage of this XOR operation, since the rest of the algorithm is independent
of the plain text input. For the TVLA we use simulated counter mode, while

34

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

making the counter value range from 0 through 9. The traces are then split
into two groups; one group containing traces corresponding to counter value 0
and another equally sized group corresponding to a random sample of the other
counter values. The resulting TVLA traces can be found in �gure 4.5. Again we
see multiple excursions above the 4.5 threshold. Therefore we expect that this
implementation will also be vulnerable to side-channel attacks in CTR mode.
An example of an attack which could be launched on this implementation is
described by Ding et al. in [34].

4.4 Protecting Mbed TLS against side-channel

attacks

To protect the AES implementation in Mbed TLS from the aforementioned
attacks, we implement several countermeasures such as these described in Sec-
tion 2.5.1.

Figure 4.6: TVLA of the AES-128-ECB with boolean masking using 10,000
traces. One line is given for each run, the red points indicate leakage which was
found in both runs.

4.4.1 A masked AES implementation

The �rst countermeasure is a relatively basic random boolean masking scheme.
Our scheme is very similar to the scheme proposed in [35] and [36]. The main
di�erence is that instead of applying it to a conventional implementation, we ap-
ply it to the forward table implementation of AES as described in Section 2.1.1.
To mask this implementation we make use of the following distinct and uni-
formly random masking values. A single byte input mask M ∈ {0, 1}8 and

35

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

Implementation Cycles/block Memory footprint (B)
Unmodi�ed mbed TLS 1004 4112
Masked mbed TLS n = 1 (4.4.1) 2346 4117
Fully threshold d = 2 (4.4.2) 184,361 1056
Hybrid threshold (4.4.3) n = 1, d = 2 27,376 8229

Table 4.1: Performance �gures for the various masked AES implementations.

4-byte words M0, M1, M2, M3 ∈ {0, 1}32. For each forward table T0, T1, T2
and T3 we generate new masked forward table T ′k de�ned by

T ′k[x] = T [x⊕Ms]⊕Mtk , (4.1)

with its inverse given by:

T ′k[x⊕Ms]⊕Mtk = Tk[x]. (4.2)

Lastly we de�ne an intermediate value P de�ned by:

P = M0 ⊕M1 ⊕M2 ⊕M3 ⊕ (M ‖M ‖M ‖M) (4.3)

The ith AES round is de�ned by computing

R̃Ki,j ⊕ T ′0[X̃j [0]]⊕ T ′1[X̃(j+1)mod4[1]]⊕ T ′2[X̃(j+2)mod4[2]]⊕ T ′3[X̃(j+3)mod4[3]]⊕ P
(4.4)

for all j ∈ [0, 3]. For the �rst round we assign an XOR of the jth input word
with (Ms ‖Ms ‖Ms ‖Ms) to X̃j for all j ∈ [0, 3]. XOR'ing with P results in the
removal of the masks and the application of the input mask for the next round.

After every n blocks, the masks must be refreshed. If we do not do this, then
an attacker could simply recover the masked values using DPA or CPA. The
choice of n is a tradeo� between security and performance. Choosing a lower n
arguably yields a more secure implementation, while a higher n yields a better
performance. In our experiments we chose n = 1. Using this scheme, theoret-
ically all intermediate values until the last round should be masked. To verify
this we perform a new TVLA on the masked implementation. The results can
be found in �gure 4.6. We can see that the amount of leakage clearly is reduced
a lot, but there still is a signi�cant amount of leakage. However, we no longer
are able to perform a CPA attack on this implementation. The leakage which we
still see is possibly caused by secret information not being erased from memory
properly after the masking. However, due to time constraints we did not verify
this hypothesis. In future experiments we did pay more attention to properly
erasing secret information from memory.

4.4.2 A threshold AES implementation

Another method which we used to mask our implementation is a threshold
implementation as described in Section 2.5.2. This method was introduced
in [39] as a provably secure method to mask AES against 1st order DPA. Our
threshold implementation is uses the approach described by Rivain et al. [51].
It provides a masked AES implementation at any order.

36

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

A higher-order masked threshold implementation involves splitting all sensitive
variables x in to n = d+1 shares, in which d is the order of side-channel resistence
which we are trying to achieve. In general an implementation is considered dth
order secure when every sensitive variable is masked using d random values.

Every function f(x) is split up in to multiple functions f1(...), . . . , fn(...). For
these functions the following two properties must hold.

Correctness: I.e. f1(...) + · · ·+ fn(...) = f(x) must be true.

Independence: Every function fi(...) must depend on at most n − 1 out of
the n shares.

Uniformity: The output of every function fi must be uniformely distributed.
For linear functions, where f(x1 + x2) = f(x1) + f(x2) these properties can be
easily achieved. In AES all operations except for the S-box are linear. Therefore
we shall mainly focus on masking the S-box.

Refreshing masks

Initially we set x0 = x, x1 = 0, ..., xn = 0 for each secret variable. After this we
apply our masking operation. This operation is shown in �gure 4.7. In order to
achieve the uniformity property, we can repeat this operation as many times as
needed; the property x0 + x1 + ...+ xn = x is always maintained.

Figure 4.7: The mask refresh operation. R1, ...Rn are randomly generated
values.

The AES S-box

The AES S-box consists of taking the multiplicative inverse overGF (28) followed
by an a�ne transformation. In GF (28) the following two convenient properties
hold.

x−1 ≡ x254

(x1 + x2)2 ≡ x21 + x22

37

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

This implies that we can compute the multiplicative inverse of x using a basic
square and multiply algorithm. More speci�cally we will compute the following
square and multiply sequence.

((x2 · x)4 · (x2 · x))16 · (x2 · x)4 · x2 (4.5)

Since squaring is linear in GF (28), all exponentiation in this calculation can
be implemented using linear lookup tables and can therefore trivially be split
in to multiple shares. The only non-linear operation left is the multiplication.
Multiplication of x ·y in shares can be done in the following manner. Given two
vectors x0, x1, ...xn and y0, y1, ...yn as input we have intermediate shares de�ned
by

ti,j = (ri,j ⊕ xi · yj)⊕ xj · yi. (4.6)

The values ri,j represent randomly generated numbers. If the computations are
ordered according to the brackets, then the independence property holds for
n ≥ 1. Using these intermediate values we can compute the �nal shares of x · y,
which are given by the following sum.

oj = xjyj ⊕
j−1⊕
i=0

ti,j ⊕
n⊕

i=j+1

rj,i (4.7)

Using these shares the correctness property should hold, i.e.:

n⊕
j=0

oj = x · y (4.8)

A proof of this is given in appendix A.

Using equation 4.5 combined with this multiplication method we now can imple-
ment a threshold S-box for AES. Using this S-box we create a complete thresh-
old implementation of AES. In this implementation we also made sure that
unmasked secrets in memory are overwritten with random data after masked
secrets have been created. We again performed a TVLA on this implementation.
From this point on we used the Picoscope based setup for our analysis, since the
sample bu�er on the Chipwhispere was no longer large enough. The TVLA plot
for our implementation can be found in �gure 4.8. We still see some leakage at
the beginning related to passing the plaintext to the masking operation. This
leakage can not be trivially exploited.

4.4.3 The hybrid threshold scheme

The downside of a full threshold implementation can be seen in the perfor-
mance �gures in Table 4.1. Computing the S-box values consumes many clock
cycles. To overcome the performance issue of a full threshold implementation
we propose a hybrid scheme. In this threshold scheme we replace the S-box by
a more performant, non-threshold, implementation. The S-box is replaced by
a construction using a lookup table. A schematic overview of this implemen-
tation is given in �gure 4.9. The S-box is now represented by a lookup table
S′ : 0, 18 → 0, 116. For two shares we de�ne this lookup table as follows.

S′[x] = (r, S[x⊕M]⊕ r) (4.9)

38

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

Figure 4.8: TVLA of our threshold AES-128-ECB using 2500 traces. One
line is given for each run, the red points indicate leakage which was found in
both runs.

M is a �xed mask and r is randomly generated for every entry. The �xed
mask and the lookup table must be refreshed every n rounds, similar to the
implementation described in Section 4.4.1.

At the S-box stepM is added to the �rst share, after this the shares are XOR'ed
with the �rst share to combine them in to a single masked value. This masked
value is used to lookup S′[x]. The vector returned by S′[x] represents the shares
to be used for all further AES computations.

As shown in table 4.1, this implementation consumes signi�cantly fewer cycles
than the full threshold implementation.

To test whether this implementation provides the same level of side-channel
resistance as the threshold implementation we performed a TVLA. The resulting
TVLA plot is given in �gure 4.10.

39

CHAPTER 4. SIDE CHANNEL ANALYSIS OF AES

Figure 4.9: The hybrid threshold scheme.

Figure 4.10: TVLA of our hybrid threshold implementation using 10000
traces. One line is given for each run.

40

Chapter 5

Side channel analysis of ECC

In this chapter we analyze the side-channel security of the MicroECC library [7].
This is a commonly used ECC library on embedded platforms with limited
resources.

MicroECC contains multiple countermeasures against side-channel attacks. The
main countermeasures are the use of randomized projective coordinates and
a montgomery ladder for multiplication. This o�ers protection against (1st
order) DPA attacks, since the coordinates used for the scalar multiplication are
di�erent in every trace. Furthermore, it even o�ers protection against most
template attacks.

5.1 Attacking MicroECC

In MicroECC the Montgomery ladder is implemented the following way.

1 XYcZ_initial_double (Rx [1] , Ry [1] , Rx [0] , Ry [0] , i n i t i a l_Z , curve) ;
2 f o r (i = num_bits − 2 ; i > 0 ; −− i) {
3 nb = ! uECC_vli_testBit (s ca l a r , i) ;
4 XYcZ_addC(Rx[1 − nb] , Ry[1 − nb] , Rx [nb] , Ry [nb] , curve) ;
5 XYcZ_add(Rx [nb] , Ry [nb] , Rx[1 − nb] , Ry[1 − nb] , curve) ;
6 }

The value of initial_Z is randomly generated. As a result of this the XYcZ_addC
and XYcZ_add operations are also randomized. As intended with a Montgomery
ladder, we do not expect to see any leakage during these operations. The
uECC_vli_testBit function is the only operation which makes use of the secret
scalar, after which the result (a single bit of the scalar) is used to compute the
memory address to store the result of the point addition or doubling. Possibly
we could �nd leakage during the computation of the memory address. To eval-
uate potential side-channel leakage we perform a speci�c TVLA test in which
we vary the private key between two �xed private keys. These two private keys
are chosen such that the LSB is di�erent for each key. Since we are looking
for leakage in an operation which only operates on a single bit of the private
key, any other sort of TVLA test would be useless. We place a trigger at the
uECC_vli_testBit line and capture 1000 traces for the TVLA. In order to ease

41

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

Figure 5.1: TVLA plot of the uECC testBit function using an alternating bit.
The TVLA was done using 1000 traces spread accross 2 runs. One line is given
for each run.

our attack we applied a butterworth low-pass �lter with a cut-o� frequency of
2KHz to all traces. The cut-o� frequency of 2KHz was experimentally found to
give the best results. Using these traces we compute a TVLA plot which can be
found in �gure 5.1. We also plot the mean of each group of traces which can be
found in �gure 5.2. As we can see in these �gures, there is a clear dependency
between the private key bit and the power consumption around sample 250. In
this case we only tested this dependency for the �rst bit, in a more thorough
test more bits should be considered. With this knowledge, a single trace of an
ECC point multiplication is enough to recover bits of the secret scalar.

5.1.1 Finding the cause of the leakage

The following ARM assembly code is generated by the compiler when compiling
MicroECC. This section of assembly code corresponds to the uECC_vli_testBit()
line in the C code snippet given earlier. The trigger_high() function is used
to raise a trigger pin to start our measurement.

1 bl t r i gger_high
2 as r param_4,r4,#0x5
3 l d r param_3, [s p ,#local_130]
4 uxth r 4 , r 4
5 l d r .w param_3, [param_3,param_4,lsl #0x2]
6 mov param_2,#0x1
7 and param_4,r4,#0x1f
8 l s l . w param_4,param_2,param_4
9 t s t param_4,param_3

10 i tE eq
11 mov.eq r5,param_2

42

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

Figure 5.2: Mean power consumption of the testBit function. The green line
gives the mean of all traces for which the bit was 1. The red line gives the mean
of all traces for which the bit was 0. Around sample 250 (marked by the dashed
lines) we see a clear distinction between the two traces.

12 mov.ne r 5 ,#0x0
13 rsb r 6 , r 5 ,#0x1
14 l s l r 6 , r 6 ,#0x5
15 l s l r 5 , r 5 ,#0x5
16 add.w r 9 , r 1 0 , r 6
17 add.w r 8 , r 1 0 , r 5
18 add r 6 , r 1 1
19 add r 5 , r 1 1
20 bl tr igger_low

If we study this assembly code, we observe a conditional branch at line 10.
Branching is performed on param_3, which contains data from the secret scalar.
In one case a register value param_2 is moved in to r5 (line 11), in the other case
an intermediate value 0x0 is moved in to r5 (line 12). Since these are slightly
di�erent operations, we expect this to be the main cause of the leakage which we
see. Interestingly, this conditional is nowhere to be found in the original C code
of the uECC_vli_testBit() function. As we can see below it only performs
bitwise operations on the scalar (vli) and does not do any branching anywhere.

1 /∗ Returns nonzero i f b i t ' b i t ' o f v l i i s s e t . ∗/
2 uECC_VLI_API uECC_word_t uECC_vli_testBit (const uECC_word_t ∗ v l i ,

bitcount_t b i t) {
3 r e turn (v l i [b i t >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t) 1 << (b i t

& uECC_WORD_BITS_MASK))) ;
4 }

Therefore we must conclude that the branching behavior was introduced by
compiler optimizations. To verify this we compiled the library with compiler

43

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

optimizations disabled. In this case no branch is introduced and no leakage can
be found at the same point.

5.1.2 Leakage veri�cation

In order to verify that this leakage is in no way related to or ampli�ed by
our trigger signal, we remove the trigger function from the code and check
again whether we can �nd the same leakage. When we start moving the call to
the trigger function around in the code, some unexpected changes happen to
the assembly code generated by the compiler. When removing the trigger, the
assembly code corresponding to the uECC_vli_testBit() function also changes.
It even changes when we modify code below that line. An example of this
behavior is given in �gure 5.3.

1 XYcZ_initial_double (Rx [1] , Ry [1] , Rx [0] ,
Ry [0] , i n i t i a l_Z , curve) ;

2 f o r (i = num_bits − 2 ; i > 0 ; −− i) {
3 t r i gger_high () ;
4 nb = ! uECC_vli_testBit (s ca l a r , i) ;
5 t r igger_low () ;
6 XYcZ_addC(Rx[1 − nb] , Ry[1 − nb] , Rx [nb

] , Ry [nb] , curve) ;
7 XYcZ_add(Rx [nb] , Ry [nb] , Rx[1 − nb] , Ry

[1 − nb] , curve) ;
8 }
9

1 bl t r i gger_high
2 as r param_4,r4,#0x5
3 l d r param_3, [s p ,#local_130]
4 uxth r 4 , r 4
5 l d r .w param_3, [param_3,param_4,
6 l s l #0x2]
7 mov param_2,#0x1
8 and param_4,r4,#0x1f
9 l s l . w param_4,param_2,param_4

10 t s t param_4,param_3
11 i tE eq
12 mov.eq r5,param_2
13 mov.ne r 5 ,#0x0
14 rsb r 6 , r 5 ,#0x1
15 l s l r 6 , r 6 ,#0x5
16 l s l r 5 , r 5 ,#0x5
17 add.w r 9 , r 1 0 , r 6
18 add.w r 8 , r 1 0 , r 5
19 add r 6 , r 1 1
20 add r 5 , r 1 1
21 bl tr igger_low
22

1 XYcZ_initial_double (Rx [1] , Ry [1] , Rx [0] ,
Ry [0] , i n i t i a l_Z , curve) ;

2 f o r (i = num_bits − 2 ; i > 0 ; −− i) {
3 t r i gger_high () ;
4 nb = ! uECC_vli_testBit (s ca l a r , i) ;
5

6 XYcZ_addC(Rx[1 − nb] , Ry[1 − nb] , Rx [nb
] , Ry [nb] , curve) ;

7 XYcZ_add(Rx [nb] , Ry [nb] , Rx[1 − nb] , Ry
[1 − nb] , curve) ;

8 }
9

1 bl t r i gger_high
2 l d r param_3, [s p ,#local_130]
3 as r param_4,r4,#0x5
4 uxth r 4 , r 4
5 l d r .w param_3, [param_3,param_4,
6 l s l #0x2]
7 s t r r 7 , [s p ,#0x0]=>local_140
8 and param_4,r4,#0x1f
9 mov param_2,#0x1

10 l s l . w param_4,param_2,param_4
11 t s t param_4,param_3
12 itEET ne
13 mov.ne r 6 ,#0x20
14 mov.eq r 6 ,#0x0
15 mov.eq r 5 ,#0x20
16 mov.ne r 5 ,#0x0
17 add.w r 9 , r 1 0 , r 6
18 add.w r 8 , r 1 0 , r 5
19 add r 6 , r 1 1
20 add r 5 , r 1 1
21

Figure 5.3: Side by side comparison of the generated assembly code corre-
sponding to the C code given above. The only di�erence in the C code on the
right side is a lack of the line trigger_low(). In the assembly code various
things change which already occur above the line which was removed.

The most notable change is in the branch which previously caused a lot of

44

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

leakage. This branch now performs two almost equivalent operations:
Before After
mov.eq r5, param_2 mov.ne r6, 0x20

mov.ne r5, 0x0 mov.eq r6, 0x0

mov.eq r5, 0x20

mov.ne r5, 0x0
Due to this change we now no longer are able to distinguish a 0-bit or 1-bit at
the previously found location on the trace.

5.1.3 A new attack without a trigger

In order to ensure that the trigger code does not in�uence the execution of
the ECC multiplication we move all of the triggering code to the outside of
the multiplication loop. The trigger is only called once before the start of the
actual multiplication. We veri�ed the correctness of the code by disassembling
the compiled binary and comparing it with a version which did not contain any
trigger at all. This time there were no di�erences in the section which performs
the scalar multiplication. We therefore now can present an attack which should
work on a unmodi�ed version of MicroECC compiled with default compiler
options.

Figure 5.4: TVLA of the uECC testBit function using an alternating bit. The
TVLA was done using 1000 traces spread accross 2 runs. One line is given for
each run.

We again perform the same test as in Section 5.1. We increased the cut-o�
frequency of our �lter to 4.5KHz as this gave us better results. The TVLA plot
is given in �gure 5.4. We also again plot the mean of each group of traces which
can be found in �gure 5.5. We see the greatest di�erences between the two
traces starting at around 1200 samples. These captured traces could be used as

45

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

Figure 5.5: Mean power consumption of the testBit function. The green line
gives the mean of all traces for which the bit was 1. The red line gives the mean
of all traces for which the bit was 0. The region between the dashed lines is the
point of interest which we attack.

a template for a template attack. However, we shall show that we can attack
MicroECC without the need for a template.

5.1.4 A horizontal attack on MicroECC

To perfom the attack we capture one trace of an ECSM on the target the
device. From this trace we extract the individual iterations of the Montgomery
ladder loop. This is done by applying a low-pass �lter to the trace with a
cut-o� frequency of 1KHz. This �lter eliminates most di�erences between the
iterations. Using the SAD metric from Section 3.6 we can compare whether
two segments of the trace are similar. In this way we can search for repeating
pattern in the trace and extract segments of 1000 samples corresponding to each
iteration of the loop. We know that one loop iteration corresponds to around
400.000 samples. Therefore we search for segments which are aproximately
400.000 samples apart from eachother. Using this technique we can �nd a
segment for almost all loop iterations. For a couple iterations we were not able
to locate the segment. This is possibly caused by additional noise during the
computation.

If we overlay all the segments, we obtain �gure 5.6. If we take a closer look
at the portion of the trace around sample 705 (�gure 5.7, we can clearly see
two distinct groups of traces. One group which corresponds to a 1-bit and
one group which corresponds to a 0-bit. This separation can also be observed
without coloring the traces, therefore it can be used to recover the bits of the
private scalar. We used this attack to attack the �rst 58 bits of a private scalar

46

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

used in an ECDH computation. We were able to recover 94% of the scalar bits
with a 100% success rate. We repeated the attack with multiple public and
private keys.

Figure 5.6: Traces corresponding to the �rst 58 iterations of the scalar multi-
plication. Each line corresponds with 1 iteration. Lines corresponding to a 1-bit
are green, lines corresponding to a 0-bit are red. The region between the dashed
lines is the point of interest which we attack.

The point which we are attacking corresponds to sample 1205 in the TVLA
trace given in �gure 5.4. The TVLA does indicate that there is leakage at this
point, however the peaks are much larger at other points on the trace. The
same can be seen in �gure 5.5; the di�erence in means is much greater at other
points. This raises the question whether this attack would not be more e�ective
at another point on the trace. The answer to this question can be found if
we look at the standard deviation between the di�erent traces. The standard
deviation between the di�erent traces is given in �gure 5.8. Here we see that at
these points which show a large di�erence in mean there also is a large standard
deviation. If we overlay the traces, this means that we will not see two clear
groups of traces, but a wide spectrum of traces instead. Due to this e�ect the
attack does not work at these points.

47

CHAPTER 5. SIDE CHANNEL ANALYSIS OF ECC

Figure 5.7: Traces corresponding to the �rst 58 iterations of the scalar multi-
plication. Each line corresponds with 1 iteration. Lines corresponding to a 1-bit
are green, lines corresponding to a 0-bit are red. The region between the dashed
lines is the point of interest which we attack.

Figure 5.8: Left: Standard deviation between traces in within the same group.
The standard deviation for the group corresponding to a 1-bit are given in green,
the group corresponding to a 0-bit in red. Right: The di�erence in means between
the two groups of traces.

48

Chapter 6

Conclusion

In this thesis we researched the side-channel security of two popular embedded
cryptographic libraries: Mbed TLS and MicroECC. We �rst built two low-
cost side-channel evaluation setups. We then successfully attacked the AES
implementation in Mbed TLS. We showed which countermeasures were e�ective
and how to use TVLA to verify this. We then also evaluated the side-channel
security of MicroECC and were able to �nd a new side-channel vulnerability in
this library.

6.1 TVLA conclusions

Our main question regarding TVLA was whether it was suitable as a general
testing methodology for side-channel leakage. From our literature study we
found that TVLA often gives false-positives, i.e. it exposes leakage which in
no way can be exploited in a side-channel attack. Futhermore, TVLA is not
suitable for testing asymmetric cryptography and very little work has been done
on adapting it for this purpose. In our experiments we had the same �ndings as
found in literature. In our analysis of AES we found leakage at many locations,
whereas most known attacks only target very speci�c locations. In our analysis
of ECC we had to adapt TVLA to use it on ECC. In the context of our horizontal
attack we noticed another limitation of TVLA; it only tests for a di�erence in
means between two groups of traces. In our attack a large di�erence of means
is not very useful if the standard deviation between the traces is large.

6.1.1 Future work on TVLA

We gave a few pointers to improve TVLA as a testing method for resistance
against template and horizontal attacks. Further research would be needed to
develop a new testing methodology based on TVLA which can properly test for
leakage which can be abused in a template attack or horizontal attack. The
addition of the standard deviation to the test could be a good starting point for
this.

49

CHAPTER 6. CONCLUSION

6.2 AES conclusions

We can conclude that the AES implementation in Mbed TLS does not o�er
any protection against power-based side-channel attacks. However, it can easily
be extended to include protection against side-channel attacks. The boolean
masking scheme from Section 4.4.1 o�ers protection against �rst order side-
channel attacks at a very low cost in terms of memory and clock cycles. It does
require a very rigorous implementation approach; when implementing the mask-
ing scheme it is important to ensure that all intermediate values are also masked.
The threshold scheme covered in Section 4.4.2 o�ers a provably secure masking
of AES. The main advantage of this approach is that it can easily extended
with multiple shares, o�ering protection against higher order side-channel at-
tacks. Another advantage of this approach is that it is nearly impossible to
implement it incorrectly. A major downside of this approach is the number of
clock cycles which it consumes. Our un-optimized implementation takes around
184k clock cycles to encrypt a single block, whereas the original Mbed TLS
does this in around 1k cycles. For resource constrained embedded devices such
a large decrease in performance is not an option, making this not a very suitable
software countermeasure. The hybrid scheme given in Section 4.4.3 o�ers the
same level of protection as the threshold scheme, but does this at a lower cost in
terms of clock cycles. The downside comes in terms of memory usage, it requires
additional lookup tables which consume a signi�cant amount of memory.

6.2.1 Future work on AES

Our work focused on creating proof-of-concept AES implementations containing
the aforementioned countermeasures. All countermeasures were evaluated for
protection against �rst order attacks using up to 10.000 traces. Due to time and
resource constraints we did not do any tests using more than 10.000 traces, as
these tests would take multiple days or weeks to complete and require signi�cant
amounts of data storage. For a higher level of assurance these tests should be
repeated with more traces. The performance of the AES implementations also is
an area which could be improved on. It could be investigated whether the hybrid
scheme can be optimized enough to make it a viable option as a software-based
countermeasure.

6.3 ECC conclusions

MicroECC required a new approach compared to AES. Due to the randomized
projective coordinates DPA style attacks do not work. We therefore explored
template attacks and horizontal attacks in the context of ECC. We found that
we can recover almost the full ECC private key using a horizontal attack. We
also discovered that in certain cases a compiler can generate assembly code
which eases this attack.

6.3.1 Future work on ECC

It is not enitrely clear what causes the leakage which we are exploiting in our
attack. One hypothesis is that it is caused by a memory access which depends

50

CHAPTER 6. CONCLUSION

on a secret value. Verifying this is a non-trivial operation and would need
further work. Once the cause is known countermeasures for this attack should be
explored and evaluated. A possible countermeasure introduced in [52] is storing
data in memory addresses with the same hamming weight for two di�erent
addresses. Another possibility is the countermeasure introduced in [53], which
randomizes the order of the iterations of the Montgomery ladder.

51

Bibliography

[1] IoT market size worldwide 2017-2025 | Statista. url: https : / / www .
statista.com/statistics/976313/global-iot-market-size/ (vis-
ited on 04/03/2020).

[2] Flexible Key Provisioning with SRAM PUF | White Paper. url: http:
//go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp

(visited on 04/03/2020).
[3] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. �Phys-

ical one-way functions�. In: Science 297.5589 (2002), pp. 2026�2030. issn:
00368075. doi: 10.1126/science.1074376.

[4] Intrinsic ID - Home. url: https://www.intrinsic-id.com/ (visited on
04/03/2020).

[5] Paul Kocher, Joshua Ja�e, and Benjamin Jun. �Di�erential power anal-
ysis�. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics).
Vol. 1666. 1999, pp. 388�397. isbn: 3540663479. doi: 10.1007/978-1-
4419-5906-5_196.

[6] SSL Library mbed TLS / PolarSSL. url: https://tls.mbed.org/ (vis-
ited on 10/29/2019).

[7] kmackay/micro-ecc: ECDH and ECDSA for 8-bit, 32-bit, and 64-bit pro-
cessors. url: https://github.com/kmackay/micro- ecc (visited on
01/17/2020).

[8] Gilbert Goodwill, Benjamin Jun, Josh Ja�e, and Pankaj Rohatgi. �A test-
ing methodology for side channel resistance validation�. In: NIST Work-
shop 2011. 2011, pp. 1�12.

[9] Joan Daemen and Vincent Rijmen. �The Rijndael Block Cipher: AES
Proposal�. 2003. url: http://csrc.nist.gov/CryptoToolkit/aes/
rijndael/Rijndael.pdf.

[10] NIST. �Processing Standards Publication 197: Advanced Encryption Stan-
dard�. In: Federal Information Processing Standards Publication 197 (2001).
url: http://csrc.nist.gov/csor/.

[11] Morris Dworkin. �Recommendation for Block Cipher Modes of Operation
Methods and Techniques�. In: National Institute of Standards and Tech-
nology Special Publication 800-38A 2001 ED December (2001), p. 66. doi:
10.6028/NIST.SP.800-38a.

[12] Neal Koblitz. �Elliptic Curve Public Key Cryptosystems�. In: MATHE-
MATICS OF COMPUTATION 48.177 (1987), pp. 203�209. doi: 10 .
1007/978-1-4615-3198-2.

52

https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.statista.com/statistics/976313/global-iot-market-size/
http://go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp
http://go.intrinsic-id.com/flexible-key-provisioning-sram-puf-lp
https://doi.org/10.1126/science.1074376
https://www.intrinsic-id.com/
https://doi.org/10.1007/978-1-4419-5906-5_196
https://doi.org/10.1007/978-1-4419-5906-5_196
https://tls.mbed.org/
https://github.com/kmackay/micro-ecc
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf
http://csrc.nist.gov/csor/
https://doi.org/10.6028/NIST.SP.800-38a
https://doi.org/10.1007/978-1-4615-3198-2
https://doi.org/10.1007/978-1-4615-3198-2

BIBLIOGRAPHY

[13] Peter L. Montgomery. �Speeding the Pollard and elliptic curve methods
of factorization�. In: Mathematics of Computation 48.177 (1987), pp. 243�
243. issn: 0025-5718. doi: 10.1090/s0025-5718-1987-0866113-7.

[14] Alfred Menezes. Elliptic Curve Public Key Cryptosystems. Springer US,
1993. doi: 10.1007/978-1-4615-3198-2.

[15] Don Johnson, Alfred Menezes, and Scott Vanstone. �The Elliptic Curve
Digital Signature Algorithm (ECDSA)�. In: International Journal of In-
formation Security 1.1 (2001), pp. 36�63. issn: 1615-5262. doi: 10.1007/
s102070100002.

[16] Ronald H Brown, Mary L Good, and Arati Prabhakar. �Federal Informa-
tion Processing Standards Publication: digital signature standard (DSS)�.
In: (1994).

[17] Elaine Barker, Don Johnson, and Miles Smid. �Recommendation for Pair-
Wise Key Establishment Schemes Using Discrete Logarithm Cryptogra-
phy�. In: NIST Special Publication 800.56A (2006). doi: 10.6028/NIST.
SP.800- 56ar. url: http://csrc.nist.gov/groups/ST/toolkit/
key{_}management.html.

[18] Whit�eld Di�e, Whit�eld Di�e, and Martin E Hellman. �New Directions
in Cryptography�. In: IEEE Transactions on Information Theory 22.6
(1976), pp. 644�654. issn: 15579654. doi: 10.1109/TIT.1976.1055638.

[19] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
attacks: Revealing the secrets of smart cards. Springer US, 2007, pp. 1�
337. isbn: 0387308571. doi: 10.1007/978-0-387-38162-6.

[20] Hongying Liu, Guoyu Qian, Satoshi Goto, and Yukiyasu Tsunoo. �AES key
recovery based on Switching Distance model�. In: 3rd International Sym-
posium on Electronic Commerce and Security, ISECS 2010. 2010, pp. 218�
222. doi: 10.1109/ISECS.2010.55.

[21] Hassen Mestiri, Noura Benhadjyoussef, Mohsen Machhout, and Rached
Tourki. �A Comparative Study of Power Consumption Models for CPA
Attack�. In: International Journal of Computer Network and Information
Security 5.3 (2012), pp. 25�31. issn: 20749090. doi: 10.5815/ijcnis.
2013.03.03.

[22] Paul C. Kocher. �Timing attacks on implementations of di�e-hellman,
RSA, DSS, and other systems�. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Arti�cial Intelligence and Lecture
Notes in Bioinformatics). Vol. 1109. Springer Verlag, 1996, pp. 104�113.
isbn: 3540615121. doi: 10.1007/3-540-68697-5_9.

[23] Eric Brier, Christophe Clavier, and Francis Olivier. �Correlation power
analysis with a leakage model�. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Arti�cial Intelligence and Lecture
Notes in Bioinformatics) 3156 (2004), pp. 16�29. issn: 03029743. doi:
10.1007/978-3-540-28632-5_2.

[24] François Xavier Standaert, Tal G Malkin, and Moti Yung. �A uni�ed
framework for the analysis of side-channel key recovery attacks�. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in Ar-
ti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 5479 LNCS.
2009, pp. 443�461. isbn: 3642010008. doi: 10.1007/978-3-642-01001-
9_26.

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. �Template Attacks�.
In: Lecture Notes in Computer Science (including subseries Lecture Notes

53

https://doi.org/10.1090/s0025-5718-1987-0866113-7
https://doi.org/10.1007/978-1-4615-3198-2
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.6028/NIST.SP.800-56ar
https://doi.org/10.6028/NIST.SP.800-56ar
http://csrc.nist.gov/groups/ST/toolkit/key{_}management.html
http://csrc.nist.gov/groups/ST/toolkit/key{_}management.html
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1109/ISECS.2010.55
https://doi.org/10.5815/ijcnis.2013.03.03
https://doi.org/10.5815/ijcnis.2013.03.03
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26

BIBLIOGRAPHY

in Arti�cial Intelligence and Lecture Notes in Bioinformatics) 2523 (2003),
pp. 13�28. issn: 03029743. doi: 10.1007/3-540-36400-5_3.

[26] Lejla Batina, �ukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. �Online template attacks�. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Arti�cial Intel-
ligence and Lecture Notes in Bioinformatics). Vol. 8885. Springer Verlag,
2014, pp. 21�36. isbn: 9783319130385. doi: 10.1007/978-3-319-13039-
2_2.

[27] Lejla Batina, �ukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. �Online template attacks�. In: Journal of Crypto-
graphic Engineering 9.1 (2019), pp. 21�36. issn: 2190-8508. doi: 10.1007/
s13389-017-0171-8.

[28] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet,
and Vincent Verneuil. �Horizontal correlation analysis on exponentiation�.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 6476
LNCS. 2010, pp. 46�61. isbn: 3642176496. doi: 10.1007/978-3-642-
17650-0_5.

[29] G Becker, J Cooper, E Demulder, G Goodwill, J Ja�e, G Kenworthy, T
Kouzminov, A Leiserson, P Rohatgi, and S Saab. �Test Vector Leakage
Assessment (TVLA) methodology in practice�. In: 2013.

[30] Thomas S. Messerges. �Using Second-Order Power Analysis to Attack
DPA Resistant Software�. In: Cryptographic Hardware and Embedded Sys-
tems. 2000, pp. 238�251.

[31] Tobias Schneider, · Amir Moradi, Amir Moradi, and Moradi@rub De.
�Leakage assessment methodology Extended version�. In: 6 (2016), pp. 85�
99. doi: 10.1007/s13389-016-0120-y.

[32] �Information technology - Security techniques - Testing methods for the
mitigation of non-invasive attack classes against cryptographic modules�.
2012. url: https://www.iso.org/standard/60612.html.

[33] Carolyn Whitnall and Elisabeth Oswald. A Critical Analysis of ISO 17825
('Testing methods for the mitigation of non-invasive attack classes against
cryptographic modules'). Tech. rep. url: https : / / csrc . nist . gov /
Projects/cryptographic-module-validation-program/.

[34] A Adam Ding, Liwei Zhang, Francois Durvaux, Francois Xavier Standaert,
and Yunsi Fei. �Towards sound and optimal leakage detection procedure�.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 10728
LNCS. 2018, pp. 105�122. isbn: 9783319752075. doi: 10.1007/978-3-
319-75208-2_7.

[35] Thomas S. Messerges. Securing the AES �nalists against power analysis
attacks. Tech. rep. 2001, pp. 150�164. doi: 10.1007/3-540-44706-7_11.

[36] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. �An AES smart
card implementation resistant to power analysis attacks�. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Arti�cial In-
telligence and Lecture Notes in Bioinformatics). Vol. 3989 LNCS. 2006,
pp. 239�252. isbn: 3540347038. doi: 10.1007/11767480_16.

[37] Mehdi Laurent Akkar and Christophe Giraud. �An implementation of DES
and AES, secure against some attacks�. In: Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Arti�cial Intelligence and Lec-

54

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/978-3-319-13039-2_2
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/s13389-016-0120-y
https://www.iso.org/standard/60612.html
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/
https://csrc.nist.gov/Projects/cryptographic-module-validation-program/
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/11767480_16

BIBLIOGRAPHY

ture Notes in Bioinformatics). Vol. 2162. Springer Verlag, 2001, pp. 309�
318. isbn: 3540425217. doi: 10.1007/3-540-44709-1_26.

[38] Jovan D. Goli¢ and Christophe Tymen. �Multiplicative Masking and Power
Analysis of AES�. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-
formatics) 2523 (2003), pp. 198�212. issn: 03029743. doi: 10.1007/3-
540-36400-5_16.

[39] Johannes Blömer, Jorge Guajardo, and Volker Krummel. �Provably secure
masking of AES�. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-
formatics) 3357 (2004), pp. 69�83. issn: 03029743. doi: 10.1007/978-3-
540-30564-4_5.

[40] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
�Towards sound approaches to counteract power-analysis attacks�. In: Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Arti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 1666.
Springer Verlag, 1999, pp. 398�412. isbn: 3540663479. doi: 10.1007/3-
540-48405-1_26.

[41] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and
Vincent Rijmen. �A more e�cient AES threshold implementation�. In:
Lecture Notes in Computer Science (including subseries Lecture Notes
in Arti�cial Intelligence and Lecture Notes in Bioinformatics). Vol. 8469
LNCS. 2014, pp. 267�284. isbn: 9783319067339. doi: 10.1007/978-3-
319-06734-6_17.

[42] Adi Shamir. �How to Share a Secret�. In: Communications of the ACM
22.11 (1979), pp. 612�613. issn: 15577317. doi: 10.1145/359168.359176.

[43] G. R. Blakley. �Safeguarding cryptographic keys�. In: 1979 International
Workshop on Managing Requirements Knowledge, MARK 1979. Institute
of Electrical and Electronics Engineers Inc., 1979, pp. 313�317. isbn:
9781509031818. doi: 10.1109/MARK.1979.8817296.

[44] Jean Sébastien Coron. �Resistance against di�erential power analysis for
elliptic curve cryptosystems�. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics). Vol. 1717. 1999, pp. 292�302. isbn: 354066646X. doi:
10.1007/3-540-48059-5_25.

[45] Claude E. Shannon. �Communication in the Presence of Noise�. In: Pro-
ceedings of the IRE 37.1 (1949), pp. 10�21. issn: 00968390. doi: 10.1109/
JRPROC.1949.232969.

[46] NewAE. CW1173 ChipWhisperer-Lite - ChipWhisperer Wiki. url: https:
//wiki.newae.com/CW1173{_}ChipWhisperer-Lite (visited on 10/15/2019).

[47] GitHub - kokke/tiny-AES-c: Small portable AES128/192/256 in C. url:
https://github.com/kokke/tiny-AES-c (visited on 02/06/2020).

[48] GNU Toolchain | GNU-RM Downloads � Arm Developer. url: https:
//developer.arm.com/tools-and-software/open-source-software/

developer - tools / gnu - toolchain / gnu - rm / downloads (visited on
03/27/2020).

[49] Choosing an Oscilloscope. url: https://www.picotech.com/library/
application-note/oscilloscope-tutorial (visited on 03/27/2020).

[50] S. Butterworth. �On the Theory of Filter Ampli�ers�. In: The Wireless
Engineer (1930), pp. 536�541.

55

https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/3-540-36400-5_16
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/MARK.1979.8817296
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://wiki.newae.com/CW1173{_}ChipWhisperer-Lite
https://wiki.newae.com/CW1173{_}ChipWhisperer-Lite
https://github.com/kokke/tiny-AES-c
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://www.picotech.com/library/application-note/oscilloscope-tutorial
https://www.picotech.com/library/application-note/oscilloscope-tutorial

BIBLIOGRAPHY

[51] Matthieu Rivain and Emmanuel Prou�. �Provably secure higher-order
masking of AES�. In: Lecture Notes in Computer Science (including sub-
series Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 6225 LNCS. 2010, pp. 413�427. isbn: 3642150306. doi:
10.1007/978-3-642-15031-9_28.

[52] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. �Address-Bit Dif-
ferential Power Analysis of Cryptographic Schemes OK-ECDH and OK-
ECDSA�. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Arti�cial Intelligence and Lecture Notes in Bioinformatics)
2523 (2003), pp. 129�143. issn: 03029743. doi: 10.1007/3-540-36400-
5_11.

[53] Duc Phong Le, Chik How Tan, and Michael Tunstall. �Randomizing the
montgomery powering ladder�. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes
in Bioinformatics). Vol. 9311. 2015, pp. 169�184. isbn: 9783319240176.
doi: 10.1007/978-3-319-24018-3_11.

56

https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/978-3-319-24018-3_11

Appendix A

Threshold multiplication

scheme correctness proof

By induction we prove that

n⊕
j=0

oj = (x0 ⊕ · · · ⊕ xn) · (y0 ⊕ · · · ⊕ yn) (A.1)

given that x and y both are split in to n shares.

Base case: n=1 For n = 1 this clearly holds:

1⊕
j=0

oj = (x0y0 ⊕
1⊕
i=1

r0,i)⊕ (x1y1 ⊕
0⊕
i=0

ti,1) (A.2)

= x0y0 ⊕ r0,1 ⊕ x1y1 ⊕ t0,1 (A.3)

= x0y0 ⊕ r0,1 ⊕ x1y1 ⊕ (r0,1 ⊕ x0y1)⊕ x1y0 (A.4)

= x0y0 ⊕ x1y1 ⊕ x0y1 ⊕ x1y0 (A.5)

= (x0 ⊕ x1)(y0 ⊕ y1) (A.6)

(A.7)

57

APPENDIX A. THRESHOLD MULTIPLICATION SCHEME

CORRECTNESS PROOF

Induction step If our equation A.1 holds for some n, then we shall now show
that it also holds for n+ 1.

n+1⊕
j=0

oj =

n+1⊕
j=0

(xj · yj ⊕
j−1⊕
i=0

ti,j ⊕
n+1⊕
i=j+1

rj,i)

=

n⊕
j=0

(xj · yj ⊕
j−1⊕
i=0

ti,j ⊕
n⊕

i=j+1

rj,i)⊕
n⊕
j=0

rj,n+1 ⊕ xn+1yn+1 ⊕
n⊕
i=0

ti,n+1

=

n⊕
j=0

oj ⊕
n⊕
j=0

rj,n+1 ⊕ xn+1yn+1 ⊕
n⊕
i=0

ti,n+1

=(x0 ⊕ · · · ⊕ xn) · (y0 ⊕ · · · ⊕ yn)⊕ (r0,n+1 ⊕ · · · ⊕ rn,n+1)

⊕ xn+1yn+1 ⊕ (t0,n+1 ⊕ · · · ⊕ tn,n+1)

=(x0 ⊕ · · · ⊕ xn) · (y0 ⊕ · · · ⊕ yn)⊕ (r0,n+1 ⊕ · · · ⊕ rn,n+1)

⊕ xn+1yn+1 ⊕ ((r0,n+1 ⊕ · · · ⊕ rn,n+1)⊕ yn+1(x0 ⊕ · · · ⊕ xn)

⊕ xn+1(y0 ⊕ · · · ⊕ yn))

=(x0 ⊕ · · · ⊕ xn) · (y0 ⊕ · · · ⊕ yn)

⊕ xn+1yn+1 ⊕ yn+1(x0 ⊕ · · · ⊕ xn)⊕ xn+1(y0 ⊕ · · · ⊕ yn)

=(x0 ⊕ · · · ⊕ xn+1) · (y0 ⊕ · · · ⊕ yn+1)

58

	Introduction
	Motivation
	Our contribution
	Outline

	Background
	Cryptography
	Advanced Encryption Standard
	Elliptic Curve Cryptography

	Attacker model
	Power-based side-channel attacks
	Power models
	Simple power analysis
	Differential power analysis
	Correlation power analysis
	Template attacks
	Online template attacks
	Horizontal attacks

	Test Vector Leakage Assessment
	Non-specific TVLA
	Higher order TVLA
	The ISO 17825 standard
	TVLA confidence level

	Side-channel countermeasures
	AES countermeasures
	Threshold cryptography
	ECC countermeasures

	Oscilloscope bandwidth and sample rate

	Experimental setup
	Hardware
	Chipwhisperer
	Picoscope based setup

	Verification
	CPA attack

	Sample rate considerations
	Environmental effects
	TVLA considerations
	Filtering and alignment

	Side channel analysis of AES
	Analyzing AES in ECB mode
	AES forward tables
	Analyzing AES in CTR mode
	Protecting Mbed TLS against side-channel attacks
	A masked AES implementation
	A threshold AES implementation
	The hybrid threshold scheme

	Side channel analysis of ECC
	Attacking MicroECC
	Finding the cause of the leakage
	Leakage verification
	A new attack without a trigger
	A horizontal attack on MicroECC

	Conclusion
	TVLA conclusions
	Future work on TVLA

	AES conclusions
	Future work on AES

	ECC conclusions
	Future work on ECC

	Threshold multiplication scheme correctness proof

