
 Eindhoven University of Technology

MASTER

A Real-World Implementation of Active Inference

Ergül, B.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c4c9f58e-057c-4492-95ed-0473b8bbdd76

A Real-World
Implementation of Active

Inference

Master Thesis

Burak Ergül
b.ergul@student.tue.nl

Department of Electrical Engineering
Signal Processing Systems Group

Supervisor:
Prof.dr.ir. Bert de Vries

Eindhoven, April 2020

mailto:b.ergul@student.tue.nl

Abstract

Moving towards a world with ubiquitous automation, efficient design of intelligent au-
tonomous agents that are capable of adapting to dynamic environments gains traction.
In this setting, active inference emerges as a contender that inherently brings together
action and perception through the minimization of a single cost function, namely free
energy. Being a Bayesian inference method, active inference not only encodes uncer-
tainty for perception but also for action and hence, it provides a strong expediency for
building real-world intelligent autonomous agents that have to deal with uncertainties
naturally found in the world. Coupled with other methods such as automated generation
of inference algorithms and Forney-style factor graphs, active inference offers fast design
cycles, adaptability and modularity. Furthermore, in cases where a priori specification
of goal priors is prohibitively difficult, Bayesian target modelling opens up active infer-
ence to more complex problems and provides a higher-level means of speeding up design
cycles through learning desired future observations. In order to assess active inference’s
capabilities and feasibility for a real-world application, we provide a proof of concept
that runs on a ground-based robot in order to navigate in a specified area to find the
location chosen by the user through observing user feedback.

Contents

1 INTRODUCTION . 1
1.1 Research Questions . 1

2 METHODS OF ACTIVE INFERENCE AND FREE ENERGY MINI-
MIZATION . 2
2.1 Model-Based Machine Learning 2
2.2 Forney-style Factor Graphs and Message Passing 3

2.2.1 Variational Message Passing 4
2.3 The Free Energy Principle . 5
2.4 Active Inference . 6
2.5 Automated Generation of Inference Algorithms 9

3 APPLICATION TO AUTONOMOUS AGENTS 9
3.1 Robot Setup and the Pre-Processing Block 11
3.2 The Bayesian Sunflower . 18
3.3 An Active Inference-based Parking Agent 21

3.3.1 The Physical Model . 21
3.3.2 The Target Model . 24
3.3.3 Selection of Priors with Thompson Sampling 30
3.3.4 Combining the Target Model and the Physical Model . 32

4 DISCUSSION . 33
5 CONCLUSIONS . 34

i

List of Figures

1 FFG of equation (4) depicting nodes, edges and the messages. 4
2 The equality constraint node allows the execution of the Bayes rule by

combining information from two sources. 5
3 The interface between the agent and its environment [36] 7
4 FFG of the generative model of eq. (11). Edges represent random vari-

ables and the nodes specify the relation between variables. 7
5 Functional blocks of the active inference-based parking agent. Functional

blocks allow a modular approach. 10
6 Box’s loop summarizes the design cycle [36] [7]. 11
7 Image of the robot that was used in the current study. 12
8 The Raspberry Pi 4 (RPi4). A RPi4 was used as a platform for executing

free energy miniminization (coded in Julia, running on Raspberry Pi’s
Linux variant). 12

9 An Arduino Uno was used to gather sensor readings, actuate the motors
and sample analog voltages. 13

10 MPU-6050 is a 6 axis Inertial Measurement Unit (IMU). It was used to
get readings on the robot’s orientation. 14

11 In dead reckoning, the current position of a mobile entity is calculated by
advancing a previously known position using estimated speed over time
and course. 15

12 Schematic of the light direction sensor. The light direction sensor was
used in the Bayesian sunflower project to get readings on the direction of
the light source. 16

13 Response characteristics of the light direction sensor under different con-
ditions. The light direction sensor provides accurate readings when the
light source is directly facing the sensor even under different environmen-
tal conditions. 17

14 Simulation results of the Bayesian sunflower. After the agent is allowed
to act, it quickly rotates towards the light source. In order to simulate a
dynamic light source, in iteration 50 the light source is moved 20 degrees. 20

15 Simulation results of the physical model. Green arrows show the orien-
tation of the agent and the red arrows show the proposed motion for the
next iteration. 23

16 Simulation results of Target Model 1D Bernoulli. The agent infers the
location chosen by the user on a 1D line by observing binary user feedback. 26

17 Simulation results of Target Model 1D Beta. The agent infers the location
chosen by the user on a 1D line by observing continuous user feedback in
the range (0,1). 27

ii

18 Simulation results of Target Model 2D Bernoulli depicting how the agent
converges to the location chosen by the user on a 2D plane by observing
binary user feedback. 28

19 Simulation results of Target Model 2D Beta depicting how the agent
converges to the location chosen by the user on a 2D plane by observing
continuous user feedback in the range (0,1). 29

20 Bernoulli and Beta implementation benchmarks. The figures show the
Euclidean distance between the location chosen by the user (i.e. the real
target) and the belief about the location chosen by the user (x∗). Results
of 10 simulations are given here, including their average. 29

21 Values of the utility function for all possible target coordinates, one time
step. 31

22 Bernoulli and Bernoulli with Thompson sampling comparison. Thompson
sampling improves the performance of the model by selecting better priors
for x∗. 31

23 Beta and Beta with Thompson sampling comparison. Thompson sam-
pling improves the performance of the model by selecting better priors
for x∗. 32

iii

1 INTRODUCTION

Since the industrial revolution, there has been an accelerating tendency towards the
automation of our production methods and in this setting, the concept of intelligent
autonomous agents gains traction. However, building intelligent autonomous agents
involves some challenges that still need to be overcome. These challenges include the
development of methods that enable agents to be capable of achieving specific goals in
dynamic industrial settings, an approach that enables fast and efficient design cycles and
in some cases, the integration of users into the design cycle to tailor for their individual
needs (such as in the wearable electronics industry).

This paper proposes a combination of several approaches that contribute to overcom-
ing these challenges in various complementary ways. More specifically, an intelligent
autonomous agent needs to be capable of executing three tasks: perception, learning
and decision making. The execution of these three tasks falls in the domain of Active
Inference (section 2.4) where they are inherently brought together under a generative
model. Furthermore, active inference allows the use of a single cost function, namely
free energy minimization (section 2.3), which is principally based upon model evidence
and being a problem-based approach, it enables ad hoc solutions. Active inference can
be executed using Forney-style Factor Graphs (section 2.2) which contribute to the
adaptability of models and allow modular/reusable updates through node-local com-
putations. The message update rules needed to do inference on factor graphs can be
derived automatically which speeds up the design cycle drastically (section 2.5).

1.1 Research Questions

Active inference and other supporting methods that were mentioned above have been
developed to enable engineers to build adaptable agents that can achieve specific goals
in dynamic settings but so far these methods have not been implemented for a real-world
application. Hence, this paper will try to answer the following questions:

Is Active Inference a feasible option for the efficient design of adaptive controllers/algorithms
for real-world applications?

How can Active Inference control be implemented for the efficient design of a real-
world robot?

How can users be integrated into the Active Inference controller design cycle to tailor
for their specific needs?

To answer these questions, a robot-car is implemented that uses active inference in order
to navigate in a previously specified area to find and park in the location chosen by the
user. In the beginning, the prior belief of the agent is initialized to an uninformative
distribution as to which location the user might choose. This belief is subsequently
updated and refined with each iteration through moving to a new location and requesting
feedback from the user asking whether the new location is better or worse compared to
the previous one. The main contributions of this paper are:

• A proof of concept implementation of active inference for a real-world agent.

• A 2D physical model responsible for navigating the agent by inferring motor ve-
locities.

• A 2D target model responsible for inferring the location chosen by the user by
observing continuous user feedback.

1

2 METHODS OF ACTIVE INFERENCE AND FREE
ENERGY MINIMIZATION

2.1 Model-Based Machine Learning

Machine learning has come a long way since its inception with a multitude of different
algorithms to address a broad range of problems. However, when a researcher decides to
tackle a new problem, he often needs to fit his problem to one of the existing methods or
implement a new algorithm. Considering how complex these algorithms can be, Model-
based Machine Learning (MBML) provides a new perspective that enables the creation
of ad hoc solutions for each specific problem [6]. The MBML approach has several
advantages compared to classical approaches which include:

• The ability to specify a wide variety of models, where some well-known traditional
machine learning techniques appear as special cases.

• The ease of creating ad hoc solutions to specific problems.

• The segregation of the model (which is application specific) and inference method
(which is generic), which enables fast refinements to the model without the need
for adapting the inference methods accordingly. Moreover, changes to the inference
method also do not require changes to the model.

MBML is implemented through the use of a compact model specification language and
the accompanying inference rules to automate the algorithm generation process. Models
consist of random variables and their relation is incorporated through specifying their
joint probability distribution in the form p(x1, ..., xK) where {x1, ..., xK} includes model
parameters as well as observed and latent variables. Bayes theorem rests upon two simple
rules:

Product Rule: p(xa, xb) = p(xa)p(xb|xa) (1)

Sum Rule: p(xb) =
∑
xa

p(xa, xb) (2)

From which Bayes rule can be derived:

p(xa|xb) =
p(xa)p(xb|xa)

p(xb)
(3)

where p(xa) is known as the prior, p(xb|xa) as the likelihood function, p(xa|xb) as the
posterior and p(xb) as the evidence. In this setting, each new observation of the random
variable xb allows the posterior distribution to be calculated from the prior distribution
and the likelihood function. In the next iteration, the previously calculated posterior
distribution becomes the prior distribution, which allows for an easy implementation of
online learning.

The process of evaluating the posterior distribution p(xa|xb) of the latent variable xa
given the observed variable xb is known as inference. There are two types of inference
techniques: exact and approximate inference. Exact inference algorithms calculate the
exact posterior distribution of p(xa|xb). Some examples of exact inference algorithms
include the sum-product algorithm [27], the elimination algorithm [24] and the junction
tree algorithm [28]. Next we will focus on the sum-product algorithm and give an
example using Forney-style Factor Graphs (FFG).

An FFG is a type of probabilistic graphical model (PGM). PGMs offer a framework that
allows the exploitation of structure in complex probability distributions and to describe

2

them compactly [24]. The specification of a model, in a Bayesian context, corresponds
to the specification of a joint probability distribution (also known as a generative model)
over all the random variables including the parameters in the model as well as latent and
observed variables. A PGM is a visual expression of how the joint probability distribu-
tion is factorized into the product of distributions over smaller subsets of variables. The
PGM framework offers many advantages, first and foremost being that it allows complex
distributions to be written down tractably, while also providing a representation that is
transparent so that it is easy to understand its semantics and properties. Secondly, it
provides a structure for efficient inference, which will be discussed in detail in the next
section.

2.2 Forney-style Factor Graphs and Message Passing

A Forney-style factor graph is used to represent a probabilistic model by exploiting
factorization in which complex “global” functions can be represented by the product
of smaller local functions [15]. An FFG comprises edges that represent variables and
nodes that specify the relation between variables. The inference process in this context is
performed by passing messages along the edges. Consider the example of a factorization
of the joint probability distribution over the variables x1, ..., x5:

f(x1, ..., x5) = fa(x1, x3, x4)fb(x2, x3)fc(x4, x5) (4)

Where we are interested in the marginal

q(x4) =

˙
f(x1, . . . , x5) dx1dx2dx3dx5 (5)

Substituting the factorized version of f(x1, ..., x5) we get

q(x4) =

˙
fa(x1, x3, x4)fb(x2, x3)fc(x4, x5) dx1dx2dx3dx5 (6a)

=

˙
fa(x1, x3, x4)fb(x2, x3)fc(x4, x5) dx1dx2dx3dx5 (6b)

=

¨
fa(x1, x3, x4)·

ˆ
fb(x2, x3) dx2︸ ︷︷ ︸
µfb

(x3)

dx3dx1

︸ ︷︷ ︸
µfa (x4)

·
ˆ
fc(x4, x5) dx5︸ ︷︷ ︸
µfc (x4)

(6c)

Equation (6c) shows that factorization allows breaking down higher dimensional inte-
grals into smaller ones. The messages in the form µf (x) can be interpreted as summaries
propagated from f towards x. This is known as the sum-product rule and its generic
form is given as follows:

−→µ (y) =

˙
f(y, x1, . . . , xN) · −→µ (x1) . . .−→µ (xN) · dx1 . . . dxN (7)

This means that the message out of a factor node fk towards edge y is the product of
all messages towards fk along all other edges and factor fk integrated over all variables
except for y. The sum-product algorithm computes two messages in opposite directions
for every edge and the multiplication of these two messages results in the marginal distri-
bution. To ensure that every message is computed exactly once, message computation
begins from the leaves and proceeds with nodes whose inputs become available [25].

3

This also ensures that no message has backward dependencies and each message can be
calculated from preceding messages [12]. Once the algorithm is executed, exact marginal
distributions for all variables become available simultaneously. The FFG of the example
given in equation (4) can be inspected in Fig. 1. Finally from equation (6c) we get

q(x4) = µfc(x4)·µfa(x4) (8)

The process of summarizing (i.e. integrating) parts of an FFG iteratively and forward-

Figure 1: FFG of equation (4) depicting nodes, edges and the messages.

ing messages is known as message passing (or summary propagation). An important
property of message passing is node-locality which arises from the way in which mes-
sages are computed. Specifically, the computation of a message flowing out of factor fk
can be computed from the incoming messages to node fk and the analytical form of fk.
This means that generic message update rules for specific factor-message combinations
can be derived and stored in look-up-tables to be used in the future which allows for the
automated generation of inference algorithms (see section 2.5). Thus message passing
becomes an efficient and automated process for doing probabilistic inference.

An example of how such a message update rule can be derived is given here for the
equality constraint node which is one of the standard building blocks for FFGs (for
other building blocks, see [25] Section 4.2). The equality constraint node is defined as
the factor f(x, y, z) = δ(x− z)δ(y− z) and for the incoming messages on edges x and y,
the outgoing message is given by:

µ3(z) =

¨
µ1(x)µ2(y)f(x, y, z) dxdy (9a)

=

¨
µ1(x)µ2(y)δ(x− z)δ(y − z) dxdy (9b)

= µ1(z)µ2(z) (9c)

From a Bayesian perspective, equality constraint nodes allow the execution of the Bayes
rule by combining information from two sources. If message µ1(x) is interpreted as
the prior and message µ2(y) as the likelihood function, then message µ3(z) becomes
proportional to the posterior distribution over variable z.

2.2.1 Variational Message Passing

Ideally, computing posterior distributions over latent variables would involve performing

4

exact inference. However, exact inference algorithms like the sum-product algorithm are
typically only applied to discrete or linear-Gaussian models and are intractable for all
but the simplest models. In most practical cases one must turn to approximate inference
methods. Variational message passing (VMP) is such an approximate inference method
that is suitable for many applications.

Variational methods have originated in the 18th century with the works of Euler, La-
grange and others on the calculus of variations. Simply put, many problems can be
stated as optimization problems where the solution is obtained by exploring all possible
input functions to find the one that either maximizes or minimizes the functional [5].
Although variational methods are not intrinsically approximate, they can be successfully
applied to find approximate solutions. This is done by restricting the range of functions
over which the optimization is performed. In the case of probabilistic inference for
instance, this restriction takes the form of factorization assumptions.

In order to find an approximation of the true posterior distribution p(s|x), the goal in
variational inference is to find a tractable variational distribution q(s) (also known as the
recognition distribution) that minimizes a given “distance” measure. An approximate
inference solution q(s) ∼= p(s|x) for a model p(x, s) with latent variables s and observed
variables x can be defined as a variational free energy functional:

F [q] , −
ˆ
q(s) log p(x, s)ds︸ ︷︷ ︸

energy

+

ˆ
q(s) log q(s)ds︸ ︷︷ ︸
−entropy

(10a)

= − log p(x)︸ ︷︷ ︸
−log-evidence

+

ˆ
q(s) log

q(s)

p(s|x)
ds︸ ︷︷ ︸

KL-divergence

(10b)

The free energy functional measures the distance between the probability distribution of
environmental variables that influence the agent and a recognition distribution encoded
by its configuration. Assuming that the agent encodes a probabilistic model of the
environment through its states and structure, minimizing free energy corresponds to
refining this model to better represent its environment. Free energy can be minimized
by changing the agent’s configuration to affect the way it samples the environment or by
changing the distribution it encodes. These changes correspond to action and perception
respectively and thus free energy provides a unified perspective on how to interpret (and
design) behavior.

2.3 The Free Energy Principle

The free energy principle (FEP) arose from a desire to explain how the brain works in
a unified framework and it was first introduced by Karl Friston [19]. It states that any

Figure 2: The equality constraint node allows the execution of the Bayes rule by com-
bining information from two sources.

5

agent (be it a single-celled organism, a complex multi-cellular organism or even a social
network of organisms) that strives to resist disorder, needs to minimize free energy [11].
This minimization can be over long periods of time as is the case in natural selection
or in milliseconds during perceptual synthesis [16]. Simply put, all agents incorporate a
model of their environment and the process of free energy minimization is the process
of improving this model to better represent the environment.

Looking at (10b), it can be seen that the free energy functional consists of two terms: the
KL divergence between the true posterior and the recognition distribution and the nega-
tive log-evidence. The negative log evidence in this setting is also known as surprise. To
evaluate surprise, the hidden state variables of the environment need to be marginalized.
However, this is in general intractable especially since for non-trivial models the poste-
rior distributions over latent variables do not have an analytical form. Thus, free energy
comes into play by providing an approximation of surprise that is much easier to work
with. Since KL-divergence is always non-negative, it follows that free energy constitutes
an upper bound on surprise and by minimizing free energy, one indirectly minimizes
surprise. The KL-divergence term measures the distance between the recognition dis-
tribution and the conditional density of the environmental causes given the sensory
observations, and hence minimizing free energy corresponds to making the recognition
distribution get closer to the conditional density and the recognition distribution en-
coded by the agent’s state becomes an approximation of the posterior probability of the
causes of its sensory observations. Following this line of thought, agents that match
their internal structure to the external causal structure of the environment are better
at finding local of minima of F .

From one perspective, agents try to minimize free energy in order to occupy a limited
number of desired states (e.g. upholding homeostasis in biological entities) and since the
only channel through which information can be gained from the environment is sensory
inputs, occupying desired states corresponds to making desired observations which are
constrained by target priors. From this perspective, changing the sensory inputs requires
acting upon the environment. This highlights the important interplay between action
and perception in minimizing free energy: through perception agents can make better
predictions about the environment and thus act upon the environment accordingly.

2.4 Active Inference

Active inference brings together perception and action under a unifying theory as a
corollary of the Free Energy Principle. It tries to explain how self-organizing organ-
isms interact with their environment and argues that living entities resist disorder (i.e.
survive) by minimizing a variational free energy functional under a model of their envi-
ronment. For biological entities, the specification of this model corresponds to minute
refinements on the model over generations under natural selection and other evolution-
ary processes. On the other hand, for synthetic agents, a generative model can be
specified by an engineer. Model specification constitutes a physical and statistical sep-
aration of the agent from the environment [37]. This separation can be achieved by
a Markov Blanket that comprises the sensory and action variables and it defines the
interface between the agent and its environment.

In Fig. 3, the environmental process constitutes action at, a latent state variable zt,
output yt and it is specified as (yt, zt) = Rt(zt−1, at). It should be noted that the
environmental process needs to be explicitly specified in case of a simulation, whereas it
is unnecessary in real-world applications. On the other hand, the probabilistic generative
model of the environment does need to be specified. The generative model is given by
pt(x, s, u) where x, s and u are sequences of observations, internal states and controls

6

Figure 3: The interface between the agent and its environment [36]

= = ...
st−1 st st+1

ut ut+1 ut+T

xt xt+1

st+T

xt+T

Figure 4: FFG of the generative model of eq. (11). Edges represent random variables
and the nodes specify the relation between variables.

7

respectively. By providing a distinction between action as a state of the real-world
and beliefs about future action given as control states, active inference changes the
problem fundamentally from selecting optimal action to making optimal inferences about
control [18]. In this context, minimization of free energy corresponds to minimization
of prediction errors for the observations x and it leads to posterior distributions over
both states s and controls u which in turn are observed by the environmental process
as actions and indirectly leads to changes in the observations. Thus, inference for the
states and controls both lead to free energy minimization.

Since the synthetic agents we strive to realize are built to fulfill specific goals, they need
to be endowed with a sense of goal-directedness through extending the internal model
over future states and incorporating counter-factual beliefs about future outcomes known
as target priors. Target priors lead to high surprisal for observations that are deemed
undesirable and free energy minimization consequently leads to posterior beliefs over
controls that are believed by the agent to avoid these undesired observations.

For simple tasks, the target priors can be set in a relatively simple manner by hand
(see the Bayesian Thermostat example in [36]). However, as the complexity of the task
increases, a priori specification of target priors can become difficult. An approach that
was pursued in [26] allows the model to learn desired goal priors on future observations
by augmenting the agent with a separate model. Through this approach, a simple
interface between the user and the agent can be constructed where the agent learns the
goal states by receiving feedback from the user.

The agent’s internal model is a reflection of the beliefs of the agent about how the
environmental process generates observations from actions (hence the name generative
model) and it is given by

pt(x, s, u) ∝ p(st−1)

t+T∏
k=t

p(xk|sk)︸ ︷︷ ︸
observation

p(sk|sk−1, uk)︸ ︷︷ ︸
state transition

p(uk)︸ ︷︷ ︸
control

p′(xk)︸ ︷︷ ︸
target

(11)

where the subscript t indicates that the model is time-varying and the context-based
target priors for observations p′(xk) are distinguished from the predictions for observa-
tions p(xk|sk) with a prime symbol. It should be noted that the model includes time
steps (t . . . t + T), effectively reflecting the ability of the model to be run forward to
gather assumptions about future observations. Extending the model in this way with
future time steps allows the model to reason about not only the consequences of action
in the next time step but plan a series of actions, also known as a policy, to attain goals
that are distant in time. Considering that there may be many different policies that
may be undertaken, free energy is calculated for each policy at each time step and the
one that has the minimum cumulative free energy in the future is picked.

The agent has access to a recognition distribution qt(x, s, u), next to its internal model.
The recognition distribution comprises the prior beliefs of the agent over latent vari-
ables, including the future observation variables which are by definition unobserved.
Initially the recognition distribution is set to an uninformative distribution and subse-
quent observation and inference steps allow the information encoded in the recognition
distribution to increase gradually and become more precise. This process can be divided
into three phases: (1) act-execute-observe, (2) inference and (3) slide.

In the act-execute-observe step, the internal model pt(x, s, u|u≤t, x≤t) is updated to
pt(x, s, u|u≤t, x≤t) ∝ pt(x, s, u|u≤t−1, x≤t−1)δ(ut−υt)δ(xt−ŷt) where pt(x, s, u|u≤t−1, x≤t−1)
and pt(x, s, u|u≤t, x≤t) reflect the state of the generative model just before and after the
tth act-execute-observe step. Control parameters υt are determined by free energy mini-
mization in the previous step and ŷt is the output of the environmental process observed

8

by the agent. Note that the execute step is processed by the environmental process after
it receives an action from the agent.

Next, in the inference phase, the consequences of updating the internal model need to
be processed for the model’s latent variables through free energy minimization. Here,
the recognition distribution is parameterized by sufficient statistics µ as qt(x, s, u) =
q(x, s, u|µt) and µt is computed by free energy minimization:

µt = arg min
µ

ˆ
q(x, s, u|µ) log

q(x, s, u|µ)

pt(x, s, u)
dxdsdu (12)

Finally, in the slide phase, the first time slices of the internal and recognition models
are marginalized and a new time slice is added to the horizon. After the slide step, the
algorithm loops back to another act-execute-observe step.

2.5 Automated Generation of Inference Algorithms

Next to the advantages discussed earlier in section 2.2, message passing also provides a
convenient paradigm for automated generation of inference algorithms. The main ad-
vantage of this approach is that by automating the inference and performance evaluation
(which is also a Bayesian inference task) steps, it allows the designer to quickly loop
through the design cycle by proposing alternative models until the performance evalua-
tion criteria is satisfied. Generation of inference algorithms can be automated through
constructing appropriate message passing schedules and by constructing a look-up table
for pre-derived message update rules. More specifically, inference algorithm generation
involves: message update scheduling, update rule selection and message type inference
(based on the factor node, inbound message types and the required form of the out-
bound messages) and lastly code generation where the sequence of message updates is
compiled to source code [12]. Note that since the final result is source code, the user
has flexibility in manually modifying the algorithm at any level, which comes in handy
for building problem specific algorithms.

ForneyLab is a software tool that facilitates automatic generation of inference algo-
rithms. It is written in a high-level language called Julia [4], which offers MATLAB-like
syntax and speed comparable to compiled C code. The design cycle in ForneyLab com-
prises three phases.

In the first phase, the build phase, the user specifies a probabilistic model using a
domain-specific syntax that resembles other probabilistic programming languages. This
involves using macros and one of the main advantages is that even complex models can be
specified in less than a page while the generated inference algorithm may be thousands of
lines long. ForneyLab builds an FFG of the specified model which provides modularity
and enables the re-use of computational inference primitives.

The next phase is the schedule phase and this is where the user specifies an inference
problem. ForneyLab subsequently proceeds to automatically deriving a message passing
algorithm that computes the marginals for desired variables.

Finally, in the infer phase, ForneyLab parses and executes the generated inference
algorithm [12].

3 APPLICATION TO AUTONOMOUS AGENTS

The purpose of this project is to implement a robot-car that uses active inference in order
to navigate in a previously specified area to find and park in the location chosen by the

9

user. In the beginning, the prior belief of the agent is initialized to an uninformative
distribution as to which location the user might choose. This belief is subsequently
updated and refined with each iteration through moving to a new location and requesting
feedback from the user asking whether the new location is better or worse compared to
the previous one.

An intelligent autonomous agent that is capable of achieving the goal stated above may
comprise three main functional blocks:

• The pre-processing block acts as the interface between the agent and the envi-
ronment. It gathers data from various sensors, converts them to the appropriate
forms to be fed in as observations and receives actions from the physical model to
actuate the motors.

• The physical model is responsible for inferring the necessary actions to move the
robot from initial position a to final position b, given the observations received
from the pre-processing block and the target priors from the target model.

• Finally, the target model is responsible for receiving user feedback to infer beliefs
about the location chosen by the user. These beliefs are subsequently used as goal
priors in the physical model to achieve goal-directed behavior.

Figure 5: Functional blocks of the active inference-based parking agent. Functional
blocks allow a modular approach.

Figure 5 highlights an important advantage of using an MBML approach: modularity.
Since the blocks are functionally separate and the interfaces between them are clearly
defined, each block can be implemented separately without having to worry about the
other blocks. The following subsections will focus on the implementation of each of these
blocks in detail. However an overarching theme is the design and iterative improvement
of model architectures in a simulation environment first and subsequently porting them
to the robot to make the necessary adjustments on model parameters to design specific
behavior.

Box’s loop provides an established approach to model development and it summarizes
the constituting phases in a design cycle. As mentioned earlier in section 1, this paper
uses a combination of complementary methods that work together to enable one of the
main advantages of active inference which is fast design cycles . A constituent part
of this is the rigorous application of Box’s loop which has been followed throughout
the implementation phase. Although it seems that the main focus of Box’s loop is
the iterative improvement of model architectures, as we shall see, design cycles can be
extended to iterations after applying the model. Having designed a flexible model in the
initial iterations, specific behavior on the agent’s part can further be enforced without
changing the model architecture. This process can be seen in detail in section 3.3.1.

10

Figure 6: Box’s loop summarizes the design cycle [36] [7].

In the following sections, we will first introduce the physical setup of the agent in section
3.1 where the implementation of the pre-processing block is also discussed. Next comes
the Bayesian sunflower section 3.2, a small project that was undertaken in order to gain
hands on experience with active inference on a relatively simple project and to identify
problems with the robot setup. The following two sections focus on the implementation
of the physical model, section 3.3.1, and the target model, section 3.3.2.

3.1 Robot Setup and the Pre-Processing Block

For an active inference agent, having a good model of the environment does not neces-
sarily translate to successfully achieving a specified goal in practice. Real-world active
inference agents are also constrained by how they interact with their environment and
this essentially comes down to the range and accuracy of their sensory modalities and
the capabilities of their actuators. Clearly, before undertaking an active inference im-
plementation for a real-world application, an agent needs to be designed that has the
necessary physical attributes.

In order to identify which physical attributes an agent should possess, its goal and how
this goal will be attained need to be analyzed.In this project, the agent needs to be
capable of:

• Keeping track of its position and orientation accurately and

• Inferring actions reasonably fast.

These two points have to be satisfied in order for the agent to be capable of achieving
its goal. Let us now look at how they were satisfied for this project.

The first thing to do was to choose a chassis. There are a large number of chassis with
different shapes and sizes to choose from on the market. However, it comes down to
three main form factors: robots with wheels, tracks and spider-bots. Spider-bots can
immediately be crossed off since they present unnecessary complexity. Then, the choice
comes down to either a robot with wheels or one with tracks. The difference is that
although tracked robots perform well on rugged terrain, they are more prone to slipping
on smooth surfaces. Thus, a robot with wheels was chosen. Parallax’s robot shield
for Arduino has two wheels on the front, a dummy wheel on the back and it provides
enough space for prototyping [22]. Parallax also offers a variety of components that are

11

suitable for this robot shield. This robot shield comes with continuous rotation servo
motors. Next, we’ll look at which micro-controllers were used in this project.

Figure 7: Image of the robot that was used in the current study.

Processing information

Considering this is a proof-of-concept project, we have opted to go for one of the most
popular and powerful embedded devices on the market: a Raspberry Pi 4 [20]. The
Raspberry Pi 4 has a 64-bit quad core Cortex-A72 microprocessor that has a clock
speed of 1.5 GHz and it comes with a 4 GB SDRAM. While these specs ensure sufficient
performance for our purposes, Raspberry Pi 4 also runs a free operating system based
on Debian which allows easy installation of Julia [4], a high-level programming language
for high performance numerical analysis and computational science which is required for
running ForneyLab [12].

Figure 8: The Raspberry Pi 4 (RPi4). A RPi4 was used as a platform for executing free
energy miniminization (coded in Julia, running on Raspberry Pi’s Linux variant).

Alongside the Raspberry Pi, an Arduino Uno is used [2]. Arduino Uno is an MCU board
that is based on the ATmega328P. It has 16 digital I/O pins, 6 analog inputs and it
has a clock speed of 16 MHz. The Arduino Uno provides ease in controlling motors
(through its various libraries and dedicated hardware) and gathering sensor readings, so

12

it has become very popular in robotics projects over the years. In our implementation,
it also provides a simple form of parallelism so that inference can take place without
being interrupted while the previous action is being executed.

Figure 9: An Arduino Uno was used to gather sensor readings, actuate the motors and
sample analog voltages.

Accurate localization

Although the Global Positioning System (GPS) has revolutionized outdoor localization,
indoor localization is still an unsolved problem . Both academia and the industry have
been spending resources and effort on trying to solve the problem for well over a decade
now and even though hundreds of different approaches have been proposed, the commu-
nity has still not converged on a single solution that satisfies the required localization
accuracy at low cost [30].

Indoor localization approaches can be divided into infrastructure-based and infrastructure-
free approaches. The infrastructure-based approach requires the deployment of cus-
tom hardware such as Bluetooth beacons, ultrasound speakers, cameras and others.
Infrastructure-free approaches, on the other hand, do not require custom hardware to
be deployed in the working area. During the execution of this project, both approaches
have been studied and several variations of them have been considered. However, since
an in-depth comparison of these approaches and their variations is out of the scope of
this paper, we will focus on several variations that seemed the most promising here. For
an in-depth comparison of 22 different indoor localization systems, see [30].

Perhaps the most commonly used infrastructure-free approach is dead reckoning. In
dead reckoning, the current position of a mobile entity is calculated by advancing a pre-
viously known position using estimated speed over time and course [14]. Dead reckoning
systems commonly combine readings from several sensors in order to get more accurate
location estimates. These sensors include wheel encoders, gyroscopes and accelerome-
ters among others. Although dead reckoning has many advantages such as being easier
to implement, computationally inexpensive and low cost, its main drawback is the accu-
mulating error over long periods of time. These accumulating errors are mostly due to
there being no external frame of reference to bound the error and they arise from wheels
slipping and drift in the inertial sensors. However, if these errors are kept to a minimum,
reasonable localization accuracies can be achieved depending on the application.

In most dead reckoning implementations, encoders are used to provide odometric in-
formation. However, encoders have several disadvantages including (relatively) low res-
olution (usually dependent on how many slits there are on the wheel) and the need
to constantly count every pulse generated. Note that when a pulse from the encoder is

13

missed, an error is introduced proportional to the size of the wheel and inversely propor-
tional to the resolution of the encoder. In our implementation, we have decided to use
digital angular position feedback [32]. This feedback is generated by a hall effect sensor
inside the motor and its output is a pulse wave of fixed frequency and varying duty
cycle. Angular position information can easily be calculated from this duty cycle. The
resolution of this feedback is higher than most encoders used in robotics applications
and it can be measured at any point in the algorithm as long as the wheels have not
completed a full rotation, thus minimizing errors and decreasing computational cost.

Alongside the angular position feedback, a gyroscope was used to provide orientation
readings. One of the most commonly used sensors in the market is MPU-6050 [23]. It is
a 6 axis Inertial Measurement Unit (IMU) that provides high resolution readings with
low power consumption ratings. One of MPU-6050’s most important features is that it
also has a Digital Motion Processor (DMP) which decreases the computational load on
the Raspberry Pi. Communication with MPU-6050 is achieved through I2C.

Figure 10: MPU-6050 is a 6 axis Inertial Measurement Unit (IMU). It was used to get
readings on the robot’s orientation.

As seen in Fig. 5, the pre-processing block is responsible for receiving sensor readings
and calculating the position and orientation updates to be fed in as observations to the
physical model in the active inference-based parking robot. The orientation of the agent
φk, is initialized to π/2 radians through adjusting the gyroscope readings with an initial
offset reading and subsequently, angular displacement ∆φk (radians) is integrated to this
value in every iteration. Next, the current position of the agent (xk, yk) is calculated
from its previous position (xk−1, yk−1) by first calculating the displacement of the robot,
∆pos (cm), given the wheel radius r (cm), angular displacements of the left and right
wheels, ∆left (degrees) and ∆right (degrees), using the following equations:

∆pos =
(∆left + ∆right)

2
· 2πr

360
(13a)

xk = xk−1 + ∆pos · cos(φk) (13b)

yk = yk−1 + ∆pos · sin(φk) (13c)

Note that these equations treat a curved trajectory as a combination of straight lines, so
they provide an approximation of the real case, see Figure 11. However, as long as they

14

∆pos

φk

∆left
2πr
360

∆right
2πr
360

xk−1 xk

yk−1

yk

Figure 11: In dead reckoning, the current position of a mobile entity is calculated by
advancing a previously known position using estimated speed over time and course.

are executed frequently enough (in our case every 2-3 ms), they prove to be reasonably
accurate [29] [9].

Although there’s no way of preventing the wheels from slipping in a practical setup, its
effect on localization accuracy can theoretically be decreased through augmenting the
agent with optical mouse sensors. The intuition behind this approach is that an optical
mouse sensor provides a secondary source of information on the displacement of the
agent that is independent of the wheels. Several articles in the literature report high
localization accuracies where information from several optical mouse sensors (at least
two) are coupled with information from encoders [33] [8]. However, this approach has
several drawbacks. First of all, the resolution of an optical mouse sensor highly depends
on the surface it’s being used on and it needs to be calibrated for each new surface.
Secondly, these sensors are designed to work a couple of millimeters from the surface
and anything beyond that renders them unusable. The height sensitivity can be reduced
by augmenting the sensor with a lens as explained in [3], however, this would be too
time consuming.

Several infrastructure-based off-the-shelf modules were also investigated including Blue-
tooth and WiFi-based implementations. However, at the time none of the readily avail-
able modules were capable of producing the accuracy that is required in this project.
After dead reckoning was implemented and was working reasonably accurately, an in-
door localization system based on ultrasound and RF communication became available
on the market that would have suited this project well [34]. Using (at least) three
beacons that are deployed in the indoor working environment, it provides a reported
localization accuracy of ±2 cm within a 50 m range. Using this indoor localization
system would have probably reduced the time spent in development.

15

Light Direction Sensor

In the Bayesian sunflower project (section 3.2), an active inference agent is built that
continuously rotates towards the light source. Hence, the agent needs to have access to
a sensor that reports the direction of the incident light. Although the market is rife with
light presence sensors, a light direction sensor could not be found. However, building
one out of two Light Dependent Resistors (LDR) is relatively straightforward. An LDR,
also known as a photo resistor, is a type of resistor whose resistance depends on the
amount of light falling on its surface. Typically, the resistance of an LDR is inversely
proportional to illuminance.

Figure 12: Schematic of the light direction sensor. The light direction sensor was used
in the Bayesian sunflower project to get readings on the direction of the light source.

Figure 12 shows the schematic of the light direction sensor. The idea behind this sensor
is that when the light source is directly in front of the sensor, the resistances of the two
LDR’s are equal and hence the voltage sampled is equal to 2.5 V. On the other hand,
when the light is falling on the sensor at an angle, depending on which LDR the light
source is closer to, the output is greater or less than 2.5 V. However, initial experiments
with the sensor have shown that the voltage sampled when the light source is directly
in front of the sensor is not exactly equal to 2.5 V since the response characteristics
of the two LDR’s do not match each other exactly. This is due to slight differences in
the manufacturing process and ambient light conditions. These effects can be alleviated
in practice by simply taking an initial offset reading and adjusting subsequent readings
with this offset to get 2.5 V when the light source is in front of the sensor.

As we shall see in section 3.2, building the generative model requires information about
the response characteristics of the light direction sensor. In order to find this, an experi-
mental setup was prepared where initially an offset reading was taken with the flashlight
directly in front of the robot and subsequently, starting at 0 degrees, the flashlight was
moved around the robot at a certain distance in 5 degree steps for a total of 180 degrees.
At each step the response of the sensor was recorded and adjusted using the offset read-
ing. This process was repeated under different ambient light conditions and at different
distances from the sensor. The results can be seen in Fig. 13.

There are several things to note in this figure. First of all, since the light direction sensor
is an analog sensor and the Arduino’s analog-to-digital converter (ADC) has a resolution
of 10 bits, the sensor reports values in the range [0, 1023]. Second, the values reported
at 90 degrees is around 512 (corresponding to 2.5 V) even under different conditions.
This means that the goal prior for the Bayesian sunflower can directly be set to 512,
without worrying about varying environmental conditions. Third, the response can be
assumed to be linear from 20 degrees to 160 degrees. Finally, the distance of the light
source is inversely proportional to the slope of the response. As we’ll see, this effect will

16

(a) Ambient light coming from the left, light
source distance: 50 cm.

(b) Ambient light coming from the back, light
source distance: 50 cm.

(c) Ambient light coming from the back, light
source distance: 75 cm.

Figure 13: Response characteristics of the light direction sensor under different condi-
tions. The light direction sensor provides accurate readings when the light source is
directly facing the sensor even under different environmental conditions.

result in smaller controls (i.e. slower rotation) when the light source is farther from the
agent.

Communication

Various components that make up the agent need to have access to a robust communica-
tion protocol. In our implementation we have decided to use I2C since the Arduino Uno,
MPU-6050 and the Raspberry Pi 4 all have dedicated hardware for I2C. I2C is a syn-
chronous, serial computer bus that was developed by Philips Semiconductor. It is widely
used for attaching peripheral ICs to microcontrollers for short distance communication.

Initially, the idea was to execute the pre-processing block solely on the Arduino, so it
would gather readings from both the angular position feedback sensor and the MPU-6050
to calculate position and orientation and subsequently send them as observations to the
physical model on the Raspberry Pi. However, this proved not to be a particularly robust
approach since it required concurrent communication or withholding communication
until the current one was finished on Arduino’s part. For example, when the Arduino
was communicating with the MPU-6050, the Raspberry Pi could request observations
from the Arduino which resulted in interference on the channel and loss of packages. On

17

account of this, a more strict hierarchy was implemented next where the Raspberry Pi
became the master and the Arduino and MPU-6050 became slaves. In this framework,
only the Raspberry Pi can initiate communication sessions and hence there cannot be
interference on the channel due to concurrent access to the channel. Note that in this
implementation, the Arduino does not receive any orientation information and so it
cannot calculate position updates. Thus, some processes of the pre-processing block
were distributed among the Arduino and the Raspberry Pi. In this scheme, the Arduino
keeps track of the angular position of the wheels and MPU-6050 keeps track of the
orientation of the agent and Eq. 13 is calculated on the Raspberry Pi.

The paragraph above describes an initial iteration on the design cycle, specifically con-
cerning the pre-processing block in this case. In the following sections, many more iter-
ations on the design cycle are introduced. As a general approach to building real-world
active inference agents, initial iterations on the design cycle are executed in simulation
environments where model architectures are built. Once satisfactory results are obtained
in simulations, models are ported to the robot and later iterations on the design cycle
are carried out specifically focusing on real-world performance. While initial iterations
usually concern refinements to model architectures, later iterations may also include
updates to functions facilitating the interface between the agent and the environment
in order to improve real-world performance.

3.2 The Bayesian Sunflower

The Bayesian sunflower is based on the Bayesian thermostat, a classical active infer-
ence application [17] [10] where the agent is placed in a nonlinear temperature gradient
and where it subsequently positions itself according to the desired goal temperature.
The Bayesian thermostat was explored extensively in [36] where a simulation was also
provided. The Bayesian sunflower on the other hand, describes an agent that actively
rotates towards the direction of the light source much like a sunflower, hence the name.
In the Bayesian sunflower, the agent receives light direction values as observations which
are subsequently used to infer controls in terms of rotation velocities in the agent’s gen-
erative model. The goal prior is set to 512 (i.e. the agent is directly facing the light
source).

The Bayesian sunflower project was designed primarily to gain hands on experience with
active inference on a real-world agent and on a relatively simple setup where possible
problems with hardware could be caught early on. The advantage of the Bayesian sun-
flower over the Bayesian thermostat is that setting up the physical experiment is easier
since only a flashlight is required instead of a heat source and it’s easier to observe the
agent’s dynamic behavior (e.g. imagine walking around the robot with a flashlight and
seeing the robot immediately responding to it as opposed to changing the temperature
of the heat source).

Environmental Model Specification

The environmental process was specified using the response characteristics of the light
direction sensor. The response of the light direction sensor L(z), given the orientation
of the agent with respect to the light source z (degrees) is given as:

L(z) = 2.76 · (z − 90) + 512 (14)

where the coeffecient 2.76 is the slope of the response characteristic when the light source
is 50 cm away from the agent. Actions at, given in terms of rotation velocity, affect the
environment as follows:

zt = zt−1 + at (15)

18

and the agent is assumed to have access to noisy observations

yt ∼ N (L(zt), 10−2) (16)

Generative Model Specification

Moving on to the generative model, the goal prior directs the agent’s actions to achieve
a desired observation which is specified as x∗ = 512 (corresponding to 90 degrees, or a
reading of 2.5 V from the light direction sensor).

p′(xk) = N (xk|x∗, 10−2) (17)

The state transition model is given as

p(sk|sk−1, uk) = N (sk|sk−1 + α · uk, 10−2) (18)

where the coefficient α provides a simple way of adjusting the mean of the control ut
and hence the velocity of the robot. It will be useful especially once the model is ported
to the robot.

The observation model reflects the assumption that the response characteristic is linear
and it is given as follows:

p(xk|sk) = N (xk|2.76 · sk, 10−2) (19)

Finally, priors for controls and the initial state are specified as:

p(uk) = N (uk|0, 10−2) (20a)

p(s0) = N (s0|0, 1012) (20b)

The generative model was implemented in ForneyLab, which can be used to automati-
cally generate a message passing algorithm for free energy minimization.

Simulation Results

The simulation protocol follows the (1) act-execute-observe, (2) infer, (3) slide loop as
explained in 2.4 and it was run for 100 time steps with a horizon of T = 2. Actions
were allowed after the 25th iteration. It can be seen in Fig. 14 that immediately after
the agent is allowed to act, it quickly rotates towards the light source and it displays
very stable behavior once the goal is reached. Notice that as the agent gets closer to the
goal, its actions become smaller. This prevents overshooting and in general results in
stable behavior once the goal is reached. In the 50th iteration the light source is moved
20 degrees to simulate a mobile light source. The agent again rotates towards the light
source and then stops.

Experiments on the robot

The simulation results act as a proof of concept and the next step is porting the model
to the robot itself in order to see its performance in a real-world setup. The main
difference between a simulation protocol and an experimental protocol is that in a sim-
ulation protocol, the environment is simulated whereas in the experimental protocol
the environment is the world itself. Since the act-execute-observe step creates a nice
separation between the agent and the environment, porting the model to the robot is
rather straightforward and only requires converting the act() and observe() functions
to communication steps. More specifically, in the act step the agent sends the mean of

19

Figure 14: Simulation results of the Bayesian sunflower. After the agent is allowed to
act, it quickly rotates towards the light source. In order to simulate a dynamic light
source, in iteration 50 the light source is moved 20 degrees.

ut (which specifies rotation velocity) to the Arduino, and upon receiving this value, the
Arduino produces the necessary electrical signals to actuate the motors. In the observe
step on the other hand, the agent requests a light direction reading from the Arduino.

Although porting the model to the robot sounds simple in theory, it should be noted that
a working model requires all the underlying processes to work as well. These processes
are mainly related to the pre-processing block and include getting correct readings from
the sensors, being able to actuate the motors at the desired velocities and achieving a
robust communication protocol. Many of these processes need to run in parallel (e.g.
electrical signals with correct duty cycles need to be sent to the motors at all times,
even when the motors are not turning and communication needs to take place alongside
this), so it is necessary to make sure that these processes do not interfere with each
other. The implementation of the pre-processing block was discussed in detail in 3.1.

Once the model is up and running on the robot, the behavior of the agent can be fine-
tuned. An implicit assumption in the simulation protocol is that each iteration takes
one second. Although this makes implementing the simulation protocol easier, it does
not reflect the actual case where each iteration takes much less than a second (2-3 ms).
Hence, the controls generated in the simulation protocol (which were given without a
unit) need to be multiplied by a certain factor to adjust the rotation velocity of the robot
in the experimental protocol. This can be achieved by making use of the α coefficient
mentioned in the generative model specification subsection. The coefficient α is selected
so that the robot is neither too fast that it’s overshooting nor is it too slow that its
response is too slow.

A video of the Bayesian sunflower can be found here https://youtu.be/P4yB9L8LHeo.

20

https://youtu.be/P4yB9L8LHeo

3.3 An Active Inference-based Parking Agent

Having mostly set up the robot and the accompanying functions related to the pre-
processing block in the previous phase, it’s time to move on to the implementation
of the active inference-based parking agent. This project offers a task of appropriate
complexity for a proof of concept while also allowing the exhibition of active inference’s
capabilities.

In this project, the agent’s goal is to consecutively navigate to new target locations
(inferred from user feedback) and eventually settle in the location chosen by the user.
The parking agent comprises two generative models: a physical model and a target
model. Let us first look at the physical model.

3.3.1 The Physical Model

The physical model is responsible for inferring the controls necessary for navigating the
agent from any position a to position b. The observations it receives from the pre-
processing block are in terms of position and orientation. As in the Bayesian sunflower,
the physical model in the parking agent follows the (1) act-execute-observe, (2) infer, (3)
slide loop. The inferred controls are in terms of translation and rotation velocities and
they are used in implementing a differential steering scheme [9]. Differential steering
applies to ground-based vehicles where more or less torque is applied to one side of
the vehicle than the other. Differential steering can produce curved as well as straight
trajectories [9].

In the initial iteration of the design cycle for the physical model, a model was considered
where the agent would first rotate towards the target and subsequently start moving
towards it. Differential steering would still apply in order to make sure the agent did not
stray from the path. This behavior would be achieved by constructing two generative
models. The first model would be responsible for inferring translation velocities by ob-
serving the Euclidean distance to the target and the second generative model would be
responsible for inferring rotation velocities by observing the angle between the agent’s
orientation and the target. However, this idea was later dropped in favor of the fol-
lowing model which has one generative model (and hence one inference step). While
the following model is capable of displaying the same behavior as the model initially
proposed, it can also display a wider range of behaviors.

Generative Model Specification

The generative model specification starts by specifying the transition model which de-
scribes the relationship between the current state, the previous state and the controls.
The states of the generative model are given by sk = (xk, yk, φk) where (xk, yk) specify
the position of the agent and φk the orientation. Controls are given by uk = (∆φk, rk)
where ∆φk specifies rotation velocity and rk specifies translation velocity. The transition
model is given as follows:

sk = g(sk−1, uk) (21)

where g(sk−1, uk) is given by

φk = φk−1 + ∆φk (22a)

xk = xk−1 + rkcos(φk) (22b)

yk = yk−1 + rksin(φk) (22c)

p(sk|sk−1, uk) = N (sk|g(sk−1, uk), 10−1 · I3) (23)

21

To couple the observations with internal states, the observation model is given by

p(xk|sk) = N (xk|sk, 10−1 · I3) (24)

Finally, the goal priors are specified as follows

p′(xk) = N (x∗, 10−2) (25a)

p′(yk) = N (y∗, 10−2) (25b)

p′(φk) = N (φ∗k, 10−2) (25c)

The goal priors for the target location (x∗, y∗) are entered manually at this stage. How-
ever as we shall see, the target model (section 3.3.2) will be providing the goal priors for
the target location later on. The goal prior for orientation is calculated at each iteration
using the following equation:

φ∗k = arctan

(
yk − y∗

xk − x∗

)
(26)

where φ∗k specifies the angle between the agent’s current position and the target position.
Specifying the goal prior for orientation this way ensures that the agent actively rotates
towards the target position in each iteration.

Simulation Results

The simulation is run for 30 time steps with a horizon T=2. To make the simulation
closer to the actual case, the actions of the agent are constrained to |∆φk| < 0.2π and
|rk| < 10. The results can be seen in Fig. 15. The results show that the physical model
is capable of navigating the agent to reach its target. It can also be seen that as the
agent gets closer to the target its actions become smaller.

Experiments on the robot

Having achieved promising results in a simulation environment, the next step is porting
the model to the Raspberry Pi. The process is similar to the one explained in section
3.2 meaning that the act and observe steps become communication steps. However note
that some functions related to the pre-processing block are also executed in the act and
observe steps. Eqn. 13 is executed in the observe step after sensor readings are received
and in the act step, inferred controls are converted to a more appropriate form to be
sent to the Arduino. The following equations show how the velocity for each motor is
calculated.

νleftk = α · rk + β ·∆φk (27a)

νrightk = α · rk − β ·∆φk (27b)

As it can be seen, while rk acts as a base velocity for both motors, ∆φk creates a
difference between them to enforce differential steering. Coefficients α and β are used
to fine-tune the translation and rotation velocities respectively.

For experiments with the robot, a setup was prepared with a large sheet of paper as a
working surface to decrease slippage where several target locations were marked. The
experiments done were similar to the simulations given previously. Initial experiments
showed a noticeable decrease in localization accuracy as the robot moved especially in
cases where the robot had to rotate more (like in Figure 15b). Further experimentation
was conducted to see if this problem would persist (1) when the robot had to move

22

(a) Target position: (30,15) (b) Target position: (-25,-20)

Figure 15: Simulation results of the physical model. Green arrows show the orientation
of the agent and the red arrows show the proposed motion for the next iteration.

in a straight line and (2) when it only had to rotate to achieve a specified orientation.
In both cases, no discernible decrease in localization accuracy was seen even when the
experiments were consecutively repeated without resetting the agent’s location to its
initial state (i.e. x0 = 0, y0 = 0, φ0 = π/2). So the decrease in localization accuracy
seemed to be occurring when translation and rotation were happening simultaneously
and if the robot needed to rotate a considerable amount. This problem is probably due
to the limitations of Eqn. 13 combined with slippage. However, it was not investigated
further since preventing it is rather simple as will be explained next, and it lets us
highlight an important feature of active inference.

In order to overcome the decrease in localization accuracy, no changes to the model
architecture are required. Since the physical model describes two-wheeled robot motion
in 2D so well, it provides a degree of flexibility in enforcing specific behavior. By
suppressing the control for translation velocity when the angle between the agent’s
orientation and the target orientation is greater than a certain amount (|φk − φ∗k| > ψ),
the amount the agent needs to rotate while translating can be decreased. This effectively
results in the robot pivoting where it stands until its orientation is a specific amount away
from the target. In our implementation this value was chosen as ψ = pi/6 radians which
results in observable curved trajectories while also bringing the decrease in localization
accuracy down to an acceptable level. Note that if ψ is set to zero, the agent only moves
in straight lines.

The way the decrease in localization accuracy is brought down to an acceptable level, as
explained above, lets us see how the design cycle can be extended to iterations after the
model is applied. It also highlights that design cycles should not only consider changes
to the model architecture, but a designer should also be aware of what is possible with
the model at hand. Having designed a flexible model in the initial iterations of Box’s
loop, it is possible to enforce specific behavior without changing the model architecture.

23

The current implementation was also put to the test to see if its localization accuracy was
acceptable. In this project, an “acceptable localization accuracy” is not strictly defined.
However, as we shall see in the target model section, the agent needs to be capable of
consecutively navigating to new target locations around 35-40 times inside a 3x3 m2 area
before it settles in the location chosen by the user. The agent’s localization accuracy was
tested keeping this constraint in mind and it was confirmed that the agent was capable
of navigating accurately with further experimentation. The physical model’s robustness
was also tested by forcefully changing the agent’s trajectory en route. These tests
showed that the agent was capable of adapting to the situation by adjusting its actions
where necessary, attesting to active inference’s robustness under dynamic environmental
conditions. A video of these tests can be found here: https://youtu.be/AJevoOmKMO8.

3.3.2 The Target Model

In an active inference setting, goal-directed behavior is elicited through the specification
of desired future observations in the generative model. However, in some cases, these
desired future observations, also known as goal priors, are difficult to specify a priori.
Thus, implementing active inference becomes a challenge in more complex problems.
This problem can be alleviated through extending the notion of a goal prior to include
a full probabilistic model which can infer desired future observations through a simple
scheme of observing user feedback. This model that extends the physical model is also
known as the target model and it is responsible of inferring beliefs about the location
chosen by the user through iteratively updating its internal model parameters given the
user feedback. This problem was explored extensively in the literature in [26] and in [13].

Perhaps the effects of fast design cycles can most clearly be seen in the design of the
target model. In this section, four iterations on the design cycle will be introduced
where each iteration is motivated by an inadequate performance. The approach taken
in implementing the target model was to first design 1D models and then, using the
insights gained, move on to 2D models. Models were compared to each other using
specified performance metrics.

The target models were implemented using Turing.jl which is a general purpose proba-
bilistic programming language for robust, efficient Bayesian inference and decision mak-
ing [21]. The target models we designed include some nonlinear functions that may
be difficult to implement tractably in a message passing based inference library like
ForneyLab. Turing.jl provides a wide variety of sampling based inference methods. It
should be noted that sampling based methods are generally computationally more in-
tensive compared to message passing based methods. However, our experiments have
shown that the increase in execution time does not affect the process significantly (even
though the user is part of the process) and overall model performance is not effected by
this increase in execution time in any way.

First Major Iteration on the Design Cycle: Target Models in 1D

In order to integrate the user into the loop, a protocol that specifies how the user interacts
with the agent needs to be established such that the process is not too complicated and
more importantly, such that the user does not need to understand the inner workings of
the agent. This protocol is given as follows: first, the agent samples a goal position from
the belief about the target position and subsequently it moves to this sampled position.
Next, the user compares the new position to the previous position and provides feedback
specifying whether the agent has come closer to the target or not. Upon receiving this
feedback, the agent infers a posterior belief over the desired target position and the
process repeats itself until the user deems that the target position has been found. In

24

https://youtu.be/AJevoOmKMO8

order to infer beliefs about the target position given the user feedback, a target model
is required.

In [26], a cart parking task in 1D is defined to provide a proof of concept for the notion
of extending the goal prior to include a full probabilistic model and the approach was
validated using a simulation. This was chosen as our starting point to gain some intuition
about implementing a target model in 1D similar to the one described in [26] as follows
where yt and yt−1 specify the current and previous positions respectively, bt and bt−1
the noisy beliefs about the positions, x∗ the belief about the real target position and rt
user feedback.

p(rt, bt, bt−1, x
∗, λ|yt, yt−1) =

p(λ)p(x∗)p(bt|yt)p(bt−1|yt−1)p(rt|x∗, bt, bt−1, λ)
(28)

p(bt|yt) = N (bt|yt, 1) (29a)

p(bt−1|yt−1) = N (bt−1|yt−1, 1) (29b)

p(λ) = N (λ|20, 7) (29c)

p(x∗) = N (x∗|x0, 50) (29d)

p(rt|x∗, bt, bt−1, λ) = Ber(rt|σ(U(bt, bt−1, x
∗, λ))) (29e)

The utility function U(bt, bt−1, x
∗, λ) is given as

U(bt, bt−1, x
∗, λ) = f(yt, x

∗, λ)− f(yt−1, x
∗, λ) (30)

where the objective function f(y, x∗, λ) is given as

f(y, x∗, λ) = −eλ/2|x− x∗| (31)

The utility function is used to compare the current position yt to the previous position
yt−1 given the target position x∗. The parameter λ is the precision parameter and it
determines the width of the objective function. Passed through a sigmoid function σ,
the utility function is used to parameterize a Bernoulli distribution from which the user
feedback rt is sampled. Notice that since the user feedback is sampled from a Bernoulli
distribution, it is a binary value. In our simulations, user feedback was generated arti-
ficially by passing the result of the utility function (where the real target is supplied)
through a sigmoid function.

The result of the simulation can be seen in Fig. 16. One thing to note in this figure is
that x∗ and the current position yt are plotted separately. This reflects a design choice
made to enable the agent to explore more and it was achieved by sampling the position
of the agent for the next iteration from x∗ as yt ∼ N (x∗|mx∗ , vx∗), the alternative
choice being the current position directly being equal to the mean of x∗. Increasing
exploratory behavior in this manner results in the agent converging faster to the real
target. It should be noted that the variance of x∗ (depicted as the blue area around x∗)
decreases as the agent incorporates more and more information, and since yt is sampled
from N (mx∗ , vx∗), the actions become smaller as the agent becomes more certain of the
real target.

The target model implementation using the Bernoulli distribution accepts binary user
feedback as mentioned above. Although it is relatively simple to implement, user feed-
back in the form of 1’s and 0’s does not yield much information. Iterating once on the
design cycle, a significant improvement can be achieved by using the Beta distribution
instead. Beta distribution allows the user feedback to be continuous in the range (0,1).

25

Figure 16: Simulation results of Target Model 1D Bernoulli. The agent infers the
location chosen by the user on a 1D line by observing binary user feedback.

This means that the user feedback now incorporates information about the distance of
the real target relative to the action executed in the previous cycle. Another advantage
of a target model implementation using the Beta distribution is that it allows neutral
feedback when a rating of 0.5 is provided. At first glance, it might seem like a rating of
0.5 does not yield any information, however, it actually tells the agent it has not moved
closer to nor farther away from the real target. The advantage of this becomes more
clear in 2D models.

The target model using the Beta distribution is similar to Eq. 29, the exception being
the way the user feedback is sampled.

p(rt|x∗, bt, bt−1, λ) = Beta(rt|α, β) (32a)

α = τ · σ(U(bt, bt−1, x
∗, λ)) (32b)

β = τ · (1− σ(U(bt, bt−1, x
∗, λ))) (32c)

Note that the shape parameters, conventionally indicated by α and β, are multiplied by
the coefficient τ . The reason for this is to decrease the variance of the Beta distribution
so that the model has less uncertainty about the user feedback. This makes sense since
the user feedback is assumed to be deterministic and multiplying α and β by τ can be
thought of as receiving the same feedback for the same action τ times. In this case, τ
was set to 50, which is a sufficiently large number. The result of the simulation for the
Beta implementation can be seen in Fig. 17.

Receiving continuous user feedback as opposed to binary feedback improves the perfor-
mance of the target model significantly as expected. x∗ converges to the real target
faster and its variance is much smaller once the target has been found.

Second Major Iteration on the Design Cycle: Target Models in 2D

Now that we have working 1D target models, target model implementations in 2D do
not have to start from scratch, the respective implementations in 1D can be used as
starting points. The main difference in 2D models is that multivariate distributions are

26

Figure 17: Simulation results of Target Model 1D Beta. The agent infers the location
chosen by the user on a 1D line by observing continuous user feedback in the range (0,1).

used instead of univariate distributions, the accompanying priors become vectors and
the form of the objective function is changed slightly to allow operations on matrices.

The target model implementation in 2D using the Bernoulli distribution is given as
follows:

p(bt|yt) = N (bt|yt, [10, 10]) (33a)

p(bt−1|yt−1) = N (bt−1|yt−1, [10, 10]) (33b)

p(λ) = N (λ|[2, 2], [5, 5]) (33c)

p(x∗) = N (x∗|x0, [100, 100]) (33d)

p(rt|x∗, bt, bt−1, λ) = Ber(rt|σ(U(bt, bt−1, x
∗, λ))) (33e)

and the objective function f(y, x∗, λ) is given as:

f(y, x∗, λ) = −
√

(y − x∗)T eλ(y − x∗) (34)

Fig. 18 shows the result of the simulation where the plot on the top shows the mean of
x∗ on a 2D plane as it is iteratively updated. The color of the line changes according
to a specified gradient with each iteration so that x∗ can be tracked more easily. The
plot on the bottom shows the standard deviations of the random variables (that make
up x∗) which are holding the beliefs about the real target’s x and y coordinates. It
can be seen that both standard deviations decrease over time, indicating that the agent
becomes more certain about the real target. The standard deviation of the random
variable holding the belief about the y axis is larger until iteration 20, the effects of
which can be seen as larger steps taken on the y axis.

In this simulation the coordinates of the real target were specified as (15,30) and it took
the agent around 65 iterations to find it. Although 65 iterations might not sound like
much, once the target model is ported to the robot, each iteration is going to take a
certain amount of time including the execution of the target model to produce new goal

27

Figure 18: Simulation results of Target Model 2D Bernoulli depicting how the agent
converges to the location chosen by the user on a 2D plane by observing binary user
feedback.

priors (in terms of coordinates) for the physical model and the execution of the physical
model that physically takes the robot from point a to b. It should also be noted that
since a user will be providing the feedback, it might become tiresome to go through 65
iterations.

As in the 1D case, a significant improvement can be expected when the Beta distribu-
tion is used instead of the Bernoulli distribution. Looking at Fig. 19, it can be seen
that the target is indeed found much faster. Fig. 19 also shows improved exploratory
behavior which is due to the variance of x∗ being initialized to a higher value compared
to the Bernoulli implementation. In implementations with the Beta distribution, the
variance of x∗ tends to decrease faster and in some cases where the target is far from
the initial position of the agent, the target is never reached due to the low variance at
later iterations. One might think that for the Bernoulli implementation, initializing the
variance of x∗ with a higher value would also improve the performance, however, even
if the mean of x∗ is equal to the real target in any given iteration, since the variance is
usually still high, in later iterations the mean of x∗ tends to get farther from the real
target. Overall, increasing the initial variance of x∗ (compared to what is given here)
did not provide any improvement on the performance in our experiments.

Although figures 18 and 19 are suitable for inspecting the behavior of the agent for one
simulation, being a stochastic process that displays a somewhat varying behavior in each
simulation, they do not provide the full means of comparing two models. Comparing two
models necessitates the explicit definition of suitable metrics that define the performance
of a model. An obvious metric is the Euclidean distance of the target belief to the real
target over time which encaptures how fast a model converges to the real target on
average. However, a model that performs well on average does not necessarily perform
as well in each simulation and may display widely varying results. So another useful
metric would encapture the varying behavior of the model between several simulations.
The combination of these two metrics would thus give an idea about the accuracy and
the precision of a model.

28

Figure 19: Simulation results of Target Model 2D Beta depicting how the agent converges
to the location chosen by the user on a 2D plane by observing continuous user feedback
in the range (0,1).

Focusing on the metrics stated above, a simulation protocol was designed and the al-
gorithm is given as follows: 10 simulations are run one after the other and before each
simulation, the priors are initialized to the same starting values. Each simulation con-
sists of 50 time steps and for each time step, the Euclidean distance between the mean
of x∗ and the real target is calculated. At the end of the protocol, the average distance
for each simulation at each time step is calculated. The real target was set to (45,30)
and the initial position to (0,0).

Figure 20: Bernoulli and Beta implementation benchmarks. The figures show the Eu-
clidean distance between the location chosen by the user (i.e. the real target) and the
belief about the location chosen by the user (x∗). Results of 10 simulations are given
here, including their average.

Fig. 20 clearly shows that the Beta distribution implementation converges faster on av-
erage, although it can also be seen that in some simulations, the variance of x∗ decreases
too fast and the model does not converge to the real target. Clearly, another iteration

29

on the design cycle is necessary to increase the target model’s precision and accuracy,
which will be treated in the next subsection.

3.3.3 Selection of Priors with Thompson Sampling

All the target models explored so far use the mean of the posterior distribution of x∗ as
the prior for the next iteration. Although this provides a simple means of doing online
learning, there’s some information available that is not being utilized that can further
improve the performance. This information can be utilized by choosing the prior for the
mean of x∗ in a smarter way.

Thompson sampling is an algorithm that is widely used in online decision making prob-
lems where actions are sequentially executed to maximize some reward function in the
long run. One of the reasons it is so widely used is because of how it addresses the
exploration-exploitation trade-off and it is usually explained using the multi-armed ban-
dits problem. Simply put, in a multi-armed bandits setting there are alternative choices
where their properties (e.g. a reward of 1 with probability θk in the Bernoulli Multi-
armed bandits problem) are initially unknown or only partially known. An example of
a naive approach to this problem is the Greedy algorithm [35] where for each choice,
a probability distribution is initialized indicating ignorance (e.g. Beta(1,1)) and sub-
sequently, decisions are made based on which probability distribution has the highest
mean (i.e. which choice is assumed to have the highest probability of returning a reward)
where ties are broken randomly. After each decision made, the corresponding probability
distribution is updated depending on whether it provided a reward or not. The problem
with Greedy algorithms is that they have a tendency towards exploitation for immediate
gain. For example, if one of the choices’ probability distribution has a higher mean than
the rest, in subsequent iterations the Greedy algorithm will always choose this one even
though another choice might have a higher variance and if explored, it might have a
higher probability of returning a reward. In contrast, in Thompson sampling, a reward
probability is sampled from the corresponding probability distribution and thus, choices
that have been explored less so far (which have a higher variance) have a chance of being
chosen. Thompson sampling has been shown to be close to optimal [1].

The Thompson sampling framework explained above, considers a discrete set of actions
with accompanying probability distributions representing beliefs about the mean reward.
However, in our case there are an infinite number of possible actions and implementing
Thompson sampling as explained above would require constraining the agent to an
explicitly specified, finite set of actions. Our experiments have shown that even though
this is possible, the performance of the target model suffers significantly especially in
2D models. In order to properly harness the power of Thompson sampling in our case,
a different perspective is required. Instead of constraining the set of possible actions to
a finite set, a sufficiently large number of proposals can be sampled from the posterior
distribution of x∗ and the utility of each proposal can be calculated given the previous
action. Hence, another iteration on the design cycle is introduced.

Fig. 21 shows the values of the utility function calculated for all possible x∗ coordinates,
given the previous action depicted as the black arrow. The real target is depicted as
the red cross. Note that this figure does not depict the actual case where only a certain
number of proposals are sampled from the posterior but shows all possible coordinates
in the 2D plane to better visualize the information embedded in the system. In the real
case the sampled prior proposals are scattered according to the posterior distribution of
x∗. The prior of x∗ for the next iteration can subsequently be chosen as the proposal
that provides the highest utility, which will be a proposal closer to the area depicted
white in this figure.

30

Figure 21: Values of the utility function for all possible target coordinates, one time
step.

This strategy seems to be applicable only when a user feedback that is higher than
0.5 is received at first sight since an action that receives a rating less than 0.5 in-
dicates that the agent has moved further from the real target and consequently the
proposal chosen would actually be further from the target. However, to fully harness
the power of this strategy so that the information provided by each action, no matter
if it takes the agent further away from the target, is utilized to a higher extent, the
direction of the actions that take the agent further from the target can simply be re-
versed when calculating the utility values. The intuition behind this comes from the
fact that σ(U(yt, yt−1, x

∗, λ)) = 1 − σ(U(yt−1, yt, x
∗, λ)). In layman’s terms, when an

action receives a feedback that is smaller than 0.5, the action in the opposite direction
would receive a feedback higher than 0.5 and could then be used to sample proposals.
Thompson sampling was first implemented for the Bernoulli distribution. The results

Figure 22: Bernoulli and Bernoulli with Thompson sampling comparison. Thompson
sampling improves the performance of the model by selecting better priors for x∗.

can be seen in Fig. 22. For easier comparison, both the naive Bernoulli implementa-

31

tion and the Bernoulli implementation with Thompson sampling have been visualized.
Thompson sampling clearly improves the performance of the model. Where the naive
implementation fails to converge after 50 iterations, the implementation with Thomp-
son sampling is within 10 cm of the target at around 35 iterations on average. It’s also
interesting to see that the Bernoulli implementation with Thompson sampling produces
a result similar to the naive Beta implementation. The differences seem to be a slightly
slower convergence and a slightly improved precision.

Next, Thompson sampling was implemented for Beta distribution. The results can be
seen in Fig. 23. Again a clear improvement can be seen.

Figure 23: Beta and Beta with Thompson sampling comparison. Thompson sampling
improves the performance of the model by selecting better priors for x∗.

3.3.4 Combining the Target Model and the Physical Model

Target model 2D Beta with Thompson sampling implementation comes within 5 cm
radius of the real target in around 25 iterations and it also achieves high precision
meaning that after iteration 30, most simulations are very close to finding the target.
This performance was deemed high enough and we moved on to porting the target model
to the robot. Remember that, the physical model was capable of processing manually
entered goal priors (in terms of coordinates) where we left off. Now, this provides a rather
simple interface between the physical model and the target model such that positions
sampled from x∗ (indicated by yt in the target model) can be fed to the physical model
as goal priors. Upon receiving the goal prior, the physical model is run until the robot
reaches that position and subsequently, feedback is requested from the user after which
the process repeats itself.

At this stage, before any experiments with the robot, no big surprises with the per-
formance of the overall implementation was expected since each block was tested and
verified. However, experiments on the robot with actual user feedback resulted in a
performance worse than in the simulations. Since the physical model was performing
within acceptable bounds (i.e. the robot was capable of moving to within 2 cm of the
goal position proposed by the target), the problem had to lie with the user feedback
because this was the only difference with the simulations. Upon closer inspection of the
user feedback generated in the simulations, it was found that in the majority of cases,
a feedback of either 1 or 0 was being generated and in some cases where it was difficult
to tell whether the agent had moved closer to the target or not, a feedback close to 0.5
was being generated. This, although unexpected, can be attributed to the initial prior

32

for the precision parameter λ which was set to a low value. Initializing λ with a low
value had proven to improve the performance of the model previously. So, it seems that
the power of the Beta distribution comes from the ability to provide neutral feedback,
although the argument for the feedback being relative to the distance to the target still
holds as well. This discovery actually improves the model from the user’s perspective
since it’s easier to provide a feedback of 1, 0 or 0.5. Repeating the experiments have
confirmed this discovery, performances similar to the ones reported in the simulations
were achieved with real user feedback.

4 DISCUSSION

Since the industrial revolution, there has been an accelerating tendency towards the au-
tomation of our production methods and in our age, this growing tendency corresponds
to the anticipation of a fourth industrial revolution that differs from the first three in its
velocity, scope and systems impact. The vision for a fourth industrial revolution includes
(but is not limited to) concepts such as fully automated factories (a.k.a. dark factories),
unprecedented improvements in connectivity and a greater integration of “smart” tech-
nology into our lives. In this setting, the concept of intelligent autonomous agents gains
traction as an actor that may bring about this revolution.

Active inference provides a unified framework for designing intelligent agents where
action and perception inherently arise from the minimization of a single cost function,
namely free energy minimization. Furthermore, since generative models specify stochas-
tic processes and encode uncertainty for action and perception, active inference enables
intelligent agents to be robust and adaptable under dynamic, unpredictable conditions.
In section 3.3.1, an experiment is provided where the robustness and adaptability of
the agent is empirically validated. This experiment depicts how the agent adjusts its
actions in order to reach a desirable observation when the environment produces adverse
effects. Further evidence for active inference’s robustness for a real-world application is
provided in [31] where a body perception and action model is presented for a humanoid
robot. Active inference can also be augmented with supporting methods in order to
address the challenges designing intelligent agents in industrial settings bring forth. Al-
though these challenges may somewhat vary from sector to sector, two challenges are
faced throughout the industry.

The first of these challenges is to enable fast design cycles. Fast design cycles enable
rapid proposal and critique of models and they enable fast development as well as
early identification of the problem. In this paper, fast design cycles are mainly facili-
tated by automated generation of inference algorithms, the impact of which can be seen
throughout the paper. Furthermore, since generative models offer a degree of flexibil-
ity in enforcing specific behavior, iterations on the design cycle need not only consider
changes to the model architecture but can also be facilitated by other means (including
but not limited to updates to the act function for example). Flexibility of models in this
sense may offer feasible workarounds and further increase the speed of design cycles.
The secondary level in which fast design cycles impact system development is enabled
through providing a means to the end user of personalizing the agent. This level is
facilitated by the augmentation of the agent with a target model. In the wearable elec-
tronics industry, algorithms are usually developed offline and an iteration on the design
cycle constitutes receiving user feedback, making improvements to the algorithm and
deploying the changes. However this is a long process and the changes may not appeal
to each user. In this setting, the target model effectively removes the engineer from the
design cycle and gives flexibility to the user to adjust the device to her liking (without

33

requiring the user to understand how the system works).

The second challenge in the industry concerns modularity. Modularity makes complex
systems more manageable by dividing the system into modules that perform logically
discrete functions interacting through well-defined interfaces. The MBML perspective
encourages modular design through the specification of distinct generative models that
are assigned specific functions. Figure 5 attests the modular nature of this project. For
example by separating the pre-processing block from the physical model, an abstraction
is created that hides implementation details related to hardware functions. While this
provides ease in implementation, it also enables adaptability since each block can easily
be replaced with a block that conforms to the specified interface.

In this project, implementing active inference for a real-world agent did not highlight any
shortcomings of active inference that are not readily identifiable through simulations.
Although the results we present in this paper are promising, the feasibility of active
inference for building intelligent autonomous agents needs to be explored further. The
following may be of interest to explore further:

• Implementation of active inference for a task with real-time constraints.

• Exploring sensor fusion with active inference. Currently the go-to method for im-
plementing sensor fusion is Kalman filtering. Active inference may prove compa-
rable and even advantageous since actions are incorporated to the model alongside
perception.

• Exploring hierarchical models. Part of model design is trying to find suitable initial
priors. A higher level model that iteratively proposes new priors may significantly
speed up this process.

5 CONCLUSIONS

In order to assess active inference’s capabilities and feasibility for a real-world appli-
cation, a proof of concept was implemented showing that active inference is indeed a
viable method for building real-world intelligent autonomous agents. This involved the
implementation of an active inference-based parking agent constituting a physical model
and a target model that ran on a ground-based robot. The following research questions
were answered:

Is active inference a feasible option for the efficient design of adaptive controllers/algorithms
for real-world applications?

The premise of active inference allows an intelligent autonomous agent to execute all
tasks, namely online tracking of states (perception), parameters (learning) and actions
(decision making) by running inference on a generative model of its environment. Gen-
erative models contribute to the robustness of intelligent agents by encoding uncertainty
for action and perception. Furthermore, using a factor graph approach combined with
automated generation of inference algorithms drastically accelerates the design cycles,
allowing rapid proposal and critique of models.

How can active inference control be implemented for the efficient design of a real-world
robot?

In this paper, an iterative design process specified by Box’s Loop was followed which
involves consecutive proposal and critique of models. Generative models were initially
built, iteratively refined and verified in simulations and later ported to the robot. Exper-
iments on the robot specifically focused on real-world performance, depending on which

34

further iterations on the design cycle were carried out. Experiments on the robot showed
that in some cases, enforcing specific behavior could be facilitated through updates to
functions specifying the interface between the agent and the environment, without the
need to change the model architecture. It’s also worth mentioning that the agent was
designed in a modular manner. This modular approach provided an abstraction between
functional blocks, hiding low-level implementation details.

How can users be integrated into the active inference controller design cycle to tailor
for their specific needs?

A priori specification of user preferences as goal priors may be difficult. Through extend-
ing the notion of a goal prior to include a full probabilistic model which can infer desired
future observations, users can be integrated into the design cycle. This allows active
inference agents to be customizable and reduces the amount of knowledge required from
users to be capable of interacting with an agent.

ACKNOWLEDGEMENT

We would like to thank Bert de Vries, Thijs van de Laar, Magnus Koudahl and Martin
Roa Villescas for their invaluable input and Sander Stuijk for being a member of the
assessment committee and providing a working space.

35

Bibliography

[1] Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-
armed bandit problem. In Shie Mannor, Nathan Srebro, and Robert C. Williamson,
editors, Proceedings of the 25th Annual Conference on Learning Theory, volume 23
of Proceedings of Machine Learning Research, pages 39.1–39.26, Edinburgh, Scot-
land, 25–27 Jun 2012. PMLR.

[2] Arduino.cc. Arduino uno rev3. https://store.arduino.cc/arduino-uno-rev3,
2020. Accessed: 2020-04-08.

[3] Steven Bell. High-precision robot odometry using an array of optical mice. 2011.

[4] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh
approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

[5] Christopher M Bishop. Pattern recognition and machine learning. Information
science and statistics. Springer, New York, NY, 2006.

[6] Christopher M. Bishop. Model-based machine learning. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371, 2013.

[7] David M. Blei. Build, compute, critique, repeat: Data analysis with latent variable
models. Annual Review of Statistics and Its Application, 1(1):203–232, 2014.

[8] Andrea Bonarini, Matteo Matteucci, and Marcello Restelli. Dead reckoning for
mobile robots using two optical mice. pages 87–94, 01 2004.

[9] Johann Borenstein, Hobart R. Everett, and Liqiang Feng. ”where am i?” sensors
and methods for mobile robot positioning. 1996.

[10] Christopher L. Buckley, Chang Sub Kim, Simon McGregor, and Anil K. Seth. The
free energy principle for action and perception: A mathematical review. Journal of
Mathematical Psychology, 81:55 – 79, 2017.

[11] Matteo Colombo and Cory Wright. First principles in the life sciences: the free-
energy principle, organicism, and mechanism. Synthese, Sep 2018.

[12] Marco Cox, Thijs van de Laar, and Bert de Vries. A factor graph approach to
automated design of bayesian signal processing algorithms. CoRR, abs/1811.03407,
2018.

[13] M.G.H. Cox and A. de Vries. A parametric approach to bayesian optimization with
pairwise comparisons. In NIPS 2017, 2017.

[14] Stefan Edelkamp, Stefan Schroedl, and Sven Koenig. Heuristic Search: Theory and
Applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2010.

36

https://store.arduino.cc/arduino-uno-rev3

[15] G. D. Forney. Codes on graphs: normal realizations. IEEE Transactions on Infor-
mation Theory, 47(2):520–548, Feb 2001.

[16] Karl Friston. The free-energy principle: A rough guide to the brain? Trends in
Cognitive Sciences, 13(7):293–301, 2009.

[17] Karl Friston, Spyridon Samothrakis, and Read Montague. Active inference and
agency: optimal control without cost functions. Biological Cybernetics, 106(8):523–
541, 2012.

[18] Karl Friston, Philipp Schwartenbeck, Thomas Fitzgerald, Michael Moutoussis, Tim
Behrens, and Raymond Dolan. The anatomy of choice: active inference and agency.
Frontiers in Human Neuroscience, 7:598, 2013.

[19] Karl J. Friston, James Morvan Kilner, and Lee M. Harrison. A free energy principle
for the brain. Journal of Physiology-Paris, 100:70–87, 2006.

[20] Warren Gay. Raspberry Pi Hardware Reference. 01 2014.

[21] Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: a language for flexible proba-
bilistic inference. In International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain, pages 1682–1690, 2018.

[22] Parallax Inc. Robot shield with arduino. https://www.parallax.com/product/

32335, 2020. Accessed: 2020-04-08.

[23] InvenSense. Mpu-6000 and mpu-6050 product specification revision 3.4. https:

//invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.

pdf, 2013. Accessed: 2020-04-08.

[24] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques - Adaptive Computation and Machine Learning. The MIT Press, 2009.

[25] S. Korl. A factor graph approach to signal modelling, system identification and
filtering. Series in signal and information processing, 2005.

[26] Magnus T. Koudahl and Bert de Vries. Batman: Bayesian target modelling for
active inference. ICASSP 2020, 2020.

[27] F. R. Kschischang, B. J. Frey, and H. . Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, Feb 2001.

[28] S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society. Series B (Methodological), 50(2):157–224, 1988.

[29] G.W. Lucas. A tutorial and elementary trajectory model for the differential steer-
ing system of robot wheel actuators. http://rossum.sourceforge.net/papers/

DiffSteer/, 2001. Accessed: 2010-09-30.

[30] Dimitrios Lymberopoulos, Jie Liu, Xue Yang, Romit Choudhury, Vlado Handziski,
Souvik Sen, Filip Lemic, Jasper Buesch, Zhiping Jiang, Han Zou, Hao Jiang, Chi
Zhang, Ashwin Ashok, Chenren Xu, Patrick Lazik, Niranjini Rajagopal, Anthony
Rowe, Avik Ghose, Nasim Ahmed, and Peter Hevesi. A realistic evaluation and
comparison of indoor location technologies: Experiences and lessons learned. 04
2015.

[31] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. Active inference body per-
ception and action for humanoid robots, 2019.

37

https://www.parallax.com/product/32335
https://www.parallax.com/product/32335
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
http://rossum.sourceforge.net/papers/DiffSteer/
http://rossum.sourceforge.net/papers/DiffSteer/

[32] Parallax Inc. Parallax Feedback 360◦High-Speed Servo, 7 2017.

[33] S.-H Park and Soo-Yeong Yi. Mobile robot localization using optical mouse sensor
and encoder based on kalman filter algorithm. International Journal of Control and
Automation, 10:61–70, 06 2017.

[34] Marvelmind robotics. Precise indoor ’gps’, starter set hw v4.9-nia. https:

//marvelmind.com/product/starter-set-hw-v4-9/, 2020. Accessed: 2020-03-
18.

[35] Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen.
A tutorial on thompson sampling, 2017.

[36] Thijs van de Laar. Automated design of Bayesian signal processing algorithms. PhD
thesis, Technische Universiteit Eindhoven, Department of Electrical Engineering, 6
2019. Proefschrift.

[37] Thijs W. van de Laar and Bert de Vries. Simulating active inference processes by
message passing. Frontiers in Robotics and AI, 6:20, 2019.

38

https://marvelmind.com/product/starter-set-hw-v4-9/
https://marvelmind.com/product/starter-set-hw-v4-9/

	INTRODUCTION
	Research Questions

	METHODS OF ACTIVE INFERENCE AND FREE ENERGY MINIMIZATION
	Model-Based Machine Learning
	Forney-style Factor Graphs and Message Passing
	Variational Message Passing

	The Free Energy Principle
	Active Inference
	Automated Generation of Inference Algorithms

	APPLICATION TO AUTONOMOUS AGENTS
	Robot Setup and the Pre-Processing Block
	The Bayesian Sunflower
	An Active Inference-based Parking Agent
	The Physical Model
	The Target Model
	Selection of Priors with Thompson Sampling
	Combining the Target Model and the Physical Model

	DISCUSSION
	CONCLUSIONS

