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Abstract 

Steam injection is used in industrial applications like fast heating. To be able to understand 
the principles of steam injection better , temperature measurements are performed during 
steam injection in a cross-flow of water. and b..T is determined as the temperature difference 
with the cross-flow. In the measurements, steam condenses close to the injector. The remain­
ing part of the flow field can be described as a single phase jet in cross-flow. Maximum b..T 
trajectories for the jet compare well to the trajectories that are found in literature. 

An interesting feature of the temperature-difference fields is the occurrence of a plume 
of high b..T that is advected with the cross-flow on the side of the injector. This plume is 
observed for high cross-flow temperatures while for low cross-flow temperatures it can not 
be seen. An explanation for the plume could be found in the way the steam condenses. 
For a higher cross-flow temperature the steam pockets penetrate further in the cross-flow as 
observed by Clerx [6]. 

To predict the flow fields for steam injection a model should be developed that is able to 
describe two-phase flow including phase change. An isothermal diffuse interface method for 
two-phase flows with a Van der Waals equation of state is extended with an energy equation 
to incorporate the effects of heat transfer and the energy from phase change. The method 
works well and is able to predict flows for two dimensional test cases. For drop retraction 
and evaporation the model describes the flow as expected . Drop collision simulations are 
dependent on the velocity of the drops but a lso on the heat transfer coefficient. For a low 
heat transfer coefficient the resistance for coalescence is high and drops have been found to 
bounce back for low collision velocities. For higher heat transfer coefficient. coalescence occurs 
as expected. 

The lengt h scale for which the diffuse interface method can be applied is quite small and 
the fluid should be close to its critical point. The test cases can however be used to validat e 
methods that are applicable to larger length scales. 
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Chapter 1 

lntroduction 

Steam injection is aften used in industrial applications. Large amounts of heat can be trans­
ferred to a cross-flow by direct steam injection. The amount of heat that is supplied by a 
steam flow is known. The temperature increase that results from this is therefore not hard 
to compute. This yields only information on the average temperature increase. Locally the 
temperature can increase more because the heat from the steam is not distributed evenly over 
the cross-flow. It is important to obtain knowledge about steam injection when fast mixing 
is required or when high local temperatures need to be avoided. 

In chapter 2 temperature measurements on a steam jet in cross-flow will be described. 
Together with the investigation of the condensation of the steam in the jet and velocity fields 
that are obtained for the same test-setup by Clerx [6] . this gives a complete overview of the 
behavior of steam injection in a cross-flow. 

In chapter 3. a numerical model for multi-phase fiows is developed. The rnethod uses a 
diffuse interface method with the Van der Waals equation as state-equation. Although it can 
only be used for a limited set of cases, it will describe the behavior of a Van der Waals fluid 
quite accurately. Assurning that the Van der Waals equation gives a good approxirnation for 
the state of the fluid. the model can be used to validate future rnodels. 
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Chapter 2 

Temperature measurements on 
steam injection in cross-flow 

Heating is one of the major applications of steam injection in industry. For these applica­
tions, a common requirement is that the temperature rises uniformly. Some applications may 
require that the temperature in the cross-flow does not rise too much locally. To be able to 
fulfill such requirements. It is necessary to obtain general knowledge on steam injection that 
could be applied in future designs of industrial steam injectors. In earlier work by Clerx [6], 
condensation of steam injected in a cross-flow is visualized and velocity fields are obtained. 
For this a test setup was used in which steam can be injected in a cross-flow of water. This 
chapter is concerned with obtaining temperature measurements for the same test setup. 

2.1 Literature review 

In earlier research by Clerx [6] it has been observed that steam condenses quite close to 
the injection point. At lower steam mass fluxes, oscillatory condensation phenomena occur. 
Steam pockets grow and disappear in fairly constant cycles. The shape and size of the steam 
pockets as well as the growth time are observed to be dependent on the steam mass flux, 
G, cross-flow temperature ,Tet, and the cross-flow rate Qet• The penetration depth of the 
steam pockets in the cross flow is observed to be of the order of the injector diameter. The 
pt;netration depth is here defined as the maximum distance the steam travels till it condenses. 

A higher Tet increases both the penetration depth and the cycle time. This can be 
explained by a lower heat transfer rate from the steam pocket to the liquid due to a smaller 
temperature difference. 

G influences the structure of the vapor-liquid interface. For higher G, the interface shows 
more wrinkling. This, according to Clerx [6], implies higher shear and heat transfer rates due 
to the higher relative velocity. The growth time of the pockets becomes smaller for higher 
mass flux. The penetration depth is hardly influenced for high Tet (65 °C) while for low Tet 
(25 °C) the penetration depth is observed to increase slightly for lower values of G. 

The steam pocket shapes that have been observed just before detachment are summarized 
by Clerx [6] for different Tet and Gin figure 2.1. Compared to steam injection without cross­
flow , the penetration depth is smaller fora flow with cross-flow. 

Further from the injector the steam is condensed and there is a single phase flow. The 
flow field in this region shows a jet structure. figure 2.2 shows schematically the test setup 
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Figure 2.1: Impact of steam mass flux. G. and cross flow temperature. Tcf· maximum steam 
pocket shapes at detachment as observed by Clerx [6] 

Steam 
injection--

/ 
. t 

/ 1 y 

1 

-----/ X 

/ 
/ 

/ 

/ 

1 
1 
1 

~ t 
I 

I 

t t t t t t t 

Cross-flow 

/ 

/ 

/ 

/ 
/ 

/ 

Figure 2.2: Overview of the steam injection in a cross-flow as observed in the test setup 
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as used by Clerx with the region of two-phase-flow near the injection point and the region of 
the single-phase jet further from the injection point of the steam. The flow in later region is 
compared with literature on turbulent jets in cross flow. The jets that are found in literature 
are created by injecting a fluid of the same phase in a cross flow. The velocity ratio, r , is 
used to characterize jets in cross flow. The velocity ratio is defined as the square root of the 
momentum ratio J: 

_ Jl/2 _ ( PiU] ) l/
2 

r - - 2 
PctUcf 

(2.1) 

Here pis the mass density and U is the velocity where the subscript j refers to the jet and the 
subscript cf refers to the cross-flow. In our report , the bulk velocities are used to calculate 
the momentum ratios. 

To be able to understand the results form our measurements and it is necessary that we 
describe the structure of single phase jets in cross-flows in more detail. Smith and Mungal 
[16] describe three distinct regions for jets in cross flow. Close to the entrance, there is the 
vortex interaction region. In this region the cross flow, flows around the jet column. A little 
further downstream, the jet develops a counter-rotating vortex pair (CVP). The region in 
which the CVP is developing is called the near field while the region in which the CVP is 
developed is called the far field. Three length scales are used to characterize the jets. There 
is the exit diameter d which is a characteristic length scale for the Vortex interaction region. 
The length scale rd is used to scale the trajectories and the dimensions of the jet. 

Smith and Mungal [16] show that the concentration center lines scale with length scale rd. 
The concentration centerline is defined as the locus of the points with maximum concentration. 
Assuming that the Peclet numbers for thermal and mass diffusion are large, which is a good 
assumption fora turbulent flow , the temperature and concentration center lines will look the 
same as they both function as a passive tracer. The Peclet number for thermal diffusion 
is defined by: Per = L:: and the one for mass diffusion Pem = LJ;. Here L and U are a 
characteristic length scale and a characteristic velocity. o: is the heat diffusivity and D is the 
mass diffusion coefficient. Kamotani and Greber (1972) [9] find that the velocity center line 
penetrates further in the cross-flow than the temperature center line. 

Smith and Mungal [16] inject from a nozzle in a wall. Kamotani and Greber (1972) [9] 
observed that the inlet conditions are important. The trajectories changed about 12 % when 
the injection was done with a pipe intruding the cross-flow. Pratte and Baines [14] are able 
to collapse the centerline profiles with the correlation: 

X (y)m 
rd = A rd (2.2) 

With A=2.05 and m=0.28; y is the coordinate in the cross-flow direction and x is the coordi­
nate in the jet direction. In figure 2.2, the directions x and y are shown. The origin for these 
coordinates is the injection point. Smith and Mungal [16] find values of A =1.5 and m=0.27. 
The difference may be explained by the different injection methods. 

A coordinate along the jet axis, ç, can be defined as the distance traveled along the jet, 
This is shown schematically in figure 2.2. The origin for this coordinate is injection point. 
Smith and Mungal find that the transition from the near to the far field takes place at a 
distance ç = Çt where the transition distance is found to be: Çt = 0.3r2d. 

The concentration decline is found by Smith and Mungal [16] to be ç-1.3 in the near 
field and ç-2/ 3 in the far field. In a log-log plot a clear transition between the near and a 
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far field can be observed. The vortex interaction region shows no decline of concentration. 
This was already observed by Kamotani and Greber (1972) [9]. They report in this region a 
development of the flow from aso called 'potential core' with uniform velocity to a Gaussian 
looking profile with the same maximum velocity. 

Kamotani and Greber (1972) [9] performed measurements for jet-Reynolds numbers in a 
range of R e1 = 2800 to R e1 = 4200. Smith and Mungal [1 6] investigated the influence of 
t he Reynolds number on the center line concentration decay, for Reynolds numbers 8400 to 
33000. Both papers report t hat the Reynolds number is of little importance for turbulent jets 
in cross-flow. 

The internal Fronde number is a measure for t he importance of the buoyancy forces 
compared to the iner t ial forces. The internal Fronde number is defined in Kunudu [11] as: 

1/2 
Fr' = [ Inertiaforce ] 

- B uoyancy for ce 
u 

lll 
(2.3) 

For U t he cross flow velocity is used and for the length l the diameter of the injector is used. 
g' represents the reduced gravity. The reduced gravity for the hot single phase jet can be 
calculated by g' = g/36.T. with f3 t he cubic expansion coefficient . For our measurements the 
temperature difference between the jet and the cross flow. 6..T , is of the order of 5 ° C. The 
internal Froude number is for all our cases of t he order 10 till 100. This means that the effect 
of buoyancy can be neglected in the single phase hot jet . 

The test setup that is used is confined while preseut finings on the t urbulent jets holds for 
unconfined jets. Kamotani and Greber (1974) [10] show that confinement of the cross-flow 
has almost no effect on the flow field for small momentum ratios. For higher moment um ratio. 
t he jet would flow very close to t he wall and could even impinge on it. In that case the flow 
would be affected. But even for the cases where t he jets impinge on the wall t he flow only 
changes close to the wall on which t he jet impinges. 

2.2 Experimental method 

Temperature measurements are performed in the test setup as described by Clerx [6]. The 
test setup is filled with demineralized water. The temperature is controlled with a heater 
and a heat exchanger. An expansion tank. which is connected to pressurized air , is used to 
set t he pressure. An electrically controlled valve that opens when t he pressure exceeds the 
set-point keeps the pressure at 3 bar during t he measurements . The measurement section 
has a square inner cross-section of 30x30 mm 2 . It is optically accessible from three si des. 
The water flows in upward direction trough the section. Before entering the measurement 
section , the water flows through a channel with a ideutical cross-section and a length of 1200 
mm (40Dh). This ensures that a developed turbulent flow enters the measurement section. 
Saturated or slightly superheated steam is injected from the side of the measurement section . 
The steam is injected trough a circular hole wit h a 2 mm diameter. The mass flow-rate of 
the steam is controlled with a combination of a Coriolis mass flow meter and an electrically 
controlled valve. The supply line of the steam is heated to avoid condensation. 

A schematic representation of the test setup is shown in figure 2.3. There a re t hree tem­
perature sensors in the measurement section. The three PT-100 temperature sensors (Class 
A, diameter 1 mm) are put in the measurement section from the side as shown schematically 
in figure 2.4 Here the temperature sensors are depicted with their systematic names. The 
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Figure 2.3: Schematic representation of the test setup 

temperature sensors can slide through the domain due to the adjustable position of the cylin­
der on which the sensors are mounted. The sensors slide in a 40 ° angle to the horizontal. 
Data of the sensors is logged with a PC during the measurements. 

The goal of the temperature measurem'ents is to obtain temperature fields during steam 
injection. To this end, the temperature in the measurement section is measured with the three 
PT-100 temperature sensors at 10 positions in the measurement section. At each position 
the temperature is measured for 2 minutes. Data from the sensors is written to file every 
second. The transient condensation of the steam pockets has a typical time scale in the order 
of milliseconds while the response time of the sensors is in the order of seconds. It is therefore 
impossible to measure instantaneous value of the temperature. The value of .the sensors can 
only be used to obtain results for the mean value of the temperature. 

During the measurements, the settings of the test setup are kept as constant as possible. 
The measured value for the pressure, P,, , Volume flow of the cross flow, Q1 , steam mass flow 
rh , and the temperature of the steam, Tv, deviate not more than 4% from their setpoint. 
The temperature of the cross flow can be kept constant within a range of ±0.5 °C. Due 
to this error, absolute temperature fields would be inaccurate. The temperature difference, 
b..T, defined as the mean difference between the measured temperatures in the measurement 
section and the temperature of the cross flow over the 2 minute time interval, will be used 
to obtain more accurate fields. The temperature as measured with the Pt-100 sensor Tl-104 
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Figure 2.4: Schematic representation of the measurement sectiou 

(Class B. diameter 1.5 mm) that is located 2 m upstream is used to determine the temperature 
of the cross flow. 

The temperature sensors can slide by adjusting the position of the cylinder on which 
they are mounted . The position of the cylinder can not be determined. A camera is used 
to determine the location of the tips of the ternperature sensors for every measurement. 
Determination of the location of the temperature sensor is done manually from the pictures. 
The error in this position can have a value up to the radius of the sensor which is 0.5 mm. 

The PT-100 temperature sensors TI-126. TI-127. TI-128 and TI-104 are calibrated with 
a mercury-in-glass thermometer. A linea r correction is applied on the PT-100 sensors. The 
uncertainty in the temperature for these corrected measurements is 0.1 °C. The calibration 
data is shown in appendix B. 

It is important to investigate the influence of the inserted temperature sensors on the flow 
field . If the flow field would be changed by the sensors this would mean that the measured 
temperature field does not represent the situation without the temperature sensor. PIV 
measurements are performed on the measurement section. No steam injection was present 
during these measurernents. The influence of the sensors on the cross flow was investigated 
by comparing the results with an undisturbed cross-flow. A thorough discussion of the PIV 
measurements can be found in appendix A. It is shown that, upstream, the sensors have no 
influence on the cross-flow. Close to the sensors, the measured flow profile gets disturbed. 
Influence on the flow can be seen downstream of the sensors. The cross-flow recovers. however, 
quite fast from disturbances . The maximum disturbance in the mean velocity that has been 
observed downstream of a sensor in appendix A amounts 20%. 

As there are no upstream disturbances, the sensor TI-128 will give a good indication of 
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Figure 2.5: Temperature-difference field at 25 ° C fora steam mass flow of 1000 g/h and a 
cross flow of 0.95 m3 /h (set 25_e).~T in Kelvin. 

the temperature. The same holds for TI-126. Because the sensor TI-127 is in the wake of 
TI-126, the measured temperature by this sensor could deviate from the temperature that 
would be measured in an undisturbed flow. The cross-flow recovers fast from the disturbance 
that is introduced by the sensors TI-126 and TI-128. This along with the observation that 
the sensors are not placed perfectly in one plane makes us conclude that the temperature that 
the sensor TI-126 measures is still representable for the temperature of an undisturbed flow 
field. It is therefore chosen to use the data from all sensors in the analysis of the temperature 
fields. An overview of all sets of measurements and their settings can be found in appendix 
C. 

2.3 Results 

Several sets of measurements are performed. From the data of a set of measurements, a 
temperature-difference field can be created in which the temperature difference, ~T, is plotted 
as function of the coordinates x and y. In figure 2.5 one of the temperature-difference fields 
is shown. The positions of the sensors are depicted by the dots. An interpolation spline is 
constructed through these points using the Matlab standard function 'tpaps'. This yields a 
smooth surface through the data points. A more elaborate discussion of the function 'tpaps' 
can be found in appendix D. In the temperature field in figure 2.5, a jet can be seen. The 
jet has a higher temperature than the surrounding cross flow. Similar jets are observed for 
all data sets. 

The location of a measurement is the center of the temperature sensor tip. This location 
is determined manually from a picture of the measurement section during the measurement. 
The error made in this evaluation amounts up to half the diameter of the sensor. This 
introduces an expected error in the recorded positions that is: E:position = ±0.5 mm. 

The measurements for each point is carried out for two minutes at every position. Figure 
2.6 shows a typical sensor output for a temperature measurement. The output of the three 
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sensors in the measurement section ; TI-126 , TI-127, T-128 and the sensor upstream in the 
cross-flow; TI-104 is shown. The temperature is measured every second. We now define the 
instantaneous temperature difference by: 

(2.4) 

Here Tms is the temperature in the measurement section as measured by one of the sensors 
TI-126 , TI-127 or T-128 and Tcf is the temperature in t he cross-flow as measured by sensor 
TI-104. The standard deviation in óT can be estimated from the signal in figure 2.6 as: 

(2.5) 

n in represents the number of measurements: n=120. i indicates t he time step over which is 
summated. 6-T is defined as the mean of óT: 

(2.6) 

The standard deviation. a 8T· is computed for the signals in figure 2.6 for all sensors in the 
measurernent section. For the three sensors. Cl8T is approximately 0.09 K. Assuming an 
independent measurement every second. the mean temperature 6-T can be calculated more 
accurately. The standard deviation in the mean 6-T can be estimated by: 

(2.7) 

For our two minute measurernent , a t:,T is calculated to be 0.008 K this is a qui te small value. 
This shows that the small t ime scale fluctuations in the signal have little effect on the mean 
value. 

From this analysis it looks as if the temperature is measured very accurately. A limi ting 
factor for the accuracy of the sensors is however the discrete reading of the sensors ( nearest 
scale division: 0.1 K) and possible systematic errors. These two sources of errors are evaluated 
by analyzing the results from an isothermal run at approximately 25 °C. This run was carried 
out during the PIV measurements as described in appendix A. During this run there is no 
steam injection but the cross-flow is present. The 120 minute run is cut in 60 time intervals 
of 2 minutes. For each interval. !:::,.T is calculated according to formula 2.6 . We now have 60 
values for 6-T for each temperature sensor in the measurement section. 

From this data set of 60 values for 6-T , The mean value , µ1::,r, is a measure for systematic 
error at this temperature. Similar, from these 60 values of 6-T, the standard deviation, D.1::,r , 
approximated. This gives an indication of the random errors in the values of 6-T. The 
formulas for these variables are: 

(2.8) 

and. 

(2.9) 
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Figure 2.6: signal of the temperature sensors during one of the measurements with a cross 
flow temperature of approximately 25 ° C (25_e). 

Table 2.1: Calculated mean value and standard deviation for 6.T from 60 time intervals 
during an isothermal run 

TI-126 TI-127 TI-128 
µt:,.T [KJ 0.0042 -0.0140 0.0692 
Ot:,.r [KJ 0.0206 0.0400 0.0589 
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Here m is the number of measurements; 60 in our case. j is the index of the two minute 
measurement. The values of µ6.T and 0,6.T as calculated from the isothermal run are shown 
in t able 2 .1. 

The largest µ6.T that is found for the sensors approximately 0.07 K while for 0,6.T this is 
0.06 K . As the mean value of 6T should be zero for the isothermal run , µ6.T counts as an 
systematic error. The value of 0.t..r is much higher than the value of Cl ó.T· In general , these 
two values should be the same unless the n measurements that are used to compute 6T are 
not independent . We must however remember that we are dealing here with a discrete signal 
that has a discrete reading that is in the order of the flu<:tuations. Slow fluctuations ( order 
of minutes) in the cross-flow temperature cause high random errors in the calculated 6T. 

It is assumed that random and systematic errors as calculated for the isothermal run 
are also present in the measurements that are used to obtain the temperature fields. so. 
neglecting. Cl ó.T , the total error in temperature can be found by adding up the values for µ6. T 

and 0,6.T · We estimate the error in 6T therefore to be: ET ernperature = 0.13 K. 

2.4 Analysis 

Temperature-difference fields are obtained for three different settings of the cross-flow tem­
perature. The described ternperature-difference field from figure 2.5 is a typical example of 
how the temperature field looks like for a cross-flow with a temperature of 25 °C. Figure 2.7 
shows the 6T for a set of measurements that is performed with a cross-flow of 65 °C but 
otherwise the same settings. The same jet is present but 6T is lower. There is now a plume 
of high 6T on the left side of the domain. For the sets of measurements that were performed 
with a cross-flow of 75 °C. 6T of the jet is even lower and t::..T of the plume is higher. This 
shows that a large portion of the heat that is supplied by the condensing steam is transferred 
to the cross-flow close to the steam injection point. Although the ternperature of the jet is 
different for the figures 2.5 and 2.7. the trajectories of the jet center line look the same. 

In figure 2.8 three temperature-difference fields are shown with different injection speeds 
but equal momentum ratio. 6T is not the same for the different temperature fields . The 
shape of the jet is however qui te similar. The same is observed for other momentum ratios and 
temperatures of the cross-flow. Higher momentum ratios lead to an increasing penetration 
depth of the jet. The Cross-flow temperature seems to have only a minor effect on the 
penetration depth of the jet. 

In the remainder of this section .. the phenomena that are described here are investigated 
further . 

2.4.1 Jet temperature center line 

The temperature measurements are performed along three lines. Each sensor is translated 
along a line with an angle of 40 ° to the horizontal during a set of measurements. The highest 
local maximum along these lines is determined. The location of this maximum represents a 
point on the jet centerline. 

The locations on the centerline are shown in figure 2.9, 2.10 and 2.11 for measurements at 
25 °C. 65 °C and 75 °C respectively. Locations from the same temperature field are connected 
by a line. Each temperature field is represented by its unique combination of line style, marker 
type, and color. The meaning of the different attributes is explained in table 2.2. This way of 
depicting the data for the different temperature fields is used in the remainder of this chapter. 
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cross flow of 0.95 m 3 /h (set 65_e). i::J,.T in Kelvin. 

0.04 
4 

0.035 3.5 

0.03 3 

2.5 

2 

1.5 

0.01 

0.005 0.5 

00 0.01 0.02 

X [m] 

i::J,.T 0.04 4i::J,.T 
3.5 

2.5 

1.5 

0.5 

0.04 

0.04 
4 

3.5 

3 

2.5 

2 

1.5 

0.5 

~T 

0.04 
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Table 2.2: systematic indication of the measurement sets 

Color blue red green 

Tc1[K] oc 25 65 75 

Marker type 0 t> □ 
Steam mass flow [g/h] 500 1000 1500 

Line Style ----
J 15 57 125 
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Figure 2.9: Jet temperature center lines at 25 °C for several combinations of momentum ratio 
and and steam mass flow 

Three kinds of errors play a role in determining the temperature center lines. 
First , the location of the sample points is known with an accuracy of E.posit.ion = ±0.5 mm 

as described in section 2.3. 
Second. there is only a limited number of sample points in a temperature field . The 

temperature field is determined with an interpola tiou spline. Supposing that th is method can 
be compared with a linear interpolation. the maximum difference between estimation and t he 
real profile would for a second order profile be half of the grid spacing. for our experiments 
this would be an error of E.dicret.isation = ± 1.4 mm. 

The last source of errors is introduced by the error in the temperature measurements. It 
was predicted in section 2.3 that the standard deviation in the value of !:).T for one of the 
sensors amounts 0,.6.T = 0.06 K. To estimate the error in the position that this standard 
deviation causes. E.t emp2distance · we need to find a length scale that corresponds to this error. 
Half the width of the part of the jet is taken. that has a temperature that lies within 0.06 K 
of the maximum calculated temperature. This error is thus different for a ll measurements . 

Together these three kinds of errors have been used to construct the error bars on the 
plots of the center lines. The total error is determined as: 

E. cen terl ine = E.~osition + E.~iscretisat.ion + E.Zemp2distance (2. 10) 

The figures 2.9 , 2.10 and 2.11 show that sets of measurements with the same momen­
t um ratio. J , have almost the same temperature centerline trajectories. Jets with a higher 
momentum ratio penetrate further in the cross-flow. a outlier can be seen in figure 2.11. 

The coordinates x and y can be scaled with rd according to formula (2.2). The scaled 
plots for the measurements with cross-flow temperatures 25 °C and 65 °C are presented in 
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Figure 2.12: Dimensionless center line trajectories at 25 ° C and 65 ° C 

figure 2.12. The sealing collapses the measurements with different mornentum ratios towards 
a line that has the form of (2.2). We can determine the values for the parameters A and 
m with a least squares method with the Matlab curve fitting tool. Based on the all data 
points in figure 2.12. A =l.3 and m = 0.3 . This is close to the values that Smith and Mungal 
[16] found. The difference can be caused by the different inlet conditions . For single phase 
measurements the inlet conditions are observed to influence the trajectories of the centerline. 
Thus for steam injection, the trajectories are expected to be different . It can be concluded 
that the temperature trajectory of the jet induced by the steam injection can be approximated 
quite well by single phase jets in cross-flows as found in literature. 

2.4.2 Jet maximum Temperature 

The maximum value for b,,.T at the jet center line can be determined for all temperature 
fields. This maximum value for 6.T can be lower than the temperature that is observed in 
the plume. As discussed in section 2.4.1 the value is evaluated along the lines of measurement 
and a local maximum is obtained. 6.Tmax is plotted as function of the distance along the jet 
axis: ç. The value of ç is estimated by integrating the fit for equation (2.2) for the center 
lines as determined in section 2.4.1 till it intersects the line of measurement. The results are 
shown in figure 2.13. The figure clearly shows t hat the temperature of the cross-flow bas 
a large impact on 6.T. A higher cross-flow temperature decreases 6.'I'inax · Further more it 
can be seen that an increase in steam flow at a constant momentum ratio increases 6.Tmax· 
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Figure 2.13: Temperature difference b..T at the center lines against the distance along the jet 
axis ç 

Increasing momentum ratio also increases b..Tmax• 
In figure 2.13 a log-log scale is used to compare the decay with the one found by Smith 

and Mungal [16]. b..T max is supposed to be proportional to çn with n = -1.3 in the near field 
and n = -2/3 in the far field. The transition from the near to the far field is expected at 
Çt = 0.3r2d according to Smith and Mungal [16]. For the cases with J = 15 the transition 
is predicted at Çt = 0.009. These center lines should be in the far field. For J = 57 the 
transition is at Çt = 0.034. The transition is thus in the domain that is plotted. Finally for 
J = 125, the transition ought to take place at Çt = 0.075. These lines should therefore exhibit 
the behavior as expected in the near field. 

In figure 2.13 two lines with n = -1.3 i and n = -2/3 are plotted for comparison. The 
measurements are too inaccurate and the number of measurements is too low to distinguish 
between the values of n in the near and the far field that is expected. On the basis of the 
figure , it can be observed that n = 1 ±0.5. This doesn't contradict the observations by Smith 
and Mungal [16] 

The expected error in b..T; éTemperature = 0.13 K, is indicated in the figure by the error 
bars. The error bars for small b..T are stretched because of the logarithmic scale. 
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Figure 2.14: Velocity fields obtained with PIV measurements by Clerx [6]. The absolute 
velocity is scaled with the bulk velocity of the cross-flow. 

2.4.3 Comparison with velocity fie lds 

PIV measurements have been carried out by Clerx [6] to obtain the velocity profiles for 
conditions similar to the ones from the temperature measurements. The resulting velocity 
fields for a steam mass flow , m. = 1000 g/m and an momentum ratio, J = 57 are shown in 
figure 2.14 fora cross-flow temperature of 25 °C and 65 °C. Like for the temperature-difference 
fields, a jet is clearly visible . The veloc:ity is not higher on the left side of the domain. This 
is a difference with the temperature-difference field for high cross-flow temperatures. 

In figure 2.15, the center lines for b.T and veloc:ity are plotted fora cross-flow temperature 
of 25 °C, a mass flow-rate, m, of 1000 g/h and various momentum ratios. The temperature 
center lines do not penetrate as <leep in the flow as the velocity center lines. The difference 
is smaller for higher momentum ratios. The difference between the velocity and temperature 
trajectories is also observed by Kamotani and Greber (1972) [9]. 

2.4.4 The plume 

An interesting feature of the temperature-difference fields is the high temperature difference 
with t he cross-flow, b.T, that occurs on the left side in some of the fields. As there is no velocity 
increase coupled with this phenomenon, it is called a plume in the following. In the figures 
2.16 and 2.17 the fields for a cross-flow of 25 °C and 65 °C respectively are plotted ordered 
by steam mass-flow-rate and momentum ratio. With these figures , a qualitative analysis 
of the plume can be made. For a cross-flow temperature of 65 °C, a plume is visible for all 
temperature-difference fields. For the fields at 25 °C, only a very small plume can be observed 
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Figure 2.15: Comparison between the velocity center lines (red) and the temperature­
difference center lines (blue) for cross-flow temperature 25°C and rh 1000 g/h. momentum 
ratios, J , for the trajectories are indicated in the figure. 

for low steam mass flow-rate. It can thus be concluded that the cross-flow temperature is 
the most important parameter, affecting the development of a plume. A possible explanation 
for the plume can be found in the way the injected steam condenses and interacts with the 
cross flow locally near the inlet. Clerx [6] describes the influence of cross-flow temperature 
and steam mass flux on the condensation of steam. Observations by Clerx are summarized 
in figure 2.1. For higher cross-flow temperature the penetration depth of a steam pocket is 
higher. The penetration depth of a steam pocket is defined here as the maximum distance the 
steam travels until it condenses. For a higher penetration depth, the evaporation occurs for 
a larger portion on the side than on the front of the steam pocket than is the case for a lower 
cross-flow temperature. It is assumed that this condensation on the side releases more heat 
to the cross flow. This causes the plume. Less heat is contained in the momentum carrying 
jet so b..T becomes lower. In figure 2.1 it is shown that a low steam mass flow also increases 
the penetration depth of the steam pockets but the effect of this parameter is not as strong 
as the cross-flow temperature. This influence of the steam mass-flow-rates on the penetration 
depth of steam pockets explains the small plumes that are observed fora steam mass flow of 
500 g/h for a cross-flow of 25 °C. 

A more thorough investigation of the correlation between the penetration depth of the 
steam pockets and the existence of the plume would require temperature measurements at 
the left wall and a zoom-in on the injection point. 

For completion, the temperature-difference fields for a cross-flow of 75 °C is plotted in 
figure 2.18, for this cross-flow temperature, the plume is even more dominant than for the 65 
oc. 
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Figure 2.17: Temperature-difference Fields at 65° C The figures from left to right and from 
top till bottom show the measurement sets 65_a till 65_i. Coordinates are x and yin m while 
the field values represent b..T [K]. 
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Steam mass flow = 500 [g/h] Steam mass flow= 1000 [g/h] Steam mass flow = 1500 [g/h] 

0 .04 
2 

0.04 
2 

0 .04 
2 

0 .03 1.5 0 .03 1.5 O.Q3 1.5 l[) 

Il -, 0 .02 • 0 .02 . 0.02 • . 
0.01 0.5 0 .01 0 .5 0.01 0 .5 

00 0 .01 0 .02 0 .03 0 .04 00 0 .04 00 0.02 0.04 

0 .04 
2 

0.04 
2 

0.04 
2 

l[) 
0 .03 1 .5 0 .0 3 1 .5 0 .03 1.5 

l[) 

Il -, 
0 .02 • 0 .02 • 0 .02 • 

0 .0 1 0.01 0 .5 0.01 0.5 

00 0 .01 0 .02 0 .03 0 .04 00 0.01 0 .02 0 .03 0 .04 00 0.01 0 .02 0 .03 0 .04 

0.04 
2 

0 .03 1.5 
l[) 

N 

Il 0.02 . -, 

0.01 0 .5 

00 O.ûl 0 .02 0 .03 0 .04 

Figure 2.18: Temperature-difference Fields at 75° C The figures from left to right and from 
top till bottom show the measurement sets 75_a till 75_i. Coordinates are x and y in m while 
the field values represent b.T [K]. 
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Chapter 3 

N onisothermal simulation of two 
phase flow with a diffuse interface 
model 

For predicting the steam injection, a tool should be developed that is able to predict the 
flow consisting of water and steam including phase change. To make some first steps in 
the direction of such a model, a diffuse interface model for multi-phase flow is developed by 
Pecenko [15]. In this model the fluid is modeled as a Van der Waals fluid and surface effects 
were described as a function of the density gradient. DIM poses some requirements on the 
thickness of the interface that can be modeled. Because the interface thickness is lager near 
the critica! point, ethane is modeled instead of water because at room temperature it is close 
to the critica! point. In the model that is developed by Pecenko [15], no energy equation 
is present. In this chapter the model by Pecenko is extended with an energy equation and 
tested. This makes it possible to model the temperature effects, needed for a full description 
of multi-phase flows 

The model that will be developed here is not meant as a ready tool for predicting steam 
injection. Rather, it is meant as a means of verifying new methods. Due to its form that 
describes the interface as a continuum with a large density gradient, the diffuse interface 
model that will be developed here will accurately describe the two phase behavior for some 
simple cases. Future tools that are able to describe more complex flows, with less stringent 
requirements on the thickness of the interface have still to be developed. These tools can be 
validated by the simple test cases presented in this chapter. 

3.1 Diffuse interface method 

To appreciate the strong and weak points of a diffuse interface method better it is easiest 
to compare it to its counterpart: a sharp interface model. In a sharp interface problem 
the fluid interface is modeled as a moving boundary with interfacial boundary conditions. 
Surface tension is modeled by a stress boundary condition. Boundary conditions for velocity 
are also applied. Mass transfer due to evaporation or condensation can also be described by 
interface boundary conditions. A method that works much like a free boundary model is the 
Volume of Fluid method as described by Liew [13]. VOF uses volume fractions to distinguish 
between phases. Although boundary conditions are included as a volumetrie source term 
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m the governiug equation they are clearly modeled from a sharp interface viewpoint . An 
advantage of VOF is that interface can be modeled by one or a few cells , regardless of the 
physical thickness that an interface would have under the given circumstances. This means 
that situations with very small surface thicknesses compared to the typical length scale can be 
modeled with VOF without a problem . For the application of VOF. free boundary conditions 
are necessary. If the free boundary conditions are specified wrong, this will off course lead to 
errors. The Diffuse interface method has the advantage that it avoids the need to apply these 
free boundary conditions. 

In the diffuse interface method . the two phase system is modeled as a continuum without 
interfaces . An order parameter ( densi ty in our case) distinguishes between the two faces. 
Surface effects are dependent on the gradient of the order parameter. All other properties 
are correlated to the order parameter with a state equation and the proper thermodynamic 
relations. An advantage of this way of describing the fluid is that it does not involve that 
many approximations and assumptions. In DIM the physical interface should be captured 
with at least a couple of cells. This limits the use of DIM to cases with a small dimension 
and a thick interface. For this reason. DIM only functions close to the critica! point. 

3.2 The governing equations 

To use the diffuse interface method , a set of equations is obtained that describe the behavior 
of the fluid in all possible states. The governing equations for the conserved quantities will 
be described first. Conserved quantities are mass, momentum and energy. The conservative 
equations differ from the ones for a single phase flow. Additional terms related to surface 
tension and surface energy are present. In diffuse interface methods. a state equation should 
be used t hat is accurate for both gaseous and liquid state. Relat ions between the density. p. 

specific internal energy. e, pressure. P and temperature. T , are based on the Van der Waals 
equation of state. 

The mass, momentum and energy equation have a form that looks simila r to the single 
phase equations. The mass density pis used to distinguish between gas and fluid phase. The 
extra energy and stresses due to the occurrence of surfaces are thus dependent on t he gradient 
of p. The governing equat ions are written in conservative form so they can be used in a finite 
volume met hod easily. The conservation of mass can be described by the continuity equation 
for a compressible fluid: 

Öp 
öt + 'v . (pu) = 0 

Conservation of momentum is given by: 

äpu 
-
8 

+ 'v · (puu) = 'v · (d + T ) 
t 

(3.1) 

(3.2) 

This is equivalent to the usual momentum equations but with an extra stress tensor T . This 
is the so called Korteweg stress tensor and it models the surface forces. d is the well known 
deformation stress tensor. The pressure gradient is included in T. If we assume that there is 
no internal heat source, then the total energy equation becomes: 

ä(pE) . -- + 'v · (pEu) = 'v · (u · (d + T)) - 'v · q - 'v · JE 
ät 
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With: 

(3.4) 

Here in addition to the bulk internal energy, e , and the kinetic energy, a third form of energy 
is included. This is the surface energy and it is proportional to the density gradient squared. 
The constant, KE is the gradient internal energy coefficient. As can be seen there is energy 
transfer due to both viscous, d, and surface forces , T acting on the fluid . Another means 
of energy transfer is by conduction with flux q. The third energy flux , jE is a nonclassical 
flux that follows from the requirement that entropy of the system may not decrease and it is 
known as interstitial working. It can be viewed as an extra surface effect. 

The equations for mass, momentum and energy can be found in Anderson and McFadden[l]. 
They are not in conservative form yet. Pecenko [15] has written the mass and momentum 
equations in conservative form. The energy equation can easily be written in the above form 
as is shown in appendix G. 

The above equations need constitutive relations to complete the model. The heat flux is 
given by the Fourier law as 

q = -k"vT (3.5) 

Here k is the thermal conductivity of the fluid. For the deformation tensor , a Newtonian 
model with the Stokes assumption is used: 

(3.6) 

The Korteweg stress tensor T consists of the well-known pressure and some terms that de­
scribe the surface forces as a function of the mass density and its derivatives: 

(3.7) 

In this way p fulfills the role of the order parameter by relating surface effects to changes in 
its values. Kis the gradient energy coefficient. Anderson and McFadden (1996) [2] show that 
Kin the Korteweg tensor can be replaced by Ke for reversible surface effects and a constant 
gradient energy coefficient. They show that the non-classica} heat flux takes the form: 

(3.8) 

This term ensures that entropy is not decreasing. We make the heat conductivity k and the 
viscosity µ dependent on the mass density in the following way: 

(3.9) 

(3 .10) 

This choice is arbitrary. It was chosen like this to account for the higher heat conductivity and 
viscosity in the liquid phase. More advanced models could also take into account temperature 
effects. The value for K has to be held constant because this is one of the conditions for the 
derivation to be valid. Obviously the set of equations is not complete yet. An equation for the 
pressure and the temperature will be derived from state equations. To do this, a relation for 
the internal energy of a Van der Waals fluid has to be found. This will be described next. It 
can be seen that the gravity force has not been taken in account. Gravity related phenomena 
are neglected. The length scales that are used here will be too small for gravity to play a role 
in the physical behavior . 
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3.2.1 An approximation of the internal energy for a fluid described by a 
Van der Waals equation of state 

The pressure of a fluid can be expressed as a function of the mass density and the temperature 
by the Van der Waals equation. According to the CRC handbook of chemistry and physics 
[12] the Van der Waals equation reads: 

(3.11) 

For the pressure. the following equa tion now holds: 

RT a RT a 2 
p = --- - -- = ---p - -p 

!VJ V - b ]1;[2,/2 !VJ - bp M 2 (3.12) 

A general expression for the internal energy is derived in Çengel [5] based on the Gibbs 
relations and the Maxwell relations: 

(3.13) 

If one uses the pressure according to the Van der Waals equation in the second part of the 
right hand side of the equation for the internal energy this term becomes: 

1v2 [ ( äP(T v)) ] 1v2 
a a a T ai -P(T,v) dv= M 2 2dv= M 2(-1/v2+l/vi)= M 2(p1-p2) 

111 V 111 V 

(3.14) 
In Çengel [5]. a gene ral relation for the specific heat of a su bstance for constant volume. Cv . 

can be found: 

Öcv I ä
2PI 

äv T = T äT2 v 

Substituting the Van der Waals equation in this forrnula yields: 

OCv 1 = O 
OV T 

(3.15) 

(3.16) 

The specific heat will thus depend on temperature only. This is different form what is observed 
for real substances. For real substances Cv tends to differ between the two phases. Other state 
equations rnight be able to present a better dependence of the specific heat on the density. 
For low mass density and high temperature. the Van der Waals equat ion approximates an 
ideal gas. lt is reasonable to expect that for low densi ty, the specific heat can be modeled by 
that of an ideal gas. Like the specific heat of a Van der Waals fluid , that of an ideal gas only 
depends on temperature. As there is no dependence of Cv on the density fora Van der Waals 
gas, the specific heat of the Van der Waals fluid will be the same as that for an ideal gas. If 
one makes the assumption of a constant specific heat, the temperature can be written as a 
function of internal energy and density. 

l a 
T =To+ -(e - eo) - - 2-(po - p) 

Cv M Cv 
(3.17) 

The subscript O indicates a reference state. This state can be chosen arbitrarily. For our case 
the critical point is chosen because fluid properties at the critical point are well known. 
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Figure 3.1: Physical properties of a Van der Waals fluid near the critica! point at con­
stant temperatures. For the properties of the fluid , those of ethane have been chosen: a = 
0.558Pam6mol-2 , b = 6.5le - 5m3moz-1, M = 0.03, kg/mol , Cv= 1489.7 Jkg- 1r-1, To= 
305.5K, Po= 203.2kgm-3 

For ethane the Van der Waals constants and the molar mass can be found in The CRC 
handbook of chemistry [12]. The specific heat has been chosen as the specific heat for the 
ideal gas at 300 K. The physical behavior near the critica! point is shown in figure 3, l. A two 
phase region is present. For certain values of the pressure and temperature there is no unique 
corresponding value of the density. For temperatures closer to the critica! point the two phase 
region becomes flat and at the critica! temperature the two phase region disappears. In figure 
3.lb the effect of isothermal evaporation can be seen. At a single value of the pressure the 
internal energy can make a jump toa higher level. This shows the effect of evaporation. 

3.3 The N umerical method 

In the previous section the governing equations have been discussed. The system consists of 
partial differential equations in conservative form , (3.1) , (3.2) , (3.3) , and two algebraic state 
equations, (3.12) ,(3.17) . There are a couple of unknown variables; p,p, e, T and a velocity 
component for every spatial dimension. The system is closed as there are as many unknowns as 
equations. In appendix F the system of equations is written for two dimensions. A numerical 
method can be used to calculate the time dependent solution, provided that we specify initia! 
conditions. In the simulations that are presented in the remainder, initia! conditions for p, T 
and u are specified. The conservative form of the equations makes it possible to apply a finite 
volume method without adaptations to the system of equations. A cell centered formulation 
of the Finite volume method is used. We use a two dimensional simulation for the bulk of 
our simulations. This means that the grid points represent the center of a quadrilateral cell. 
Spatial discretisation in this form reads: 

(3.18) 
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Here Ui,j represents the vector of conserved variables in the grid point (i,j) while F(U) and 
G(U) are the vectors of the fluxes in x and y direction. These flux vectors are determined by 
discretizing the part of the differential equations that is bebind the divergence operator at the 
edges of the quadrila teral cells . For the two dimensional equa tions as described in appendix 
F .. The flux F(U) is equal to the terms that are differentiated with respect to x. For G(U) 
the same holds but now for the terms that are different iated with respect to y. The values of 
t he variables at the edges of the cell are found by a second-order accurate interpolation. 

1 
'lli+½,j = 

12
(-'lli - l ,j + 7 'lli,j + 7 'lli+ l ,j - 'lli+2,j) (3.19) 

The first and second order derivatives are discretized in these points by: 

(3.20) 

[J2-ul 
8_,r;2 ·i+ ½,J 

(3 .21 ) 

A time integration method is needed to evaluate the left hand side of equation (3.1 8) . 
The p/ p plot has a negative compressibility in a part of the domain. This compressibility 
is un-physical. In this regiou. a small perturbation would lead to phase separation. This 
intrinsic instability could lead to numerical instabilities . To increase the stability. A Total 
Variation Diminishing Time integrat ion scheme is used. Shu and Osher [17] show that such 
a scheme can significantly increase stabili ty. A third-order accurate TVD-Runge-Kutta time 
scheme algorit hm is used as described by Cockburn and Gau [7]. By denoting t he r .h.s . of 
3.18 as A(U) i ,j the time integration scheme reads 

u (n) + 6.t A(u(nl)i .· 
1.,J ,J 

~u(n) + ! [u(l) + 6.tA(U(l ))i ·] 
4 î,J 4 1.,J ,] 

! u (n) + ~ [u(2l + 6.t A (u (2))i -] 3 î ,J 3 1,,J ,J 

(3 .22a) 

(3.22b) 

(3.22c) 

The pressure and the temperature are updated every stage using the algebraic state equa­
tions (3 .12)and (3.17). 

3.4 One-dimensional simulations 

A one dimensional simulation of the model is performed to check the behavior of the simula­
tions and to compare it to an analytical analysis. The behavior of the simulations is compared 
with aso called 'isothermal model ' . This later model has no equation for the energy. Rather 
than calculating the temperature from an energy equation , the temperature is assumed to be 
const ant. In this model the only unknowns are p, u and p. The continuity equation (3.1) , 
momentum equation (3.2) and the Van der Waals equa tion (3.12) are the only equations in 
this model. Simulations with this model have been carried out by Pecenko [15]. The total 
model as described in section 3.2 will in the remainder be denoted by the 'non-isothermal 
model' . 
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The initial density is chosen in the unstable regime. A small initial disturbance will grow 
exponentially in time. The analytical behavior for both the isothermal and the non-isothermal 
model can be compared. First the governing equations are linearized around the reference 
state in the unstable region by the following substitutions. 

p(x, t) =Pi + tp exp(i( f3x - wt)) (3.23) 

u(x, t) = tûexp(i(f3x - wt)) (3.24) 

and 
T(x, t) = Ti + tTexp(i(f3x - wt)) (3.25) 

Here Pi and Ti represent the initial mass density and temperature. The perturbation param­
eter E is chosen small such that linearization is justified. i is the imaginary unit , f3 is the 
real wave number and w is the complex angular frequency. A positive imaginary part of w 
indicates a growing amplitude while a negative imaginary part yields a decreasing amplitude. 
The relation between f3 and w for a set of equations can be found by removing all terms from 
the equation that are not linear in E. This leads to a solution of the form. 

,exp(i(/Jx - wt) )A(/J, w) [ ; ] = 0 (3.26) 

For the equation to hold the determinant of the matrix A should be zero. Calculation of 
the determinant yields an expression for w. For the isothermal model, the zero determinant 
condition leads to a quadratic equation for w: 

2 4. 2 2 4 w + 3wif3 w - a/3 - PiK/3 = 0. (3.27) 

As before, the subscript i is used to indicate the value of a property at the initia! state. The 
kinematic viscosity v is used. 

a - (Öp) - Öp T ,i 

is used to simplify the written equation. a represents a measure for the compressibility of the 
fluid at constant temperature. 

In the unstable part of the phase diagram, one of the solutions for the angular frequency 
has a positive imaginary part. This means that the perturbation will grow exponentially at 
first. After a finite time, perturbations become larger and the linear equation doesn't hold 
anymore. 

The extra equation for the Temperature that is present in the non-isothermal case leads 
toa more complex relation for w. The equation is now cubic: 

( 2 4 · /32 /32 4) ( . 2) Ti 2 2 w + -
3

wi w - a - PiK/3 CvPiW + iki/3 - -( w/3 = 0. 
Pi 

(3.28) 

with 

(= (Öp) .· 
äT p,i 
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Figure 3.2: Imaginary part of the complex angu lar frequency for the most unstable eigen 
mode. The solid line represents the 'isothermal ' case, The dotted line represents the 'non­
isothermal' case 

Note that the first term between parentheses is the determinant in the isothermal case. 
It follows that when either the specific heat Cv or the heat conduction coefficient ki is very 
large, the stability behavior of the non-isothermal and isothermal cases is the same. This is 
not surprising, since a large specific heat or a large heat conduction coefficient both lead to 
approximately constant t emperature. Also when ( is small the pressure is hardly influenced 
by a change in temperature and the equation for temperature is effectively decoupled from 
the other two equations. 

In most situations, the last term in (3.28) is irnportant and a difference between the 
stability analysis can be observed between the isothermal and the non-isothermal situation. 
For specified fluid properties and initia! conditions a stability analysis can be made by plotting 
the highest imaginary part of w as function of the wave number. In figure 3.2 this has 
been plotted for an isotherrnal and a non-isotherrnal model for an ethane-like fluid with a 
temperature close to the critica! ternperature and an initia! density c:hosen in the unstable 
region of the phase diagram. 

As is clear from the figure, both cases have an unstable mode. According to the equations, 
the most unstable perturbation for the isothermal model grows 100 times faster than the non­
isothermal one. One dimensional sirnulations have been performed to verify this behavior. A 
simulation with an initia! density in the unstable region as desc:ribed in appendix Eis chosen. 
The density has an initia! perturbation. The behavior of both the isothermal and the non­
isothermal response to the perturbation is shown in figure 3.3. The growth of the initia! 
disturbance is much faster for the isothermal simulation (there is a factor 100 difference in 
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Figure 3.3: Phase separation for a one dimensional simulation that starts from a perturbed 
instable initial density ( dotted line). The mass density profile is shown for some random time 
steps for both isothermal and non-isothermal model. 

simulation time). Also coalescence of the initial 'drops' evolves much faster for the isothermal 
simulation. At the final time step, the isothermal simulation shows a single drop at the right 
side of the domain while the non-isothermal simulations has still two drops that show no 
tendency to merge. Taking in account the energy equation thus makes the phase separation 
process slower as shown analytically. It also seems to prevent movement of the drop interfaces 
trough the fluid. From a physical point of view this can be understood. In the isothermal 
case, for an interface means that locally the density has to change. This can be induced by 
a difference in mass flowing to the interface from one side and the mass that flows out on 
the other side. A drop that consists of two interfaces in one dimension can thus propagate 
easily throng the domain by fluid flow induced by surface forces. The same propagation of 
the interface for the non-isothermal model would also require the density to change locally. 
But the compression of the fluid would lead to a higher local temperature and pressure. 
The movement of the interface would thus be counter-acted by a pressure rise. For a one 
dimensional simulation this restricts movement of the drops quite severely. 

A one dimensional condition with a specified wave number is performed to validate the 
numerical method. Growth rate at small amplitudes is compared to the predicted value based 
on the value for w that is calculated with equations 3.27 and 3.28. The growth rates calculated 
from the simulations correspond very well to the ones predicted by the analytica! expressions. 
A description and the results of these simulations can be found in appendix H 

3.5 Two-dimensional simulations 

Two dimensional simulations have been performed for several phenomena involving liquid 
drops in gas. The non-isothermal model as described in section 3.2 is implemented with the 
numerical method that is explained in section 3.3. A square domain with a Cartesian grid is 
used. Symmetry boundary conditions are implemented on all four edges of the domain. The 
initial condition for the cases we present here is symmetrical in both horizontal and vertical 
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Figure 3.4: Mass density profile. p [kg/ m3 ] for the drop retraction simulat ion for a 4002 grid 
( case Mb). The density field is shown at the initial state, a , intermedia te state, b , and fin al 
state . c. 

clirection . Because t he solution is assumed to remain symmetrical the simulations have been 
performed on a quarter of the domaiu saving c:omputat ional time. Three types of phenomena 
are presented here. In the drop retraction problem the initial solut ion is an ellipt ical drop . 
The drop evaporation problem starts from a circular drop but here the temperature of the 
surrounding gas is higher t han that of the drop. In the drop c:ollision case two drops of the 
same size collide on each other. The three cases are used to validate the numerical method. 
A full description of all performed 2 dimensional simulations and their set tings can be found 
in appendix E The length of the nurnerical domain is indicated by l x in the following. Note 
that due to syrnmetry that has been applied. the actual domain bas a length of 2lx 

3.5.1 Drop retraction 

The drop retraction case is used to validate t he method. The initial state in this case is an 
elliptical drop surrounded by vapor. To prescribe the initial density in a continuous way, a 
formulation with a hyperbolic tangent function is used: 

(· )- ~ t · h( (x-xo)
2

+2(y-yo)
2 -R5) p x , y - Pav - p an 

0 
(3.29) 

Here -IJ represents the thickness of the interface and Ro is a measure for the drop dimen­
sions. The length of the drop along the x-axis is J2 times larger than t hat a long t he y-axis. 
Temperature is set constant at 290 Kelvin for t he entire field and t he ini t ial velocity is set to 
zero. A square domain is used with dirnensions 2 · 10- 4 m by 2 · 10- 4 m. The drop center is 
located in t he middle of the domain. 

The drop starts oscillating between two ellipt ical states and eventually, the oscillations a re 
damped by viscous effects. This results in a circula r final state. The solut ion for the density of 
the sirnulat ion is shown in figure 3.4 for t hree instances of time. This behavior is as expected. 
The effect of surface tension leads to a rninimizat ion of the drop surface ( circumference in our 
case) t hus leading to a eventual circular drop. 

The radius of the drop in x and y direction are plotted as functions of time in figure 
3.5. To calculate this radius , the location of the interface is evaluated as the position where 
the density is the same as the average of that of the fluid and the liquid phase. A damped 
oscillation is visible in the figure. 
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Figure 3.5: Drop retraction simulation. Evolution of drop dimensions along x and y-axis for 
a drop retraction case on a 4002 grid ( CaseMb) 

Conservative variables 

To check the implementation of the non-isothermal DIM method, we study the conservation 
of the mass and energy. The nature of the equations, boundary conditions and the finite 
volume method that is applied should ensure a perfect conservation of the total mass and 
energy for the entire domain. This is easily verified by computing the total mass and energy 
in the domain. To check the performance of the simulations, the case of an ecliptic drop is 
used to demonstrate mass and energy conservation. To quantify the error in conservation of 
total mass and energy, the relative error is used. The relative error is defined as: 

Yn-Yo 
E:relative = 

Yo 
(3.30) 

Here Y is the total of the conserved property summed over the numerical domain and the 
subscripts 0 and n indicate the initia! and an arbitrary time step respectively. 

It can be seen that the relative error in the mass is of order 1 · 10-15 while that of the 
energy is of the order 1 · 10-13 . The error in the energy equation increases the first iterations 
and then remains constant in time. A good explanation for this behavior is not found hut 
the explanation can most likely be found in the way the initia! condition is prescribed. The 
relative errors of both energy and mass are so small that rounding off errors are the most likely 
cause. This shows that the implementation of the finite volume method and the boundary 
conditions works as expected. 
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Figure 3.6: Relative error in the conservation of the total mass and energy for the drop 
retraction simulation ( case Mb) 

Convergence 

It is important that the numerical method converges to a unique solution for smaller grid 
spacings. If this would not be the case. the method would be nonphysical because the grid 
spacing should play no role in the exact solution that would be obtained for a infinite number 
of grid points. Simulations similar to the one discussed before ( 4002 grid points) have been 
performed but naw with 2002 and 8002 points. The cases are labeled Ma (2002 ). Mb (4002

) 

and Me (8002) . The Courant number is taken constant to avoid instabilities . The used time 
step is thus proportional to the grid spacing. 

The radius measured along the x-axis is shown in figure 3. 7 for the three cases. The three 
grids yield similar results and the lines for the two finest grids almost overlap . This shows that 
the solution for the elliptical problem converges nicely to a unique solution. A Richardson 
extrapolat ion is used to approximate the 'true' value for a grid with an infinite number of 
grid points. The Richardson extrapolation is defined according to Heath [8] as : 

(3 .31) 

Here '6. x is the grid spacing, Q is the value calculated numerically for a variable. q represents 
the grid refinement parameter This is the ratio between the two grids. q is 2 if we compare for 
example the grids from case Ma and Mb. p is the order of accuracy of the numerical method. 
Our numerical method is second order accurate (p = 2). The Richardson extrapolations for 
the radius, based on cases Ma and Mb, and the cases Mb and Me are plotted in figure 3.7. 
The difference between the two Richardson extrapolations is larger than expected . This is 

38 



3.3 

3.2 

3.2 

E 3.15 

~ 3.1 
'6 
m 
0:: 3.05 

3 

2.95 

2. 

0 0.5 
time[s] 

,.,,.,,case Ma 

···CaseMb 
-CaseMc 
• QR(Ma,Mb) 

• QR(Mb,Mc) 

Figure 3.7: Grid convergence for drop retraction simulations. The figure shows the evolution 
of the radius in x direction for the cases with 2002 (Ma), 4002 (Mb) and 8002 (Me) grid points. 
The Richardson extrapolation Q R based on cases Ma and Mb. and the cases Mb and Me are 
also plotted. 

probably due to the way the boundary conditions are implemented. The size of the domain 
will increase slightly for finer grid spacings. This leads to a lower order accuracy that is 
expected from the discretisation of the equations. 

Surface tension 

An interesting feature of the two phase method is that it takes into account surface tension. 
This surface tension is the driving force behind the deformation of the elliptical drop. The 
final state is a circular drop. In this final state the surface tension induces a pressure difference 
between the liquid and the vapor. The pressure inside the drop will be higher than outside. 
The pressure diff erence can be calculated as: 

(3.32) 

a represents the surface tension and R represents the radius of the drop. The surface tension 
at the final stage is evaluated along the x-axis and along the diagonal. There is a small 
difference between the two values. This is because the drop has a slightly non-circular shape 
due to the Cartesian grid that has been used. The value of the surface tension according to 
(3.32) has been calculated to be a = 0.29493 ± 1.88 · 10-3. 

The theoretica! value of the surface tension can be calculated as 

1
P2 1 

a = \l'2 [K ~F(p)jï dp, 
Pl 

(3.33) 

where ~F(p) denotes the Helrriholtz free energy density that results when a unit volume of 
a mixture of liquid and its saturated vapor with average mass density p is converted into 
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Figure 3.8: Initia] conditions for the drop evaporation simulation (case H). 

a uniform phase of the same density (Cahn 1959 [4]). The value of the final temperature 
and the densities are used to compute the analytica] value for the surface tension. This 
yields: rr = 0.29718. This corresponds very well to the value for the surface tension t hat was 
calculated based on (3.32). In Appendix J. a description is provided of the calculation of the 
surface tension. 

3.5.2 Drop evaporation 

An advantage of the non-isothermal model compared to the isothermal one as described by 
Pecenko [15] is the possibility to model the effects of temperature differences and heat transfer. 
A particular interesting case is that of an evaporating drop. Evaporation of a drop can be 
demonstrated with a simple simulation. The drop evaporation case involves heat transfer and 
phase change and is thus an interesting study case for the non-isothermal model. 

The initia! state of the simulation is a circular drop in the center of a square domain. 
Density and temperature are prescribed with a hyperbolic tangent function similar to (3.29) . 
The temperature inside the droplet is set to 290 K and the pressure is set to the saturation 
pressure at this temperature. Temperature. pressure and density inside the drop are thus 
the same as the ones used in the drop retract ion cases described in section 3.5.1. The initia] 
temperature of the surrounding vapor is set to 340 K and the pressure is set to the same value 
as inside the drop. This means that the gas is superheated. The initia] conditions for the 
density and the temperature are shown in figure 3.8. Details on the settings for the simulation 
can be found in appendix E. 

The evolution of the density profile is shown in figure 3.9. The density is shown for some 
arbitrary time steps. The drop shrinks and eventually totally disappears due to evaporation. 
Plots of the density and the temperature along the x-axis are shown in figure 3.10 and 3.11. 
The domain is plotted from the boundary to the center. It can be seen that the density 
and temperat ure inside the drop remain approximately constant at the initia] value while the 
drop shrinks. This is a result of the choice to prescribe saturated conditions inside the drop. 
Outside the drop, the temperature drops due to heat flow towards the interface. At the same 
time the density of the gas increases due to the evaporation of the liquid . 
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Figure 3.9: Density [kg/m3] field for the drop evaporation simulation (case H) at several 
times. 
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Figure 3.10: Density plotted a long the x-axis trough the center of the drop for the drop 
evaporation simulat ion ( case H). The density profile is plotted for several instances of time. 

3.5.3 Drop collision 

The case of two colliding drops can be used to investigate surface dynamics. Various phenom­
ena can be observed. Locally the surface can merge, break up or just remain unaltered. The 
influence of these phenomena on two colliding drops can lead to several types of behavior. 
In some cases drops have found to bounce, where in other cases they just coalesce. Drop 
breakup has been observed as well as inclusion of small gas bubbles. For the simulations, 
the speed of the drops and the heat conductivity has been varied. Two drops of the same 
size and same but opposite initial velocity are simulated. The drops are initially placed a 
little bit apart and the velocity is uniform in the drops while zero outside. This setup makes 
it possible to perform simulations on a quarter of the domain. An overview of the collision 
simulations and a complete description is found in appendix E.We will characterize the cases 
here by their Weber number and their Prandtl-number. The Weber-number is defined as 
(Ashgriz and Poom [3]) 

W e = p1V2D 
(T 

with D the diameter of the drop. V is the relative velocity of the two drops. For our case 
this means that V is two times the velocity of one of the drops. The Weber number gives the 
ratio of the kinetic to the interfacial energy. For our simulations, the Weber number wil! only 
change as function of velocity. This number is a good indicator for the drop dynamics but for 
local phenomena like coalescence and breakup it is insufficient because phase change occurs 
locally near the interface. The Prandtl-number is therfore used as a second characteristic 
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number for drop colision. The Prandtl-number is defined by: 

We use the Cp that can be obtained for an ideal gas that has the same properties as the Van 
der Waals fluid that we use here. Because k and µ are bath proportional to the density, this 
definition will lead toa unique value for the Prandtl-number fora simulation. For simulations 
with Pr= l , Figures 3. 12, 3.13 and 3.14 show the effect of different W e. For all three cases 
the drops coalesce. The Weber number influences mostly the elongation of the droplet after it 
is formed. As can be seen. the maximum stretch that occurs is higher for higher W e. For the 
largest Weber number (figure 3.14) the elongation becomes so large that the drop coalesces 
with the upper and bottom wall. Because of the symmetry boundary conditions. this is 
numerically equivalent with coalescence with a droplet on the other side of the wall. The 
stretched drop breaks up and a small drop forms in the breakup zone. This last mentioned 
drop is small and not stable. It disappears after some iterations. 

In figures 3.15. 3.16 and 3.17 the results of simulations for Pr= 150 are shown. To obtain 
a higher Prandtl-number the heat conductivity, k,of the simulation is chosen lower. For low 
Weber-number the drops bounce back as can be seen in figure 3.15. The drops do not get a 
chance to unite and t he drops deform like a spring. As there is no connection between the 
drops , the two drops transform the 'spring energy ' that is stored in them by deformation in 
kinetic energy. in this way the drops have a veloc:ity opposite to the initia! one. For higher 
Weber numbers , t he drops do c:oalesce as can be seen in figure 3.Hi. For even higher Weber­
numbers bubbles form inside the droplet. These bubbles are c:aused by entrapment of vapor. 
Before coalescence occurs, the drops are stretched and the coalescence does not occ:ur only in 
the center but also at other places . This leads to the included drops t hat can be seen in figure 
3.17. For this case in contrast to the case with the low Prandtl-number. the drop doesn 't 
break up and coalesc:e with the side wall. 
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Figure 3.12: Two-dimensional drop collision simulation with Pr l and W e = 1.19 (Case 
Na) . From left to right and top to bottom: time evolution of the simulation at arbitrary 
subsequent times. The isoline of mass density is shown at the average. 

45 



00 0 0 
o: 

, , 

0 

1' 

0 0 

n.:: ,,~-~---~-~ 
" 

Figure 3.13: Two-dimensional drop collision simulation with Pr l and W e 42.8 ( Case 
Ne). From left to right and top to bottom: t ime evolution of the simulation at arbitrary 
subsequent times . The isoline of mass density is shown at the average . 

46 



1.1 

,., 

,,,, 
1 

0.11 

0,6 

o, 

o., 

0 
0 

0.8 

0 .6 

0.4 

0.2 

00 
0.4 o., 1.2 1.6 

"" 

o'----------___. 
0 

o., 

0.6 

0.4 

o., 

0.4 0.8 1.2 1.6 

o'--__ _._ __ _., __ ___. 

0 0.4 O.ll 1.2 1.6 

vlx 

'-' ,., 
,,,. 

1 

0.8 

0.6 

0 .4 

11.2 

0 
0 

o., 

0 .6 

o., 

0.2 

CD 
OA o., 1.2 1.6 

r 'b; 

o,L----=-===::;_ __ __, 
0 0.4 0.8 u 1.6 

0 

0 .6 

OA 

0.2 o'--__ _._ __ ....._ __ ___. 

0 0.4 0.8 1.2 1.6 

,., 
,., 
IA 

l.l 
i,b-

OM 

0 .6 

o., 
o., 

0 
0 

0.8 

0.6 

0.2 

0.4 

0 
o., 1.2 1.6 

,,'-------'..___.._ __ ___. 
0 

0.6 

o.• 
o., 

0.4 0.8 1.2 1.6 

o,.__ __ .__ ___ _._ _ ___. 

0 0.4 0.8 1.6 

Figure 3.14: Two-dimensional drop collision simulation with Pr = l and W e = 119 (Case 
Nf). From left to right and top to bottom: time evolution of the simulation at arbitrary 
subsequent times. The isoline of mass density is shown at the average. 
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Figure 3.15: Two-dimensional drop collision simulation with Pr= 150 and W e = 10.7 (Case 
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Figure 3.16: Two-dimensional drop collision simulation with Pr= 150 and We= 19.0 (Case 
Kk). From left to right and top to bottom: time evolution of the simulation at arbitrary 
subsequent times. The isoline of mass density is shown at the average. 
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Chapter 4 

Conclusions 

The steam that is injected in the cross-flow condenses close to the injector as found by Clerx 
[6]. The momentum that the steam has induces a single phase jet. This jet is observed in the 
velocity fields [6] but also in the Temperature fields that were measured. The observed jet 
compares well to literature on single phase jets in cross flow. The coordinates of the center line 
for the jet temperature can be scaled with rd, with r the square root of the momentum ratio 
and d the diameter of the injector. The scaled trajectories compare well to the ones found 
in literature. The temperature decays along the jet trajectory as expected. The temperature 
measurements are however not accurate enough to make a good comparison with the decay 
of the temperature that is found in literature. 

In some temperature-difference fields , beside the jet that is present for all temperature 
fields , a plume of high tl.T is found. In contrast with the jet, this plume has no significant 
accompanying velocity component . This means that it originates purely from heat transferred 
to the cross-flow without momentum transferred to it. The plume is observed to occur for 
high cross-flow temperatures like 65 °C and 75 °C. For low steam mass flux (500 g/h) a 
plume is visible at cross-flow temperature of 25 °C but this plume is much smaller than the 
one observed for the higher cross flow. The jet trajectory is not changed much by the cross­
flow temperature but the magnitude of the temperature difference with the cross-flow, tl.T, is 
much lower for the higher cross flow temperatures. This shows that less heat is transferred to 
the jet as this energy is now used to create the plume. Clerx [6] observed that the penetration 
depth of steam in the cross-flow is dependent also on the cross-flow temperature and the steam 
mass flux with the latter one less important. A direct relation between the penetration depth 
of the steam and the amount of energy that is stored in the plume is therefore suspected. 

The determination of the trajectories of the temperature center line is still rather inaccu­
rate. For future measurements it is advisable to make sure that the sensors can be read out 
more accurately to avoid the error that the lack of accuracy may introduce. If a better accu­
racy is needed, the number of points where the temperature is measured may be increased. 
Also it is advisable to place the tips out of the wake of other sensors for future measurements. 
Although the position in the wake that one of the sensors occupies seems not to influence the 
flow around it , it would be better to avoid this situation for future measurements. It would 
be even better to implement non invasive methods like the laser induced fluorescence that has 
been investigated by Liew [13] or possibly shadowgraphy. This would have two advantages. 
First , a noninvasive measurement method doesn't influence the flow. Second, such a method 
would make it possible to measure the entire flow field including the region near the injector 
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which is actually the most interesting regiou. 
The numerical method that is developed works well for one and two dimensional simula­

tions. The use of the method is limited to small scales and temperatures close to the critical 
point. The behavior of the one dimensional phase separation simulation is much slower than 
a similar simulation for a model without the energy equation that is developed by Pecenko 
[15]. A linear stability analysis corresponds well to the results of the one dimensional phase 
separation analysis. From the stability analysis it follows that the reason for the slow be­
havior is the presence of heat effects corresponding with phase change. The model with the 
energy equation is therefore a better model for multi-phase fiows , even for fiows that are 
initially isothermal. Not implementing the energy equation leads to ignoring the energy that 
corresponds with phase change and will yield unphysical behavior. 

The two dimensional drop retraction simulations show an oscillating droplet as expected. 
For refined grid sizes the solution converges to a unique solution. The surface tension that 
can be calculated based on the simulations corresponds well to an analytical value based on 
the used model for surface tension. This shows that the two dimensional simulations perform 
wel!. The energy equation that is present in the model makes it possible to sinmlate the 
evaporation of a saturated drop in a superheated vapor. The drop shrinks and disappears 
eventually. During the process the temperature inside the drop remains constant as would be 
expected for a saturated drop. The drop collision cases show some variations in the observed 
behavior. For a Prantl-number 1, the drops coalesce easily. For high collision speed. the 
drops break up after coalescence. For a Prautl-number 150, the drop collision looks entirely 
different. The drops deform severely before they coalesce. For low collision speeds drops have 
been observed to bounce back instead of coalesce. Because of the large deformation of the 
drops before coalescence, small bubbles have been observed to be entrapped by the drops. 
These effects are caused by local effects near the surfac:e. For the higher Prantl-number. the 
heat c:onductivity is lower. The phase change that is necessary for the surfac:e to coalesce 
oc:curs much more slowly. 

The developed numerical method can be used to predict small scale two phase phenomena 
close to the critica! point of the fiuid. To increase the scale for which the method can be 
used. local grid refinement is an option. Iteratively changing the grid would however be 
cumbersome. A method like the volume of fiuid method would be more suitable for the 
length scales that are characteristic for industrial applications. The diffuse interface method 
here developed can be used to predic:t surface conditions for such a method. 
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Appendix A 

Influence of the temperature 
sensors on the mean flow 

It is important to know the influence of the inserted temperature sensors on the flow field. In 
the ideal case, the flow field is not changed at all by the sensors. This will of course not happen 
because close to the sensors the temperature and flow field is distorted. The severity of the 
distortion is investigated here by performing PIV measurements on the flow with the sensors 
inserted. The velocity will be compared to the velocity that is observed for an undisturbed 
flow. To keep the experiments simple, there is no steam injection. There is only a flow of 
water trough the square measurement section. This leads to a standard turbulent flow. As 
the flow is developed at the entrance of the measurement section, the profile does not change 
as a function of the coordinate in the flow direction. 

A YAG-laser with a wavelength of 532 nm is used to illuminate the particles in the flow. 
The laser bundle is guided towards the test setup with a series of mirrors. The bundle is then 
stretched to a sheet by a set of three lenses. First a convex lens is used to focus the bundle in 
the middle of the test setup. A vertical-concave and a vertical-convex lens are used to stretch 
the bundle in the vertical direction. The three lenses together yield a thin vertical light sheet 
that cuts trough the center of the measurement section. 

To avoid the reflections from the laser light to be recorded, fluorescent particles are used 
as will be described in Clerx [6]. The particles emit light that has a different wavelength than 
the laser light. The camera is mounted with a notch filter that blocks the wavelength of the 
laser. In this way, only the fluorescent particles are recorded, not the reflections of the laser 
light. 

The settings for the experiments without disturbances are shown in table A.1. This 
experiment is carried out and described by Nicole Clerx. The settings for the PIV and the 
evaluation can be found in [6]. The assumption of a developed flow is used to calculate 
the velocity profile. This is defined for the undisturbed experiment as the average over all 
PIV images hut also averaged over all points in the flow direction (vertical). This yields the 
undisturbed profile that is compared with the disturbed flow. 
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Temperature (TI-104) [0 C] 
Pressure (PIC-103) [bar (absolute) ] 
Volume flow (FIC-106) [1113 / h] 
Reynolds number 

24.1 
5.58 
0.96 
1.0. 104 

Table A.l : Experimental settings for the PIV measurements of the undisturbed flow as mea­
sured by Clerx [6] 

For the disturbed flow , similar settings are used as shown in table A.2 . The pressure is 
noticeably lower. The Reynolds-number is however almost the same. Therefore it is assumed 
that this different setting for t he pressure does not change the velocity profile. Additional 
to the flow settings. table A.2 contains the PIV settings. An interrogation window of 32 
by 32 pixels is used. The pulse delay is chosen such that the displacement of a particle is 
approximately 8 pixels. This is enough to ensure an accurate prediction of the velocity. For 
the evaluation. PIVview is used . A multi grid algorithm is used to find the right velocities. 
The velocity field for the disturbed flow is calculated as the average over all PIV images. Now 
we can not average over all locations in the vertical direction as the flow is known to change 
due to the inserted sensors. A median filter is used to remove erroneous vectors. These are 
not taken into account for calculating the average. 

Temperature (TI-104) [0 C] 
Pressure (PIC-103) [bar (absolute)] 
Volume flow (FIC-106) [1113 /h] 
Reynolds number 
Camera resolu tion 
pixels per mm x 
pixels per 111111 y 
pulse delay [s] 
Number of frames per experiment 

25.2 
2.89 
0.96 
1.000 · 102 

1008 X 1018 
26.1667 
25.4474 
0.00075 
1000 

Table A.2: Experimental settings for the PIV measurements with the temperature sensors 
inserted in the flow 

The results of the measurements are shown in figure A.l , A.2 and A.3. The sub-figure on 
the left indicates the locations of the sensor and the lines along which the velocity is plotted 
for the measurements that are performed on the flow with the sensors inserted. In the sub­
figure on the right , the vertical velocities are plotted. The markers represent t he undisturbed 
velocity profile as measured by Clerx [6]. The lines represent the velocity profiles for the 
disturbed case. The color of the lines in the right sub-figure corresponds to the color of the 
lines in the left sub-figure. 

It can be seen that the velocity upstream of the sensors is not influenced by the presence 
of the sensors. At the locations of the sensors the flow is locally disturbed. The velocity is 
lower near t he sensors . The flow recovers fast , for example, in figure A.2 the upper profile 
shows no sign of the disturbance in velocity that was introduced in the velocity profile just 
below. Nevertheless, a disturbance downstream is clearly present. In figure A.3 for the second 
line from the top. the disturbance in t he mean velocity upstream of the sensors is observed 
to be 20% of the value for the undisturbed flow . 
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(a) Schematic representation (b) Scaled velocity profiles 

Figure A.l: Vertical velocity profiles for the setup whit the inserted temperature sensors at 
the left of the channel 

As the flow upstream is not influenced, we can conclude that the first two sensors (TI-128 
and TI-126) measure the temperature as would be obtained from the undisturbed flow because 
the tips of these sensors are not in the wake of another one. The upper sensor (TI-127) is in 
the wake of the other two sensors as can be seen in the figures. The results of this sensor are 
reported in the main text but results of this sensor should be looked at with caution. 
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Figure A.2: Velocity profiles for the setup whit the inserted temperature sensors in the middle 
of the channel 
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(a) Schematic representation ( b) Scaled vel oei ty profil es 

Figure A.3: Vertical velocity profiles for the setup whit the inserted temperature sensors at 
the right of the channel 
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Appendix B 

Calibration of Pt-100 temperature 
sensors 

The temperature sensors that were used for the measurements that are used for generation of 
the temperature profiles are calibrated in a bath with a thermostat. The bath is filled with 
water. The temperature can be varied between room temperature and close below the boiling 
point of water. The Pt-100 temperature sensors are placed in the water close to a mercury­
in-glass thermometer. The precision of the thermometer is 0.1 K. The precision of the Pt-100 
sensors is also 0.1 K. The thermometer is used as the reference value for the temperature. 

For the calibration of the sensors, the temperature measured by the Pt-100 sensors is 
compared to the value from the mercury in glass thermometer. The results are shown in 
table B.l. The Pt-100 sensors are indicated by their systematic names: Tl-126, Tl-127, 
Tl-128 and TI-104. 

Thermostat Thermometer TI-126 TI-127 Tl-128 Thermostat Thermometer 
26 26.6 31.2 31.1 31.1 26 26.2 
30 30.8 35.3 35.3 35.3 30 30.6 
35 35.6 40.3 40.2 40.3 35 35.5 
40 40.7 45.3 45.3 45.3 40 40.1 
45 45.7 50.5 50.4 50.5 45 45.0 
50 50.6 55.4 55.3 55.3 50 50.4 
55 55.5 60.4 60.3 60.3 55 54.9 
60 60.4 65.3 65.3 65.3 60 60.2 
65 65.5 70.6 70.5 70.5 65 65.0 
70 70.4 75.5 75.4 75.5 70 69.9 
75 75.2 80.5 80.4 80.5 75 74.9 
80 80.0 85.5 85.3 85.5 80 79.8 

Table B.l: Calibration measurements for the temperature sensors. Temperatures are given 
in °C 

The results of the calibration are used to obtain a linear transformation from the tem­
perature that is measured by the sensors to the temperature measured by the thermometer. 
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This Transformation has the form: 

Trhermmneter = a * T Pt- 100 + b (B.l) 

The constants a and bare determined by a least squares analysis on the data from table B.l. 
The values of a and b for the different sensors are shown in table B.2. If the fit is compared 
to the measurements form the thermometer , there will of course not be an exact fit. The 
standard error that is present in the fit is indicated in table B.2 by s. The standard error 
bas the same order of magnitude as the accuracy of the thermometer and the sensors. This 
means that the linear fit is a good way of transforming the temperature of the sensors to the 
reference value that is measured with the mercury-in-glass thermometer. The latter value 
is in the report presented as the real temperature and its value can be determined with an 
uncertainty of 0.1 K by all sensors. 

TI-126 TI-127 TI-128 TI-104 
m 0.983978308 0.985521344 0.983575663 0.986786768 
b -3 .971008889 -3. 978352507 -3.914876363 0.5073133 
s 0.093146955 0.057608767 0.103039539 0.084526964 

Table B.2: values of the fit parameters according to a least squares analysis of the data from 
table B.l 
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Appendix C 

Experiments and settings for 
temperature measurements on 
steam injection 

The measurements for the temperature field are described here. Every temperature field is 
built from the measurements of the temperature at ten different locations of the tempera­
ture sensors. Each measurement is carried out for two minutes and the temperature at the 
corresponding location is determined as the average over this period. The ten measurements 
together are called a set of measurements. These sets usually take half an hour to record. This 
includes the time that is needed to change the position of the temperature sensors. During 
this set of measurements, the settings for the flow rates of the cross flow and the steam, the 
pressure and the temperature of the cross-flow and the steam are kept constant. Table C.l, 
C.2 and C.3 show the sets of measurements and their settings. The values that are presented 
here are the average values over the time of the set. 

The name of the cases is used to keep track of the different cases. During the set of 
measurements, the value of the variables can change a little bit. The temperature of the 
cross-flow, Tcf , is usually kept within 0.5° C of the set point. Because the temperature 
difference between the cross-flow and the probes is used, this does not introduce an error in 
the temperature fields. Qcf is the volume flow of the cross-flow. Pcf represents the pressure 
in the cross flow. rhv is the mass flow of the steam. The temperature of the steam is denoted 
by Tv, The deviation from the mean value is small for these settings. During a set of 
measurements the relative error amounts not more than four percent. The momentum ratio, 
J , is determined based on the mass flow of the steam and the volume flow of the cross flow. 
The densities as can be expected, based on the temperatures and pressures of the steam and 
the cross-flow, are used for this calculation. 
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name 25_a 25_6 25_c 25_d 25_e 25_f 
date 19-10-09 16-11-09 16-11-09 16-11-09 19-10-09 16-11-09 
Q cJ [m3 /h] 0.95 1.88 2.79 0.48 0.95 1.41 
Pcf [bar] 3.0 3.0 3.0 3.0 3.0 3.0 
Tcf [o C] 25 25 25 25 25 25 
rh.v [g/ h] 492 996 1498 492 997 1499 
Tv [0 C] 135 136 137 135 136 137 135 
J [-] 14.23 14.55 14.59 56.77 56.92 56 .82 

name 25_g 25_h 25_i 25_j 25_k 
date 16-11-09 16-11-09 19-10-09 19-10-09 19-10-09 
Q cJ [m3 / h] 0.32 0.63 0.95 0.95 0.95 
Pcf (absolute) [bar] 3.0 3.0 3.0 3.0 3.0 
Tcf [o C] 25 25 25 25 25 
rh,v [g/h] 492 997 1496 2000 3000 
Tv [0 C] 135 136 137 136 136 
J [-] 126.81 129.44 124.86 - -

Table C. l: Settings for the measurement sets at 25 ° C 

name 65_a 65_6 65_c 65_d 65_e 65_f 
date 20-10-09 18-11-09 18-11-09 18-11-09 20-10-09 18-11-09 
Q cJ [m3/ h] 0.96 1.89 2.79 0.49 0.95 1.41 
Pcf [bar] 3.0 3.0 3.0 3.0 3.0 3.0 
Tcf [o C] 65 65 65 65 65 65 
rh,v [g/h] 496 998 1498 494 999 1497 
Tv [0 C] 132 136 137 136 135 136 137 
J [-] 14.76 14.55 14.53 54.07 58.64 57.01 

name 65_g 65_h 65j 65_j 65_k 
date 18-11-09 18-11-09 20-10-09 20-10-09 20-10-09 
Q cf [m3 /h] 0.33 0.64 0.95 0.96 0.96 
Pcf (absolute) [bar] 3.0 3.0 3.0 3.0 3.0 
Tcf [o C] 65 65 65 65 65 
m v [g/ h] 494 994 1499 2000 3000 
Tv [0 C] 135 136 137 136 136 
J [-] 122.36 124.65 125.73 - -

Table C.2: Settings for the measurement sets at 65 ° C 
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name 75_a 75_b 75_c 75_d 75_e 75_f 75i 
date 13-01-10 13-01-10 13-01-10 13-01-10 13-01-10 13-01-10 13-01-10 
Qcf [m3 /h] 0.95 1.90 2.79 0.49 0.96 1.48 0.96 
Pcf [bar] 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Tcf [o C] 75 75 75 75 75 75 75 
rhv [g/h] 491 998 1499 494 999 1499 1500 
Tv [0 C] 133 136 137 135 136 137 137 
J [-] 14.24 14.58 14.76 55.69 56.69 52.23 124.11 

Table C.3: Settings for the measurement sets at 75 ° C 
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Appendix D 

Thin plate spline interpolation with 
Matlab 

A thin-plate smoothing spline is a way to find a fit through data on a two dimensiona l domain . 
In contrast with many other methods , data points can be chosen randomly in the domain. 
Methods like linear or cubic interpolation require often that sample points lie on a Cartesia11 
grid. 

The function 'tpaps' in Matlab finds a thin-plate smoothing spline f for the given data 
points. The genera! expression for the smoothing spline can be written as: 

n 

f(x) = L C7w(x - c7) 
j= I 

(D.1) 

The smoothing spline is defined by its centers Cj and its coefficients Cj . This way of 
defining a spline with a sum of fixed functions with different centers is called the scattered 
t ranslate form. The spline is built up from circula r basis functions W defined as: 

(D.2) 

The centers Cj are chosen equal to the sampling points. The coefficients are determined 
by minimizing the expression: 

pE(f) + (1 - p)R(J) (D.3) 

E is a measure for the error between the smoothing spline and the values at the data 
points. R is a measure for the smoothness and is used to smoothen the effect of noise on the 
data points. Expressions for E and R are: 

n 

E(J) = L IYj - f(x)l 2 (D.4) 
j = l 

(D.5) 

The smoothness parameter p can be chosen between O and 1. p = 0 corresponds to a 
least squares approximation by a linear polynomial while p = l corresponds to a thin spline 
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interpolation of the data where the spline f goes exactly through all the data points. In the 
temperature fields there are under 30 data points. Smoothing the data is therefore of little 
use. For constructing the approximate temperature fields we use a thin spline interpolation 
(p = 1). 

It can be observed that the size of the domain has almost no influence on the spline that is 
calculated by the Matlab function 'tpaps'. A stretching of the do main in one direct ion distorts 
the behavior dramatically. The reason for this must be sought in the round basic function 
W. Stretched shapes can't be modeled with the round functions W. As no severely stretched 
shapes are present in the temperature-difference fields , the thin plate spline interpolation 
works very well. 
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Appendix E 

Description of the simulations 

In the main text the simulations performed are briefly described. A complete overview of the 
simulations that are performed and their settings is given here. The cases all have a unique 
label to be able to distinguish them. The different simulations are grouped by their type and 
goal. The one dimensional simulations and simulations for drop retraction , evaporation and 
coll ision are discussed in separate sections below. 

E.1 One dimensional simulations 

The one dimensional simulations are performed to provide some insight in phase separation. 
The cases named lD.Random start from a mean density and temperature with a disturbance 
added to them. This disturbance has a chaotic form. The simulations labeled 1D.LST start 
from the same mean mass density and temperature. The disturbances that are imposed on the 
mass density . Temperature and velocity now have a sinusoidal shape to make the behavior 
predictable. The cases lD.Random have symmetrical boundary conditions at the first and 
the last nodes. The cases lD.LST in contrary have periodic boundary conditions as required 
for the stability analysis that is performed in section 3.4. The sinusoidal initia! disturbance 
is chosen such that it fits exactly in the domain so the periodic boundary condition holds. 
One dimensional simulations are performed for the isothermal model and the non isothermal 
model. For the cases with the isothermal model the temperature is assumed to be constant 
and pressure is only dependent on the local density of the fluid . The isothermal cases are 
labeled by: . I. 

The material properties are the same for all one dimensional case and their values are 
shown in table E.l. A superscript* indicates that a parameter is not defined for the isothermal 
model. The simulation parameters are shown in t able E.2 . They differ per simulation. 

a 0.558 Pa m0 / mol:L cl 1.875 · 10-a m:L /s 
b 6.51 · 10- 5 1113 / mol c2* 3, 31- 10- 2 m4 /s3 K 
M 0.03 kg/ mol Po 203.2 kg/ 1113 

K 6.0 · 10- 11 Nm2 / kg2 e* 0 0 J / kg 
C* V 1489. 7 J / kg K T,* 0 305 K 

Table E. 1: Material constants for one dimensional simulations 
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Case label 1D.Random.I 1D.Random 1D.LST.I 1D.LST 
number of grid points 800 800 800 800 
iteration time step [s] 2.45 · 10-11 2.45 · 10-11 2.45 · 10-11 2.45 · 10-11 

number of iterations 320001 80000001 80001 8000001 
Writing interval 400 100000 100 10000 

Table E.2: Simulation parameters for one dimensional simulations 

The length of the domain is lx = l.0 · 10-4 m. The density p0 is 120 kg/m3 and the 
temperature To is 290 K. The velocity is 0 m/s. A small disturbance is added to these values. 
For the cases 1D.Random, there is only a disturbance added to the density. 

p(x ) =Po+ cos(7.51rx/x1) + 2 cos(n:x/x1) + 5e-20(x-o.25xo)2 /xi (E.l) 

here x1 is the length of the domain and xo is the middle of the domain. 
For the 1D.LST cases the disturbance is much smaller because for our linear stability 

analysis, the disturbances must be very small. For the density, velocity and temperature, the 
following values have been implemented. 

p =po+ t:. cos(kx) 

-9.48 · 104
t:. • 

u = Po k sm(kx) 
Po 

T =To+ 2.517 · 10-2 t:.cos(kx) 

(E.2) 

(E.3) 

(E.4) 

Here t:. is a smal value that is characteristic for disturbance. kis the wave number. The value 
off. is 1 · 10-4 and the wave number is set tok = lOn: /x1 so there are 5 complete oscillations 
in the domain. The initia! conditions for the 1D.LST cases are defined in this way to closely 
match the unstable Eigen-mode that could be expected from theory. 

E.2 Drop retraction simulations 

The drop retraction cases are labeled starting with a capita! letter M. The simulations are 
performed on a two dimensional domain with symmetry boundary conditions at all walls. 
Due to these boundary conditions only a quarter of the drop is simulated. A schematic 
representation of the numerical initia! condition is shown in figure E.l. The drop is initially 
longer in the x direction than the y direction. 
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Figure E. l: Schema tic representation of the numerical domain for the drop retraction simu­
lat ions 

All drop retract ion cases that are performed for this report have the same material proper­
ties and initial conditions. The used material properties is shown in table E.3. The symbolic 
notation of the properties are chosen similar to the notation that is used in sec:tion 3.2 . The 
initial c:onditions are shown in table E.4. The t emperature is homogeneous as can be seen. 
For the spec:ified densities, the ini tial pressure for vapor and liquid state is the same. The den­
sities used here are the ones for saturated c:ondit ions. The saturated conditions are c:alc:ulated 
as described in Appendix J . 

a 0. 558 P a mö / mol:2 cl 1.875 · 10-5 m'.2 /s 
b 6.51 · 10- 5 m3 / mol c2 3, 31 · 10- 2 m4 /s3K 
M 0.03 kg/ mol Po 203.2 kg/ m3 

K 6.0 · 10- 11 Nm2/ kg2 eo 0 J / kg 
Cv 1489.7 J / kg K To 305 K 

Table E.3: Material constants for drop retraction simulat ions 

Domain size lx"l. 

Pvapor 

Pl iq'Uid 

Tvapor 

Tliq'Uid 

Initia! length Rx 
Initia! length Ry 
6 

(1.0. 10- 4? 111"1. 

86.09 kg/1113 

223.49 kg/1113 

290 K 
290 K 
3.87. 10- 5 111 
2.74. 10-5 111 

2.0. 10-10 111 

Table E.4: Initial c:onditions for drop retraction simulations 
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The number of grid points for the simulations is varied to assess whether the method 
converges to a unique solution for finer grids. The courant number, defined as 

(E.5) 

is taken the same for all drop retraction simulations. V is the value of the velocity in a cell, 
l:l.t is the time step used in the simulation and l:l.l is here the distance between grid points. 

The time step is therefore taken smaller for a higher number of grid points. The settings 
per case are shown in table E.5. The writing interval is the number of iterations at which 
results are written to file. The Case Mbextended is just an extension of case Mb where the 
simulation is continued for more iterations. 

Case label Ma Mb Me Mb extended 

number of grid points 2002 4002 8002 4002 

iteration time step [s] 2.45 · 10-10 1.23. 10-10 6.14 · 10-11 1.23 · 10-10 

number of iterations 600001 1200001 6000001 60000001 
Writing interval 2500 5000 10000 100000 

Table E.5: Simulation parameters for drop retraction simulations 

E.3 Drop evaporation 

There is one drop evaporation case labeled H. Like before, symmetry boundary conditions 
are used on all four walls of the two dimensional domain. Again, only a quarter of the drop is 
simulated. A schematic representation of the numerical initia! condition is shown in figure E.2. 
The initia! condition is a circular drop that has a higher temperature than the surrounding 
vapor. 

Figure E.2: Schematic representation of the numerical domain for the drop evaporation sim­
ulation 
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Material properties for the evaporation case are shown in table E.6. The initia} conditions 
are shown in table E.8 The vapor on the outside is 50 Kelvin higher than the liquid drop. 
The densities a re chosen such that the pressure of the vapor is the same as that of the liquid 
drop. The liquid is under saturated conditions as for the drop retraction case. The vapor is 
superheated. The simulation settings are shown in table E. 7. 

a 0.558 Pa mö /mol:z cl 1.875 · 10- 0 m:z /s 
b 6.51 · 10- 5 1113 / mol c2 3, 31 · 10- 2 m4 /s3 K 
M 0.03 kg/ mol Po 203.2 kg/m3 

]{ 6.0 · 10- 11 Nm2 /kg2 eo 0 J / kg 
Cv 1489.7 J / kg K To 305 K 

Table E.6: Material constants for drop evaporation si111ulation 

nu111ber of grid points 
iteration time step [s] 
nu111ber of iterations 
Writing interval 

400:l 
1.23 · 10- 10 

3600001 
4000 

Table E.7: Simulation parameters for drop evaporation simulation 

Domain size lx::z 

Pva.por 

Pliqni d 

Tvapor 

Ttiquicl 

Initia! radius R 
ó 

(1.0. 10- 4 ? 111:l 
53.37 kg/1113 

223.49 kg/1113 

340 K 
290 K 
3.87. 10-5 111 

2.0. 10- 10 111 

Table E.8: Initial conditions for drop evaporation simulation 

E.4 Drop collision 

The drop collision simulations consist of two drops of the sarne size that move to one another 
with the same speed. As before , sym111etry boundary conditions are used on all four sides 
of the two dimensional domain . Due to symmetry, only half a drop has to be sirnulated to 
capture the total drop collision. The initial condition is shown schematically in figure E.3. 
The velocity in the vapor phase is zero while inside the liquid drop, the velocity has a uniform 
value. 
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Figure E.3: Schematic representation of the numerical domain for the drop collision simula­
tions 

For the collision cases, the influence of the Prandtl-number on the simulation is investi­
gated. There were two types of material used. The cases for which the Prandtl-number is 150, 
are labeled starting with an K. The material properties of these cases are shown in table E .9. 
The cases for which the Prandtl-number is 1, are labeled starting with an N. The material 
properties for these cases are show in table E .10. As can be seen the difference between the 
K and the N series is the heat conductivity. This property is chosen 150 times higher for the 
cases with Pr= 1. 

a 0.558 Pa mö /mofl cl 1.875 · 10-5 m:.i /s 
b 6.51 · 10-5 m3 /mol c2 2, 21 · 10-4 m4 /s3 K 
M 0.03 kg/mol Po 203.2 kg/m3 

K 6.0 · 10-11 Nm2 /kg 2 eo 0 J/kg 
Cv 1489. 7 J /kg K To 305 K 

Table E.9: Material constants for drop Collision simulation, K series (Pr = 150) 

a 0.558 Pa mö /mol2 cl 1.875 · 10-5 m2 /s 
b 6.51 · 10-5 m3 /mol c2 3, 31 · 10-2 m4 /s3 K 
M 0.03 kg/mol Po 203.2 kg/m3 

K 6.0 · 10-11 Nm2 /kg2 eo 0 J/kg 
Cv 1489.7 J/kg K To 305 K 

Table E.10: Material constants for drop Collision simulation, N series(Pr = 1) 

The simulations settings are shown in table E.11. There is a small difference between the 
settings for the cases from the K and the N series. The latter one is continued for a larger 
number of iterations. 
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number of grid points 
iteration time step [s] 
number of iterations 
Writing interval 

(a) K series 

400'.2 
1.23. 10- 10 

800001 
4000 

number of grid points 
iteration time step [s] 
number of iterations 
Writing interval 

(b) N series 

4004 

1.23 · 10- 10 

1600001 
8000 

Table E.11: Simulation parameters for drop collision simulations 

The initia! conditions for all drop collision cases are quite similar. Like for the drop 
retrac:tion simulations. the temperature in both the liquid and vapor phase is the same and 
the densities are chosen such that the fluid is saturated in both phases . The density under 
saturated conditions is calculated as described in appendix J . The distance between drops 
and the radius of the drops is not varied. Different ini t ia! velocities were prescribed for the 
different cases. Table E.12 summarizes the initia! condition for all collision simulations. 

Domain size fa:'.2 

Pvapor 

Pliquül 

T vapor 

I't iquid 

Initia! radius R 
L'.lX center 

ó 

(a) 

(1.0. 10-4 )'.2 111'.2 
86.09 kg/ 1113 

223 .49 kg/ 1113 

290 K 
290K 
3.16. 10- 5 111 
4.4. 10- 5 111 
2.0. 10- 10 111 

Kh 
Ki 
Kj 
Kk 
KI 
Km 

2.5 111 /s Na 2.5 111/s 
5.0 111 /s Nb 5.0 111/s 
7.5 111/s Nc 7.5 111/s 
10 111/s Nel 10 111/s 
15 111 /s Ne 15 111/s 
25 111/s Nf 25 111/ s 

(b) Initi a! velocities 

Table E.12: Initia! conditions for drop c:ollision si111ulations 
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Appendix F 

Two-dimensional model for the 
governing equations 

The equations given in section 3.2 are the genera! equations. For the two-dimensional sim­
ulations that are performed, a two-dimensional form can be written that can be used in the 
simulations. In this section, deviates with respect to time or space are denoted by subscripts 
t, x and y. u and v represent the velocity components in x and y direction respectively. 

Conservation of mass yields in two dimensions: 

Pt + (pu)x + (pv)y = 0 

The x-momentum equation can be written as: 

(F.l) 

(pu)t + (puu)x + (puv)y = -[p(p, T)]x + [!µ(p)u x L - rnµ(p)vy L -[µ(p)(vy + Ux)]y 

+ { [K [ (PPxx - ½(Px)
2

) + (PPyy - ½(py)
2
)]} x - [KPxPy]y (F.2) 

for the y-momentum equation: 

(pv)t + (pvv)y + (puv)x = -[p(p, T)]y + [;µ(p)vy] y - rnµ(p)u x] y - [µ(p)(uy + Vx)lx 

+ { [K [ (PPxx - ½(Px)
2

) + (PPyy - ½(py)
2
)]} y - [KPxPy] x (F.3) 

The energy equation is written: 

(E)t+( uE)x+(vE)y = (kTx)x + (kTy)y-(Kp(ux +vy)Px)x-(K p(ux+vy)Py)y+ v' · (u• (d+T)) 
(F.4) 

Here E represents the total energy: 

(F.5) 

The work done by the forces can be written in components: 
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4 2 
+(µ( 3 vvy - 3VUx + UVx + 'UUy)) y 

1 2 2 2 
+((-p + K P(Pxx + Pyy) + 2K(px + Py))u - (Kpxu + Kpxpyv))x 

1 2 2 2 
+((-p + K P(Pxx + Pyy) + 2K(px + Py))v - (K Pyv + K PxPyu ))y (F.6) 

The program uses the above equations to simulate the behavior. For every step in the 
finite volume method , The new density p, x-momentum pu, y-momentum pu energy E are 
calculated by using the discretized form of the equations F .l , F.2 , F .3 and F.4. The values 
of the temperature and pressure from the previous time step are used. The new values of 
pressure is now calculated using the Van der Waals equation 3.12. The new temperature is 
calculated using equations F .5 and 3.17. 

74 



Appendix G 

Derivation of conservative form of 
the energy equation 

The equations that describe the diffuse interface method are found by Anderson [1] . For 
application of the finite volume method it is easier to work with the conservative form of the 
equations. The mass and momentum equations were already written in conservative form by 
Pecenko [15]. It is necessary to write the energy equation [1] also in conservative form. The 
steps taken are described here. First we recite the Gauss theorem for an arbitrary scalar , 
vector or tensor Q: from Kundu [ll](equation 2.30). 

i Q · ndA = [ v' · QdV (G.l) 

Fora fixed material volume and an arbitrary function F(x, t) [ll](equation 4.5): 

gt [ F(x,t)dV = [ 8: dV + i Fu · ndA (G.2) 

This can be rewritten: 

gt [ F(x, t)dV = [ 8: dV + [ v' · (Fu)dV (G.3) 

Anderson [1] gives the following equation for the energy. 

gt 1 p(pE)dV = i (u · (d+T)) · ndA- i (q + jE) · ndA (G.4) 

Applying Gauss theorem and formula for the time derivative of a material volume, the equa­
tion can be rewritten. 

1 :t (pE) + v' · (upE)dV = [ v' · (u · (d+T))dV - [ v' · (q + jE)dV (G.5) 

The integration can be omitted to obtain the weak form . 

8(pE) . -- + v' · (pEu) = v' · (u · (d+T)) - v' · q - v' · JE 
ät 

(G.6) 

This equation has a conservative form and is therefore used in our finite volume method. 
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Appendix H 

N umerical validation of 1D stability 
analysis 

The stability analysis that is described in section 3.4 can be compared with t he results of a one 
dimensiona l simulation. A special simulation has been performed for this. The mean density. 
temperature and velocity are uniform in the domain . The density has been chosen in the 
unstable region of the phase diagram. A small di. turbance is added to this. The disturbance 
has a sinusoidal form and fit s exactly 5 times in the domain. The stability analysis requires 
a periodic boundary condition at the first and last point of the domain . A simulation for the 
isothermal model and one for the non-isothermal model are performed. T he details of the 
simulations are described in appendix E . 

In figure H.l. the evolution of the density profile is shown for some arbitrary times during 
the simulations. For both the isothermal and the non-isothermal model the initial disturbance 
grows till the stable saturated condition is reached . Both cases show in their final state 5 drops. 
The difference in the saturation densities that can be observed is caused by a temperature 
change in the non-isothermal simulation. T he temperature rises approximately 3 K. This 
causes the difference between the va.por and liquid saturation density to be smaller. 

To compare the simulations with the stability analysis in section 3.4, we compute an ap­
proximation for the imaginary part of w as used in the stability analysis. This approximation 
can be computed for every iteration step n: 

(H.l ) 

Here A(tn) is the amplitude of the disturbance in the density as function of t ime. The 
amplitude is defined as t he difference between the maxima! density and the value of the mean 
density at the start of the simulation. tn and tn-1 are the times at the sequentia! iterations. 
bit is the difference between the two times. 

The evolution of Wa is shown in figure H.2 for both the isothermal and the non-isothermal 
simulations. There appears to be some similarity between the two figures. For both cases 
Wa is constant for t he first iterations. This shows that the init ial amplit ude is chosen small 
enough so the linear stability analysis is applicable for both cases. After some time the 
non-linear effects start playing a role . It can be seen t hat for both cases the nonlinearity 
increases the ampli tude growth rate. When the densit ies reach their equilibrium values , the 
amplitude stops growing and w0 goes to zero. For the non-isothermal simulation, this is a 
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(a) Isothermal simulation JD.LST.I 
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(b) Non-isothermal simulation JD.LST 

Figure H.1: Evolution of the density for the one dimensional linear stability analysis. Density 
is plotted for several time steps 

Wa (simulation) Im(w) (analytica!) 
lsothermal 9.41 · lOö 9.4197 · lOö 
Non-isothermal 9.48 · 104 9.4779 · 104 

Table H.l: Comparison of the analytica! and numerical values for the linear stability analysis 

smooth process. The isothermal simulation shows some oscillation explaining the chaotic 
behavior of w0 • The most important difference that can be deduced is the difference between 
the value for w0 • For the non-isothermal simulations the value is approximately one hundred 
times smaller than for the isothermal one. 

Comparing the values that are found for Wa at the first iterations to the analytica! value 
for I m( w) as could be calculated for the case that is presented here leads to very good results. 
The values for the are presented in table H.l. This shows that the simulations perform very 
well. 
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Figure H.2: Wa as function of time for the one dimensional simulations 1D.LST 
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Appendix I 

Programming 

This Appendix is meant to give an overview of the used programming. The files itself are 
provided digitally. A short description of the files is given here. 

1.1 Experimental 

During the experiments Labview was used for data logging. The data from various tempera­
ture sensors, pressure sensors and flow sensors is supplied in text files. The locations of the 
sensors are recorded with a camera that is mounted perpendicular to the plane of motion of 
the jet. The time span corresponding to each single measurement (note that it takes ten mea­
surements to obtain the temperature fields) is recorded manually. To translate the obtained 
data to the temperature fields and other plots that are presented in the main text, several 
evaluation steps have to be performed. The files that have been used for this are described 
here. 

Image2Positions.m 
This file plots the images of the measurement section and lets you select the locations of the 
tips of the temperature sensors. The coordinates are stored in simple text files . 

master.m 
The data from the sensors is read in and the assembling of the time plots is directed. For the 
actual plotting the file plot_file. m is called. 

plot_file.m 
This file constructs the temperature fields with the Matlab function 'tpaps' as described in 
appendix D. The positions that are determined with the file Image2Positions.m are used as 
data points while the values are calculated for times that are supplied in the file master. m. 
The temperature difference of the sensors Ti-126, Ti-127 and Ti-128 with the sensor Ti-104 
is plotted. 

Self_similarity** .m 
The Temperature fields that were made with the file plot_file. m are plotted in one figure for 
a specific temperature. The plots are ordered by steam injection mass flow and momentum 
ratio. 
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line_plot.m 
For a line trough a temperature field, this file find s the local maximum along that line. It 
writes the coordinates and the value of this maximum to a file . Due to limi ted accuracy of 
the sensors, A difference of 0.1 K can not be distinguished. Therefore. An error-estimate 
for t he coordinates is calculated as half the width a long the line in which temperature stays 
within this 0.1 K from the local maximum. An estimate of the distance traveled along the jet 
axis is calculated for the predicted jet trajectory based on (2.2) with the parameters A and 
m determined by a fit trough all data points from all fields. lines.m 
This file defines three lines along which the local maximum is determined and writes the coor­
dinates, value and the and an error estimate for the coordinates toa file for each temperature 
field. For the actual calculation. the file line_plot. m is used. 

scatterplot.m 
using the data that is obta ined with the files line_plot. m and lines. m . this script plots the 
trajectories of the temperature center lines. The Error bars are plotted in the graphs. The 
value at the centerline is also plotted. 

Proces_ varia bles. m 
Calculates the mean values of the experimental settings like volume flow, mass flow and pres­
sures. This provides a more accurate indic:ation of the c:onditions that the simulations are 
performed in. 

1.2 Numerical 

Here the scripts used for the diffuse interface method are desc:ribed. First the diffuse interface 
method is described. The method is programmed in Fortran. second, the Matlab scrips that 
are used for evaluation are described. 

Fortran programm 

The Diffuse interface method is implemented in a Fortran program. This program consist of 
several files that have each a different function. The Function of the files is explained below. 
The Fortran files for the drop retraction case Mb are added digitally. The files for the one di­
mensional simulations are different from the two dimensional simulation. But the components 
have the same function. Files for the one dimensional simulation are also provided digitally. 

main.f 
This file calls the other files in the right order and writes the results of the simulation to 
output files at the specified times. 

main.dat 
Contains values material and simulation properties. 

storrage.inc 
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All global variables are defined. No values are assigned hut types and sizes are defined. 

input.f 
Values are assigned to the material properties and simulation parameters. 

cond_init.f 
Initial conditions for the density momentum and energy are prescribed. 

discretisation_2D.f 
The fluxes that are used in the finite volume method as described in section 3.3 are calculated 
based on a discretized version of the two dimensional equations given in appendix F 

R_..ICeva.f 
Using the flux that are calculated with discretisation_2D.f. This file applies the TVD-Runge 
Kutta method that is described in section 3.3 

boundary _par .f 
To calculate the spatial derivatives numerically near the boundary, a row of two grid points is 
specified outside the domain. The values at the grid points outside the domain is determined 
by the boundary conditions. This file updates the values of the simulation variables at these 
points after every step in the simulation. 

machine 
This file specifies the processors on which the simulation will be ran. 

makefile 
This file is used to translate the fortran for compilation and linking the fortran files and 
generating an executable program. 

Matlab scripts 

For the evaluation of the different cases a number of Matlab scripts is generated. Most of 
them are specific to a certain type of simulation. The most important files will be described 
here. They are also provided digitally. 

plotpar.m 
The plotpar.m file is used for every two dimensional simulation. The output of the simula­
tions written to data files. Plotpar.m reads these files and plots density or temperature. The 
quarter domain that is used in the simulation is mirrored to get the full domain. Plotting 
velocities or energy is also possible with this script. 

Temperature.m & density.m 
These files are used for the drop retraction and the drop evaporation case to plot The density 
and Temperature in horizontal direction trough the center of the drop. Plots at several times 
are plotted in one figure to observe the evolution as function of time. 

furter lnvestigation. m 
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This is used for analyzing the drop retraction cases. Like the plotpar.m file, this script reads 
the data for the simulation output. The data is used to calculate the total mass and energy 
in the domain by summing over all data points. From this the relative errors in mass and 
energy conservation can be computed. The location of the interface is determined as the 
place where the density is equal to the mean of the density for the gas and the liquid. The 
evolution horizontal and the vertical radius is plotted against time. The surfac:e tension is 
evaluated with formula 3.32. The radius is determined as desc:ribed and the pressure at the 
drop center and the far field are used to calculate the pressure difference. The surfac:e tension 
along the horizontal line and along a diagonal line is evaluated. A small differenc:e is present 
bec:ause the drop is not exac:tly circ:ular due to the rec:tangular grid. 

figureslD.m 
For several times the density and temperature are plotted for the one dimensional simulations. 

Analysis.m 
To c:ompare the one dimensional results to the analytica! solution for the linear stability anal­
ysis. the amplitude growth is monitored and plotted against time as disc:ussed in appendix H 
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Appendix J 

Saturation properties and surface 
tension 

The calculation of saturation properties for the Van der Waals fluid is important for determin­
ing the initial conditions of the simulations. Two phases of the same fluid can only coexist 
in equilibrium if both phases have the same temperature and pressure. Additionally they 
should both be under saturated conditions. Surface tension is an important phenomenon 
for two phase mixtures. To verify that the simulations work correctly, the surface tension is 
calculated based on the Kortweg stresses in an analytica! way. 

J .1 Saturation properties 

For equilibrium, the temperatures of both phases should be the same to avoid heat transfer 
by conduction. Pressures should be the same to avoid pressure driven flow. The Gibbs 
free energy of the phases is the same, as shown by Çengel [5]. The Gibbs free energy is a 
thermodynamica! potential that reaches a minimum for equilibrium states. For the specific 
Gibbs free energy, the following relation holds: 

dg = -sdT + vdP (J.l) 

The second term on the left is rewritten to obtain: 

dg = -sdT + d(vP) - Pdv (J.2) 

In terms of te density this becomes: 

dg = -sdT + d(P/p) + (P/p2 )dp (J.3) 

This can be integrated as: 

g=-f sdT+P/p+ j(P/p2)dp (J.4) 

To obtain the equilibrium conditions, we have to solve the system: 

(J.5) 

83 



Here the subscripts l and v refer to t he liquid and the vapor phase respectively. For our case, 
the pressure is calculated with the Van der Waals equation for the temperature of interest. 
Note that the term J sdT is not present in the equation because the temperature of both 
phases is the same. The system is solved numerically with Maple to obtain the saturation 
densities for the temperature of interest. The calculated densities are used as initial conditions 
for the two dimensional simulations as described in appendix E 

J .2 Surface tension 

The surface tension results from the gradient energy terms in the equations from section 3.2. 
Cahn [4] has derived an analytical equa tion for the surface tension for a system that has a 
Helmholtz free energy tha t is dependent , not only on the density but a lso on the gradient of 
the density. For a system with this gradient term equal to h:(v' p) 2 and h: not dependent on 
'vp they find that surface tension can be defined by: 

a = J [2h:(v' p )2 ]dx (J .6) 

and 
K(v' p) 2 = !::::,.F(p) (J.7) 

The meaning of !::::,.F will be explained below. but first we can rewrite : 

1 = ✓ !::::,.;(p) 'vp (J .8) 

multiplication with dx on both sides leads tci: 

/k 
dx = y M(p)dp (J.9) 

This is used to rewrite equation ( J .6) to obtain an equation for the surface tension that is 
independent of the spatial variable x: 

[P2 
C, = 2 ./PI [K!::::,.F(p)]l /2 dp (J.10) 

In the above equations !::::,.F is the defined as: 

!::::,.F(p) = F(p) - Fo(P) (J.11) 

Fis here the Helmholtz free energy per unit volume if the fluid would have a uniform density 
p. Fa is the Helmholtz free energy per unit volume with mean density p where both vapor and 
fluid phases would be present under equilibrium conditions. This means that Fo(p) can be 
calculated as an interpolation of F(p) between the saturation densities Pl and Pv calculated 
before. In Çengel [5] , it can be found that for the specific Helmholtz free energy the following 
relation holds: 

f = - sdT- Pdv (J.12) 
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As temperature is uniform at equilibrium, the free energy compared toa reference state with 
zero density at the temperature of interest is defined as: 

(J.13) 

The Helmholtz free energy corresponding to the gradient terms in the model we use is 
½KE('vp)2

. This means that "'= ½KE and we can write (J.10) as: 

(J.14) 

The formulas (J .11) , (J.13) and (J .14) are implemented in the Maple script that was already 
used for the calculation of the saturation densities. 
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