
 Eindhoven University of Technology

MASTER

Automated Translation of Event Data from Relational to Graph Databases

Leander, J.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/23fc3a6e-985e-487b-aae6-ed8e0f55c318

Automated Translation of Event Data
from Relational to Graph Databases

Master Thesis

J. Leander

Department of Mathematics and Computer Science
Architecture of Information Systems Research Group

Database Research Group

Supervisors:
Dr. Dirk Fahland

Dr. George Fletcher

Assessment Committee:
Dr. Dirk Fahland

Dr. George Fletcher
Dr. Laura Genga

Eindhoven, May 2020

Abstract

Process data is often multi-dimensional, but is made one-dimensional by transforming it into an
event log, as each event in an event log can only have one case identifier. During this transformation
we lose interesting relations between entities involved in that process. If we instead transform the
process data into a graph representing event data, where every event can have multiple case
identifiers, we don’t lose this multi-dimensionality and thus keep the interesting relations between
entities. In this thesis we discuss how to automatically transform event data from a relational to a
graph database with one-to-one, one-to-many and many-to-many relationships between events and
case identifiers, such that the transformed data captures both structural and temporal relations
in the data. We design a graph data model that is able to capture these structural and temporal
relations. We formulate requirements to which input data to this transformation should conform
and look into what domain knowledge and which transformation steps are required to perform
this transformation. Using this transformation, we can easily transform any relational database
that conforms to our requirements into an event data graph, which we successfully did for two
real-life datasets.

ii Automated Translation of Event Data from Relational to Graph Databases

Contents

Contents iii

1 Introduction 1

2 Preliminaries 4
2.1 Event logs . 4
2.2 Relational databases . 5
2.3 Graph databases . 6

2.3.1 Neo4J . 6
2.3.2 Patterns and pattern matching using Cypher 7

2.4 R2PG-DM . 7
2.5 Business process intelligence challenge 14 . 9

2.5.1 Data normalization . 9
2.6 Business process intelligence challenge 17 . 12

2.6.1 Data normalization . 12

3 Data Models 15
3.1 Relational data: required schema and data . 15
3.2 Data model for event data in labeled property graphs 16

3.2.1 Model requirements for events and entities in a labeled property graph . . . 16
3.2.2 labeled property graph schema as created by R2PG-DM 16
3.2.3 Esser’s data model for event data in labeled property graphs 17
3.2.4 Shortcomings of existing data model . 18
3.2.5 Design options for improving the data model 19
3.2.6 Deciding for a design option . 25
3.2.7 Final data model for event data in labeled property graphs 26

3.3 Representing ‘directly follows’ relationships for compound entities 26

4 Data Transformation 29
4.1 Relational data to labeled property graph . 29
4.2 Transforming labeled property graphs to the event data graph representation . . . 30

4.2.1 Defining desired conceptual model . 31
4.2.2 Creating entities . 36
4.2.3 Creating events and relating them to entities 38
4.2.4 Calculating directly follows relations . 40
4.2.5 Creating the Log node and relating it to events 41

5 Implementation 42
5.1 Relational data to labeled property graph . 42

5.1.1 Implementation of conceptual change . 42
5.1.2 Query batching and multithreading . 45
5.1.3 Bug in relationship creation . 45

Automated Translation of Event Data from Relational to Graph Databases iii

CONTENTS

5.1.4 Preparing the output data to be used by Neo4J’s admin import 46
5.2 Transforming labeled property graphs to the event data representation 46

5.2.1 Configuration . 47
5.2.2 Creating entities . 48
5.2.3 Creating events . 50
5.2.4 Relating entities and events . 54
5.2.5 Calculating directly follows relations . 56
5.2.6 Creating the Log node and relating it to events 57

6 Evaluation 58
6.1 BPI 14 . 58

6.1.1 Event graph exploration . 58
6.1.2 Event graph properties . 61
6.1.3 Event graph correctness . 65
6.1.4 Transformation Performance Statistics . 68

6.2 BPI 17 . 68
6.2.1 Event graph exploration . 68
6.2.2 Event graph properties . 71
6.2.3 Event graph correctness . 72
6.2.4 Transformation Performance Statistics . 72

7 Conclusions 74
7.1 Limitations and future work . 75

Bibliography 76

Appendix 77

A Example relationship creation of R2PG-DM 77

B BPI 14 79
B.1 BPI 14 configuration file . 79
B.2 BPI 14 node degree Statistics . 83

C BPI 17 85
C.1 BPI 17 configuration file . 85
C.2 BPI 17 node degree Statistics . 87

iv Automated Translation of Event Data from Relational to Graph Databases

Chapter 1

Introduction

Process mining, as described by Wil van der Aalst [11], is a combination of business process
management and data mining. Its main purpose is to facilitate finding business insights in event
data produced by information systems, usually in the form of an event log.

Such an event log is a collection of cases of a process. A case is a sequence of events that
describes one run of the process. Each event has at least a case identifier, a timestamp and an
activity name, but can have an arbitrary number of other attributes to further describe the event.

Often, information systems don’t directly produce an event log, in which case it must first
be built using data from, for instance, multiple tables in a relational database, which together
describe a process. Often, such a process involves multiple inter-related entities, like employees
and information objects, each linked to a number of case identifiers, whereas an event log describes
events as if there is only a single case identifier. In essence this means that to build an event log
from a relational database, we reduce multi-dimensional data to a single dimension and thus
denormalize the data.

Due to the denormalized structure of an event log, interesting information like relations between
tables is lost with respect to the normalized event data, that exists in databases before we transform
it into an event log. Normalized event data is event data that does not suffer from convergence and
divergence [7]. However, this normalized event data is hard to use for process mining algorithms,
since it can be structured in many different ways, whereas an event log always uses the same
structure where cases consist of a sequence of events, each described by a number of attributes.

A downside of storing event data as relational data, normalized or not, is that it does not
directly facilitate queries that are commonly needed in process mining algorithms [6]. For instance,
an SQL query to retrieve only cases where event A is directly followed by event B is very complex
and an SQL query to retrieve a path of such ‘directly follows’ relationships between events is
impossible to formulate.

Event data can also be stored in a graph database, like Neo4J. We call this data ‘event graph
data’. However, there is no standard way to do this yet. In a previous Master Thesis [5] and
paper[6], Stefan Esser proposed a graph data model for this purpose and transformed several event
logs to event graph data that uses this data model, to show that it can be used for common process
mining algorithm operations, including ‘directly follows’ relations. Another upside of graph event
data is that events and case identifiers can exist in one-to-one, one-to-many and many-to-many
relationships, whereas events and cases can only exist in a one-to-one relation in a classic event log.

In this thesis we explore how to automatically transform event data from relational databases
to graph databases. Esser assumed event logs to be the input of the transformation to his event
graph data model. He re-normalized data from event logs as good as possible in order to create a
multi-dimensional version of that event data. It is, however, often not possible to recreate the data
that was used to build the event log, as event logs often do not contain the necessary information
to do so. This is why Esser used domain knowledge to create multi-dimensional data from event

Automated Translation of Event Data from Relational to Graph Databases 1

CHAPTER 1. INTRODUCTION

logs.
However, using a relational database as the starting point for the data transformation intro-

duces additional challenges that are not yet solved by his data model. We propose a semi-automatic
approach that can directly transform all existing structural relations and correlations in the data.
Though, since event data can be stored in relational databases in different ways, we require some
user-provided specification to specify how to extract events from the tables, making the approach
semi-automatic.

We therefore try to answer the following research question:

How to automatically transform event data from a relational to a graph database with one-to-one,
one-to-many and many-to-many relationships between events and case identifiers, such that the
transformed data captures both structural and temporal relations in the data?

1. To what requirements does input data need to conform, so that it can be transformed into
graph data capturing both the input data’s structural and temporal relations?

2. What are the requirements of a data model to represent normalized event data in a graph
database?

3. What are the transformation steps needed to go from relational event data to graph event
data?

4. What is the domain knowledge required to perform the transformation?

Figure 1.1 shows an overview of the steps of the transformation we propose in this thesis, along
with the sections in which their discussions can be found. This figure can be split into two parts.

The first part is Prior work and Background, which are the components inside the Figure’s
rectangle. Here we find R2PG-DM [9, 10], which transforms relational data to generic property
graphs. We also find Esser’s data model for event graphs with explicit event data [5], which is the
data model we will use as a basis for our event graph data model.

The second part, representing our contributions, can be found outside this rectangle. Not
every relational database is suitable for our transformation, so a relational database may need to
be altered in order to conform to our requirements, which we list in Section 3.1. The first trans-
formation step involves our improved version of R2PG-DM. Our improved version of R2PG-DM
works like the original, as explained in Section 2.4, but we identified a number of problems in the
original approach of R2PG-DM, which we overcome in Sections 4.1 and 5.1. R2PG-DM’s output is
not suitable for efficient importation into existing graph database systems, so we propose a trans-
formation, that transforms R2PG-DM’s output, such that it can be used for bulk importation,
which we describe in Section 5.1.4.

After importing R2PG-DM’s output into a graph database, we have a generic property graph
describing the records and relations of a relational database in graph-form. We then need to
make the concepts of event graphs, i.e. events, entities, and their relations explicit, as explained
in Section 3.2. To do this, we first define an EER model, which we discuss in Section 4.2.1.
then, using a series of transformation steps, discussed in Sections 4.2.2-4.2.5 and 5.2.2-5.2.6, we
introduce the event graph concepts to the graph database.

Our improved version of R2PG-DM can be found in this github repository: https://github.
com/jamiro24/R2PG-DM, The other transformation steps can be found in the following github
repository: https://github.com/jamiro24/Relational-Database-to-Event-Graph

2 Automated Translation of Event Data from Relational to Graph Databases

https://github.com/jamiro24/R2PG-DM
https://github.com/jamiro24/R2PG-DM
https://github.com/jamiro24/Relational-Database-to-Event-Graph

CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of discussed topics and in which sections they can are discussed

Automated Translation of Event Data from Relational to Graph Databases 3

Chapter 2

Preliminaries

2.1 Event logs

An event log [11] is a collection of events from a single process, often stored in a .csv or .xes
file. Each event relates to one process instance, which we call the case of that event. Cases are
distinguished by a case identifier. An event also needs an activity name, which describes what
sort of event it is. Furthermore, the events need to be ordered, for example on a timestamp. The
case identifier, activity name and ordering attribute are stored together with the event, which in
case of a .csv file means in the same row, but separate columns. These requirements form the bare
minimum information needed about each event, such that the event log can be used for process
mining.

Events can also contain additional information, like resources or costs. We refer to these
properties, as well as the minimally required properties, as attributes. These attributes can be
further distinguished by whether they are defined at trace or at event level. A trace attribute’s
value does not change during the runtime of a case, where an event attribute can have a different
value during each individual event.

Table 2.1 shows part of an example event log. In this log, the Case id column distinguishes
process instances. Each event relates to one of these Case ids, as well as to an activity in the
Activity column. Furthermore they are ordered by the Event id column, but they could have
been ordered by the Timestamp column as well. Finally, they have two additional attributes, in
columns Resource and Cost. These attributes are not necessary for process mining, but could be
useful for analysing this process.

Case id Event id Timestamp Activity Resource Cost
1 35654423 30-12-2010:11.02 register request Pete 50

35654424 31-12-2010:10.06 examine thoroughly Sue 400
35654425 05-01-2011:15.12 check ticket Mike 100
35654426 06-01-2011:11.18 decide Sara 200
35654427 07-01-2011:14.24 reject request Pete 200

2 35654483 30-12-2010:11.32 register request Mike 50
35654485 30-12-2010:12.12 check ticket Mike 100
35654487 30-12-2010:14.16 examine casually Pete 400
35654488 05-01-2011:11.22 decide Sara 200
35654489 08-01-2011:12.05 pay compensation Ellen 200

...

Table 2.1: Excerpt from an example event log [11]

4 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 2. PRELIMINARIES

Figure 2.1: Example of a discovered process model [11]

A process mining algorithm can, for example, take such an event log, and use it to discover
a process model, or compare it with an existing process model to see whether it fits. Figure 2.1
shows a possible process model for the event log of Table 2.1.

One tool, often academically used for process mining, is called ProM[4]. ProM allows you to
run various process mining algorithms on any event log you provide, analyze these event logs, and
perform various other operations on these event logs.

2.2 Relational databases

A relational database uses the relational model for database management. Data is represented by
tuples, which are grouped into relations. Each relation, often called table, contains a number of
columns, each distinguishable by their name. A column is semantically the same as an event log
attribute. Each tuple, often called row, consists of a value for each column of their table (possibly
a null value). Each table has a primary key, consisting of one or more columns, with which each
row can be uniquely identified. A table can have zero or more foreign keys, consisting of one or
more columns, each indicating a relationship to the primary key of another table. This means
that the values of a foreign key’s columns in a row, must either be null or exist as a primary key
in the related table. Case identifier attributes in event logs can be seen as foreign keys for event
records, that all refer to the same case in a table that is not part of the event log table.

Relational databases can be structured in numerous ways. Two terms often used in regards to
their structure are normalization and denormalization. Normalization is the process of organizing
a relational database to reduce data redundancy. The main idea is to organize the data such that
each table contains information about one specific topic. A denormalized database contains tables
describing multiple topics. This often leads to duplicated data. Denormalization can be used to
improve database performance at the cost of storage space [8].

The structure, or schema, of a relational database can be described using an ER diagram.
Figure 2.2 shows an example of an ER diagram for the tables shown in Table 2.2 Such an ER
diagram lists all the database’s tables and shows the names of the columns found in each table.
One or more columns can be underlined in the ER diagram to designate the table’s primary key,
which (together) uniquely identify each row of that table. Furthermore it describes which tables
reference which tables via foreign keys, using lines between tables, and shows the multiplicity of
those foreign key relations.

The most popular query language for relational databases is called SQL (Structured Query
Language). SQL allows you to retrieve, create, modify and delete data. There are numerous
variants of SQL, which are all slightly different, but all follow some version of the ISO/IEC

Automated Translation of Event Data from Relational to Graph Databases 5

CHAPTER 2. PRELIMINARIES

9075 [3] standard.

Figure 2.2: Example ER model

A
id btype bsubtype
1 type 1 subtype 1
2 type 2 subtype 1

B
type subtype
type 1 subtype 1
type 2 subtype 1
type 2 subtype 2

C
Aid Did
1 1
1 2
2 1

D
id time
1 1
2 2
3 1

Table 2.2: Example data following the ER model shown in Figure 2.2

2.3 Graph databases

A graph database is a database that stores and represent data using graph structures. A graph is
a collection of nodes and relationships. There are multiple ways that graphs can be represented,
such as hyper graphs, triples or labeled property graphs. We will be using labeled property graphs.
A labeled property graph G = (N,R) consists of nodes N and relationship R. Each node n ∈ N
has a label n.label . Each relationship r ∈ R has a type r.type. Both nodes and relationships can
have any number of properties. For the sake of consistency with other concepts in this thesis, we
will refer to these properties as ‘attributes’ instead. attributes can be accessed in two ways. Say
n has an attribute called p. We will use the notation n[p] to access attribute p of node n. An
attribute of a relationship can be accessed in the same way.

2.3.1 Neo4J

In this thesis we will work with a graph database system called Neo4J [1], which uses property
graphs to store data.

Figure 2.3: Property graph meta model

Data stored in a Neo4j graph database can be described by the metamodel shown in Figure
2.3. Such data consists of nodes, relationships and attributes. Nodes can have multiple labels

6 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 2. PRELIMINARIES

to indicate their role(s) in the graph and can have any number of attributes (key-value pairs).
Relationships directionally connect two nodes to indicate that they are somehow related. They
can have a single type, to indicate in what way the two nodes are related and can also hold any
number of attributes. Nodes and relationships are uniquely identifiable by their node ids and
relationship ids respectively.

2.3.2 Patterns and pattern matching using Cypher

To query the data, Neo4J uses a declarative query language called Cypher [2]. Cypher makes
heavy use of patterns. Using patterns you describe the shape of the data you are looking for.
Cypher will then ‘match’ the part of the graph that conforms to the provided pattern.

The simplest pattern that can be defined, is that of a node, which is defined as (a). The a is
a variable which we can later use to refer to nodes that match this pattern. We can also define
patterns to describe multiple nodes and relationships between them. For instance, the pattern
(a)-->(b) matches nodes that have a relationship between them. This pattern has two variables
a and b. This can be extended arbitrarily, e.g.(a)<--(b)--(c). We call such a series of connected
nodes and relationships a path.

In addition to specifying the shape of the pattern, you can also introduce some constraints to
patterns. Take for instance the pattern (a:Person {gender: "male" , age: 35}). Here we
match all nodes with a label ‘Person’ and attributes ‘gender’ equal to ‘male’ and ‘age’ equals to
35.

Cypher also allows you to assign variables to relationships, for example (a)-[b]->(). Here
we assign the variable b to the relationships that match this pattern. Note that you don’t have to
assign a variable to each pattern component and can simply leave the component empty.

Like with nodes, constraints can also be specified for relationships. Consider the pattern ()-

[a:Friend {blocked: false}]-(). Here we specify that we want to find all relationships of
type ‘Friend’, with the attribute ‘blocked’ equal to ‘false’.

Finally, there exists a construct to describe a sequence of relationships, which we call variable-
length pattern matching. Consider the pattern (a)-[∗2]->(b). The ∗2 indicates that we are
looking for nodes that are two relationships away from each other. This pattern is equal to the
pattern (a)-->()-->(b). Now consider the pattern (a)-[∗2..4]->(b). Here we look for nodes
that are two to four relationships away from each other. Finally consider the patterns (a)-[∗2..]-
>(b), (a)-[∗..2]->(b) and (a)-[∗]->(b). Here we are looking for nodes at least two, at most
two and any number of relationships away from each other respectively.

Note that variable length pattern matching can, depending on the size and type of graph, be
an expensive operation, especially when the number of relationship steps is variable, like with
the last three patterns. This is because nodes might have multiple relationships that satisfy the
relationship criteria of the pattern, which will all have to be ‘explored’ by the database engine.
The target nodes of those relationships can in turn have multiple of such relationships, etc. This
can lead to a complicated search space, which means it takes a long time for the database engine
to answer such a query precisely.

2.4 R2PG-DM

R2PG-DM [9, 10], is a tool that is able to take any SQL database and transform it into a graph
representation of that database. In this graph representation, every row of the input database
is modelled as a node in the graph, with relationships between nodes where foreign key relations
existed in the input database.

There exist several graph database engines, each with their own method of importing data or
querying. R2PG-DM aims to output a generic file format to represent graphs, such that this file
format can easily be transformed to meet the graph database engine’s specific way to import the
data. Section 2.4 explains this, and how we deal with it, in more detail

Automated Translation of Event Data from Relational to Graph Databases 7

CHAPTER 2. PRELIMINARIES

Figure 2.4: R2PG-DM meta model

Figure 2.4 shows the meta model of data R2PG-DM produces. This model is only slightly
more restrictive than the model that describes Neo4J’s property graphs, shown in Figure 2.3.
It has all the same elements, but nodes can only have a single label; and relationships do not
have attributes and have an extra ‘edgeid’ attribute. This extra attribute uniquely defines all
relationships, but Neo4J calculates its own relationship identifiers, which are stored in the ‘id’
attribute of relationships, so we can ignore this new attribute when working with Neo4J.

Even though the output has a pretty non-restrictive meta model, we can easily work with it,
due to the way R2PG-DM uses it. Consider the example data set shown in Table 2.3, which
follows the ER diagram shown in Figure 2.5. This data set contains four tables. The following
foreign key relations are present:

• A.btype and A.bsubtype together reference B.type and B.subtype

• C.Aid references A.id

• C.Did references D.id

Figure 2.6 shows the graph that R2PG-DM would produce using the example data set as input.
Every row of our example data set has been transformed into a node. We call this row the source
row of that node. The node’s type corresponds to the name of its source row’s table. Each row’s
columns are present as node attributes and all nodes are uniquely identified with a node identifier.
The foreign key relations between the rows have been transformed into relationships between the
nodes representing those rows. Note that the direction of these relationships is consistent with
the direction of the foreign keys they represent. The type of each of such relationships is obtained
by concatenating the label of the source and target node, separated by a hyphen.

Figure 2.5: Example ER model

8 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 2. PRELIMINARIES

A
id btype bsubtype
1 type 1 subtype 1
2 type 2 subtype 1

B
type subtype
type 1 subtype 1
type 2 subtype 1
type 2 subtype 2

C
Aid Did
1 1
1 2
2 1

D
id time
1 1
2 2
3 1

Table 2.3: Example data following the ER model shown in Figure 2.5

Figure 2.6: Property graph as a result of R2PG-DM transformation of data shown in Table 2.3

2.5 Business process intelligence challenge 14

The business process intelligence challenge 14 (BPI 14) [12] was a challenge held in 2014 where
participants were asked to analyze data provided by the Rabobank Group ICT. The provided data
set contains record details from an ITIL Service Management tool called HP Service Manager and
consists of four .csv files, which are described by Figure 2.7. Here you can see a schema for four
tables, one for each .csv file and three documented foreign key relations. We will explain the BPI
14 data set in more detail in this Section and will use it as a running example during this thesis.

2.5.1 Data normalization

The data set as provided by BPI 14 is quite denormalized and the change table cannot be directly
related to any other table. This denormalization is most visible for columns that describe configur-
ation items (CI) and service components, as these columns are present in the Incident, Interaction
and Change, while they could be in two separate tables and referenced via a foreign key instead.
This means it does not meet the requirements we will set for relational data schemas that can
be used for the transformation described by this thesis. These requirements will be discussed in
Section 3.1. For this reason we will normalize the data set1. The normalized schema can be seen
in Figure 2.8.

These new tables have been derived as follows:

• Service Component: The Incident, Interaction and Change tables all contain columns
describing service components. Some of these columns end in ‘aff’, while others end in
‘CBy’. There are two different suffixes, because the Incident table has columns describing
two different service components, so this way those column names can be differentiated. A
new table is created with a single ‘ID’ column containing all distinct values of the service
component columns of the aforementioned tables.

1[7] shows how artifacts can be discoverd and extracted from denormalized data.

Automated Translation of Event Data from Relational to Graph Databases 9

CHAPTER 2. PRELIMINARIES

Figure 2.7: ER diagram of the BPI 14 data set

• Configuration Item: Configuration items are stored in the same tables of the original
database as service components. Columns describing configuration items contain ‘CI’ in
their name. The ‘aff’ and ‘CBy’ suffixes serve the same purpose as they did for service
components. We create a ‘Configuration Item’ table with the aforementioned columns, but
without their suffixes. In addition to these columns, The new Configuration Item table has
an ‘ID’ column, which is its primary key and a ‘Service Component’ column, which references
the Service Component table.

Each configuration item can be distinguished by a name, a type, a subtype and a service
component, therefore each distinct combination of these values is added as a tuple to the
new Configuration Item table.

• Assignment Group: The new Assignment Group table has a single column ‘ID’ which
contains values from the ‘Assignment Group’ column of the Incident Activity table. Many
Incident Activity rows share the same assignment group, which is why we decided to collect
these assignment groups in a new table.

• Knowledge Document: The Incident Activity, Interaction and Incident tables all have a
‘KM number’ column. These columns all refer to the same group of (knowledge document)

10 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 2. PRELIMINARIES

Figure 2.8: ER diagram of a normalized BPI 14 data set

entities. The new table has a single ‘ID’ column containing values from these other columns.

• Incident: The ‘Incident’ table remains largely unchanged, but we make the following
changes. We replace the two configuration item name, type and subtype columns with
two columns ‘CI ID aff’ and ‘CI ID CBy’, which are both foreign keys to the ‘ID’ column of
the Configuration Item table. Furthermore both service component columns are foreign keys
to the ‘ID’ column of the Service Component table. Finally the ‘KM number’ is a foreign
key to the ‘ID’ column of the Knowledge Document table.

• Interaction: The Interaction table undergoes the same changes as the Incident table. The
only difference is that the Interaction table only has columns for one service component and
configuration item, instead of two.

• Incident Activity: The only change to this table is that it gets several foreign keys.

Automated Translation of Event Data from Relational to Graph Databases 11

CHAPTER 2. PRELIMINARIES

– ‘Incident ID’ references the ‘Incident ID’ column of the Incident table.

– ‘Interaction ID’ references the ‘Interaction ID’ column of the Interaction table.

– ‘Assignment Group’ references the ‘ID’ column of the Assignment Group table.

– ‘KM number’ references the ‘ID’ column of the Knowledge Document table.

• Change and Change Activity: The Change table is split into these two tables, where each
table gets a subset of the original Change table’s columns. This is because the ‘Change ID’
column does not uniquely identify each tuple in the Change table, despite there being a
Change ID column. Therefore the Change table keeps all columns that stay consistent among
all rows with the same ‘Change ID’. All other columns are added to a new Change Activity
table, along with the ‘Change ID’ column and a new ‘ID’ column, which is the primary key
of this table. The ‘Change ID’ column of the Change table is renamed to ‘ID’.

Just like with the Interaction table, the configuration item and service component columns
are replaced with columns that reference the Configuration Item and Service Component
tables. Finally the ‘Change ID’ column is a foreign key to the ‘ID’ column of the Change
table.

2.6 Business process intelligence challenge 17

The business process intelligence challenge 17 (BPI 17[13]) was a challenge held in 2017 where
participants were asked to analyze an event log provided by a Dutch financial institute. This event
log describes the application process for a personal loan or overdraft within a global financing
organization. The event log consists out of a single .xes file, which we converted to a .csv file
using a ProM plugin. Figure 2.9 shows an ER diagram of the data in this .csv file. Note that
this ER diagram shows no primary key, as the data contains duplicate rows. Each row of this .csv
file corresponds to an event. Each event belongs to either an application, offer or workflow, which
can be considered as entities. each event has a column ‘EventOrigin’, which allows us to identify
whether the event belongs to an application, offer or workflow.

2.6.1 Data normalization

Like BPI 14, BPI 17 is too denormalized for our needs. We identified 7 entity types, which are
all situated in the provided event log. To normalize this data set, we extracted all these 7 entity
types into 7 tables, which we stored in an SQL database. An ER diagram of our normalized BPI
17 data set is shown in Figure 2.10. The various tables of this ER diagram were constructed as
follows:

• resources: The ‘resource’ table consists of a single column, which contains the unique values
of Figure 2.9’s ‘org:resource’ column. We renamed this ‘org:resource’ column to ‘resource’
in this, and all upcoming tables.

• applications: The ‘application’ table gets all its columns from Figure 2.9. Assume this is
true for the remaining tables below as well. we renamed the ‘case’ column to ‘ApplicationID’,
which also serves as the ‘application’ table’s primary key.

To determine which rows the ‘application’ table should contain, we take all rows of the
BPI 17 data set and keep only one row per distinct ‘case’ value and add these rows to the
‘application’ table (only the columns listed for the ‘application’ table are taken). We can
do this because every two rows with the same ‘case’ value, also have the same values in the
other columns we require for the ‘application’ table

• application events: we renamed the ‘case’ column to ‘ApplicationID’ and added a new
column ‘ID’ to serve as this table’s primary key. The ‘ApplicationID’ column also serves as
a foreign key to the ‘applications’ table’s primary key. Furthermore, the ‘resource’ column

12 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 2. PRELIMINARIES

Figure 2.9: ER diagram of the BPI 17 data set

serves as a foreign key to the ‘resources’ table’s primary key and the ‘OfferID’ column serves
as a foreign key to the ‘offers’ table’s primary key. ‘OfferID’ is added as a foreign key, as
many ‘application events’ rows list an ‘OfferID’

All of BPI 17’s rows contains a single event, but not every event belongs to an applica-
tion. The ‘application events’ table contains all BPI 17’s rows with ‘EventOrigin’ equal to
‘Application’

• offers: We renamed the ‘case’ column to ‘ApplicationID’ and made the ‘OfferID’ column
this table’s primary key. To determine which rows the ‘offers’ table should contain, we do
the same as for the ‘applications’ table, but for the ‘OfferID’ column of Figure 2.9.

• offer events: We added a new column ‘ID’ to serve as this table’s primary key. This table
has two foreign key columns. ‘OfferID’ refers to the ‘offers’ table’s primary key and ‘resource’
to the primary key of the ‘resources’ table. The ‘offer events’ table contains all BPI 17’s
rows with ‘EventOrigin’ equal to ‘Offer’

• workflows: Workflows exist in a one-to-one relation with applications and can thus be
identified with the same identifier as applications. Therefore we renamed the ‘case’ column
to ‘WorkflowID’. To determine which rows the ‘offers’ table should contain, we do the same
as for the ‘applications’ table.

• workflow events: we renamed the ‘case’ column to ‘WorkflowID’ and added a new column
‘ID’ to serve as this table’s primary key. The ‘WorkflowID’ column is a foreign key to the
‘applications’ table’s primary key. The ‘OfferID’ and ‘resource’ columns are foreign keys to
the ‘offers’ and ‘resource’ tables’ primary keys respectively. ‘OfferID’ is added as a foreign
key, as many ‘workflow events’ rows list an ‘OfferID’. The ‘workflow events’ table contains
all BPI 17’s rows with ‘EventOrigin’ equal to ‘Workflow’

Automated Translation of Event Data from Relational to Graph Databases 13

CHAPTER 2. PRELIMINARIES

Figure 2.10: ER diagram of a normalized BPI 17 data set

14 Automated Translation of Event Data from Relational to Graph Databases

Chapter 3

Data Models

In this chapter we discuss the various data models that are used during the transformation from
relational data to event graph data. We start with discussing to what requirements input data
needs to conform so that it can be transformed into graph data capturing both the input data’s
structural and temporal relations in Section 3.1.

Next, we will discuss requirements of a data model to represent normalized event data in a
graph database in Section 3.2. Before we propose our data model for this purpose in Section
3.2.6, we discuss model requirements for events and entities in a labeled property graph in Section
3.2.1 and two other relevant data models. First we recall the data model in which R2PG-DM
outputs data in Section 3.2.2 and then we discuss an existing data model for storing event data in
labeled property graphs and its shortcomings in Sections 3.2.3 and 3.2.4. We will use this existing
data model as the basis for the data model we propose and present several design options that
improve the existing data model in Section 3.2.5. After presenting these options, we will decide
for a design option in Section 3.2.6 and highlight the differences between our proposed data model
for representing event data in labeled property graphs and the existing one in Section 3.2.7.

Finally we discuss the concept of compound entities and how ‘directly follows’ relations can be
represented for compound entities in Section 3.3.

3.1 Relational data: required schema and data

An entity is anything about which information can be stored, for example a person, a transaction,
an activity, or an information object that a process works on such as a credit application. In
this section we discuss how we assume entities to be represented in the relational data. We need
to make this assumption because we later want to represent entities as nodes and we want our
transformation to preserve these entities.

In order for a relational database to be used as input to our transformation, it will have to
conform to these assumptions:

1. The schema needs to be normalized in a way such that each table that contains entities,
contains exactly one entity per row. Each of these tables must also only contain entities of
only a single type.

Take the normalized BPI 14 data set as an example. Each row in the Incident table describes
one incident entity. Each row in the Incident Activity describes a change to the incident,
which we would call an Incident Activity entity.

We need these entities to be represented like this, because they are needed to generalize case
identifiers of event logs. This way we can assign these generalized case identifiers to events
in a structured way. Otherwise, each entity type could be spread out over multiple rows of
(potentially) different tables, making them very difficult to structurally access.

Automated Translation of Event Data from Relational to Graph Databases 15

CHAPTER 3. DATA MODELS

2. There needs to be at least one table with one or more timestamp columns, but there can be
more relations with timestamp columns. These are needed to create events, as events need
some attribute on which they can be ordered.

3. While not a hard requirement, it is preferable that each table which does not have a
timestamp column, gets referenced by a table that does, or gets referenced by a table that in
turn gets referenced by a table that does, etc. Alternatively, the table can be left out of the
transformation entirely. Using such a table in the transformation results in entities that do
not relate to any events. While this does not technically violate the data model we propose
in Section 3.2.7, it also adds no value to the resulting event graph for this reason.

4. Each timestamp must either exist in the same row as the entity to which it belongs, or exist in
a row that references (via a chain of one or more foreign key relations) the entity/entities to
which it belongs. We need this to hold, because entities form the context for multiple events
like case identifiers do in an event log and allow us to consider multiple events together. If
this requirement does not hold, we can not relate events with such timestamps with each
other.

5. The primary key of each table containing entities needs to consist of exactly one column.
This is a limitation of our transformation.

3.2 Data model for event data in labeled property graphs

The event graph data model is what will be used to store the transformed relational data described
by Section 3.1. In order for process mining algorithms to use this data, the algorithm needs to
be able to assume a certain data model. This section will thus discuss the requirements of a data
model to represent normalized event data in a graph database.

3.2.1 Model requirements for events and entities in a labeled property
graph

The data model needs to be able to represent a couple of concepts. First, it needs to store entities
and their attributes, which we discussed in Section 2.4. Next, we need to be able to represent
events. For each event we need to at least know their start time, as well as a name to describe the
activity performed in the event. If an event has an end time, in addition to a start time, that end
time needs to be modelled as well. Each event can involve one or more entities, so we need to be
able to find which entities are involved in an event. In other words, the graph needs to represent
the one-to-one, one-to-many and many-to-many relations between events and entities.

Furthermore, we want the model to represent a temporal relation between events, namely the
‘directly follows’ relation, which is often used in process mining algorithms and can be used to
derive many other temporal relationships, like the ‘eventually follows’ relationship. We want to
model these ‘directly follows’ relations on the level of entities. In other words, we want to model
for each entity what the temporal ordering of the start time of the events related to that entity is.

All of the above needs to be modelled in such a way that it is efficient to query and store, and
easy to query and analyse. Querying for the temporal relations needs to be efficient in particular,
as those relations are almost always needed by process mining algorithms.

3.2.2 labeled property graph schema as created by R2PG-DM

The schema produced by R2PG-DM as explained by Section 2.4 is good, but doesn’t know about
entities and events. However it is a good data model to base our transformation on.

16 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

3.2.3 Esser’s data model for event data in labeled property graphs

In previous work [5], Esser proposed a data model to store event data in graph form. His data
model features three node labels; Log, Entity and Event and four relationship labels; E EN, DF,
L E and HOW. Figure 3.1 shows an ER diagram of this model. We will refer to this model as the
original data model. Note that named edges refer to relationships in the graph. Boxes with a grey
header refer to nodes and boxes with a white header refer to relationships in the graph that can
have attributes.

Figure 3.1: ER diagram describing the existing data model

Nodes

The Log node represents a log of a single process. One graph can contain multiple Log nodes
from possibly different processes. Each Log node has one ID attribute that indicates the log’s
name/identifier.

Each Entity node represent an entity in the data. Each Entity node has several default attrib-
utes;

• EntityType specifies the type of the Entity node, e.g. ‘Person’.

• IDLog is a unique Identifier to identify the entity across all logs in the graph.

• IDraw is the id used to identify this entity in the original data.

Entity nodes replace the notion of case identifiers, as in this data model, events can relate
to multiple cases, which means one case identifier is no longer sufficient. The Entity node also
contains entity attributes that describe that entity. An entity attribute is an attribute of an entity
that does not change during the lifespan of that entity. They are comparable to case attributes,
which are attributes that never change during the case’s lifespan.

The Event node represents events in the data. Each event in the data is represented by one
Event node. Every Event node has at least an Activity, Start Time and End Time attribute,
indicating the event type, start and end time respectively. Furthermore, an event can have any
number of event attributes.

Relationships

The E EN (Event to Entity) relationship connects events to entities. Each event is connected to one
or more entities and each entity can have incoming relationships from zero or more events. If an
event is connected to an entity using an E EN relationship, it means that the entity was involved
in the event. In other words, that entity is a kind of case identifier of that event.

The DF (Directly Follows) relationship connects events to other events. The source and target
Event nodes must be related to the same Entity nodes via an E EN relationship. This corresponds
to events being related to the same case identifier in an event log. It means that for some entity,
related to both the source and the target event of the DF relationship, the events directly follow
each other. The target event of such a DF relationship always occurs after its source event. In

Automated Translation of Event Data from Relational to Graph Databases 17

CHAPTER 3. DATA MODELS

other words, for each DF relationship, there is no Event node with both a start time later than
the start time of the DF relationship’s source node and earlier than the start time of the DF
relationship’s target node, where all three of these Event nodes are connected to the same Entity
node. Each DF relationship contains an attribute EntityTypes, which holds a list of entity types
for which this DF relationship holds.

The HOW (Handover Of Work) relationship connects entities to other entities. An entity can
be connected to zero or more entities of the same type via these relationships. If two entities
are connected via a HOW relationship, it means that there exists a DF relationship between two
events, where the source entity is connected to the source event and the target entity is connected
to the target event, i.e., The source entity ‘handed over‘ work to the target entity.

The L E (Log to Event) relationship connects Log nodes to Event nodes. Every Event node is
connected to one log node, and every Log node is connected to one or more Event nodes. This
relation indicates that an event is part of the connected log. A Log node is never reachable from
another Log node, i.e. The sub-graph of any Log node, which consists of the nodes reachable from
that Log node via the above relationships, is disconnected from the sub-graph of another Log node.

3.2.4 Shortcomings of existing data model

We found that the data model discussed above has some shortcoming that we’d like to address.

Figure 3.2: Instance of original event data model, showing an unclear DF path

The first issue is related to DF relationships. Consider the labeled property graph (i.e, an
instance of the schema of the original data model) in Figure 3.2. Let e s, e b, e t be Event nodes
and ent 1, ent 2 Entity nodes with the same entity type. The source and target Event nodes,
e s, e t, of a DF relationships both have an E EN relationship to both Entity nodes. For ent 1 it
holds that e t directly follows e s, but ent 2 is connected to another Event node e b, such that
e b directly follows e s and e t directly follows e b. There is no problem with the DF path (the
path of DF relationships, such that all source and target Event nodes of those DF relationships
are connected to that Entity node via an E EN relationship) of ent 1. However, if we look at the
DF path of ent 2, we will find that both e t and e b directly follow e s, with no way to determine
whether e t or e b truly directly follows e s without looking further along the DF graph, as both
relationships simply state that they relate to an entity with ent 2’s entity type. This makes it
difficult to understand and use the data.

Furthermore, it is quite expensive to perform certain queries, like calculating whether some
Event node eventually follows another Event node, due to the way DF relationships are structured.
This is because one event can have multiple incoming and outgoing DF relationships, possibly of
the same type. This means that the database engine has to ‘visit’ multiple paths when answering
a query like this, like we described in Section 2.3.2.

In order to resolve these issues, we need the following properties to hold.

18 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

1. For each DF relationship, we can find to which entity/entities it applies, by only looking at
that relationship, its source and target nodes and the entities related to those nodes via a
E EN relationship.

2. There is no Event node with two or more outgoing DF relationships with the same type.

3.2.5 Design options for improving the data model

There are several ways to go about improving the original data model such that the above prop-
erties hold. We will focus on Event nodes, DF relationships and Entity nodes. Figure 3.3 shows a
possible instance of an event graph with 3 Entity nodes and 4 Event nodes in Esser’s data model,
where we focus on the main Event node with ID: 0. The main Event node has an incoming DF
relationship, related to three entity types and two outgoing DF relationships, together related to
the same three entity types. For clarity, we have drawn the E EN relations between events, other
than the main event, and entities in a lighter shade of grey. Also, the ID attribute is only added
to the figures to easily differentiate between different events and entities.

Figure 3.3: Instance of Event node structure using the original data model

Automated Translation of Event Data from Relational to Graph Databases 19

CHAPTER 3. DATA MODELS

Design option 1

Consider the data model shown in Figure 3.4. Figure 3.5 shows an instance of this data model.

1. Property 1 is addressed by adding a list of identifiers on each DF relationship, which contains
all the IDLog identifiers of all entities related to that relationship. We store this list on the
EntityIDs attribute of the DF relationship. This allows you to immediately identify if a DF
relationship is related to any entity.

2. Property 2 is addressed somewhat by having a specific DF relationship type for each entity
type. This way, DF relationships with a different type don’t need to be explored when
calculating eventually follows relations between events, as we discussed in Section 3.2.4.
Instead there would only be one path of DF relationships to follow, unless the graph contains
an event that is connected to multiple entities of the same type. In that case, property 2
does not hold for that graph.

Figure 3.4: ER model of design option 1

Figure 3.5: Instance of Event node structure using design option 1

20 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

Design option 2

Now consider the data model shown in Figure 3.6. Figure 3.7 shows an instance of this data model.
We create multiple LEvent (Local Event) nodes for one event, one for each entity related to that
event. Together they form one event. Each of these LEvent nodes is connected to one entity, such
that all related entities are connected to one of the LEvent nodes. Each LEvent node keeps the
minimally required properties, which are the same over each of these LEvent nodes. We need to
be able to find other entities related to this event, which is why we need to have relationships
between the LEvent nodes that originate from the same event.

Here we choose to make the LEvent nodes fully connected using E EN relationships. Note that
the instance of Figure 3.7 only shows this for the main event, but all events with ID 1 are fully
connected, as are the events with ID 2 and 3. To summarize:

1. Property 1 is addressed, since every DF relationship has a source and target node that
exclusively relate to one Entity node via an E EN relationship

2. Property 2 is addressed, since we create several LEvent nodes for each event, one for each
related entity, which means that each LEvent node has at most one incoming and one outgoing
DF relationship.

Figure 3.6: ER model of the event graph data model using design option 2

Automated Translation of Event Data from Relational to Graph Databases 21

CHAPTER 3. DATA MODELS

Figure 3.7: Instance of LEvent node structure using design option 2

22 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

Design option 3

Finally consider the data model shown in Figure 3.8. Figure 3.9 shows an instance of this data
model. As is clear from this figure, this design option is nearly identical to the second design
option. It addresses both properties in the same manner, but we use a different way to connect
events nodes that represent the same event.

One Event node is introduced per event. All LEvent nodes based on the same event have a
LE E relationship to the Event node that’s also based on that event. Like with design option 2,
note that Figure 3.9 only shows this Event node construct for the main LEvent node ‘0’, but it
also exists for the others. The Event node only serves to group LEvent nodes that represent the
same event, such that from each LEvent node, we can find all other LEvent nodes related to the
same event by visiting the related Event node. To summarize how each of the desired properties
is addressed, we repeat what was stated for design option 2:

1. Property 1 is addressed, since every DF relationship has a source and target node that
exclusively relate to one Entity node via an E EN relationship

2. Property 2 is addressed, since we create several LEvent nodes for each event, one for each
related entity, which means that each LEvent node has at most one incoming and one outgoing
DF relationship.

Figure 3.8: ER model of the event graph data model using design option 3

Automated Translation of Event Data from Relational to Graph Databases 23

CHAPTER 3. DATA MODELS

Figure 3.9: Instance of LEvent node structure using design option 3

24 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

3.2.6 Deciding for a design option

Now that we have discussed some design options we can make, we need to decide on one of them.
Design option 1 addresses the first of our desired properties, but it can not guarantee that the

second property holds. Furthermore, having multiple types of DF relationships, makes writing
queries difficult, as now you need knowledge about what types are in the data in order to specify
DF relationships.

Design option 2 address both of the desired properties. We also gain the property that each
LEvent node can have at most one incoming and one outgoing DF relationship, as each LEvent
node is connected to only one entity and every entity can only have one path of DF relationships
in which each connected event is visited once on that path. This also means we don’t need to keep
the entity types and ids on the DF relationships.

A downside of design option 2 is that it is harder to formulate some queries. For instance, to
retrieve all entities related to an event in the original model, we would just query for all nodes
related to that event via a E EN relationships, but using option 2, we need to query for all nodes
that can be reached by traversing an E EN relationship and then an E EN relationship. Another
downside is that it is more expensive to store the data, since we need to store each event using
multiple nodes and relationships, instead of just one node. More specifically, we need n(n − 1)
relationships per event, where n is the number of entities related to the event. This is shown in
Figure 3.10.

Figure 3.10: Example of design option 2, showing the number of relationships required to
connect all LEvent nodes of one event

Design option 3 has the same benefits and downsides as the second design option, but reduces
the number of required relationships between LEvent nodes, as here we need just n relationships
to connect the LEvent nodes with each other, as shown in Figure 3.11.

Figure 3.11: Example of design option 3, showing the number of relationships required to
connect all LEvent nodes of one event

Since the design option 1 does not always address all desired properties, and design option 3 is
basically an improvement over design option 2, we will implement design option 3 into the design
of the final labeled property graph event data model.

Automated Translation of Event Data from Relational to Graph Databases 25

CHAPTER 3. DATA MODELS

3.2.7 Final data model for event data in labeled property graphs

Now that we have decided how to address the issues we described in Section 3.2.4, we will highlight
the differences between the original data model and the data model we will be using. The ER
diagram of this model is shown in Figure 3.11.

We renamed the Event node to LEvent node and introduced the Event node. For each event
in the data set, there exists one Event node and one or more LEvent nodes in the graph, one per
entity related to that event. The Event node does not have any attributes. Each of the LEvent
nodes has the minimally required event attributes, is connected to the event’s Event node via
an LE E (LEvent to Event) relationship and is connected to exactly one Entity node via an E EN
relationship.

Each LEvent node can now have at most one incoming and one outgoing DF relationship. Two
LEvent nodes connected by a DF relationship must both have an E EN relationship to the same
Entity node. DF relationships are no longer required to store a list of entity types, but optionally,
a single entity type and/or entity id can be stored on a DF relationship.

3.3 Representing ‘directly follows’ relationships for com-
pound entities

In both the original and new data model, DF relationships represent temporal relations between
events based on one entity. Consider the scenario sketched in Figures 3.12 and 3.14, which show
an instance of the original and new data model respectively. Both entities A and B are related to
one shared event (e1) and one non-shared event (e2, e3 respectively). These events occur in the
order they are numbered. The DF relationship between events e1 and e2, relates only to entity A
and the DF relationship between events e1 and e3 only relates to entity B.

We define a compound entity as a set of entities, whose behaviour shall be studied together.
For instance, consider BPI 14. incidents and configuration items each have their own, but possibly
overlapping, behaviour. We can study their behaviour separately, but we might want to study
how they behave together. To do this, we would define compound entities, each consisting of an
incident and a configuration item.

Consider the compound entity {A, B}. This compound entity is related to all three events
in our scenario, however we cannot immediately deduce the temporal ordering of the events with
respect to this compound entity, as we cannot see whether event e2 or e3 directly follows event e1
and there is no DF relationship between events e2 and e3.

Since compound entities are not a concept in the original or new data model, how can an
instance of such a model be enriched such that the temporal relations between events are modeled
with respect to this compound entity?

Note that we do not intend to capture the behaviour of compound entities in the data model
itself, as the type of compound entities that are useful for an analysis strongly depends on the
question that analysis tries to answer. Therefore it makes more sense to enrich the data when
required. Instead, we merely discuss how an instance of such a data model could be enriched to
model the behaviour of compound entities.

In the original data model, since events nodes are allowed to have any number of incoming
and outgoing DF relationships, we can simply order the events related to the compound entity
by their start time and add DF relationships between LEvent nodes that don’t already have a DF
relationship, as is shown in Figure 3.13. Note that the added DF relationship is drawn using grey.

For the new data model, we model the temporal relations of compound entities as follows. We
attach a new LEvent node to each event’s Event node. We then connect all of those LEvent nodes
to all Entity nodes that make up the compound entity using E EN relationship. These new LEvent
nodes are then connected with each other, using DF relationships, such that they form a single
path of LEvent nodes, ordered by their start time as usual. This is shown in Figure 3.15. For each
event e1, e2 and e3, we create a new LEvent node e1 (AB), e2 (AB) and e3 (AB) respectively.
These LEvent nodes have a relationship to both Entity nodes A and B and have a relationship to

26 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 3. DATA MODELS

their respective Event nodes. Finally, there is a path of DF relationships from e1 (AB) to e2 (AB)
to e3 (AB), to indicate their temporal relations with each other.

Figure 3.12: Compound entity scenario in the original data model

Figure 3.13: Representation of DF relationships for compound entity scenario in the original
data model

Figure 3.14: Representation of the data instance of Figure 3.12 in new data model

Automated Translation of Event Data from Relational to Graph Databases 27

CHAPTER 3. DATA MODELS

Figure 3.15: Representation of DF relationships for compound entity scenario in the new data
model

28 Automated Translation of Event Data from Relational to Graph Databases

Chapter 4

Data Transformation

In this Chapter we will discuss the transformation steps needed to go from relational event data to
graph event data, as well as discuss the domain knowledge required to perform the transformation.

The first step is transforming the relational input data to a labeled property graph. For this
we use R2PG-DM. For performance reasons, we had to make a conceptual change to the way
R2PG-DM performs this transformation. In Section 4.1 we discuss this change.

After performing R2PG-DM’s transformation, we have the relational input data, but represen-
ted in a generic graph data model. This generic graph data model does not contain the concepts
of entities or events. Therefore we need to introduce these concepts to the graph data. We discuss
this process in Section 4.2. This process starts with defining the desired conceptual model, using
an EER model, which we introduce in Section 4.2.1. To create such an EER model, domain know-
ledge of the input data set is required. After an EER model has been created, we introduce the
concepts we require for an event graph into the generic graph that was outputted by R2PG-DM.
We do this in a number of transformation steps, described in Sections 4.2.2-4.2.5. After perform-
ing these transformation steps, we have an event graph of the input data, conforming to the data
model we proposed in Section 3.2.7.

4.1 Relational data to labeled property graph

The first step of the transformation is to transform the relational data to a generic labeled property
graph. In Section 2.4 we discussed how this transformation works. However, we have identified
a performance issue with this transformation. Due to this performance issue, R2PGDM takes
unnecessarily long to transform big datasets like BPI 14 and BPI 17.

This is why we had to make a conceptual change, as well as apply some implementation
optimizations. We will only discuss the conceptual change in this section. Section 5.1 will discuss
the implementation optimizations.

R2PG-DM transforms a relational database in two steps. The first step is the creation of
nodes and their attributes from the input data. These nodes and attributes are stored in a new
relational database in two separate tables, let’s call these tables rnodes and rattributes respectively.
Each database row is transformed into one node and zero or more attributes. Each node thus
corresponds with one database row of rnodes. Each node record n contains the name of the
corresponding row’s table (accessible as n.label) and is assigned a number to uniquely identify it.
Each attribute with a non-null value is assigned the same identifier as its corresponding node and
is stored along with its name and value in the attributes table.

The second step is the creation of relationships. This step utilizes foreign keys between tables
to determine which nodes should have a relationship to which. Let R be the set of tables of the
input database. Let Ar be the set of attributes of r ∈ R.

Let AFK ij , be the set of foreign key attribute pairs for two tables i, j ∈ R, such that
(ai, aj) ∈ AFK ij if and only if ai ∈ Ai, aj ∈ Aj and ai references aj via a foreign key. Let

Automated Translation of Event Data from Relational to Graph Databases 29

CHAPTER 4. DATA TRANSFORMATION

CFK be the set of foreign keys of the input database, such that (i, j,AFK ij) ∈ CFK if and only
if i has one or more foreign keys referencing j. For each (i, j,AFK ij) ∈ CFK , relationships are
created. Let Ni, Nj be the set of database records in rnodes, that represent records of tables i, j
respectively. Then relationship records between the to be created nodes of records of Ni and Nj

are added to the output database in table rrels as follows.

Each (i, j,AFK ij) ∈ CFK is processed sequentially:

1. For each (ai, aj) ∈ AFK ij we find all distinct tuples (i, j, ai.name, aj .name, ai.value, aj .value),
where ai.value = aj .value.

2. For each of these tuples, we find all node records S ⊆ Ni that have an attribute record
named ai.name with value ai.value and all records T ⊆ Nj that have an attribute record
named aj .name with value aj .value.

3. Finally a relationship record is created for each pair of S × T and is stored in rrels.

This way of creating of relationships is very inefficient, as it essentially performs a join (line
3) between the input database (line 1) and the output database (line 2). The input database is
used to determine which rows reference each other via foreign keys; the output database is used
to find the nodes that correspond to those rows.

To address this issue, we store the nodes, attributes and relationships tables in the input data-
base. This way we can utilize the more efficient database engine to calculate the S × T set, using
a single query per foreign key, as this way it has access to both the input and output data. In
Section 5.1 we will discuss how exactly this query works.

After R2PG-DM’s transformation we have tables rnodes, rattributes and rrels, which together
describe a labeled property graph G. G can be created as follows. Each record of rnodes represents
one row of some table of the input database R; and each record of rnodes is used to create a single
node in G. Each record of the rattributes table represents one database cell of the input database
R; and each record of rattributes also contains a node id referencing a record in rnodes, in addition
to the attribute itself. Every record of the rattributes table is added as an attribute to the node
in G it references. Finally, every record of rrels represents a foreign key relation between two
database rows of R. For each record of rrels, we add a relationship is between the two nodes in G
that represent those two database rows, in the same direction as the foreign key relation.

G can be seen as a generic representation of the relational input data. However, this data does
not conform to our data model, as it does not contain the concepts of events and entities.

4.2 Transforming labeled property graphs to the event data
graph representation

Recall that after the transformation described in Section 4.1, we have a generic labeled property
graph G. G has no concept of entities, events and the temporal relations between those events.
In other words, we need to transform this generic labeled property graph G into a specific labeled
property graph G′, which conforms to the event graph data model we proposed in Section 3.2.7.
By doing this, we explicitly introduce entities, events and temporal relations between events to G.

Before such a transformation can take place, we need to use some domain knowledge to define
a schema that specifies how entities, events, and relations between entities and events can be found
in the input data. This allows the transformation to access the input data in a structured way. We
call such a schema an EER diagram. Section 4.2.1 discusses these EER diagrams. The input graph
can then be transformed step-wise into the event graph representation. Each of Sections 4.2.2-4.2.5
discuss one of these transformation steps. The EER schema will introduce the concepts of entity
box, event schema and event definition. Using these 3 concepts, we can define the transformation
from G to G′ by the following 4 types of transformation functions, as we will explain next.

30 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

• Creation of Entity nodes:
G.N × entity box→ Entity nodes

• Creation of events:
G.N × event Schema× event definition→ Event nodes× 2LEvent nodes × 2LE E × 2E EN

• Creation of DF relationships:
Entity node× 2LEvent nodes → 2DF

• Creation of the Log node:
LEvent nodes→ Log node× L LE relationships

Our transformation will not feature the handover of work (HOW) relationships, as we wanted
to focus on just the temporal and structural aspect of the data model and these HOW relationships
fall outside these aspects. However, these relationships could be added as an extra step at the end
of the transformation, as all the information needed to calculate these relationships exists in the
graph.

4.2.1 Defining desired conceptual model

There is no one way event data must be transformed into the event data graph representation.
Some design choices need to be made per data set, by someone with domain knowledge. Not all
tables in a database contain entities, or event data; and event data from one table may relate to
entities in any number of other tables. This information needs to be provided to the transformation,
in addition to the input data.

In order to visualize this information, we designed the Event Entity Relation diagram (EER
diagram), which is used as the model for the transformation to event data graphs. Figure 4.1
shows a meta model for such diagrams. Figure 4.4 shows an instance of such a model, which
describes a transformation of the BPI 14 data set. Figure 4.5 shows another instance of such a
model, which describes a transformation of the BPI 17 data set.

Figure 4.1: Meta model of the Event Entity Relation Diagram

First off, in Figure 4.4, there are the boxes with a grey header. These correspond to the entity
box of the meta model in Figure 4.1. Also, recall that we use the term entity rather loosely, e.g.,
a table with events, such as BPI 17’s ‘application events’ table is considered to contain entities,
even though they are technically events. Each entity box corresponds to one database table, but
not all database tables have to be represented by an entity box. Tables from which records should
not be included as Entity nodes in the graph G′ should not be represented by an entity box. Let
ENT be the set of entity boxes. Each entity box ent ∈ ENT shows the name of the database table
ent .name, and the name of that table’s primary key ent .key . This information is used to create
and uniquely identify Entity nodes in the graph database. We can use this to uniquely identify
Entity nodes, because by our input data assumptions, each entity type is represented by one table
and each row describes exactly one entity. In Figure 4.4, we define nine entity boxes

Automated Translation of Event Data from Relational to Graph Databases 31

CHAPTER 4. DATA TRANSFORMATION

Next, in Figure 4.4, there are boxes with a white header. These boxes are called event schema
boxes. Let ES be the set of event schema boxes. Each es ∈ ES is owned by a single entity box
ent ∈ ENT , which is shown using a solid arrow. Every entity box can own at most one event
schema box. In other words ent .es = es and es.ent = ent . In Figure 4.4, we define five event
schema boxes

Each es has one or more event definitions (act , start , end , es) ∈ es.ED , which are situated in
each event schema box, as can be seen in Figure 4.4. Each event definition ed ∈ es.ED consists
of four attributes. We call es.ent the defining entity of es, which means that the column names
of the table es.ent .name can be used to assign values to these four attributes. The defining entity
(which can be any node in ENT) of an event based on es, is the entity, whose attributes were used
to assign values to the event’s attributes. The activity name act can be described by an attribute
of the defining entity or a string, denoted using quotation marks. The start time start and end
time end attributes are both defined using the defining entity’s attributes.

For example, the event schema es of the ‘Incident Activity Events’ event schema box has
es.ent = Incident Activity. The only event definition ed = (act , start , end , es) ∈ es.ED has the
following attribute values.

• ed .act = IncidentActivity Type

• ed .start = DateStamp

• ed .end = DateStamp

• ed .es = es

‘IncidentActivity Type’ and ‘DateStamp’ are thus columns of the table named ed .es.ent .name.
Note that ‘Incident Activity’ is not surrounded by quotes in this event definition, in contrast to
the event definitions of the ‘Change Events’ event schema box, which define the activity name
using a string. Since an entity can contain multiple attributes that contain time, multiple event
definitions can be included in each event schema box. In the ‘Incident Activity Events’ event
schema box of Figure 4.4, we define four event definitions. Also note that for BPI 17, only the
“artificial” entities of which the entity type ends in ‘ events’ have event schemas.

Next, In Figure 4.4, there is one diamond. We call this diamond a transitive entity box. Trans-
itive entity boxes allow us to relate event schema boxes, to entity boxes that are more than one
foreign key relation away from that event schema box’s defining entity. Their exact function will
become clear when we discuss the function of dashed lines. Each transitive entity box contains
just the name of a table of the input database. A relatable entity box is then either just an entity
box or a transitive entity box. Let TE be the set of transitive entity boxes.

Each event schema box es ∈ ES is connected to zero or more relatable entity boxes using a
dashed line. Let RE = ENT ∪TE be the set of relatable entity boxes. These dashed lines indicate
to which types of entities events created using any event definition ed ∈ es.ED should relate.

Each event definition ed is owned by the entity box ent = ed .es.ent (connected by a solid
arrow). That means, for each entity node n of the type ent .name, we will create an event node e
of type ed .name, but as each event can be related to more entities (See Sections 3.2.5-3.2.7), the
event node e may have to relate to more relatable entity nodes (which are all entities of the types
specified by the relatable entity boxes). Section 4.2.3 discusses this more precisely.

Consider any es ∈ ES , then let es.related .ENT be the set of entity boxes connected via a
dashed line and es.related .TE be the set of transitive entity boxes connected via a dashed line.
Each transitive entity box te ∈ es.related .TE can in turn refer to other entities te.ENT and other
transitive entities te.TE via dashed lines. It is not allowed to create a loop via these structures,
it must be that |te.ENT | > 0 and that at some point along each path te.TE = ∅, so that this tree
of .ENT and .TE steps, only has entity boxes at the leafs.

32 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

As an example, take es = ‘Change Events’. Using this event schema, we have es.ENT =
∅, es.TE = {‘Change Activity’}. If we now take te = ‘Change Activity’, we have te.ENT =
{‘Configuration Item’, ‘Service Component’}, te.TE = ∅. At the leave of the tree of es, we have
Entity boxes ‘Configuration Item’ and ‘Service Component’. This tree of es describes how the
entities at its leaves should be found in G, which is the graph created by R2PG-DM.

Now, take a look at Figures 4.2 and 4.3. where we see an example EER schema and an example
generic property graph respectively. The EER schema in Figure 4.2 states that an event created
from a D entity should relate to A entities which relate to that D entity via a C entity. Only
the circled A entity in Figure 4.3 meets this requirement. The other A entities do not meet this
requirement.

Figure 4.2: Example EER schema

Figure 4.3: Demonstration of dashed line usage

Automated Translation of Event Data from Relational to Graph Databases 33

CHAPTER 4. DATA TRANSFORMATION

Figure 4.4: event entity relation diagram of BPI 14 data set

34 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

Figure 4.5: event entity relation diagram of BPI 17 data set

Automated Translation of Event Data from Relational to Graph Databases 35

CHAPTER 4. DATA TRANSFORMATION

4.2.2 Creating entities

Figure 4.6: Example ER model

A
id btype bsubtype
1 type 1 subtype 1
2 type 2 subtype 1

B
type subtype
type 1 subtype 1
type 2 subtype 1
type 2 subtype 2

C
Aid Did
1 1
1 2
2 1

D
id time
1 1
2 2
3 1

Table 4.1: Example data following the ER model shown in Figure 4.6

Figure 4.7: Possible event entity relation diagram of example ER model and data of Figure 4.6
and Table 4.1

Now that we have an EER diagram, we need a method to transform the nodes and relationships
from R2PG-DM’s output to the event graph data model. To illustrate this transformation we will
be transforming the data from Table 2.6 with its ER model shown in Figure 2.5. In Chapter 2 we
also used this example data set. We have constructed an EER model for this dataset, which is
shown in Figure 4.7. After each transformation step, we will show the resulting graph with this
example data as input data.

The first step of this transformation is creating Entity nodes. This transformation step can
be described by the function G.N × entity box→ Entity nodes. Let In be the set of nodes present
in the graph as a result of R2PG-DM’s transformation. Let Ir ⊆ In

2 be the set of relationships
between those nodes. Let Nentity = ∅ be the set of Entity nodes. First, for each input node n ∈ In,
whose label n.label is in {ent .name|ent ∈ ENT}, we add an Entity node e to Nentity . Let entn be
the entity box for which e.name = n.label . Then e gets the following attributes:

• e[EntityType] = n.label

• e[IDraw] = n[entn.key]

36 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

• e[IDlog] = n.label + n[entn.key]

• e[p] = n[p] for any other entity attribute p

Note that determining what are entity attributes and what are event attributes are left to the
implementation. The resulting graph after performing this transformation step on our example
data is shown in Figure 4.8.

Figure 4.8: Event graph after creating Entity nodes

Automated Translation of Event Data from Relational to Graph Databases 37

CHAPTER 4. DATA TRANSFORMATION

4.2.3 Creating events and relating them to entities

Now that we have created Entity nodes, we go on to the next transformation step, which is to
create LEvent and Event nodes, described by the function G.N×event Schema×event definition→
Event nodes× 2LEvent nodes× 2LE E× 2E EN. Each event schema box es ∈ ES has one or more event
definitions ed ∈ es.ED . For each es, take the set Ies = {n|n ∈ In ∧ n.label = es.ent .name}. This
is the subset of the input nodes In that correspond to the entity type es.ent .name that defines
the event schema box es.

Each event may relate to multiple entities (not just one entity of the entity type that ‘owns’ the
event definition ed , but also entities of other types). For example, an event created using the event
definition of BPI 14’s ‘Incident Activity Events’ event schema may relate to an ‘Incident’ entity, an
‘Assignment Group’ entity and a ‘Knowlege Document’ entity in addition to an ‘Incident Activity’
entity (Which is the entity type that owns that event definition). We thus need to find for each
event e that will be created using ed , to which set of entities event e should relate. For this we
use es.related , i.e., the set of all entities reachable from the event definition box via dashed lines.
For each event definition ed ∈ es.ED we do the following

1. For each node n ∈ Ies , we create one Event node e. Event node e can relate to multiple
entities, so we need to find the set of entities Ire(n) ⊆ In to which e should relate. To
construct Ire(n), we find all nodes n′ ∈ In that structurally relate to n according to the dashed
line tree of es.related . Algorithm 1 describes how the dashed line tree of es.related is used to
find which nodes belong to Ire(n). Algorithm 1 is called as traverseTETree(es.related , {n})
for each n.

Algorithm 1: traverseTETree

input :
C: related attribute of an event schema box or transitive entity box
T: set of nodes of G (should contain only one node in the initial call to this algorithm)

output: A set of nodes that relate to nodes in T according to C
begin

R← ∅
/* Add all nodes with a label of any entity box in C.ENT, that can be

reached from any node in T via one relationship */

R← R ∪ {t|t ∈ In ∧ ∃s[s ∈ T, (s, t) ∈ Ir ∧ ∃ent∈C.ENT [t.label = ent .name]]}
for te ∈ C.TE do

/* Calculate a set of nodes with a label of any entity box in te,
that can be reached from any node in T via one relationship */

Tte ← {t|t ∈ In ∧ ∃s∈T[(s, t) ∈ Ir ∧ t.label = te.name]}
/* te, together with the set Tte, forms the input to the next

recursive call to this function. Tte is the set of nodes that

were reached by following the dashed lines of the EER schema from

the original call’s C to te. The next recursive call will then

expand Tte using te.related to find more nodes to add to R */

R← R ∪ traverseTETree(te, Tte)

return R

2. For each node n ∈ Ies we do the following:

i For each ire ∈ Ire(n) we create an LEvent node le which all belong to the Event with the
following attributes:

• le[Activity] = ed .name if ed .name is a string

• le[Activity] = ire [ed .name] if ed .name is an attribute name

38 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

• le[Start] = ire [ed .start]

• le[End] = ire [ed .end]

• le[p] = ire [p] for any event attribute p of ire

ii We create an LE E relationship between each le and e, to indicate that all these LEvent
nodes we just created represent the same event. We also create an E EN relationship
between each LEvent le and the Entity node that was created to represent ire. This Entity
node’s IDlog attribute is equal to n.label + n[es.ent .key] (which is how we the defined
the IDlog attribute of the Entity node created from the input node n). To summarize,
for the set Ire , we have created one Event node and one LEvent node per element of that
set, each connected to that Event node and one Entity node. The resulting graph after
performing this transformation step on our example data is shown in Figure 4.9.

Figure 4.9: Event graph after creating Event and LEvent nodes and relating them to Entity nodes

Automated Translation of Event Data from Relational to Graph Databases 39

CHAPTER 4. DATA TRANSFORMATION

4.2.4 Calculating directly follows relations

Now that we have created all Entity, Event and LEvent nodes, we can begin with the next trans-
formation step, which is calculating DF relationships between LEvent nodes, as described by the
function Entity node × 2LEvent nodes → 2DF. From this point onwards we don’t requrie the EER
schema anymore. These DF relationships, are calculated per Entity node e ∈ Nentity . For each e,
find all event nodes EV connected to e via an E EN relationship. Now we sort EV by the start
time attribute of LEvent nodes resulting in a list [ev1, ev2, . . . , evk], such that the LEvent node
with the earliest start time is the first element. In case two events of EV have the exact same
start time, their ordering has to remain consistent with the ordering of LEvent nodes connected
to the same Event nodes as those two events, when calculating the ‘directly follows’ relationships
for all other entities.

Now, between each of the nodes evi , evi+1 ∈ EV , 0 ≤ i < |EV |−1 we create a DF relationship.
As a result, the event nodes of EV form a path, where the first node in the path has the earliest
start time, and the final node has the latest start time. The resulting graph after performing this
transformation step on our example data is shown in Figure 4.10.

Figure 4.10: Event graph after creating DF relations

40 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 4. DATA TRANSFORMATION

4.2.5 Creating the Log node and relating it to events

The last step in the transformation is the creation of the Log node, which is described by the
function LEvent nodes→ Log node×L LE relationships. We create a single Log node and connect
it to all event nodes via a L E relationship, after which the transformation has been completed.
The resulting graph after performing this transformation step on our example data is shown in
Figure 4.11.

Figure 4.11: Event graph after creating the Log node and relating it to LEvent nodes

Automated Translation of Event Data from Relational to Graph Databases 41

Chapter 5

Implementation

In this Chapter we will discuss the implementation of the transformation steps needed to go from
relational event data to graph event data that we discussed in Chapter 4. In Section 5.1, we start
by discussing the implementation of the changes we made to R2PG-DM.

In Section 5.2 we discuss the implementation of the transformation of generic property graphs
to event graphs, which we discussed in Section 4.2. We start by discussing the configuration of
the transformation in Section 5.2.1. This configuration is a manifestation of the EER model we
described in Section 4.2.1. Following the configuration, in Sections 5.2.2-5.2.6 we describe the
implementation of a series of transformation steps that introduce the event graph concepts to
the generic property graph. We discussed these steps conceptually in Sections 4.2.2-4.2.5. After
performing these transformation steps, we have an event graph representation of relational event
data in a Neo4J database instance.

5.1 Relational data to labeled property graph

In addition to the conceptual change to R2PG-DM, which we discussed in Section 4.1, we also
made some other changes to its implementation in order to reduce its processing time. We also
found and fixed a bug that caused faulty relationships to be created.

Section 5.1.1 discusses the implementation of the conceptual change to R2PG-DM we discussed
in Section 4.1. Sections 5.1.2 and 5.1.3 discuss two other changes we made to R2PG-DM’s imple-
mentation. In Section 5.1.4 we discuss the implementation of the transformation from R2PG-DM’s
output to a data model that allows for faster bulk importation into Neo4J.

5.1.1 Implementation of conceptual change

First, lets come back to the conceptual change. As we mentioned before, instead of writing the
output of R2PG-DM to a new database, we write it to the input database, as described in Section
4.1. This allows us to replace the joins between input and output data that R2PG-DM performs
in memory to create relationships, by joins performed by the database engine. The downside of
this is that the input database is not allowed to have tables with the name ‘node’, ‘property’ or
‘edge’, as the program would overwrite those tables. The creation of relationships is still done
separately for each foreign key, but instead, we create all relationships for that foreign key using
a single query. Each executed query thus creates all relationships between nodes from two tables
in the output graph G.

Recall that before relationships are created, nodes and node attributes have already been
created and stored in two separate output tables rnodes and rattributes (see Section 4.1). Each
query handles one foreign key, and thus handles a source and a target table of that foreign key.

42 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

Looking at Table 5.1, the R2PG-DM translation will create 2 nodes for the 2 records in table
A (n0,n5 in Figure 5.2) and 3 nodes for the 3 records in table B (n1,n4,n8).

We first need to combine the tables rnodes and rattributes, such that we pair each node record
n with attribute records that reference node record n’s node id. We do this for each node record
ni ∈ rnodes with ni.label equal to the name of the source table and for each node no ∈ rnodes with
no.label equal to the name of the target table separately. We then pivot both these tables such
that their column names are equal to the foreign key attribute names. We can then join these two
tables to find which source nodes should have a relationship to which target nodes.

Figure 5.1: Example ER model

A
id btype bsubtype
1 type 1 subtype 1
2 type 2 subtype 1

B
type subtype
type 1 subtype 1
type 2 subtype 1
type 2 subtype 2

C
Aid Did
1 1
1 2
2 1

D
id time
1 1
2 2
3 1

Table 5.1: Example data following the ER model shown in Figure 5.1

In our case, we used SQLite as our relational database engine. To show how the query works,
consider the tables A and B and their foreign key relation, shown in Figure 5.1 and Table 5.1. We
thus need to transform the tables A and B of Table 5.1; and tables rnodes and rattributes in such
a way that we can:

a) Link each node that was created for a record to the record itself (e.g. link the record with
id = 1 in table A to node n0, which is the node in Figure 5.2 with nodeID = 0)

b) Identify which concrete records (and their related nodes) of A are related to which con-
crete records (and their related nodes) of B (e.g., that the node n0 created from the record
(1,type1,subtype1) in A is related to the node n5 created from the record (type1,subtype1) in
B

Listing A.1 shows the query that creates relationships between the nodes created from tables
A and B. As can be seen in this listing, the query is built in parts. Therefore we will explain
what each part does starting at the ‘joinableColumns’ part.

The ‘joinableColumns’ subquery contains all combinations of values in the foreign key columns
between the source and target tables that occur in both the source and target table. Here, table
A is our source table and table B is our target table. table A references table B via two foreign
key columns: btype and bsubtype, which reference table B ’s type and subtype columns respectively.
The resulting table is shown in Table 5.2. This table contains all the values of table B that occur
in the foreign key relation to table A.

Next is the ‘sourceNodes’ subquery. This subquery finds all (id, key, value) triples of nodes of
the source table that have the foreign key columns as attributes. I.e., it finds each record in table

Automated Translation of Event Data from Relational to Graph Databases 43

CHAPTER 5. IMPLEMENTATION

btype bsubtype
type 1 subtype 1
type 1 subtype 2

Table 5.2: joinableColumns

A, the corresponding nodes n0 and n5 from table rnodes and the corresponding attributes and
values that define the foreign key relation from rattributes. Figure 5.2 shows the node identifiers we
have assigned to nodes created from tables A and B as the ‘nodeID’ attribute on each node. The
‘targetNodes’ subquery does the same, but for the target table. The resulting tables are shown in
Table 5.3.

The next step is to pivot the ‘sourceNodes’ table, which is what the ‘pivotedSourceNodes’
subquery does. It pivots the ‘sourceNodes’ table on the ‘pkey‘ column, such that the values in
this column, which are exclusively the foreign key column names, become the column names, with
their value equal to the corresponding ‘pvalue’. The resulting tables are shown in Table 5.4. The
same is done with ‘targetNodes’.

Figure 5.2: Property graph as a result of R2PG-DM transformation of data shown in Table 2.3

id pkey pvalue
0 btype type 1
0 bsubtype subtype 1
5 btype type 1
5 bsubtype subtype 2

id pkey pvalue
1 type type 1
1 subtype subtype 1
4 type type 2
4 subtype subtype 2
8 type type 1
8 subtype subtype 2

Table 5.3: sourceNodes and targetNodes

id btype bsubtype
0 type 1 subtype 1
5 type 1 subtype 2

id btype bsubtype
1 type 1 subtype 1
4 type 2 subtype 2
8 type 1 subtype 2

Table 5.4: pivotedTourceNodes and pivotedTargetNodes

44 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

Now, an inner join is performed on the ‘pivotedSourceNodes‘ and ‘joinableColumns’. The
resulting table is shown in Table 5.5.

id btype bsubtype
0 type 1 subtype 1
5 type 1 subtype 2

Table 5.5: joinedSourceNodes

Finally, ‘joinedSourceNodes’ is left joined with ‘pivotedTargetNodes’, which gives us all source-
target pairs of node ids from which we can create relationships. We perform a left join to eliminate
any node records from table B that should not be related to a node record from A. The result is
shown in Table 5.6. The result of this table can then be stored in the ‘edge’ table with type equal
to ‘A-B’.

sourceID targetID
0 1
5 4

Table 5.6: relationships

5.1.2 Query batching and multithreading

R2PG-DM has a long processing time for a couple of other reasons. First, it only used a single
thread, while most modern computers have multiple available. Second, each node, attribute and
relationship record is written using a separate database transaction, which adds a lot of extra
overhead.

We solved the first problem by handling each table of the input database in a separate thread.
During the creation of nodes and attributes of each table, no data produced using other tables is
required, so they can be processed in parallel. During the creation of relationship records of each
table, node and attribute records from other tables are required, but those records are already
present, as long as the node and attribute record creation finishes before starting the creation of
relationship records. Thus we can also run the creation of relationship records of each table in
parallel.

The second problem was solved by batching the creation of node and attribute records; and
batching the creation of relationship records. Instead of sending a transaction for each to the
database, we group a large amount of insertion queries into one query, such that the data doesn’t
exceed the transaction size limit. For this we used the transaction size limit of SQLite. However,
the transaction size limit may have to be adjusted for other relational database engines. This way
we greatly reduce the overhead that was caused by not grouping insertion queries.

5.1.3 Bug in relationship creation

As mentioned before, we found a bug in the implementation of R2PG-DM. This bug caused faulty
relationships to be created when a table has foreign keys that refer to multiple tables. This
was because the relationships were created per two foreign keys, instead of per foreign key. The
program looped over the foreign keys, skipping every other foreign key. This was likely an error
caused by a wrong assumption of the program’s creator, which was not caught since it worked for
the databases that were used to test R2PG-DM originally. We fixed this issue by looping over the
foreign keys instead.

Automated Translation of Event Data from Relational to Graph Databases 45

CHAPTER 5. IMPLEMENTATION

5.1.4 Preparing the output data to be used by Neo4J’s admin import

As we discussed in Section 2.4, the output of R2PG-DM is meant to be generic. Neo4J can import
this data directly using R2PG-DM’s output format, however this way of importing data is very
slow. Luckily, Neo4J has another method to import data: The ‘admin import’. This admin import
however requires a different format than what R2PG-DM provides and can only be applied to fresh
database instances (Database instances in which no data was ever stored).

Figure 2.4 shows the three relations that form the output of R2PG-DM. These relations need
to be transformed and stored in .csv files.

In this new format, instead of having node and attribute records in separate .csv files, we need
to merge the files, such that there is a .csv file for the node and attribute records of each table in
the input database. Each .csv file has multiple columns, one per column of the table it represents,
as well as a column with the name ‘:ID’ and a column with the name ‘:LABEL’ which contains
the node id and node type for each node record respectively.

Since R2PG-DM doesn’t use any relationship attributes, we only need one .csv file containing
relationships. this .csv file, like the relationships file outputted by R2PG-DM, has four columns.
The only change we need to make is to rename the ‘srcId’ column to ‘:START ID’, the ‘tgtId’
column to ‘:END ID’ and rename the ‘label’ column to ‘:Type’, which are the column names that
Neo4J expects to find.

5.2 Transforming labeled property graphs to the event data
representation

Before we discuss the implementation of our transformation, there is another issue that we’d like
to address, which is that storing event attributes is very expensive. In our implementation, LEvent
nodes are created from the same data as entities. Recall that in Section 3.1, we required each
database row to only contain one entity. Event attributes are expensive to store, because the data
of one entity can be used to create multiple events and thus event nodes. Each of these event
nodes would then store the same event attributes from that entity, resulting in data duplication.
We’d like to eliminate this.

To do this, we no longer separate the event attributes from the entity attributes and instead
store all attributes on the Entity node. LEvent nodes keep only the minimally required attributes
(‘start’, ‘end’ and ‘activity’). The graph should then be interpreted as follows. Consider any Entity
node e in the graph. All attributes of e are regarded as that entity’s entity attributes. Now take
any LEvent node le, (e)<-[:E EN]-(le), then all attributes on Entity nodes e′ ∈ Eev, (le)--
>(ev:Event)<--(:LEvent)-[:E EN]->(Eev), which are the Entity nodes that also have event ev,
are considered the event attributes of Event ev from e’s perspective (Note that e /∈ Eev).

This approach comes with the downside that, when looking at an entity, you can’t directly tell
what the value of an event attribute is supposed to represent. It could be the first value that was
set when the entity was created, or the last value it was assigned, or any value in between. E.g.
if at some point it was decided to no longer update that value in that entity’s table, but instead
in a separate table. This problem does not occur if the entity originates from a table that records
for example changes, as then it can be assumed the database row was created and left unchanged
afterwards. A simple solution to alleviate this problem would be to change the schema of the
input database such that all event attributes are stored in a separate table such that that table
only records changes to the entities in the original table.

Now, to come back to the implementation of this transformation. We implemented this trans-
formation in Python3. It is meant to be used with a Neo4J v3.* database and might not work
otherwise. In the upcoming sections we will discuss how to configure the transformation program
and the various transformation steps.

46 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

5.2.1 Configuration

The configuration is a manifestation of the EER schema we discussed in Section 4.2.1. The
configuration is created by the user and will be used during the transformation to generate Cypher
queries. We store this configuration c in a JSON format. We start out with an empty root object:
{}. At this root we have an object c.connection to specify how to connect to the neo4j database
instance containing R2PG-DM’s output data for the to be transformed data set. We also have a
c.log object, which specifies this log’s name. Then finally we have an entity array c.entity, which
stores all the information present in the EER diagram.

Each entity object ce ∈ c.entity represents one Entity box ent ∈ ENT of the EER schema.
This entity object has three attributes:

• ce.label = ent .name

• ce.id column = ent .key

• ce.event : object describing the event schema ent .ES

The event attribute should be omitted if no events should be created from entities with type
ce.label . Each event schema event has an attribute create from, which is an array containing
that event schema’s event definitions ent .ES .ED . Each event definition ced ∈ event.create from
represents one event definition ed ∈ ent .ES .ED and is an object with three attributes:

• ced.start column = ed .start

• ced.end column = ed .end

• ced.activity , based on ed .act

For the event definition’s activity attribute we allow a bit more flexibility than we do in the
EER schema. The activity attribute consists of a single string. This activity name of LEvent nodes
created from this event definition is then equal to this string. However, within this string you can
substitute parts with the values from attributes of Entity nodes with type ce.label, by writing the
name of the attribute for which you want to substitute values between brackets.

For instance, if we have an Incident Activity ia with ia.Incident Type = Start and we configure
the activity attribute as ”Incident Activity: {Incident Type}”, then the activity name would be
”Incident Activity: Start”

ce.event has another attribute, related entities which represents ent .ES .related . This attribute
contains a list of strings. Here we require the configuration to be somewhat more explicit than
the dashed lines of the EER diagram, as we need to know the direction of the relationships to the
related entities.

Lets take BPI 14’s Change Activity table as an example. Also recall Figure 2.8, which shows
the ER diagram of our normalized BPI 14 data set. Change Activity’s event schema has a dashed
line towards the Change entity box. Now, since we are considering the Change Activity table and
the Change table is referenced by the Change Activity table, the string to represent this dashed
line would be ”>Change” (towards Change). If the Change Activity table would have been refer-
enced by the Change table instead, the string would be ”<Change” (from Change). Furthermore,
related entities would contain the strings ”>Service Component” and ”>Configuration Item”.

Now take BPI 14’s Change table as an example. This table has a dashed line to a Change Activity
transitive entity box, which in turn has a dashed line to both the Service Component and Con-
figuration Item entity boxes. A colon indicates that the entity type to the left of that colon
is a transitive entity box. The related entities attribute would then consists of the two strings
”<Change Activity:>Service Component” and ”<Change Activity:>Configuration Item”.

Listing 5.1 shows the entity config of BPI 14’s ‘Change’ and ‘Service Component entity types.
This is a small part of the full BPI 14 transformation configuration, which can be viewed in Listing

Automated Translation of Event Data from Relational to Graph Databases 47

CHAPTER 5. IMPLEMENTATION

B.1. BPI 17’s transformation can also be viewed in Listing C.1. In the upcoming Sections, we
explain how the JSON representation of the EER schema allows us to generate Cypher queries for
each of the 4 steps we discussed in Section 4.2.

1 ...

2 {
3 "label": "Change",

4 "id_column": "ID",

5 "event": {
6 "related_entities": ["<Change_Activity:Service_Component", "<

Change_Activity:Configuration_Item"],

7 "create_from": [

8 {
9 "start_column": "Scheduled_Downtime_Start",

10 "activity": "Change: Scheduled_Downtime_Start"

11 },
12 {
13 "start_column": "Scheduled_Downtime_End",

14 "activity": "Change: Scheduled_Downtime_End"

15 }
16]

17 }
18 },
19 {
20 "label": "Service_Component",

21 "id_column": "ID"

22 }
23 ...

Listing 5.1: Entity Config op BPI 14’s ‘Change’ and ‘Service Component’ entity types

5.2.2 Creating entities

Figure 5.3: Example ER model

We again use our example database of Table 5.3 to show what the event graph looks like after
each transformation step. Figure 5.4 shows the EER model we use for this transformation. During
this transformation we will show a number of Cypher queries. These Cypher queries are from the
BPI 14 transformation we performed. Listing 5.1 shows a part of the BPI 14 configuration file
that was used to generate the queries we show.

48 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

A
id btype bsubtype
1 type 1 subtype 1
2 type 2 subtype 1

B
type subtype
type 1 subtype 1
type 2 subtype 1
type 2 subtype 2

C
Aid Did
1 1
1 2
2 1

D
id time
1 1
2 2
3 1

Table 5.7: Example data following the ER model shown in Figure 5.3

Figure 5.4: Possible event entity relation diagram of example ER model and data of Figure 5.3
and Table 5.7

The first nodes we create are the Entity nodes. We sequentially process the creation of entities
per entity type that’s listed in the configuration file. Recall that c is the configuration file root.
Lets call the configuration object (entity type config) of the entity type that is currently being
processed ce, ce ∈ c.entity . Recall that each ce ∈ c.entity represents one entity box ent ∈ ENT .

Consider Listing 5.2, which shows the query generated from Listing 5.1 that was used to create
entities of the type ‘Change’. This query is based on the EER diagram/configuration file of the
BPI 14 transformation. The specific configuration used for Listing 5.2, can be seen in Listing 5.1.

We want to create an Entity node for each input node with label ce.label . This is done as follows.

1. We create a matcher that simply matches all input nodes n ∈ N with n.label = ce.label .
(line 1)

2. For each input node n we create an Entity node e. We use Neo4J’s ‘apoc’ package to create
these nodes, as it gives us a bit more flexibility over Neo4J’s own node creation query. This
Entity node e is assigned a number of attributes.

• e[EntityType]← ce.label (line 4)

• e[IDLog]← c.log + n[ce.id column] (line 5)

• e[IDraw]← n[ce.id column] (line 7)

• e[Log]← c.log (line 8)

• e[uID]← ce.label + c.log + n[ce.id column] (line 9)

• e[p]← n[p] for any attribute p of input node n (line 11)

Figure 5.5 shows what the event graph of our example database would look like at this stage. The
‘NodeID’ attribute on each Entity node is the node id ID(x) that uniquely identifies each node x
in the graph. For clarity we don not show the ‘IDlog’, ‘Log’ and ‘uID’ attributes of Entity nodes.

1 MATCH (n : Change)
2 CALL apoc . c r e a t e . node (
3 [’ Ent ity ’] ,
4 {
5 EntityType : ’Change ’ ,
6 IDLog : ’BPI14 ’ + n . ID ,

Automated Translation of Event Data from Relational to Graph Databases 49

CHAPTER 5. IMPLEMENTATION

7 IDraw : n . ID ,
8 Log : ’BPI14 ’ ,
9 uID : ’ChangeBPI14 ’+ n . ID

10 }) y i e l d node
11 SET node+=n

Listing 5.2: Creation of Change entities

Figure 5.5: Event graph after creating Entity nodes

5.2.3 Creating events

After the creation of Entity nodes has finished, the next step is to create LEvent and Event nodes.
Like with the creation of entities, we sequentially process the creation of events per entity type
and thus entity configuration ce. Not every entity configuration ce specifies an event object
cev = ce.event . These entity types are simply skipped. In essence this means that we create
events sequentially for each event schema box es ∈ ES , as every ce ∈ c.entity has at most one
event schema associated with it. Let N be the set of nodes in G with label ce.label . The event
creation process can be split into two stages.

1. We find for each input node n ∈ N all related nodes according to cev and create TempLEvent
(Template Local Event) nodes for them. Each TempLEvent node represents an entity that
relates to the event(s) of n. We create these TempLEvent nodes, since we need to know which
entities are related to each event multiple times, so this way we don’t have to calculate that
each time, but instead just once at the beginning.

2. We process each event definition ced ∈ cev .create from, copy TempLEvent nodes to create
LEvent nodes for ced and link those LEvent nodes to Event nodes. Every time this process is
finished for one entity type, all TempLEvent nodes are deleted from the graph, as they have
served their purpose and are no longer useful afterwards.

These two steps above are both performed before moving on to the next entity type. Now we
will go into more details about these two steps.

50 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

Step 1: Creating Template LEvents

The first nodes for which we create TempLEvent nodes are the input nodes in N , which are the
nodes created from the table rnodes by R2PG-DM. Listing 5.3 shows the query that does this for
BPI 14’s ‘Change’ nodes. This query was generated using lines 3-18 of the configuration in Listing
5.1. Recall that ID(x) means the node id of node x, which is unique across all nodes in the graph.
First, we match all input nodes N then, for each input node n ∈ N , create a TempLEvent node te
with originID = ID(n) and commonID = ID(n); and create a Source relationship from te to n.
We also set the attributes shown on Lines 4-5 on the created node. The values of those attributes
are based on ce.label and ce.id column again.

1 MATCH (common : Change)
2 CREATE (n : TempLEvent { or i g in ID : ID(common) , commonID : ID(common) })
3 −[s : Source]−>(common)
4 ON CREATE SET n . EntityType=”Change”
5 ON CREATE SET n . IDraw=common . ID

Listing 5.3: Creation of Change template events

Recall that each event may relate to multiple entities other than an entity of the type ce.label
that owns the event definition that owns that event (Section 4.2). We create TempLEvent nodes
for those other input nodes of N (which are the input nodes with with label ce.label). For each
n ∈ N we find the set of other input nodes that relate to events of n. This set is called Irel(n), as
we discussed in Section 4.2. For every n ∈ N , we create a TempLEvent node for every m ∈ Irel(n).
Every TempLEvent node thus represents a pair of input nodes (n,m). Let T be the set of all
(n,m) pairs. Each related entity type string crel ∈ cev .related entities specifies how we can find a
subset Trel ⊆ T , of all related entities of the type specified by crel. If we add all sets Trel for each
crel ∈ cev .related entities together, we get T .

Each crel is processed sequentially. First we find pairs Trel and then we create TempLEvents
nodes for each (n,m) ∈ Trel , before proceeding to the next crel . These two steps work as follows:

1. We construct the matcher that finds the (n,m) pairs of Trel . This matcher essentially serves
the same purpose as Algorithm 1, which we discussed in Section 4.2. The matcher starts out
as the matcher that was used to create TempLEvent nodes for the input nodes in N , shown
on Line 1 of Listing 5.3. This matcher has one variable ‘common’, which represents all input
nodes n ∈ N .

As an example, take crel = ”<Change Activity:>Service Component”, which is the related
entity type string that was used to create the matcher on line 1 of Listing 5.4.

crel is split on the colon character, resulting in an array. The resulting array consists of ele-
ments that specify a direction (‘<’/‘>’) and a node label. For our example, This array looks
like [”<Change Activity”, ”>Service Component”]. The elements of this array are processed
sequentially, each adding a part to the starting matcher, according to their direction and
label.

For our example [”<Change Activity”, ”>Service Component”] with ce.label = ‘Change’,
this goes as follows:

i start:
(common:Change)

ii ”<Change Activity”:
(common:Change)<--(:Change Activity)

iii ”>Service Component”:
(common:Change)<--(:Change Activity)-->(related:Service Component)

The final node matcher that is added, in this case the one for Service Component, is assigned
the variable related, which finds the input nodes Irel(n) for each n ∈ N . This matcher thus
matches all (n,m) ∈ Trel . Note that each (n,m) can be part of the set Trel of multiple

Automated Translation of Event Data from Relational to Graph Databases 51

CHAPTER 5. IMPLEMENTATION

related entity strings in cev .related entities. If this occurs then that means that m can be
reached from n via multiple paths specified in cev .related entities.

2. Recall that we want to create one TempLEvent node for each input node pair (n,m) ∈ T .
For each (n,m) ∈ Trel we merge a TempLEvent node. To merge a node means to create it if
no exact copy of the node already exists. We use the merge operation here, so that we don’t
create two TempLEvent nodes for one pair (n,m).

Listing 5.4 shows an example query that creates TempLEvent nodes for BPI 14’s ‘Change’
event schema. The matcher on line 1 of Listing 5.4, was created using the related entity type
string equal to ‘<Change Activity:>Service Component’.

In this query, we first use the matcher we constructed earlier on line 1. This gives us all
(m,n) ∈ Trel . Then, for each (m,n), we use the merge operator on line 2. This creates
TempLEvent nodes. Let tm,n be the TempLEvent node created to represent (m,n). tm,n is
assigned the following two attributes.

• tm,n[originID]← ID(m)

• tm,n[commonID]← ID(n)

These two attributes thus have to be unique in order for the TempLEvent to be created. If
the TempLEvent node is created, we look up the entity object ce with ce.label = m.label and
set the following the attributes on tm,n on lines 3 and 4 of Listing 5.4.

• tm,n[EntityType]← ce.label

• tm,n[IDraw]← m[ce.id column]

We set these two attributes only after creation, because we don’t want the merge operation
to take these into consideration.

1 MATCH (common : Change)<−−(: Change Act iv ity)−−>(r e l a t e d : Service Component)
2 MERGE (n : TempLEvent { or i g in ID : ID(r e l a t e d) , commonID : ID(common) })
3 ON CREATE SET n . EntityType=”Service Component ”
4 ON CREATE SET n . IDraw=r e l a t e d . ID

Listing 5.4: Creation of template events of Service Component nodes related via a
Change Activity node

After performing these steps for every crel ∈ cev .related entities we have created a TempLEvent for
every (n,m) ∈ T . Earlier, we already created one TempLEvent node per n ∈ N using the query of
Listing 5.3. For each n, we add (n, n) to T , because n is also in Irel(n) (See Section 4.2). We have
now completed the first step in processing entity config ce and can now continue to the second
step, which uses the TempLEvent nodes we just created.

Figure 5.6 shows what the event graph of our example database would look like at this stage. For
clarity we don’t show the ‘NodeID’ attribute on nodes other than Entity nodes, but in reality they
are there.

Step 2: Creating LEvent and Event nodes

We now create the actual LEvent and Event nodes for N ’s events. Recall that we have a set T
which contains input node pairs (n,m). Every (n,m) is represented by a TempLEvent node. The
following properties about n and m hold:

• n is an input node with event(s)

• m is an input node that should relate to the event(s) of n

52 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

Figure 5.6: Event graph after creating TempLEvent nodes and Source relationships

• n.label = ce.label

Recall that each TempLEvent node representing an input node pair (n, n), n ∈ N has a Source
relationship to n. For each event definition ced ∈ ce.events.create from, we use the TempLEvent
nodes representing T to create LEvent and Event nodes. Listing 5.5 shows an example query of the
creation of LEvent and Event nodes for BPI 14. Here we use the event definition ced for ‘Sched-
uled Downtime Start’ events of the ‘Change events’ event schema, of which the configuration file
equivalent can be seen in Listing 5.1.

1 // Find Change TempLEvents that should generate t h i s event
2 MATCH (temp : TempLEvent {EntityType : ’Change ’ })−−>(source)
3 WHERE ’ Scheduled Downtime Start ’ in keys (source)
4
5 // Find other matching TempLEvent
6 MATCH (t : TempLEvent {commonID : temp . commonID})
7 WITH temp , source , t
8
9 // Create LEvent nodes

10 CREATE (l even t : LEvent)
11 SET leven t = t
12 SET leven t . Ac t i v i t y = ’Change : Scheduled Downtime Start ’
13 SET leven t . S ta r t = source . Scheduled Downtime Start
14 SET leven t . End = source . Scheduled Downtime Start
15
16 WITH temp , c o l l e c t (l ev en t) as l e v en t s
17
18 // Create Event nodes
19 CREATE (ev : Event)
20
21 WITH co , l e v en t s
22 UNWIND l ev en t s as l ev en t
23 WITH co , l ev en t
24
25 // Create r e l a t i o n s h i p s between l e v en t s and common nodes

Automated Translation of Event Data from Relational to Graph Databases 53

CHAPTER 5. IMPLEMENTATION

26 CREATE (l even t)−[ec : LE E { entityType : l ev en t . entityType}]−>(ev)

Listing 5.5: Creation of Event and LEvent nodes with Scheduled Downtime Start as their start
time column

The creation of LEvent and Event nodes for an event definition ced of an entity config ce works as
follows:

1. We find all pairs of TempLEvent nodes that represent each (n, n) ∈ T and pair them with n
itself. We need input node n, because this node contains the event information we need to
construct the events as specified by ced . This works as follows:

i We find TempLEvent nodes TE of type ce.label . These TempLEvent nodes represent the
(n, n) pairs in T . (line 2)

ii We pair each te ∈ TE , with the input node to which it has a Source relationship. This
pairs up each te with their input node n. (line 2)

iii Each TempLEvent node te whose paired input node n for which n[ced .start column] =
Null is removed from TE . These TempLEvent nodes are removed because their respective
input node n does not have the event described by ced . (line 3)

2. We pair each TempLEvent node representing input node pair (m,n) ∈ T,m 6= n with the
TempLEvent node representing input node pair (n, n). We do this because each input node
m for which there is a pair (m,n) ∈ T also relates to the events of n. (lines 6,7).

3. For each TempLEvent te representing an input node pair (m,n) ∈ T (also those where
m = n), we create an LEvent node le (line 10). le is thus the LEvent node representing input
node pair (m,n). le is assigned a number of attributes. Some are inherited from TempLEvent
te and some are inherited from input node n:

• le[p] = te[p] for any attribute p of te. (line 11)

• le[Activity] gets a value based on n and ced .activity as described in Section 5.2.1. (line
12)

• le[Start] = n[ced .start] (line 13)

• le[End] = n[ced .end] (line 14)

4. For each n ∈ N , we create one Event node e and create an LE E relationship to e from each
LEvent node representing an input node pair (m,n). By doing this, we connect all LEvent
nodes of an event to the Event node that represents that event (Lines 19-26).

After performing these steps for one event definition ced , we have created all LEvent and
Event nodes for input node pairs T and event definition ced . All LEvent nodes also have an LE E
relationship to their corresponding Event node. This is repeated for all other event definitions in
ce.ES .ED , after which we have created all events of entities of type ce.label .

We then remove all TempLEvent nodes from the graph and continue with the next entity con-
figuration that specifies event definitions and go back to step 1. We repeat this until all entity
configuration with event definitions have been handled, which concludes the event creation process.

Figure 5.7 shows what the event graph of our example database would look like at this stage.

5.2.4 Relating entities and events

1 MATCH (ev : LEvent)
2 MATCH (en : Entity {IDraw : ev . IDraw , EntityType : ev . EntityType })
3 CREATE (ev)−[r :E EN]−>(en)
4 SET r . EntityType = en . EntityType

Listing 5.6: Creating relationships between Entity and LEvent nodes

54 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

Figure 5.7: Event graph after creating Event and LEvent nodes

Relating Entity nodes with LEvent nodes is quite simple and is shown in Listing 5.6. We simply
find, for each LEvent node, the Entity node with the same IDraw and EntityType and create an
E EN relationship between them.

Figure 5.8: Event graph after creating E EN relationships

Automated Translation of Event Data from Relational to Graph Databases 55

CHAPTER 5. IMPLEMENTATION

5.2.5 Calculating directly follows relations

1 MATCH (n : Entity)
2 MATCH (n)−[]−(ev)
3
4 WITH n , ev as nodes ORDER BY ev . Start , ev . commonID
5 WITH n , c o l l e c t (nodes) as nodeList
6 WITH n , apoc . c o l l . pairsMin (nodeList) as pa i r s
7 UNWIND pa i r s as pa i r
8 WITH n , pa i r [0] as f i r s t , pa i r [1] as second
9

10 CREATE (f i r s t)−[d f :DF]−>(second)

Listing 5.7: Calculating DF relations between LEvent nodes

After this, we create the ‘directly follows’ relations, as shown in Listing 5.7. First, we select
all Entity nodes and LEvent nodes connected to those Entity nodes, as shown on lines 1-2. Next,
we group the LEvent nodes by Entity node and order them by their start time, followed by their
commonID, as shown on line 4-5. We sort using the commonID in addition to the start time,
in order to consistently order LEvent nodes with the same start time, as we described in Section
4.2.4. Note that all LEvent nodes connected to the same Event node have the same commonID.
After this, we create pairs of LEvent nodes, such that we have a list of pairs. Say we have a list
of LEvent nodes [e0, e1, . . . , en], the list of pairs would then look like [[e0, e1], [e1, e2], . . . [en−1, en]].
This process is shown on lines 6-8. For each pair we create a DF relationship, which gives us one
path of DF relationships per Entity node.

Figure 5.9 shows what the event graph of our example database would look like at this stage.

Figure 5.9: Event graph after creating DF relations

56 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 5. IMPLEMENTATION

5.2.6 Creating the Log node and relating it to events

Finally, we create the Log node and connect it to all LEvent nodes, which is shown in Listing 5.8.
This is done by simply creating a single Log node and an L E relationship between that node and
every LEvent node.

Figure 5.10 shows what the full event graph of our example database would look like.

1 CREATE (l : Log {ID : ’BPI14 ’ })
2 WITH l
3 Match (e : LEvent)
4 CREATE (l)−[r : L E]−>(e)

Listing 5.8: Creating the Log node and relating it to LEvent nodes

Figure 5.10: Event graph after creating the Log node and relating it to LEvent nodes

Automated Translation of Event Data from Relational to Graph Databases 57

Chapter 6

Evaluation

Now that we have proposed our transformation from relational event data to event graph data
we need to establish the correctness of this transformation. To do this, we have transformed the
normalized versions of BPI 14 and BPI 17 (Sections 2.5, 2.6) to event graphs. The EER diagrams
we used for these transformations can be seen in Figures 4.4 and 4.5 respectively. Establishing
the correctness of these transformations will mostly rely on a combination of visual inspection and
comparing event graph statistics to that of the source relational data. In addition to establishing
the correctness of the transformation, we will also discuss some performance statistics of the
transformation.

6.1 BPI 14

In this section we will look at the BPI 14 event graph and at some statistics of the BPI 14 data
set in the event graph data model so that we can better understand the properties of the event
graph and the transformation to the event graph. We also try to argue for the correctness of the
BPI 14’s event graph.

6.1.1 Event graph exploration

In this section we will take a look at the BPI 14 event graph in order to get a better understanding
of it. For this we use the ‘Neo4J Desktop’ application, which allows you to run Neo4J database
instances, as well as query and visualize them. First, take a look at Figure 6.1. Here we see a
collection of nodes and relationships. The node type of each of these nodes is indicated by their
colour.

• Pink nodes represent Entity nodes. Each of these nodes shows its ‘EntityType’ attribute
value.

• Green nodes represent LEvent nodes and show its ‘Activity’ attribute value

• Light brown nodes represent Event nodes. These nodes don’t show any attribute value

Since there is limited space to show attribute values in these nodes, most attribute values
are only partly shown, which is indicated by 3 dots. The top-left Entity node for instance is a
‘Change Activity’ Entity node and not a ‘Change’ Entity node.

Figure 6.1, shows us the trace of the ‘Change’ entity with IDraw = “C00002243” (bottom-left
Entity node). This ‘Change’ entity has a trace of 4 events. We also show the other LEvent nodes
that have an LE E relationship to events of this ‘Change’ entity. We do not show the full traces of
these other entities, which explains why not all LEvent nodes of the ‘Service Component’ entity in
the top-right are connected via DF relationships. Listing 6.1 shows the query we used to retrieve

58 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

all graph components shown in Figure 6.1. We limit ourselves to entities with short traces, because
longer traces quickly become hard to read, due to the interconnected nature of graph databases.

1 match (n : Entity {uID : ”ChangeBPI14C00002243” }) ,
2 (n)<−[een :E EN]−(l e : LEvent) ,
3 (l e)−[l e e : LE E]−>(ev : Event) ,
4 (ev)<−[l e e 2 : LE E]−(l e 2) ,
5 (l e 2)−[een2 :E EN]−>(e2 : Entity)
6 op t i ona l match (l e)−[d f :DF]−>()
7 op t i ona l match (l e 2)−[d f2 :DF]−>()
8 re turn ∗

Listing 6.1: Cypher query that finds all graph components shown in Figure 6.1

Figure 6.1: Event graph showing the trace of Change ‘C00002243’ and surrounding entities

Figure 6.2 shows the result of the query in Listing 6.1, but for an ‘Incident’ entity with IDraw =
“IM0035523”. The Entity node representing this ‘Incident’ entity can be seen in the top-middle
of the Figure. Again, this ‘Incident’ entity has a trace of 4 events, but this time there are more
other entities and not all of those other entities have all the shown events.

Finally, there is Figure 6.3, which again shows the result of Listing 6.1’s query, but for an
‘Interaction’ entity with IDraw = “SD0000056” (bottom-middle).

Automated Translation of Event Data from Relational to Graph Databases 59

CHAPTER 6. EVALUATION

Figure 6.2: Event graph showing the trace of Incident ‘IM0035523’ and surrounding entities

Figure 6.3: Event graph showing the trace of Interaction ‘SD0000056’ and surrounding entities

60 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

6.1.2 Event graph properties

In order to better understand the properties of the event graph, we have gathered several statistics.
In this section we will discuss what these statistics tell us about the BPI 14 event graph.

Basic statistics

Table 6.1 shows some basic statistics. What is most note worthy about these statistics is the ‘Fill’
statistic. This statistic is 0 if the graph has no relationships and 1 if the graph is fully connected.
So this statistic tells us the BPI 14 event graph is very sparsely populated with relationships,
which is to be expected since every entity relates only to a handful of other entities.

Statistic Value
Volume 18978165 relationships
#Nodes 1834844 nodes
Size 20813009 vertices + relationships

Fill 5.63× 10−7relationships/nodes2

Table 6.1: Basic statistics for the BPI 14 event graph

node type average stdev max min
Event 4.44 0.52 24 3
Entity 6.76 219.58 111222 0
Entity: Incident Activity 1 0 1 1
Entity: Service Component 1928.61 7108.51 111222 0
LEvent 1.85 0.35 2 1
Log 0 0 0 0

Table 6.2: Part of in-degree statistics for the BPI 14 event graph shown in Table B.1

node type average stdev max min
Event 0 0 0 0
Entity 0 0 0 0
LEvent 2.85 0.35 3 2
Log 4926161 0 4926161 49261611

Table 6.3: Part of out-degree statistics for the BPI 14 event graph shown in Table B.2

Node degree statistics

Beside these basic statistics, we have also gathered statistics about the in and out degree of various
node types. The in-degree of a node is the number of incoming relationships it has. The out-degree
of a node is the number of outgoing relationships it has. The in-degree statistics can be seen in
Table 6.2 and the out-degree statistics can be seen in Table 6.3.

First, we see that the Event node’s in-degree is quite low on average at 4.4, with low stand-
ard deviation. However the maximum in-degree is 24, which is quite high considering the low
standard deviation. This essentially means that some event relates to 24 entities. In Section 6.1.3
we will look into outliers like these to see whether they correctly represent the relational input data.

Now lets consider the in-degree statistics of Entity nodes, which can strongly vary depending
on the data set. These statistics strongly depend on the data set as some entities like service
components, are involved in many events, while others like incident activities, are involved in very

Automated Translation of Event Data from Relational to Graph Databases 61

CHAPTER 6. EVALUATION

little events. For this reason, this statistic cannot be used to verify graph correctness.

Then we have LEvent nodes, which have a quite low and consistent in-degree. The in-degree of
LEvent nodes can be either one or two, which is reflected in the maximum and minimum in-degree
of these nodes. One in-relationship originates from the Log node and the other in-relationship is
present if another LEvent node has a DF relationship to it. This statistic shows how many LEvent
nodes are the first LEvent node in their DF-path divided by the total number of LEvent nodes.
If this statistic is one, then no LEvent nodes have an incoming DF relationship, i.e. there are
no DF relationships. If this statistic is two, then either there are no LEvent nodes, or all LEvent
nodes have an incoming DF relationship, which means there exist cycles of DF paths, which is not
allowed.

Now consider Table 6.3, which shows statistics about the out-degree of LEvent nodes instead.
The LEvent out-degree statistics tell the same story as their in-degree statistics. Every LEvent
node has an outgoing relationship towards an Entity and Event node. The remaining relationship
describes the ratio of first LEvent nodes like the in-degree described the final LEvent nodes. Un-
surprisingly these ratios are the same, which leads us to believe LEvent nodes are compliant with
our event graph data model of Figure 3.8.

Finally there is the Log node, whose degree is simply equal to the number of LEvent nodes in
the graph.

Node degree histograms

In addition to these degree statistics, we have also constructed some histograms, describing the
degree of nodes. Note that the Y-axis of these histograms is on a logarithmic scale. If we look
at Figure 6.4, we see that Event nodes with a low in-degree between 3 and 7 are by far the most
common, while there are very few Event nodes with a higher in-degree.

The distribution of the Event nodes’ in-degree heavily depends on the data set. In BPI14’s
case, these higher in-degrees exclusively occur for events created from the Change table, which is
why there is such a steep drop around an in-degree of 7. The Change table is also the only table
which is related to other entities via a transitive entity. While this doesn’t have to result in high
in-degrees, it does lend itself to higher in-degrees, since a larger part of the input graph is explored
to find related entities, with respect to not using a transitive entity.

Then, if we look at Figures 6.5-6.7, we see that Entity nodes with little events are the most
common, and the number of occurrences of Entity nodes with more events decreases, the more
events are related to those Entity nodes. Even though the shape of the Incident Entity and
Knowledge Document Entity histograms are quite similar, their x-axes are quite different. This is
also true for the histograms of other entity types. From this we gather that the rate at which the
number of occurrences declines is somewhat proportional to the difference between the smallest
and largest in-degree for that entity type.

Note that this isn’t true for Entity nodes overall, as can be seen in Figure 6.5, since this mixes
the in-degrees of several entity types. However, it is still clear that a lower in-degree is more
common.

62 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

Figure 6.4: Histogram of Event nodes’ in degree (BPI14)

Figure 6.5: Histogram of Entity nodes’ in degree (BPI14)

Automated Translation of Event Data from Relational to Graph Databases 63

CHAPTER 6. EVALUATION

Figure 6.6: Histogram of Incident Entity nodes’ in degree (BPI14)

Figure 6.7: Histogram of Knowledge Document Entity nodes’ in degree (BPI14)

64 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

6.1.3 Event graph correctness

It is not easy to prove that the BPI 14 data set has been correctly transformed to an event
graph. However, we can create some confidence that this is the case. In this Section we verify the
correctness of as many event graph components we could. What we cannot verify, we will leave
to visual inspection of the BPI 14 event graph.

Verifying the correctness of Entity nodes

To verify whether each entity is represented in the event graph, we compare the number of oc-
currences of each entity type in the source data with the number of occurrences of each entity
type in the event graph. This is shown in Table 6.4. From this table we conclude that all en-
tities are represented in the event graph. We cannot easily verify whether each entity has the
correct attributes, as the number of attributes can vary per entity, depending on their type and
whether they have any null values, and verifying whether every attribute value is correct is very
computationally expensive. However, this looks to be the case from visual inspection of the event
graph.

Number of occurrences
Entity type source data event graph
Configuration Item 15864 15864
Change 18000 18000
Change Activity 30275 30275
Incident 46809 46809
Incident Activity 466737 466737
Interaction 147004 147004
Knowledge Document 2374 2374
Service Component 342 342

Table 6.4: Occurrences of entity types in the source data versus the BPI 14 event graph

Verifying the correctness of events

We verify whether all events are represented in the event graph in a similar way. Recall that
every event was creating by using an event definition. Each event definition belongs to a relational
database table and specifies a start column, which is used to set the event’s start time. Therefore,
to check whether every event in the relational data is represented in the event graph, we calculate
how many rows in the relational database have a non-null value in the start column specified by
each event definition. Each of those rows should have resulted in one event (per relevant event
definition) during the transformation. Each of these row counts should thus coincide with the
number of Event nodes in the graph that were created by using those same event definitions.
These counts can be seen in Table 6.5, where we see that this is indeed true.

We can not easily verify whether every LEvent node in the event graph is correct. Therefore
we rely on the visual inspection of the event graph for this.

Verifying the correctness of the Log node

To verify the correctness of the Log node, we simply check if it exists in the graph and whether
it’s ‘ID’ attribute is equal to ‘BPI14’, which it is. Therefore we conclude that BPI 14’s Log node
is correct.

Verifying the correctness of E EN relationships

To verify the correctness of E EN relationships, we verify the following properties:

Automated Translation of Event Data from Relational to Graph Databases 65

CHAPTER 6. EVALUATION

Number of occurences
Table Start Column source data event graph
Change Activity Actual Start 27017 27017

Actual End 27014 27014
Planned Start 30275 30275
Planned End 30232 30232
Requested End Date 30275 30275
Change record Open Time 30275 30275
Change record Close Time 30275 30275

Incident Activity DateStamp 466737 466737
Change Scheduled Downtime Start 384 384

Scheduled Downtime End 382 382
Incident Open Time 46606 46606

Reopen Time 2284 2284
Resolved Time 44826 44826
Close Time 46606 46606

Interaction Open Time First Touch 147004 147004
Close Time 147004 147004

Table 6.5: Occurrences of events per ‘event definition start column’ in the source data versus the
BPI 14 event graph

1. Every E EN relationship’s source is an LEvent node

2. Every E EN relationship’s target is an Entity node

3. the LEvent and Entity nodes which each E EN node connects, have the same ‘IDraw’ attribute.

These properties all hold, which means that every E EN relationship is correct.

Verifying the correctness of LE E relationships

We cannot easily verify whether each Event node has LE E relationships with the correct number
of LEvent nodes, so we will rely on the visual inspection of the BPI 14 event graph to see whether
we can find any Event nodes for which this is not true.

Verifying the correctness of DF relationships

We require that the start time of the source node of a DF relationship is either earlier or the same
as the target node of a DF relationship. This holds for every DF relationship in the event graph.
Furthermore, as stated in Section 4.2.4, we require that in case two events have the exact same
start time, the DF relationship ordering has to remain consistent among LEvent nodes connected
to the same Event nodes. To verify whether this is true in the BPI 14 event graph, we queried
(Listing 6.2) the event graph using a pattern that matches DF relationship for which this does not
hold and found none of such cases.

1 match (e1a : LEvent)−−>(c1 : Event)<−−(e1b : LEvent) ,
2 (e1a)−[d f1 :DF]−>(e2a : LEvent)−−>(c2 : Event) ,
3 (e1b)<−[d f2 :DF]−(e2b : LEvent)−−>(c2 : Event)
4 re turn count (∗)

Listing 6.2: Cypher query that finds incorrect DF relationship ordering of events with the same
timestamp

We also verified for each Entity node, whether the LEvent nodes connected to that Entity node
have been connected by a single DF relationship path. To verify this we again queried (Listing

66 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

6.3) the graph database to look for Entity nodes for which does not hold. We found no such Entity
nodes.

1 match (e : Ent ity)<−−(l e : LEvent)
2 with e , s i z e ((l e)−−()) as degree
3 where degree < 4
4 with e , count (degree) as c
5 where c > 2
6 re turn count (e)

Listing 6.3: Cypher query that finds entities with disconnected DF paths

Verifying the correctness of the L E relationships

Checking the correctness of the L E relationships is simple. We look at the max out-degree of
the Log node in Table 6.3, as there is only one Log node in the event graph. This number is
consistent with the number of LEvent nodes in the event graph, which means that there is an L E
relationship to every LEvent node, which is all we need for L E relationships to be correct.

Verifying the correctness of outliers

In Section 6.1.2 we identified outliers in the BPI 14 event graph statistics. In this section we will
look at those outliers to verify whether they correctly represent the relational input data.

First, look at Tables 6.2, which shows statistics about the in-degree of various node types. We
found that the maximum Event nodes was rather high when compared to its average and standard
deviation.

To verify whether this is correct, or the result of a problem with the transformation, we
compared the relational source data and event graph data. We found that there was a single
Event node with this in-degree, which was constructed using a row from the Change table. In
the source relational data, this row is related to 22 Change Activity rows, which in turn relate
to one Service Component row and 22 Configuration Item rows. Recall Figure 4.4, which shows
Change Activity is a transitive entity for events created from the Change table. So, if we count
the related configuration items, service components and the Change tuple itself, we indeed come
to a total of 24 related entities. Thus the in-degree of this Event node is correct and not a
transformation error.

In Section 6.1.2 we have shown just a selection of in-degree histograms, but in reality we have
constructed one for every node and entity type. A number of these histograms contained outliers,
like we see in Figure 6.4. For each of these outliers, we verified whether that outlier is consistent
with what we find in the source data, which was the case.

Automated Translation of Event Data from Relational to Graph Databases 67

CHAPTER 6. EVALUATION

6.1.4 Transformation Performance Statistics

We have transformed the BPI 14 data set into an event graph using the described automatic
transformation. An SQLite database, containing only the BPI 14 data, after normalization, costs
692 MB to store. It contains approximately 720 000 rows. The Neo4J database instance that
contains the transformed BPI 14 data costs 2.70 GB to store. It contains approximately 6 800 000
nodes and 19 000 000 relationships. There are a couple of reasons for this increase in storage size.

All the input data (except relations) can be found on just the Entity nodes. But in addition to
Entity nodes, the graph contains a variety of other nodes, which need to be stored as well. Each
LEvent node stores an activity name, start, and end time. LEvent nodes connected to the same
Event nodes share the same attribute values. This data could also be stored on the Event node to
eliminate data duplication, but doing this makes it harder to analyse, so we’ve chosen not to do
this. There’s also the relationships, which need to be stored. In a relational database this is stored
in a schema, which hardly costs any storage. However we cannot do this in a graph database and
have to store each relationship. Finally, there is some data duplication in the way that Neo4J
stores graphs. Since Neo4j stores nodes, attributes and relationships are each stored in separate
files. Since properties are stored in a separate file, this file also needs to contain some data that
pairs the attributes to the correct nodes and relationships.

The transformation was run on a system with 24 GB RAM (2133 MHz) and a quad core
processor (2.6 GHz) without hyper threading. The Neo4J database instance was allocated 20
GB of RAM, as Neo4J recommends to leave 4 GB for the system itself. It took one hour and
twenty six minutes to perform the transformation. The time of the transformation is heavily
dependent on the size of the input data and whether the system has enough RAM. This is because
the performance of Neo4J’s query engine dramatically slows down when it does not have enough
RAM, and the amount of required RAM depends on the size of the input database.

6.2 BPI 17

In this section we will look at the BPI 17 event graph and at some statistics of the BPI 17 data set
in the event graph data model, like we did with BPI 14. We verified the correctness of correctness
of the BPI 17 event graph in the same way as we did for the BPI 14 event graph. Since the BPI
17 results are so similar to those of BPI 14, we keep its discussion short.

6.2.1 Event graph exploration

In this section we take a look at the BPI 17 event graph. The Figures we show in this section have
been constructed using the query of Listing 6.1 and can be interpreted like the Figures of Section
6.1.1.

Figure 6.8 shows the trace of the application Entity node with IDraw = “Application 228161231”.
This application Entity node can be seen on the right side of the Figure. Any other Entity nodes
that show ‘applicati...’ represent ‘application events’ entities. Figure 6.9 shows the trace of the
offer Entity node with IDraw = “Offer 1191705426” (right side) and Figure 6.10 shows the trace
of the resource Entity node with IDraw = “User 145” (middle).

68 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

Figure 6.8: Event graph showing the trace of application ‘Application 228161231’ and
surrounding entities

Figure 6.9: Event graph showing the trace of offer ‘Offer 1191705426’ and surrounding entities

Automated Translation of Event Data from Relational to Graph Databases 69

CHAPTER 6. EVALUATION

Figure 6.10: Event graph showing the trace of resource ‘User 145’ and surrounding entities

70 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

6.2.2 Event graph properties

We have gathered the same set of statistics about the BPI 17 data set as we did about the BPI
14 data set. We see similar results between the statistics of the two data sets.

Basic statistics

In Table 6.6 we listed some basic statistics. We see that the Fill statistics is a bit higher than
that of of BPI 14. This is because the EER diagram we made for BPI 17 (Figure 4.5) is more
connected then that of BPI 14 (Figure 4.4).

Statistic Value
Volume 16600218 relationships
#Nodes 7527121 nodes
Size 19660646 vertices + relationships

Fill 1.77× 10−6relationships/nodes2

Table 6.6: Basic statistics for the BPI 17 event graph

Node degree statistics and histogram

Take a look at Tables 6.7 and 6.8. The statistics we see here are very similar to those of the
BPI 14 event graph, which can be seen in Tables 6.2 and 6.3. Again, there is a large difference
between the in-degree statistics of different entities, which is expected. The maximum in-degree
of Entity nodes, is very high (138130). we found this to be an outlier of the ‘resources‘ entity type,
which can be seen in Figure 6.11. We found that this resource was ‘User 1’. We assume that this
resource has some sort of special function in the process described by BPI 17. We also verified the
correctness of any other outliers we found in the ‘degree’ histograms we constructed for BPI 17.

If we look at the minimum and maximum in and out-degree of LEvent nodes, we see that they
are consistent with what we saw in Tables 6.2 and 6.3 for BPI 14. The out-degree of the Log node
is also consistent with the number of LEvent nodes again.

node type average stdev max min
Event 3.85 0.55 5 3
Entity 2.35 128.8 138130 0
Entity: applications 34.44 15.91 176 8
Entity: resources 8002.79 12418.40 138130 14
LEvent 1.72 0.45 2 1
Log 0 0 0 0

Table 6.7: Part of in-degree statistics for the BPI 17 event graph shown in Table C.1

node type average stdev max min
Event 0 0 0 0
Entity 0 0 0 0
LEvent 2.72 0.45 3 2
Log 4466693 0 4466693 4466693

Table 6.8: Part of out-degree statistics for the BPI 17 event graph shown in Table C.2

Automated Translation of Event Data from Relational to Graph Databases 71

CHAPTER 6. EVALUATION

Figure 6.11: Histogram of resources Entity nodes’ in degree (BPI17)

6.2.3 Event graph correctness

We performed the same verification steps for BPI 17 as we did for BPI 14 and found no errors.
Table 6.9, shows the comparison of entity counts between the source data and the event graph.
Table 6.10 shows the comparison of event counts between the source data and the event graph.

In Section 6.2.2 we found that the resource ‘User 1’ had a much higher in-degree than other
resources. We verified whether this user was actually involved in this many events by looking at
the original (denormalized) .csv file and found the in-degree of this Entity node to be consistent
with the number of rows in the .csv file in which ‘User 1‘’ was the resource. We verified the
correctness of other outliers in a similar way.

Since we found no errors in the event graph, we have confidence that the BPI 17 data set has
been correctly transformed to an event graph.

Number of occurrences
Entity type source data event graph
offer events 352149 352149
offers 42995 42995
application events 633468 633468
applications 31509 31509
workflow events 174788 174788
workflows 31500 31500
resource 145 145

Table 6.9: Occurrences of entity types in the source data versus the BPI 17 event graph

6.2.4 Transformation Performance Statistics

Like with BPI 14, we transformed the BPI 17 data set into an event graph using the described
automatic transformation. An SQLite database, containing only the BPI 17 data, after normal-
ization, costs 1.0 GB to store. It contains approximately 1 267 000 rows. The Neo4J database
instance that contains the transformed BPI 17 data costs 2.95 GB to store. It contains approx-

72 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 6. EVALUATION

Number of occurences
Table Start Column source data event graph
application events startTime 633468 633468
offer events startTime 352149 352149
workflow events startTime 174788 174788

Table 6.10: Occurrences of events per ‘event definition start column’ in the source data versus
the BPI 17 event graph

imately 7 500 000 nodes and 16 600 000 relationships. The transformation was run on the same
system as the BPI 14 transformation and took two hours and ten minutes to complete.

Automated Translation of Event Data from Relational to Graph Databases 73

Chapter 7

Conclusions

In this Thesis, we discussed how we can automatically transform event data from a relational to a
graph database, where we have one-to-one, one-to-many and many-to-many relationships between
events and case identifiers such that the transformed data captures both structural and temporal
relations in the data.

Esser proposed a data model to store such data in a graph database. Due to us using data
from a relational database as input to our transformation, instead of Esser using event logs as
input to his transformation, we had to make some adjustments to his proposed data model. In
essence this means that each event is represented by multiple nodes, instead of just one like Esser
proposed. This also entailed adjusting how behaviour of compound entities in labelled property
graphs can be represented, which now requires adding both nodes and relationships to the existing
event data grpah, instead of just relationships.

Not all relational databases are suitable for the transformation we designed, so we had to
impose some restrictions on the input data, for it to be used. Some of these restrictions limit the
range of names allowed to be present in the relational schema, but the main restriction is that each
table should contain exactly one entity per row and each row of the same table should contain the
same type of entity.

By making this ‘one entity per row’ assumption, we could store both event and entity attributes
on entity nodes, instead of storing event attributes on event nodes. This allowed us to circumvent
the issue of storing multiple, equally named, event attributes on one Event node and also allowed
us to prevent data duplication of these event attributes.

Transforming a relational database to an event data graph is done in multiple steps. The first
step is to ensure the input data conforms to our imposed restrictions, after which we use R2PG-
DM to transform the relational database into a generic property graph. The output of R2PG-DM
then has to be transformed such that we can import it using Neo4J’s ‘admin import’ tool.

At this point we require some domain knowledge to continue with the transformation, in the
form of an EER diagram. This EER diagram describes where entities and events can be found in
the input data and how events should relate to entities.

After such an EER diagram has been constructed, the transformation from the generic property
graph, the event data graph can begin. First, Entity nodes are created, after which we create Event
and LEvent nodes. These Event and LEvent nodes are related using LE E relationships, so that
we know which LEvent nodes belong together. At this point we add E EN relationships between
each LEvent nodes to an Entity node and add DF relationships between LEvents. Finally, single
Log node is created and related to all LEvent nodes via L E relationships.

To verify that the transformation works, we applied it to the BPI 14 and BPI 17 data sets. We
found that quite a large amount of RAM is needed to complete the transformation in a reasonable
time. We also found that it costs quite a bit more storage space, to store the event data graph,
when compared to storing the relation database. This is mostly due to the event structures, which
are not present in the relational database and the fact that relationships need to be explicitly
stored, instead of implicitly via the schema of a relational database. We also looked at outliers in

74 Automated Translation of Event Data from Relational to Graph Databases

CHAPTER 7. CONCLUSIONS

statistics on this event graph data, to make sure these were not errors in the transformation. We
found these outliers to be correctly represented and from extensive general inspection of the event
graph data, we concluded that, as far as we could tell, both the BPI 14 and BPI 17 data set have
been transformed successfully.

7.1 Limitations and future work

Due to the design of the transformation, there are several restrictions that a relational database
has to conform to in order to be used in the transformation. Firstly, there are some constraints on
the names tables can have. Future work could look into changing the transformation, such that
these constraints can be lifted.

The first of these constraints is that table names cannot contain spaces. This is not a problem
for the transformation discussed in this thesis, but instead for R2PG-DM, which is used in the
transformation pipeline. Theoretically this is not an issue. However the tool’s implementation
does not support this.

The second constraint on table names is that they cannot contain any of the characters ‘<’,
‘>’ or ‘:’. These characters are not allowed because they are special characters used to configure
the transformation, as described in Section 5.2.1. This constraint could be removed by allowing
these characters to be escaped in the configuration file.

Finally, the third constraint is that it is not allowed to have a table with the name ‘edge’,
‘node’, ‘property’, or any of the node types created during the transformation. These tables are
not allowed to exist in the input database, because they are assumed to not exist and breaking
this assumption would lead to a faulty transformation and potentially loss of data.

Another limitation is that each table’s primary key can only consist of one column. This is due
to the way we have implemented our transformation, but we believe the transformation can easily
be adjusted to allow for multi-column primary keys. Alternatively, a new single column primary
key can always be added to an existing relational database to get around this limitation.

The last limitation, as discussed in Section 3.2.6, is that Entity nodes are constructed using
a single row in the input database. This has some implications on the granularity of the data.
Consider a table where each row describes an entity. If this table contains some attribute that
changes over time, e.g. ‘total-cost’, then this attribute is added to the Entity nodes that represent
entities from this table. However, on these LEvent nodes, there is nothing that distinguishes this
attribute from static attributes, which don’t change over time. This means that without domain
knowledge, you cannot immediately see which attributes are static or dynamic and could interpret
the data in the wrong way. Future work could look into an alternative solution to storing event
attributes, so that this domain knowledge is no longer required to fully understand the data.

In our transformation, we did not include the creation of HOW relationships between Entity
nodes. We left these out of the transformation as we were only interested in the structural
and temporal representation of event data. Future work could thus look into how these HOW
relationships could be added to the event data graph transformation.

Finally, this thesis only looked into the representation of event data in a graph database and
the transformation to that representation. We did not explicitly discuss how process mining
algorithms should use this data and how this affects the analysis of a process model created by
a process mining algorithm using event graph data. Future work could research how this data
is best accessed by a process mining algorithm by, for instance, designing an interface to extract
data from the event data graph. Future work could also look into new process mining algorithms
that are designed to use event graph data. And Finally, future work could discuss the analysis of
process models created by such new process mining algorithms.

Automated Translation of Event Data from Relational to Graph Databases 75

Bibliography

[1] Neo4J. https://neo4j.com/. Accessed: 06/01/2020. 6

[2] OpenCypher. http://www.opencypher.org/. Accessed: 06/01/2020. 7

[3] Information technology - Database languages - SQL - Part 1: Framework (SQL/Framework).
Standard ISO/IEC 9075-1:2016, International Organization for Standardization, 12 2016. 6

[4] Wil Aalst, Boudewijn Dongen, Christian Günther, Anne Rozinat, Eric Verbeek, and
A. Weijters. Prom: The process mining toolkit. 01 2009. 5

[5] Esser, S. A Schema Framework for Graph Event Data. Master’s thesis, Technishe Universiteit
Eindhoven, 2 2020. 1, 2, 17

[6] Esser, S., Fahland, D. Storing and Querying Multi-dimensional Process Event Logs Using
Graph Databases, pages 632–644. Springer International Publishing, 2019. 1

[7] Xixi Lu, Marijn Nagelkerke, Dennis Wiel, and Dirk Fahland. Discovering interacting artifacts
from erp systems. IEEE Transactions on Services Computing, 8:1–1, 11 2015. 1, 9

[8] G. Sanders and Seung Shin. Denormalization effects on performance of rdbms. volume 3, 01
2001. doi:10.1109/HICSS.2001.926306. 5

[9] Radu Stoica, George Fletcher, and Juan F. Sequeda. On directly mapping relational databases
to property graphs. In Proceedings of the 13th Alberto Mendelzon International Workshop on
Foundations of Data Management, Asunción, Paraguay, 2019. 2, 7

[10] Stoica, R. R2PG-DM: A direct mapping from relational dtaabases to property graphs. Mas-
ter’s thesis, Technishe Universiteit Eindhoven, 7 2019. 2, 7

[11] van der Aalst, W. Process Mining: Data Science in Action. Springer, Second edition, 2016.
1, 4, 5

[12] van Dongen, B.F. BPI Challenge 2014. http://dx.doi.org/10.4121/uuid:

c3e5d162-0cfd-4bb0-bd82-af5268819c35. 9

[13] van Dongen, B.F. BPI Challenge 2017. http://dx.doi.org/10.4121/uuid:

5f3067df-f10b-45da-b98b-86ae4c7a310b. 12

76 Automated Translation of Event Data from Relational to Graph Databases

https://neo4j.com/
http://www.opencypher.org/
https://doi.org/10.1109/HICSS.2001.926306
http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
http://dx.doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

Appendix A

Example relationship creation of
R2PG-DM

1 WITH joinableColumns AS (
2 SELECT DISTINCT sourceTable . btype , sourceTable . bsubtype
3 FROM ”A” as sourceTable
4 INNER JOIN ”B” as targetTab le
5 ON sourceTable . btype = targetTable . type
6 AND sourceTable . bsubtype = targetTab le . subtype
7 } ,
8 sourceNodes AS (
9 SELECT n . id AS id , p , pkey AS pkey , p . pvalue AS pvalue

10 FROM node AS n
11 INNER JOIN property AS p
12 ON n . id = p . id
13 AND (p . pkey =’ type ’ OR p , pkey = ’ subtype ’)
14 AND n . l a b e l = ”A”)
15) ,
16 targetNodes AS (
17 SELECT n . id AS id , p , pkey AS pkey , p . pvalue AS pvalue
18 FROM node AS n
19 INNER JOIN property AS p
20 ON n . id = p . id
21 AND (p . pkey =’ btype ’ OR p , pkey = ’ bsubtype ’)
22 AND n . l a b e l = ”B”)
23) ,
24 pivotedSourceNodes AS (
25 SELECT id as sourceID ,
26 MAX(CASE WHEN pkey =’ btype ’ THEN pvalue END) AS btype ,
27 MAX(CASE WHEN pkey =’ bsubtype ’ THEN pvalue END) AS bsubtype
28 FROM sourceNodes AS s
29 GROUP BY s . id
30) ,
31 pivotedTargetNodes AS (
32 SELECT id as targetID ,
33 MAX(CASE WHEN pkey =’ type ’ THEN pvalue END) AS type ,
34 MAX(CASE WHEN pkey =’ subtype ’ THEN pvalue END) AS subtype
35 FROM targetNodes AS t
36 GROUP BY t . id
37) ,
38 jo inedSourceNodes AS (
39 SELECT s . sourceID , s . type , s . subtype
40 FROM pivotedSourceNodes AS s
41 INNER JOIN jonableColumns AS j
42 ON s . btype = j . btype
43 AND s . bsubtype = j . bsubtype
44)
45

Automated Translation of Event Data from Relational to Graph Databases 77

APPENDIX A. EXAMPLE RELATIONSHIP CREATION OF R2PG-DM

46 SELECT s . sourceID , t . target ID
47 FROM joinedSourceNodes AS s
48 LEFT JOIN pivotedTargetNodes AS t
49 ON s . btype = t . type
50 AND s . bsubtype = t . bsubtype

Listing A.1: Example query of how R2PG-DM creates relationships between nodes of two
relations

78 Automated Translation of Event Data from Relational to Graph Databases

Appendix B

BPI 14

B.1 BPI 14 configuration file

1 {
2 "connection": {
3 "neo4j": {
4 "jdbc": "bolt://127.0.0.1:7687",

5 "user": "neo4j",

6 "password": "1234"

7 }
8 },
9 "log": {

10 "name": "BPI14"

11 },
12 "entity": [

13 {
14 "label": "Change_Activity",

15 "id_column": "ID",

16 "event": {
17 "related_entities": ["Service_Component", "

Configuration_Item", "Change"],

18 "create_from": [

19 {
20 "start_column": "Actual_Start",

21 "activity": "Change: Actual_Start"

22 },
23 {
24 "start_column": "Actual_End",

25 "activity": "Change: Actual_End"

26 },
27 {
28 "start_column": "Planned_Start",

29 "activity": "Change: Planned_Start"

30 },
31 {
32 "start_column": "Planned_End",

33 "activity": "Change: Planned_End"

34 },
35 {

Automated Translation of Event Data from Relational to Graph Databases 79

APPENDIX B. BPI 14

36 "start_column": "Requested_End_Date",

37 "activity": "Change: Requested_End_Date"

38 },
39 {
40 "start_column": "Change_record_Open_Time",

41 "activity": "Change: record_Open_Time"

42 },
43 {
44 "start_column": "Change_record_Close_Time",

45 "activity": "Change: record_Close_Time"

46 }
47]

48 }
49 },
50 {
51 "label": "Incident_Activity",

52 "id_column": "IncidentActivity_Number",

53 "event": {
54 "related_entities": ["Knowledge_Document", "

Assignment_Group", "Incident", "Interaction"],

55 "create_from": [

56 {
57 "start_column": "DateStamp",

58 "end_column": "DateStamp",

59 "activity": "Incident_Activity: { IncidentActivity_Type }
"

60 }
61]

62 }
63 },
64 {
65 "label": "Change",

66 "id_column": "ID",

67 "event": {
68 "related_entities": ["<Change_Activity:Service_Component",

"<Change_Activity:Configuration_Item"],

69 "create_from": [

70 {
71 "start_column": "Scheduled_Downtime_Start",

72 "activity": "Change: Scheduled_Downtime_Start"

73 },
74 {
75 "start_column": "Scheduled_Downtime_End",

76 "activity": "Change: Scheduled_Downtime_End"

77 }
78]

79 }
80 },
81 {
82 "label": "Assignment_Group",

83 "id_column": "ID"

84 },
85 {
86 "label": "Knowledge_Document",

80 Automated Translation of Event Data from Relational to Graph Databases

APPENDIX B. BPI 14

87 "id_column": "ID"

88 },
89 {
90 "label": "Configuration_Item",

91 "id_column": "ID"

92 },
93 {
94 "label": "Incident",

95 "id_column": "Incident_ID",

96 "event": {
97 "related_entities": ["Service_Component", "

Configuration_Item", "Knowledge_Document"],

98 "create_from": [

99 {
100 "start_column": "Open_Time",

101 "activity": "Incident: Open_Time"

102 },
103 {
104 "start_column": "Reopen_Time",

105 "activity": "Incident: Reopen_Time"

106 },
107 {
108 "start_column": "Resolved_Time",

109 "activity": "Incident: Resolved_Time"

110 },
111 {
112 "start_column": "Close_Time",

113 "activity": "Incident: Close_Time"

114 }
115]

116 }
117 },
118 {
119 "label": "Service_Component",

120 "id_column": "ID"

121 },
122 {
123 "label": "Interaction",

124 "id_column": "Interaction_ID",

125 "event": {
126 "related_entities": ["Service_Component", "

Configuration_Item", "Knowledge_Document"],

127 "create_from": [

128 {
129 "start_column": "Open_Time_First_Touch",

130 "activity": "Interaction: Open_Time_First_Touch"

131 },
132 {
133 "start_column": "Close_Time",

134 "activity": "Interaction: Close_Time"

135 }
136]

137 }
138 }

Automated Translation of Event Data from Relational to Graph Databases 81

APPENDIX B. BPI 14

139]

140 }

Listing B.1: BPI 14 transformation configuration

82 Automated Translation of Event Data from Relational to Graph Databases

APPENDIX B. BPI 14

B.2 BPI 14 node degree Statistics

node type average stdev max min
Event 4.44 0.52 24 3
Entity 6.76 219.58 111222 0
Entity: Assignment Group 1928.66 6193.02 84143 1
Entity: Change 11.45 41.60 5035 4
Entity: Change Activity 6.78 0.62 7 4
Entity: Configuration Item 41.65 448.15 22532 0
Entity: Incident 12.96 9.75 181 0
Entity: Incident Activity 1 0 1 1
Entity: Interaction 5.12 7.02 180 2
Entity: Knowledge Document 379.55 1097.3 23546 0
Entity: Service Component 1928.61 7108.51 111222 0
LEvent 1.85 0.35 2 1
LEvent: Assignment Group 1.99 0.02 2 1
LEvent: Change 1.91 0.28 2 1
LEvent: Change Activity 1.85 0.35 2 1
LEvent: Configuration Item 1.97 0.14 2 1
LEvent: Incident 1.9 0.26 2 1
LEvent: Incident Activity 1 0 1 1
LEvent: Interaction 1.80 0.39 2 1
LEvent: Knowledge Document 1.99 0.05 2 1
LEvent: Service Component 1.99 0.022 2 1
Log 0 0 0 0

Table B.1: Full in-degree statistics for the BPI 14 event graph

Automated Translation of Event Data from Relational to Graph Databases 83

APPENDIX B. BPI 14

node type average stdev max min
Event 0 0 0 0
Entity 0 0 0 0
Entity: Assignment Group 0 0 0 0
Entity: Change 0 0 0 0
Entity: Change Activity 0 0 0 0
Entity: Configuration Item 0 0 0 0
Entity: Incident 0 0 0 0
Entity: Incident Activity 0 0 0 0
Entity: Interaction 0 0 0 0
Entity: Knowledge Document 0 0 0 0
Entity: Service Component 0 0 0 0
LEvent 2.85 0.35 3 2
LEvent: Assignment Group 2.997 0.022 3 2
LEvent: Change 2.91 0.28 3 2
LEvent: Change Activity 2.85 0.35 3 2
LEvent: Configuration Item 2.97 0.14 3 2
LEvent: Incident 2.926 0.26 3 2
LEvent: Incident Activity 2 0 2 2
LEvent: Interaction 2.80 0.39 3 2
LEvent: Knowledge Document 2.99 0.05 3 2
LEvent: Service Component 2.99 0.02 3 2
Log 4926161 0 4926161 49261611

Table B.2: Full out- degree statistics for the BPI 14 event graph

84 Automated Translation of Event Data from Relational to Graph Databases

Appendix C

BPI 17

C.1 BPI 17 configuration file

1 {
2 "connection": {
3 "neo4j": {
4 "jdbc": "bolt://127.0.0.1:7687",

5 "user": "neo4j",

6 "password": "1234"

7 }
8 },
9 "log": {

10 "name": "BPI17"

11 },
12 "entity": [

13 {
14 "label": "application_events",

15 "id_column": "ID",

16 "event": {
17 "related_entities": [">applications", ">resources", ">offers"

],

18 "create_from": [

19 {
20 "start_column": "startTime",

21 "end_column": "completeTime",

22

23 "activity": "{ Activity }"
24 }
25]

26 }
27 },
28 {
29 "label": "applications",

30 "id_column": "ApplicationID"

31 },
32 {
33 "label": "offer_events",

34 "id_column": "ID",

35 "event": {

Automated Translation of Event Data from Relational to Graph Databases 85

APPENDIX C. BPI 17

36 "related_entities": [">offers", ">resources", ">offers", ">

offers:>applications"],

37 "create_from": [

38 {
39 "start_column": "startTime",

40 "end_column": "completeTime",

41

42 "activity": "{ Activity }"
43 }
44]

45 }
46 },
47 {
48 "label": "offers",

49 "id_column": "OfferID"

50 },
51 {
52 "label": "workflow_events",

53 "id_column": "ID",

54 "event": {
55 "related_entities": [">workflows", ">resources", ">offers",

">offers:>applications"],

56 "create_from": [

57 {
58 "start_column": "startTime",

59 "end_column": "completeTime",

60

61 "activity": "{ Activity }"
62 }
63]

64 }
65 },
66 {
67 "label": "workflows",

68 "id_column": "WorkflowID"

69 },
70 {
71 "label": "resources",

72 "id_column": "resource"

73 }
74]

75 }

Listing C.1: BPI 17 transformation configuration

86 Automated Translation of Event Data from Relational to Graph Databases

APPENDIX C. BPI 17

C.2 BPI 17 node degree Statistics

node type average stdev max min
Event 3.85 0.54 5 3
Entity 2.35 128.87 138130 0
Entity: application events 0.50 0.50 1 0
Entity: applications 34.44 15.90 176 8
Entity: offer events 1.0 0.0 1 1
Entity: offers 20.60 13.86 134 2
Entity: resources 8002.79 12418.40 138130 14
Entity: workflow events 1.0 0.0 1 1
Entity: workflows 5.54 3.63 118 1
LEvent 1.71 0.45 2 1
LEvent: application events 1.0 0.0 1 1
LEvent: applications 1.97 0.16 2 1
LEvent: offer events 1.0 0.0 1 1
LEvent: offers 1.95 0.21 2 1
LEvent: resources 1.99 0.01 2 1
LEvent: workflow events 1.0 0.0 1 1
LEvent: workflows 1.81 0.38 2 1
Log 0.0 0.0 0 0

Table C.1: Full in-degree statistics for the BPI 17 event graph

node type average stdev max min
Event 0.0 0.0 0 0
Entity 0.0 0.0 0 0
Entity: application events 0.0 0.0 0 0
Entity: applications 0.0 0.0 0 0
Entity: offer events 0.0 0.0 0 0
Entity: offers 0.0 0.0 0 0
Entity: resources 0.0 0.0 0 0
Entity: workflow events 0.0 0.0 0 0
Entity: workflows 0.0 0.0 0 0
LEvent 2.71 0.45 3 2
LEvent: application events 2.0 0.0 2 2
LEvent: applications 2.97 0.16 3 2
LEvent: offer events 2.0 0.0 2 2
LEvent: offers 2.95 0.21 3 2
LEvent: resources 2.99 0.01 3 2
LEvent: workflow events 2.0 0.0 2 2
LEvent: workflows 2.81 0.38 3 2
Log 4466693.0 0.0 4466693 4466693

Table C.2: Full out-degree statistics for the BPI 17 event graph

Automated Translation of Event Data from Relational to Graph Databases 87

	Contents
	Introduction
	Preliminaries
	Event logs
	Relational databases
	Graph databases
	Neo4J
	Patterns and pattern matching using Cypher

	R2PG-DM
	Business process intelligence challenge 14
	Data normalization

	Business process intelligence challenge 17
	Data normalization

	Data Models
	Relational data: required schema and data
	Data model for event data in labeled property graphs
	Model requirements for events and entities in a labeled property graph
	labeled property graph schema as created by R2PG-DM
	Esser's data model for event data in labeled property graphs
	Shortcomings of existing data model
	Design options for improving the data model
	Deciding for a design option
	Final data model for event data in labeled property graphs

	Representing `directly follows' relationships for compound entities

	Data Transformation
	Relational data to labeled property graph
	Transforming labeled property graphs to the event data graph representation
	Defining desired conceptual model
	Creating entities
	Creating events and relating them to entities
	Calculating directly follows relations
	Creating the Log node and relating it to events

	Implementation
	Relational data to labeled property graph
	Implementation of conceptual change
	Query batching and multithreading
	Bug in relationship creation
	Preparing the output data to be used by Neo4J's admin import

	Transforming labeled property graphs to the event data representation
	Configuration
	Creating entities
	Creating events
	Relating entities and events
	Calculating directly follows relations
	Creating the Log node and relating it to events

	Evaluation
	BPI 14
	Event graph exploration
	Event graph properties
	Event graph correctness
	Transformation Performance Statistics

	BPI 17
	Event graph exploration
	Event graph properties
	Event graph correctness
	Transformation Performance Statistics

	Conclusions
	Limitations and future work

	Bibliography
	Appendix
	Example relationship creation of R2PG-DM
	BPI 14
	BPI 14 configuration file
	BPI 14 node degree Statistics

	BPI 17
	BPI 17 configuration file
	BPI 17 node degree Statistics

