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Abstract

Over the last decades our world has changed significantly. Digital systems
have emerged in our daily lives and businesses, due to the rapid innovations
in technology. Important parts of society, such as hospitals, banks or gov-
ernmental institutions do their business with the use of these systems. Our
world is therefor increasingly dependant on these systems.

Almost every digital system contains some form of integrated circuit.
Due to the dependability on these systems, it is important that the occur-
rences of errors are minimised as much as possible. Counter measures are
taken to minimise errors in the design and manufacturing phase of integrated
circuits. Counter measures consist of simulation and formal verification.

Although counter measures are taken during the design phase, it is still
possible that faults occur in the final design. Fault tolerant techniques are
implemented into the designs of integrated circuit, to mitigate faults turning
into errors. Nowadays, two techniques are used: Hamming encoding and
Triple Modular Redundancy.

Hamming encoding is an error correcting code that adds redundancy
to the code word it encodes. By adding this redundancy, possible faults
can be detected and corrected. Triple Modular Redundancy triplicates all
components of the design. Each triplicated component is connected to a
majority voter that gives the output.

This thesis presents an analysis of the two fault tolerant techniques.
Additionally, it investigates BCH encoding for multi bit error correction.
A set of benchmarks design is used, to which each technique is applied.
Afterwards, an analysis is done on the area, timing and error correcting
capability of the technique.

The analysis showed that Hamming encoding has an increased area of a
factor 3.8 of the baseline. TMR had an increased area of a factor of 1.6 of
the baseline. In terms of timing, Hamming increased the clock period of the
baseline by 441 pico seconds on average. TMR increased the clock period
by 86 pico seconds on average.
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Chapter 1

Introduction

Over the last decades our world has changed significantly. Digital systems
have emerged in our daily lives and businesses, due to the rapid innova-
tions in technology. Important parts of society, such as hospitals, banks or
governmental institutions do their business with the use of these systems.
Digital systems come in many forms, two of which are the Application Spe-
cific Integrated Circuit (ASIC) and the Field Programmable Gate Array
(FPGA).

ASICs are integrated circuits (IC) used to carry out specific tasks, hence
the name application specific. These ICs are optimized towards a single
application, and carry out their tasks with greater speed and fewer resources
than general purpose ICs. The downside of this is that ASICs can not be
used for anything different than what they are made for.

Closely related to the ASIC is the FPGA. These devices have emerged
since the late 80s and are used in many different domains. FPGAs are
programmable logic devices, and help companies and universities do research
and build new products. Having a lot of computing power and the ability
to reprogram the device, FPGAs are an excellent choice for a lot of research
and development.

Just as software might contain bugs, hardware designs can contain er-
rors. As mentioned, today’s world is dependant on digital systems. Therefor
research in done to increase the robustness of digital systems. For exam-
ple, server CPU’s contain features to increase reliability and availability [1].
Additionally, international standards, such as IEC 61508, ISO-26262 and
DO-254, require systems in the automotive, avionics and electrical system
industry to contain fault tolerance for safety reasons[2, 3].

During the development process of a hardware design for an ASIC or
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FPGA countermeasures are taken to minimize these errors. Simulations
are used to verify the output of a design against a known set of values.
However, as designs are growing in complexity it becomes more difficult to
simulate every possible input combination. Formal verification is used to
mathematically analyse the space of possible behaviours of a design, rather
than computing results for all values.

Although counter measures are taken to minimise errors in the design
phase, devices are still susceptible to faults. Faults may occur due to man-
ufacturing problems, damage, fatigue or other deterioration. Additionally,
external disturbances such as: harsh environmental conditions, electromag-
netic interference, ionising radiation, unanticipated inputs, or system misuse
may cause faults[4].

Programming an ASIC or FPGA is done in a hardware description lan-
guage such as VHDL or Verilog. The final design often contains two parts:
the data path and the control path. The data path consists of the parts
that perform arithmetic operations or which hold data. The control path
are parts that command the data path, memory, I/O devices according to
the instructions of the memory. The control path contains some form of
finite state machine. Based on the input of the machine and the current
state of the memories, the machine can transition into a next state. A state
encoding is used to differentiate between the states of the machine.

A subset of the earlier mentioned faults in a system, may result in actual
system errors. This means the actual logical value of an element differs from
its intended value. Thus, for a given input and state of the system, the
wrong next state and/or output is computed. The produced system error
may result in a system failure. A system failure, is defined as the inability
to deliver the service as described by the systems specification. As digital
systems are part of critical parts of our businesses, societies and lives, it
is becoming increasingly important to mitigate any form of fault, error or
system failure.

1.1 Problem Statement

Nowadays, fault tolerant techniques are used in order to harness the hard-
ware designs against faults. By doing so, the design might be able to detect
a fault and correct it, before it would result in an actual error. Therefore,
lowering the amount of system failures that occur in the system.

Techniques used to harness the hardware against faults typically adds
redundancy to the hardware. Through redundancy possible faults are de-
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tected and corrected. The problem with this approach is the addition of
overhead. Adding redundancy results in more hardware, thus more area.
Because of the extra area, chances of possible errors through charged parti-
cles increases, which might add more faults than actually correct them.

The most commonly used techniques for fault tolerance are Triple Mod-
ular Redundancy (TMR) and Hamming encoding. These two techniques are
already present in today’s synthesis tools, however both techniques are only
capable of detecting and correcting individual errors.

This master thesis aims to analyse the current two techniques, TMR and
Hamming encoding, in terms of area, timing and correction rate. Addition-
ally, this work aims to investigate an extension of the Hamming encoding
technique, such that it is able to correct and detect multiple errors. Also, an
analysis of this extended technique is done to compare it with the currently
used techniques in terms of area, timing and correction rate.

This work only aims to research the fault tolerant techniques when used
for the control paths of the system; the state encoded words of the finite
state machine. Fault tolerance on data paths is outside of the scope for this
research. The used and proposed technique of Hamming encoding do not
lend itself to be used for the data path, as the data bits are not predictable,
whereas the state bits of the finite state machine are known beforehand.
Therefor the data path would need an application specific solution.

1.2 Motivation

We live in a digitalised world; electronic devices and systems are used ev-
erywhere around us. People use smartphones, laptops and tv’s for comfort
and assistance. Businesses and governments, use digital systems to conduct
business and automate certain parts of business. Humanity has gotten very
dependent on electronic devices and systems. Not only because of comfort
or automation, but also because of safety.

Some systems might be very expensive and mission critical, other sys-
tems guarantee safety of the user or the systems itself. Having failures within
these kind of systems, might lead to catastrophic failures. It is therefor of
utmost importance to prevent system failures and errors.

Already fault tolerant techniques are used in the design of electronic
hardware. These techniques are there to prevent the manifestation of errors
in systems. Today’s techniques mostly detect and correct single bit errors,
we aim to analyse an extension to detect and correct multi-bit errors.

Additionally, the fault tolerant techniques are present only in specific
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synthesis tools. These tools tend to be expensive or only work for specific
brands of hardware. Additionally, some of these tools are under export
restrictions, thus limiting it usability. We aim to implement our solution into
an open source synthesis tool, such that anyone can use the fault tolerant
techniques introduced in this thesis.

1.3 Thesis overview

This thesis is organized as follows: Chapter 2 introduces the reader to the
necessary background knowledge of the project’s topic. The notion of de-
pendability is discussed. In addition, a fault model is presented. This model
defines what a fault, error and system failure is. Finally, an introduction to
finite state machines is given.

Chapter 3 discusses related work. Recent work on two fault tolerant
techniques is presented. As well as modern synthesis tools and analysis
techniques for error correction rates.

Chapter 4 presents the methodology used in during this project. Per
fault tolerant technique a strategy is presented. This strategy shows how
the technique is implemented and what the overall flow of work is.

Chapter 5 gives an introduction to the synthesis tool Yosys. This tool
is used during this project and two fault tolerant encoding techniques are
implemented in the tool. One of the Yosys’ synthesis passes, the FSM
pass, is discussed more in depth. This pass is vital for the recoding of the
interal state machine and changes were made to implement new encoding
techniques. Additionally, the implementation of the encoding techniques in
Yosys is presented.

Finally, Chapter 6 presents the results of the analyses of the different
fault tolerant techniques used. Chapter 7 gives a conclusion to this thesis
and presents possible future work.
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Chapter 2

Background

The aim of this chapter is to provide background knowledge to establish a
basis of information used within this thesis. First the notion of dependability
in the context of this project is discussed. Afterwards a fault model which is
used in this project is presented. Finally, the basics of finite state machines
are discussed.

2.1 Dependability

These days people, businesses and governments are more dependent on com-
puter systems than ever. This implicitly means that the dependability of
these systems is increased. The definition of dependability according to the
Cambridge online dictionary is:

”The quality of being able to be trusted and being very likely to do what
people expect”[5]

Another definition was given by [6], which focuses more on the domain
of computer systems:

”Dependability is that property of a computer system that allows reliance
to be justifiably placed on the service it delivers.”

Together with this definition, [6] presented a taxonomy of what depend-
able computing is. Dependability is built up from three main classes:

• Impairments: Condition which cause the system to be undependable.
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An impairment may also result from undependability. This means,
the system cannot reliably deliver the service it is specified to.

• Means: Methods to ensure the system can reliably deliver the service
it is specified to. Additionally, the means provide tools to the user to
validate the ability of the system to reliably deliver its service.

• Measures: Metrics to express the quality of the service delivered by
the system.

The final taxonomy tree as presented by [6] is shown in figure 2.1. The
class of impairments consists of: faults, errors and failures. Within this
research a fault model is presented, such that it is clear what we define as a
fault, an error or a system failure.

Figure 2.1: The taxonomy tree of dependability as presented by [6]

The class of means, is subdivided into procurements and validations.
The procurements consist of fault avoidance and fault tolerance. These
methods should provide the system to deliver its specified service. Fault
avoidance is the prevention of faults by means of construction. For example,
while designing a system that operates in space, use shielding to mitigate
interference of charged particles. Fault tolerance adds redundancy to the
system such that it can deliver the specified service while faults occur or
have occurred. Redundancy can be added, for example, through replication
of specific components.

The validation class consists of fault removal and fault forecasting. These
methods are in place to reach confidence in the system’s ability to deliver the
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specified service. Fault removal minimises the presence of faults during the
design phase by means of verification. Formal verification and simulation are
methods which are used to find errors during the design phase. Once found,
the system designer can remove the error from the design. The estimation
of the presence, the occurrence, and the consequences of faults by means of
evaluation is called fault forecasting.

Finally the measures class consists of metrics to express the quality of the
service delivered by the system. Reliability is a measure of the continuous
delivery of proper service (or, equivalently, of the time to failure) from a
reference initial instant. Availability is a measure of uptime with respect to
downtime. Lastly, safety is a measure of time to catastrophic failure. Due
to their context depended nature, this thesis does not focus on the any of
the metrics from the measures class.

Within this research we will mainly focus on the fault impairment and
the fault tolerance procurement parts of the taxonomy tree presented by
[6]. A fault model is presented and different fault tolerant techniques are
discussed. The rest of the means and measures class are out of scope for
this research.

2.2 Fault model

In the previous sections we introduced the notion of dependability in a
general view. In order to use these notions it needs to be clarified what we
perceive as a fault, an error or a system failure.

This section provides information on what faults, errors and system fail-
ures are. Different types of faults are presented and finally the application
of the fault model is explained.

2.2.1 Faults, errors and system failures

Faults, errors and system failures are closely related to one another; one
might be the cause of the other. Over time different classifications and
definitions have been given to these phenomena[6, 4]. These studies give a
more general view of what faults, errors and system failures are. By using
their definitions, our own definitions are formed and applied to our domain.
First, faults are defined, after which errors and system failures are defined.

A fault is defined as an anomalous physical condition within the sys-
tem [4]. Causes of this condition vary from design errors, manufacturing
problems or external disturbances. A fault on its own is not harmful to the
system. It is only harmful when it results in an error.

7



An error is a part of the system which causes the systems output to
differ from its intended value. [4] states that an error is the manifestation
of a fault. Additionally, [6] states that a fault is the cause of an error.

Finally an error may lead to a system failure. This means the system
cannot deliver its service as defined by its specification.

Within this project we agree upon the definition that: A fault is physical
anomalous condition, which may lead to an error. An error is a manifestation
of a fault which may lead to different system output than expected. Because
of the error, the complete system may fail to deliver its specified service, thus
resulting in a system failure.

2.2.2 Applying the fault model

As [6] mentioned, it might be difficult to find the cause of a fault because
of recursion. A fault may lead to an error, which may lead to a system
failure. Because of this system failure a fault may be introduced, and the
cycle repeats itself:

...→ failure→ fault→ error → failure→ ...

This cycle is mostly the result of hierarchical system design. System
design is often done using a hierarchical approach. The final system is
build up from smaller subsystems, which also can be build up from smaller
systems. Therefore the final system consists of layers of subsystems. This
hierarchical system design, is part of why this failure cycle exists; a failure
in a lower level of the system, might introduce an error in a higher level of
the system.

Thus, depending on what part of the system you view, each may lead
to different views on what faults, errors and failures are. For example, an
ionising particle hits a part of an integrated circuit. This particle collision
causes a single bit to flip in a memory element. Because of this erroneous
bit, a certain LED is not correctly toggled. A light sensor, keeps track of
the LED and based on its state provides a service.

Within this example we might claim the ionising particle collision to be
the fault, the bit flip in the memory element to be the error, and the system
failure is the LED not correctly being toggled. However, it might also be
possible to view the erroneous bit as the fault, the incorrectly toggled LED
to be the error, and the failing light sensor to be the system failure.

As shown, it is important to have a notice of what we perceive as a
fault, an error or system failure. Within this project an erroneous bit flip
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in a state signal is considered a fault. The error is the finite state machine
moving to an incorrect next state because of the wrong state signal. Finally,
the system failure is the hardware failing to provide its specified service.

2.2.3 Types of faults

As previously mentioned a fault is defined as an anomalous physical con-
dition within the system [4], which may be caused by design errors, man-
ufacturing problems or external disturbances. This thesis focuses on faults
which are caused by external disturbances, mainly radiation effects. This
section aims to present the different types of faults caused by radiation.

Electronic devices and integrated circuits are susceptible to radiation
effects. The charged particles from the radiation interact with the circuitry
and might change state of memories or influence signals on the circuit. The
change in state or signals may result in system errors. Different types of
fault have been found and studied.

The effects of radiation on circuitry can be split into two main classes:
Cumulative Effects and Single Event Effects (SEE). Cumulative Effects are
the result of exposure to radiation for a longer time. Over time the radiation
leads to component degradation. Once the components are sufficiently dam-
aged, faults may arise. The Cumulative Effects are not further discussed as
they are not within the scope of the problem presented in this report.

SEEs are caused by a single charged particle interaction with the cir-
cuitry. The interaction may lead to different effects: Destructive or Non-
Destructive. The Destructive SEEs lead to permanent damage and are more
difficult to recover from. The Destructive SEEs are the following[7]:

• Single-Event Latch-Up (SEL) - The result of the triggering of a par-
asitic thyristor mainly existing in CMOS circuits. When it occurs, a
high current flows and if the power supply is maintained, the device
can be destroyed by thermal effects.

• Single-Event Snap-Back (SESB) - The result of the triggering of a
parasitic bipolar structure. For example when each transistor is di-
electrically isolated from its neighbours, SOI MOS is not sensitive to
SEL, but it can be sensitive to SESB because of floating body effects
when body contacts are insufficient.

• Single-Event Hard Error (SEHE) - An unalterable change of state
because of damage done to a cell by an ion strike.
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• Single-Event Burnout (SEB) - The triggering of the parasitic bipolar
structure in a power transistor, accompanied by regenerative feed-
back, avalanche and high current condition.

• Single-Event Gate Rupture or Single-Event Dielectric Rupture (SEGR)
- The destructive rupture of a gate oxide or any dielectric layer by a
single ion strike. This leads to leakage currents in the IC.

The Non-Destructive SEEs are temporary errors and are easier to recover
from. The following SEEs are Non-Destructive[7]:

• Single-Event Transient (SET) - A temporary voltage spike at a node
in the integrated circuit. This is caused by a ionising particle hitting
the semiconductor.

• Single-Event Upset (SEU) - A change in a single bit in the state of
memory components on the integrated circuit.

• Multiple-Cell Upset / Multiple-Bit Upset - A change in multiple bits
or logical cells of the integrated circuit.

• Single-Event Functional Interrupt (SEFI) - Soft error that causes the
component to reset, lock-up or otherwise malfunction.

While Destructive SEEs do permanent damage and may lead to perma-
nent error in the state signal, we still mention them as our fault tolerant
encodings are able to recover from these errors. This research focuses on the
SEUs and the Multiple-Cell Upset types.
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2.3 Fault tolerance

Within this project different fault tolerant strategies are implemented and
analysed. Each fault tolerant strategy consist of certain elements. This
section aims to discuss these elements and present what elements are part
of the different strategies used within this project.

2.3.1 Elements of fault tolerant strategies

According to [4], each fault tolerant strategy contains one or more of the
following elements:

• Masking: Dynamic correction of generated errors.

• Detection: Detection of an error - a symptom of a fault.

• Containment: Prevention of error propagation across defined bound-
aries.

• Diagnosis: Identification of the faulty module responsible for a de-
tected error.

• Repair/Reconfiguration: Elimination or replacement of a faulty com-
ponent, or a mechanism for bypassing it.

• Recovery: Correction of the system to a state acceptable for continued
operation.

The masking and detection elements are often used together. Both cod-
ing theory and module replication are fault tolerant strategies that combine
masking and detection. Using coding theory, the word is encoded and re-
dundancy is added to the word in the form of parity bits. Depending on the
amount of parity bits, errors can be detected and corrected.

Module replication uses a different approach to apply masking and detec-
tion. A module in a system may produce some form of output. To increase
the likeliness of the output being error free, the module is replicated. Each
of the replicated modules output is connected to a voter/comparator. The
voter chooses all the outputs on majority votes. This way by replication of
modules, a possible error can be detected and corrected.

The containment element is closely related to the masking and detection
element. Containment tries to minimise error propagation throughout the
system. This is achieved by defining containment boundaries in the sys-
tem. At each boundary, i.e. an interface between modules, a detection or
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correction module is placed. Once an error is detected on a containment
boundary, the system might correct it or disregard the modules output.

It might happen that a (sub-)module breaks or stops working. This
module could behave differently than expected. If the faulty module works
together with other modules to output some function, it might not be clear
what module is causing the faulty output. To diagnose which module is
causing the faulty output, the modules could be supplied with self checking
logic. The self checking logic simply checks if the output is reasonable; if
not, an error will be forwarded. This error can then be used to ignore the
output of the module.

If the system contains a faulty module it might need to be repaired or
replaced. One way is to physically replace the faulty module with a new
working one. Another way is to switch off the faulty module and offload
its work to other resources of the system; this is logical replacement of the
module.

Recovery is the act of recovering from an error which was propagated
through the system. Often, the longer the time between the occurrence of
the error and the detection of the error, the more damage the error does.
Therefore recovery scheme does a system rollback to a previous known sys-
tem state before the occurrence of the error.

2.4 Finite State Machines

Within this project we apply the introduced fault tolerant strategies to finite
state machines (FSM) of hardware designs. Therefore an introduction to
finite state machines is needed.

This section gives a short introduction to two types of FSMs, namely:
The Mealy machine and the Moore machine. These FSMs are often used in
the design and implementation of FPGA or ASIC designs. The machines are
used as an abstract model of the actual circuitry. Because of this abstraction
we can define relations and characteristics of the machines. These relations
and characteristics are useful when, for example, comparing machines or
minimising machines.
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2.4.1 Mealy machine

The Mealy machine is a sequential machine whose input and current state
determine the output. The machine has the following formal definition:

Definition 2.4.1. A Mealy machine is a quintuple

M = (S, I,O, δ, λ)

where:

(i) S is a nonempty set of states;

(ii) I is a nonempty set of inputs;

(iii) O is a nonempty set of outputs;

(iv) δ : S × I → S is a called the transition (or next state) function;

(v) λ : S × I → O is called the output function.

As an example let us define a Mealy machine M to be a quintuple, such
that

M = (S, I,O, δ, λ)

with S = {r, s, t}, I = {a, b}, O = {0, 1}. Table 2.1 shows the flow
(or transition) table of the defined machine M . From the definition of M
together with its flow table, the state machine graph can be build up.

Take transition δ(r, a), the flow table in Table 2.1 shows that the next
state is s, thus δ(r, a) → s. Additionally, λ(r, a) is defined as 0 in the flow
table, thus λ(r, a)→ 0. Because of the aforementioned transition and output
function, an edge can be drawn from state r to state s with label a

0 .
If every combination of state and input from the flow table is processed

this way, a state machine graph as shown in figure 2.2 is constructed. This
is the state machine corresponding to the defined Mealy machine M .
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Table 2.1: The flow table of Mealy
machine M

State Input Output

a b a b

r s r 0 0
s t t 0 1
t r s 1 0

r

st

b
0

a
0

a
0 , b

1

b
0

a
1

Figure 2.2: The state machine graph
of the Mealy machine M

2.4.2 Moore machine

The Moore machine’s definition is in many ways the same as the Mealy ma-
chine’s definition. However, the two machines do have a significant difference
in the definition of their output function. On the contrary to the output
function of the Mealy machine, the Moore machine’s output function only
depends on its current state. The Moore machine has the following formal
definition:

Definition 2.4.2. A Moore machine is a quintuple

M = (S, I,O, δ, λ)

where:

(i) S is a nonempty set of states;

(ii) I is a nonempty set of inputs;

(iii) O is a nonempty set of outputs;

(iv) δ : S × I → S is a called the transition function;

(v) λ : S → O is called the output function.
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As an example let us define a Moore machine N to be a quintuple, such
that

N = (S, I,O, δ, λ)

with S = {r, s, t}, I = {a, b}, O = {0, 1}. Table 2.2 represents the flow
table of the defined machine N . Because the transition function δ is not
different from the Mealy machine, it is trivial that δ(r, a) → s holds for
machine N .

The output function only depends on the current state of the machine
therefore λ(r) gives the output for state r. As shown in the flow table, the
output corresponding to state r is 0. Because only the state determines the
output, the output is not written on the edges, but rather in the states.

Again, if the complete flow table is processed this way, the state machine
graph can be constructed. Figure 2.3 shows the state machine graph for
Moore machine N .

Table 2.2: The flow table of Moore
machine N

State Input Output

a b

r s r 0
s t t 0
t r s 1

r
0

s
0

t
1

b

a

a, b

b

a

Figure 2.3: The state ma-
chine graph of the Moore ma-
chine N

2.4.3 State encoding

State machines are used as an abstract model of actual circuitry. In the end,
the goal is a real implementation of the state machine into circuitry. But
before that is possible, the states of the state machine need to be assigned a
code. This code will represent the states when the state machine is realised
into the circuit.

Choosing the correct encoding is a difficult problem as each choice of
encoding has its own implications. For example, different encodings use
different amounts of bits to encode a state. Additionally, some encodings
result is more hardware. This makes choosing the right encoding an impor-
tant topic.
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A good example of the state assignment problem is given below. This
example was introduced in [8] and does a wonderful job of showing different
results of different encodings.

Table 2.3: The flow table of a Moore machine M

State Input Output

0 1

1 4 3 0
2 6 3 0
3 5 2 0
4 2 5 1
5 1 4 0
6 3 4 0

Table 2.4: State assignment
method 1

State Binary variables

y0 y1 y2

1 → 0 0 0
2 → 0 0 1
3 → 0 1 0
4 → 0 1 1
5 → 1 0 0
6 → 1 0 1

Table 2.5: State assignment
method 2

State Binary variables

y0 y1 y2

1 → 1 1 0
2 → 1 0 1
3 → 1 0 0
4 → 0 0 0
5 → 0 0 1
6 → 0 1 0

Table 2.3 presents the flow table of a machine M . Beneath it, two differ-
ent state encodings are presented in table 2.4 and 2.5. Transition functions
Y0, Y1, Y2 and output function z can be defined for both encodings.

Let us construct Y0 for encoding method 1, to show the process of con-
structing such an output function. We are looking for the set of transitions
which result in a state where y0 is 1. Table 2.4 shows that this only holds
for state 5 and 6. The next step is looking for the transitions in table 2.3
ending in these states. As can be seen from table 2.3, the transitions δ(2, 0),
δ(3, 0) and δ(4, 1) are the transitions which result in either state 5 or 6.

Because the states are encoded, we can now write these transitions as
a Boolean function to construct Y0. For example, δ(2, 0) consists of state
2 and input 0. As state 2 is encoded to be 001, this can be expressed as
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ȳ0ȳ1y2. The input is 0, therefor we can express is as x̄. Putting these two
expressions together, results in: ȳ0ȳ1y2x̄.

If we now repeat this process for every transition in Y0, Y1 and Y2, we
end up with the following result for Y0, Y1 and Y2:

Y0 = ȳ0ȳ1y2x̄ + y1ȳ2x̄ + y1y2x
Y1 = ȳ1x + ȳ0ȳ1ȳ2 + y0y2

Y2 = y0x + y1ȳ2x + y1y2x̄ + ȳ0ȳ1x̄

The output function z can be constructed the same way as the transition
functions. We look at the flow table of the machine and determine what
states have the output 1. We then use the encoding of these states as a way
to write the Boolean function. In this example only state 4 has an output
of 1, therefor the output function z is:

z = y1y2

If the same process is used with the second encoding from table 2.5, the
output function and transition functions are as follows:

Y0 = y0x + ȳ0x̄
Y1 = y2x̄
Y2 = ȳ1ȳ2
z = ȳ0ȳ1ȳ2

As can be observed, the Boolean functions for the second state encoding
method are shorter and simpler in terms of logic. Because of this less logic
gates(thus hardware) is needed when realising the state machine with en-
coding method 2. The difference in the Boolean functions of both encoding
methods shows that choosing the right encoding is important as it has a
direct effect on the resulting hardware.
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Chapter 3

Related work

This chapter provides insight in recent work and studies done related to this
project. First, work related to a technique called Triple Modular Redun-
dancy(TMR) is discussed. Afterwards, work related to a technique based
on Hamming encoding is presented. Finally, two modern synthesis tools
are presented which already offer the use of the discussed techniques. Also
analysis techniques for error correcting capabilities are discussed.

3.1 Triple Modular Redundancy

There has been a need for dependable and reliable computing since the first
digital computers were built. Already in the 1940-1950’s there was a demand
for dependable and reliable computers. Computers at that time were built
out of components such as: Relays, vacuum tubes and electronic cathode
raytubes. These components were known to have a high failure rate, and
with that came the demand of reliability.

The first fault tolerant computer, the SAPO, was built in 1950-1954
in Czechoslovakia. The SAPO was also built using cathode raytubes and
therefore periodically encountered failures. Some fault tolerant techniques
were used to prevent these failures. The memory element of the computer
contained parity bits for memory read operations. Additionally, a recurrence
of a fault would halt the machine in its current state and all data on the
detected errors would be printed to the operator’s console. Finally, the
computer had a parallel CPU which was triplicated. A majority voter was
connected to the outputs of the three identical CPU’s [9].

Even in the last two decades research has been done in fault tolerant
computing. From server CPU’s to microprocessors, most of it contains
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some form of fault tolerance. In 1999, [10] presented a the S/390 G5 micro-
processor. This processor did not implement TMR, but rather duplicated
components of its execution pipeline, such as: the instruction unit (IU),
fixed-point unit (FXU), floating-point unit (FPU) and cache and register
unit (RU). Additionally, it uses error correcting codes and parity to protect
data in the processor.

Later in 2002, [11] presented the architecture and implementation of
the LEON-FT processor. This design used TMR on all flip-flops, parity on
the caches and BCH encoding on the register file. The total area overhead
was 100% on the core itself, and 39% with RAM cells. The timing penalty
introduced by TMR was solely introduced through the TMR voter. The
penalty was about two gate delays or 8% of the cycle time.

Recently, two researchers at CERN gave a talk a the Chaos Communica-
tion Congress [12]. During this talk the researchers discussed their findings
on how to design highly reliable digital electronics using fault tolerant tech-
niques against SEEs. They presented techniques for different application
levels, such as: Technology level, cell level, block level and system level.

To mitigate SEEs on technology level, the researchers used technology
scaling. By scaling down the size of the transistor, the overall design size
would shrink. Therefor the chances of the die being hit would lower, and
thus chances on faults because of SEEs would lower. However, technology
scaling has a disadvantage. A smaller transistor has a lower critical charge
than a bigger one; meaning that a smaller charge is needed to change the
output of the transistor. Therefor, by technology scaling you might make
your design susceptible to particles with a lower charge.

On cell level two techniques could be applied. First, the critical charge of
the cell could be increased. This is done by increasing the node capacitance
by using bigger transistors (this also increases the collection electrode) or
by extra capacitance on metal layers (slows down your design). Second, the
information of a cell could be stored in multiple nodes. The downside of
applying mitigation on cell level is that changes have to be made to your
standard cell library.

Mitigation of single event effects on block level involves triplication (TMR)
of the design or parts of the design. This is based on the same principles
as the SAPO computer from 1956. The CERN researchers showed three
possible implemenations of TMR: Simple, clock skewed or full triplication.

The simple implementation consists of replicating three state registers
and connecting these to a voter. The outcome of the voter is fed back as
input into the logic, such that errors in the registers are removed one clock
cycle later. Figure 3.1 shows the design of a simple TMR implementation.
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Figure 3.1: The simple TMR im-
plementation.

Figure 3.2: The clock skewed
TMR implementation.

Although the simple TMR implementation already provides some form of
fault tolerance, it is not optimal. In the simple implementation the registers
are triplicated, however the voter is not protected. If an upset would occur
in the voter at the moment of latching the data into the three registers, all
three of the registers would become corrupt.

To overcome this problem the researchers used clock skewing on the
three registers. Figure 3.2 shows the clock skewed TMR design. Each of
the registers has its own clock and each clock is slightly skewed relative to
the others. This way each register will latch the output data fed by the
voter on a slightly different time. This lowers the probability of latching the
corrupted the data in all three registers at once.

Clock skewing might solve the initial problem of corrupting three regis-
ters at once, but it also introduces possible indeterministic behaviour in the
design. Because of the clock skewing one of the registers might already be
in next state, while the others are not. This leads to race conditions and
indeterministic behaviour.

The full TMR implementation presented by the researchers triplicates all
the elements of the design: logic, voters and registers. This implementation
removes errors in registers after one clock cycle. Additionally, if an upset
occurs in a voter, the error is only propagated to one register. Although the
full TMR implementation seems the most robust and optimal protection, it
comes at a cost. Figure 3.3 shows the full TMR implementation as presented
by the CERN researchers.

Finally the researchers presented an overview of metrics of each imple-
mentation. The results are shown in table 3.1. As can be observed from
the table the full TMR provides the best protection; however it comes at
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Figure 3.3: The full TMR implementation.

the cost of area overhead as all logic, voters and clocks are triplicated. The
clock skewed version still provides a good protection but at a much lower
speed due to the clock skew and voter delay. Finally the simple TMR has
the worst protection, but is the cheapest in terms of area and power.

Table 3.1: Resource, speed and protection table for the three presented
TMR implementations.

Simple TMR Clock skewed TMR Full TMR

Resources

FF x3 x3 x3
logic x1 x1 x3

voters x1 x1 x3
clocks x1 x3 x3

Speed
+

(voter delay)
-

(voter delay and clock skew)
+

(voter delay)

Protection - + ++

3.2 Hamming encoding

Another way of SEE mitigation is the use of forward error correction (FEC)
codes on the state signals of the state machine. This way the state encoding
of the state machine is redundant and therefor its tolerance to faults is
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000000 111111

Figure 3.4: The original FSM with only base states

increased. Coding techniques such as Hamming or Reed-Solomon are often
used for this. Melanie Berg at the Single Event Effects Symposium [13] in
2014 presented a method that uses Hamming encoding to encode the state
machine state signals.

The method used in [13] is based on altering the finite state machine of
the design by adding redundant states, so-called companion states. These
companion states stem from the added redundancy of the Hamming code.
Per base state (the original state) of the state machine the following proce-
dure is applied: The base state’s bits are encoded using Hamming encoding.
Now per possible fault in the state bits, a companion state is added. This
companion state has a transition to its base state’s next state.

For example, figure 3.4 shows a non encoded FSM with two states. As
each state has 5 bits, there are 5 possible faults which can occur. Therefor
5 companion states are added, each covers one fault. The resulting FSM is
shown in 3.5. To better understand how the companion states are encoded,
a zoomed in version of encoded state 00000 is depicted in 3.6.

If a fault occurs in the encoded version of the FSM, there is a state which
covers that fault. By adding transitions from the companion state to the
next state of the related base state the error is corrected.

00000 11111

Figure 3.5: The original FSM with
added companion states

00000

00001

00010

00100

01000

10000

Figure 3.6: A zoomed in view
on the encoded state 00000 of
figure 3.5
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3.3 Modern synthesis tools

This section presents two tools which already exist and offer the use of fault
tolerant techniques.

• Xilinx TMRTool: Developed by Xilinx, this tool offers automatic gen-
eration of TMR for space-grade reprogrammable FPGAs. It is only
available for the FGPA device families Virtex-5QV and Virtex-4QV.
The tool is specifically designed for space applications and provides full
immunity to SEU and SET for any of the mentioned device families.

• Synopsys Synplify: Developed by Synopsys, this tool supports the
FPGA device families from: Altera, Lattice, Microsemi and Xilinx.
Synplify provides both TMR and Hamming-3 encoding as fault toler-
ant techniques. Using Synplify, fault tolerant designs can be imple-
mented, such that these designs adhere to industry standards, like:
DO-254, IEC 61508 and ISO 26262.

Although both of the presented tools are of professional standards, they
come with expensive licenses and export restrictions. This limits the use of
the tools by researchers or individuals interested in fault tolerant designs.

To overcome the problem of license costs and export restrictions, the
CERN researchers released their tool under an open source license. The
Triple Modular Redundancy Generator (TMRG) tool was created 4 years
ago by two CERN researchers. This tool is not a synthesis tool, but rather
modifies the design at source code level, triplicating all inputs, outputs,
registers and logic. According to the tool’s creators, implementing TMR at
source code level makes debugging it easier.

In line with the open source philosophy of the CERN researchers, the
open source synthesis tool Yosys is used during this project. During the
course of this project, two encoding techniques are implemented into Yosys.
This way, there will be an open source synthesis tool with two fault tolerant
encoding techniques, which is free of license costs or export restrictions.

3.4 Analysis of Error Correction Rate

This section presents the notion of cross-section, which is used to define how
sensitive a hardware design is to ionizing radiation. Afterwards, different
techniques are presented to test and measure the cross-section of hardware
designs.
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3.4.1 The cross-section

The cross-section(σ) of a device is defined as the SEE response of the device
to ionizing radiation. The units for cross-section is cm2 per device or bit,
and it is calculated as follows:

σ =
number of errors

ion fluence

3.4.2 Tests and measurements

To determine the cross-section of a device, two types of tests can be done:
tests with heavy ions, and tests with lasers. The test with heavy ions,
involves placing the device in a vacuum chamber and shooting accelerated
heavy ions at the device, while measuring the number of errors and the total
particle fluence to determine the cross section.

The tests using lasers are done to more selectively test your device. Using
lasers you can better ’steer’ the beam of energy, thus target specific parts of
your design. This makes it possible to research individual parts of the device.
The downside of these approaches is that testing setups are rather expensive
to use. We therefor do not use these approaches within this project.

Another way of determining the error correcting capability of a design is
done using error injection at netlist level. Erinan is a tool developed at the
University of Technology of Eindhoven which injects errors and analyses the
propagation of these errors.[14] The tool analyses a design, by making two
identical copies of it. Both these copies take the same input; however, errors
are injected into the flip-flops of one of the copies. Finally, the output of
both design is analysed. This way the tool gives insight on what the effects
of the injected errors are and how these errors propagate.

Although Erinan is a cheaper alternative to test and measure error cor-
recting capabilities, it does not take into account the placement of the flip-
flops in the design. Additionally, analyzing all possible combinations of
errors in a design, might become time consuming as the number of flip-flops
increase. Within this project, we therefor stick to a theoretical analysis of
the error correcting capabilities.
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Chapter 4

Methodology

This chapter provides insight on the methodology used in this project. It
discusses what kind of research is done, how it is set up and how evaluation
of the gathered data can be done.

4.1 Strategy

Different metrics are used to analyse and compare the fault tolerant tech-
niques used in this project. Within this project we focus on: area, timing
and correction rate of errors. This section provides information on how the
different metrics are measured and how they are analysed and compared to
each other.

A benchmark set of Verilog designs is used to analyse the different fault
tolerant techniques in this project. This set of benchmarks consists of differ-
ent Verilog designs. Each design describes hardware containing some form
of FSM. First, the designs are synthesised to netlists by Yosys using the
FreePDK45 cell library[15]. Using Yosys, the designs are synthesised and
the area metric is measured. The area metric is the chip area in nm2 as
reported by Yosys after synthesis.

Once the designs have been synthesised, the timing metric is measured
using Cadence Genus. Cadence Genus reports critical paths of the designs
according to some set clock period. The final timing metric can be found
in the generated timing reports from Cadence Genus. The timing metric is
the clock period for the design in pico-seconds.

In order to compare the different techniques to each other, a baseline
implementation is synthesised and analysed. This baseline implementation
is the benchmark set without any fault tolerant technique applied to it. The
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baseline implementation is used to analyse each fault tolerant technique’s
overhead.

Once the baseline has been set, the fault tolerant techniques are applied
to the benchmark set. These altered benchmarks are also measured in area
and timing as already mentioned. After all the techniques are measured,
a comparison can be made in terms of all metrics. This comparison is
discussed at the end of this thesis.

To apply each of the fault tolerant techniques to the baseline, some form
of preparation is needed. The preparation per technique is discussed in the
sections below. Additionally, the method which these techniques use are
discussed.

4.1.1 Baseline

The baseline implementation does
not need a lot of preparation. To get
the baseline results, the Verilog
benchmark set has to be synthesised
by Yosys. Afterwards the timing
analysis is done by Cadence Genus.
A Yosys script file is used to
automate the synthesis flow within
Yosys. The script used to synthesise
the designs is shown in Listing 4.1.
This script reads the Verilog designs,
elaborates the design hierarchy and
does the technology mapping. Once
those steps are completed it tries to
map the flip-flops from the specified
cell library(in our case FreePDK45)
and does the logic mapping. Finally,
it writes the synthesised design to an
output Verilog file. An overview of
this process is depicted in Figure 4.1.

Figure 4.1: The synthesis
flow of the baseline implemen-
tation

The ouput file from Yosys is then used as input file for Cadence Genus.
The tcl script shown in listing 4.2 is used to get the timing reports from
Cadence Genus. The final results generated by Cadence Genus are stored
in a report file named: modulename timing.rpt.
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Listing 4.1: Example synthesis script for Yosys [16]

1 # read design

2 read_verilog mydesign.v

3

4 # elaborate design hierarchy

5 hierarchy -check -top mytop

6

7 # the high -level stuff

8 proc; opt; fsm; opt; memory; opt

9

10 # mapping to internal cell library

11 techmap; opt

12

13 # mapping flip -flops to mycells.lib

14 dfflibmap -liberty mycells.lib

15

16 # mapping logic to mycells.lib

17 abc -liberty mycells.lib

18

19 # cleanup

20 clean

21

22 # write synthesized design

23 write_verilog synth.v

Listing 4.2: Genus tcl script to create timing report of a design

s e t db / . l i b r a r y path/ to / l i b r a r y . l i b
r e a d n e t l i s t synth / synth . v
s e t top m module
check des i gn −unreso lved $top
d e f i n e c l o c k −per iod 10000 −name CLK { c l k }
r epor t t iming −max paths 10 > t i m i n g r p t s /${ top} t iming . rpt
e x i t
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4.1.2 Triple Modular Redundancy

Triple Modular Redundancy (TMR) is an error correction technique which is
based on spacial redundancy. Spacial redundancy is a form of fault tolerant
techniques where vital modules of a system are replicated [7]. Each of the
modules are connected to the same input. The outputs of the modules are
connected to a voter. This voter compares all of its inputs based on majority
and determines the correct output base on that comparison.

Figure 4.2 shows two implementations of TMR. Both of them are used to
detect and correct different kind of faults. For example, the circuit depicted
in figure 4.2(a) is used to detect single-event transient (SET). Here the
combinatorial logic is replicated three times, whereas in figure 4.2(b) the
flip-flops are replicated. The replication of flip-flops is used to mitigate
single-event upsets (SEU).

Figure 4.2: SET(a) and SEU(b) detection with a TMR architecture[7]

To prepare the benchmark set with the TMR technique applied to it
all flip-flop cells in the benchmark design have to be replaced by a TMR
flip-flop cell. Unfortunately the FreePDK45 cell library used in this project
does not contain a TMR cell design by default. Therefore our own TMR
cell implementation is used. The source code is shown in listing 4.3 and the
final netlist is depicted in figure 4.4.

Once our TMR cell has been synthesised it is used in the synthesis flow
of the TMR implementation. This flow is shown in figure 4.3 and is an
extension of the baseline synthesis flow. First, all flip-flops in the baseline
output are replaced by our TMR cell. Afterwards, the altered baseline
output is fed to Yosys. The output is the same design, except that every
flip-flop is now a TMR cell.
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Figure 4.3: The synthesis flow of the TMR implementation.

Listing 4.3: Verilog source code for the TMR cell implementation.

1 module dff_tmr(D, Q, clk);

2 input wire D;

3 input wire clk;

4 output wire Q;

5

6 reg Qa, Qb, Qc;

7

8 always @(posedge clk) begin

9 {Qa , Qb , Qc} <= {D, D, D};

10 end

11

12 assign Q = (Qa & Qb) | (Qb & Qc) | (Qa & Qc);

13 endmodule

Figure 4.4: The TMR cell design after synthesis done by Yosys.

29



4.1.3 Hamming encoding

Hamming code is a linear error correcting code which adds parity bits to
the word it encodes. By adding in more than one parity bit, it is not only
possible to detect an error but also which bit causes the error. For example,
with a seven bit word there are 7 different errors possible. By adding three
parity bits, it is possible to detect the error and specify where the error
occurred.

The algorithm works as follows[17]:
All bits which are positioned on a slot which is a power of two are parity

bits, all other slots are data bits. Thus, bit 1, 2, 4, 8 etc. parity bits. The
parity bits will cover all data bits in positions which have the parity bit set.
This means, if we have a 4 bit word covered by 3 parity bits, that parity bit
P1 covers bits {3, 5, 7}, because 3, 5 and 7 have their least significant bit
(LSB) set. The other parity bits cover the bits that have their second LSB,
third LSB etc set. Resulting in: bit P2 covers bits {3,6,7} and bit P3 covers
bits {5, 6, 7}. Table 4.1 shows us the positions of data bits D and parity
bits P.

D4 D3 D2 P3 D1 P2 P1

1 0 1 1

0111 0110 0101 0100 0011 0010 0001

Table 4.1: Hamming code table for 4 data bits(D) and 3 parity bits (P)

Finally the parity bits have to be set. This can be done by using even or
uneven parity. For now, let’s assume even parity. As mentioned P1 covers
bits {3, 5, 7}. The values of these bits are {1, 1, 1}, therefor to keep an
even parity P1 has to be set to 1. P2 covers bits {3, 6, 7} which have the
values of {1, 0, 1}. To adhere to even parity, P2 has to be set to 0. Finally,
P3 covers bits {5, 6, 7}, which have values of {1, 0, 1}. This means that P3
also has to be set to 0. Table 4.2 shows us the final encoded word 1011.

D4 D3 D2 P3 D1 P2 P1

1 0 1 0 1 0 1

0111 0110 0101 0100 0011 0010 0001

Table 4.2: Data bits 1011 encoded with Hamming code

Using Hamming encoding it is possible to detect up to two errors and
correct one error. The encoding might seem expensive when used on smaller
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word sizes as it adds a lot of overhead to the code word. The example given
in table 4.2 shows that for four data bits, three parity bits are needed. How-
ever the more data bits the code word has, the less expensive the encoding
technique is; parity bits are only added on positions of powers of two.

In general, m number of parity bits can protect the bits from 1 up to
2m− 1. However, the 2m− 1 number of bits include the m number of parity
bits. Therefor, if we subtract the m bits from the 2m − 1 bits, we are left
with 2m − 1−m number of data bits protected by the m parity bits. Table
4.3 shows the number of data bits in relation to the number of parity bits.
As can be observed, the more data bits a word has, the smaller the overhead
of the added parity bits is.

Using Hamming encoding on the state signal of a finite state machine
might introduce overhead. This overhead stems from the extra bits added to
the state state signal. Due to the extra bits, the next state logic of the finite
state machine might become more complex. Thus increasing the area of the
final design. However, the more states the original finite state machine has,
the fewer parity bits it needs. Therefor the increase in overhead is likely to
slow down as the size of the finite state machine increases.

Table 4.3: Number of parity bits and the maximum number of data bits it
can cover

Parity bits Data bits

2 1
3 4
4 11
5 26
6 57
7 120
8 247
9 502
10 1013

The method presented by [13] is used as a guideline on how to apply
Hamming encoding to the benchmarks in this project. Chapter 6 aims to
provide detailed information on how this method is implemented into Yosys.

4.1.4 BCH encoding

BCH encoding is a class of error correcting codes. Its name is an abbre-
viation of the inventors of the codes, namely: Bose, Chaudhuri and Hoc-
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quenghem. The codes in the class of BCH codes can be configured in many
ways. Using different configurations, the user of the code can control the
amount of data bits, the amount of parity bits and the error correcting
capability.

Within this thesis we use a BCH codes with configuration (15,7,5). This
configuration has a total length of 15 bits; 7 data bits and 8 redundant bits.
Its error correcting capability is 2 bit errors in the code word.
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Chapter 5

Implementation in Yosys

This chapter aims to present the implementation of the Hamming and BCH
encoding in Yosys. First an introduction to Yosys is given. Afterwards, a
general overview of the implementation of the two encoding techniques is
presented.

5.1 Yosys

To implement new encoding techniques into the state encoding of FSMs used
in synthesis, a synthesis tool is needed. Rather than using the synthesis tools
from well known vendors such as Xilinx, we choose to use an open source
tool named Yosys. The software being open source makes it easier to add
new functionality to it and it comes with no costs.

Yosys is developed by Clifford Wolf as part of his bachelor thesis in 2013.
It was chosen that the tool would only work on Verilog source code. As of
today, the Yosys can target CE40 FPGAs, Xilinx 7-Series FPGAs, Silego
GreenPAK4 devices, and Gowinsemi GW1N/GW2A FPGAs.

The tool is written in C++ and is build up in different passes. It uses UC-
Berkeley’s ABC for the Sequential Logic Synthesis [18]. Each pass handles
one part of the synthesis flow. It is possible to add new passes to Yosys or
change existing ones in order to add more functionality. The user can input
different commands to go through the synthesis flow step-by-step. Each step
has its own output which can be logged into a log file. An example synthesis
flow is shown in listing 4.1.

This thesis will focus mostly on the fsm pass in the script presented in listing
4.1. With the fsm pass all procedures related to finite state machines are called.
These procedures consist of [19]:
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• fsm detect - This pass detects finite state machines by identifying the state
signal.

• fsm extract - This pass operates on all signals marked as FSM state signals.
It consumes the logic that creates the state signal and uses the state signal
to generate a control signal and replaces it with an FSM cell.

• fsm opt - This pass optimizes FSM cells. It detects which output signals are
actually not used and removes them from the FSM.

• fsm expand - This pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates
into the finite state machine.

• fsm recode - This pass reassigns the state encodings for the FSM cells. At
the moment only binary encoding and one-hot encoding are supported.

• fsm info - This pass dumps all internal information on FSM cells.

• fsm export - This pass creates a KISS2 file for every selected FSM.

• fsm map - This pass translates FSM cells to flip-flops and logic.

Recently two bachelor students from the Technische Universiteit Eindhoven
have been able to add FSM optimisations to the Yosys tool[20, 21]. State-space min-
imisation, state-space partitioning and the grey encoding have been implemented.
These accomplishments show that Yosys is highly customisable and that the knowl-
edge is there to further update or extent Yosys’ capabilities.

5.2 Implementation

This section provides detailed information on the implementation of Hamming en-
coding and BCH encoding into Yosys. Both of the encodings use the same general
principle. This general principle is discussed in this section.

5.2.1 The FSM pass

The Yosys source code can be split up into different parts: The frontend, the kernel,
the passes and the backend. The frontend is the first step of the synthesis flow.
It takes the design source code in a hardware description language (HDL), such as
Verilog, as input and compiles this to an intermediate language. This intermediate
language (IL) is part of Yosys’ kernel and describes designs, cells and signals in
code. Once a design has been compiled to the IL, the user can call different passes
to further synthesise the design. Finally, the backend of Yosys can be used to write
output in forms of netlists, intermediate language or JSON.

The fsm pass takes care of all FSM related operations. First it tries to detect
and extract a FSM from the input design. If instructed Yosys can recode the
FSM’s states using different types of encoding techniques. Finally, the FSM can be
mapped to internal cells or written to KISS2 for analysis.
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During the detection and extraction of the FSM, Yosys constructs a data struc-

ture called FsmData. This data structure holds all the relevant data of the
found state machine, such as: the number of states, the number of state
bits, the state table and the transition table. Transitions in the transition
table are a data structure on its own. This structure consists of: a state in,
state out, ctrl in and ctrl out.

With these core structures the FSM can be changed and recoded. Once
the FSM has been recoded, it will be copied to internal cells to proceed with
the rest of the synthesis flow.

5.2.2 Recoding the FSM

To implement Hamming and BCH encoding, the method presented by [13] is
used. As previously described, this method aims to add companion states to
the original FSM. These companion states are copies of the original states,
but with a bit error in the encoding. Each of the companion states has a
transition to the next state of the original state.

Two extra C++ classes have been added to the Yosys source code. These
are: HammingEncoder and BchEncoder. Both of these classes implement the
functions:

• encode(RTLIL::Const): Function which takes a state signal in the form of
a RTLIL::Const, and encodes this state signal with the appropriate coding
technique; either Hamming or BCH.

• updateTransitionTableForState(RTLIL::Const): Function that updates
the transition table in the FsmData structure. After encoding the state sig-
nals, the transition structures in the transition table still have the old state
signals. Therefore the transitions need to be updated with the newly encoded
state signals.

• addCompanionStates(RTLIL::Const): This function, takes a state from the
state table of the FsmData structure. It then loops over each bit and flips it,
each time creating a companion state. Each new companion state is added
to the state table.

• findOutgoingTransitionsForState(FsmData): Function that finds all out-
going transitions from a state to any other state, except itself. This function
is called by addCompanionStates(RTLIL::Const), because the added com-
panion states need transitions to the next state of their original state.

The two described encoder classes are used within the fsm recode pass of
Yosys. To add the two encoding techniques, we added the options to the encoding
option list of Yosys. Finally, one can use the techniques by calling fsm recode

-encoding hamming or fsm recode -encoding bch.
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5.3 Validation

The changes made to the FSM during the fsm recode pass have to be validated,
as bugs in the fsm recode pass might alter the functional behaviour of the de-
signs. Unfortunately, we were not able to run simulations of the benchmark designs.
Therefor validation was done through checking the changes to the FSM. A small
example was used to analyze and verify these changes.

Listing 5.1: Verilog source code for the example FSM implementation.

1 module example(input clk , rst , ctrl , output [3:0] O);

2 reg [1:0] state;

3 always @(posedge clk) begin

4 O <= 0;

5 if (rst) begin

6 state <= 0;

7 end else case (state)

8 0: begin

9 if(ctrl == 1’b1) begin

10 state <= 1;

11 O <= 1;

12 end else

13 O <= 0;

14 end

15 1: begin

16 if(ctrl == 1’b1) begin

17 O <= 1;

18 state <= 0;

19 end

20 else

21 O <= 0;

22 end

23 endcase

24 end

25 endmodule

The example used was a two state FSM of which the source code is presented in
listing 5.1. First, the example design was synthesised with auto-encoding by Yosys.
Afterwards, the design was synthesised using the Hamming encoding. During both
of these runs the output of fsm info was saved and the FSM was exported using
fsm export. Finally, the output of both runs was analysed to verify the changes
made by fsm recode.

The first run resulted in the FSM shown in figure 5.1. As can be observed, the
FSM consists of two states. A transition to another state is made when a 1 is on
the input, else the machines stays in the current state.

The second run used hamming encoding on the state bits. The two states of the
example FSM have representations 0 and 1. Applying hamming encoding to both of
these representations results in 000 and 111 respectively. Additionally, companion
states for each state are added. This results in the addition of the following states:
001, 010, 100 for state 000 and 110, 101, 011 for state 111. Finally, each of the
companion states have the same outgoing transitions as its base state. In conclusion,
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Figure 5.1: FSM of the example design with auto encoding

Figure 5.2: FSM of the example design with Hamming encoding

the hamming encoded example FSM should contain 8 states: 000, 111, 001, 010,
100, 110, 101, 011. It should also have 16 transitions as each state has two out
going transitions.

The final FSM of the example design encoded with Hamming is shown in figure
5.2. As can be observed, the FSM contains everything which was anticipated. We
therefor conclude that the implementation contains no bugs.
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Chapter 6

Results

This chapter presents the results of the research done during this project. In the
first section the area metric is discussed, after which the timing metric is discussed.
Finally, a theoretical analysis of the error correction rate is presented.

6.1 Area

This section presents the results of the area measurements for each fault tolerant
technique. Each fault tolerant techniques has been applied to all benchmarks de-
signs. The area measurements are done using Yosys’ stat command, after each
design was synthesised.

Figure 6.1 shows the results of the area measurements. As shown in the figure,
the area results of Hamming, TMR and Full TMR area are presented. All of
the area measurements are presented relative to the baseline area; this factor is
represented by the y-axis. The x-axis represents each design of the benchmark set.
The number in parentheses following the name of the benchmark, represents the
number of states of the designs FSM.

The area measurements for Hamming are obtained by synthesising the bench-
mark designs using Yosys’ fsm recode -encoding hamming command. The TMR
area measurements are obtained by replacing each D-flip-flop cell for the TMR cell
described in this thesis. Finally, the Full TMR results are done by calculating the
total area when Full TMR would have been used. As explained in this thesis, Full
TMR triplicates every part of the design and adds voters to handle majority voting.
We therefore, multiplied the baseline area by three and added the total voter area
to that number.

The BCH area measurements are not presented as part of the benchmark set
was not able to be synthesised using this technique. BCH adds so many redundant
states to the FSM, that Yosys would fail to do synthesis. Only the design with
smaller state machines (up to 15 states) could be synthesised. These designs had
on average an increased total area of 38 times the baseline area.
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Figure 6.1: Relative circuit area of the benchmarks with different fault
tolerant techniques: Hamming, TMR and Full TMR. The number in paren-
theses following the benchmark name, indicates the number of states for that
state machine.

6.2 Timing

This section presents the results of the timing analyses of the synthesised bench-
marks. These results are obtained by running Cadence Genus on the synthesised
designs. The timing analysis is done for the baseline implementation, Hamming
and TMR. It was not possible to do a timing analysis on the Full TMR technique.
The reason being, that this technique was not synthesised, the area measurement
was purely an on-paper approach.

Figure 6.2 shows the results of the timing analyses done by Cadence Genus.
The bar graph shows the baseline implementation next to Hamming and TMR.
The y-axis represents the clock period of the design in pico-seconds. The x-axis
represents each of the design of the benchmark set.

The results are obtained by using the synthesised designs as input for Cadence
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Genus. A clock with a period of 10000 pico-seconds was defined. Cadence Genus
resolved a maximum of 10 critical paths per design. The first critical path that met
the timing constraint was taken from the report. The tool reports the slack of the
clock signal. To obtain the clock period as presented in Figure 6.2, the slack was
subtracted of initial clock period of 10000 pico-seconds:

clock period = 10000− slack

Note that these clock periods could potentially be even lower. Cadence Genus
does a static timing analysis. This means the tool does not move any cells around
to try and lower the clock period. It simply looks at the given cells in the design,
and finds the critical paths.

Figure 6.2: Clock period of the benchmarks with different fault tolerant
techniques: Hamming, TMR and Full TMR. The number in parentheses
following the benchmark name, indicates the number of states for that state
machine.
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6.3 Error correction capability

This section presents a theoretical analysis of the error correction rate of the three
fault tolerant techniques: Hamming, BCH and TMR. Per technique the potential
error correction rate is discussed. First Hamming and BCH are discussed, after
which the TMR technique is analysed.

6.3.1 Hamming and BCH

The potential error correction rates of the Hamming encoding is bound by the
Hamming bound. This bound tells us that, for a given Hamming distance there is
a maximum number of errors it can correct. The Hamming distance is the number
of positions at which two code words of a same length differ. The Hamming bound
is defined as follows:

t =
⌊d− 1

2

⌋
(6.1)

Where t is the maximum number of errors that can be corrected and d is the
Hamming distance.

The Hamming encoding used in this thesis, has a Hamming distance of 3.
Therefor its error correcting capability is a single bit error in the code word.

The BCH encoding used in this thesis had a configuration of (15,7). This means
the encoded code word has a length of 15 bits, and contains 7 information bits. The
error correcting capability of this code is t = 2. Therefor, it can correct up to 2
errors in the code word.

6.3.2 TMR

The error correcting capability of TMR is not as ’static’ as the error correcting
capabilities of Hamming and BCH. With TMR, each flip-flip of the design is trip-
licated. The three flip-flops are connected to a majority voter. This way a TMR
cell can correct up to a single bit error. However, this holds for only one TMR cell.
As the number of TMR cells increases the number of potential corrected errors also
increases.

Figure 6.3: TMR Cell with the best possible distribution of errors.

Figure 6.3 shows two TMR cells, each with three D-flip-flops inside. As long
as only one error occurs per TMR cell, each error is corrected by the majority
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voter. However, there is an upper limit to this, bound by the pigeon hole principle.
This principle states that if there is n amount of items to be distributed over m
containers, and it holds that n > m. Then there has to be at least one container
that holds two items of n.

The pigeon hole principle also applies to the TMR cells in our context. A TMR
cell implementation of n cells, can at most protect the design against m errors,
where it always holds that m ≤ n. For any case of m > n, it must hold that there
is at least two errors in one TMR cell, thus the cell fails to correct error. Therefor
any design that implements n TMR cells on the flip-flops holding state signals, can
correct at most up to n errors.

Up to the maximum number of errors, there is a probability that the next error
occurs in a flip-flop of a TMR cell that does not have an error yet. This probability
can be calculated as follows:

x∏
i=1

p(i) (6.2)

with p(i) defined as:

p(i) = 1− 3(i− 1)

3n
(6.3)

Where i is the number of errors that occur and n is the number of flip-flops in
the design.

For example, let’s assume there is a design with 3 flip-flops and we want to
know what the probability is of the second error being corrected. We thus have
i = 2 and n = 3. The probability of the first error being corrected is:

p(1) = 1− 3(1− 1)

3 ∗ 3
= 1− 0

9
= 1 (6.4)

Thus the probability of the first error being corrected 1. This is shown in 6.4.
As none of the TMR cells contain an error yet, it does not matter in which flip-flop
an error occurs.

Figure 6.4: The chance of the first error being corrected is 1, as no TMR
cell contains an error yet.

The probability of the second error being corrected is equal to:

p(2) = 1− 3(2− 1)

3 ∗ 3
= 1− 3

9
=

6

9
(6.5)
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Figure 6.5: The chance of the second error being corrected is 6
9 as it can

only be corrected if it falls into 6 of the 9 possible DFFs

A visual representation is shown in figure 6.5. As shown in the figure, the first
error can be placed in any of the TMR cells. The second error can only occur, in
either two of the other TMR cells. Resulting in a probability of 6

9 . This is also the
outcome of equation 6.2.

Finally, the overall behaviour of the error correcting capability of different the
different fault tolerant techniques is presented in figures: 6.6, 6.7 and 6.8. The
error correcting capabilities of Hamming and BCH are static. These fault tolerant
techniques can only correct a static number of faults, independent of the number
of state bits. In our case, Hamming can correct 1 fault, and BCH can correct up
to 2 faults. This behaviour is clearly visible in figures 6.6 and 6.7.

Figure 6.6: Heat map of the
fault correction probability of
Hamming encoding.

Figure 6.7: Heat map of the
fault correction probability of
BCH encoding.
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Figure 6.8: Heat map of the fault
correction probability of TMR.

As previously mentioned, TMR could correct as many faults as it has TMR
cells; however the error correcting probability decreases per consecutive fault. This
behaviour is shown in 6.8, a design with 1 state bit, can correct only 1 fault. The
design with 10 state bits, can correct 10 error, but each consecutive error has a
lower probability of being corrected.
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6.4 Discussion

This section aims to discuss the results of this project and compare them to a
similar research[13].

The results of [13] are shown in figure 6.9. The graph shows three fault tolerant
techniques: Binary, Hamming-3 and TMR. The first two techniques are encoding
techniques on the state signals, whereas TMR is a form of spacial redundancy.
Note that binary encoding has no form of fault tolerance, and can thus be seen as
the baseline implementation. The graph presents the cross-section of the reference
design on the vertical axis. The horizontal axis represents the clock frequency at
which the reference design has been run.

The graph clearly shows that binary encoding has to highest cross-section of the
three techniques. This is followed by the Hamming-3 encoding. Finally, TMR has
the lowest cross-section and therefore provides the highest fault tolerance. These
results are similar to the ones presented in our theoretical analysis of the error
correcting capability.

Both the cross-section of Hamming-3 and TMR change as the clock frequency
increases. The binary encoding cross-section remains almost the same. This seems
trivial, as this encoding technique provides no fault tolerance. TMR’s cross-section
seems to change linearly as the clock frequency increases; however it can be observed
that only two measurements were done. We can therefor not conclude anything
about the behaviour of TMR’s cross-section as the clock frequency increases.

Figure 6.9: Results of cross-section measurements of three fault tolerant
techniques: Binary, Hamming-3 and TMR.[13]
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From our experiments we know the maximum clock frequency of the designs.
As observed from the graph, it seems that Hamming can have a higher maximum
clock frequency than TMR. This differs from the our results; however as mentioned,
the TMR design was only measured by [13] at two frequencies. It might be that it
was not tested on a higher frequency.
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Chapter 7

Conclusion

This thesis presented an analysis of different fault tolerant techniques applied to
FSMs in hardware designs. The fault tolerant techniques used, are: (Full) TMR,
Hamming encoding and BCH encoding. The fault tolerant techniques have been
applied to different benchmark designs. After implementation the designs have been
synthesised and a timing analysis has been done. The results of these experiments
have been shown in the previous chapter. This chapter aims to summarize the
results, to draw conclusions and discusses future work.

In terms of area the different fault tolerant techniques were analysed against the
baseline implementation. The results of the area analysis were shown in figure 6.1.
On average the Hamming encoding resulted in an increase in total area by a factor
3.8 relative to the baseline. The TMR implementation had an increase in total area
by a factor of 1.6 relative to the baseline. Finally, the Full TMR had an increase
in total area by a factor of 3, as the complete design was triplicated. Although on
average Hamming encoding resulted in bigger increase than Full TMR, there are
cases in which Hamming resulted in a smaller total area. A possible explanation
for this, is that these designs might consist of fewer flip-flops and simple next-state
logic. These designs therefor do not increase as much, as Hamming only increases
the area in terms of next-state logic.

The timing analysis was done for the baseline implementation, Hamming en-
coding and the simple TMR technique. The results of this analysis were presented
in figure 6.2. The timing results were presented as the length of clock periods of
the designs. On average the clock periods of the Hamming encoding were 441.6ps
longer than the baseline clock periods. The average baseline clock period is 437.9ps,
thus designs encoded with Hamming tend to be twice as slow as the baseline de-
signs. The average increase in the length of clock period for TMR is 86.9ps. This
increase is purely due to the voter being added, as TMR did not introduce anything
else than the voter.

The error correction capabilities have been theoretically analysed with an on-
paper approach. For Hamming it holds that it can only correct single bit errors,
whereas the BCH encoding can correct up to 2 bit errors. It has been shown that
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TMR can correct as many errors as there are TMR cells, if each subsequent error
occurs in a separate cell. However the TMR analysis does not take the placement
of the flip-flops into account. As technology size decreases, it is possible that two
flip-flops are hit by the same SEU. If these two flip-flops are part of the same TMR
cell, an immediate error occurs.

7.1 Future work

There is still much that can be done on the analysis of fault tolerant techniques
for FSMs in hardware designs. This thesis analysed three techniques, but other
interesting question or methods arrised during the time of this research. A list of
possible future work is presented in this section:

1. Timing of Full TMR: During this research the area analysis for Full TMR
has been done by multiplying the area of the baseline by 3. Because of
this simplification the Full TMR design has never been implemented and
synthesised. Therefor its timing analysis was not possible. Recently [12]
released an open source tool, named TMRG. This tool takes an Verilog design
as input and triplicates the complete design using Full TMR. Future work
might use this tool to apply Full TMR on the benchmark set and synthesise
it. Finally the timing analysis can be done to investigate the added overhead
on the clock period.

2. Investigate different ECCs: The ECC used in this research for multibit
error correction, is BCH. As shown in this thesis, the overhead introduced
by this ECC was so significant that most of the benchmarks could not be
synthesised. The research of different ECCs was out of scope for this project,
but might be interested for further investigation.

3. Placement of flip-flops: As mentioned, the error correcting capability of
TMR in this thesis is presented. However this approach does not factor in
the placement of the flip-flops. As technology size decreases, one SEU might
introduce errors in multiple flip-flops at once. Therefor it could be interesting
to investigate the effect of the placement of flip-flops on the error correcting
capability of TMR.

4. Analysis of Hamming + One-hot encoding: One-hot encoding makes
sure that only one bit of a word is active at the time. If one would apply
Hamming encoding to that word, only the parity bits and the active state
bit are needed for decoding and error correction. This could possibly lower
the amount of state bits needed.
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