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Supcrvisory Control of theme park veh icles 

In order to keep customers interested in revisiting, t heme park s have to renew their attractions 
from t irne to t ime. T l1is mea.ns that t.here is a <lern a ll(I for new , innovative and spectac ular 
rides. A new development in this area is an attraction with Multi Movers: a u tomated guided 
vehicles Lhat inleracl wilh eacl1 olher, Lheir envirorunent. au<l a cent.ral COllt.rol unit. Because 
of their interact.ivity a nd the [act th at these vehicles have to b e very safe for t.heir passengers, 
the prime design focus is on collision avoid ance . Moreover , it is desirable Lo achieve a h igh 
passenger t hroughp ut for the wholc systern. 

In t. hc fnunework of sup ervisory contro l thcory (SCT), a mctho<l is dcfincd for t he synthes is of 
superv isory cont rol systern s acco rd ing t o spec ifi cat ions of systern component.s a11<l requ irement.s 
represented by automata. T he supervisor synthcsi zcd is by construction guaranteed to b e non­
blocking . Wh,mevn the system compon P.nts or requ irernP.nts change, a new supervisor can be 
synth esized using adap t ed specifications. Additionally, the use of models en ables t he application 
of model-based techniques and tools for t horough system analys is a nd systerna t.i c tcs ting, which 
help to improve the sys tem overview fo r the engineers. 

Assignment 
The pur pose of this projec t is to eval uate how the model-based engineering parad igm in corn­
bination wit.h supervisory co11trol sy11tl1esis can co11triuule to the product dcvclopmcnt within 
~\JBG. To this end, the supervisor design for the Multi Mover is chosen as the case sludy. To 
implement the mo<lel-base<l <èngirn~ering conct!pt, a set, up should b e propose<l that allows for 
a pplicatio n of model-based techniques. 

I 
Rooda 

Systems 

Engineering 

Dr.ir. J M. van de Mortel-Fronczak 

Department of M echa nica! Engineeri ng 



Preface 

The thes is you are reading at the mome nt is a result of a full year o f research to obtain my master 's 
degree in Mechani ca! Eng ineerin g. 1 have att cnded the E indhove n Univcrs ity o f Tcchno logy a l most scven 

years, and I have lcarned a lo l during these ycars. One of the hi ghli ght s was my mcmbcrship o f the board 

of W.S .V. S imo n Stevin, which I j o incd aftc r rny second yea r in Eindhove n. A full year o f organi z ing 
ac ti v iti cs and making fri ends was a valu abl c cxpcri ence . 

Suhsequcntl y. 1 decided to do rn y bac helo r lina l projec t al the Syste ms Engineering Gro up. M y coac hes 
Joos t va n Eckc lcn and Erj en Lc fcbc r made me enthus ias tic about the research th at is pc rformcd at the 

Systems Engin eering Gro up. As a res ult. il was no l a very dil'ficuh cho ice lu ,i o in the System s Eng ineering 

G roup in o rde r to o bt ain my ma ster ·s dcg rec. T he c lccti vc co urses wc rc vc ry int e res t ing. and my int c rn ship 
at the U ni vers it y o f A uckl and in New Zca land was a wonderful cx pc ri ence. 

The result of thi s project was no t poss iblc w ithout the he lp o f many people. First of a ll. 1 want to thank 
Tjeu Naus and pro fessor Rooda fo r g iv in g me the opportunity to work on thi s intc rcsting subjec t o f supe r­

v isory co nt ro l at NBG ln dustri a l A uto mati o n. NBG has o ffc rcd me a vc ry pos iti vc workin g e nviro nment 

w ith vc ry fri c nd ly co ll eagucs. T hcn. 1 want to thank professo r Rooda fo r hi s intensive supc rvision of 
thi s p roject. He taught me va lu ablc lcssuns aboul l'acing chal lcnges in li k and I am confident that thi s 

proj ect was not such a success wi thout hi s he lp. Furthe rmorc. the const ructive feedbac k o f T im van E ls 

and As ia van de Morte l was o f g rca t suppo rt . 1 reall y apprcc iatcd th at the door was a lways ope n when 

1 had co nsidc rati ons about thi s proj ect. w hi ch I workcd o n w ith pl casurc. Nex t. A lbe rt Ho tka mp and 
Ivo S iebcn he lped mea lot with cod ing issues and I am g ratcful for all thc ir he lp . Lastl y. 1 wa nt to thank 

Mi eke Lousbc rg fo r all the practi cal he lp cluring my time at the Systc ms Engineering Group . 

O bta inin g my mas tc r· s deg rcc was imposs ibl c without the support of my famil y. Thc reforc. 1 want to thank 

m y parc nt s fo r g iv ing me an acade mi e cducati on. Fina ll y. m y spec ia l thanks go to Li eke. fo r a lways be ing 
my suppo rt in lifc. 

Stefan Forsehc lcn 

Eindhove n. Fcbru a ry 2010 

lil 



IV Prefoce 



Summary 

Hi gh-t ech co mpani es are a ft en chall cnged to increasc the fun c ti ona lit y and qua lit y o f a product , w hilc at 
the sa me time thcy try to reduce the time-t o-marke t and product costs. Howevcr. current practice shows 

that thi s is no t st raightforward . As a result, therc is a need for new eng ineeri ng processes. In thi s project . 

we co nce ntratc on the eng inee rin g process of the part of the co ntro l sys tem that is re spons ibl e fo r the 
coordinati on of component s. 

S uperv iso ry cont ro l theory uses for ma! mode ls of the unco ntroll ed systc m and its control req uire ment s 

to synthes ize a so-callcd superviso r. This superv iso r is mat hcmati ca ll y correc t w ith respect to the forma! 
mode ls of the uneont ro lled system and the control require ments . This shift s the validation process fro m 

debugging co nt ro ll er code to dcbugging the modc ls o f the un co ntroll ed sys tcm and the control rcquire­
ments. Furthermore. the use o f forma! mode Is enables the appli cati on o f mode l-based tec hniqu es and tools 

fo r thoro ugh systcm analysis and syste mati e tes ting . w hi ch he lp to improve the sys tcm ovcrview for the 

engi neers. As a rcsult. supcrvisory con trol thco ry is cx pec ted to enhancc the product devclopment proccss. 

s ince this theo ry a ll ows us to sy nthes ize the part o f control soft ware that is rcsponsibl e for coorclinating 

co mponent s. The purposc of thi s project is to inves ti gatc how supc rvisory control sy nthcs is can contributc 

to the produc t development. The case study th at is uscd in thi s project is a thc mc park vc hi c lc that follows 
a win: integra ted in the !foor refc rred to as the multimo ,·er. This 1ehi c lc co ncept o ffe rs the possihility !'or 

new ride concepts w ith c ross ings. sw itches. junctions and clriving into and out o f dead-e nd tracks . Supe r­
viso ry cont ro l theory is usecl in this project to sy nthes ize a supe rvisor th at ensures sa fety. w hi ch in c luclcs 

coordination of diffe re nt components, such as anti c ipatin g on emerge ncy and e rror signals and an accurate 

proximity handlin g. 

Within supe rv isory co nt ro l theory. two frameworks are distinguished that are usecl w icle ly for synthes izin g 

supervisors, namely the event-based fram ework o f Ramadge and Won ham l Won 84, Ram87 1 and th e state­
based fra mework of Ma and Wonham [Ma05 ]. In thi s proj ect. both frameworks are used to sy nthes ize 

a supe rviso r for the multimover. Furthermore. mode lling and sy nthesis aspee ts o f both fram eworks are 

co mpared with eac h other. O n the one hand . the eve nt -based framework can be extended w ith d istributed 

o r hierarc hi ca l supe rvisi on. On the ot he r hand . the state-based framewurk is more conve nient for mode llin g 
the cont ro l requircmcnts. si nee it a ll ows log ica! cxprcss ions. Howcve r. onl y cc ntra li zecl supervisors ca n be 
synthes izcd us ing thi s fram cwork. In thi s project. supe rvisors are sy nthc s izcd usin g ho th fram cwork s. 

To have ad va nt ages o f both frame works. an automatic co nvcrsion o f logica ! exprcss ions to finite stat e 

machines is proposcd. Due to this co nvcrsion. co ntrol requiremcnts can be formulated as aut o mata and 
logica! express ions and still use the eve nt-based framework fo r sy nthes izing a clistributed o r a hierarehi cal 

superv isor. The synthes ized supe rvisors are implemented in the current co nt ro l software environment o f 

theme pa rk vehic les. The implementati on set-up is developed in such a way, that supervisors sy nthes izcd 

usin g e ithe r one of both framcwork s ca n eas il y be embedded. Thi s implcmc nt ati on is validatcd by mcan s 
o f pc rformin g scve ral tes t cases on a tes t se t-up. lmplcmcntati on tcs ting showed the sa me behavio ur as the 

s imulations. and the conc lu sion is drawn th at sa fety is assured sati s factoril y by the synthes izcd supe rvisors. 

The integ rati on o f supe rvisory co ntrol sy nthes is in the engineering proccss makes the co n tro l so ft ware more 

evolvable. lf the syste m o r its rcquirement s change, only a couplc of mode Is have to be adapted and a new 
supervisor is sy nthes ized. Furthcrmore , sincc the intendccl hchavi our is spcc ifi ed in a moclc llin g langua ge 
instead of a softw are programming language . engineers can have a better unde rstanding of the con trol soft-
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VI Summary 

ware, which can lead to an cas icr validation. In additi on, the usc of forma! modcl s enables the application 

o f mode l-based techniques , such as di sc re te-eve nt si mu lat ion and hybrid s imulati on, which allows to de tect 

design errors in an early stage of the product cleve lopment process. As a result. less prototypes mi ght pos­

sibly be deve lo ped. The co nclu s ion is drawn that supervisory con trol synthcsi s has the potential to enhance 
the product dcve lop mcnt process and is suitable for eng inee rin g controll e rs that coordinate compone nts. 

I-l oweve r, the abse nce of li ve lock in the implcrne ntati on is currentl y no t guaranteed. Thi s could possibl y be 

e lirninated by the sy nthes is of supe rvisors w hi ch are optima! in te rms of timed behaviour. 



Samenvatting 

Hig h-tech bedrijven worde n vaak uitgedaagd o m de fun c ti o nalite it e n de kwaliteit van een product te ve r­

hogen. te rw ijl tegelijkertijd de kosten e n de ma rktint roduc tie tijd van een produ ct moete n worde n ver laagd. 

In de huidi ge praktijk blijkt ec hter dat dit niet ee nvoudi g is . A ls gevo lg hi e rva n is e r ee n vraag naar ni e uwe 

productontwikkelprocessen. In dit project conce ntreren we o ns o p het o ntwikke lproces va n een gedee lt e 
van het besturingssoftware, dat ve rant woorde lijk is voor het coiird ine ren va n systeemcompone nt en. 

Superv isory co nt ro l theory gebruikt mode ll e n van het o ngecon tro leerde systeem en de eisen waaraan het 
systee m moet vo ldoe n om ee n zoge naamde supe rv iso r te syntheti sere n. Deze superv isor is wisk undi g 

correct te n o pz ic hte van de fo rme le mode ll en van het o ngecont ro lee rde systee m en de e ise n waaraan dit 

sys tee m moet vo ldoe n. Dit ve rsc huift he t va lidati cproccs va n het debugge n va n softwarecode naar het 
debuggen va n de mode ll e n van het o ngecon tro leerde systee m en z ijn eisen . Verder maak t het geb ruik va n 

mode ll e n het moge lijk 0 111 rnodelge baseerde technieken e n too ls te gebruike n voor ee n uit gebre ide systee m­

ana lyse e n syste mat ische tes ts. wat bijdraagt aan een beter sys tee moverz icht voor de in genie urs. Verwacht 
wordt dat supe rvisory co nt ro l theory he t productontwikkelproces ka n ve rbetere n. o mdat de ze theo ri e het 

moge lijk maakt o m het gedee lte va n de besturingssoftware te sy nthe ti se re n dat verantwoorde lijk is van 

het coörd in eren van componenten. He t doe l va n dit project is o m te o nde rzoeken hoe supe rvisory contro l 
synthese kan bijdrage n aan de productontwikkeling. De case dat in dit project is gebruikt is een prctpark­

voe rtui g . dat een d raad kan vo lge n die in de vloer is aangebracht. Dit voer tui gconcept maak t he t moge lijk 
0 111 ove r kruisingen. w isse ls e n splitsingen te rijden. Dit pretpark voe rtui g wordt ee n multimove r ge noe md. 

In dit proj ect gaat he t 0 111 he t sy ntheti se re n va n ee n supe rv iso r die de ve ili g he id van de multimover waa r­
borgt, wat neerko mt o p het anticiperen o p fouts ig nalen en ee n accura te nab ijhc idsatl1andclin g. 

Twee raamwerken kunne n worden he rke nd in supervisory control theory die vaak worde n gebruikt voor 

he t sy nthe ti sere n van supe rvisors, name lijk het event-based raamwerk van Ramadge e n Won ham I Won 84, 
Ram87J e n het state -based raamwerk van Ma e n Won ham I Ma05 I. Beide raamwerken z ij n in d it project 
gebruikt o m ee n supervisor voor de multimove r te sy nthetise re n. De mode ll ee r- e n syntheseaspec te n van 

beide raamwe rke n zij n met e lk aar vergeleken. Aa n de e ne kant kan het cve nt -based raam we rk wo rde n 

uit gebre id om naas t gecentra li seerde supervisors ook gedi stribueerde e n hi ërarchische superv isors te sy n­
the ti seren . Aa n de andere kant biedt he t s ta te-based raam we rk meer mode lleerge mak . o mdat de eise n niet 

allee n met e indi ge toestand smac hin es kunnen worde n gc mode ll ce rcl. maar ook met log isc he express ies. 

Ec hte r. allee n gecentrali seerde supe rv isors kunn e n me t het s tat e -based raamwe rk worde n gesynthe ti seerd. 

O m de voordelen van beide raamwerke n te kunn en be nutte n. is een auto matisc he convers ie voorges te ld 
die s impe le log ische express ies conve rt ee rt naar e indi ge toestands mac hines. Middels deze conve rsie is het 

moge lijk 0 111 de e isen me t log isc he expressies te mode llere n, e n toc h ee n ged istribueerde of hi ërarchi sche 
supervisor te sy ntheti se ren. De superv isors z ijn geïmpleme nteerd in de bestaande softwareomgev ing van 

de multimove r. He t implcme ntati e prot otype is zo ge maak t da t superv isors. gesy ntheti see rd met ee n va n 

beide raamwe rke n, makkelijk kunnen worden ge ïmpl e me ntee rd. De impl e me ntati e is gevalideerd doo r 

verschillende tes tcases uit te voere n o p ee n testopste lling. De tes ts ve rt oonde n hetze lfde gedrag als de 
simul a ti es en de conc lusie is getrokke n dat de gesy nthe ti seerde supervisors kunne n worde n gebruikt o m de 

ve ili gheid van de multimover te waarborgen. 

De integ rati e van supe rv isory cont ro l sy nthese in het producto ntw ikke lproces maakt de bes turin gssoft ware 
meer fl exi bel. A ls het systeem o f de eisen zijn verande rd. hoeve n er e nk e l een paar mode llen te worden 

Vil 



VIII Samenvatting 

aangepast. Een nieuwe supervisor kan dan meteen worden gesynthetiseerd. Aangezien het beoogde ge­

drag is gespecificeerd in een modelleertaal in plaats van in een programmeertaal , kunnen ingenieurs de 

besturingssoftware beter begrijpen. wat tot een makkelijkere validatie kan leiden. Het gebruik van forme­

le modellen maakt het mogelijk om modelgebaseerde technieken toe te passen, zoals discrete simulatie 
en hybride simulatie. Dit kan fouten in een vroeg stadium van het produetontwikkelproces helpen de­

teeteren en de ontwikkelkosten van prototypes mogelijk verlagen. Supervisory control synthese zou het 
productontwikkelproces kunnen verbeteren en is geschikt voor het ontwikkelen van besturingssoftware dat 

verantwoordelijk is voor het coördineren van systeemcomponenten. De afwezigheid van livelock in de 

implementatie kan echter niet worden gegarandeerd. Dit zou mogelijk kunnen worden geëlimineerd door 

synthese van supervisors die optimaal zijn qua tijdgedrag. 
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Chapter 1 

Introduction 

Devclopment of high-tech systcms is a challcnging task. si nee functionality is often increasing due to more 
demanding markcts and incrcascd compctition. As a rcsult , the de sign of a high-tcch system is bccoming 

more and more complex. Additionally, more complex systcms tcnd to have a longcr dcvc lopmcnt cycle and 

as a const:quenct:. it is <lillicult for industrial companit:s to rt:main competitive in ever changing markt:ts. 

The performance of a systcm in rclation to th e markct can be indicated by the following Kcy Performance 

Indicators (KPI): 

• Functionality 

• Time-to-market 

• Cost 

• Quality 

In order to gct more competitive. rcducing cost and timc-to-markct is mandatory. while at the samc time 
functionality and quality should increasc. Howevcr, currcnt practice shows th at the rclati on bctwecn these 

indicators is often a trade-off. lf, for cxample , one would improvc the qualit y of a systcm , oftcn the cost 
and time-to-market are incrcascd. Fora new systcm gcneration, the functionality and quality are intcnded 

to increasc. duc to customer dcmands. As a rcsult. the time to markct and cost are likcly to increasc as 
well. In order to withstand the se ncgati ve cffects. th erc is a demand for new engin ee ring proccsses. In this 

project. wc focus on the engineering proccss of N BG lndustri a l Automation. 

NBG lndustrial Automation. located in Nederwet:rt. providt:s services in tht: field of dt:ctronics, embedded 

software and PC-software for industrial and mcdical applications. One of many products of NBG is the 
multimover. a theme park vehiclc that follows a wire that is intcgratc<l in the floor. The multimover is a 

relatively nt:w concept. since the vehicle acts an<l <lriws accor<ling toa sct:ne program that is speciîie<l by 
the themc park. The scene program specilîes at what speed the vehicle should ridc at a c1:rtain pos ition . 

whcn it should follow othcr vchiclcs etc. Thi s concept makes the multimovcr a vcry flexihlc vchicle that 

can be uscd in theme parks, museums and in other rccreational activitics. The multimover is an examplc of 

a high-tech system and is uscd as a case study in thi s project. 

In the following sections , we focus on two engineering processes. First , the traditional engineering proccss 

and subsequently, the model-bascd engineering process are cxplaincd and discussed . Then , the outline of 

this thesis is prcsentcd. 



2 C/Japler / . lntroduction 

1.1 Traditional engineering 

T he traditi ona l eng ineerin g process is usuall y based on Rook 's Y-mode l [Roo86 J, implcmentin g a 'di vide 

and conqu er ' strategy. The syste m is decomposed into small er part s th at are devcloped separa tel y. When 
all part s are avail able , the part s are integrated to construct the system . For simplic ity. onl y two level s of 

hi erarchy are cons ide red in the fo llowing di sc ussion. The hi gher leve l is refc rred to as the system and the 

lower leve l is re fe rred to as the compo nenl s. 

j R1 

dt: fi 11t..: 

~------------► 
lh:IÎlll' 

L 

('\ 
reo li ze /8 \ 

' 1 ' 
f \ 
1 inh: !.!. rale \ 

i i 
In rnsrrnc /11 ·e 
. i t 1 

\ integrale / 

re:i lize\ Îz7 / 
\l=:J/ 
\ 

Figure 1. 1: The traditi ona l system deve lopmenl process 

Figure 1.1 shows a gra phi ca l represe nt ali on of th e trad itiona l eng inee ring process. int rodu ced by I Bra08 ). 

adapted by I The08 1. Note thal the foc us in thi s p icture is more on th e represe nl alions of th e systems and 
lcss on the diffe re nt phases o f the syste m deve lopment as in the traditio nal Y- modcl. In th e initi a! phase , 
the requirement s o f the syslem are dcfined , mostl y togdher w ith the c ustomer. The system requirement s 

R de fin e il s fun cti nnality. These requiremenls ca n incl ude cnnstra inl s . for examplc . nn sa fety and pe rfor­
mance. In the nex t phase, a system des ig n D o f th e syslcm is made th at sati sfics the system requircment s 

R. The system des ig n D spcc ifi es the architecture, the decompos ition o f th e sys tem , the inlerna l beha viour. 
and the lechno log ies used. Furthermore , an infraslruc ture / has to be des ig ned thal spec ifl es the inte racti nn 

between all component s. 

Aft er th e system as a whole is des igned. the system ca n be decomposed and the requirement s fo r th e com­

ponent s R 1 th ro ugh R" and component des ig ns D 1 th rough D" can be set up . T he component des igns 
D 1 th rough D.,, spec ify how the compone nts sati s fy the ir req uireme nts . Note th at in thi s fi gure. the de­

vcl opmenl process is s im plifü:d. In prac ti ce, these diffe rent phases are no t seque nt ia!. hul can start be fore 

the prev ious phase is fi ni shed . Furtherm nre. the deve lopmenl process has an iterati ve nature due to chang­
ing requi re menls o r des ign errors that are di scovered. lf a ll compo nents are des ig ned and th e des ig ns are 

verifî ed , the compo nent rea li za tio ns Z 1 lh ro ugh Z" are made . These reali zati o ns have lo be checked if 

lhey are according to the component des igns D 1 th rough D " and ifthe reali zali ons salis fy the component 
requiremenl s R I th ro ugh R,, . Thi s can be dune hy verifi ca li on, valida ti on and te st ing. Si nee the noli ons o f 

verifica tion and validati on are not uni voca l. the dcfiniti ons from I Hop93 ) are adopted: 

• Ye rifi ca ti on mea ns ·building the system ri ght ': suhst:rnti ating th at th e system co rrec tl y implemenl s 

it s spec ification. 

• Ya lidati on means ' building the ri ght system ·: substanti ating that the system perfo rm s w ith an accept ­
able leve l o f accuracy by comparing it s performance w ith test cases o r human ex pe rts . 

When the rea li zati ons of all components are ready and checked . they can be integrated by means of an 
infrastructure I . An infras truc ture I is considered to be eve rything that connec ts components. Now, the 

integrated system can be tested whether it confo rms to the intended syste m des ign D and whe ther il sati s fle s 

the system requirements R. At the end , the system is validated whether or not it mee ts a ll customer 

demands. 
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Traditi ona ll y, rcquircmcn ts and des igns are mostl y dcsc ri bcd by document s onl y. T hi s can have scvcral 
di sadva nt ages [Thc08 J: 

• Doc umcnt s may cont a in ambiguous or inconsistent in fo rmation. Furthcrmore, doc umcnt s may be 
incomplete or outd atcd . As a rcsuh . il is difficult to dc tcc l incons istcnc ics and to gel a good systcm 
ovcrv icw. 

• Due to the inrorm al nature o r these doc um cnts. it is d iffl cuh to proccss these documents automati ­
call y. 

• Ducuments art: a stati e piece o r inrorma ti un which makcs it diffl cult to ex prt:ss and analyst: the 
dynamic systcm bc haviour. As a rcs ult , dct crmining the integrated sys tcm bchav iour based on com­
pone nt doc umcntati on onl y. is a diffi cuh task. 

Since doc um cnt ati on alonc is no t we ll sui ted to check the corrcc tncss of the system to be built , the be­
haviour o f the sys tcm ca n onl y be veri fied syste matica ll y w ith testin g when the complete systcm is rca l­
izcd . Form a! modcl s can be intcgrated in the eng ineering proccss to ovcrcome these d isadvant ages. Using 
models in the eng inee ring proccss is ca ll cd modcl -bascd engineerin g . In the ncx t scctio n, the modcl-based 
e ng ineering paradi gm is ex pl a ined . 

1.2 Model-based engineering 

The model-bascd engineering (M BE) system dcvc lopment proccss as descri bed in JB ra08 J. is shown in 
Figure 1.2. The main di ffc rcnce bctwecn th e trad itional engi nee ring proccss and th e modc l-bascd engi­
neering proccss is the inclusion of modcls in the dcvc lopmcnt process. Bcforc making rcali za ti ons. a ll or 
somc compo ncnts can be modcllcd. M aking modcl s cnablcs th e usc of a range o f modc l-bascd ana lys is 
tec hniques and too ls to support the deve lopment process. 

Fig urc 1.2: The model-bascd enginee ring systc m dcvclo pmcnt process 

Wc considcr a model to be an abstract representation o f a real component or systc m. lnt rod uc ing models 

in the deve lopment proccss has scvcra l ad vantagcs JB ra08 J: 

• Modcl s support a systcmati c approac h to spcc ify component and systcm behav iour with more con­
sistency and less ambi guit y than documents. Ambi guity is a lack o f clea r and exac t use o f words, 
so that more th an one mcaning is poss ible. Consider fo r cxample th e fo ll owin g scnt encc: " He ale 
the cooki es on the co uch.". which could mea n that he ale the cookies which were on the couch. or it 
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could mcan that he was sitting on the couch whcn he atc the cookics. The constructs used in forma) 

modcl s have a scmantics ddining prec isc ly what thcy mcan. 

• Models make it cas ier to analyse dynamic bchaviour as well as the performance of componcnt s o r 
systems. 

• By si mu lating and validating model s , errors can be dctected in an early stage of the system dcvcl­
opmcnt proccss whcn no compo nent is rca li zcd , which decrcases ri sk in the systcm dcvclopmcnt 
proccss. FurtlH;rmore. simul ating and va lidating models increascs overall confidcncc in the correct­
ncs s of the systcm. 

lf the models are validatcd and simulatcd and the conclusion is drawn that the systcm has the co rrect 
functionality, co mponents can be rcali zcd. Howcvcr. unl css cxhaustivc. simulation can onl y show that the 
system mi ght have correc t behaviour and cannot guara ntec corrcc tness of the mode l. Forma) Yerific ation 
tcchniques can be uscd to prove propcrties of mode Is and can guarantcc the corrcctncss of modcl s . 

In the case that onl y somc compo nent rcalizations are ava ilablc, it is possible to app ly hardwarc-in-thc­
loop-s imulati on. In hardwarc- in-the-loop-simul ati on. the real hard ware of the embedded systcm is uscd 
and tcstcd w ith mode Is in whi ch the environment is s imulatcd I Bro03 ]. The mode Is of th e componcnts that 
are no t availablc yct can rcplacc the ir compo nent rcali za ti on. With thi s hardware- in-the-loop si mulatio n 
and tcsting. the overall bchaviour can be anal yscd in an carly stage of the devclopment proccss. which 
decrcascs risk and increascs confidcnce in the correctness o r the system. lf all componcnts are rcalizcd. 
all model s can be replaced hy the components. The final implementation can lx: Vl'.rified if the complete 
system fulfill s its sys tem rcquirements Rand corrcsponds with it s systcm design D. 

Howcvcr, the corrcctncss of a mode l _U; does not g uarantce the corrcctness of a realization Z, . Further­
more. in somc systems, the requiremcnts change ove r time . As a rcsult , each changed systcm rcquirement 
rcsults in changed requiremcnts and designs for the compo ncnts . The processing of these changes could 
be time consuming and error-pronc. sincc these changes have to be made by hand mostl y. By integratin g 
supcrvisory control thcory in th e dcvelopment proccss. the se drawbacks can be partially addrcssed. 

Supcrvisory control th cory, cxplaincd in Chaptcr 2, cnab lcs us to generale a ccrta in part of th e control 
software and climinates the manual design. The control software. derivcd accord ing to this theory, is 
mathcmatica ll y correct w ith respect to modcl s of the componcnt s and modcls of control rcquircmcnts. As 
a conscqucncc. the design and the implcmentati on do not nccd to be tc sted aga inst the control rcquiremcnt s. 
This changes the dcvclopmcnt proccss from implcmcnting and dcbugging the design and implcmcntati on. 
to dcs igning a nd debugging the requirements. Thi s means that th e vcrificati on for the corresponding part 
can be c liminated , the engineer can focus on validating the systcm . 

The ex pcc tatio ns are that the add ition of supcrv isory co nt ro l thcory in the modc l-bascd engineering proccss 
cnhanccs the product dcvclopmcnt process. This brings us to the objcctivcs of this project. stated in the 
following secti on. 

1.3 Objectives 

The objecti ve of thi s project is to invcs ti gatc the app li cab ilit y of supervisory control thcory in the product 
dcvclopmcnt proccss of NBG. The multimovcr is choscn as a case study for thi s project. A supervisor 
nccds to be sy nthcsi zcd and implcmcnted on a rea l hardware platform. From this case study. conclusions 
about the applicability of supcrvisory control synthes is at NBG can be drawn. 

To thi s end , the fo ll owing steps necd to be carried o ut: 

• Define modcl s o f a multimover and rcquire mcnt s associated with il thal are necdcd for sy nthcs iz ing 
a supervi sor. 
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• lmplement thi s supe rvisor within the eurrent soft wa re environment and inves ti gate the advant ages 

and di sadva nt ages o f thi s set-up . 

• Propose a too lchain th at allows model -based eng ineerin g inc luding supervisor sy nthes is . 

• lnvesti gate how supe rvisory control sy nthes is can be used w ithin the prod uct deve lopment of NBG 

and study the appli cability. 

In the nex t sec ti on. the out line of thi s thes is is prese ntecl. 

1.4 Outline 

In C hapte r 2, the bas ics of supervisory control theory are ex pla ined. Two supe rvisory cont rol framework s 

are di sc ussed . since these framework s are most applicable. be ing the event -based framework of Ramad ge­

Wonham lRam 87 ] and the state -based fram ework o f Ma-Wo nham 1Ma05] . Subseq uentl y. the eng ineering 

process w ith inclus ion of supervisory cont rol theory is ex plained. At th e end , a toolchain is proposed that 
a ll ows fo r a ut o mati c ge nerati on o f the co nt ro ll er software. 

The fun cti o na lit y o f the multimove r and th e models fro m which a supervisor can be obta ined are ex plained 

in C hapte r 3 . In Chapter 4, mode lling conveni ence of both supe rvisory cont rol frameworks is d isc ussed 

and an aut o mati c conve rs ion o f mode Is th at ca n be used fo r sy nthesis is proposed . 

A proto type of the implement ati on of the synthesized cont ro ll e r so ftw are is di sc ussed in Chapte r 5 . Fur­
th crmore . potential pit fa ll s of thi s implement ati o n and the applicabilit y at N BG are ad clressed . This thes is 

ends with conc lusions and suggesti ons fo r furth e r research. presented in C hapter 6. 
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Chapter 2 

Supervisory control theory 

Supervisory cont ro l lhcory is used in this project 10 generale a spcc ilî c pan o r the con trol so ft ware. In this 
chapte r. the theore tica! bas ics are cx plaincd that are nceded to undcrstand supcrvisory contro l thcory. 

A hi gh-tcch systcm can be d ividcd in roughl y two parts : the ph ys ica l un contro ll cd hardware and the conl ro l 
systcm. A sche mali c ovc rview of a hi gh-tcch system is g ive n in Figure 2. 1. In thi s fi gure. th e con tro l systc m 
is de picted in blue. 

Supcrv isnry 
cnntro l 

Resource contro l 

T ransc..luCL' r:-. 

User 

Ta,ks 

Resources 

Ma in stru c turc 

Figure 2.1: Schemati c overview of a hi gh-tech syste m 

At the boltom level o f thi s fi gurc. the main strue ture is depic ted . containing the phys ica l hard ware compo­
nent s. Sensors and ac tu ato rs are mounted on these hard ware components to monitor the pos ition or state of 
th ese compo nent s and to ac tuate these compone nts. These sensors and ac tu ators are a lso call ed the trans­
duce rs o f th e sys tem. The sensor s igna ls have to be proccssed an d th e ac tuato rs have to be controlled with 
feedback cont ro l th at ass ures that the ac tuators reach the desired position in a desired way. T hi s happens 
at the level o f resource contro l. Abovc the resource control leve l. wc have supervisory cont ro l. lt coor­
dinates the indi vidua l component s and g ives the des ired functi onality to the system. Supervisory cont rol 
inc ludes scheduling. pl anning and di spatchin g fun cti ons [Pat89 J. In thi s thes is . wc o nl y concentrate on the 
supervisory cont rol part of a hi gh-tec h system and which is refc rred to as the supervisor. 

Supervisory control theory (SCT) is initi ated by P.J . Ramadgc and W.M. Wonham at the Uni vc rsity of 
Toront o, Canada JR am87, Won84, WonOS]. This theory a llows to sy nthesize a model of the supervisor 
fro m forma! modcls of the uncontrolled system and forma) modc ls o f the requiremcnts. A graphical rep­
rcsentati on of thi s synthesis is shown in Figure 2.2a. First. the uncont ro ll ed system (from now o n: plant ) 
is fo rmall y spec ifi ed in terms o f automata (/\1 p ) . A plant automaton desc ribes the ph ysica ll y possibl e be­
hav iour o f the system to be cont ro ll cd. Then. th e requiremcnt spcc ifi cati ons o f the supcrvisor are fo rm all y 

7 
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defînl.'.d in tl.'.rms of automata (l'il 17,J . A model of the supervisor (!115 ) is gcneratcd from these forma! 

models. 

C:\ 
V\o., ... ,""~G 
0:/ 

(a) Synthesis 

evcnts t: nabkd 
hy supervisor 

supervisor 

plant 

(b) The rolc of th e supervisor 

Figure 2.2: Supervisory control synthcsis 

cve nt s gcncratcd 

by plant 

The res ulting supervisor can be used to supervise an uncontrollcd plant (sec Figurc 2.2b). The supervisor 

can only react to ohscrvahlc cvcnts that are gcnerated by the uncontrollcd plant. The supervisor influcnccs 
the behaviour of the plant by disabling ccrtain controllable cvents. The method guarantces that the systcm 
consisting of the dcrived supervi sor and the uncontrolled plant fulfills the rl.'.quirements. lf the supl:rvi sed 

mode l does not contain the desircd functionality, the models o f the uncontrollcd plant or the rcquirements 
are inadeq uate. 

Different mcthods have been devclopcd that allow for an automatic synthcsis of a supervisor. The original 
framcwork, the cvcnt-bascd supervisory control framcwork [Ram87 . Won84]. is explained in Section 2.3. 

Sincc the main obstacle of this framcwork is computation complexity. sevcral extcnsions have been de­
ve loped that enhance the supervisor sy nthesis. A different approach is the state-bascd supervisory control 

framcwork by Ma and Wonham I Ma05, Ma06]. This approach makes usc of state tree structurcs that pro­
vide concurrency and hierarchy. This framework is cxplaincd in Scction 2.4. Scction 2 .5 describcs how 

supervisory control thcory can be embedded in the mode l-bascd engineering proccss. A toolchain that 
allows for model-bascd engineering is given in Section 2.6. 

Supcrvisory control thcory m:Jkl.'.S usl.'. of forma! l;:inguage theory and finitc state machinl.'.s, so-callcd au­

tomata. The assumption is made that the reader has some basic knowlcdge of set thcory. The next section 

cxplains what automata are. 

2.1 Automata and languages 

2.1.1 Automata 

An automaton is a model of bch:lYiour composl.'.d of a finitc numbcr of states and transiti ons between those 
statcs. Each state should dcscribe its bchaviour in somc measurablc way l Cas07 j. The transitions of an 

automaton are labeled by events. An event may be identified with a specific action taken (e.g. open the 

door. rele ase the button etc.) and should be thought of as occurring instantaneously. 

Dcfinition 2.1 (Automaton). An automaton is a quintuple 

G = (X , L C xo. X 111 ) . with 

• X : the finite state set. 

• 1: : the finitc alphabct i.c. the event set. 

• ç : X x 1: --> X : the transition map. This map shows which transitions are possiblc at cach state. 

• x 0 E X : the initia! state. 
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• Xm Ç X : the set of marker statcs. The marker statcs are used to dcsc ribe complctcd tas ks. Thcy 
reprcscnt a se t of statcs which wc wa nt always to be rcachablc by any bchaviour I Ma 1031. 

In a phys ica l sys tem , not all o l" the events can be influenceJ by a supervisor. Thi s is captureJ within 
supcrvi sory control thcory by di viding evcnts in two classes: controll ablc cvcnts and uncont roll ablc cvcnt s. 
Controll able cvcnts are controll cd by the supervisor (e.g. cvcnts of actuators) . The controll able event set 
is de noted by Le- Uncont ro ll able events cannot be cont ro ll ed by the supervisor (e.g. a break-down event) 
and the uncontro ll able event se t is denoted by I:,,. 

Event s can also be di vidcd into obse rva ble and unobserva blc events , but this di stinction is not used in thi s 
thes is. The reader can ass ume that a ll event s mentioned in this thes is are obse rvable evcnts , except for the 
event T, which is used fo r automaton abstrac tion (sec Section 2.3.3) . 

In thi s thes is, event labels are wrillen itali c (e.g. breakdri\1'11 ) and state labels are wrillen bold (e.g . Busy). 
Furthermore, automata can also be prcsented graphica ll y. In our graphica l reprcsentation, statcs are denoted 
by ve rti ces, initi a! states are denoted by an unconnec ted incoming arrow and markcd states are dcnoted by 
fill ed verti ces. Controll ahle and uncontroll able events are drawn with so liJ anJ J ashcJ edges respec ti vel y. 

Example 2.1.1 
In thi s example, a small automaton is presented that models a mac hine. In the initi al state. the mac hine 
is iulc. In thi s state. the machine can start process ing a prouuct. After some time, the product is linished 
and becomes idle aga in . Furthermore. a breakdown is poss ible when the machine is processing a product. 
lf thi s happens. the mac hine has to be rcpaircd bcforc it can start processing a prod uct aga in . Since the 
operator is not ablc to stop the mac hine when it is bu sy. nor can he prevent the machine from break ing 
down. these cvcnts are modcllccl as uncontro ll able event s. An automaton that represents thi s behav iour is: 

C: = (X. L f.. Xo . X m), with 

X = {ldle . Busy. Down } 

L = {s tart, fi nished, breakclm rn , rcpaired } 

Lr- = {start, repaired } 

I:,, = {.finished, hreakdmv11 } 

E. : E. ( ldlc . srart ) = Busy. E. (Busy.Jinished ) = ldle . 

ç (Busy , breakdr!\1'11 ) = Down , E.( Down. re1w ired) = ldle 

x 0 = ldle 

Xm = { ldle} 

A graphica l represe ntation of thi s automaton is given in Figurc 2.3. 

I 

/inisli ed / 

I 

I 
I 

. 1 Sfarf 

1 
1 

1 

1 
1 

lï'JJOirl'd 

Bus~' 6- - - - - - - - - - - - - -► Down 
breakdu 11 •11 

Figure 2.3 : The famous small machine model 



10 C/iapter 2. Supcrvisory contra/ thcory 

2.1.2 Languages 

Automata represent languages . The language L(C) generated by C = (X, >::: , ç, x0 , X 111 ) contains all finite 
sequences of even Is. A sequence of even ts forms a string. 

Definition 2.2. L(G) := {s E ~ • : ç(x 0 ,s) is dcfined }, with I: * the Kleene closurc of~, 1.e. the 
collcction o r all fin il<: sequenc<:s or evcnts taken from I:. 

The marked language L ,,, ( C) by C is the set of strings (sequence of evenls) , starting from the initia( state 
and ending at a marker state of thal corresponding automaton: 

Definition 2.3. L,,, (C) := {s E L(C) : ç(x0 , .s) E Xm}-

The prdix closure or L denoted by L consists of all prefixt: s of strings in L: 

Dcfinition 2.4. L := {s E I:* : (:l t. E I:* )[s l. E L]}. 

The natura( project ion of a language can be found by rcplacing all cvcnts that are in the language I: but not 
in the projection language ): ' by the cmpty string E: 

Definition 2.5. Givcn I: and I:' Ç I:. A mapping P I: * ---+ I:'* is called the natura( projection with 
respect to (I: . I:' ). if 

P(E) = f 

{ 
if a E I: ' 

(Va E "I: )P(a) := aE 
otherwi se 

('visa E I:* )P(s!T ) = P (s) P (rr ) 

Now we know the basics of automata and languages. some propertics of automata are cxplained that are 
needed to understand the synthesis procedure . 

2.2 Language properties 

In this scction , some properties of languages are explained. First. nonblocking is discussed and subse­
quently, controllability is di scussed. 

2.2.1 Nonblocking 

To cxplain th<: propcrty nonbloc king. first rcachability and cn-rcachahility are <:xplaincd. 

A certain state x E X is reachable if it can be reached by a sequcnce of events from the initi a! state x 0 . 

An automaton is said to be reachab/e if all its states in thi s automaton are reachable. In Fi gurc 2.4a. state 
4 is not reachab le. si nee no seq uence of even ts leads to thi s state. starting from the initia! state . 

A certain state x E X is co- reachahle if a marker state x E X 111 can be reached from thi s state. An 
automaton is co-reaclwble if all its states are co-reachable. In Figure 2.4a, state 3 is not co-reachable, since 
no sequence of events from this state can lead to a marker state. 

An automaton is nonblocking if all states that are reachable, are also co-reachable. The automaton depicted 
in Figure 2.4b is nonbloc king, since from every reachablc state , a marker state can be reached. Note that 
thi s automaton is not reachable , since state 4 cannot be reached. 

Definition 2.6 (Nonblocking). C is nonblocking, if L,,, ( C) = L ( C). 
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--o~----+•O---••o---~•o 
0 2 3 

(a) B locking auto ,naton 

,o 
2 

(b) Nonblock ing automaton 

Figure 2.4: lllustration of the nonbloc king propert y 

2.2.2 Controllability 

11 

Req uirement models spec ify the dcs ircd behav iour of the pl ant that should be matchcd by adding a su­
pervisor. The supervisor can di sablc ccrtain controll able cvcnts such that the controll cd systcm contains 
the dcsircd bchav iour. Notc that the rcquircmcnt modcls eould requirc to prcvcnt ccrtain uncontrollablc 
cvents from happening. Nevcrtheless, uncontroll ablc cvcnt s cannot be di sablcd by a supervisor. lf thi s is 
the case. controllablc cvents should be di sablcd which lead to statcs with uncontrollablc cvcnts that have to 
be di sablcd. As a rcsult. with the controll ability propcrt y. no scquence of event s cx ist that can lead to statcs 
that are violating the nonblocking propcrty or ccrtain rcquircmcnts [Mor07 J. 

A language ]\. is controll ablc with respect to an automaton C and uncontro ll abl c alphabct I: 11 • if and onl y 
if for all scqucnccs of events poss iblc in both C: and [\ . . aft cr which an uncont ro ll abl e event is allowcd by 
C. ho Ids that i I is al so allowed by ]\ .. 

Dcfinition 2.7 (Co nt roll ab ility). A language /\. is co111m llahle w.r. t. C and _ 11 if 

Example 2.2.1 
In Figurc 2.5 . two automata are givc n. automaton C (Figurc 2.5a) and a languagc X rcprcscntcd by au­
tomaton S (Figurc 2.5b). Both auto mata have the samc alphabet I: = {o./J. c.d } with I:, = {n.d} and 
~" = {/J. r· }. Wc wa nt to check whethcr the languagc rcprcscntcd by automaton S is controllablc w.r.t. 
automaton C. 

b (' 

(a) A utomaton C (b) A utomaton S 

Figurc 2.5 : lllustration of the controll ability propcrt y 

Both automata accept the string olw. Howcvcr. if IJ is appcnded to thi s string. onl y automaton C can acce pt 
thi s string. Automaton S cannot acce pt thi s string, since therc is no event /; poss ible after obu. Since h 
is uncont ro ll ablc, we can draw the conclusion that the language J\· , rcprcscntcd by automaton S. is not 
controllablc w. r.t. automaton C and I: 11 • ~ 

The language of a supervisor that is synthcsized with thi s thcory is always controll able w.r.t. the pl ant 
mode Is and the uncontroll ablc alphabet Lu . This mcans that whenever a pl ant automaton allows a give n 
uncontro ll able event to occur, the superviso r automaton also allows that uncontroll able event to occur in it s 
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corresponding state. lf a state is found in which an uncontro ll ablc event is allowcd by a plant automaton but 
not by the supervisor automaton, thi s corrcsponds toa ' bad state' , i.c. a state in which the controllability 
condition is violated. The supervi sor synthesis procedure disables as many controllable cvents as necdcd 
in the supervisor to ensurc that thi s ' bad state ' is not rcachablc. Note that thi s could rcsult in an empty 
supervisor. 

Both propertics, nonblock ing and controllability are important for sy nthcsi zing supervisors. In the rcmain­
dcr of thi s chaptl:r, two framl:works are <li scussl:d that allow for supervisor synthl:sis. The first framl:work . 
the evcnt-bascd framework of Ramadgc-Wonham [Ram87 J is explaincd in the ncxt section. 

2.3 Event-based supervisory control 

In thi s section, the event-based supervisory control framcwork , initi atcd by Ramadge and Wonham [Ram87, 
Won08], is cxplaincd. The cvent-based sy nthes is procedure makes use of the automaton product. This au­
tomaton product is cxplained bclow. 

2.3.1 Automaton product 

To build a more complex au tomaton, the product of two automata can be computcd. This automaton 
product is bascd on synchroni zati on of sharcd cvcnt s. Thi s mcans that such an event can onl y happen if 
bath ori ginal automata are ablc to do that eve nt. A state of the automaton product is a marker state if bath 
statcs in the ori ginal automata whcrc it is rcfcrring to are also marker states . 

Dcfinition 2.8. Givcn automata C 1 = (X 1. I: 1,( 1.xo _1.X111 _1 ) and G'2 = ( X 2 - ~2 - (2 .Xo_ 2 .Xm 2) . the 
automaton product G' 1 x G'2 is the automaton (X 1 x X2. I: 1 U L:.>, ç1 x ç2 , (xO_1, x O_2 ). X 111 _ 1 x X 111 _2 ) 

whcre 

( , x (,((x,. x,). a) { 

(ç 1 (x1. a) . x2 ) 
(x1. (2( x 2, a)) 

(ç1 (x 1, a) . ç2(x2 , a)) 
un<lefin l:d 

if a E I: 1 - I:2 and ç 1(x 1,a) is<lefi ne<l 
if a E ~ 2 - I: 1 and ( 2 (x2 , a) is dchncd 
if a E I: 1 n I:2 and ç1 (x 1, a) and ç2(x2, a) are defined 
otherwisl: 

Noticc that the automaton product is commutati vc and assoc iativc . An example is givcn below how the 
automaton product works in prac ti cc. 

Examplc 2.3.1 
In Figurcs 2.6a and 2.6b, two automata are givcn. The alphabet of automaton C is {n , c} and the alphabet 
of automaton II is { b, c} . As a rcsult, c is a shared even t betwecn both automata. The rcsulting automaton 
product is givcn in Figurc 2.6c. The state names of the automaton product refer to the states of the ori ginal 
automata C and H. As can be seen. the event r· can only occur if both cvents band a are done first. 

2.3.2 Supervisor synthesis 

Ramadge and Won ham have proven that, fora plant C and a rcquircment II , there always exists a supremal 
controll ablc sublanguage /\·,,,1, Ç L,,, ( C) n L,,, (H) [Ram87 , Won84 ]. The supervi sor reprcsents thi s 
supremal controllable sublanguage /\. sup · As a consequence, the synthes ized supervisor is: 

• nonblocking, i.e. from every state of the supervisor, a sequence of event can lead toa marker state. 
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0,1 

l u l b 

~~ 
0 c O c 1.0 

(a) Automaton C (b) Au to,naton // (c) A utomaton product 

Figure 2.6: Exa mple of an aut o maton product 

• controllable w.r.t. the plant G' and L,,. This mea ns th at whenever a pl ant model aecepts an uncon­
trollable eve nt , the supervisor also accepts this uncont ro ll ab le eve nt. 

• maximally permissive. i. e. the superv isor onl y disables eve nt s to stat es that do not sati sfy the non­

blocking o r controllability property or are no t allowed due to req uirement mode ls. O ther behaviour 
is a lways possible. 

A n example of how supervisor synthes is is performed is g iven below. 

Example 2.3.2 
In Figure 2.7 , three automata are g iven th at represent two machines and one automati c guided vehi c le 

(AG V ). The two automata of both mac hines co ntain a cont ro ll ab le event .1·rart that represe nt s the starting 

command and an uncontroll ab le event .finished. The purpose of the AGV is to brin g fini shed prouucts from 
the first machine to th e second machine and fini shcd prouucts from the second machine to the storagc 

room. Sincc it is unknow n whcre th e product has to be sto rcd inside the storage room. the eve nt store is 
uncontroll ab le and cannot be co ntroll ed by a superv isor. 

! slart 1 

~~ 
fi 11ished t 

! Slt ll"l 2 

~~ 
Ji11isiled2 

(a) Machine 1 (bJ Machine 2 

Ji11isherl 1 slore 

(c) AGV 

Fig urc 2.7: Plant mode Is of Exa mple 2.3 .2 

To synth es ize a s upervisor, the automaton product of th ese three automata has to be computed. This marks 

th e so-ca ll ed lega l behaviour of the system. The calc ul ation of thi s aut omaton product res ult s in F igure 2.8a. 
Note th at common events are synchroni zed. 

A supervi sor has to be rnntrollable anu no11blocking. To fulfill the 11onhloc king property, the supervi sor 

has to ens ure that states 6 and 7 are not ac ti ve since from these states, a marker state cannot be reac hed. 
However, the uncontro ll ab le eventfinishec/ 1 cann ot be di sab led. otherwi se Dcfi niti on 2.7 would be violated . 



14 

srurt 1 fi11ished 1 Sfllr!J 

o-• 0-------► 1 >-------+I 
\ 0 \ 1 2 .1 

\ \ start2 s1art2 
1 1 
1 1 

\ \ srarr 1 .fi11ishi'd1 srarr1 
\ \ 9,-4---• Ç>-------►O---•• 0 

' 1 5 (> 7 
' 1 1 
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(a) Automaton product 
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-4- 0 
1 
1 
1 
1 
1 

1 
\ 

s tart 1 

\ 
\ 

' store',, 

8 Sfar/1 9 

(b) Rcsulting supervisor 

Figure 2.8: Automaton product and supervisor of Example 2.3.2 

As a result. the supervisor has to prevent that state 5 becomes active. Therefore, all controllable events 
(star1 1 and s1ar12 ) that lead to state 5 are disabled. After this, state 3 is not co-reachable anymore and the 

supervisor has to disablc the controllable event start, to prevent deadlock. lf all these events are disabled. 
the resulting automaton rulfills the nonblocking and controllability property and is a proper supervisor. The 

resulting supervisor is depicted in Figure 2.8b. ~ 

A common challenge in synthesizing a supervisor is that the state space of the system grows exponen­
tially in the number of its components. Furthermore. a lot of requirements can also result in a so-called 

state-space explosion. As a result. the tooling may not be able to synthesize a supervisor due to mem­
ory constraints. To tackle this problem , a different supervision arehiteeture can be used, e.g. hierarchical 

interface-based supervision [Led05J and distributed / modular supervision [Su09b. Su09c]. In this thesis . 
only distributed supervision is applied. 

2.3.3 Distributed supervision 

With distributed supervision. the eontrol problem is divided into subproblems. One supervisor is synthe­
sized for each subproblem and they cooperate together as a ·team' to give the complete functionality to the 

complete system. Distributed supervision is partieularly interesting for two reasons: potentially low syn­

thesis eomplexity <1nu high flcxibility, sincc a change in the system may rcsult in only a small numhcr or 

relevant loeal supervisors to be updated [Su09c]. In thi s subsection. we apply two different approaches to 
synthesize distributed supervisors. namely eoordinated distributed supervision JSu09c] and aggregate dis­
tributed supervision [Su09b]. Please note that, for simplicity rea sons. only distributed supervision with two 
distributed supervisors is discussed. Fora more genera! and forma! explanation of distributed supervision. 

the reader is referred to [Su09c . Su09b]. 

In Figure 2.9 , the supervision architecture with distributed supervision is depicted [Cas07[. As can be seen. 
more local supervisors are synthesized to solve a certain subproblem. Note that these local supervisors do 

not need to supcrvisc the complete plant. We assume that the plant spontaneously generales events. Each 
supervisor inlluences the bchaviour or the plant by uisahling certain contrnllable events. In uistributeu 

supcrvision, all supervisors are coupled with each other by parallel composition (depicted in Figure 2 .9 

with Il ). Ina parallel composition , an event can only be executed if all automata. in which this event is 
contained in its language. can execute it simultaneously. Thus, automata are synchronized on common 

eve nts [Cas07J. 

Before both approaches for synthesizing distributed supervisors can be explained, another automaton op­

eration has to be explained, namely automaton abstraction. 
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supe rvi sor 2 

supe rvisor 1 

plant 

Figurc 2.9: Distributed supcrvision 

Automaton abstraction 

Automaton abstraction [Su08a. S u08b J ca n s implify an a uto maton by rcmoving ccrtain transitions. This 
abstracted a ut o mato n has th e important propcrt y that if an au tomaton abstract io n is no nbl ock ing. the orig­

ina l a uto mat o n is a lso no nblockin g undcr the fo llow ing co nditi o n. To prcscrvc the blocking propcrty. the 

automaton that needs to be abs tracted . has to be sta11dardi-:.ed. To standardi zc an auto mato n. a n extra eve nt 
T has to be brought in, which is uncontrollablc and unobscrvab lc . A standardizcd automaton is an automa­

to n whi ch has an initia] stat e w ith o nl y T- trans iti o ns from thi s ini tia! sta te. Fu rtherm orc. this initia! state is 
not allowcd to be marked and no cvents should lead to the initi a! state. 

Definition 2.9. The auto maton C' = (X. L , { T }. E, , x 0 . X 111 ) is standard izcd if 

Xo 1 X 111 

(Vx E X )[E, (x. T) f 0 {cc} x = x 0 ] 

(\fc, E I:)ç (xo.CI ) = 0 
(Vx E X)( \fc, E I:u {T})x0 r/:. ( (x , c,) 

For abstraction. an abstract io n alphabct, dcnoted by I: 1
, nceds to be specilied in order 10 know which 

events shou ld he ahstractt:d. A l the e nd . the ahstracted au 1omaton is s implifi ed hy co mhining s tates that 
are equi vale nt unclcr wea/.:. bisimilarity. Two states are equiva lent unde r wcak bisimilarity if they cannot be 
distinguishcd based on ·ohservab le · bchaviour. Thi s ·obscrvablt: · behaviour is specifiecl by I: 1*. 

Definition 2.10. G ivc n C = (X. L. E, . x 0 . Xrn). Ict I: 1 Ç and P : L * _, ~ '• be the natura! project ion. 

A markin g wcak bisimulation rclation o n X wi th respec t to >:1 is an cquivalcnce rclation R Ç X x X such 
th at. R E {(x . x' ) E X x X lx E X 111 <==> x' E X 111 } and 

(V(x.x') E R )(\fs E I: *)(Vy E E,( x. s))( :ls ' E L *) P( s) = P (81
) I\ (=.IJ' E E, (x 1. s1 ))( y.y' ) E R 

The largest marking wcak bisimulation rclati o n o n X with respec t to I: 1 is ca ll cd markin g weak bisimilarity 
o n X with respect to I: 1

• 

A n au to mato n G abs trac tcd w ith abstrac ti o n alphabct I: 1 is dcnotccl with G / ;::;:: ~, . 

Definition 2.11. G ivc n C' = (X. I:. ç, x 0 , X 111 ) and I: 1 Ç L . The automato n abstract ion of G w ith respect 

to the markin g wcak bi s imulati o n ;::;:: ~_;, is an automaton G/ ;::;:: >~ ,: = (Z . I: 1
• 8. z0 . Z 111 ) wherc 

Z := X / ;::;::E, := {< x > := {x' E X l(x, x') E ;::;:: I: '} lx E X} 
zo: =< xo > 
Zm := {z E Z lz n Xm f 0} 
8: Z x I: 1 

_, 2z. where for any (z . c,) E Z x I: 1
. 

6(z , c, ) := {z' E Z l(l x E z )( :l u.11. 1 E (I: - I: ' )*)E, (x . 1wu 1
) n z' -f 0} 
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A small example of an automaton abstract ion is given be low lSuOSaJ . 

Example 2.3.3 
In Figure 2.IOa, automaton G is depicted with I: = {T ,a, b. c}. Note that automaton G is standardized, 
si nce from the initia( state , the only outgoing edge is a T-cvent , the initi a) state is not marked and no 
events lead to the initia( state. Suppose our abstraction alphabet is L 1 = { T , r:}. The resulting abstracted 
automaton G / ~~' is depicted in Figure 2. 1 Ob. This automaton is constructed by reducing the alphabet of 
the original automaton G to T and c. Subsequently, for cach state in the original automaton is evaluated 
which 'observable ' transitions are possible. For example, if in state I event c occurs , the active state can 
be 1,2,3, or 4. This cvaluation is done for each state. Furthermore, the statcs 1, 2 and 3 of automaton G are 
equivalent under weak bisimilarity. These states cannot be distinguishcd bascd on 'observablc' bchaviour. 
As a conscqucncc, these states are combined and result in state I in automaton G / ~E'. Note that 4 is not 
equivalent undcr weak bisimilarity with othcr states, since state 4 is a marker state and all other statcs are 
no marker states. This automaton is a nondcterministic automaton , since states cxist with outgoing edges 
with the same event. 

0 
T 

0 7 1 "2 /; 3 -1 

0---+•0~---~•~ 

t t 
1 C 2 

~ 
C C 

(a) Automaton C: (h) Ahstracted auto111aton C / ~>: ' 

Figure 2.10: Example of automaton abstract ion 

~ 

Automaton abstraction is needcd for synthcsizing a distributcd supervisor. Below is explained how a coor­
dinated distributed supervi sor can be synthesized. 

Coordinated distributed supervision 

To synthcsi ze a coordinated distributed supervisor. the control problcm has to be di vided in control sub­
problems. A local supervisor can be synthcsized for every control subproblem. It is possible that somc 
plant models are needed for synthesis of more than one local supervi sor. lf all local supervisors are sy n­
thesized , a nonconfli cting check has to he performed . according to [Su08b]. lf the local supervisors are 
nonconfli cting . thcn the loeal supervisors form a proper distributed supervisor for the complete control 
problem. 

Huwe\·er. il' the loeal supervisors are eo11llicti11g, a cuordi11ator has to be synthesized which solws Lhis 
'conflict·. Thi s coordinator can be synthesized from ahstractions or the local supervisors combined with 
its plant model by mcans of the product operator. In Figure 2.11 . a schematic overview is given for the 
coordinatcd supervisor design. In this ovcrview only two loca l supervisors are synthesized. More local 
supervisors can be synthesizcd in the same way. 

First , all local supervisors 8 1, 5 2 are synthesized out of plant mode Is G 1, C 2 and rcquiremcnt mode Is 
Il 1. H 2 . Aft er this. an abstract ion of the automaton product of each loc al supervisor S; and their plant 
mode Is C; is computcd with a certain abstract ion alphabet >:;. This abstraction alphabet I:'; must contain 
T and shared cvents. A coordinator Scan be synthesizcd from this abstraction product and , if necessary. 
requirement mode Is H. lf a coordinator S is synthesized, the local supervisors in combination with the co­
ordinator are nonconflicting. A multiple-level multipl e-coordinator distributed supervisor can be computed 
in the same way. 

The main difficulty of coordinated distributed supervi sion is the choice of an abstraction alphabet. Therc 
are no explicit guidelines for constructing an abstraction alphabet, however, so-called boundary events are 
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s 

: l'--_C_2_, _II_2 _ ___, 

Figure 2. 11 : Coordinatcd di stributcd supervisor desi gn 

not likely to be abstractcd. Boundary cvents are sharcd cvcnts that are uscd in more loca l superviso rs. 
These events are not like ly to be abstracted . s ince only shared events can cn.:atc a confli ct bctwecn Inca! 

supervisors. 

Aggregated distributed supervision 

Aggrcgatcd distributcd supcrvision uscs an aggrcgative synthcsis approach that comput cs nnnblocking dis­

tribut ed s upervi sors . The kcy to the success o f thi s approach is the automaton abstrac ti on tcchniquc. that 
removcs irre leva nt interna l transiti o ns at each sy nthes is s tage so that nonblocking superviso r sy nthes is can 

be carri ed o ut on rclativcly sma ll abstracted modc ls [Su09b] . 

~--S_1_~1 

Figurc 2. 12: Aggrcgatcd di stributcd s upervisor des ign 

In Figure 2. 12. a sc hemati c overview is g ivcn of the aggrcgated di stributed supervisor des ig n. Please note 

that thi s figurc shows nnly th e design o f a d istributed supcrvisor design with two loca l supervi sors . 

F irst , a loca l supervisor S1 can be computcd from plant modcls C 1 and rcq uircment models H 1. Again. 
an abstrac ti on alphabet I:'1 bas to be construc ted (which contains T and shared evcnts) and an automaton 

abstraction nceds to be computcd from the auto maton produc t of the pl ant mode Is C I and the loca l super­
v iso r S1 • The rcsulting automaton abstraction 11 ·1 is uscd as a part of the pl ant model in the sy nthes is of 

the subsequent local superviso r. An aggregated distributed supervisor with more than two local supervisors 
can be computed in the same way. Thi s algorithm always te rmin atcs and I S u09b I proofs that the loca l su­

pervisors area nonblocking di stribut ed supervisor of the complete plant C undcr all rcquircment s if cve ry 

local supervisor is noncmpty. 

Tbc main difficulty o fthi s approach is th e on.lcr nf th e pl ant mode ls fnr which a loca l supervisor is sy nthe­

sizcd. such that it yields a solution. In [Su09b 1- an example of thi s approach is given fora linear c luster 

tool. This linear cluster ca n be divided into four submodules and subsequcntly. the order o f synthcsis of 
the local supervisors is found eas il y. However. more complex manu fac turing systcms may no t have such a 

structured sctting and , as a rcs ult. it may be difficult to gct a good order o f components . 

With distributed supervision , we conclude the scction where the event-based supervisory con tro l framcwork 

is ex plained. In the next section, the other framework , i.e . th e state-based supcrvisory control framcwork 

is ex pl ained . 
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2.4 State-based supervisory control 

The statc-based framework of Ma and Wonham lMa0S], is an cxtcnsion of the original cvent-bascd framc­
work. This framcwork uscs, similar to the event-based framcwork, discrete-event systcms for dcscribing 
certain bchaviour of the environment. However, a differencc bctween both framcworks is that in the statc­
bascd framcwork , cvcry discrete-event systcm bclongs to a state tree structure (STS) , a formalism that is 

computationally efficient for monolithic supervisor synthcsis 1Cai08]. To illustratc this, lMa0S] cstimatcs 
that, bascd on the STS formalism, optima( nonblocking supcrvisory control design can be performed for 
systems of state size 1024 and higher. 

2.4.1 Plant models 

The cntirc state space of a systcm can be depictcd by a state tree. State trees make usc of different types of 
statcs: 

• simpte statcs: states with no child states. 

• AND supcrstatcs: statcs with child states and rcprcscnt a cluster of parallel states. That is, for the 
plant to be in the AND superstatc. it must be at all child states simultaneously. In othcr words. AND 
superstatc model parallel proccsses. 

• OR supcrstatcs: statcs with chi Id states and rcprescnt a set of cxclusive statcs. That is, for the plant 
to be in the OR supcrstate, it must be at exactly one state of the chi Id statcs. 

An cxample of a state tree is given be low. 

Example 2.4.1 
Considcr the machine model of Examplc 2.1.1. lmagine wc have two of these machines working in parallel. 
The complete state spacc of this systcm can be modelled by a state tree as dcpictcd in Figurc 2.13. This 
state tree consists of one AND superstatc (System). which consists of two OR supcrstates (M 1 and M2). 
These OR superstatcs reprcsent machine Ml and M2 which work in parallel. Each OR supcrstate consists 
of thrcc simpte statcs. which rcpresent thrce statcs of the machine model. ldle, Busy and Down. Notc that 
each ut' these states is prefixetl with the name or the machine. e.g. M 1 or M2, in order to distinguish all 
states of both machines. Sincc each machine can be in one state simultaneously, each machine is modcllcd 
as one OR supcrstate. 0 

System 

Ml X M2 

~ ~ 
Ml ldle û Ml _Busy û Ml _Down M2_1dle û M2_Busy û M2_Down 

Figure 2. 13: State tree of Example 2.4.1 

In this thesis, only one type of state tree is used. This type of state tree consists of 3 levels. On the 
top level. we have one AND superstatc. This AND superstate consists of one or more OR superstatcs. 
An OR superstatc consists of simpte states. Furthermore, the simplc states of two OR superstates are 
always disjoint. The transition relation het ween simple states can be dcfined with ho/ons, a local transition 
structure that describes the inner dynamics of OR components. 
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For an OR supcrstatc, a ha lon rcpresents th e transiti ons bctwee n the child states of this supcrstate . In 
esse nce, a ha lon is a ge nera li zcd automaton. Tirns a set of systc rn states organizcd in a state tree, cq uippcd 
with ho lo ns dcscribing the systcm dynamics. Sincc we are using holons the samc way as au tomata in thi s 
projec t, wc ca ll ho lons from now on auto mata. 

Example 2.4.2 
In Fig urc 2. 14. two auto mata are depictcd that rcprescnt the behav iour of th e two mac hines of the stat e 
tree depi c tcd in Figure 2 .13. As we can sec, the bchaviour of each OR supcrstate is describcd with one 
automaton and the statcs of each automaton corrcspond w ith the child statcs of the co rrcspondin g OR 
supcrstatc, 

111 / _Ji11ished ,' 

I 

I 
I 

I 

I 

I 

I 
I 

~ll _ldk 

1111 srarr III I _rcpuired 

~1 l _ llus)' éJ. ------ ------ -► ~1 I_Down 
111 I _breakdo,rn 

(J) Machine 1 

I 
I 

111l_Ji11ished ,' 

I 
I 

M2_1dk 

/ 1111 _swr1 1112 _rqwircd 

I 
I 

I 
I 

~12_Husy éJ.- ----- ------ -► ~12_Down 
1112_ /JrntkcloH'II 

(b) Machine 2 

Figurc 2. 14: The automata of both mac hines 01· the state tree of Figurc 2. 13 

2.4.2 Requirement models 

Unlike th e evc nt -bascd framework. rcq uircmcnt s can a lso be fo rmul ated in the statc-bascd framcwork as 
conditions ove r stares. Notc th at in the cvcnt-bascd fram ewo rk. requirc rncnts can only be fo rmulatcd by 
aut omata w hi ch spec ify scqucnccs o f evcnts . The statc-based fr amcwork a ll ows to cxpress requircments in 
the following three ways: 

• Type 1: Mutual state ex1.: lu sio n. Thi s type o f req uirement spec ifles which set o f states may not be 
activc simultaneously. 

• Type 2: State-transit ion exc lusion. Thi s type of req uire ment speci fi es that a transition is no t all owed 
if a cc rtain set of statc s is ac ti vc. 

• Type 3: Memory mod ule. This type o f r1.:quirement is an ordinary en ;nt-hased rcquiremcnt, spec ili ed 
with an auto rnaton. 

[Jac09] bas ex tended the a ll owcd express ions of the state-based framcwork. lnstcad of the two state-bascd 
exprcss ions (type I and type 2) . threc gc ncra li zed state-based cxprcssions are proposcd. These gcnerali zcd 
statc- bascd cxprcss ions are dcscribed as log ica! cxpress ions. bascd on propositional log ic. Wc assumc that 
the reade r knows the bas ics of propositional log ic. More information about propositional log ic can be 
fo und in [M an85 ]. These cxprcss ions are convcrt cd to type I and type 2 cxprcssions. In thi s th es is on ly 
the syntax is g iven. Fora forma! proof of the conversion, the reader is refcrrcd to [Jac09 j. Bcforc the 
thrce gc nera li zcd state-bascd express ions are prcscnted we int roduce the used operators and predicatcs of 
[Jac09] in Table 2.1. 

The first genera! stat e-bascd express ion is a state-formul a SF. This all ows us to formulate any log ica! 
cxprcss ion of state prcdicates , thal must be satisfied by the plant under supcrvis ion. 
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Tab Ie 2.1: The operators and predicates for the used logica) expressions 

Description 
Conjunction (AN D) 
Disjunction (OR) 
Negation (NOT) 
Implication 

(a) Op~rators 

Predicate 
x l 

---> E 

-+> E 

Description 
True if and onl y if the plant under 
supervision is in state 'x'. 

True if and only if at least one of 
the evcnts in the set of evcnts Eis 
cnablcd by the supervisor. 
True if and only if each event in 
the set of evcnts E is disabled by 
the supervisor. 

(b) Predicates 

Definition 2.12. A state-formula SF is dcfined as follows: 

Example 2.4.3 

Op:: = VI 111 ⇒ , 

Pr:: = x ] , 

SF:: = Pr 1-aSF I SF Op SF. 

Reconsidcr Example 2.4.1, where the plant model is given of two machines that work in parallel. The 
automata that specify the internal structure of the OR superstates MI and M2 is give n in Figure 2.3. but 
now with prdixcs Ml and M2 for all state names and prcfixcs 111/ and 111 2 for all event names. In this 
cxample, a logica ) cxprcss ion is made that spec if1es that both machine may not be busy al the same time. 
i.e. -, Ml _Busy j A M2_Busy J. ~ 

The next generalized requirement ex pression allows us to formulate any logica) expression over state pred­
icates to impl y that a set of events must be di sabled by the supervi sor if the plant under supervi sion is in a 
state in which the state-formula is true. 

Dcfinition 2.13. A generalized state-transition exclusion (CST) is delined as 

CST :: = (SF ⇒ -+> E) , 

Example 2.4.4 
Reconsider the previous example. The situation of both machines being busy can also be prevented with 
disabling the event to start one machine if the othcr is busy. This can be specified by the following statc­
transiti on exclusions M I_Busy J ⇒ -+> l 1112_srart ) and M2_Busy l ⇒ -+> l 111 / _start ) . ~ 

The last express ion states that if at least one of the events in set E is enablcd. the state-formula must be 
correct. 

Definition 2. 14. A generalized transition-state formula ( CTS) is defined as 

CTS:: = (---> E ⇒ SF) , 

Example 2.4.5 
Reconsider the previous examples. The situation of both machines being busy can also be prevented if a 
speeiÏlcation assures that if a machine is started , the uther may not be busy. This can be speciÏled by the 
following transiti on state-formula: ~ l ml _sta rt) ⇒ -, M2_Busy j and ---> l m2_start) ⇒-, Ml_Busy j . 
~ 
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2.4.3 Supervisor synthesis 

The statc-based framework has a vcry powerful sy nthcs is p rocedure applicable to systems of state size 
1024 and higher. The rcason for thi s powerful computation power is that the statc-based framcwork does 
nol pL:rrorm the rea<.:habilily analys is. The rnntroll ab ility rnnditi on is modifi L:d inlo a weak contmllability 
condition, meaning that reachability is no langer a propcrty o f the controll ability analys is. 

The outcome of the synthcsis is a state feedbac k con tro l (SF BC) map. This means that feedback is give n 
bascd on the state of the system . This SFBC is encoded wi th binary dcc ision di agrams (BDD). A BDD is 
an acyclic directcd graph which represents a boolcan fun cti o n, i. e. the outcomc can be e ither Oor 1. The 
supervi sor synthes is produces control functi ons (e ncodcd as a BDD) for each cont ro ll able event O" E I:c. 
These control funclions f a are evaluated with the state o f the system. The outcome can be e ither 0, which 
means this event is di sabled by the supervi sor, o r 1, which means th at the event is cnab led by the supervi sor. 

Example 2.4.6 
Consider Examplc 2.4 .1, where a state tree is constructed, which represents the state space of two machines 
that are working in paralle l. The transitio n structurcs of the OR supcrstatcs Ml and M2 are spccificd by 
th e automata depic ted in Figure 2. 14. Howcvcr, a ll even Is o r these au1oma1a are prdixed w i1h the machine 
number (e .g. 111 I _ic/Ie, m2_idle, etc.), such that the languages of both auto mata are di sjo int. Assume 
th at both machines are not all owcd to be busy simultaneously. In this exa mplc , a state- based supervi sor 
is synthes ized th at prevcnt s the machines to be busy simultaneously. The mutual cxclusion requirement 
can be formul ated with the state-formula -, (Ml_Busy j /\ M2_Busy 1). The sy nlhesis produces control 
fun cti ons, dcfined by BDDs, fo r all conl rollable cvent s . Two re levant BDDs are given in Figurc 2 .15. 

M2_D ow n Ml_Dow n 

(a) BOD of 111 / _start (b) BOD o f 1112_start 

Figure 2. 15: BOD functions of two controll ablc events 

In Figure 2.15a, the control fun ction of the contro ll able event 111 / _start is depicted, cncoded as a BOD. This 
BDD contains fo ur nodcs and edges between these nodcs . Truc and fal se edges are dcp icted with sol id and 
dashed lines, respectively. To evaluate a BDD, nodes have to be evaluated. First, the initi a! node at the top 
is evaluated . lf M2_Down is ac ti ve, i. e. if machine 2 is down , the true edge is fo llowed to the next node. 
Otherwise, the fa lse cdge is fo ll owed. The BDD evaluati on termin ates when node 0 or I is reached . lf 
the BDD evaluatio n has 0 as outcome, the controllable event 111 I _start is di sabled by the supervisor. lf the 
BOD evaluation has I as outcome. the controll able event m2_start is enabled by the supervisor. Note that 
the only path to 0 is if machine 2 is neither down nor id lc , i. e. the machine is busy. This is according to the 
spec ifica ti on, machine I may not be started whe n machine 2 is busy. The BOD for the controllable event 
m2_start can be evaluated in the same way. ~ 

Note that thi s control map is slightly different th an in the event-based framework . T he event-based frame­
work uses automata to store the complete closed-loop language . As a res ult , a hu ge amount of memory is 
nccdcd . The statc-bascd fram cwork uscs a state feedback control map, which is cncodcd c ffi c icntly using 
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binary decision diagrams (BOD). In othcr words, a statc-bascd supervisor givcs feedback based on the state 
of the system and an cvcnt-based supervisor gives feedback based on the language of a system. 

Now we have explained both supervisory control frameworks, we can discuss the intcgration of these 
supervisory framcworks in the model-based engineering process. This is explained in the next section. 

2.5 Synthesis-based engineering 

To integrate supervisory control synthesis in the model-based engineering process, the system has to be 
decomposed in a different manner as in the model-based engineering process. Let us decompose the 
system into a plant P and a supervisor S. Note that this clear separation betwecn plant and supervisor, 
is mostly not evident in traditional engineering. Although supervisory requircmcnts are present , they are 
mostly intermixed with rcgulative control requirements . 

Figure 2.16 gives us a graphical rcpresentation ofthis framework [Sch09]. S / P means a plant P under 
supervision of a supervisor S. 

Figure 2. 16: Supervisory controller synthesis framework 

First, the requirements R s; p of the controlled system an: defined. After this, a design Ds; p of the system 
is made and decomposed into a uncontrolled plant and a supervisory controller. After decomposition we 
can set up the rcquircments of the supervisor R s and the requirements of the uncontrolled plant R p. 
The requirements Rs of the supervisor are formally modelled resulting in a model M n8 of the control 
requirements. From the plant rcquirements Rp, a design D p and one or more models AI p can be made. 
A discrete-event model can be used to synthesize a supervisor. The model of the supervisor AI s can be 
generated with supervisory control theory, with as input the discrete-event model of the plant and the model 
of the control requirements l\J n8 . These plant modcls can also be used to simulate the behaviour of the 
uncontrolled plant under supervision of the model of the supervisor. After all models are derived , the 
analysis techniqucs of the model-based engineering paradigm can be used to test the system in an early 
stage of the system development process. 

This means that in synthesis-based engineering, propertics which are checked afterwards in traditional and 
model-based engineering, are used as input for generation of a design of a component that is correct by 
construction. As a consequence, the design and implementation do not need to be tested against the require­
ments , i.e . the verification can be eliminated. This changes the <levelopment process l"rom implementing 
and debugging the design and the implementation, to designing and debugging the requirements . 

Advantage of this integration is that in case of changes in the rcquired functionality only the control require­
ments l\Jns have to be updated and the uncontrolled plant ]\J p might change. The supervisor is regenerated 
and correct w.r.t . the requirements by construction. In other words, the system is more evolvable. 

Note that with synthesis-based engineering, still no formal link exists between the plant models and the 
plant realization. The plant model allows us to discover errors in an early stage, but the realization is 
usually made informally. 
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2.6 Toolchain 

The CIF (Compos itional lnte rchange Form at) language [Bee08, Bee07] has been deve loped to prov ide a 
ge neri c modelling form ali sm and to establi sh inter-operability of a wide range of too ls by means of model 

transformati ons to and from C IF. The C IF language is based on hybrid auto mata. The Iang uage supports 
hi erarchy and mod ul arity to dea l w ith large sca le systems, by prov iding operato rs fo r model re- use , par­
all e l mode ls and nested models . Processes can interac t by shared vari ables , by communicati on via shared 
channels and by sy nchroni zation by means of sharcd ac ti ons. Furthermore, arbitrary diffc renti a l a lgebraic 

equations are support ed, fo r the modelling of continuous time behav iour. The C IF-too lse t I p rov ides tools 
l'or s imul ation anJ transla li ons to vari ous ve rili cati on louis. Mon:owr, it can be useJ in harJware-in-the­
loop simulations and cont rol proto typing . Furthe rm ore, it fac ilitates code generati on for vario us platforms. 

SI MULATO R1-1 y SIM UI.ATORRT 'ONTROLLEII. R T 

L~0'-------"'------' 
1 /\ 

--------1 11 y nf------- - - - ~ 
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Figure 2. 17 : Too lchain based on C IF 

In Figure 2. 17 , a too lcha in . based on C IF. is depicted th at a llows fo r synthes is-bascd eng inee ring !Sch09 ]. 
In thi s li gure. too ls are dcp ic teJ in blue. models w ith c irc les and reali zati ons w ith rec tan gles. The re­
quire ments and des ign of th e plant P under supervision of a supervisor S are docum ent ed with S / Pn and 
5 / Po, and 5 n and PI! denote the requirement doc ument s of th e plant and supervisor. respec ti ve ly. T he 
uncontroll ed di sc rete-eve nt behaviour o f the pl ant are formall y defineJ by mean s o l' auto mata . resulting in 
a C IF model Po 1;; .c if. T he control requiremenl s 5 11 are fo rmall y de lincd hy mcans o f autom;ita or log ica! 
ex press ions. res ultin g in a C IF mode l Sn.c if. From th ese modc ls . a supervisor can be sy nthcsi zed w ith a 
supervisor contro l sy nthes is tool (SC ST) and transl ated to th e C IF language, resulting in a model of the 
supervisor 5 .c if. Two too ls are used fo r supervisor sy nthes is and translati ons ex ist to and from these two 
used lik fo rmats: 

• Supervisor Synthes is Pac kage~ (SS P) fo r the cvent-based supervisory cont rol framework. 

• Ma-Wo nh am 's NBC too l·' for the state- basecl supervisory contro l framework . 

The CIF s imul ato r can be usecl to simulate the mode l o f the supervi sor 5 .c if together with the di sc rete 
event model of the plant P .e if in order to anal yse it s behav iour with respect to the cont rol requirements . 
Furthe rm ore. the d iscrete-eve nt model of the plant can be replaced by the hybrid C IF mode l of the pl ant 
P11 \ · .c if. The mode l of the pl ant can a lso be replaced by the rea l hard ware in o rder to test if th e rea l 
hardware corresponds with the mode Is. lf thi s does not correspond , the real hardwa re or the modcl s coul d 
be inadequ ate. T he mode l of the supervisor can also be used for code generati on (CO DEGEN) and it can 
be implc mented o n a real-time control plat for m which is connec ted to the actua l hardware of the plant. 

This sec tio n concludcs the ex pl anati on o f the supcrvisory contro l theory and suppo rting tools . Two frame­
works are di sc ussed that all ow for supervisor sy nthesis. Furthermore, the integrati on o f superviso ry con trol 

1Dow nloada ble at http : // dev . se . wtb . tue . nl/pro jec ts /c hi - t o oling / d o wnl o ads 
" Downloadab \e at ht tp : //dev . se . wtb . t ue . nl/projects / c h i - tooling/do wnl oa d s 
3Dow nl oadable at ht:. ëp : //s e . wt:.n . ë ue . n 1 / s e wik 1 / wonh a ,n / s: a rt:. 
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synthesis to the engineering proeess is explained in Seetion 2.5 and the toolcha in th at supports the supervi­
sory controller des ign is presented in Seetion 2.6. In the nex t ehapter, supervisory eontrol theory is applied 
to an industrial case in order to obtain a mode l of the supervisor. 



Chapter 3 

Case study: the multimover 

In the prcvious chaptcr. the thcory is explaincd that is nccdcd for synthcsizing supervisors. In this chapter. 
supcrvisory control thcory is app li cd to an indust rial case of NBG lndustrial Automation. 

In the amusement park business thcre is a demand for new ridcs that divergc from the conventional roller 
coaster or ferris whccl. A rclati vc ly new concept is the multimover: a vchiclc that drives arou nd whilc 
following an invisihlc track. The track layout is dclined hy an underground clcctrified wire that can he 
dctcctcd by the vchi clc. This offers the possibility for rcvoluti onary new ride concepts with crossi ngs . 
switches. junctions and driving into and out of dead-cnd tracks. 

Yehicles can interact with each other in such a way that the passengers have influence on the ride expe­
ri cnce. for cxa mplc with targe t shooting systcms and similar competiti ve features. By gai ning a ccrtain 
score, new scenes can be unlocked . This intcractivity and the fact that the passcngcrs can not sec the actual 
track makes the ride more cxci ting becausc of the uncxpcctcdncss of the vchiclc ·s ac ti ons . A picture of a 
multimovcr is givc n in Figurc 3.1. 

Figurc 3. 1: The multimovcr 

3.1 Functionality 

Multimovcrs are Automated Guidcd Yehicles that can follow an elcctrical wirc intcgratcd in the floor. This 
track wire produces a magnetic field thal can be measured by track sensors. Nexl to the track wire , fluor 
codes are pos itioned, that can be read by mcans of a metal detector. These ffoor codes give additional 
informati on about the track. e.g. the start of a ccrtain scene program. a switch, junction or a dcad-end. The 

25 
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scene program, which is rcad by the scene program handler, defines whcn the vchicle should ride at what 

speed, when it should stop, rotate, play music and in which direction the vehicle should move (e.g. at a 

junction). 

An operator is responsible for powering up the vehicle and deploying it into the ride manually. The operator 

also controls the dispatching of the vehicles in the passenger board and unboard area. The vehicle can 

rcceive messages from Ride Control. Ride Control coordinates all vehicles and sends start/stop commands 
to these vehicles. These messages are sent with wireless signals or by means of the track wire. Multimovers 

are not able to communicate with other vehicles. 

Safety is an important aspect of this vehicle. Therefore, several sensors are integrated in this vehicle 

to avoid collisions. First, proximity sensors are integrated in the vehiclc to avoid physical contact with 

other objects. We can distinguish two types of proximity sensors. A long proximity sensor that senses 

obstacles in the vicinity of six meter and a shon proximity sensor that senses obstacles in the vicinity of 
one meter. The vehicle should ride slower when an object is only detected by a long proximity sensor and 

stop when an object is detected by the short proximity sensor. This stop is not an emergency stop. When 
the short proximity sensor does not detect an object any more. the vehicle should start riding automatically. 

Secondly, a bumper switch is mounted on the vehicle that can detect physical contact with other objects. 
The vehicle should respond to this with an emergency stop. If an emergency stop is declared. an operator 
has to deploy the vehiclc back into the ride. Finally, an emergency stop has to be declared when the battery 

power is too low or when a system failure occurs. The vchicle should not become active when the bumper 

switch is still active or the battery power is still too low. 

3.1.1 Supervisory control requirement 

The functionality that is described above. is the functionality of the closed-loop system e.g. the hardware 
and the controller software. Before the design of the supervisory controller can be made, requirements 

of the supervisory controller should be set up. An overview of the control architecture with supervisory 

control is given in Figure 3.2. 

Sup~rvisory 
control 

Re,ou,-cè control 

Transduccrs 

Supervisor 

9 Button RC cp 
1 LED 1 Button Motor 

1 1 

Figure 3.2: The control architecture 

At the lowest levL:1, wc have thL: components (transducL:rs) or the multimover. In this figurc, a LED, a 

button and a motor are depicted. The next level is the level of resource control. This resource control 

contains feedback control of these individual components, e.g. a PID-controller for a motor. The upper 

level. supervisory control. coordinates the discrete behaviour of all components. The main requirement of 
this supervisory controller is safety. This supervisory control requirement has three aspects: 

• Proximity handling The supervisory controller has to assure that the multimover does not collide 

with other vehicles or obstacles. To this end, proximity sensors are integrated at the front and back 

which can detect an obstacle if it is within a certain range of the multimover. To avoid collisions, the 
multimover should drive with a safe speed and stop if the obstacle is too close to it. 

• Emergency handling The system should stop immediately and should be powered off when a colli­

sion occurs. To detect collisions, a bumper switch is mounted on the multimover. The same applies 
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whe n the battery leve l is too low. The LED interface should g ive a signa! when an emerge ncy stop 

has bee n performed . The multimover should be deployed back into the ri clc by an operato r manu all y. 

• Error handling W hen a syste m fa ilure occurs (e .g. a malfuncti on of a motor), the system should 

stop immediatcl y and should be powered o ff to preve nt any furth er wro ng behav iour. T he LED 
inte rface sho uld g ive a signa! that an emerge ncy stop has bee n pe rfo rmed . The multimove r shoul d 

be cle ployed bac k into the ri de by an operato r manu all y. 

3.1.2 Components 

A graphica l ove rview of component s th at are re le vant to thi s p roj ect and the ir states is g ive n in F igure 3 .3. 
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Figure 3.3 : Relevant components of the multimover 

3.2 Plant models 

The pl ant mode Is are mode Is of the ac tu a l component s and the ir low- leve l cont ro l. These mode Is are needed 
to l'ul Îl ll the supe rvi sory require ment. whi ch is stat ecl in the previous section. T he co ntrol architecture of 

the multimover is g ive n in Figure 3 .2. The plant mode ls represe nt the actu al behav iour o f the transd uc­
ers and th ei r resource co nt rol. Within super\' isory cont ro l theory. pl ant modc ls are dc fin ecl by aut omata. 

Eac h tra nsd uce r and its reso urce cont rol are mode ll ed by one automaton. Auto mata consist of states and 

transitions labe led by (cont ro ll ab le and uncontro ll able ) eve nt s. In the fo llowing li st. the represe ntations 
of the states and eve nts of plant mode ls are g ive n. Unfo rtun ate ly. we canno t ge nerali ze these mode lling 

guidc lines. since thcy are case spec iÎlc. 

• States o f the plant mode ls represe nt a ll re levant states of each resource (e.g. on. off. empt y, ac tive . 
etc.). 

• Contro ll able events represent re levant d iscrete co mmands/tas ks (fun cti on call s) to the resource con­
trol (e.g. enable. di.rnble, etc.). These ac ti ons can be cont ro ll ed by the supervisory cont ro ll er. 
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• Uncontrollable cvcnts rcprescnt mcssagcs that are sent from the resource control to the supcrvisory 
controller (e.g. a failurc notification , a sensor event, etc.). These events cannot be controlled by the 

supcrvisory controller. 

When models are made , assumptions have to be made . The assumptions that are made in our modcls are 
listed bclow. 

Assumption 3.1. The plant modcls are made with the assumption that the resource control of the multi­
movcr is working corrcctly. This mcans that if a command is givcn , the command is carricd out corrcctly. 
For cxamplc , if a drive motor is bcing cnablcd , wc assume that the resource control of the drive motor 
switches on the drive motor. 

Assumption 3.2. The communication between the plant and the supervisor is infinitc fast. This means 
that if an event occurs at the plant (e.g a button is pressed) , the supervisor is synchronizcd immediatcly. 
Furthcrmore, this assumption mcans that cvcnts cannot overtake each other and cannot gct lost. 

In this scction , the components dcpictcd in Figure 3.3 are dividcd into two groups of componcnts, namcly 
the buttons and sensors that monitor the state or position of a certain part of the multimovcr, and the actua­
tors, which actuatc a certain part of the multimover. Furthermorc, a plant model is introduccd that models 

the state of the multimovcr, si nee a lot of control requiremcnts are bascd on the state of the multimovc r. 
The event and state namcs that are presented in the n:mainder or this section are simplified , i.e. without 
prefixes, for clarity reaso ns . All used event and state names are disjoint. Fora complete overview or the 
plant models. the author rcfers to Appendix A. 

3.2.1 Buttons, sensors and Ride Control 

In thi s subscction, the components are discussed that can detect a certain change of state of the multimover. 
First of all . threc buttons are integratcd in the multimovcr and are used to reset the vchiclc and to deploy the 
vehicle into the ride. Morcover, sevcral sensors are intcgrated in the multimovcr to dctect ccrtain changes in 
the outside world. Proximity sensors can dctcct the proximity of an obstaclc. A bumper switch can detect 
physical contact with an obstacle. Furthermore, a battery meter is integrated in the vehicle to measure the 
battery level of the multimover. 

(a) A utomaton of a sensor (b) A utomaton of R ide Control 

Figure 3.4: Automata of input componcnts 

Each button and sensor is modellcd by one automaton. These automata have all the same structurc and 
an example is depicted in Figure 3.4a. A sensor can generale two evcnts: acri\'e and inactiw.' . Each event 
labels the transit ion from one state to another. e.g. if a sensor bccomes active, the event acti,•e is gcneratcd. 
The automaton reprcsenting a button have corrcsponding names. e.g. on and off. 

Ride Control can scnd a ·genera! start/stop' command to all the multimovcrs to start or stop all the multi­
movers in an attraction. Ride Control sends these commands constantly with a certain interval. Therefore, it 
is possible that the samc command is sent over and over again. This behaviour is captured by the automaton 
depicted in Figure 3.4b. 

Note that these evcnts of the automata presented in this subsection are all uncontrollable evcnts, si nee the 
supervisor cannot prevent them from happening. 
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3.2.2 Actuators 

Sevcral ac tu ators are integrated in the multimovc r that actuate a ccrta in component of the multimover. In­

te rface LEDs are used to show an operator the ac tua l state o f the multimove r. Furthermore , the dri ve motor 

moves the multimovc r and the stecr motor steers the multimovcr in the clirecti on of the wire intcgrated in 

the ll oor. Lastl y, th e scene program hancllcr reacls the sce ne program and scnds commands to the rotation 
device, drive moto r and audio device . 
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Figure 3.5: Automata o f actuato rs 
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In Fig urc 3.5a, th e aut o maton of th e s tccr motor is g ivcn. T he re levant statcs o f th e s tcc r mo tor are On and 

Off. The actuati on sig nal s that are important for the superviso ry cont ro ll er are swi tching on the stccr mo tor 
(enable) and swi tching off (disable). Thi s moto r conta ins a hardware safet y if the moto r is short-circuitcd 

o r has a hardware foilure. lf thi s hardware safe ty is activatecl (e r ro r ), the moto r is automati ca ll y swi tchcd 
o ff. Sincc the hard wa re safety can a lso be ac ti vatccl whcn the motor is swit chccl o ff and still s low ing clown. 

the event error is sc lfl oopccl at sta te Off. 

All LEDs of the multimove r are mocle ll ccl by the automaton dcpicted in Figurc 3.5b. The LEDs of the 
multimovc r can be in two statcs: On and Off. T he cvents on and off reprcscnt the fun cti on ca ll of switching 

on and off of the LED. 

In Figure 3.5c. the automaton of the drive motor is g ivc n. T hi s automaton is bas ica ll y th e samc as the 

auto mato n of the stccr mo to r. Howevcr. it conta ins an ex tra state Stopping. sincc a con trol rcquircment o f 

the multimovcr is that the stecring moto r may not be switchccl off if the multimovcr is still mov ing (e.g . 

stopp ing). fo r sa fety rcasons . Thcrcforc . an ex tra eve nt stO/J is introclucccl that stops the d ri ve moto r. lf 
the drive motor has stoppccl , th e uncontrollablc eve nt disahle is clone and the drive moto r is switchecl o ff. 

Bccause we want to be ablc to set the maxi mum speed of the drive motor. the evcnts f ,1· , firs lmv, ft ,·stop. 
b1,·. bws/0 1\' and b11'sl0p are int rocl ucccl. Also, the drive moto r conta ins a hardware safety when the motor 

is sho rt-c irc uitecl or has a hard ware failure. The motor is automati call y switched off when thi s hardware 
safety is ac ti vatecl. Thi s is moclcllccl w ith the eve nt error . 

Note th at we coulcl mode l th e fun ct ion call to sw itch on the stecr moto r if it is al ready on. Howevcr, since wc 

assume that the resource cont ro l is workin g correctl y, we have not mode lled thi s behaviour. Furthermore , 
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if all possible function calls are modelled , one can end up with unnecessary complex plant models. 

3.2.3 Multimover model 

The multimover itself can also be in three states, namely Emergency, Reset and Active. This can be 
model led with an automaton as depictcd in Figure 3.6. Emergency denotes the state of the multimover that 
all components are switched off and the multimovcr has to be reset manually by pushing the reset button. 
lf the reset button is pushed, the multimover should enter the state Reset. From this state , the multimover 
can be deployed into the ride (Active) or can switch back to Emergency (if an emergency event occurs). 
Since a lot o f control requirements are bascd on the state of the multimover, this automaton is introduced 
for modelling convenience. 

EmerJ;!l'nl'y 
reset 

____.. Rest•t 

t'llll'J"gl'll("_\' 

Al'tin· 

Figure 3.6: Plant model of the multimover 

3.2.4 Plant-modelling aspects 

Mak ing mode Is of manufacturing systems is a craftsmanship. The original supervisory control theory does 
not give any information how to model real lifc systems. In this subsection, some considerations about 
making discrete models of components are discussed. 

Uncontrolled plant vs. partially controlled plant 

The plant components can be modelled in different ways. The components can be modelled with some 
behaviour already restricted (partially controlled) , or the physically possible behaviour with no restrictions 
can be modelled. To give an example of a partially controlled plant, in Figure 3.7. a plant model is depicted 
that represents the drive motor, steer motor and scene program hand Ier in one automaton. In the beginning, 
this automaton was suitable to model the behaviour of the multimover. Howevcr. this automaton already 
has some control incorporated in the behaviour, since it is only possible to switch on and off the drive 
motor. steer motor and scene program handler simultaneously. Furthermore, this plant model assumes that 
a change of direction initi ated by the scene program (mi_chdir). is carried out by the drive motor immedi­
ately. To get a better understanding of what behaviour is uncontrolled and what is desired (controlled), the 
automaton of Figure 3.7 is rejected and three new automata are designed for the steer motor, drive motor 
and scene program handler. 

In the end, we have chosen for plant mode Is that represent the uncontrolled behaviour of each component. 
In this way, plant mode Is are obtained that match exactly the behaviour of the interface of the components. 
Dccomposing the system in an uncontrolled plant and a supervisor gives a clear view of the system 's 
functionality. Neverthelcss, the reader has to bear in mind that the supervisor synthesis is slightly more 
dillicult with these unrestricted plant automata, since more behaviour has to be restricted by means of 
requirement models. However, with distributed supervision, this aspect does not have to cause a problem. 
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Which way of modc lling is more suitablc dcpcnds on the goa l: e.g. for th e purposc of implemcntation or 
not. 

Marked behaviour 

Marker statcs are uscd to describc complctcd tasks. Thcy rcprescnt a set of states which wc always want to 
be reachablc by any bchaviour [M al03]. lf more statcs in th e same plant modc ls are markcd. one can not 
assure that a ccrtain marker state set is reachablc . This is illustrated with an cxample. 

Example 3.2.1 
Consider the automaton in Figurc 3.8a. For the sake of convcnicncc, all cvcnts are controllable. In this 
automaton we have two markcd statcs. state O and 3, sincc these statcs reprcscnt a complctcd task (e.g . reset 
and activc). Howcvcr, the nonbl ocking propcrty ass urcs that a marked state always is rcachable. but not 
ncccssarily all of the m. lf state 2 is activc in Figurc 3.8a. thcn marker state O is no t rcachable anymore. In 
other words, if more marker statcs are reach ablc , one cannot assure th at a certain marker state is rcachable. 

Now consider Figurc 3.8b. In thi s automaton. onl y one state is marked . lf wc sy nthcsi zc a superv isor for 
this automaton. the rcsulting supervisor would disable event /3 from state I to 2, sincc state 2 and 3 are not 
co-reachable . Sincc onl y o ne state is markcd , one can always assurc that this state is rcachablc . ~ 

In the model of the multimovcr. only thosc statcs are marker statcs , that are active if the multimover is reset 
and no sensors are active. Since only these states are marker states, the rcsulting supervisor always assures 
that the multimover can be reset. 
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(a) Multiple markcd siatcs (b ) One 111arkcd state 

Figurc 3.8: Marked behaviour 

3.3 Modules 

A dividc-and-conquer stratcgy is often applied to gct a good ovcrvicw of control problcms. This mcans 
that the control problcm is cut into pieccs and these smaller control problems are solved. We can dividc the 
con trol problcm of the multimover into live subproblems: 

• LED actuation An operator must be able by looking at the Interface LEDs to check in which state the 
multimovcr is. This means that the statcs of the LEDs rcprescnt the current state of the multimovcr. lt 
is a task of the supervisor to actuatc the LEDs according to the state of the multimovcr. Which LED 
should be on and which should be off in cvcry state of the multimovcr is summarized in Tab Ic 3.1. 

Tablc 3.1: Active LEDs for cach state 

Emergency Reset Active 

RcsetLED On Off Off 
ForwardLED Off On Off 
BackwardLED Off On Off 

• Motor actuation The drive motor, stcer motor and scene program handlcr have to be switchcd on 
and off according to the state of the multimover. lf the multimovcr is in the state Active. all motors 
can be switched on . lf the multimovcr is in the state Reset or Emergency, all motors have to be 
switched off. 

• Button handling The user interface of the multimovcr contains thrcc buttons. First, a Reset button 
is used to reset the vchicle if the multimover is activc and deploycd into the ridc or is in the state 
Emergency. Furthcrmore, a forward button and a back ward button is uscd to deploy the vchiclc into 
a ccrtain direct ion. A control task of the supervisor is to enter the corrcsponding state when a button 
is pushcd. 

• Proximity / Ride Control handling Four proximity sensors are integratcd in the multimovcr to 
dctcct obstacles that are in the vicinity of the multimovcr. Two proximity sensors are mountcd on 
each side of the multimovcr. On cach sidc, wc can distinguish two types of proximity sensors. A 
long proximity sensor scnscs obstaclcs in the vicinity of six meter. lf a long proximity sensor is 
sensing an object in the travcling dircction. the multimover should rcact on this with slowing down 
toa safe driving speed. Furthcrmorc, a short proximity sensor is integratcd that scnscs obstaclcs in 
the vicinity of one meter. lf an obstacle is detected by the short proximity sensor, the multimovcr 
should stop in order to prevcnt a collision. 

As alrcady told , Ridc Control can send a ·genera) start/stop· command to all multimovcrs in order to 
stop and start the complete ride. Sincc a ·genera) stop' command of Ride Control can be considered 
as a short proximity stop, we can see this as the same control task as proximity handling. lf Ride 
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Control is sending a 'genera! start ' command aga in , the multimover should start riding automatically 

(depending o f the state o f the proximity se nsors in the current driving direc ti on). 

The control tas k of the supe rvisor is to slow down o r stop the multimovcr if a proximity se nsor is 
ac ti vated in the trave lling direction of the multimovcr o r Ride Control is se ndin g a ·gene ra! s top ' 

command . 

• Emergency handling In order to guarantce the safety of the passe ngcrs, the multimover should 
be deactivatcd immedi atcl y w hcn an c mergc ncy situati on occurs. We can d istin gui sh the fo ll owing 

emerge ncy s ituatio ns: 

- Battery power too low 

Bumper switch colli sion detection 

Drive motor driver failurcs 

Drive motor not connec tcd or defect 

- Wirc s igna! lost 

- Stec ring motor no t connected or defect 

- Stee ring motor driver failures 

It should not be possiblc to reset the multimovcr if the bumper sw itch is still activatcd o r the bat­
tery power is still too low. A control task of the supervisor is to enter the Emergency state of the 

multimover whcn an emergency situation occurs. 

Now wc have divided the control problem into subprob lems . we ca ll the cont ro l part that solvcs eac h 

problc m a cont ro l mod ul e. In the ncxt sectio n. requircment mode ls are prcscntcd that are used to synthesizc 

a supervisor for the multimovcr con trol problcm. 

3.4 Requirement models 

In this secti on. req uirement models are discussed th at g ive the desired fun cti ona lity to th e multimover. 
For the sake of simpli cit y. onl y th e req uirement mode ls of th e emergency hand ling co nt rol mod ul e are 

discussed. For an exp lanati on of all req uirement modcls, the reader is referred to Appendi x A. This also 
ho lds for an explanation of all used event namcs and state names . 

As alrcady menti oncd in the prcvious chaptcr. req uiremcnts ha ve to be modelled by auto ma ta in the evcnt­
based approach. The state-based approach allows the user to defàne requirement s also by log ica! spec ifi ca­

ti o ns. This sccti on is dividcd into two subsccti ons to cxplain the requircments of both approaches. 

3.4.1 Event-based model 

In the eve nt-based supervisory contro l framcwork. requirements can only be mode ll ed with automata . The 

requirement s of th e emergency control handlin g modul e are depicted in Figure 3.9. 

The first req uin: mcnt , dcp ic tcd in Figurc 3.9a. spcc ili cs that the event s 111111 _acti1 •e and 111111 _ reset are onl y 

a llowed to take place if the bumper switch is not act ivatcd . This rcquirc mcn t can be modclled by taking 

the plant automaton of the bumper swi tch and adding a sc lf-loop with evc nts 111111_actil'e and I11111 _ reset at 

the state that represents the bumper switch no t bcing ac ti vated. 

The second requ ircmcnt , dcpicted in Figure 3 .9b. spec ifics th a t the event s 111111 _actil'e and 111111_reset are 
only alloweJ to take place if the power leve l o f thi.: battery is sul'ficient. Again , thi s re4uiremi.:nt can be 

modell ed by takin g the plant automaton of the battery and by adding a self-loop with eve nts 111111_ac1i, •e 

and 111111_reset at the s tate that represents the batte ry being not empty. 
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The las t rcquircmcnt, depictcd in Figure 3.9c, spccifics wh<.:n the event 11I11I_e111 ergency is allowcd to occur. 
The event 111111_e111ergency is only allowed to occur aftcr activation of the bumper switch (bs_press), the 
power level of the battery bccoming too low (ba_empty), a parsc e rror of the scene program (sh_error), a 
failure of the drive motor (dm_ermr) or a failurc of the stecring motor (.1-,11 _error) . lf one (or a sequence) of 
these 'cmergency cvents ' takes place , the requircmcnt allows the occurrence o f the event 111111_e111ergency. 

lf the eve nt 111111_ reset takes place , occurrence of the event 111111_e111 erge11cy is nol allowed. Note that thi s rc­
quirement only puts restricti ons on th e occurrcnce of the event 111I11_e111erge11cy, all othcr events are allowcd 

to take place in any order without restri c ti ons. 
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Figure 3.9: Rcquircmcnt mode Is of the cmcrgency module 

3.4.2 State-based model 

Within the state-based supervisory control framework, rcquircmcnts can be mode lied by logica! cxpressions 

and automata. 

Logical expressions 

1Jac09i proposes three gencralizcd state -bascd exprcssions. dcseribcd as logica! cxpressions bascd on 
propositional log ic. In the Emergency handling eontrol module , we are only usi ng one type of gencral­
izcd state-based ex prcssion. namcly a ge ncrali zed transition-stat e formula: 

--> l 111111_rese1, 111111_octil'e l ⇒BS_Released l /\BA_OK 1 
This ge ncralized trans ition-stat e l'nrmula sr ec ifi<.:s that th<.: multimover may only swi tch to active or reset 
(111111 _acti1 ·e or 111111_reset) if the battcry leve l is ok (BA_OK) and the bumper switch is rcl eased (BS_Released). 

Automata 

In the state-based model of the multimover. one memory is used as a requirement in the Emergency han­
dling control module. This memory is th e automaton depicted in Figure 3.9c. As already described in the 
previous subsection, this automaton tracks the sequence of 'emergeney events' and the event mm_reset and 
determines when the event 111111_e111ergenc,· is allowed to oecur, based on the previous sequence of events. 
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3.5 Supervisor synthesis 

Now all modc ls are cxplained, wc can sy nthcs ize a supervisor fo r the poscd con trol problc m of the multi­

movcr. Thi s scc ti on is di v idcd into two subscc ti ons. The fi rst subsec tion cva luatcs the s upe rvi sors sy nthe­
sizcd in the evc nt-based framcwork. The second subsccti on cva luatc s the supe rviso r that is synthesized in 

the statc-based framework. 

3.5.1 Event-based supervisor 

As is known, the main obstaclc of the evcnt-bascd framcw ork is th e calculation complcxity problem. The 

cvc nt-bascd superv isor sy nth csis is based on the automaton prod uct. As a rcsu lt. a ccntrali zcd cvent -bascd 

supervisor is no t possiblc to sy nthcs izc due to a state spacc cxplosion. To g ivc an idea of the ca lcul atio n 
co mpl cx it y, the number o f states of the automaton produ ct of the pl ant automata is approximatcl y 50.000 
statcs. One can overcorne this problcrn by using a rnodular approach. 

Coordinated distributed approach 

With a modular approach . wc dividc the cont rol problem into sma ll e r s ubproblc ms. For cach subproblem. 

a superviso r is synthcsizcd. Si ncc wc have divided the control problcm into control modules in Scction 3.3 , 
wc ha ve sy nthcsizcd a supe rvisor fo r cvcry module. lf all supervisors are sy nth es izcd . a nonconflic tin g 

chec k has to be performcd in order to guarant ee the nonconllic ting property. 

The size (e .g . number of statcs and numbcr o f trans iti ons) o f cach modular supe rvisor is li s tcd in Tab Ic 3.2 . 
As wc can sec , small supervi sors can be achicved by dividing the control problem into small er subproblcms 
and sy nth cs izc a supervisor for cach con trol problem. The si zc of cach supervisor depcnds o n how many 

component s (e.g . pl ant auto mata) are involvcd. Furthermorc, the sizc of a supe rvisor also dcpcnds on how 
rcstri cti ve the requirements are. lf a lot of parallel behaviour is a ll owcd, the number of states and transitions 

o f th e supervisor can grow rapidl y. 

Table 3.2: Size of modular supe rviso rs fo r each mod ul e 

Modul e # states # transitions 

LED actuation 25 77 
Motor actuation 4 1 222 

Button handlin g 193 1541 
Emcrgcncy hand) i ng 18 1 2149 

Proxirnity handling 48 1 45 13 

Disadvantagc of the modular approac h is th at the nonco nfli c ting chec k is computati onall y cxpensivc in 
comp:irison to the rnodul ar synthcsis. To g ive an illustrati on. each supervisor can be computcd w ithin five 

scconds , but the nonconllicting check takes ahout ten minutes. The nonc unllicting check can he avoided 

by us ing an aggrcgatcd modular approach . 

Aggregated distributed approach 

The main idea of the aggrcgatcd mod ul ar approach is to synthesize a s upervisor, take an abstraction of the 

automaton prod uct of the sy nthcs ized supervisor with the pl ant mode ls to filt er out irrel eva nt informati on 

and use thi s abs tracti on mode l as a plant mode l for the sy nthcs is of the next supe rvisor. lf all supervisors 
sy nthcsizcd with the aggrcgatcd modular approach are nonc mpty, then they are guaranteed to be noncon­
fli cting . Howcve r, aggrega ted mod ular approach necds a · good ' ordcring o f modul es . To come up with thi s 

order can be relatively diffi cult. To illustratc this , the samc supervisors are sy nth es izcd in a different order. 
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The rcs ults are li sted in Tablc 3.3. As wc can sce, the size of the s uperv isor dcpcnds heav ily o n the order 

of sy nthcsis . 

Table 3.3: Sizc of modular supervisors dcpcndin g on sy nthesis order 

Module Order # states # trans. Order # states # trans . 

LED actuation 1 25 77 5 41 125 

Motor actuation 2 41 222 2 257 1428 

Button handlin g 3 465 3477 4 177 765 

Eme rgency handling 4 89 626 3 118 609 
Proximity handling 5 225 1953 481 4513 

3.5.2 State-based supervisor 

The statc-bascd s upc rvisory con trol framework of Ma and Wonham I Ma05] is kn ow n to be cfficient l"or 
monolithic supervisor sy nthcs is . The syn thcsis tool produccs within a second a BDD for cvcry controllablc 
eve nt. For the supcrvisory control problem of the multimovcr. the maximum BDD sizc is 15 and the 

minimum BDD sizc is 1. The size of the BDDs ca n be rcduced by variablc ordening. Yariablc o rdening is 
the orde nin g of the OR supcrstatcs in the s tate tree. Howevcr. sincc the sizc of the BDDs was not too large 

fo r implc mcn tati o n. variab lc ordenin g is not uscd in order to rcd ucc the sizc of the BDDs. 

3.6 Supervisor validation 

The supervisors that are synthcsizcd with both framcworks have to be va lidatcd in order to check if the 

modc ls of the contro ll ed system represcnts the intcndcd bchaviour. This can be donc by simulating the 

bchaviour of the plant P undcr supcrvision o f s upervisor S . The role o f simulation in the synthcs is­
based engineering framcwork is depictcd in Figurc 3.10. With simulation , the closed-loop behaviour of 
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Figurc 3. 10: Si mulati on in the syn thcsis-bascd eng ineeri ng framcwork 

th e systcm can be simulated to sce if the supervisor and plant confo rm s to the system design D s; p . Notc 
that simulation can lind errors , but cannot prove the absence of errors . lf the closed-loop behaviour is not 

conform the systcm design D s; p, the mode Is th at are ncedcd for supervisor synthcsis (l\/ p and J\l 17 8 ) have 

to be changed. In thi s scctio n, two simulation tcchniqucs are discussed, namely discrete-event simulation 

and hybrid simulation. Both simulation techniques can be performed with the CIF too isel. 
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3.6.1 Discrete-event simulation 

With discre te-eve nt simulation, the state space of the closed- loop behav iour is ex plo red by a state -space 

steppe r. With a s tate-space stepper, cert a in traces in the state space o f the closed-loop syste m can be 

evaluated, whether th e supe rvisor di sablcs the ri ght transiti ons in a certa in s tate along the trace. With this 
tec hniqu e , eve n rare s ituatio ns th at are no t like ly to occur, can be simulated. Di screte-event s imulati on is 

used excess ive ly in thi s project in o rder to va lidate the sy nthes ized superviso rs. 

Howeve r, modcl s which are used for sy nthes is do no t cont ain in formati on about time , pos itio n o r o the r 

eontinuo us in fo rmati o n, which can be useful for analysing the dynamic behav iour o f a system under con tro l 

o f a supervisor. Simulation o f mode ls with di sc rete and continuous behav io ur is called hybrid simulati on. 

which is explained in the nex t subsection. 

3.6.2 Hybrid simulation 

A more deta ilcd model o f the plant can be developed to study th e dynamic o r timcd behaviour o f the 

plant under cont ro l o f the deri ved supervisor. Thi s can be do nc by rc lining the di screte pl ant model with 

continuous behaviour. The fo llowing cxample cx pla ins how a di sc rete pl ant mode l can be hybrid . 

Example 3.6.1 
Consider the a ut omaton depictcd in Figure 3 .11 a, whi ch is a mode l of a moto r. that can be switched o n 

(enable) and off (clisab le). Thi s aut o maton does not cont a in any timing in form ati on o r othe r continuous 
behav iour. This mode l is suitab le to use for supervisor synthesis. 

disahle 
v

1
. , , ,. := 1 

disable 

-~' -~' 
<'llahle 

,•11<1hlc ,,, , .r := n 

(a) A ut"rnaton (hl C I F-au tumaton 

Figure 3. 11 : Aut omata used fo r supervisor sy nthcsis and hybrid simulati on 

In Figure 3 .11 b. th e same aut omaton of a motor is depicted. onl y w ith an add itional act io n at eve ry eve nt. 

lf the moto r is switched on, a certain reference speed L',-, ·J is set to 1. lf the motor is switched off, the 

rcfc re nce speed 1•,., J is set to 0. Then. the nex t process is a re ference tracker. whi ch mode Is the resource 
con trol of the moto r: 

This process has three modes : 

/' < l',-, ·J-----) (/ := l 
/ 1 = "l', ·,·J -----) (/ := () 

l ' > 0

l ',- ,"J---, ({ := - 1 

the ac tu al ve loc it y ,, of the motor is lower than the rcference speed v,., 1 . the moto r sho uld accclerate 

(o := 1). 

2 the actual ve loc ity u o f the moto r is eq ua l than the refcrence speed u,., J, the moto r should no t 
acce leratc (a := 0). 

3 the ac tu al veloc ity vof th e motor is hi gher than the re ference speed v,. ,.1. the motor should decelerate 
(a := - 1). 
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The last modell ed process contains information about the relationship between the position .1:, vclocity v 
and accelcration n : 

V = .Î.: 

a = v 

These thrce parallel proccsses internet with cach other by mcans of sharcd variablcs. Suppose th at these 

thrcc proccsses are a part of a larger model with a supervisor that switches the motor on and off cvcry second 

fora ccrtain reason. These proccsscs can be uscd in a hybrid simulation experiment. In Figure 3.12, the 

rcsults of this experiment are shown. As we can sec, the motor is switchcd o ff at l = 0 and has no initia) 

time 

time 

time 

Figurc 3.12: The hybrid simulation rcsults 

speed . At 1 = 1, the motor accclcratcs and the position .ris incrcas ing. Subscqucntly, the motor start s to 

slow down at 1 = 2 and starts accclcrating at t = 3. Thcn. the motor slows down at t = 4 and stops at 

l = S. ~ 

Hybrid simulation can be usefu l for simulating modcls of systems with relevant dynamic or timed bc­

havio ur. Howcvc r, hybrid simulation is not used in order to validate the supervi sors of the multimovcr. 

since the multimovc r does not contain dynamic o r timcd behaviour th at was relevant for validation of 
the superv isors. By onl y va lidating the supervisors and pl ant model s with di sc rete-event simulation. we 

wcrc ab lc to draw the co nc lusion that the se modc ls rcprcscnt the componcnts and thcir dcsircd bchaviour 
satisfactori ly. 

In this chaptcr, modcls are prcsc nted which are needed for sy nthesizing a supervi sor. Both supcrvisory 

con trol frameworks l Won 84. Ma OS] have been uscd to sy nthcsizc a s upe rvi sor and the re sults are prcsc ntcd . 
Furthermorc , simulation techniqucs are discussed that can be uscd to validatc the supervisor. In the ncxt 

chapter, both framework s are discussed more thoroughly, to address the applicability of bath frameworks . 



Chapter 4 

Frameworks f or supervisor synthesis 

The prev ious chapter describes how a supervisor w ith th e correct behaviour can be sy nthesi zed for the case 
stu dy, th e multimover. Two frameworks ex ist fo r supervisor sy nthes is, name ly the eve nt-based framework 

of Ramadge and Wonham 1Ram 87, Won841 and the state-based framework of Ma and Wonham 1Ma05] . In 

thi s chapter. both framework s are discussed more th oroughl y in order to address the applicability of both 
frameworks. 

Two aspec ts of both frameworks are discussed in the fo ll owi ng secti ons. In Secti o n 4. 1, th e sy nthesis as­

pects of both frameworks are discussed. Then. modelling aspects are discussed in Section 4 .2. T hi s secti on 
g ives mo ti va ti on to the nex t secti on whe re a conve rsion of logica! express ions to auto mata is proposed. A 

convers ion tool has bee n built and an experiment has been carri ed ou t in order to check if a conversion 
of logica! express ions to auto mata is feasible. This is described in Section 4.4 . This chapte r ends with a 
discussion of the proposed conversion in Sec ti on 4.5. 

4.1 Synthesis aspects 

In the previous chapters, two frameworks we re discussed: the eve nt -based framework of Ramadge and 

Wonham [Ram 87. Won841 and the s tate-based framework of Ma and Wonham I Ma051- In thi s secti on. the 
sy nthes is aspects are addressed. 

The main cha ll enge of the cve nt -based s uperv isory cont rol framework is calculati on complexi ty, since the 
product o f a ll auto mata has to be computed to sy nthesize a supe rvisor and thi s computati on is po lynomi al 
in time. Furthermore , the number of states of thi s automaton product increases easily and as a res ult, the 
produc t canno t he computed duc to memory constraints. To ovcrcome thi s difliculty, many approac hes 
have bee n suggested recentl y. D istributed supcrvis ion is introduccd to avoid the calcul ati on o f the product 

of all mode ls. A distributed approac h can a lso be use ful to get a bette r ove rview of th e functionality of 

the system. In add iti on, a di stributed supervisor has more implement ati on flc xib ilit y, s ince a change in the 
target syste m may result in an update of o nl y a coupl e o f local s upervisors iSu09c] . 

However. w ith distributed supervisio n, a noncontli cting check has to be pcrformcd w hi ch is a lso computa­

ti ona ll y ex pensive . The abstrac ti o n technique by [Su08 a l is a step in the ri ght d irecti on. since thi s tec hni que 
re moves irrelL:va nt transitions w ithout losi ng nu nhl oc kin g infurmation . With a noncunflicting check bascd 

on the abstrac tion technique of iSuOSb], coord inated distributed superviso rs ca n be sy nthesized for sys­

tems wi th large state spaces. Jf an aggregati ve approac h of synthesi zing di stributed supervisors is used, 
nonc onflictingncss J oes not nccd to be chcckcd. 

Supervisory cont ro l theory gua rantees that the sy nthes ized ce nt ra li zed supervisor is optima! in terms of 

permi ss iveness. This means that all behav iour is allowed as long as it does not vio late the requirements 

or the nonblocking o r the cont ro ll ab ility property. However. no proof ex ists that a di stributed supe rvisor 
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is maximally pcrmissive, which mcans that a di stributed supervisor can be more restrictive in terms of 
allowcd bchaviour. 

The stale-baseJ rramework has an dficienl algorithm f'or sy nthesizing supnvisors by using stale-lree struc­
turcs. Howcver, at some point , the model can be too large for the statc-bascd fram ework to calculate a 
supervisor, sincc this approach is cssentially a ccntralized approach 1Su09b]. Furthcrmore, the state-based 
framcwork does not consider supervisio n under partial observation. Until now, no possibiliti cs exist to 
work in a distributcd way with the statc-bascd framework. 

4.2 Modelling aspects 

The original evcnt-bascd framcwork uscs automata to describe plant models and rcquircmcnt models. A 
drawback of mode lling rcquircmcnts by automata , is that they may be not intuitive. Furthcrmore. if the 
occurrcncc of a certain controllable event is strongly coupled with a lot of statcs, one can end up with 
specifying large requircmcnt automata. Even if an engineer is ablc to mode l such a rcquire mcnt with 
an automaton , it may be hard 10 convince other engineers 1ha1 this automaton really specilies th e ri ght 
behaviour as intended. ln addition, system des igners are oflen confronted with the following problem: how 
do wc know th at a rcquircment in automata indccd capturcs the intcnded rcquiremcnt') 

Tirns, Jclining rcquircmcnls in a way that is intuitivc and easy to undcrsland is important for the engineer 
to exprcss the control requircments . The sta\e-based framcwork is more convcnient for modclling control 
rcquircmcnts than the evcnt-based framcwork , sincc wc can usc statc-based cxprcssions and automata to 
spccify the desircd behaviour. Statc-bascd cxprcssions are cxprcssions with conditions ove r statc s. which 
are oftcn found in systcm requircmcnts. Howevcr, [Jac09J concludcs that dcriving these statc-bascd cx­
prcssions suitable for the statc-bascd framcwork is an error-prone and mcticulous task. To thi s e nd. somc 
logie:.11 specificalions are proposeJ ror automatic generalion or Lhesc slalc-baseJ cxprcss ions. With these 
logica! spec ifi ca tions, the engineer can exprcss rcquircmcnts by log ica! specilications, that naturally fol­
low from informal. intuiti vc rcquircmcnts. These log ica! spcci licatio ns can be convcrtcd to thc original 
state-based cxprcssions , whi ch can be uscd for synthcsizing a supervisor. An examplc of a rcquircment , 
specificd hy an automaton (in the cvent-hascd fram ework) and hy a log ica! spccification (in the state-hascd 
framework ) is g ivcn below. 

Example 4.2.1 
Suppose wc want to spccify that th e multimovcr only stops in the forward direction whcn Ridc Control 
is sending a 'genera! stop ' command or the short proximity front sensor is activc. In this examplc, wc 
spccify this rcquircmcnt by an automaton and by a log ica! spccilication. Notc that this rcquiremcnt is the 
occurrence of an event dm_firstop under condition of a set of states. 

Automaton 
This rcquiremcnt is modclled by an aut omaton in Figure 4.1. This requiremcnt is basica lly the produc t 
of the plant automata of Ride Control (sec Appendix A.1.6) and the short proximity front sensor (sec 
Appendix A.1.5). only with extra seinoops. lt contains extra sellloops or the t:vent c/111_.J~rstop in the 
states that reprcsent Ride Control scnding the 'genera( stop· command or the short proximity front sensor 
bcing active. With these sellloops. th e alphabet of the requirement automaton is extended with the event 
d111_Ji1·s1op and thercfore not allowing the event c/111JH"stop at the state that reprcscnts Ride Control giving 
the 'genera! start ' command and the short proximity front sensor bcing inactivc . 

Logica! specification 
The rcquirement statcd above can be model led with the following log ica! exprcssion: 
RC_Start 1 /\ PSF _lnactive 1 ⇒ __,.. { d111JH"stop ) . which statcs th at the event d111Jws1op is not allowed 
when state RC_Start and state PSF _lnactive are active. ~ 

During this project. we have noticed that spec ifying some control requirements with logica( expressions 
is by far more intuitive than specifying the m by automata. Ncverthcless, the cvent-bascd framcwork can 
be used for di stributed supervi sion , hierarchical supervision and supervision under parti a l supervision. To 
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Figure 4. 1: C ont ro l rcquircmcnt modc ll ed by an automaton 
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have both adva nt agcs o f mode lling convenie nce and supervisor sy nthcs is fle xibil ity. we propose in th e nex t 
sec ti o n a conversion o f logica ) ex press ions to a uto mata . 

4.3 Conversion of state-based expressions to automata 

1 n thi s secti o n. a conversion is prese nted of the o ri g inal two types of state-based ex press ions o f the synthesis 

tool o f Ma and Wonham to a uto mata . These state-based ex press ions are a mutua l state exe lusion and a 

state -transitio n exc lusion. In o rder to pl ace conditi ons on states. it is conve ni ent to use a logic formali sm . 

T he refore . state predi cates of 1Jac09 ] are uscd . A state prcdicate x l is truc if and onl y if an a uto maton is 

in state x. 

4.3.1 Mutual state exclusion 

The firs t type of state-based cx pression th at is converted to an automaton is a type I spcc ificati on o f the 
Ma- Wonh am too l. Thi s is a mutua l s tate exc lusion, whi ch statcs th at a set of states may not be ac ti vc at the 

same tim e. 

Definition 4. 1. A mutua l state excl usion over II aut omata C, w ith i 
predi cate x , can be written as a log ica ) expressio n by 

1. .. . . 11 w ith corresponding state 

(4. 1) 

Cons ider wc have II a utomata C; = (X ;. ~,, (, .. x 0 _,.Xm.,) w ith i = l. . .. . 11 whc re we want to prevc nt 

th at some states are ac ti ve simultaneously. The states o f th e prod uct o f all auto mata C 1 ••• C" re present 
all poss ibiliti es o f state sets o f all auto mata. lf a ce rta in state se t is illegal. the corresponding state and a ll 
in - and o utgoing transiti ons in the automaton produ ct have to be removed . Now, the mutual st ate exclusion 

is sati s fi cd by thi s requirement spec ified by an automaton. Note th at a remova l o f a state in an automaton 
could lead to the situation that othc r states are not reachable anymore. This situatio n is captured by takin g 

onl y the acce.uible part o f an auto maton, deno ted by Ac(C) 1Cas07). 

S incc onl y one state in an automaton can be ae tivc simultaneously. onl y one state predicate is used for eac h 

auto maton . Each automaton C; has its own predi cate x ; l, whi ch identifi es a state o f each automaton. Note 
that in the fo ll ow ing dcfiniti ons. onl y th osc automata are used that inc lude statcs that wc want to preve nt 
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to be active simultancously. Furthcrmore, wc assumc that the initi a! state of the rcsulting automaton is no t 

removed. 

Dcfinition 4.2. Consider automata C; = (X; , L;, f,;, x 0 , ; , X 111 , ;) and statcs x; E X; for i = 1, ... , 11 . The 
automaton that corrcsponds to the mutual cxclusion cxprcssion -., (x 1 l /\ ... /\ x" l) is de Îlned by 

/\. c(X 1 x ··· x X,, - {(x 1 , ... , x,,)} , 

L 1 U ··· U I:,, . 

( , 

(xo1 , ... , xo.,,). 

X 111 .1 X ··· X X 111 • 11 - {(x1, ... , x,,)}) , 

with f,' is a rcstriction of ç 1 x · · · x f,,, to X I x · · · x X ,, - { (x 1 ..•.. x,,) } w.r.t. the domain and the 

codomain. 

Example 4.3.1 
Considcr two uscrs that are using a shared resource. Each user is modcllcd with a plant model dcpictcd 

in Figurc 4.2 , containing a controll able event fake and an uncontrollablc event release . Notc th at in this 

cxamplc , wc have two plant model s. each rcprcsenting a usc r. 

1uk<'1 

--~-0 
ldle 1 -,.~/~.,~.,~' ~ Bus~· 1 

(a) Usc r 1 

tu/.:c 2 

--~-0 
ldle 2 - -

1
- - - - - Busi·2 

re eas<''2 

(bJ Use r 2 

Figure 4.2: Plant mode Is of the mutual state exclusion example 

Assumc that wc want to prcvcnt that both uscrs take the sharcd resource , i. e . wc demand that both 

usc rs may not be busy at the samc time. We can specify thi s with the following statc-bascd cxprcssion: 

-., ( Busy 1 l /\ Busy2 ~ ) , which srccifies that the states Busy 1 and Busy2 may not be active simultancously. 
In F igurc 4.3a, the product of both plant automata of Figure 4.2 is dcpictcd. Each state of thi s automaton 

product corrcsponds to a combination of states of the plant automata. In Table 4.3b, the corrcsponding 

plant statcs of both users are given for cach state of the automaton product. 

0 
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--" ,.. ________ _ 
" , , re frase 1 
, , , , 

relcll se2 : 
, 

tu/.:e2 re/e<1 S<'2 : 

\ 1a/.:e1 , ~(=) 
2 rl'leuse 1 -' 

(aJ Automaton product 

1cd.e 2 State 

0 
1 
2 
3 

State User 1 

ldle 1 

Busy 1 

ldle 1 

Busy 1 

State User 2 

ldle2 
ldle2 

Busy2 
Busy2 

(hJ Corrcsponding plant s tatcs 

Figurc 4 .3: Automaton product and corrcsponding states 

State 3 corresponds with the state specified as undesired in the statc-based expression. name ly that both 

users are busy. To prevent that this state becomes ac tive, this state and all ingoing and outgoing transitions 
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-.. ..., ___________ :.() 

,' release 1 
1 
1 

re/easc2 : 1akc2 
1 
1 
1 

ö 

Figure 4.4: Automaton product and resulting requiremcnt au tomaton 

of thi s state are rcmovcd. Sincc all othcr states are acccss iblc, no more states or transitions have to be 
rcmovcd. This rcsults in the rcquirement of Figurc 4.4, specified as an automaton. 

With thi s convc rsion, it is possible to construct automata that have no marker statcs. lf a supervisor is 
synthcsizcd with a requiremcnt with no marker statcs, the sy nthcs is will producc an cmpty supervisor. 
since no marker state can be rcached at all. 

4.3.2 State-transition exclusion 

The next st:i.te-hascd express ion is a stnte-transition cxclusion. also known as a type 2 specification of the 
Ma-Wonham tool. This statc-bascd cxprcss ion statcs that in a combinat ion of states a ccrtain transition is 
not allowcd. 

Dcfinition 4.3. A statc-transition exclusion cxprcssion over n automata with i 
can be written as the following logica! exprcssion 

( /\ X ; j⇒-A e) 
1 ( 1 . . 11 

1. . ... 11 and an event P 

(4.2) 

In thi s subsect ion. the convcrsion of this statc-bascd exprcssion to an automaton is stated . This conversion 
uses al so the automaton product. Two different cases of the state- transit ion cxcl usion can be distinguished. 
The first case is whcn event e. that is not allowcd in a ccrtain state se t. is alrcady in the alphabct of the 
automaton product. lf thi s is the case, all outgoing transitions labclcd by e have to be rcmovcd at the state 
specif1ed in the state-lransi ti on exclusiun. The second situation is wh1:n the event e, that is not allowcd 
in a ccrtain state set. is not in the alphabct of the automaton product. To capturc this cxprcssion with an 
automaton, an extra automaton that contains only one state and a sc llloop labelcd by e is addcd to the 
automaton product. Note that if the event e alrcady is includcd in the original automaton product. the 
rcsulting automaton product will not change . Howevcr, if the event is not in the alphabct of the automaton 
product, the cwnt is addcd to the alphabet and the automaton product contains sclftoops labc lcd bye in all 
states . The se llloop labe led by e nccds to be rcmoved at the state whcre the state predicate is true , accord ing 
to the statc-bascd cxprcssion. In the two cxamplcs in this subsccti on. wc considcr both situations. 

Definition 4.4. Considcr automata G; = (X ;.~; , ç; .x0 _;. Xm .,), and x ; E X; with i = 1 .... . 11. and 
x E X1 x ... x X 11 • and an automaton G,. = (X, .. I: e, ~e-Xo. e•Xm .,, ). where X ,, = {0}, I:,. = {e}, 
( : (. .(0 . P) = 0 . x 0.,. = 0 , and X 111 . , . = {0}. The automaton that corresponds to the state-transilion 
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cxclusion expression (x1 l /\ . .. /\ x" l⇒- e) is dcfinc<l by 

i\ c( X1 X · · · x X " X X,. , 

I: 1 u · · · u I: ,, U I:e, 

( , 

( XO .l · ... , Xü. n , XQ _e )-

X111 .1 X · · · X Xm .11 X Xm .c) , 

{ 
undcfincd 

with ((x , a ) = 
(ç 1 X .. . X ç" x çe)(x, a) 

rorx = (x1 , .. .. x,,) /\ a = e, 
othcrwisc. 

Example 4.3.2 
In this cxample, a state-transition exclusion ex pression is convcrted to an automaton whi ch satisfics thi s 

cxprcssion. Consider the plant model depicted in Figurc 4.5a. In this automaton , it is poss ible to switch 

on the LED multiple times fora cc rtain reason. lmaginc that wc want to specify in a rcquircmcnt that wc 
do not want to switch the LED on if it is al ready on, e.g. LED_On l ⇒ ----A ( LED_enab/e l. To construct 
an cvcnt-bascd rcq uircment , spccifying this statc-transiti on exc lusion . our intuition is to rcmovc th e event 

LED_enab/e at state LED_On . 

LED_disable LED_ ,·110/JI<' LED_disabl<" 

-~ 
LED_Otf LED_dirn/Jle LED_On 

~ 
-;;,D_~L'-l') 1. II LED_On 

1.:.. _ (/ SCl'.Je 

( a I LED autornaton (b) Rcsulting requiremc nt 

Figurc 4.5: A state-transiti on exclusion cxample 

This is in accor<lancc to ücfinition 4.4. Howcvcr, in this examplc no automaton product necds to be com­
putcd , s ince only one statc predicate is spccified. Furthermore, the eve nt LED_enable is already inc ludcd 
in the alphabct of the automaton. Thcrefore, only at the state whcre the state prcdicate is truc (LED_On) , 
the event LED_enable nccds to be removed. The resulting rcquircment is depicted in Figurc 4.5b. ~ 

Example 4.3.3 
In this example, a state-transitio n cxclusion cxprcssion is converted to an automaton with an event th at is not 

included in the alphabet of automata ovcr which the state prc<licates arc dcfined. Reconsider Examplc 4.2.1. 
whcre we want to spccify that the multimover is not stopping in the forward direetion whcn Ride Control 

is scnding a ·gencral start ' command and the short proximity front se nsor is inactivc. This requirement can 
be specificd with the following state-based exprcssion: 

RC_Start l /\ PSF _ lnactive l ⇒ ----A ( d111J1ntop f. 
The plant models th at are used are depicted in Appendix A.I. 

To construct an automaton that specif-ies the statcd state-transition exc lusi on. the automaton product o f thc 

pl ant mode Is o f Ride Control and the sho rt proximity front sensor is computed, which rcsults in Figure 4.6a. 

In all states ofthis aut omaton. selfloops arc added, cxcept for the state whcrc the state formula is truc. This 
results in the automaton, depicted in Figure 4.6b. Notc th at all states are sti Il accessiblc and no furthcr 

adaptions have to be made. 

[xJ 

The property of controllability does no t have to be taken into account with the construction of automata. 

Automata can spccify whatevcr the engineer wants. The supervisor synthesis will take care of the con­

trollability propcrty, such that the resulting supervisor is controllablc w.r.t. to the plant modcls and I:,, 
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Figure 4.6: A utomaton product and resultin g req uire ment 
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and satisfies all n:4uin.: 1m:11ts . Therel'un.: , it alsu possible to construct re4uiremen1 autumata th a t di sahle 

uncontrollable events in a ce rta in state. 

As experience has show n in the last yea rs. o ften a lot or stat e- hascd cx press ions have to he spccilicd in 

o rde r to synthes ize a sati sfac tory superv isor for hi gh-tech systems. The conversion th at is proposed in the 

prev ious secti on constructs an automaton for every single state-based expressio n. One can imag ine that 

the construc ti on of a lo t of automata can compli cate the sy nthesis of a supervisor. since the eve nt-based 
sy nthes is is based on the automaton product. To analyze the performance of the co nvers io n and the synth e­

sis procedure afterwards. an application is built in the programming language Python. th at automatically 
construct s automata o ut of state- bascd expressions. A more detailed explanati on and the so urce code of 

this application is given in Appendix B. Here onl y the syntax and the res ult s are g ive n. 

The conversion is built in the Supervisor Synthesis Package as two functions. th at make use of the already 
ex isting lüncti o ns. The lirst functi on cunstructs a requin:mcnt with a mutual stalc exc lusi on. Thc syntaxis 

g ive n be low. The fun ction needs three arguments. namcly 1) the names of the a uto mata th at are needed , 2) 

the s tate set (be tween curl y brackets) that needs to be exc luded, and 3) the name of the res ulting automaton. 

f 1 e nt end . ~a ke _t y p e ~_.:!)t'C 1 r tea t 1 o n ( ' ~ npt: t_ l . c :: g , . . . , 1 n ru t _n . ç ~ : ' , ' 1 x_: , . .. , >: _r.• ' , ' Ó',.;t !)Lt . c: ~ ' l 

The second function that is built is to construct aut omata o ut of state-t ransit ion excl usio n ex press io ns. The 

sy nt ax is g iven be low. The functi on needs three arg uments , namely 1) the names of the automa ta that are 
needed to constru ct the automaton product 2) th e name of the a utomaton containing th e event, that has to 

be exc luded . 3) the state se t (betwee n curly brackets) and the name of the event th at needs to be excluded. 
and 4) the name of the resulting automaton. Note th at the sy nt ax of both state-based ex press ions is based 

on sy nt ax o f the sy nthesis tool of Ma-Wonham. 

: zon t e nd . rr,a k e_t ype. _ spec 1 f 1 ca t :on ( ' I r. pu t_ j . c : g , . . . , 1 n r u t _ n . c f g ' , ' l nr>u t _ e . c: g ' , ' ( 1 x_ 1 , . . . , x_ r. 1 , e ) ' , 
' Cu t !)U t . c:g • ) 

The application has been tested with tes tcases in orde r to check if the ri ght automata are produced as 

output. After this , the log ica! expressions that are used fo r sy nthes izing a state-based supervisor for the 
multimove r are conve rted to automata, to check whether it is possible to sy nthes ize a eve nt -based supervisor 

with automata and state -based expressions, which are converted to autom ata. More details and the results 

of thi s ex pe riment are discussed in the next secti on. 
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4.4 Experiment 

In o rder to check the fcas ihility o f sy nthes izing evcnt-hascd supervi sors with rcquiremcnt s spcc ificd hy 
statc-bascd cxpress ions, the state-bascd model o r the multimovcr is uscd . First , th e log ica! spcc ificati ons 
are conve rted w ith the convcrsion tool of 1Jac09] to type I and type 2 cxpressio ns for the Ma- Wonh am too l. 
A ft cr thi s, all type I and type 2 cxpress ions are convc rtcd to auto mata , usin g the cvcnt-bascd plant modcl s . 
Notc that the plant mode Is of the sy nthcs is too l of Ma-Wonham and the Supervisor Synthcsis Pac kage nccd 
to be equival ent , in o rde r to perform a correc t convcrsion. In Tablc 4.1 , the numbcrs o f automata th at are 
gencrated with th e convcrsio n applicatio n for each module is statcd . Furthcrmore, th e numbcrs o f states 
and transitions are statcd o f the auto maton produc t of all convcrtcd auto mata for each modul e. 

Table 4 . 1: Res ults o f th e conversion 

aut omaton produ ct 
Modul e # log ica! ex pr. # automata # states # transitions 

LED actuati on 6 9 4 15 
Moto r ac tu ati on 8 35 29 163 
Butto n handling 2 4 9 3 1 

Emcrgc ncy handling 1 4 5 Il 
Proximity handling 8 14 33 257 

As wc can sec, the state space of the rcs ultin g auto mata is rc lati vc ly small. This is du c to th e fac t that a ften 
more or lcss th e samc rcquircment is constru ctcd , onl y with a d ifferent di sablcd eve nt in a different state. 
As a rcsult . the complete automaton produ ct sy nchro ni zcs most of the trans itions and onl y a cert a in event 
is disabled. To illustrate thi s . the computati on of the automaton produ ct of the statc-bascd rcquircmcnt s of 
the moto r ac tu ati o n modul e is di sc ussed more thoroughl y. 
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Figure 4.7 : Numbcrs of states and transitions during computati on o f the automaton product 

In Figurc 4.7 , the numbcrs of statcs and transitions are dcpic tcd during co mputati on of the auto maton 
product. Thi: aut omaton product works scqucnti all y. i. i:. first the automaton produc t of the first automaton 
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and the second automaton is computcd. Thcn, the automaton product is computed of the rcsult of the 
prcv ious automaton produc t with th e third au tomaton etc. As we can sce , in th e bcginning, the numbcr 
of statcs and transitions of the auto maton product is inc reasing, like cxpcc ted . Aftcr this , the number of 
transitions is g radu all y decreas ing, due to the rem oval o f transitions. The number of statcs is stay ing more 
or less constant , since the convertcd statc-bascd cxpressions are statc -tran sition cxcl usio n cxpress ions, 
which excludc a transirinn and no statcs. Aftcr addition of automaton 19 and 34 to the automaton product, 
the numbcr of statcs have dccrcascd. This is duc the fac t that a ccrtain part of the stat e spacc of the 

automaton has bccomc not access ible anymorc . As a result , thi s pa rt of the automaton is rcmovcd. 

An event-bascd distributcd supervisor has been sy nthcs izcd with these rcquirement au tomata. This dis­
tributcd supervisor is va lidatcd by mcans of discrete-event stcpping and the supervisor has the cxpcctcd 

behaviour. No diffcrenccs betwccn the simulation rcsults of the statc-bascd supervisor and the cvcnt-bascd 
supervi sor wcrc cncountcrcd . 

4.5 Discussion 

In the previous sec ti o n, the rcsult s are shown for an examplc of conversion from logica! cxprcssions to 
auto mata , that subscq uentl y are used to sy nthcs ize an cvcnt-based supervisor. As wc can sec . a satisfactory 
supervisor is synthcsized with more modelling convc nicncc . Furthcrmorc, the state spacc did not cxplodc , 
despite of th e fact that a lot of automata are gcncratcd. One has to bear in mind that this algorithm of 
convcrting logica! cxprcssions to automata is not optima!. A direct convcrsi on of logica! cxprcssions to 
automata ( w ithout convers ion to the type I and type 2 expressions o r Ma-Wonham) might be more cfficient. 
In the casestudy worked out in this projec t. a more efficient convers ion of log ica! expressions to automata 
was not ncccssary. 

111Plkl -
lllt>lk l -
1111>1.k l -

Plant 
(automata) 

Rcquircment:-. 
(automata) 

Rcquircments 
( log. expr.) 

Supe rvisor 
( automaton ) 

Figure 4.8: The cvcnt-based framcwork ex tended with logica! cxprcssions 

In Figurc 4.8. a graphical overview is given of the convers io n of log ica! spec ifications to aut omata. With thi s 
convc rs ion of statc -bascd cxpressions to auto mata. wc are now ab lc to spccify requircmcnts with automata 
one/ logica! cxpress ions. To inves ti gate the app licability of thi s convcrsion. it is recommcnded to apply it 
in o ther industri al cases. 

Logica! exprcssions provide a powcrful mcthod for specifying the cxclusion of ccrtain situations. Howcve r. 
log ica! cxpressions are not suitablc to mcmori ze certain scquences of cvents. This can be donc by automata. 
Togethcr. thcy forma suffic ient modc lling framework for specirying the req uirerrn:nts o r the multimove r. 
lSco07l proposcs to specify state-based specifications by tempora! log ic. Tempora! logic is known to be 
a richer language than propositional logic and can be, as a result , more suitable to specify the control 
requirements of complex high-tcch systcms. This can be invcstigated in furth cr research. 

In thi s chaptcr. wc have discussed both supervisor framcworks more thoro ughl y. We have sccn that both 
framcworks have their advantagcs and di sadvant agcs for sy nthes izing supervisors. Furthcrmore. the statc­
based framework is often recognized as more convenient for modclling req uirements . sincc requircmcnts 
can not only be mode ll ed by automata, but also by logica! ex press ions. However, in thi s chapter is shown 
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that logica) expressions can be converted to automata to synthesize event-based supervisors. The nex t 
chapter describes an implementation of the supervisors of both frameworks in the current control software 

of the multimover. 



Chapter 5 

Implementation 

In the previous chapte rs. supe rvisory co ntrol thcory has been expla ined and used to synthesize superv isors 
fo r the multimove r. Both the even t-based framework and the state-based framework have been used to 

sy nthes ize a supervisor. The behaviours of the supe rvisors have been va lidated by means of discrete-event 

simul ati on . The nex t step in the synthesis-based eng ineering process o f Figure 5.1 is to implement the 

supervisor. This chapter describes the implementation of both supe rviso rs in the current control so ftware 
of th e multimover. 

Fig ure 5. 1: lmplemcntation in the sy nthes is-based engi nee ring framew ork 

In Secti on 5.1. the d ifferences between a co nt ro ll er and a supervisor are stated and a set-up for implemen­
tati on of a superviso r is proposed. Then , some imple mentati on aspects are g iven in Secti on 5.2. Subse­

quently. a prototype of thi s implementation is desc ribed in Sec ti on 5.3. A description of the va lidation of 
th e implementation and experim ent s are descri bed in Sec ti o n 5.4 and Section 5.5. respectively. Lastly. thi s 

chapter ends w ith evaluat io n of the supervisor implementati on and th e applicability in Section 5.6. 

5.1 From supervisor to controller 

The control problem for a ge ne ric dyn amica! system consists of influe nc ing the hehav iour of a system. 

in onkr to sati s l'y g iwn spcciÏlcations. Thi s is schcmaticall y shown in Figurc 5.2a. T hi s is ac hieved by 

des ignin g an appropriate control unit that uses in fo rmati on from the pl ant to influence thi s through the 
available control mechani sm [Ba192b] . 

49 
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In the original supcrvisory control framework , a supervisor acts as a passivc device that tracks evcnts 

produccd by the plant and rcstricts the bchaviour of the plant by disabling the controllable cvents [Bal92a]. 

This is schcmatically shown in Figure 5.2b. Howcver, it is oftcn the case that the plant does not generale all 

controllablc evcnts on its own without being initiated. Normally, simple machines do not start thcir work 

unless the start command is given. In this case , it is dcsirable to have a controller which not only disables 
controllable evcnts but also initiatcs the occurrcncc of particular controllablc cvcnts [Die02]. Furthcrmore , 

supervisory control thcory is bascd on the assumption that the supervisor is always synchronizcd with 

the state of the plant, i.e. thcre is no communication dclay. Howcver, in contrast to the synchronous 
communication uscd in models , real systcms often usc asynchronous communication lBra08]. 

information 

controller 

plant 

(a) A con1rol syste111 

cnntrol 

instnu.:tîtrns 

..: vent s gcnt.:ratcd 

hy plan! 

supervisor 

plant 

(b) The rok of 1hc s uperv isor 

Figurc 5.2: The communication betwccn the supervisor S and the uncontrollcd plant P 

c,·ent s ..: nabkd 
hy supervi sor 

So, a supervisor is not dircctly a controller. but can be secn as a dictionary of allowed cvcnts at each state 
of the plant. This can be comparcd with solving a game of chcss. whcre all allowcd moves are listed in a 

lookup table. From any position. the next move can be carricd out by scarching the lookup tablc instead 
of calculating the possiblc moves 1Ber09J. In this section. the implemcntation of a controller is cxplained 
that tracks the state of the plant and scnds appropriatc con trol actions back. Wc rcfcr to this controller as a 

supervisory controller. 

The functionality of a supervisory controller can be roughly divided in two tasks. The supcrvisory con­

troller needs to track the state of the plant in order to givc appropriatc feedback to the plant. We call this 
part of the controller the stme tracker. Ncxt. the controller is responsible for sending appropriatc control 

actions back to the plant based on the state of the plant. Wc refcr to this part of the supcrvisory controller as 
the contml decision maker. In Figure 5.3, a schcmatic ovcrvicw of a supervisory controller is givcn . In this 

figurc. wc can distinguish the plant which represcnts the componcnts and the low-level resource control. 
and a supcrvisory controller (in red). This supervisory controller contains a state tracker which tracks the 

state , a control dccision maker which sends appropriate actions back to the plant and a supervisor which 
contains all allowcd bchaviour. 

Plant Supervisor 

Control dcci s ion maker i+------' 

Figurc 5.3: A supcrvisory controller 

At some point, the plant will generale an event (e.g. a button is pressed, a sensor is activated etc.). A 

notification has to be sent to the state tracker. which updates the current state of the supervisor. This is 

done by looking in the supervisor what the new current state is. Notc that that only uncontrollable evcnts 

and no controllable events are tracked by the state tracker, since the supervisory controller has control over 
the controllablc cvcnts. If the state tracker is l'inishcd with updating the currcnt state of the supervisor. the 
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control deci sion maker bas to scarch for an appropriate control action that can be se nt back to the plant (e.g. 

turn the LED on, turn off th e motor etc. ). No te that we ass ume that onl y controll able evc nts are initiatcd 

by the control decision maker. lf an appropri ate control action is found , thi s ac tion is carried out and the 
current state of the supervisor is updatcd again. 

5.2 Implementation aspects 

In litcraturc, somc information is ava ilable about problems th a t can occur if a contro ll er is derived from a 

model o f a supervi sor. These problcms are discusscd in I Ma103, Mal02, Dic02 J. 

5.2.1 Command selection problem 

The surcrvi sor synthesizcd with supcrvisory con trol th cory is nonbl ock ing according to Ocfinition 2.6. 

Howcver, thcre is no guarantce th at an imple mentation of the supervisor is a lso nonblockin g. Eve n worse. 

the resulting controller may be blocking due to ' bad choices' (Mal03 , Mal02, Die02J. Thi s can be illustratcd 
by the example show n in [Mor07 J. 

Example 5.2.1 
Cons ide r a system of two machines th at can be uscd for two tasks. One machine can work on task A 
and the o th cr machine ca n work on task B. These are controllable cvents: a supervisor may disable thcm . 

The event sJ_/\ and f_B mode l the completi o n of the task. These are uncontroll ablc eve nts : the supervisor 

cannot influcnce the occurrcnce o f these cvcnts. lfbo th machines work at the samc tim e, the systcm breaks 

dow n. In Figure 5.4a. a represe ntati on is g ive n of this system. S upervisory cont ro l thcory can prevent thi s 
system from a breakdown, by disabling the controllabl e cvcnts to the stat e Down . The rcs ultin g supervisor 

is g ive n in Figure 5.4b. The des ircd controll er is a rca li zati on of the automaton model in F igure 5.4b. 

At the initi a ) s tate ldle. a choice has to be made which machine should be s tarted next. Howcve r, whcn a 

supcrvi sory controller is implcmcntcd th at has to select one of the signa Is stort_;\ and slllrt_ B. we could get 

into troublc ; if th e controll e r a lways se lects sta rt_A . the marked state Task_B is never reached. This rcsults 
in violation of the nonblocking property. since the marker state can never be rcached (sec Figure 5.4c) . 

ldle -◄ ► I \ 

sta n _A / \ start_B 
/LA f_JJ',, 

Task A ~ / Task B 

.,·tt1rt_B~ / sturt_i\ 

0 
Down 

(a) Uncontrolkd hchaviour 

ldle -,◄ ►, 

.srart _A / ', .Hart_U 
,,. ,,. J_A f_B' ',' 

O', .... 
Task_A Task_ ll 

(h) Supcr\' iscd bd1a,·iou r 

ldle -,◄ 
I 

.•illlrl_ A 1 

/ LA 

O' 
Task_,\ 

(c) Blocking con­

lrolkr 

Figure 5.4: Generation of a blocking supcrvisory controller 

Another problem that could occur when a s upervi sor is implemented is th at the implcmented supervisor 
could end up in live lock , duc to a wrong cho ice of cvcnts. Livelock is an cndless loop of occurrences of 

cvents without ga ining any progress. This problem could occur when an inflnite sequcnce of controllahle 

events is poss ible from the current state. Thi s problem is illustrated by the fo ll owing example. 
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Example 5.2.2 
An automaton is depicted in Figurc 5.5. Consider this automaton as apart of the implemcntcd supervisor. 

Notc that all events of this example are con trol lab Ic and implemented as control actions. State 2 is marked 
and can be considercd as complction of a ccrtain task. Note that all statcs of this automaton are nonblocking 

accorJing to Definition 2.6 , sincc from every state a marker state can be rcachcd. lf the currcnt state of 

the supervisor implementation is state 0, the supcrvisory controller has a choice: either event a orb could 

be sent. lf in this state a is always choscn , we have livclock , sincc marker state 2 is never reached and an 

infinite sequencc of cvents (a ,b.a ,b, ... ) is chosen. 

0 

Figure 5.5: An implcmentation containing livclock 

Thus. an implemcntation of a supervisor can not guarantce that a ccrtain marker state is evcntually rcachcd. 

This problcm. statcd in the previous cxamplcs. is callcd the co111111a11d se/ection prob/em. To avoid this 
problem. [Mal03 J proposcs chccking algorithms that can be uscd to ensurc a nonblocking controller. Threc 

new propertics of discrete event systcms are introduccd. Petra Mal ik provcd that if these propertics hold 
for an automaton. the resulting controller is nonblocking and the co111111a11d se/ection pmblem is solved. 

In this project, discrete-event simulation is uscd for validating the bchaviour of the supervisor. However. 

simulation cannot prove these propertics. which means that the implcmentation might still be blocking. 

In [Mor071, an algorithm is presentcd that can synthcsize dctcrministic controllers out of the convcntional 
plant and requircmcnt modcls. Howcver. only centralizcd controllers are taken into account and thcreforc 

not applicable in our case. Furthcrmorc , a synthcsis mcthod is dcvclopcd in I Su09a], that synthcsizcs 

ccntralized supervisors which achievc also a time-optima! performance. One can imagine that an implc­
mcntation without reachable marker states (Example 5.2.1) or containing livelock (Example 5.2.2) is not 
timc-optimal. sincc no progrcss is made. To this end, the synthcsis of time-optima! supervisors for real 

industrial systcms is recommcndcd as future research. 

5.2.2 Communication problem 

The communication problcm is another problem relatcd to building controllers from supcrvisory control 

modcls [Mal03J. This problcm occurs whcn the controller scnds a control action to the plant. but in the 
mcantimc. the state of the plant is changed. This means that a control act ion is chosen based on an old state 

of the plant. 

The reason why this situation can occur. is that communication bctwcen the plant and the controller in the 

real system is not synchronous. Let us investigate where the time dclays are in our closed loop systcm. Wc 

can distinguish threc delays: 

• Input delay. This delay is the time pcriod that is necded from the time instance that an event occurs 
in the plant until the time instance that the supervisory controller has reccived this messagc. 

• Computation delay. This delay is the time period that is nceded from the time instancc that the 

state tracker is updating the current state of the supervisor until the time instance that an appropriate 

control action is chosen by the control decision maker. 
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• Output delay. Thi s de lay is the time pe ri od that is needed fro m the time insta nce that a message is 

sent by the control dec is ion m aker to the pl a nt until th e time instance th at the correspondin g cont ro l 

ac tion is carri ed o ut by the pl ant. 

To inves ti ga te th e dd ays furthcr into det ail , a modd is m ade in the spccilica ti o n lang uag t.: y 1Bee0 6 1 

that s imulates a closed-loop sys te m with asy nc hro no us communicati o n behav io ur. In thi s \" m odel, the 

asy nch rono us communi cati on is mode ll ed as a buffe r be twee n th e pl ant and th e supe rv isor. w hich de lays 

a ll messages fo r a certa in time pe ri od . Since o nl y the concept o f asy nchrono us communicati on needs to be 

mode lled. onl y o ne buffer is used. The y model is based o n th e fo ll owing assumpti o ns . 

Assumption S.J. Events that a re generated by the plant and rcl a ted messages that a re se nt to the super­

vi sory cont ro lle r ca nnot ge l lost and cannot ove rtake each o the r. The same assumpti o n app li es fo r the 

communication fro m the supervisory contro ll e r a nd the pl a nt. 

Consider the pl ant mode l o f a tim e r in Fi gure 5.6a , w hic h re prese nt s a tim er th a t can be start ed (stan ) and 

re set ( reset). lf the timer is exp ired , the uncont ro ll abl e event ti111eout occurs . The controll a ble events stal'f 

and reset are considered as o utput o f the supervisory controll e r a nd the uncontroll able eve nt ri111 eo11t as 

input o f the supervisory cont ro ll e r. 

reset 

(a) Plant model o f' a timer (h) X model 

Figure 5.6: Communicati o n de lay exampl e 

T he closed- loop system is mode ll ed in \ as de picted in Fig ure 5.6b. T he time r mode l is re presented by 

\" p rocess P, whil e the supe rvisory cont ro lle r is re prese nted by \" process S . The communicati o n de lay is 

modell ed with a buffer B between th e time r Pand the superv isory co ntrolle r S. In thi s mode l, messages tha t 

a re sent fro m the timer P to the supe rvisory co nt ro ll e r S have to wait for a certain time in the buffe r B be fore 

they are sent to the supervisory cont ro ll e r S. The '< mode l is li s ted in Spcc ifi cati o n D. I in A ppe ndi x D . I . 

0 0 
sta rt (t- -0.00) 

ti mco ut (t= 1.00) 

rese t ( t= l. 05) 

t imco ut (t= 1.1 0) 

Fig ure 5.7 : Results of s imulation 
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The mcssagc scqucncc chart, dcpictcd in Figure 5.7, shows the bchaviour of the x- model. At 1 = 0.00, 
the timer is started. lt will expirc at 1 = 1.00. Whcn the timer is expircd, the timer sends a messagc to the 
supcrvisory controller that the event has happcned, but due to a communication delay, this is reccivcd by 
the supervisor at t = 1.10. In the meantimc, a messagc is sent by the supervisory controller to the plant 
that the event reset takes place at t = 1.05 in order to reset the timer. So, the supervisory controller scnds a 
control action to the plant , based on an old state of the plant , sincc the supcrvisory controller 'thinks' that 
the timer is not expircd and is in state On, while the timer is alrcady expircd and is in state Off. 

The scquencc of events that is observcd by the plant and by the supervisory controller is not capturcd by 
the original plant model , since the timer obscrvcs the evcnts start - timeout - reset and the supcrvisory 
controller obscrvcs start - reset - timeout. lt is unclear how both the timer and the supcrvisory controller 
will rcact on these obscrvations. A simple vcrification approach is suggested in [Mal02] in order to idcntify 
a class of plants th::it ::ire robust with respect to the communication problem. This verification approach c::in 
be applicd vcry casily. 

Definition 5.2. Let G = (X . L , ç, x 0 . X 111 ) be a detcrministic automaton. The automaton G is L c-L,, ­
commuting, if for all x E X. CJ , E ):=,, and CJ" E >--:u such that, if both CJ, and Clu is an accepting event at a 
givcn state x E X , we have that ç(x, CJ , CJ,,) and ç(x , CJ"CJ, ) are both defincd and ç(x . CJ ,.CJ,,) = ç(x . CluCJ , ). 

A }.;, -}.;,,-commuting plant acccpts a controllablc event rJ,. and an uncontrollablc event rJ" in any order 
whcnever both are acceptcd at a ccrtain state. Furthermore, the order does not inOucnce the fut ure behaviour 
of the systcm. Jf a plant is I:,.-I: ,,-commuting, the following properties are satisfied. 

• The plant accepts any mcssagc from a supervisory controller that only sends mcssages bascd on the 
currcnt state of the state tracker. even if it is dclaycd. 

• Each supervisory controller, gcncratcd from a model containing the plant. acccpts any mcssage from 
the plant . even if it is delaycd. 

• lf all messagcs are receivcd. i.e. no messages are pending in the network, the state tracker can teil 
the state of the plant. 

Wc can casily vcrify that the plant model of the timer is not I:,. -~ ,,-commuting. The controllable event 
reset and the uncontrollablc event timeout are acccptcd in the state On. However, the scqucncc of cvcnts 
timeout - reset or reset - ti111eout is not acccpted in state On. 

5.3 Prototype implementation 

In order to prove the concept of synthcsis-bascd engineering, a prototype of a supcrvisory controller with 
the syntlH.:sizeJ supervisors is implementeJ in the existing cuntrnl suftware of the multimover. For llexibil­
ity. an implcmcntation of both supervisors is proposcd. A schematic overview of the control architecture 
of the multimovcr with a supervisory controller is givcn in Figure 5.8. Note that. in order to implemcnt 
a supervisory controller, first the existing control software that has the same functionality needs to be 
rcmovcd. 

At the bottom or this figure, we can see all components and thcir resource controllers. Above the resource 
control. an interface is made which is rcsponsible for sending the correct cvents from the resource control 
to the supervisory controller and sending the correct events from the supervisory controller to the resource 
controllers. This interface makes usc of a listener and notifier structure. This is a simple communication 
paradigm. The resource control of each component can publish messages of a certain topic and can sub­
scribe toa certain topic. which means that they will reccive all published messagcs of that topic. So. the 
interface is subscribed to all relevant cvents and wilt receivc them. This interface has to be coded manually, 
since it is different for every system. 
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Fig ure 5.8: Con trol arc hitecturc of the multimovc r w ith a supcrvisory controller 
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T he ncx t laycr in Figurc 5.8 is an implcmentati o n of a supcrvisory contro ll e r, whi ch cont a ins a state tracker 

and cont rol decision maker. This layer is written in such a way that it is independent of the supe rvisor 
model , which supc rvisory control framework is used and the syste m itse lf. A ge nera! implcmcn tati on of a 

supcrvisory controll e r is written in pseudo-code in Algorithm 1. As a lready to ld , the fun ctio nalit y o f the 
supc rvisory cont ro ller can be dividecl into two tasks, namcly trac kin g the state of the systcm by the state 

tracke r (line 3 to 7) and mak ing appropriatc control decisions by the co nt rol decision maker (line 9 to 19) . 

Algorithm I Concept of supervisor implementa ti on 

loop 
// State Tracker 

while lcn(li st) > 0 do 
E ,_ pop(list) 

5 UpdateS upe rvisor(E) 

5 l 
end while 
// Control Decision Maker 
if 5 = 1 then 

10 : E ComputeCont rolAc ti on 

if E 1- 0 then 
if lcn(li s t)= 0 then 

UpdateS upervisor( E) 
ExecuteEvent(E) 

1s end if 
else 

s , () 

end if 
endif 

20 : end loop 

All (uncontrollablc ) events th at are gcncratcd by the plant (e.g. button and sensor signals) are listed in 

a buffer by th e int erface . which is a different process th at also has acccss to thi s buffer. This buffer is 
cmptied by the state tracker by takin g and rcmov ing the first clement o f the buffer (E <--- pop(l ist)) and 

subseq uentl y. the current state o f the superv isor is updatcd (line 5. UpdatcSupervisor(5)). lf the li st is 

empty, the sta te tracker knows th e curre nt state of the systc m. Based on thi s currcnt state of the su pervisor, 

a control clecision can be calculated. 

lf the current state o f the superv isor has changcd (5 ,_ 1 ), the control dec ision make r has to check if a 
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control action is possible. This is done by setting a boolean variable S to 1 (line 6), which activatcs the 
con trol decision maker. First, a con trol decision is computed. 1 f an appropriatc con trol act ion is found 
(line 11, E =f 0), the event list has to be checked (line 12), to ensure that the supervisory controller has 
made an appropriate control action based on the most actual state of the plant. lf this the case , the state of 
the supervisor is updated and the appropriate control action is executed. Note that this implementation does 
not prevent the execution of a control action based on an old state of the supervisor. The communication 
problem can still occur. 

lf no con trol act ion is possible (e.g. all controllablc events are disabled by the supervisor) , there is no need 
to search fora control action over and over again. So, the boolean variable S is set to O (line 17), which 
means the con trol decision maker is not executed anymore . lf the state of the system changes again due to 
the occurrence of an uncontrollable event , the control decision maker is activated again. 

The next layer in Figure 5.8 is the supervisor itself, which contains the information about the allowed 
behaviour. according to the requirements. This information can be generated from the model of the super­
visor. This is done by a script in Python (see Appendix D.3), that reads the information from a CIF model 
and stores this information in a lookup table. A lookup table is used for this information, since a lookup 
table can bL: uset.l with an dficirnt int.lL:xing opL:ration, which coult.l save in terms or procL:ssing time. An 
explanation of how an automaton is converted toa lookup table is mentioned in Appendix D.2. 

The prototype implementation described above is suitable for supervisors of both frameworks , either event­
based or state-based. However. there are some differences with respect how the state is tracked and the 
control decisions are made for both frameworks. These differences are stated below. A summary of the 
differences between the implementation of the two supervisor types , synthesized with either one of both 
frameworks is listed in Table 5.1. 

5.3.1 Event-based implementation 

A supervisor that is synthesized with the event-based framework contains the complete allowed language 
of the closed-loop system , as mentioned in Section 2.4.3. This is stored in one or more automata. The 
state is tracked by updating the current states of the automata if an event occurred. An automaton is only 
updated if the event that has occurrcd is also in the language of this automaton. lf an event occurs that is 
not allowed by automata, then the model is inadequate, si nee the state tracker can not track the state of the 
system. lf this happens , the supervisory controller and all components are switched off. 

Control decisions are calculated by searching for controllablc events that are allowed by all automata. The 
first controllable event that is found and allowed by all automata is chosen as the control action. 

5.3.2 State-based implementation 

A supervisor that is synthesized with the state-based framework uses automata and BDDs to store the state 
feedback control (SFBC) map in. The automata are used to store the information when each controllablc 
event is allowed by the plant mode Is and the BDDs are used to store the information when each controllable 
event is allowed by the state-based expressions. 

A state-based implementation uses the plant models and event-based requirements to track the state of the 
system. All automata of the plant models and event-based requirements are updated if an uncontrollable 
event occurs . If an uncontrollable event occurs that is not allowed by an automaton, the state of the system 
cannot be tracked and the model of the supervisor in inadequate. lf this happens, the supervisory controller 
and all components are switched off. 

Control decisions are calculated by searching fora controllable event that is allowed by all automata and 
its BOD. The first controllable event that is allowed by all automata ant.l its BOD is used as a control action. 
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Table 5.1: Diffe rence in implementation for s upe rvi sors of both frameworks 

I mplementation State tracker 

Evc nt-based supervisor Update supervisor automata 

Statc-bascd supervisor Update auto mata 

5.4 Validation of implementation 

Control dec ision maker 

Search for controllable event 

allowcd by all supervisor au­
to mata 

Search fo r controllable eve nt al­

lowcd by a ll aut o mata and it s 

BDD 
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In the pre vious section, a conce pt of implementati on o f superviso rs is discussed. This concept is imple­

mented in the ex isting con trol software and validated. The test set-up is dep icted in Figure 5.9. Firs t of a ll. 

o nly a state tracker was implcmented and tested if the state trac ker could update automata according to the 
uncontrollabl e events that were ge nerat ed . Afte r thi s was va lidated . th e co nt ro l dec ision maker was impl e­

mented and va lidated if the ri ght con trol dec is ions we re chosen at the ri ght mo ment s. A small eve nt-based 

supervisor was sy nthesized with two butto ns and one LED as th e pl ant , in o rder to va lidate the state tracker 

and the control decision maker. 

Subsequently, support for BDDs was implcment ed to implement supervisors o f the state-based framework. 

Only the cont ro l dec ision maker had to be va lidated again , since the BDDs are onl y uscd by th e control 
decision maker. A small statc-based supervisor was synthesizccl w ith two buttons and one LED as the pl ant 

in o rder to va lidate the implementati on of the support for BDDs. 

After th e compl ete supervisory controller was va lidated. a sc ript is made that convert s th e C IF mode ls 

to lookup tables. This conve rsi on is va lidated by converting small automata to lookup tables. The lookup 

tablcs th at were generatcd , were according to the ex pectati ons . After thi s. both supervisors with two buttons 
and one LED as the plant. that we re implemented manuall y in the multimover. we re ge nerated fro m CIF 

models. This was according the ex pectati ons . so the co mplete too l cha in and implcmentation is va lidated 

fo r these testcases. 

F igure 5.9: A photo impression of the test set-up 

5.5 Experiment 

After the implcmentation and the conversion fro m the CIF-moclel to C was va lidated. the supervi sors of 
the multimover were implemented . First, the supe rvi sor, sy nthes ized with the event-based framework , was 
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implemented. This implcmentation is tested by pushing buttons and activating and deactivating sensors. 

With this implementation testing, a lot of situations were tested and validated. All relevant situations were 

tested exhaustively, in order to validate the error handling, proximity handling and emergency handling. 
We encountered that the multimover behaved the same as in the model in the supervisor. With these 

tests , the conclusion is drawn that the event-based implementation and the model of the supervisor works 

correctly. Subsequently, the supervisor synthesized with the statc-bascd framcwork was implemented in 

the supervisory controller. The multimovcr had the same behaviour as with the evcnt-bascd model. The 

conclusion is drawn that the statc-bascd implemcntation works corrcctly. 

After this , the control software is used on a real vehicle. The same tests were pcrformed as on the test 

set-up. The outcome of these tests wcre the same as on the test set-up, which is shown in Figure 5.9. 

The supervisory controller behaves the same as the model. The conclusion is drawn that the supervisory 

controller and the supervisor modcls are correct. 

In the previous subscctions , two problcms are addrcsscd that can occur when a supervisory controller is 

implementcd, derived from a supervisor model. First of all, the command selcction problem is addressed 

in our implcmentation. Our implemcntation is vcrif1ed for the command selection prohlem hy means of 

simulation. Discrete event simulation is used to check for infinitc scquences of controllablc cvcnts. lf 
an infinitc scquence of controllable cvcnls is found , the requiremcnl models were adapted. Simulation, 
however. can only show the presencc of these infinite scquenccs. but cannot prove the absencc of them. 

This means that the supervisory controller could still contain livclock. A rccommcndation is to check for 
this property mathcmatically with a modcl checkcr, such that thc abscnce of thcsc infinitc scqucnces can 

be proven. 

Secondly, the communication problcm. dcscribed in Scction 5.2.2 did not occur when the tests wcre pcr­

formcd. This can be cxplaincd by the fact that the calculation of a control act ion of the multimover is much 
fastcr than the rcaction speed of the plant. The probability that a control action is computcd based on an 
'old' state of the plant is al most nil. However. theoretically, the communication problcm can still occur and 

remains a topic of fut ure research. 

5.6 Synthesis-based engineering: evaluation 

With the concept of implcmentation dcscribed in this chaptcr, wc have pcrformed all steps of the synthesis­

based engineering framework. In this section. we discuss the modelling convenience and the applicability 

of all relevant steps of synthcsis-bascd engineering, namcly the supervisor synthcsis and supervisor valida­
tion , as wcll as the implementation. 

5.6.1 Modelling convenience 

Plant models can only be <lefincd hy automata. We have expcrienced that this way of mo<lclling componcnls 
is quite intuitive and straight-forward. Furthermore. components and thcir resource controllers can aften be 

rcuscd. As a result , plant mode Is that are made of these components can also be reuscd. which can rcducc 

time in the product development proccss. 

In the beginning of this project. it appeared that spccifying rcquircments by automata may not always be 
intuitive. Since requirements can also be modelled in the state-bascd framcwork by logica! expressions, 

orten this framework is chosen for synthcsizing supervisors for induslrial systems. The cxtension defincd 

in [Jac09] has made the modelling of requirements more convenient, since aften a lot of state-based ex­
pressions of the synthesis tool of Ma-Won ham were needed fora satisfactory supervisory con trol problem 

<ldinition. In this project , bolh a stale-base<l supervisor and an cvcnt-base<l supervisor are synthesize<l us­

ing requirements specified by logica! expressions and automata. Further rescarch needs 10 be done if other 

con trol problems of NBG can also be mode lied intuitively wilh aulomala and logica! expressions. 
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Rcquireme11ts have to be de fi11ed i11 term s of behaviour, i11 stcad o f i11 terms of software code , which is dom; 

i11 traditi o nal engineering. lt appcarcd th at mode lling requircmcn ts with logica! cxprcssions and automata 

is intuiti ve and casy to understand for engi neers that do not have a ffinity with th e control software . This 

can lead to an casicr validation with respect to the origi11al infurmal spcc ificatio11s . 

However. one has to take into account that modc lling sk ill s are needed fo r modelling compo nents by 

auto mata and requirements by automata and log ica! express io ns. Time is needed to develop thosc skills. 

Furthermore , a manual with mode lling guide lines, and mode lling tools th at can be integratcd in the ex istin g 

software development tools, can cnhance the model ling proccss and speed up furthcr acceptation. 

5.6.2 Supervisor synthesis and validation 

To address the op portunities of sy nthes is-based eng ineering , wc compare the software eng ineerin g of NBG 
with and without supervisory co ntrol sy nthes is. In Figurc 5.10, the traditio nal softwa re eng ineering proccss 

and the sy nthes is-bascd software engineering process is depicted. Plcase note that thi s comparison is only 

applicablc for supcrvisory control software. In this fi gurc. informal steps are dcnuted with tand forma! 

ste ps with =- In traditional software engineering (sec Figure 5.1 0a). document s Rare used for specifying 

the requirements of the supervisory con trol software. Then. an informal design Dof the software is made 

and subseq uentl y. th e realization Z is made. 

dcftnc ~~Mz 
-~~ LJ 

+ t 

(a) Trad itio na l software eng ineering 

dl'linc -
= 

(h) Synthes îs-bascLI ~o ftwarc cnginl'L'ri ng 

Figure 5.10: Traditional software engineering and sy nthes is-based software engineering 

Howeve r, what in fac t is done in traditi ona l software engineering is that an eng ineerin g problcm (the docu­
ment with requirements R) is translated informall y into anothcr engineering problcm (the document with a 
software design D). Subsequcntly. the last engineering problcm is solvcd by rea li zing the software design. 
As a consequencc of informall y dcsigning and realizing software. the reali zati on needs to be tcsted aga inst 

the requircments Rand the design D. 

With sy nthesis-bascd engineering (see Figure 5. 1 0b ). th e manu al design of a certain part of the software 

is c liminated. Now. the in fo rm al document of req uirements R is translatcd into a forma! mode l of the 
requirements fl l u. Synthesis-based engineering allows us to ge nerale control software tha t is correct with 

respect to the form a! mode Is of the requircmcnt s. As a consequcnce. the reali za ti on Z does not need to be 

tested against the forma) model of the req uirements Ma. Note that thi s is onl y correct ifthe rea li za ti on Z 
is derived correctl y out of the mode l o f the supervisor. 

Both frameworks are uscd in orde r to sy nthcs ize a supervisor for the case stud y. lt appcarcd that the stat e­

based framework is slightly more conveni ent for synthesizing supe rvi sors, since th e control problem does 
not need to be partitioned in order to avoid the statc-spacc cx plos ion. which can happen whcn supervi sors 

are sy nthes ized in the cvent-based framework. Howcvcr. distributed supervisors o f the evcnt-based frame­

work are likc ly to solve control problems for systems with even larger state spaccs. s ince the state-based 

framework is esscnti ally a centrali zed approach. 

Ncxt, the supervisor synthesis has the advantage that the sy nthes ized supervisors can be simulated imme­

diatel y. As a result. the eng inee r can get feedback immedi ately and the des ign- validate-redes ign loop is 



60 Chapter 5. lmplementation 

shortened. Furthermore, the use of models allows application of model-based techniques, used for thor­

ough systcm analysis and testing, which help to get a better system overview. As a consequence, the use of 

mode Is can possibly rcduce the cost of the production of expensive prototypes. 

Furthermore , synthesis-based engineering offers advantages for products that are evolving over time. In 

genera!, if the requirements of a system change, the forma] requirements are likely to be adapted more 

easily than a part of a software design. Subsequently, a new supervisor can be synthesized immediately, 

without losing the consistency between the requirements and the realization , which is often a challenge 

in traditional engineering. The multimover is an example of such an evolving product, since most theme 
parks have their own specifications of their theme park vehiclc. 

5.6.3 Implementation 

In this project , a prototype implementation is developed that can be used at NBG for many other appli­

cations. lt supports supervisors synthesized with either one of both frameworks. This is done in order to 
give the engineer freedom in choosing which framework is more suitable for the control problem . The 

prototype implementation performs satisfactorily and evaluates changes in the system 's state fast enough. 
As a result. this concept supervisor implementation is suitable for implementation in other systems. 

A difference that is encountered between the implementation of the event-based supervisor and the state­
based supervisor is the memory size needed for the controller. The event-based supervisor needs much 
more memory than the state-based supervisor. This can be explained by the fact that an event-based super­

visor contains the complete closed-loop language of a system. as stated in Section 2.4.3. while a state-based 

supervisor only needs the state of the system in order to calculate a control action. However. the implcmen­
lation of the event-haseJ supervisor makes more use of lookup tables , which results in a significant faster 

evaluation of the supervisors compared to the implementation of the state-based supervisors. 

Synthesis-based engineering is applicable for control problems that coordinate components. The safety 
issue of the multimover is an examplc of such a control problem, since safety is assured by coordination 

of all relevant components. However. the implcmentation takes a nondeterministic choice which control 
action is executed. if more are possible. As a result. the implementation can guarantee that something will 

certainly not happen, but cannot guarantee that something will happen eventually. since the implementation 
can still contain livelock, due toa bad choice of control actions. Therefore, the implementation of optima! 

supervisors in terms of time could be a next step and is suggested as further research. 

Furthermore, this prototype implementation is suitable for model-based integration and testing , introduced 

in [Bra08]. Figure 5.11 shows possible combinations of model-based integration. Figure 5.11 a shows the 

integration of the supervisory controller in the modelling environment. With this set-up, the implementation 
of the supervisor in the con trol software can be tested more thorough ly. This set-up is suitable for evaluating 

the choices that are made by the supervisory controller if more than one control action is possible and 

which sequences of control actions are produced at each state. Furthermore, with this set-up , livelock can 
be encountered in an early stage of the product development process. lf the real plant is integrated in the 

modelling environment (see Figure 5. 1 1 b ). the interactions with the real plant can be simulated with the 
model of the supervisor. Note that this set-up also allows that only apart of the real plant is intcgratcd. 

This scction concludes this chapter about the implementation of supervisors. In this chapter, a concept 

of implementation of a supervisor in the existing control environment of the multimover is described. To 
prove the concept, an implementation of a supervisory controller is made. which is independent of the used 
framework. Pitfalls of this concept of implementation are addressed and the conclusion is drawn that the 

supervisory controller works correctly. In the next chapter. the conclusions and suggestions for further 
research are given. 
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/l i p Supervisor Plant J\I s 

i Contro l dcci sion make r ____ _. 

(a) Supt:rv isory controller integrat ion (b) Plant intcgrat ion 

Figure 5. 11 : Model-based int egrali on and testing 
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Chapter 6 

Conclusions and suggestions f or further 
research 

In the prcvious chaptcrs. a ll steps to integrale supcrvisory cont ro l synthcsis in th e eng inee rin g process of 
NBG are discusscd. ln thi s chaptcr. the conclusions and suggestions for furth er research are prcscntcd. The 
conclusions of the previous chapters are prcsented in Scction 6. 1. This chapt c r cnds with rccommcndations 
fo r furth cr research in Scction 6.2. 

6.1 Conclusions 

The objcc ti ve of thi s project is to test the applieability of supcrvisory control sy nthes is to the product 
dcvclopment process of NBG. To thi s end , a real product of NBG is chosen as a case study. This case 
study is the multimover, an automatcd guided vehicl e that is used in the amusement park business. For thi s 
study, a supervi sor for the mu ltimover is sy nthes ized that assures safety. which inc ludes anti c ipating on 
cmcrgency and e rror signals and an acc urate proximity handlin g. 

Two main frameworks ex ist th at can be uscd in order to sy nthes ize supervisors. namely the cvent-based 
framework of Ramadge and Wonham [Ram87. Won84] and the state-based framework of Ma and Won­
ham [Ma051 . Both framcworks are used to synthes ize a supervisor for the multimover. Furthermore. the 
sy nthesis aspec ts and modelling aspccts of both frameworks have been di sc ussed. 

The sy nthes is of supervisors w ith the event-based framework often suffers from calculatio n complexity. As 
a consequence. the supervisor sy nthesis o f the eve nt -based framework may res ult in a so-ca lled state-spacc 
ex plos ion. Nevertheless. the event-based framework can be used for sy nthes is of distributed or hierarchical 
supervisors. Two distributed supervi sors have been sy nthcs ized fo r the control problcm of the multimover 
with the event-based framew ork , using automaton abstract ion I Su08a]. The state-based framework is more 
e fli c ient w ith respcct to centrali zed supervisor sy nthesis. However. a disadvantage of thc state-bascd fram e­
work mi ght be that onl y cent ra li zed supervisors can be synthes ized with thi s framework . A centralized 
supervisor has been synthesized for the control problem of th e multimover with the state-based framework . 

The state-based framew ork is often prefe rred fo r synthesizing supervisors for industri al systems, since thi s 
framework is more conve ni ent with respect to modelling the req uirements. The statc-based framework 
a ll ows to mode l requirements by log ica! expressions and finite state machines. while for the cvent-based 
framework o nl y finitc state machines can be used . ln this project. an algorithm is developcd th at automati­
cally couverts basic log ica! cxpressions to finitc state machincs . With thi s convcrsion , the uscr can specify 
th e rcquircmcnt s with logica ) cxpressions and finite state machines and synthes ize a supervi sor with the 
event-bascd framew ork . An experiment has been performed w ith the model of the multimover and an 
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evcnt-bascd distributcd supervisor has been synthcsized with requiremcnts spccificd hy logica! expressions 
and finitc state machines. The cvcnt-bascd supervisor synthcsis did nol suffer from calculation complexity. 

The supervisors that have been synthesizcd using both framcworks have been implcmcntcd on a real em­
bedded platform of the multimovcr. To this end, a state tracker, that tracks the state of the multimovcr, and 
a control decision maker which scnds appropriatc actions have been implcmentcd. The prototype implc­
mcntation is developcd in such a way that supervisors, synthcsized with eithcr one of both framcworks, can 

be implemented casily. The drawbacks of this prototype implcmcntation have been addrcssed. While the 
modcls are bascd on the assumptions that communication is synchronous , no problcms were cncountcred 
due to asynchronous communication bctwecn the components of the multimovcr and the supervisor implc­
mcntation. Howcver, the supervisor implcmcntation could still contain blocking behaviour duc toa wrong 
choice of control actions [Mal03]. 

The prototype implcmentation has been validatcd on the real hardware platform and the conclusion is 
drawn that the implemcntation controls the multimover satisfactorily, bascd on implementation tcsting. 
The implcmcntation showcd the same behaviour as the modcls. Additionally, both frameworks are suitablc 
for implemcntation. Finally, a suitable concept of implcmcntation for supcrvisory controllers has been 
proven. With the prototype implcmcntation of the supervisor in the control software, wc have complctcd 
the synthesis-bascd engineering process. Subsequcntly, wc state hclow the most relevant findings about the 
usagc of forma! models and supcrvisory control synthcsis in the product dcvclopmcnt proccss. 

Forma! modcls area kcy clement in the synthcsis-bascd engineering process. These forma! mode Is providc 
a structured and systcmatic approach to spccify component and systcm bchaviour with more consistcncy 
and less ambiguity than documents , because the model semantics precisely defines what a certain modelling 
construct mcans I Bra08]. By working with forma! mode Is in an carly stage of the product dcvelopmcnt 
process , the engineers are forced to clarify all aspects of the systcm in an carly stage of the product dcvcl­
opment process. Clarity contributes toa good design and correct control software. Furthcrmorc. modelling 
the uncontrolled system by finite state machines and modclling the requiremcnts hy finite state machines 
and logica! cxprcssions is intuitivc. However. modelling skills necd to be dcvclopcd to be ablc to model 
control systcms and time is nccdcd to dcvclop thosc ski lis. 

The automatic synthcsis of a supervisor changes the software dcvclopmcnt proccss from dcsigning and 
debugging controller code into designing and debugging requirements. assuming correct plant models. 
Since these rcquircmcnts are model led formally. wc do not nccd to test the model of the supervisor against 
the requircmcnts. since it is mathcmatically correct by construction. Thus , the engineers can focus on 
validating the system. not on vcrifying the software design. Subscquently, the requircments of a systcm 
can change over time. due to customcr dcmands. As a conscquencc, in traditional engineering, all changes 
have to be made in the software design inl'urmally. and this is difficult to do without introducing errors or 
inconsistencics. With supcrvisory control thcory, only plant modcls and requirement modcls have to be 
adaptcd and a new supervisor can be synthesizcd. which is correct by construction. This mcans that the 
system is ei ,ofrab/e, i.e. able to withstand changes. 

In addition , the synthesizcd supervisors can be simulatcd immcdiatcly, which results in a short feedback 
loop in the dcvclopmcnt proccss. Furthcrmore. the usage of modcls allows the application of modcl­
bascd tcchniqucs , such as simulation and forma! vcrification , which can detcct errors in an early stage or 
the systcm dcvclopmcnt process. As a rcsult, the costs to dcvclop cxpcnsive prototypes can possibly be 
reduccd. furthcrrnore , since the desired bchaviour is specificd in modcls instead of in the software code. 
engineers can have a bctter undcrstanding of the con trol software, which can lead to an casier validation of 
the rcsulting control software with respect to the original informal specifications. 

Wc end this section by considcring how the Key Performance Indicators (KPI) of Chaptcr I might be 
affected by synthcsis-bascd engineering. Whilc the functionality is increasing (F f) , we concludc that the 
quality can possibly increase , due to the fact that the software can be mathematically correct with respect to 
the mode Is of the rcquircments (Q î). Additionally, the time-to-market might dccrease, since every change 
in functionality needs only a small change in the models (T J.) . Finally, the product costs can possibly 
be reduced (C j ), since simulation allows the engineers to detect errors in an early stage of the product 
development process , which leads to development of less prototypes. 
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6.2 Suggestions for further research 

In o rder to sy nthcs ize a supe rvisor. models have to he dcfined of the uncontro ll cd sys tem and it s cont rol 

requircme nts. In thi s projec t. the uncontro ll ed system is mode ll cd by fi nit e state machines and the contra! 

rcquircme nt s by log ica! ex prcss ions and finit e state mac hines. S ince wc were ablc to model the supcrvisory 
cont ro l problcm sati sfac to ril y, the co nc lu sio n can be draw n th at the ex isting modc lling environment is 

surfi c ient fur modcllin g the supcrvisory co ntrnl pruble m o r the multimover. However, more case studi es 

necd to be pe rfo rmed to test the applicability of the cx istin g mode lling environment to othe r industri al 
contra! prob lcms. To g ive an example, one can think of spec ify ing cont ra! rcquirements with te mpora! 

logic [Sco07 J. 

A concept o f a supervisory contro ll e r is devcloped th at trac ks the s tate o f a systcm and de te rmincs an 
appropri ate con tro l ac t io n according to the s tatc o r th e sys tc m. Howcvc r. it co uld be th e case th at an inÏlnitc 

sequencc of contra! ac tio ns is chosen o r that a marker state is never rcachcd and as a result , th e systcm is 

blocking. w hi ch is no t de sired. The prope rti cs o f [M al03] prcvcnt a supe rvisory contro ll e r from doing 

thi s. Thc refore. model chec ke rs could be uscd to check fo r these propc rti es. Synthes iz ing supervisors that 

are optima! with respect to time co uld probab ly al so solvc thi s pro blc m , sincc supervisors whi ch cont ain 
li vc lock o r non-rcachablc marke r states are no t time-optima!. T hcrcfore. th e sy nthes is of time-optim a! 
supe rvisors fo r rea l industri a l systcm s is suggcstcd as futu rc research. 

Finall y. the mode ls that are uscd for supe rvisor sy nthes is ass umc that the communicati on bc twce n the 

uncontroll cd system and the superviso r is sy nchronous. Howcvcr. in contras t to the sy nchro no us commu­

nicati on uscd in modcls. real systc ms oft cn usc asy nchronous communicati o n. As a res ult. the supervisor 
imple mcntati on could scnd a control acti on to the uncont ro ll ed sys tcm th at is based on a wrong state of 

the systcm . The pro totype implcmcnt ati on th at is deve loped in thi s project d id no t show th is be hav iour. 
1-Iowever. thi s phcnomcno n co uld still occur. T hcrcfore. a suggcsti on fo r furth cr research is to in vcs ti gate 

how the communicati on problem can be so lved o r avo ided. 
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Appendix A 

Formal models 

In thi s chapt cr. a ll uscd for ma! modcls are prcscntcd th at are uscd for synthcsizing a supervisor for the 
chosen case st uuy, the multimover. In the lirst sec ti on, all useu plant muucls for sy nthesiz ing a supervi sor 
are prcscntcd. 

A.1 Plant models 

In thi s secti on, all plant mode ls are presc ntcd. The alphabc ts of all plant modc ls are disjoint. For clarity. 
all s tate names anti event names are prefixed w ith an abbrcv iati on o f the component name. Fora full li s t of 
uscd eve nt mimes and state names. sec Appendi x A.3 and Appendi x A.4 . 

A. 1.1 Interface buttons 

An interface button is rcprcscnted by a small automaton with two uncontroll ab lc evc nt s: th e eve nt that 
reprcsents the butto n being presscd (press) and the event th at rcprcscnts the button being rc lcased (release). 

The user interface of the multimovcr contains th rcc buttons: a reset. forwa rd and backward button. In 
Figurc A. I, the auto mato n representing the forward butlon is depicted. 

A.1.2 Interface LEDs 

_-:. ... ..o 
FB_Pressed 

Fig urc A. I: Au to maton of the forward button 

The user interface of the multimovcr contains thrcc LEDs. Eac h LED is modell cd by one automaton. The 
automaton representing the forward LED is g ivcn in Figure A.2. Notc that the initi a( states and marker 
states of the LEDs can diffcr. 
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Figurc A.2: Automaton of the forward LED 

A.1.3 Bumper switch 

This auto maton rcprcscnt s the se nsor mo untcd on th e bumper of the multimover that can dctect physical 
contact with an object . The automaton of a bumper switch has the same structure as an automaton of a 

button. Sce Figure A.3 . 

i -~'!~'~'~'-
.-....-_:- ~~-:---0 

IIS Rcleased - - - - - - - - - - - BS Pn·.ss,•d 
- bs_n·lease 

Figurc A.3: Automaton of the bumper switch 

A.1.4 Battery 

This automat on rcprcsc nts th e sensor th at mcasurcs the batt cry leve l of the battery. lf th e battery leve l is 

be low a certain limit. a uncontrollabl c event ba_e111111y is sent. lf the vehiclc is chargcd, ba_ok is sent. The 
automaton rcprcsentin g the battcry is dcpictcd in Figure A.4. 

lu1 _e111pr_,· 

-~-:---0 
/){l _ok 

BA_Empty 

Figure A.4: Automaton of a battcry 

A.1.5 Proximity sensors 

The multimovcr conta ins four proximity se nsors. two at the front and two at the bac k of the multimovcr. On 

each sidc. wc have a long proximity sensor and a short proximity se nsor. lf the multimover is ridin g forward 
and the sho rt proximity se nsor on the forward side is activatcd. the multimovc r should stop immediatcl y. lf 
onl y the long proximity se nsor is ac ti vated. the multimover should drive at a safe speed . lf the proximity 

sensors at the back of the multimovcr are ac tivatcd whilc it is riding in the forward dircction. nothin g 

shoul d happe n. The proximity sensors are modc llcd like ot hcr se nsors on the vchicle. In Figurc A.S. the 

automato n of th e sho rt proximity front se nsor is depicted. 

A.1.6 Ride Control 

In Figure A.6 , the auto maton of Ridc Control is depicted. Ridc Con tro l can send two uncontroll ab lc cvents: 

rc_stop which denotes a 'genera! stop ' command and rc_srart whi ch denotes a 'genera! start' command. 

Thi s is modc ll cd with a sc ltl oop in cach state. sincc thcy can occur in any arbitrary order. 



A. I . Plant model.~ 73 

i ---__ _ <~C~i~l~ _ 

o-....-____ _--..~...o 
l'SF_lnaclh c - - - - - - - - PSF ,\ctiw 

i llllC/Î\ '(' 

Fig ure A .5 : Auto mato n of a prox imity se nsor 

Fig urc A.6: Automaton of Ridc Cont rol 

A.1.7 Drive motor 

This auto maton rcpresc nts the d ri ve moto r of the multimovc r (sec F ig urc A.7). The cont ro ll ablc evc nt s 

d111_e11ahle_jir and d111_e11able_b1r rcprcscnt the dri ve motor bc ing powc rcd on w ith initi a) speed in the 
forward dircc ti on or backward d irec ti on, rcspcc ti vcly. From th e state On. the max imum speed of th e drive 
motor can he dc tc rmincd . This is mode ll cd hy the sclfl oop w ith controll ahl c cvc nt s at state On. lf the 
d ri ve moto r does not bchavc likc dcs ired duc to a hard ware e rror. the un co ntro ll ablc eve nt d111_ermr will 

be dcclarcd. whi ch turns o ff the dri ve moto r immcdi atc ly, si nee the moto r is no t rc li ablc anymorc. From 

state On. it is poss ible to stop the dri ve moto r with the cont ro ll ablc eve nt d111_s1op. The motor is sw itchcd 
o ff whcn th e motor has stopped complct c ly. Thi s is modc ll cd by the uncont ro ll ab lc eve nt d111_di.rnble at 
the state Stopping and brings us bac k to st ate Off. 

1 
1 ' ' 
1 ' 

d,11 _err<,1~', 
' ' 

d111 _e1wble _/ir 
,b11_l' llllbll'_b11 · 

t/111 error 

d1 11 _stop 
d111 _,,11able _/ir 
/111 t' 11able b11 · 

' ' t!111 _t! i.rnble \ 
' ' ' 

DM_Stopping 

d111 _Jir 
tl111_Jirs/mr 
d111J 11 ·.Hop 
d111_b11 · 
dm b\\'s lou· 
t!111=h11 ·.,1op 

Figurc A. 7: Aut omaton of the dri ve moto r 

A.1.8 Steer motor 

The mode l o f the steer mo to r conta in s the moto r and trac k sensor th at controls the s tecring acti o n of the 

multimover. The automato n mode l o f the stee r model is de pic ted in Fig ure A.8 . The o nl y d isc rete mode li ed 
behav iour is switching on (sm_enable) and sw itching off (s111_di.rnble) the steer moto r. lf a hardware error 

occurs , the uncontrollable event sm_error takes place whi ch switches off the steer moto r. Note that thi s 

uncontro ll able eve nt can also occur at state Off, namely when the steer motor is still s lowing down. 
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Figurc A.8 : Auto maton of the stcer motor 

A.1.9 Scene program handler 

The Scene Program Hand Ier (sce Figurc A.9) reads the scene programs providcd by the customer and sends 
ccrt ain commands to the rot ati o n devi ce , drive motor, stccr motor and audi o player. Sincc only startin g 
(sh_enable) and stopping (sh_disab/e) the reading of the scene program is rel evant for our supervisor, only 
th ese cvent s are modcllcd. Bccause a scene program could contain a command that the multimovcr should 
start drivin g in th e oppositc dirccti on, the uncontroll able event sh_chdir is mode lied. lf the scene program 
fil e contains a parsc error, the multimover should stop moving and e nte r the cmcrge ncy mode . lf a parse 
e rror is read, the uncontro llablc eve nt sh_e rrur w ill occur. 

A.1.10 Multimover 

sh_errnr 
sh_chdir 

,, 
' 1 

~~ 
SH _~011 

sh_di.rn /,/e 

Fig ure A.9: A uto maton of the scene progra m hand Ie r 

The automaton depicted in Figurc A. I O consists o f thrce intern al controll ablc cvent s that are used to spccify 
the state of the multimovcr. The desired behavi our of the multimovcr can roughl y be dividcd in threc statcs 
and thi s pl ant model reprcsent s these thrce states : 

• MM_Actii·e In this state , the multimover is acti ve and operati o nal. 

• MM_ Emergenn · The multimovcr ends up in thi s state aftcr an cmerge ncy happencd. lf this state 
is activc . all motors are powercd off and th e multimovcr must be reset to be deployed into the ridc 
aga in. 

• MM_Reset lf thi s state is ac tive. the sys tcm is reset and waiting for bcing dcploycd into th e ridc. 

A.2 Requirement models 

In thi s sec tion , all rcquircment modcl s are presented . For cach module , all log ical cxprcssions and automata 
are ex plained that are used to spec ify the intended behavio ur o f the multimover. 
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IJ/IJl reset 
MM _Emergc ncy -

--+ MM _Rcsel 

11/lll _ (' / l / {'F!5t' I ICY 

Figure A. I 0 : A utomaton of th e multimove r 

A.2.1 LED module 

Logica! expressions 

The Reset LED may onl y be switched off if the status o f the multimover is ac tive or reset. 

1 rl_o/f ) ⇒ (MM_Active J V MM_Reset l) 

T he Reset LED may onl y be swit ched on if the statu s o f the multimovcr is cmerge ncy. 

1 r/_011 ) ⇒ MM _Emergency l 

The Fo rwardL ED may onl y be swi tched on if the statu s of the multimove r is reset. 

, I f/_011 l -;, MM_Reset 1 

T he ForwardL ED may onl y be sw itched off if th e statu s o f th e multimove r is ac ti ve o r emerge ncy. 
----; 1 ff_off ) ⇒ (MM_Active 1 V MM_Emergency 1) 

T he BackwardLED may onl y be switched on if the s tatu s o f th e multimover is reset. 
I b/_0 11 ) ⇒ MM_Reset ~ 

T he Bac kward LE D may onl y be switched o ff if the statu s o f the multimover is ac ti ve o r e merge ncy. 

----; 1 bl_off ) ⇒ (MM_Active J V MM_Emergency j) 

A.2.2 Motor module 

Logica! expressions 

The Scene program handler may onl y be switched off onl y if th e statu s o f the multimover is reset o r 
emerge ncy. 

----; 1 sh_disable ) ⇒ (MM_Reset j V MM_Emergency j ) 

The Drive Moto r may onl y be stopped if the statu s o f the multimove r is reset o r emerge ncy and the Sce ne 
program Handl er is o ff. 
----; 1 dm_srop ) ⇒ ((MM_Reset V MM_Emergency 1) /\ SH_Off 1) 

T he Steer Moto r may onl y be sw itched o ff if the statu s of the multimove r is rese t or emerge ncy and the 
Dri ve Motor is off. 

1 s111_disable ) ⇒ ((MM_Reset 1 V MM_Emergency 1) /\ DM_Off ! ) 

The Steer moto r may onl y be switched o n if the s tatu s o f the multimove r is Acti ve. 

- > 1 s111_enable ) ⇒ MM_Active 1 

T he Drive M oto r may onl y be switched on if the statu s o f th e multimover is Ac ti ve and the Stecr Motor is 

on. 

► 1 d111_e11able_J~v. d111_e11able_bw ) ⇒ (MM_Active 1 /\ SM_On ! ) 
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The Scene Program Handler may only be switched on if the status of the multimover is Active, the Steer 

Motor is on and the Drive Motor is on. 
--> { sh_enable_on l ⇒ (MM_Active l /\ SM_On 1 /\ DM_On 1) 

The Drive Motor may only execute another drive command if the multimover is Active. 
+ { d111_enable_jw, dm_enable_bw, d111_Jiv, dm_Jivslow, dm_Jivstop, d111_bw, d111_bv.-·slow, dm _bwstop l 
⇒ MM_Active 1 

Automaton 

The automaton depicted in Figure A.11 specifies the relationship hetwecn the scene program handlcr and 
the drive motor. lf the scene program handler receives a command to change the direction sh_chdir, the 
active state of the drive motor is changed. 

I 
1 

1 

sh_c/1(/ir: 
1 

I 

I 
I 

' ' 

I 
I 

I 
I 

d111 _Ji,­
d111 _Ji,-s /011 · 
,J,11_Ji, ·s101, 

1' 
I .\;' 

/ t'' 
I ~ / 

/,1,I ~ 

' dm _stop ' 
' ' 

---+- ~- - - - - - - - - - - - - - - -0 
"1 d111 _disable 

d111 b11 · 
dm b-;rs/011· 
d111~ b11 ·s1,,p 

d111 _srop 
I 

I 
I 

\ 
\ 

1 
1 

\ 
1 
1 

: sh_c /1(/ir 
1 

1 
1 

Figure A. I 1: Requirement of the motor module 

A.2.3 Button module 

Logica! expressions 

The multimover may only switch to Active if the forward button or the backward button (not both) is 

pressed and the resetbutton is not pressed. 
--> { 111111_actil'e ) ⇒ (((FB_Pressed 1 /\ BB_Released l) V (BB_Pressed 1 /\ FB_Released J)) /\ -. RB_Pressed j ) 

The multimover may only switch to Reset if the reset button is pressed. 

--> { 111111_reset ) ⇒ RB_Pressed 1 
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Automata 

The automata depicted in Figures A . l 2a and A. l 2b dctermine the occurrcnce o f the eve nt s d111 _e11able_Jiv 

and d111 _enable _bw. Both events are onl y all owed if the corresponding interface button is presscd (}b_JJress 

or bb_pres.1) and the multimove r has bccome ae ti ve (111m_acti l'e). Note th at these rcquirement s is the 
occurencc o f an event undcr conditi on o r a scqucncc o f evcnt s ;1nd is thcrc fore spccili cd by an automaton. 

m111 _ae1ire 
lll lll _ l' lll(>rgcn c_,· 

111111_ rcset 

d111 _e11c1ble _ f., 
111111 _ ,·ese t 

/lllll _ l' /l/ (' rge,1 cy 

.f/J _ / l /'fS.\' 

p,_relec1se 

(a) 

111 111_ e111erg,·11cy 
n1111 _ rese1 

11/ l ll _ (IC ! Î\ ·e 

111/fl _ (I C (it •e 

111m_ e111ergc11 c.,· 
11111/ _ f"l' Sl' I 

d 111_,,11able_b11 
111111_ re set 

l l/ 11 /_ (' 1/ /l' l",J.:l' ll ( '_\ ' 

"1 ) 1 

\ .. ,., ' 
bb_pre.,·s 

hb_ rl' le, ,sr 

Figure A .1 2: Requirement s o f the button module 

A.2.4 Emergency module 

Logica! expressions 

111m_em,•rge11 cy 
11/lll _ ff St'I 

/Jllll _ llCli\'l' 

The multimover may onl y switch to rese t and ac ti ve onl y if the bumper switch is not ac ti vc and the battcry 

is not e mpty. 
_, l 111111_ reset. 111111_acti1 •e l ⇒ (BS_Released J /\ BA_OK l) 

Automata 

The auto maton spcc ili ed in rig urc A. 13 dete rmincs the occurrcnce o f th e eve nt 111111 _e111 erge11 n·. Thi s eve nt 
is onl y allowed afteren ·emergency event ' occurred, e.g. the steer motor sendin g an e rror (.1,11_e rmr). 

the dri ve motor sending an error (dm_error ). the scene program handl er sendin g an e rror (sh_error). th e 
battery becoming empt y (ba_e111p1r) or the bumper switch be ing pressed (bs_JJress). 

A.2.5 Proximity module 

Logica! expressions 

The multimover must stop dri ving in the forward directi on onl y if Ride Co ntrol is in the statu s Stop or the 
short proximity sensor in the fo rward direction is aetive. 
- > l d111_Jws1op l > (RC_Stop J v PSF _Active l) 
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sm error 
d111=errnr 

sm_error sh_errnr 
dm _error ba_empl.\' 
sh_ermr bs_pre.1s 

ba_e111ptv , , i hs_press : 1 

@'~ 

11m1_ reset LJ 
111111 _ e111ergc11l·_,, 
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Figurc A.13: Rcquirement of the cmcrgcncy module 

The multimovcr must stop driving in the backward dircction only if Ridc Control is in the status Stop or 
the short proximity sensor in the backward dircction is activc. 
--> { clm_bwstop } ⇒ (RC_Stop l v PSB_Active l ) 

The multimovcr must continue driving in the forward dircction only if Ridc Control is in the status Start 
and the short proximity sensor in the backward clircction is inactivc. 
--> { dmJwslow. clm_Jw } ⇒ (RC_Start l /\ PSF _Inactive l) 

The multimovcr must continue clriving in the backwarcl clircction only if Riete Control is in the status Start 
and the short proximity sensor in the backwarcl clircction is inactivc. 
--> { d111_b1rslo\\,; dm_bl\' } ⇒ (RC_Start l /\ PSB_ Inactive l) 

The multimovcr must slow down in the forward clircction only ifthe Front Long Proximity Sensor is activc. 
-> ( dm_Jivslmv } ⇒ PLF _Active J 

The multimovcr must drive at rcgular speed in the forward clirection only if the Front Long Proximity 
Sensor is inactivc. 

► ( dm_j~,· } ⇒ PLF _Inactive l 

The multimover must slow down in the backwarcl clircction only if the Backwarcl Long Proximity Sensor 
is activc. 
_, ( d111_b1\'slrm } ⇒ PLB_Active l 

The multimover must drive at regular speed in the backward direct ion only if the Backward long Proximity 
Sensor is inactivc. 
-> { c/111_/Jw } ⇒ PLB_Inactive -1-

Automata 

The proximity muuuk contains unc rcquircmcnt spccifieu by an autumalun. Sincc this aulomalun is luo 
large to dcpict here , only a description is given. This requiremcnt spccifics the occurrence of the cvents 
c/111_{11 ·. clm_jinlml'. c/111_ji-\'stop. clm_bw. clm_bwslml'. clm_bwstop and clm_stop. Each of these cvcnts are 
not allowed to take place twice without the occurrence oï another event in between. 
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A.3 Event list 

A li st of a ll used events is given in Table A.2. In thi s table. th e contro ll ability of eac h event is stated 
(Uncontroll ablc / Controll able) , toge ther with a short desc ript io n of the represent ati on o f each event. 

Eve nt U/C 

111111_acti1 •e C 
111111_reset C 
111111_e111erge11cv C 
bb_yress U 
bb_release U 
.fb _JJre ss U 
.fh _release U 
rb_JJress U 
rb_release U 
bl_on C 
bl_o./J C 
j/_on C 
Jf_off C 
r/_011 C 
rl_o/f C 
d111_enable_Ji r C 
clm_enable_bw C 
c/111_Ji1· C 
c/111J u·slow C 
d111_Jwstop C 
d111_b1r C 

d111_b1rs/01r C 

d111_b 1rstop C 

dm_stop C 
dm_disahle U 
dm_error U 
. 1ï11_e11able C 
sm_disable C 
. 1ï11_error U 
sh_enable C 
sh_cli.rnble C 
sl,_error U 
sh_chc/ir U 
rc_start U 
rc_stop U 
bs_JJress U 
bs_re/ease U 
p.1f_actil ·e U 
psf_inactii ·e U 
plf_ac tii•e U 
plf_inactil'e U 

Table A. I: Li st o r event s. 

Desc ript ion 

T he multimove r switches to state MM Active. 
The multimover switches to state MM_ Reset . 
T he multimover switches to state MM_Emergency. 
T he backward button is being pressed . 
T he bac kward button is being re leased . 
The fo rwa rd button is being pressed . 
The fo rward button is being re leased . 
T he reset button is being pressed . 
The reset button is being released. 
T he bac kward LED is being switc hed on. 
The backward LED is being sw itched off. 
The fo rward LED is being sw itched on. 
The fo rward LED is being switched o ff. 
T he reset LED is be ing swit ched on. 
The reset LE D is being switched off. 
T he dri ve motor is being switched o n in the fo rward directio n. 
The dri ve motor is being swit ched o n in the backward directi on. 
The max imum speed of the dri ve motor in the forward direct ion is se t to 0.5 ·111 /s. 
The max imum speed of the dri ve motor in the forward directi on is set to 0. 2 ·111 /.s . 
The max imum speed of the dri ve motor in the forward direct ion is set to 0 .0 ,n / .s. 
T he max imum speed o f the dri ve motor lil th e backward d irec ti on 1s se t to 

0.5 111 / s . 
The max imum speed of the dri ve motor in th e bac kward direc ti on 1s set to 
0.2111 /.s. 
T he ma ximum speed of the drive motor lil the backward directi on 1s set to 
0 .0 111 / s. 
The dri ve motor is dece le rating to a speed of 0.0 111 / ii. 

T he drive motor has no speed and is being switched off. 
The dri ve motor is broken and is be ing swit ched o ff. 
The stee r motor is be ing switched on . 
The stee r motor is be ing switched off. 
T he stee r motor is broken and is be ing swit ched off . 
The scene program handler is being started with readin g the scene program . 
The scene program handler is being stopped with reading the scene program. 
The scene program handler has fo und a parse error. 
T he scene program handler has rece ived the command to change directio n. 
The command ·start ' of Ride Con trol is rece ived. 
T he command 'stop ' of Ride Control is rece ived. 
The bumper swit ch has become ac ti ve . 
T he bumper swit ch has become inac ti ve. 
The short proximit y sensor on the forward s ide has become acti ve. 
The short proximity sensor on the fo rward s ide has become inacti ve. 
The long proximity sensor on the fo rward side has become ae ti ve . 
The long proximity sensor on the forward s ide has become inac tive. 
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Eve nt U/C 

psb_actil'e u 
psb_inactil'e u 
plb_actil'e u 
/J/b_inacti1 ·e u 
ba _e111pty u 
/Ja ok u -

A.4 State list 

State 

MM_Active 
MM _Rcsct 
MM_Emcrgency 
BB_Prcsscd 
BB_Rclcascd 
FB_Prcsscd 
FB_ Relcascd 
RB_Prcsscd 
RB_Rclcased 
BL_On 
BL_Off 
FL_On 
FL_Off 
RL_On 
RL_Off 
DM_Off 
DM_On 
DM_Stopping 
SM_On 
SM_Off 
SH_On 

SH_Off 
RC_Start 
RC_Stop 
BS_Pressed 
BS_Rclcascd 
PSF _Activc 
PSF_Inactivc 
PLF _Activc 
PLF _ lnactive 
PSB_Activc 
PSB_Inactive 
PLB_Active 

Initi a! 

✓ 

✓ 

/ 

✓ 

✓ 

/ 
/ 

✓ 

/ 

/ 

✓ 

✓ 

✓ 

✓ 

/ 

Appendix A. Forma/ modcls 

Tablc A. l: List of cvents ( cn111i11ued) . 

Descri ption 

The short proximity sensor on the backward side has become active. 
The short proximity sensor on the backward s ide has become inactive. 
The long proximity sensor on th e backward side has become active . 
The long proximity sensor on th e backward side has become inactive. 
The battery leve l has become too low. 
The battery kvd has become surfi c ient. 

Marked 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

✓ 

Tab le A.2: List of states . 

Descript io n 

The multimover is in state ·Acti ve · . 
The multimove r is in state ' Reset'. 
The multimover is in state ' Emerge ncy '. 
The backward button is pressed. 
The back ward button is relcased . 
The forward button is pressed. 
The forward button is released. 
The reset button is pressed. 
The reset button is rel eased. 
The backward LED is sw itched on. 
The backward LED is swi tched off. 
T he forward LED is switched on. 
The forward LED is switched off. 
T he reset LED is switched on. 
The reset LED is switched o ff. 
The drive motor is switched on in th e forward direction. 
The drive motor is switched on in th e backward direction. 
The drive motor is decelcrating to a speed of 0.0 n1 / s . 

T he steer motor is switched on. 
The stee r motor is switched off. 
The scene program handl er is switched on and read ing the scene pro­
gram. 
The scene program handl er is switched off. 
The last received command of Ride Con trol is 'start'. 
The last received command of Ride Control is 's top'. 
The bumper switch is pressed . 
The bumper switch is re leased. 
The short proximity sensor on the forward side is active . 
The short proximity sensor on the forward side is inactive. 
The long proximity sensor on the forward side is ac tive. 
The long proximity sensor on the forwa rd side is inact ive. 
The short proximity sensor on the backward side is act ive. 
The short proximity sensor on the backward side is inacti ve. 
The long proximity senso r on the bac kward side is act ive. 
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A.4. State list 

State 

PLB lnactive 
BA_Empty 
BA_OK 

81 

Table A.2: Li st o f states ( rn11 1i1111ed). 

Initia! Marked Description 

✓ ✓ The long proximity sensor on the backward side is inacti ve . 
The battery level is too low. 

✓ ✓ The battery level is suffi cient. 
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Appendix B 

Logic expression converter 

In thi s chapter. the so urce code is li sted th at converts the type I and type 2 express ions of the sy nthes is too l 

o f Ma-Wonh am to auto mata. whi ch is used in Chapte r 4. T he source code uses fun ctio ns of the S upervisor 
Synthes is Pac kage 1• 

B.1 Source code 

The source code co nsists o f four fi les, which eont a in a c lass struc turc (data. py). an express ion parser 

(parse r.py). th e fro ntend fun c ti ons (frontend.py) and othe r fun cti ons (func. py). 

B.1.1 data.py 

Spec ifi cati on 8.1 : Pyth on sc ript o f used data s tructurc 

class Type :Requ1rement (objec t ): 

def _1niL_( se lf , sLale_seL ) : 

se!: . s t a t e _ se t sta t e se t 

15 def _!3t1_ (s elf ) : 
S LdL 0 _S e t_t e xL = " l " + " , ". J O ln ( se lf . s t a t c_SC' l ) -t " ) " 

retu rn ••~ype : : '' · s t a t e_se t_t e xt 

class ~ ype 2Requ i rement (ob ~e c t) : 

def _ i r. i t_( sel: , s t a t e _ se t , eve nt) : 
self . s t a t e_se t = s t a t e _ se t 
se l f . e v e n t = eve nL 

1Dow nl oauahlc al htt p : // dev . s e . wto . t ue . nl/pr o j ec ts /c hi - t oo ling / d o wnl oads 
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de f _ s t r_( self ) : 
s t a t e se t_t e x t 
return " Type2 : 

" { " + ", ". join (s elf . s t a t e _ s et ) + " ) " 

+ s t a t e set t e xL + '', '' + se l f . e v e nt 

B.1.2 parser.py 

Spccincation 13.2: Python script of parser 

from au t_e x pr import da t a 

i mport ply . Je x as le x 
i mport p l y . yac c as ya c c 

1(1 t o k en s = ( 
' LP /\R l•:N ', 

' RP/\Ri''. :J ', 
' LCUr!'.,Y ', 

' RCURL Y ', 

1~ ' COMMA ' , 

' ID ', 

~ (I t LPAR !-:. N 

t RP/\RF.N 

t LC URI.Y 
t ~:_:;_;~;,y 

l ' \ f ' 

l ' \ ) ' 

' ' \ 1 ' 
t ' \ / ' 

t_CO'.'-:!v'.A l ' , ' 

'< t ID t ' la z/\ Z_ ) [a-z A Z_ 0 -9 ] • ' 

d e f t _ r. e ,.._1 ~1ne { tl : 
r , \ r. .. , 

t . le >: er . li r. e r. o t l e n (t . v a l ue ) 

' \ t ' 

def t _E:r1c1( t) 

ra i s e \'a_:L.eSrro::::-( " : '.ega: cr.aracte: ' %s '" 

m def p _ s p ecl (p l : 
' s pe c S t a te Se t ' 
p[O] "' da t a . TypelRe q u~reme n t (p1i 1 J 

de f :J_spec/ {p) 
' spec LPARE N S t a t e Se t COMMA :o RP AR!·: N' 
p [ O] ~ d a t a . Type 2 Re q u ireme nt (p [2[ , pi 4] 1 

à e f p_S t a t -2Se r _ : (p ) : 

' StateSe t ~C~ ?~Y Sta t es RrURLY ' 
plO '. = se t (p'./J l 

def p_S t a t E-s_·. (p i : 
' S t ates :;J ' 

p : 0] ' p :: 

d e f p_St a t es_2 (p ) 
' S t a t es S tat es COMMA lD ' 
p [OJ = p L; ~ ; p ;J j 

hU 

def p_ e r rn r I p 1 
rai se Val ueErrot { " S yn t a x er rot 1n 1 n r-iu t ! " ) 

def p a r se (dat a ) 
J c x e r - l e x . l e x( ) 

t . va2ue O ) 



B. l. Sollrce code 

l ex e ! . inpu t (d a ta) 

10 ya cc . ya cc (debugc:c~) 

p =y acc . p a tse(da t a ) 

re t urn p 

B.1.3 frontend.py 

'" 

.::o 

Specifi<.:ation H.3: Pyth on script or useJ frontenJ runctions 
fr om aut_e xp r import µ ars e1 , dat a , !:·Jr. c 

def make_type l _spe ci fi ca ti o n (aut_fname s , logi ca l_s pec , req_:.:name) : 

au t 1.:.s t :!.oa d_autorr.a t a (col ~, aut_~ na rres , Fa_se , False l 

t ype ~s pec = pa1se1 . par se ( log1caJ_spec) 
if not is.:. nst a n ce( type1spec , 7at a . T ype1Requ :1err.e nt) : 

raise \'a1ueEr1or ( " F.rro r w 1th pars:n() " ) 

aut_lis t , st a te t u p l e fu nc sor t _a.u t cma ta (au t_lis t , type~sp ec . s t a te_se t) 

re su l t , s tate_rr.ap func . ma k e_procluct_w i th_mappi n <J (aut_l ist l 

~ .legaJ_sta t e ~ s t a te_~ap:state_t u p Je] 
1u re su: t . 1 e move_s t ate ( i_ Jeg a l _ s tat e ) 

(,1) 

sav e_aut omat o n(re s ult , '' Re quireme nt save d i n \ s '1 , 1eq_f na me ) 

col! co-l e c t 1on . Co1 lec ti o n() 

a u t .i..:s t J..oa. d_ autorr.ata (co_~ , aut_fr,ames , :-'a~s e , ~~a, se ) 

ty ~e2spec = ~a tser . ~ar se (: 00 : c a~_spec l 
if n o t 1s1 n s t a n ce (type ~s pec , data . Type 2R e qu11ementl 

raise VaJueEno 1 ( " !·:i ro r wi th parsing " ) 

au t _lis t , state_t uple func . sor t _aut omata (a u t_Jjst , t yp e 2s pec . s tate s e t) 

re su. t , s ta te_map : u n c . make_pr oduc t_w i t h_m app1 r.g ( a 1... t _ _ 1 st) 
st a te s tat e_ma p [s tate_tup l e ] 

aut = Joa d_a u tomat on (col! , aut_fname , Fa: se , F'a ]s e ) 
<,~ eve nt - fun c . sear c h_eve nl (aul , t ype2spec . eve n t ) 
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i llega L_edg es~ 11 

if eve nt in res til t . alphabet : 
eclges list ( s t ate . ge t _ou t g o1 n g ( e vent )) 

if l e n (e d ges 1 > 0 : 
f or edge in edges : 

r.esu l t . re mo ve_edge (e dge . p r e d , e dg e . s uc c , e d ge . l abel ) 
else : 

ra ise Val ueErr o r( '' Event %r. n o t ou t 3oi ng edge of s ta t eset '' % event ) 

el se : 
resul t . a dd_event_se t( se t ( [ e vent ] ) ) 
is_standard i ze d = resul t . is_s t a ndardized () 
for s i n r esul t . ge t_s t a tes (} : 

if s is no t s tate : 
if not (1s st a nda r d1 ze d a nd s i s resul t . i n i t ia l ) 

resu~ t . add_edge_dat a ( s , s , ev e n t) 

sa v e_n u tomaLo n( r e s ul L , " Rc q u ir o mc nl saved i n °0s 11 , r c q_ fn aine ) 

8.1.4 func.py 

Il ) 

Spccification R.-.J.: Python script of used runctions 

f r om a..1 t c :---a t a i mport E)roduc t , c c ~~ c n 

def so r t _au t crna t a (au t_l is t , s t a te n a me 11s t) 

ch ecke1 names se t ( '~ ) 
sor t ed aut 11st ~ [ · 
s t a t e_ t ·d p le "" 1 l 

fo r s t a te n a me in s t a. te n a me J i s t : 
for a~t in au t ~is t : 

f o r aüt_state , a -...: t_ s t a t e _r. ame in al.i t . s r a te r,ames . : ter 1ter.i. s (l : 
if d ll t s t a te n a me sta t e n a1ne : 

if sta te_n ame in cnec ked_names : 
raise Value:·.r r o 1 ( " Aut omat a co nt ai r, sa me s t a t e " \ 

'' n ame %r '' % aut_s t a t e_name ) 
c~e c ke d_ na~e s . a dd{ au t_st a t e_n a~e ) 
so rt e d_aut_ l ist . a ppe nd (a u t ) 
s tat e _t u?le . a?pend( au t . get_s t a t e (aut_s t a te ) l 

s ta t e_tup Je = t u p l e (s t a t e_tup l e ) 

if not len(aut li s t) -= ~e n(sorted aut 11s t) 
raise Va lueError ( " No t al l au tom a t a nee decl ! " ) 

i f aut not in sor ted_au t _ l1 s t : 
-1'- r ai se Va lueError( "Multiple s tate s bel o ng t o o n e au t oma t en " ) 

return sorled_ a 11 L_l i st , s l ate_Lu ple 



B. l . Source code 

def mak e _p ro d uc t _ wi t h_mappi n g (a u t_l i st ): 

N1 complete_s t ate_map = {} 

if l en( au t 11s t) = 1 : 
re sul t = au t _ l 1s t [ 0 ) 
f or 1 in res ul t s t a t e n a me s : 

comple te_s t a t e_m a p [ 1 re su 1 t . get_s t a t e 11 1 , 1 ) 
return r es'...l! t , COr" !).e t e_s t a te_'.Y'[d!=) 

corr.mo n . µr:.r. t_:i r;e { " ~ust do %d !)rod •ic t 
resul t = au t _lis t [O ) 

r esul t . get_ s t a t e (1 ) 

(2.en(a u t_:ist ) - 1. )) 

7o for 1d x , au t in e nu rnera t e ( at: t_ l is t [ ~ : 1 ) : 

!-, 1) 

"" 

]00 

oldr e s ul t = resu lt 
result , s t a t e_map = pr o c!;_i c t . !)t Odu c t_map(resu .J. t , aut ) 
msr:i = " Pi::-odu c t # 0od d o r.e : %d sta te s , %d t ra r.si t i o n s " \ 

9o (1d>: T 1 , resu l t . g et_ n um_s t a te s{ ), r e sul t . Jet _r: uT._ e:rlges { ) ) 

CC!'"r!"'Or !)! : r.t_ . .:.ne (;!' Sj ) 

if 1dx == 0 : 

cc~!J~e te ~t a te_!""a!) sta t e_!""d!J 
else : 

o: ~1_rrap corr.:J: -te_s t a te !"".a!J 
r e ve1 s e oJ d~nap p1od uc t . 1eve rse_s t a t emap (comp l e t e _ s t a te_ ma p ) 
1f' ·. e1se re ... _ rra;, ~:>red ;e t . ie,·e-rse_st a terrap(sta re_rrnp ) 
ccrr p .e te_s t a te_ma ~ 1 } 

f o r k , (c , o ) in tt:'\' €-'rse_r.e ·,,_rrap . .:.te~1terr. s ( ): 
ccmple t e_sta te_~ap 'revQrse_ oJ d_rrap[ cl- ( b , ) 1 k 

return res·J1 t , corr,p1 e t e_s t a te _ ma p 

de f search_even t (au t , e ve r.tr.arr.e) : 

for ev en t i n au t . al phabe t : 
if eve ~t narr- - e~~r. tr.a ~ F : 

return eve r.t 

ra ise \ ·a 1ue E r:--or ( " Fve nL %r n ol. f o un d i n a uL omaL o n " % evenLnarrie ) 
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Appendix C 

Supervisor synthesis 

In thi s chapter, th e sc ri pt fi le of Speci fication C. I is li sted th at is used for conve rting the state-based ex­
prcssions of the multi mover to automata. Furthermorc. a ll superv isors of the even t-bascd fra mework are 

sy nthesized in th is sc ript. The sc ri pt th at is used fo r sy nthes iz ing a supe rvisor wi th the s tate-based frame­

work is li sted in Spcc ifi ca ti o ns C.2 and C.3. 

C.1 Event-based supervisor synthesis 

Spec ifi cati on C. I: Ha tch file o f evcnt- baseu supervisor sy nth cs is 

fr o m a'.J t cma t a import :" tc ~t end 

fr o nt e nd . ma ke_ge t_s 1 ze ( ' MM . c f g ' ) 
f1 o nt e- nd ma k e_?e t s1 ze{ ' ! 'B . c f g ' ) 

1c1 : ~o r.t e r. i . IT'.a k e _ ]O::: t_s:ze ( ' ~D . ~ :- ? ' ) 
ftontend . ma ke_ge t_s ize( ' RB . c:g ' ) 
teo ct e cd . ~a ke_ge t _ s: ze ( ' ~Sf . c ~g • 1 
f1 o nt e n d . ma ke_g e t _ s1 ze (' PLF . c f g ' ) 
t 1c ct e nd . ~a ke_Je t _ s: ze 1· •s~ . c ~g • 1 

1, f1 o nt e nd . ma ke_ge t _ s 1ze ( ' Pi ,B . c f g ' ) 
: 1 ,-1 r. t - r. : l . :"'.n ke_ ':E- t _ s: ~e ( ' GS . ,... r g ' l 
t ?o nt e nd . ma ke_Je t_s1 z e ( ' bA . c:"g ' ) 
f1 o nt e nd . ma ke_0e t _ si ze( ' RC . cfg ' ) 
:- 1 o r.t e r.d . rr.a ke_ge t_s: ::e ( ' ~-: . . ,.. : g ' ) 

~ 11 f? o ntend . ma ke_get_si ze ( ' BL . c !'"g ' ) 
: ro r.t e r:d . rr,a k e _ ]e t_s::_ :e ( ' ? :. , ,... :- g ' ) 

f1 o nt e nd . ma k e_ge t _ s1 ze( ' DM . c f g ' ) 
: r o r.t e r.d . rra ke_ Je t_s :ze ( ' SX . c:°g ' ) 
fr o nt e nd . ma k e _ge t _ s 1ze ( ' SH . c rg ' ) 

ftc ~t e nd . ma ke_~et_size ( ' RE _MX . cfg ' ) 
:: rc r.t e r:. d . rr.a ke_ Jet_s: ze ( ' ?..::. _s:.-:: . c : g ' ) 
:ront e nd . ma ke_•Je t_s~ ze ( ' REQ_ BM? c f g ' ) 

\o :- 1 o r.t ~ r.d . !T'a k e_Je t_s: z e ( ' :-- :=:.ç_=--.:v: . c : g • ) 
f 1o nt e nd . ma ke _ge t _size (' REQ_ PM . c f g ' 1 

f ro nt end . ma ke_t ype 2_spe c i f i ca t io n ( ' MM . c f g ' , ' RL . c f g ' , ' ( { MM_ Eme rgen c y f , 1 l _ o f f) ' , ' Spe c LM l . c f g ' l 
f r o nt end . ma k e _ t ype 2_spe c i: 1 ca t 1 o n ( ' MM . c t g ' , ' RL . c f g ' , ' ( { MM_Re s e t } , t l _ ::rn ) ' , ' Spe c L~ 2 . c f g ' l 

-rn fron t e nd . ma k e _ type 2_spe c ifi c a t i o n ( ' MM . c fg ', ' R L . cfg ',' ( {MM_ Act j v e) , r ... _o n)' , ' SpecLM3 . c f g ' l 
:: o r.t en d . :r.a ke_t ype2 _spe~.:.:: ra t : o n ( ' :V:~v'. . c :- '} ' , ' r:.. . c :'; ', ' ( • 'V: '.-"._!':!'1e~g e r.cy • , f - _ o r l ', ' Sp ec:., :.-:-1 . c f g ' l 
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fron t e n d . ma k e_t ype2 _ spectfica t io n( ' MM . cfg ',' fL . c f g ', ( {~M_Ac t ~ve) , fl _ o n ) ' ,' Sp ecLMS . cfg ' ) 
f r o nt e ncl . ma ke_t y pe2_spec i fica t io n (' MM . c f g ',' F L . cfg ',' 1 ( MM_Rese t) , fl _off )',' Sp ec LM 6 . cfg ' 1 
fron t end . ma ke_t ype2_specificat1on ( ' ~M . c fg ',' i3L . cfg ' , ' ( {M:--1_ Emerge n cy) , bl_o r_) ', ' SpecLM7 . cfg ' ) 

fro n t e nd . ma k e _ t y pe2_spe c i f ic a t ion ('MM. c fg ' , ' BI. . c fg ' ,' 1 ( MM_ /\ c tó v e ) , bl _o n )',' Spe el.MB . cfg ' 1 
:"ror. t er.d . ~a k e _t ype2_specification( ' M~ . cfg ',' BL . cfg ',' 11 M!'-l_Reset) , bl _ off ) ', ' SpecLM9 . cfg ' 1 

frontend . ma k e_product ( ' SpecLMl . cfg , SpecLM2 . cfg , SpecLM3 . cfg , SpecLM 4 . cfg , SpecLMS . cfg , 
Sp ec LM 6 . cfg , SpecLM7 . c f g , Sp ecLMS . cfg , SpecLM9 . cfg ', ' Sp ecLM . cfg ') 

fron t end . ma k e_dot ( ' SpecLM . c~g ', ' SpecLM . dot ' ) 

f ronte n d . ma k e_t ype2_s pecJ f ica t 1O n ( ' V.M . c f g ', ' SI-! . cf g ' , ' ( { M>1_/\c t 1 ve} , sh_d 1sab.l e l ',' SpecMtv:l . c f g ' 

f rontend . ma k e_t ype2_spe c i f icat ion ( ' l'-'..M . c fg ' , ' JM . cf g ', ' ( { MM_ Ac t i ve} , dm_s t o p) ' , ' SpecMM 2 . c f g ' l 
fro n t e nd . ma k e_t y pe 2_spec i f ica t i o n (' SH . c f g ' , ' DM . c f g ' , ' ( { SH_O n } , d m_s t o p } ' , ' SpecMM3 . c f g ' ) 
f rontend . ma k e_t ype2_speci :" :.cat ion ( ' Yi:'-1 . cfg ', ' SM . c fg ', ' ( ( ~X_Act i ve) , sm_d i sable ) ', ' SpecMt'-".. 4 . cfg ' 

f r or. t end ma k e_t ype2_spec i f ica t :.on ( ' DM . c f g ' , ' SM . c f g ' , ' ( \ DM_On) , srn_ dj sabl e ) ' , ' Spe cViM S . c f g ' ) 
f ro nt e n d . ma k e_t ype2_spec1 f ica t ion ( ' ;JM . cf g ', ' SM . cf g ' , ' ( 1 DM_S t oppi n g} , s m_disab .l e )' , ' SpeclViM6 . 

c:3 ' 1 
f ronte n d . ma k e_t ype2_spec i f icat io n ( ' M:--1 . c f g ', ' SM . cf g ' , ' ( { MYJ._Emerge n cy) , sm_e r,able ) ' , ' SpecMtvi7 . 

cfg ' 1 
f r o r.tend . ma k e_t ype2_spec i f icat 10n ( ' YiM . cfg ' , ' SM . c :g ', ' ( { M:vi_Reset) , sm_enab l e ) ', ' Spect".MB . cf g ' ) 

<io f ront e r.rl . ma k e_t ype2_spec i f ica t i on ( ' MM . cfg ' , ' DM . c ::"(] ', ' ( { IV:M_ l<merge n c y) , d m_e n ab 1 e_ f w) ' , ' SpecYJM9 

. c!:g ' l 
f ro nt e nd . ma k e_t y pe2_spec i f i ca t i o n ( ' MM . c f g ', ' DM . c f 0 ',' ( { MM_F:rnerge n c y} , d m_e n ab le_bw)' , ' +-> 

SpecMM:O . cfg ' ) 
fro nt e nd . ma k e_t ype2_sp e c 1 f 1.ca t ion ( ' MM . c f g ' , ' DM . c f CJ ' , ' ( { MM_~ese t ) , d m_e n ab l e_f w ) ' , ' Sp ecMM l 1 . 

cfg ' ) 
f rontend . ma k e_t ype2_spec : f ica t 1 o n ( ' f'-'.::"'. . c f g ', ' DM . cf g ' , ' ( ( ;v1YJ_Reset) , drr _e r.able_bw ) ', ' SpecMM 1 2 . 

cf ') ' 1 
r ro r.tend . make_ t ype2_spec 1 f 1cat :..o n ( ' S:'1 . c :"q ' , ' DM . c:"g ' , ' ( { s:-1i_or f ) , dm_enabl e_:°w ) ' , ' Specl'.t:M! 3 . cfg ' 

<,~ :=- r c r:. ter: rl . ::_a ke_t Y!Je 2_s pee: : _:_ ca t.: c r: ( ' s:.-: . c : g ' , ' ::i:v, . cf.? ' , ' ( , .s:.-:_c: f 1 , clm_E- nab. e_b•.1.' l ' , ' .Spe c:v::,:: 4 . c: g ' 

:: rcr: te r. d . rr.a k e_t Y!Je2_s :?e c: : ::_ ca t ::_ o r. ( ' :-'::"". . c :. g ' , ' SI·! . c: ·J ' , ' ( f !V:'.v'._:'~r-e r :_:ie n c y ) , s h_er. a b _:_ e ) ' , ' S!,e c~:,: 2 5 . 
c:g ' 1 

f rontencl . ma k =-_t :,1:,e2_ spe ,::j :'" icat .:.en ( ' MX . c f g ', ' SH . c:"rJ ' , ' ( l M:V:_Reset / , sh_e n able ) ' , ' Spectv:M: 6 . c :g ' ) 
: :::- o n tend . ma ke_t ype2_spe::: .: : :...ca t 1 on { ' SM . c :g ' , ' SH . c: g ' , ' ( { srv:_o f f } , sh_enab~ e ) ' , ' SpecMM 1 7 . c f (J ' ) 

f r o r. t end . ma k e_t ype2_s pec i f ica t _:_on ( ' DM . c f g ' , ' SH . cf g ' , ' ( ( D!vl_Of : ) , sh_enabl e ) ' , ' Sp ecMM 1 8 . c: CJ ' ) 
7LI : r o nt end . ma k e_t ype2_spec: : :ca t: on ( ' J:V: . c : g ' , ' SH . c: g ' , ' ( { ::rv:_St o :,p: ng ·. , sh_enab 1 e ) ' , ' Spe cMM 1 9 . 

cfg ' 1 
: ror:ter.·i . rr.a k e_t ype2_spec.:: .:.cat :.on ( ' :v::v: . c :"'j ' , ' '.)f". . c :"J ', ' ( 1 :V::V:_Sme1 gency) , drr._:" w) ', ' Spec>t.!'v'.2 0 . c : g ' ) 
f r o nt e n cl . ma k e _ t y p e2_spec i f ica t ion ( ' MM . c f g ' , ' DM . c fg ' , ' ( { MM_Emerge n cy ) , dm_ f ws low ) ',' SpecMM 21 . 

C :" '] , ) 

f ron t e nd . ma k e_t ype2_s pec i f ica t ion ( ' MM . cf g ' , ' DM . cfg ',' ( f MM_Emerge n cy / , dm_:ws t o p) ', ' SpecMM22 . 
cf g ' ) 

f ron t end . ma k e_t ype2_s pec J f ica t Jon ( ' 1-'iM . c: g ' , ' DM . c f g ' , ' ( { t"'..M_Em e rge n cy / , dm_b w) ' , ' SpecMM2 3 . c f g 1 
) 

75 fron t end . ma k e_t ype2_specifica t ion( ' MM . cfg ', ' DM . c:'"g ',' ( !MM_Emerge n cyl , d m_b wslow) ', ' SpecMM2 4 . 
C :' J , ) 

fro r:t en d . ma k e_ t ype2_specj f ica t ion ( ' MM . c f g ', ' DM . cf g ' , ' ( ( MM_Eme rge n c y } , dm_ b ws t o p )' , ' SpecMtv:25 . 

c:g ' 1 
f r on te n d . ma k e_t y pe 2_s pe c i f i ca t io n ( ' YlM . c f g ' , ' DM . c f g ' , ' ( ( MM_Re s e t ) , dm_f w) ' , ' Sp e c MM2 6 . c f g ' ) 
f r on tend . make_ t ype2_spec i f ic a t ion ( ' MM . c :'g ' , ' DM . c:".g ' , ' ( { M:'-1_~eset) , d:n_ f ws low) ', ' SpecMM27 . c fg ' ) 
f r on t e n d . ma k e_t ype2_s pe c i f i ca t io n (' MM . c f g ', ' DM . c f g ' , ' ( ( MM_Re s e t } , d m_fws t op l ', ' Sp ecMM28 . c fg ' ) 

bo f :-onter.d . rr.ake_t ype 2_spe c 1 f icat ion ( ' !"'.!'-': . c:"g ' , ' :):-1 . c :" :J ' , ' ( { :v::.-:_qeset) , dm_ b w) ', ' SpecMl'-':2 9 . c f g ' ) 
fron t e n d . ma k e _ t ype2_sp e cificat1on ( ' YJM . cfg ' ,' DM . cfg ',' ( {MM_Reset) , dm_ bw slow) ', ' SpecMM ] O. cf g ' ) 
:'ron t en d . ma k e _ t ype2_speci f ica t ion ( ' MM . cf g ', ' DM . cf g ',' ( \ YJ.M_Rese t } , dm_bws t o p ) ' , ' SpecMM31 . cf g ' ) 
f r o ntend . ma ke_t ype2_spe c i f 1 ca t ion ( ' Si"i . c: g ' , ' MM . c f g ' , ' ( { s:-1i_on) , mrr._ act 1 ve) ' , ' SpecMM32 . c :g ' ) 
fron t end . ma k e_t ype2_spec: f .:..ca t ion ( ' DM . c f g ' , ' MM . c f g ' , ' ( l DM_On } , mm_ac t i v e ) ' , ' Spe cMM3 3 . c f g ' ) 

h~ : ~or. t er.cl . !T'.a ke_ t ype2_spec: f .:... ca t _:_ o r. ( ' J:v; . c : g ' , ' 1/i:V: . c f g ' , ' ( 1 J>•'._S t opp :_ ng } , mm_act i ve ) ' , ' Spec:"iY' '1 . 
C fg ' ) 

: !:"or.te r. , i . rr.a k~ _t y:,e2_s :Jee~ ~ _:_ c at:_ or. ( ' S 1-: . c :'" ~ ' , ' Yi!"'. . : : J ' , ' ( , S r._or. 1 , rr.rr _ a c- t ~ ve) ' , ' SpecM!'-'13 5 . c: g ' ) 

:rontenri . make_p1oduct{ ' SpecM:v'.l . c :'0 , S!)ec'.v!M2 . c:g , SpecM:V: 2 . cfg , Spe cMM 4 . c:"g , SpecMMS . cf g , 
Spe cMr✓.6 . cfg , Spe cMM"l . cfg , Sp ecM:V,8 . cfg , SpecMM 9 . cfg , SpecMMiO . c fg , Sp ecMMl: . cfg , 
SpecM!'-1 12 . cf? , Specl'-'..Ml3 . ctg , Spec:-'JM14 . c fg , SpecM!v'.1 S . cf(] , Spec~M16 . c fg , SpecMM17 . c :g , 
Spe cYJM:8 . cf1 , SpecMY.i9 . c:g , Sp ecMYl20 . c fg , SpecMM2 l . cfg , SpecMM22 . cfg , SpecMM23 . cfg , 
SpecMM) ~ . cf~ , SpecMM?.5 . c fg , SpecMM26 . c f g , S,:>PCMfv21 . c f g , SpecM!"o?. 8 . c t g , Spe c MM29 . cfg , 
Spec;,.t,l'-':JO . c:'J , Spec;-.(:Vi3: . c:g , SpecY.ïV:32 cfg , .3pec:V:M3J . c:tJ , Spec:V:M34 . c:'g , SpecMf'Ji35 . c fg ', ' __, 

Sp ecM'l . cfg ' 1 

f r o r.tend . ma k e_t ype2_speci: icat :.on ( ' F3 . c f g , 3B . cf g ', ' MM . c:'g ',' ( 1 FS_Released , BB_ Released) , ---' 
mm_ac t 1ve ) ', ' SpecBM 1 . cfg ') 

fron t end . ma k e_t ype2_speci f ica t ion ( ' B3 . cf g , FB . c f g ', ' MM . c : g • , ' ( { BB_Presse d , F'B_P res s ed} , --' 
mm_ac t 1ve ) ', ' SpecBM2 . cfg ' ) 

f ron te n d . ma k e_t ype2_s pe c i f ica t ion ( ' RB . cf g ' , ' MM . cf g ',' { { R3_P r e sse d f , mm_ac t i ve ) ', ' Sp ecBM3 . cfg ' 
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fro nt e nd . ma ke _ t yp e2_speci f ica t io n (' RB . c fg ', ' MM . cfg ',' ( { RB_Rele a sed ) , mm_ rese t )', ' Spe c BM 4 . cfg ' t-----> 

f ior.t en d . ma ke_prodJct ( ' Specs:11 . c :" g , Spec3:V:2 . c f g , Spec B'.'-13 . ::f g , SpecB'.'--'. 4 . c :g •, ' SpecBM . c f g ' ) 

fro nt e nd . ma ke_type 2_ specifi ca tion(' BS . c fg ' ,' MM . cfg ',' (l BS_Pressed} , mm_reset ) ', ' SperF.Ml . cfg ' ) 
100 f ro r.t en d . ma ke _t ype 2_ speci f ica t ion ( ' BS . c fg ', ' :v::-1 . cf g ' , ' ( ( BS_ P r es sed ) , mm_ ac t i ve ) ', ' Sp ecSt.✓,,2 . cfg ' 

f tont en d . ma k e_t ype 2_ sµec i f i ca t : o r. ( ' DA . c f g ' , ' tv:M . c :: g ' , ' ( { BA_F:mpt y} , mm_rese t) ' , ' Sp ecE:"13 . c f g ' ) 
f r o nt t nd . ma ke_t ype 2_spec j f i ca t 1 o n ( ' BA . c f g ' , ' MM . c f g ' , ' ( \ BA_ Empt y) , mm_act 1 ve ) ' , ' Spe c!:.: M4 . c f g ' ) 

fro ntend . ma ke_pc o d uc t l ' SpecEMl . c fg , SpecEM2 . cfg , SpecE~3 . cf3 , Spe c~M 4 . cfg ', ' SpecEM . c fg ' ) 

frn nt e nd . rna ke_type2_specifi ca ti o n( ' RC . cfg , PSl ... cfg ', ' DM . c:g ',' ( {RC_S t a tt , PS:'_ Inac ti vel , <-> 

clm_fw s t o pl ', ' Spe cP~l . cfg ' 1 
f ro nt e nd . ma k e _ t ype/._speci f i ca t io n ( ' PS 3 . c f g , RC . c:"g ', ' DM. c :g ',' ( ( PSB_ I n ac t ive , RC_St a r t J , 

dm_ bws t op ) ', ' Spe c?~2 . c : g ' ) 
f ror. t e nd . ma ke_t ype 2_ speci ica t ion ( ' RC . c f g ' , ' D!Vl . c f g ' , ' ( { RC_.Stop ~, d m_fws low) ' , ' SpecPM3 . c f g ' ) 

1111 : 1 o r.t en d . :"'.d k e_t ype2 _ spec1 f 1ca t :_e r. ( ' ?.C . c :g ', ' :i:✓• • c :" g ', ' ( 'RC_ S t op i , d ~._ : 1,.;) ', ' Spec? :"'. -1 . c :g ' ) 
f t o nt e nd . ma k e _ t ype 2_sp e c i f i ca t ion ( ' PSF . c f g ' , ' DM . c f g ' , ' ( { PSF_Ac t i ve \ , :im_ f ws low) ' , ' SpecPM'.:l . c f g 

' 1 
f 1 o nt e nd . ma k e_t yp e2_spec i f 1 ca r i. on ( ' PSf·· . c f CJ ' , ' DM . c f g ' , ' ( ( P SF_Ac t i v e ) , dm_ f w) ' , ' SpecPM6 . c f g ' ) 
: 1- o nt e nd . rna k e_t ype2 _spec i t i ca t i o r. ( ' ~C . c f g ' , ' DM . c : g ' , ' ( \ RC_St op 1 , d m_bws J o w) ' , ' SpecPM7 , c :' g ' ) 

fron t end . ma k e_t ype2 _ speci f i ca t Jo n ( ' RC . c f g ' , ' D>-1 . c f g ' , ' ( \ RC_St op J , d m_ow ) ' , ' srecPM8 . c t g ' ) 
J 1~ :' ! o r.t -=-nd . !"'.".a k e_t ype2 _ spec i f i ca t : on ( ' PSR . c: g ' , ' :JM . c f l) ' , ' ( i PSB_.A.ct i ve 1 , d m_bws low) ' , ' Spec?M9 . c f g 

' 1 
: 1 o r:t i=- r.d . ma k e_t ype2 _ speci :- ; ca t i c; n ( ' PSB . c :°'"J ' , ' '.)M . c :' J ' , ' ( {?.'";~_ Act:._ vet , dm_bw) ' , ' Spec!:-:". l O . c f g ' ) 
: 1 o nt en d . :".a k e_t ype2 _ spec1 f 1 ca t : J n ( ' ?LP . c r •J ' , ' U;vi . c f (] ' , ' ( 1? l.F_.:: r.act: ve ! , l:-r',_ t ·~.,slow) ' , ' SpecPMJ : . 

c:-q ' ) 
: 1 o r.t ,:- r: d . ma k e_t ypé2_ spec 1 ~ 1 ca t : o n ( ' PL:'' . c:: g ' , ' JM . c: J ' , ' ( \? i.i·'_A c r 1- ve 1 , dm_:,..;) ' , ' Speel:-''.". l 2 . c f g ' ) 
: 1 o nt e nd . !"".a k e_ t ype7 _ spec i f j ca t : o r. ( ' P ], !", . c f ') ' , ' JM . c f IJ ' , ' ( { P l,h_ T n n e t : ve) , dm_bw s l o w ) ' , ' Sµec- PM l j . 

~ é 3 ' 1 
1~0 f I o r.t en d . ma ke_t ype2_ S!')'::'C i f i ca t ion ( ' P L~➔ • c :" ') ' , ' JM . c f g ' , ' ( \? J.!1_A c t i ve \ , dm_b w) ' , ' SpecP!V'. 14 . c : g ' ) 

fton t e nd . ma ke_pr o duct ( ' SpecP M~ . cfg , Sp e c?M? . cfa , Spec~M3 . ctg , Spec~M 4 . cfg , Spec?M½ . cfg , 
.:;pec? '.-".6 . -:0 , .:;pe ci<-".7 . ,..:-;,; , 3pe~?Y5 . c::"J , Spe-c ?:V.J . c:-1 , -pec? ·~· .o . c:? , 3pe~~:--::: . :: :- J , 
Spec?M 1 2 . c fg , Spe c PMl '.J . C-f<J , ,S:JecPMl 1. c fg ' 1 ' SpecPM . cf--1' } 

1,(1 :ront e r_d , rr.a k e_product ( ' t~ . . c:g , 3L . cfg , ~r. . c:g , XM . c f g ', ' P,,;,, nt L'.'-1 . cfJ ' ) 

l lS 

J.l(f 

'" 

fJ o nt e r.d . ma k e_su perv i sor ( ' Pla nt LM . c fg ' , ' Spec LM . c:':g ' , ' Su per v is o~ C_LM. c f g ' ) 

;- 1 c r.t er. d 
fror. t e nd 
:ror:ter.d 

f1o nt e nd 

:ronter.d 
frontend 

r ror.tf'nd 
:i o nt en d 
fr o nt E:- nd 

. rra k e_p:::-od;_.:: t ( ' '.-". :V: . c : g , JX . c : g , sx . c:g , sr. . c : 1 •, ' ?_ar:r:~::--:.c:-g ' ) 

. rn a ke_pcodu2 t l ' SpecMM. c fg , REQ_MM . cfg ' , ' Spec MM . cfg ' 1 

. rr.a ke_s ·..;pe1 v: sor ( ' ?:a rt:..-::,,: . c : g ' , ' Specx:,: . c :': g ' , ' Super v.:.sc re_ :,.,::,,:. c :°? ' l 

. ma k e_procluc t (' PB . c fg , ::>B . r-~g , ~r, . c: g , '.✓iM . c f g , DM . -- fg ', ' P:n nt r\ M . ctq ') 

. !T.a k e_rrod·-.Jct ( ' SpecSt'-1: . c : g , RE.Q_0:---".1 . cfg , ?.EQ_BM2 . c :- J ', ' Spec~M . c!"j ' ) 

. ma ke_supetv1sor ( ' Pla ntBM . c fg ', ' SpecBM . cfg ', ' Superv isorC_ RM . cfg ') 

. ma k e_proctuc t ( ' BS . cfg , SA cfg , JM . c:':g , S~ . c!"g , SH. ,•fg , XM . cf3 ', ' Pla r:t EX . c!"~ ' ) 

. ma k e_product ( ' SpecEX . c : g , RE _EM . c :g ', ' SpecEM . cfg ' 1 

. ma k e_su p erv : so r ( ' Pla nt EM . c fg ' , ' Spec:-:::.M . cf s' , ' Supe I v i sor C_F.rv: . c t g ' l 

!"rcr:ter,d . rr,a ke_p!'."od;..;c t ( ' JX . -- : q , ?S :=-- . c!"J , ?:.F . c : J , ?S3 . - :- q , :->:...3 . c :'" g , ?.-: . r:g ' , ' ?_ar.t?:..-: . c : J ' ) 

1511 f1o nt e nd . rna k e_produc t ( ' SpecPM . c fg , REQ_P M . cfg ', ' SpecP M . cf(] ' ) 

1(,0 

: : c r:t er. d . rra k e_s-..;pe!""v.:so!'." ( ' ;:, .:.ar.t ?:..-: . c :': 1 ' , ' .S:1ec?:•'. . c ~g ' , ' .:; ;pet v.: se! C_ ?:V: . cf J ' l 

: : c r:t ~ r'. d . '.'!'.ö k e_r:or.cc r.:- : :c t : r.g_~:-. e c k ( ' S·1µe~v:.sor ~:..-: . c :g , Su9erv.:s01.:V:~ . c:,? , S....: ~1erv:s01 H'.". . c :- q , 
Supe i vis or EM . cfg , Sup e rvi sorPM . cfg ') 

~ront en d . ma k e_prorluc t ( ' F L . c :" g , 3 L . cfg , RL . c :g , MM . cfg ', ' PJantLM . cfg ' ) 
f ro nt e nd . ma k e_s upe rvi so r (' P l antLM . c f g ', ' SpccLM . cfg ', ' S11p erv i s or-A1_LM. c fg ' ) 
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fr o nt e nd . ma ke_se qu e nti al_abs t r ac ti o n (' P l a nt LM. cfg , S uperv isorAl_LM. c fg ', ' t a u , mm_act i v e , 
mm_emergency , mm_ reset ', ' SupervisorAl_LM_ abs t rac t ion . cfg ' ) 

f i:-o ntend . ma k e_pro du c t (' Sup e t-vi so r/\ l _ LM_abs t rac t i o n. c fg , DM . c fg , SM . c f g , SH . c fg ', ' P .l a ntMM . c fg ,,_., 

' 1 
fron t end . rna ke_produ c t( ' S p ecMM. c fg , REQ_MM. cf g ', ' Sp ecMM. cf g ' 1 
f ron t en d . ma ke_su p et v isor ( ' Plan t MM . cfg ', ' SpecMM . cfg ', ' SupervisorAl _ MM . cfg ' ) 
f r o n t e nd . ma ke_seque nt i a .1 _ab s t rac t i o n ( ' P l a ntMM . c f g , S up e r v i so r A l_MM . c f g ' , ' t a u , rnm_act 1 v e , 

mm_emergenc y , mm_rese t , d m_s t op , dm_e n a ble_fw , dm_enab !e_bw, d m_ fw , dm_f ws l o w, 
dm_f ws t o p , dm_b w, dm_bwslow , dm_bw s t op , d m_error , sm_ et ror , sh_error ',' ............, 
SupervisorAl MM abstrac t ion . cfg ' ) 

ft o ntend . ma ke_produc t ( ' .SupervisorAl_>"..M_abs t raction . cfg , :=lB . cfg , Bi3 . cfg , FB . cfg ', ' P lant 8M . c:g .-, 

'1 
:1 o nt end . ma ke_rroduc t ( ' Spe cBM . cfg , REQ_BMl . cfg , REQ_BX2 . cfj ', ' SpecBM . cfg ' ) 
fr o nt e n d . ma k e _s upervi sor (' P lant BM . cf g ', ' SpecBM. cf g ', ' Superv i sorA l _BM . c f g ') 

17.<i : ron t end . ma ke_sequen t ial_abs t rac t ~on( ' P:antBM . cfg , Su!_Jerv.isorAl_S:-1 . cfg ', ' t au , mm_a c tiv e , 
mm_eme 1gen c y , mm_t e set , dm_ s t op , dm_ f w, dm_ f wslow , dm_ f ws t o p , d m_bw, dm_bwsl ow , .-, 

dm_bws to!_) , dm_erro r , sm_ e r ror , sh_e r r or ' , ' Superv i sor.l\ 1 _BM_abst ract ion . c: g ' ) 

:ront end . ma ke_produ c t ( ' Super v iso rA 1_BM_a b s t r ac t jo n . c f g , BS . c fg , BA . c fg ' , ' P 1 a n t F.M . c f g ' ) 
fron t end . ma k e_produc t ( ' SpecEM . cf g , REQ_ f.M . cfg ' , ' SpecEM . cfg ' ) 

lhU f r o nt en d . ma k e_su p e rvis or ( ' P J a n t F:M . c f g ' , ' SpecEM . cfg ', ' Supe1 v i sotAl_ F,M . c f g ' ) 
f ron t e nd . ma ke_ se q uen t ia l_abs tr ac t .:.on ( ' Pla nt EM . c fg , SupervisorA1_EM . cfg ', ' t au , dm_st o p , dm_bw 

, dm_bws .:ow, dm_bwstop , d rn_: w , dm_fws lo w, dm_fwst op ', ' Su p erv i sorAl_EM_ab st1 ac t io n . cfg ' ) 

fr o n t en d . ma ke_p rod uc t ( ' Su p e1 v 1so rA 1_EM_a b s t1 ac t jon . c f g , RC . cfg , PSl· ' . cfg , PSH . cfg , P J. F . cf g , 
PLB . cïg ', ' ?.:a nt?fv'. . cfg ' ) 

18" fron t e nd . ma k e_p r o d uc t (' Sp ecP M . c fg , RE Q_P [v: . cfg ', ' SpecP M . c fg ' ) 
: !'.'C r: te C cl . !T,C, ke S ::=,e ! V:. S O l ( ' ? '.ar. t ?!V'. . C :" g ' , ' Spec?'.V: . C :" g ' , ' S·~· pe rv ::._ S Or A i _ ?M . C f-? ' ) 

1'11) 

:"r or. t end . ma ke_produc t( ' DM cfg , RC . cfg , PSF . c :" g , PSb . cfg , PLF . cfg , P:...B . c fg ',' ?Jan t P'.V'. . cfg ' ) 

l'J :'i fi o ntend . ma ke_produc t ( ' Sp ec?M . cfg , REQ_PM . cfg ', ' SpecPM . c : g ' ) 
fr o ntend . ma ke_ su p e 1visor ( ' Pla nt P~ . cfg ', ' Spec ?M . c :"g ', ' SupervisorA2_PM . cfg ' ) 
: ro r. t e r.cl . ma ke_se q ue n t Ja .: _ aos t 1 ac t 1 or. { ' ? 1 a r. t ?:vi . c :'"g , Supe ;\· .:. scrJ\./_?tv'. . c f g ' , ' t au , cim_ st op , 

d m_d isab le , dm_en able_bw, dm_enab :e_fw , dm_e r1 o r , dm_bw , dm_bw s t op , dm_b ws l o w, dm_ f w , 

d m fws.ow , dm_fwst op ', ' Superv1sorl\2_ ?i'-"._abstr-action . c:'"g ' ) 

2(111 f ront e nd . mnke_p1 oduct ( ' S 1Jp E- Lv iso r1\ ?_PM_nbst1 ac t1on . c f g , MM. cfg , SM . c fg , S 1-1 . c fg ', ' P l an t MM . c f g ~ 

2U5 

' 1 
f1 o ntend . ma ke_p rodu c t ( ' Sp ecMM . c fg , RE Q_MM . cfg ' ,' SpecMM . cf g ' l 
: ro r.t er.d . rr.a ke_supe1visor ( ' Pl antMX . c:"g ', ' Spec!V'.:'l: . c :"g ', ' SupervjsorA2_ MM . c:g ' ) 
f 1 o n t en d . ma k e_sequent j al_ abs t rac t .io n ( ' ? l antMM . c f g , Superv i sorA?_MM . c f g ' , ' t a u , mm_a c t 1.v e , 

mm_err e:genc y , mm_reset , d;l"_er. aole_f w, dm_enab}e_bw , dm_err or , s m_error , sh_err or ', ' 
Superv1s01A2_XM_ abs t rac t 1on . cfg ' ) 

f ro n t en d . ma k e_r:no d uc t ( ' Super v i sorA?_M!v!_a bst ract ion . c f g , 3S . c f g , BA . c f g ', ' P J a r.t EM . c f g ' ) 
fron t end . ma ke_pro d uc t( ' Spec~X . c:'g , REQ_~:M . ctg ' , ' Spec~:~ . c rg ' l 
fr o ntend . ma k e_supervis or ( ' Pla nt EM . cfg ', ' Spec~M . c:"g ', ' Su p eivisor A 2_EM . cf g ' ) 
f r o ntend . rr,a ke_se q uen t 1 a l _ abst ract:.. or. ( ' ? .: ant F'.:V: . r :g , Super. v :..sorA2_EM . c 'f. g ', ' t au , mm_ act _;_ ve , 

mm_eme r g e n c y , mm_r ese t , dm_e n a bJ e_ f w , dm_e n abl e _bw· ' , ' .Su µ e r v i so 1 A 2_E:M_a bs t 1 a e t 1 o n . c f g ' ) 

: ! c 1:. t end . rr.a ke_pr educ t ( ' Superv.: sorA2_S'.V:_abs t ract :on . c :g , ?5 . c: g , 5B . c:g , :'3 . c :g ' , ' ? ~ ar. t S:V: . c: g •--' 

' 1 
: ron t end . ~a ke_ptoduc t l ' Spec3~ . c:g , REQ_5~! . c :" g , REQ_s:v:2 . c:g ', ' SpecRM . c~g ' ) 
f ro nt e nd . ma k e_su p e , vi so 1~ ( ' P.l. an t BM . cf g ', ' SpecBM . c fg ', ' Supe1.v.1so1.A2_BM . c f g ' l 

21:- : ror. t er.d . ma k e_se q ue nt .:..a J _ abs t ract ion ( ' ? la r. t 3M . c f g , Supe rv 1 so~A? _3!'-". . c : g ' , ' t au , rnm_ act::.. ve , 

mm_em é rg e n c y , mm_1eset ', ' Superviso r A2_BM_a b s t ractio n . cfg ' ) 

f ron t en d . ma k e_produc t { ' SupervisorA2_BM_abs t rac t ion . cfg , FL cfg , BL . cfg , RL . c f g ', ' PlantLM . cfg __, 

' 1 
fr o nt e n d . ma k e_s upervisor ( ' Plant L M . c fg ', ' Spec LM . c fg ', ' Su perv is orA2 _ LM . c fg ') 
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C.2 State-based supervisor synthesis 

Specification C.2: Batch file of statc-bascd supervi sor sy nthes is 

roo t = p lan t 

p lant ~ AND {MM, FB , B13 , RI, , BS , BA, PS I,' , PL I·' , P S l3, P l. 13 , RC , FL , i3!. , Rl. , DM, SM , S I! , Mo t o r M3 •-J 

Bu tt o nM3 , Bu tt o nM4 , Emergen cyM3 , Prox imi t yM} 

:.r::--: 0~ '."'.'.'-1_Eme~ge r.cy , Y.:-1_Res et , X:V: Act1..ve 
Fa 0 ~ FB_Releas e d , tB_Press ed 
BB OR RB_Release d , RB_Press ed 
RB OR I RB_Release d , RB_Press ed 
PSE' OR I PS F_ Tna c tlv e , PS F_Ac t 1ve 

ID PL F OR { PL F_ I n ac t i v e , P !. f' Ac tive 
PS B OR I PSB_ l na c t ive , PSB Ac tive 
?:..B OR ( p;,a_I r.ac t ive , PLB Ac t_:_ v e 
BS OR { BS_Rc l eased , RS_Presseà 
oA OR I öA_OK , BA_Empty 1 

1~ RC OR { RC_S t a r t , RC _ S t op 
FL OR I l·, ,_Of f, E'L_ On ) 

BL OR bL_Or: , BL_O n ) 
RL OR RL_Off , RL_O n ) 
J'.V: c~ J J'.'!_Cf: , JM_O n , '.):V:_S t opp -=._r.g 

SE 
~--:o r or:vr3 
Bu tt o nM 3 
Bu t t o n M tJ 

s:,:_c:: , s:v:_cr. 
SE_O:: , SH_On 1 

OR \~o t orM.30 , '."Ïo t o1:,.,:Jl , Mo t otM3/ , Y.o t orM3l} 
OR { 3u tt o nM30 , Bu tt o nM 3 1 , Bu t to nM32) 
OR { Butt o nM40 , Bu tt o nM41 , Ru tr o nM4 2 ) 

Emerg e n c yM J 0~ { Eme 1 ge n c yM 3 0 , Smer ge n c yM 3 1} 

Pro x i!T'.i t yM OR {?roxirrityM0 , P r o x irri t yM! , Pro >: i r- it y!v:? , P t c x irr1 t yM' , P!'o >: :rri t y!'-".·1, 

f3 

1) 

~l □ X -~:t~•X~ , ?tc x :~: t~·~6, 

(f b_release , f b_p r ess) 

1 
~3 ?e:eased :b_ pre ss ~-3_ ~tesse d ) 

::3_ ?resse~ :o_ re:ease FS_Re.eas ed : 

SB 

( 1 
{bb_re lease , b b_p r e ss ) 

63 ?.. e:ease l bb_µress RB Ptess ed 1 

S3 ?~esse ~ oo_te_ e ase b~_~e_easedJ 

.1~ RB 

( i 
{ rb_ re:ease , rb_ press / 

,;3_ ?..e~eased ro_p~ess r 3 ?!'essed· 
'U (?..3_ ?ressed ro_re:ease R3_Re.:.ea sed ] 

) 

1,(1 

7(1 

F' L 

1 f l _ o n , 
11 

off) 

: ..... c: : t~ or. Or'. 
:~ Cn : . c:: f~_ Cf~: 

BL 
!b::._ _ o n , b . _of:1 

[BL_ Cff ol_on B~_ On ] 
[BL_ On bl off RL_ Of f) 

RL 
lrl_ o r. , rl o:":"} 

1, 
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75 [ RL_Off r l o n RL_ On] 
[ RL_ On rl off RL_ Of!] 

1 

BS 
811 11 

{bs_release , bs_press } 
1 
[BS_Re lease d bs_press BS_Pr ess ed ] 
BS Pres sed bs rel ease BS_Releas ed ] 

BI\ 

11 
{ba_emp t y , ba _o k ) 

') Il { 

[B A_OK ba_e~pty BA_ Empty ) 
[3A_ Empty ba o k BA_ OK ] 
1 

PSr' 

11 
{psf_a c t iv e , psf_ i na c t ive } 

1 
:? SF_ I n ac t ive psf_ac t i v e PSP_A c t ive ] 

ll M> :P SF_ Ac t '...ve :)sf :. r.a c t iv~ ?SF' : r:ac t .:ve l 

{} 

11>.î {!Jlf_ ac t i v e , p l f _ i n ac t ive l 

1 

11 1) 

?:...~ I n ac t :ve p: : act:ve P. ,F'_Ac t:v e] 
?:....~ :'\ c t :ve 0:: _:_r.ac t ive ;.i:,:="_: r:ac t :.ve i 

P~B 

! 1 
{pso_ ac t :ve , pso_ i n a c t : v~l 
1 

11 ~ '?S 3 : r. ac t .:\·e psb a c t: ve ?S3 /\c t .:ve 
?SB Act :ve pso : r:a c t 1ve ?SB_ : r. ac t .:ve J 

P I. 13 
1::: 0 {) 

l lll 

{ p l b_ a c t: ve- , p lb_ l. r. act: ve f 

~:_,3 :r. ac t ive r :o a ~t:ve ~:.3_Act.:ve ' 
rPL 3 A c t :.v~ plO 1 r.a c t .:.ve P.,n_'. r.ac t :ve ] 

RC 

11 
l r c _ s t a~ t , !C_ s t o p} 

· ~c_ S t op tc_s t o p RC_St cp 
[RC_St o p 1 c_s t a rt RC_ S t at t ] 
[ RC _ S t art : c _s t o p RC_St o p[ 
\ RC_St a 1t ~c s t ar t RC_S t a rt ] 

i .l ) ) 

J '.V: 

ci:"_ er.ao :e_ :--..., , d::_er.ao.e_o ,..., , d:r._:"·t: , drr._ :w s_o w, drr_:ws t c :, , drr._ o ,...- , :::irr_o ,...r s .... o w, d:r_oi,,: s t c ~ , 
d rr._ s t o p r 

{dm_er ro r , dm_disab :e} 
1.11) ( 

l DM_O ff clm_e nab l e _f,.-..1 UM_O n ] 

[ DM_Of f d m_,.nab l e_b w DM_On ] 
[J~_ On d m_e1 1o r D~_ Of:" ] 
!JY_ St opp~~? dm e rrcr DX or:· 

J.1~ 1 û M_ St opp1r.g dm_disab .le ü M_O:"f ] 
[DM_S t o pp 1ng dm_enab l e_f w D~_On] 
[ DM_St opp 1 n g clm_e na b l e_b w DM_On] 
[ DM_On d m_s t o p DM_S t o pp1n g [ 
[DM_O ff dm_s t o p DM_St o pp.in g] 

: DM_ On clrr._ f w DM_ On ] 
[ J M_ On dm_ fw s l o w DM_On ] 
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{ D:'-'l_On drn_f ws t o!) DM_On ] 

[DM_On dm_b w DM_ On] 
10, [DM On d m_bwslo w DM_On ] 

[DM_O n d m_bws t o p DM_ On } 
) 

SM 
11,u { sm_enab le , sm_ d i sable} 

{s m_error) 

1 
[SM_Off sm_~nable SM_ On] 
:s:--1_on sm_d :.sa b :!.e S'.~_ o :::' J 

1,,5 [ SM_On sm_error SM_Of f ] 

[SM_Off sm_error SM_Offl 

1 

S H 
110 { sh_e nable , sh_d i sable 1 

1sn_ch d.: r , s:1_ err c t ; 

[ SH_Off sh_e na b l e SH_ On J 
: sH_Cn sh_rl :sable SP._ Cf : 1 

11~ : sH_On sh_e 1 ror Sl!_Or. ] 
[S H_O n sh ch d 1 r S H_ On } 

1 

M:v'! 

1h11 {mm_ac ti v~ , mm_ emerge n cy , mm_rese t ) 

fMM_f·~mer ge n c y mm_ rese t MM_Rese t } 

[ ~ M_Rese t mm_err.e1.ge nc y M:"1_Emer7er.cy ' 
Ji-i~ · :-".:.-:_:--es-E:t rnr.-._a c t 1\·e :.-::..-: Act:ve 

'.MM_Ac ti ve mm_re se t MM_ keset ] 
: MY]_/\ c t ive mm_em-=-1 ger. cy M!V:_ Emei ge r.cy 1 

1•11 ) Mot o iM 3 

{ dm_fw , dm_tws. o w, ci:!l_ f ws t op , drr_ow , ci m_ bwslo w, dm_b ws t 0 !) , dm_s t op , rl m_12 r.a;Jle_:' w , 

d:T'._ en ao. e_bw , 
{sh_chd i t , clm_dis a bJe , dm_err or l 
( 

_Xct o tX30 i rr_er.ao:e ~ ~ x ~t crx!:. 
I'' ' [ :.-: o t orl-'i31 cl:n_: w Mo t or :✓.31 

[Mo t o tM3 1 dm_f wslow Mo t o 1M 31] 
.Mo t o tM3 1 dm_: wst o p ~o t orM3:] 
: iv'; o t cr '.'-13O ~m_en ab.e_Dw Y;o t or:✓.'2.] 

[M o t o 1M32 t lm_bw Mo t orM 3~] 
:, M1 [ X o t 0 1 M3 2 d m b ws lo •1.1 !Vi o t o 1 M~ 2 

_Xc t c rX3 2 i rr o~s t 0 p Xcto: ~ 32 
:~o t or~ 32 dm_s t o p ~ o t cr~13: 
: Mo t o ,M3! dm_s t o p Mo t orM33} 
. :vJo t o r :!. 33 rl m_d isabl e !v'.o t ot MJ0' 

~"~ : x o t orlv'.3 0 sh_ cnd1r Xo t o 1:v: Jo: 
[~ o t o r M33 sh ch d 1r V.o t o , V.33] 
[V. o t or M31 s h chd1r Mot o ,M 32] 
:xoto11/i3 2 sn cn d 1 r ~o t o 1~3:, 
.Mo t o rX3: d m_error Mot o IM 30' 

~IO [ Mo t o rM 32 dm_er1 o r Mot e t M3 0 ] 
[ '.V: o t o rtv:33 i m_e r101 Xct o r!v'.30 ] 

Bu tt o nM3 
~ !~ •!nrr_ac t :ve , ~m_ errerge r:c y , !T'.rr_tese t , dr-. er.ao~e :w l 

f fo_ptess , ~b _ rE~ease, 
( 

r s-...: tt o r. '.V'.30 !:b 1e l eas e 6:ï tt o n tv:' 0 
3~tton~30 : o_ pr ess 3 ~t t o nx3: 

2.~u :3ut t o nM31 fb_re l ease Bu rt o nM JO] 
[ Bu tt o nM 3 0 mm_ a c tive Bu tt o nM J O] 

'.3u tt o r.!v'. .30 m;!',_ ~eset Bu tt o rY30 
[ Bu t t o r.M 30 mm_ emerg en c y bu t t o r.>130 j 

[Bu tt o nM31 mm_reset Butt o nM 31} 
, .. ~ '. 3 u tt o nM 31 mrn_ emerge n c y Bu tt o nM3!' 

[Butt o nM 31 mm_a c t ive Bu tt o nM32] 

[ Bu tt o nM 32 fb_p ress Bu tt o nV. 32 1 
~111 [B uLL o nM 3 2 f b _ r e l e ase BuLto nM 32 J 
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[But t onM32 dm_enable_fw Bu tt on M3 0] 
[Bu tt o nM32 mm_r eset Bu tt onM30} 
[Bu tt o nM32 mm_emergency BlJ tt o nM 3 0] 

:.1s l 

Bu t t o n fv:tJ 

{mm_ ac t .i ve , mm_emetgency , mm_reset , dm_e n a b l e_bv.' } 
lbb_ press , bb_release} 

1-Hl { 

[Butt on~ 40 hh_release 9utt o n~40] 
{Bu tt o nM40 bb_press Bu tt o nM41 ] 
[ B~ tt o n~ 4 : ob_t e lease 3ut c r.~ 4 0 ] 
[8 u tt o nM40 mm_ac t ive Bu tt onM 4 0] 

2~, \Butt o nM40 mm_reset Bu tt onM 40] 
!Bu tt o nM40 mm_emergency Bu tt onM 4 0) 
[B u tt o nM4l mm_rese t B~ tt onX 4 1] 
[ Bu tt o nèli4 l mm_e mer ge n cy Butt o nMIJ l ] 

{B u tt o nM4 2 bb_press Bu tt onM 4 2] 
[Bu tt o nX~2 bb_telease 3utt o n~ 4 2} 

2;1:- IButt o nX•12 ilm_P n able_bw :-, uttonM40 ] 
[ Bu t t o nM1 2 Pim_ reset Bu t t o nM'10 ] 
, Su tt c n:"'.·1 2 mm_e:r.ergenc y r~ut t o r. X-10 
1 

26n Ernerge r. cy:V:3 
•T~ _ e~er;e~-~-, 7~_!eset, 
\sm_ e 1 r or , rlm_e r1 01 , sh_~1 1or , ba _ empty , bs_p1ess} 

Erre! JencyX·O ~~ r~se t E~~!1~ r c;X:O' 
~to "' /t.rr,êlJêncyM·O sri e1ror Lmt""t]e r.cy'.V:<; 

[Eme10encyM iü dm et1or 1-:rne1ge ncyM31] 
Errer senc y~'O s~ error E~e,ge ncy~31! 
E~etJenc yX•O oa e:-r-pty E~et1encyx3:: 

[E~ergency~~o bs_p,ess ~metgencyM31] 
271) [Eme19enc yM31 s m e1 r o r E.me i ge ncyM31] 

'.Errer1ency~-: dm e!1or ~:rre11encyx3:· 
;~ rrer ;ency~~l sh error Eme1ge ncyM31; 
f Eme1 9e nc yM 31 ba _ empty Eme r g en c yM3 1] 
!Emerryency~~: bs _ press E~~t~ en cy~31) 

~ 7~ ::.:-:-.et ~e r.c y:V: J: rr:;:_e:-r-e:·ger.:::f· :-::-r-e! J'c.n::: ~· x..,: 
[Emerge nc yM,. m~ rese t sm~ i JencyY3O] 
1 

Pro x 1m: t yM 

Appendix C. Supervisor synt/Jcsis 

2!,; I) {dm_s t op , cim_t w, d m_ fw s l o w, dm_ fw s t op , dm_bw , dm_bwslow, dm_b ws t op f 

[P r ox 1m1 ty ~O dm_ s t op ?rox1mi ty MO ] 
[Prox imi t yM! dm_ s t op Pro x im~ tyMO ] 

~h~ ; ?rox 1ll'.1 ty:--! ? drn_s t op Pro x ~rr.: tyX OJ 
[Prox 1m1 ty M3 dm_ s t o p Pr o x im1 ty MO ] 
[Proxi mityM• l dm_s t o p Proxim i ty MO I 
!Prox im1 ty~~ dm stop Prox:m1tyMOl 
'. ?rox 1rr1 t yX6 dm_ stop ?ro x 1re: ty~ OJ 

[Prox imi t yMO cim_ :w Prox imity:-1:1] 
' ?~cxi~!t}':v'. 2 rl~ :w ?!cx ::-r-:tyx: 
lPro >: tm:.tyr---~J dm_fw Pro >: im: tyX i 1 

[Pr ox i mityM~ dm f w Pr ox im ityM l] 
~,, , :Pro >: irr.i ty:vJL clm_fw Pro x im:tyM: 

?rox:rr .:.ty~; ~m :w ?:o x :~:t}·X : 

'Prox im~ t y~O clrr fwslow P,o x i~i t yM2 ] 
'?rcx :rr: ty~: i" :~s:o~ ?rc x:rr:ty~2J 

,oo Pro >: 1rr1 tyrv: ~ dm_ rws low ?r o x:.m1tyfvi2-
[Pr ox i m.i ty MIJ rlrn_fw sJow P i o xirr,i t yM?.] 
[P1ox imi ty MJ dm f wslow P1n x ~mi t yM2] 
l?rox im: t}·X 6 d~ :~s.ow ?1o x1~!tyX2' 

.'05 (Pro >: imi tyMO dm_fwst o p Prox.imityM3] 
[?ro >: .:.rr.1 t y:v:: drr._ :wstop ?r c x :rr . .:.tyY.3 ; 
; ?ro >: 1m1 t y!"i ? clrn_:wst op ?ro x :.m1 tyM 3] 
[Prox imi tyMIJ drn_fws t o p P l o ximityM 3] 
[P ro>: imi ty MJ dm_ f wstop Prox imi ty M3] 

'HJ [Prox1rr 1. tyM6 drn_fw sLop P ro xtm1LyM3] 
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[ ?ro x 1mi t ytv:O dm - bw ? ro x .:..m1 t yr.-:4] 
[Prox im1tyMl dm - b·,, ? ro x 1m1 t y!'l. •l ] 

[Prox imi tyM 2 dm - bw Prox imi ty:14] 
.115 [Prox imityM3 dm bw Prox i ityM4] 

[Pr o x imityMS dm - bw Pro x imityM4] 
[Pro x imi tyM 6 dm - b w Prox imi tyM4 ] 

;?rox imi tyXO dm_bwslow Pr o x im1 ty~S ] 
.'~u [ ProximityXl dm_bwslo·t1 Proxim1 t yMS ) 

[P 1ox j mi t y~2 dm bws l o w Pr o x i mityMS ] 
!Prox i mi t yM3 d m bwslow Pro x imi tyM S] 
[? ro x imi t yM 4 d m b ws low Pro x imt t yMS ] 
'.?ro ;:,,: irni t y!·-". 6 dM_bwslow ?~ OX )IT'i. t y'.'-15] 

:?rox:m1 t yMO d~_owstop Pro x 1rri tyM6] 
[Prox1 m1t yM l dm_b ws t o p Proximi tyM 6] 
[Proxi mityM2 dm_b ws t o p P1o xi mityM6 ] 
{Proxi mi tvMJ dm_bwstop ?ro x imityM6] 

, .,u ;Prox imi ty M,1 d!ll bwstcp Pro :,.: imity:V:6] 

:?rox :m1ty~S dm b wst O? ?ro x l~: tyX 6} 

IU 

{FB_R eJease d b ll_Re l ease d Rl3_Re ] ea sed r' l ,_O rf BL_Off RL_Off BS_Re l ease d BA_OK PS l.,_[ n ac t ive 
PLF_: na c t ive PSB_Ina c t ive ?LB_ I n ac t ive RC_St ar t Dtv'._Off SM_Off SH_Off MX_~:mergency 

tv'.otortv'.30 5·1 tt o r.:V:30 Suttc r:Y.•10 E'.IT,erJF- n c :;".'< 30 ? rc>:1 rr.~ty~".O} 
~·n_?e .:.easeri S3_?e:. e aseri ?-3_?e:.eased :-·:._er. s:...._cn P J._0:- f 3S_?e. eased 3.A._CK ?SF' _:r.a c t .:.. ,,.e 

P!.F'_ I n act1ve ?SB_ inact:ve ?:....3_ :na c t 1ve RC_ Stait :JP''._O ~f s:-1 C :-:- .3H_ O:"f !✓-X Reset ~otor:v:•o 
hu tt o nM30 8u tt o nM 4 0 ~merge ncyM30 P1oxirr1 ty MO} ) 

l Mo LocM3 , But t o 11M 3 , Bu tt.onM /J , 8me rgency M3 , Prox imi L y M ! 

Spccification C.3: Batch fik of uscd logica! expressions of statc-hased supervi sor synthesis 

-> 1 ) of f ==.> ( l".M Act:ve MM ~ese t 

- > rl o n ~-> MM_F.me rg e ncy 

1~ > r . or: ==> ( :-1M_l--.c t ive I Mi'-'!_EmergE:-ncy l 

> D~ on ==> MM Rese t 

:'(tv: Act1ve 

> ( :-1x Peset 

- > drr s t o;:, Y.!'-'!_ E'.met'}en c y ) & Sl!_O ~t 

J5 --> sm d 1.sable > 1 1 MM_ Reset I MM_Emerge n cy ) 1. DM 0f t 

> sm_ enab.:.e > ( tv'.M Act .:ve 
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--> ( dm_enable_fw , clm_enab le_bw) = = > ( Jv:M_Ac t i ve & SM_On 

-- > s h e nable == > MM_Act i v e & S M_O n & DM_ On 

--> { cl m_f w, dm_:ws l o w, dm_:wsto!'.) , dm_bw , dm_b ws l o w, dm_bws t o !) "" > MM A c t i v e 

5u -- > mrn_ac t i ve = -"" > SM_Of f DM Off & S H_Off 

-- > rnm_ac t i ve -> 

?,l.B_Presse d 
F B Pressed & 38 Release d !:3B ?ressed FB Released l ) & ~ __, 

~(1 - -> mm rese t - > RB Press ed 

> r-.rr,_rese t , ~.rr a c t :_ 1:e ,. ( 3S ?e _e as ed 

70 

> dm_f ws t o p > 1 RC_S t o p PSr' Ac t ive 

> dm o ... s t o o 

( - > dm_fws low, d:T', f ·,.,.., PS!-' l r.a c t i ve 

( - > dm_o ws lo w, d~ b w ==> RC Star t PSB I n ac t ive 

-- > dm f ws l o w => ?L~· Ac t ive 

--> dm f w ::.: > PLF 1 n ac t i ve 

- > d:r. o ws::..ow > :-:,3 Act:ve 

--> om bw - => PLB Tn ac ti ve 



Appendix D 

Implementation 

D.1 Communication delay example 

In thi s sect io n. th e v- model is presented th at s imulates a communicat ion delay between a superv isor and 

a component. Process P is a mode l of th e plant model of a tim er. depicted in Figure 5 .6a and cons ists of 
modes Off and On. Process B is a model of a buffer, mode l led as a conveyer, which delays all incoming 

evc nt s frorn process S for 0.1 time unit before sendi ng it to process P. Process S is a mode l of a superv isory 

controller that se nds appropriat e control acti ons (sta rt and rese1) to the tim er. Si mulati on of thi s \ -mode l 
results in the message seq uen ce chart of Fig ure 5.7. 

Spec ifi ca ti o n 0.1: \ model o f a communication de lay example 

from s t a r.dard.~h i mport • 

proc P(chan a ? , b! : string) -
1 [ !T C• l (: J ff - ( d?>: ; ( >: - " l.l! f L ! " > skip ; Cr, ) 

"' On a ? x ; x " 1eset " > skip ; Off 
time >- 1 . 00 and time <= 1 . 01 > b !" t irneo·Jt "; Of f 

var >'. : string 

1 1 

proc ~( chan a? , o ! : string , va l t : real ) 
~o 1: var ys : [ (string , real) = [J , >; : string 

"' 

• 1 

• ( a? x ; y s : ys ++ 1 (>: , time I t l J 
len (y s ) > 0 

a? >: ; ys : = ys 
de lay hd (ys 1 . . 

( >: , time - t J 

time ; o ! ! hd ( y s ) . 0 ; y s : t 1 ( y s ) 

pree S (chan a l, b? : string) 
rr. o cl e S0 ( time > 0 . 00 and time <= 0 . 0 l - > skip 

, SI time > 

b?y 
S 0 

a ! " t .:..mer " 

S l 

. 05 and time < 1 . 06 -> skip 
a ! " rese t " 

S0 
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11 

var y : s t ring 
sa 

mode l "11 ) ~ 

1 [ chan a , o , c : s tr i ng 
SM ( a , b) 1 I fl ( b , c , 0 . 1 ) 1 I S ( a , c ) 

SI I 1 1 

D.2 Explanation lookup tables 

In thi s sec tion , an ex pl anati u n is g ive n huw a autumatun is conver\L:d toa lookup table . Cunsider SpL:ciÏica­

lio n D .2 , whi ch conta ins a look up tab Ic of the plant mode l o f the dri ve motor (sec Figurc A. 7). Lincs 1-1 3 

spec ili es the alphabe t o f the aut omaton. Furthermore , the boolcan va ri ablc afle r each event name indicates 

if thi s even\ is cont ro ll ablc ( TRU E) or uncont ro ll able (FA LS E). 

Then, line l '5 -27 spec ilies the trans ition struc ture o f the auto maton o f the dri ve moto r. Eac h row in thi s 
lookup tabl c corrcs po nds with the samc row of th e a lphabcl li st o f line 1-1 3 and cach co lumn corresponds 
with the ori g in ating state of this particular eve nt in th e a ut omaton. Notc th at the auto mat on o f the dri ve 

moto r conta ins thrcc st atcs. whi ch corrcsponds with the num bc r o f columns. T he va luc o f cach index cor­
rcsponds w ith th e dcstinati on state of this transit ion w ith this parti c ul ar event in thi s parli cul ar orig inatin g 

state. lf no lransition is poss ibl c with a parti c ul ar eve nt fro m a parti c ul ar state . OxF F FF is li sted. 

Spec ilicatio n D.2: Exa mplc of an automaton spec ified with a look up tahle 
s tatie con st:. T.Z\uL o rraL o nF ,·c nL Sur1erv I sor:c1ta '.;MAlphaoe t [] = { 

,s :.;~~ ? \·:sc~_JA~A_ E\'~:J ~_~x_s~ . : ~-:~ . . 
!_ s:.;?~J-·.\' r SOR_JA: A_ ë:\'E.'.'Jï"_UX_S: O? , -:- ? üE \ , 

(SUP~RVISO R_DATA_EVENT_DM_FWS TOP , T RUE) , 

( SUPERV J SOR_DAl A_EVEN T_DM_ENABL l·:_!3W, T RUI,) , 

{ SUPr,R\' I SOR_::lAT A_!ëVE~ T_ll :-é_BWSLOW, T Rt.::C: 1 , 

{SC?~ R\":SO ?_JA:A_E\"E ~:_:1~_PWS~CW, ~-R~E 1 , 

(SUPf .kVI SOR_J ATA_ EVENT_DM_BWS TOP , TRUE) , 

( SUP ERV I SOR_DA T A_EVf'. ~ T _ DM_ENAB Ll·._ f' W, TRU I·:) , 

111 ( SU?:oRVl SOR_DATA_E:VE:~T_DM_ DISAbLl: , FALSl·. I , 
1 SL'?!<~\': SCR_:1A-~A_E:\'!~\JT _ '.Jtv:_S ~RCR , FALS!:: ► , 

i s:..:;;:;:r-.\· :i SCP_:)/..:- A_E\ 'S>J~ _J:V:_:'l'li , . ?. t=:, , 
\ ; 

J'- statie cons t u ns 16 

) ; 

D.3 

2 , 2 , O>: :''r',T , 
0 :-: f-ï·'r!·· , Ox FTf'F , 
1 , 0>:i-'l·'l·T , 1 , 
Ox FTfF , 
Ox :=--~·~·~ , 

Ü>::-'fTf' , 1 , 

1 , Oxl·'l·T I·' , 
Ox F'ITF , Ox !·'l·TI·' , 
Ox!·' l·T!· ' , 0 , 
Ox i· ::-i.·:. 

Ox fFTr ' , 
o >: :·r·~·~· , 
Q,: ~,,·1· , 

1 , 
0 , 
0 , 
Ü>: i·':·':·'! 

CIF to C conversion 

Supe1visorDa t aJXTransj ti onTable 1 

In S pccifi cati o n D .3, th e source code is li sted th at conve rts C IF auto mata to lookup ta bles in C. Furthe r­

more. the BOD in form ation is a lso convert ed toa BOD struc ture in C. The source code of thi s co nversio n 

takes one input argument , whi ch is the location of the CI F-mode l containing the supervisor. T he source 

code is compatibl e with C IF revi sion 5501. 
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imp o rt os 
impo rt sy s 

Spcc ifi cati on D.l: Python script of CIF to C convers ion 

C ll fN~rICS_VF:RSIO N ' 5501 ' 
?Y VE c<S IO :, S [ ' 2 . 3 ', ' 2 . ·1', ' 2 . 5 ', ' 2 . 6 ' ] 

Is s 1 te_pac koJes = ;'J c ne 
for !? y_v e 1 in PY_VE RSIONS : 

pa t h " /o p t /se/chi/chi neti :::s/ trunk rev\s/lib/pytho n " .. s/ site p ac kage s " { ........... 
CH :N::T:CS_\'E:RS! CN , py_ver ) 

if os . !")atn . isdir(pa t h ) : 
s1te_pa c kag es r a t h 

~u break 
asser t s:te_pac kaJes is not ~ere 

if not si te_pac kag ~ s . star t s wi t ~ ( '' \SlTE '' ) and si t e_pack a1es not in sys . pa t n : 

' ~ s ys . patn =- ·s1 t e_!Jac k a1es! ~ s ys . !Jat!1 

from chir.e t ics . co 1e import e x cep t ior.s 
fr om chir. e ti c s . _a n g u ages . common . h ybr:d import e >: p t ess i o n 

•u fr om c'.::r.et~cs . a r,j:a; e s . r: ~ . >::-r : i mport. r-1:_;,:rr i_?eade r 
fr o m ch i nt: r ics . . d !l)'Jages . c:. : . core ei: .import ci r ac tj o n , c- 1f t e1m , \ 

co1e_cif_ t 1ee , cif~odel 

t ry : 
~' se t 

except Nam~ Er r o 1 : 
from se t s import 3 et as se t , :m~~ ta o.PSe t as ~rczer.s-t 

def e xp r2cpp(e x p1 ) : 
.io if isi n s t an ce (e xpr , e x ptession . And ) : 

re turn' (os && ~s ) ' % ( e >: p!.2cpp(expr . 1er t cr:1-J) , 

-~:9r 2cpp(e >:p !:'" . l: =.:r. t er::. il 

el.if i s i n s t a n ce (e xpr , e xp ress i o n . Or ) : 

➔ S return ' ( 'ts 1 't.s ) ' % { e x pr2 c pp(expr . l ef t_c hi : d l , 
P X~J:!:'2C:- !1p(exp !:" . r:cir,t ch• . 7) 

el if i si nstan ct (expr , e xpr ess:o n . No t ) : 
r eturn ' ! ( '%s )' \ expr2cpp(e xp ~ . ,...hil d) 

elif is1 ns t bnce (expr , {exp ress:on . \'a11ab! e , e xpre ss1on . ~1n used V6r iab.e )) : 
re turn ' cu rren t S t a t e[ %s ) ' % e xpr . name 

elif :s:r.s t en-,;a.( exp!. , exµ!:"ess:or. . :r.) : 
55 s t1var e xpr 2cpp (e xpr . Jef t_c h1ld ) 

s t1 elem !expr ?cpp(e ) fo r e in e xpr . right_chi : rl . i tems] 
str1n 1 '. j oi n( [ ' '%.s =% s ' i (strva ? , e) f o r e in s tre l-em 
return ' (1,s) ' 't. s t! : r. 

r,(1 elif isi n s t ance'.' ( e xp 1 , e xpress i o n . l,it e 1 a.'.. ) 

711 

e >:p1st1 s tr( e >; pt ) 
if :s :r.s t a r:ce(e >::1? . va.:.c_;e , ~r.t) : 

retu rn ' %d ' " e >:p1 . va. ,_; e 
if e xpt s t 1 = '' t als e '': 

ret urn ' %s ' t e x pt s t1 
e li f exp!Str '' t~ c e '': 

re tu rn ' \s ' e >:p!" st: 

else : 
return ' %s ' 

e li f 1s:.. nst ance (exp r , e >: press:o n . M.:n;_;s) : 
return ' %s ' % e x pr 2 cpp(expr . c h.l I d) 

elif 1s1 nst a nce (e x p1 , e x p!:'e ss1o r. . Sq1...a:) : 
7-. return ' 'ts = %s ' % ( e xpr 2cpp (expr . l e f t_ch 1 l d) , 

e xp r2c pp( e x pr . r1gh t _ch1ld ) 

elif 1s 1nsLan.·e ( e x ~,r , e >:press ion . Cono itio nal) : 

101 
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KIi 

')O 

cond e xp r 
for a lt in e xpr . al t s : 

if cond_e xp r 
cond_e x pr 

e.lse : 
e xp r 2c pp(al t) 

co nd_e xp r c o nd_e xpr % e xpr 2 cpp (a l t ) 
return co n d_e xp r \ ' CONDEXPRE RROR ' 

elif isi nstan ce {e xp r , e xpressi o n . Cond1tio nalAlter native ) 
i nv er t = l•' a l s e 
guard_expr e xp r . gua rd 
while isinstance(guard_ e>-:pr , e z pr-ession . No t ) : 

invert = not inver t 
guar d_e xpr = gua rd_e x pr . chi l d 

if i nver t : 
return ' ( %s ? %% s 

else : 

%s 1 ' (e x pr2cpp(e x pr . guard ) , 
e xp r2cpp(e x pr . va lue ) 1 

return ' ( %s? 0os : %"ós ) ' % ( e >:!Jr2cpp{ e x pr . gua1d ) , 
e xpr2cpp( e x pr . va lu e )) 

Appendix D. lmplcmentation 

el if is1ns t ance{e xp r , (e ;,,: pre ss1o n . Tup:e , exp1 ess.:.o n . At ra y , exµression . Se t)) : 
100 if i.s inst a nce (expr , e xp ressio n . Se t ): 

11(1 

if len (e xpr . i t" ems ) = 0 : 
r e turn ' \ d , empty s tring %s ' 

in e xpt . i t errs ' )) 
e l se : 

( le n (expr . i t errs ) , . j oin ( [e x pr/cpp ( i) f o r i 

return ' °u d , ~s ' ·~ ( len (expr . i t err.s ) , 
: t ems 111 

. jo i n( [e xpr 2c pp ( i ) for i in e x p 1 

if isi nst ance (e x pr , 
return ' %d , %s ' 

else : 

e x pres s~o n . l\riay ) : 
( le n (e xpr . : t ems ),', . jo:n ( [e xp r2cpp (_i) for i i n e xp r . it ems] )) 

return ' %s ' . join ( '. e x 9r ?c :Jp(i ) for i in e xpr . i tems] ) 
eli f :s: r~s t ar.",::,{e xp t , e>:;:,~-ess:c r: . Cal.) 

as s ~! t :sinsta ~ce ( ~x pr . fu~ ce xp r , ~xr 1es s:o n . Fun c t ic n ) 
asse it e >: p1 . fu n ce >:pr . fri t:::n dJy_n a me ' eva! beid ' 
asset t lE:n(e xpr . a1~s ) == 2 

r e turn ' eva:ua t eBdd(E\'E~ 7 ~ A~E ) ' 
e l.se : 

r aise Val ueE rror ( ' Un e xp ec t ed e xp1 ess io n : %s ' % e>:pr ) 
re.t urn s 

reader= c if_>:m .: _1eader . C1fxm:?eade1. () 
spec r ea cl er . re acl_ci f_x m.l _file { sys . argv [ 1 ] , [ l ) 

1~0 auts = care cif tr ee . At omicl\u t Co llec tor ( ) . collect (spec ) 

SD C =- oper. ( ' Supe1\/:sor8at.=i . c ', ' w ' ) 
SDC . wri t e ( ' // • I NDI:: NT - O~t-·• \ n ') 

SQC . wri t e( ' # inc2-ude <s t ddef . h>\ n ' ) 
S JC . wr.:._ t e ( ' # :r.c >-.: de " -:-yp e de:s . h " \ r: ' l 

1,0 SDC . write ( ' ir include " Supe,visor Da t a . h " \ n ' ) 
SDC . wri t e (' # i n clu d e " Debug . h " \ n ' ) 

a i_: t .oc:::L ct 
statedic t = \) 

for au t in a·L< t s : 
i f a:.:t r. n :-'""e 1 ' odd ' 

SIJC . writ e ( ' \ n ') 

SDC . wri t e ( ' s t a t ie co nst TAu t oma t o n Ev ent 
SJr wr.:._te (a~t . ra~el 
S u::: . write ( ' A.phabet [. - {\ r, ' I 

a l phabe t d 1c t - 11 
k 0 
f o r . o ! in aLl t . _aoe.s : 

al9habet d1 c t ;lb! . nar'.e] k 

k - k t l 
SD C . wri t e ( ' {SUPE~V:SOR DA:A EVE N ' ' 1 
SJC . wr i t e (lb , . ~ame . uppe r( )) 
SDC . wn te ( ', ' ) 
i f lbl . co n t r o ll a b l e . v a lue : 

SDC . wr1 t e ( ' TRUE ' ) 
else : 

SDC . wr1 t e ( ' ~l•.LSE ' ) 
SDC . wri t e l' } , \ n ') 

SDC . wr it e l ' i ; \ n ' ) 

SupervisorData ' ) 
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SDC . writ e ( ' \ n ' 1 
SDC . writ e (' st a t ie co ns t un s l6 
SDC . wri te (a u t . na me ) 
S:JC . ·,n _;_te ( ' :rans: t ionTable!] 

l oc d ic t - () 
0 

f o r loc in a u t . loca t 1o ns : 
l oc ,-! i e t [ J o c . na me I i 

i +- 1 

( \ n ' 1 

s t atedic t ;Joc . narr.e;= au t . narr:e 
au t loc d ic t . app e nd( locd ic t) 
Tra ns i t io r,Tab le ..., [] 
f o r j in ra n ge(le n( au t . .:oca t :or.s ) • _e r. (au t . .!. a bels) ) : 

T r ansi t 1 o nTabl e . append( ' Ox Fr~·~· • ) 
for s tt , e d gs in aut . e :iges . l t e r i t e ms (l 

f o r ed g in edgs : 

Su perv iso r Da t a ' ) 

ïra n s.;. t io n Table[ a l?habet d1c t [ ed g . ac t 1on . JaOel. • l en (at: t . Joca t .:.o r: s ) ~-locci:c t '. 
e d g . sour ceLo ca t ion . na me] ] = l ocdi c t (e rl g . t arg et Loca t io n . na me ] 

t o r in :ran si t ionîabl e : 
S :::>C . •,: r .:. t e ( s t r ( .: l ) 
SDC . wr i t e ( ', ' 1 

SDC . wr i t e ( ' \ n ') 
S'.JC . wi:te ( ' ) ; \ n ' I 

S:::>r . ~r2te ( ' cc ns t TA~ t c~a t cnCcn ~.:.g 
s:.:?:.~VISC~_:)A-:-A_ NR_Aü~o:,,;-:-.;; t \n ' 1 

f or au t in a ut s : 
if au t . na rr.e ! :cc ' bdd ' 

ll'I ~ locd:c t = {) 

i 0 
tor loc i n a u t . !oca t ic ns : 

:ccrl1c t ':oc . r: a~e 

S!)C . wr i t e ( ' 
.::;:)\ . 1,,.r t:. t e ( ' 

1 \ n ' ) 

S:..:9e1 v: sorData ' ) 
S~C . wr1 t e( a u t . ~ame ) 
S IJ C . w11t e 1' Al p ha be t , \ n ' 1 
Sl"'IC . wri t e ( ' sizeof ( Su p e1 vi s0 1 Da t a ' ) 
S~C . wri te (au t . name) 

S:...:r,et ·✓ isor:--.a t aAu t cIT'. at onCo n :~ 1 ! 

SJC . wr 1 t e ( ' Alphabet ) / s izeof ( TAu t oma t o n Event ) , \n ' ) 

2 11( 1 

snc . wri te( ' Su 9et visorDa t a ' ) 
SJC . ~ r:te(a~ t . nam e) 
SDC . wr1 t e ( ' 7rans1 t 1on:aole , \n ' ) 
S DC . writ e ( ' s iz eo f ( Supe t vi so r Da t a ' ) 
SDC . w11 t e (a u t . n a me) 
SJC . wr.: te( ' T r a n s.1 t ior:-:-a o :e ) / s;. ;,_ec : ( u n s16 ) , \ r. ' ) 
S'.lC . wri t e l ' ' 1 
SDC . wri t ~ ( s t r ( locd ic t au t . i n ~t LOCn t io n . r: ame: ) ) 
3:),-. . ¼· 1.:._ t e ( ', \ r. ' ) 

SDC . wri t e( ' ( S.:.7.eo : (Supetviso1 Da t a ' ) 
SDC . wti t e (a u t . n a me) 
S~C . wr1 t e ( ' -:-ra r s: t ionTao~e ) s: ;,eo: (u r:s16 )) /\n ' ) 
SDC . wr: t e ( ' ( s:.zeo: (S u p erv1soi:_1a t a ' ) 
Sl)C .w r i t e (aut . n ~ me l 
SDC . wr1 t e ( ' A !phabet) / sizeof(-:-Au t omat onEvent )l \ n ' ) 
S::JC . wr: t e( ' • , \ r. ' ) 

SOC . w r it e ( ' , ; \ n ' ) 
a 1 1t alp., se t ( ) 

21~ for: a..: t in a...: t s : 
if au t . n a:ne ' b dd ': 

for lb J in a u t . l ab e l s : 
ai.: t a'.!Jh . a cl d (lol ) 

S~C . wr1 t e( ' cons t -:- Au t oma t on~.ven t 
SUPLRVISOR_ IJAT A_AJ.P HA E>ET_S I ZE J ( \n ' 1 

for x in a~ta:r~ = 
SOC . w I i te ( ' ( SUPLRVISOR_DATA_f:VE. NT_ ' 1 
SDC . w? i t e (x . n ame . u pper () l 
S)C . wri te ( ', ' ) 

22 ~ if >: . cont rolla o l e . value : 
SOC . wdt e 1' TR UI·: ' I 

else : 
SDC . wr1 t e ( ' FA~SE ' 1 

S DC . w r i t e 1' ) , \ n ' 1 
:1u SDC wri t e 1' ) ; \ n ' 1 
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::'J.'i i n it val = (} 
f or v a r , v al i n s p e c . e x t er n a 1 Va L. i t e ri t e ms ( ): 

i ni t v al [ va r . n a me ] = e x p r 2 c pp (v a l ) 
for v a r , v a l in spe c . b o d y . val_h idd e n . 1 te r i tems ( ) 

i n i tv a L[ var . n a me ] = e xpr 2c pp (v a l ) 

Ev e nt Nam e ~ [] 

fo r au t in au t s : 
::' ~.'i i f au t . n a me ' b d d ' 

2711 

SOC . wr it e (' \ n ') 
S :JC . wr .:t e ( ' // BDD - i n f o tma t i o n \ n ' ) 
va r1a b l e se t = se t ( l 
v ar ia b l e_s e t 1~ a u t . v a ri a b J es 
v ari a b les [v a r . n a me for var in v a riable_se t ] 

I n i.t ial No d e "' [ ] 
t or v a r i ab l e in v ar i a b le s : 

if v aria b l e . s t a rt s wi t h ( ' b dd d at a _ ' ) : 

Ev e n t '.'J a rr e . app e nd (v a r 1 a b l e . t e p l a ce ( ' bddd a t a _ ' , ' ' ) ) 
t err.pva r - i n i t v a l [var i a b J e ] . r e p l a ce ( ' ','' ) 
t é mpva 1 t e mp v a t . s p ] i t ( ',' ) 

Î l J eSd '}e ! : 

Pa l s e S d 0e - [ j 

Tn 1 t .:a ~ !J a de . ap~e r.d ( t em!Jva r 10 1 ) 
t empvar . po p( 0 ) 

n um ber of t L: p l e s .:.._ n t (t e mpva1 [ 0 ] l 
t empva r . p c p{ 0 ) 
f o r i i n 1a n g ê (n u mb e 1o f t up ! es ) 

r. o d e r:t = : r.t( t e'.'"!1 \·a r : o ) 
i f n o de r. r > 2 : 

SDC . wi i t e ( ' s t a ti c con s t l' HDDT tu e S t a t e Su p e 1v i s orüa t a ' ) 
S:JC . w ! : te ( va1 :.a b 2-e . !'."e p :ace ( ' b ddrl a t a_ ', '' )) 

S0C . wtite( ' Nod e ' ) 
SDC. wr i t e (t e mpva r [ O[ ) 
SJC . wr i t e ( ' T r u e St a t e s[ ) 

t empv a r . p o r ( 0 l 

if jnt {t e mpva r [0 J ) > ....:: 0 : 

t e r:.pv ar . 9 o p (0 ) 
el se : 

t emp v a r . p op (0 ) 

{ \ n ' 1 

r.'ccr.oe t c ·t, :Jes t a t es ~e r. t ( t e mpva r '. 0: ) 
t. err.pva !" . p o p ( 0 ) 

if n u mber o f tru e s t a t es ~ 0 : 
n u rnbe r o ~t r ues ta t e s = l 

f or j i n r a nge {j nt (n umberof t1 u e s t a t es ) ) : 
t e rnpv at[ O' ternpv a ! ' O' . ie :')2- a ce ( '"','' ) 
for . oc d :c t i n aJt .o c d :c t : 

i.f t emp v ar [ O] i n l o c d ic t : 
if r:o d e n r > 2 : 

SJC . w r: t e ( ' • ' ) 

S DC . :,., t 1 t e ( s t 1 ( au t .:. o c d : c t . i n ci e x ( 1 oc d i e t ) ) ) 

SD C . w r 1 t e ( ',' ) 

SJC . w r.1 t e (st1 ( .oc d : c t ! t e rr !') v a r :o · l) 
.s DC . w l l t e ( , ' , \ n ' ) 

t empv a r . p o p 10 1 

i f r.oder.! > 2 : 
T t ue Ed ge . a ppe nd (t empvar[ Oi 1 

t em pva r . p o p (O) 

if n o d e n r > 2 : 
Fa ls eEd ge . a ppe nd( t e mpv a r [O [ 1 

t e mp var . p o p (0 l 
if n o de n r > 2 : 

SD C . wr j t e (' }; \ n ' 1 
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SDC . write ( ' \ n ' 1 
SJC . wr! t e( ' const ~5D~ ~ode Superv1sorJa t a ' l 
SûC . wrlte (va riable . rep lace ( ' bdddata_ ', '' 11 
SDC . write ( ' No d es[] - {\n ' 1 
SDC . wri t e ( ' { :'I ULL , 0 , 0 , O ) , \ n ' I 
S::JC . wr :tel ' {:'l JLL , 0 , 0 , 0) , \ r, ' 1 
for k , 1 i n enumera te (T! ueEdge ) : 

print k 
SDC . wr ite ( ' { ' I 
SJC . 1,ni t e( ' SupervisotDa ta ' ) 
SJC . wr1te(vat~able . rPplace( ' bddda t a_ ', '' )) 
SDC . wr! t e( ' Node ' 1 
SDC . wri t e( s t r (k +2 11 
SDC . wri te( ' T r ue S t atPs ' ) 
SJC . •,1r ite( ', s! zeotl ' I 
SDC . w r 1. te ( ' 3upe i:-v.: so I Da ta ' ) 
SDC . wri t e (variabl e . 1e place {' b ddd a t a_ ', '' )) 
SD C . wr i t e ( ' No de ' ) 
SDC . wri t e(stt ( k •2 11 
SJC . w~::.te( • ·:--r'J. eStates ' ) 

S::>C . wr i t e ( ' ) /si zeof lTBJDTrueS t a te) , ' ) 
SDC . wri t e Il) 
SDC . wri t e ( ', ' ) 
SûC . wri t e(Ya:seEdge OJ 1 
~a:si2E:dge . !Jcp(O ) 
SDC . •,n1 t e ( ' ) , \ n ' 1 

SDC . wri t e ( ' J ; \n ' 1 
S=>C . •1.i!·i te( ' \ n ' ) 

r.o_::>J:_, s -= ~ er: ( r:ve r:t >Jarr.e- ) 
if no_5DDs is not 0 : 

SDC . w r it e ( ' co n s t T!1DDCo n f i (J Sup e rv 1 so 1 Da t a 8 1) ;) [ S'Jf? ER V 1 .SO R_~.A. TA_ !J :'\_B9DS 1 
f o r : , j in er.L:rr.etate (t·: \:er.tr Jafl'.e ) : 

.:;oc . .... · r~te(J . uppt:' i ( l l 
SDC . wt i t e ( ', ' I 
SDC . wr i t e ( I nit 1alNode[O] 1 
:r.: t :a.Node . pcp(O) 
SJC . w? :te( ', S•1perv:sorJata ' ) 

SJC . w1 1 t e l '. I 
SDC . wr ite ( ' No d es , sizeof (Su perv iso1Da t a ' l 
SDC . w11tel 'I 
S:K: . wt:te( 1 :-Jode s ) s.:.7.eo:'.'(-:-3JJ~orte) , , \ r. ' ) 

.S=>C . .... ,r .i te ( ' l ; r. ' l 
SDC . wri t e l ' \ n ' 1 

SJC . wti te( ' // · lND EN T QN, \ n ' I 
\1 ,0 s:i1 . c:: ose 

print ' Superviso1Dat a . c w1!tten s~ccesftil.y ' 

SD I-! ope n ( ' S uper v iso r Da t a . h ', ' w ' ) 

,70 SJH . wr1te( ' 1! :~nde :" S0?~::J\':SC?JA:-A_ P. \ r. ' ) 
SJH . w t ! te( ' #de:'in e SU?ERV:"SORDA':'A_ H\ n ') 

SDH . wr i te( ' \n ' 1 
SJE . wr i te( ' #if d ef _ cp.1-:spL.;s\n ' ) 

SJE . Wt!te( ' // - ::\1 '.:S N ~ o:-·~· • \ r. ' ) 
q, SJE . -... ,r.:. te { ' e xt t?r r. " C" t , r.' l 

SD J-1 . 1,,.•1 1te ( ' #e ncl 1 f\ n ' ) 
SD J-1 . w1 i t e ( ' \ n ' ) 
SDJ-1 . w1.1te( ' # inCLüde " '"'.'y!)ed ef s . h " \ n ' ) 
SJE . · .. .-: :te( ' =:r,..._:..d e " A·:torr.a.tcr . . •1 " r. ' ) 

,M, SJn . , .. :r:te( ' 11 : 1. c ... ~de " OJJ . r:: " \ r. ' ) 

SDJ-1 . w1 i t e ( ' \ n ' l 
SD!l . wti te( ' #d ef ine SUPr'.RVTSOR_D/\TA_N R_/\U TOMATA ') 
SJH . w r:. t e ( sti ( ~e n(a u t s ))) 

SJP. . 1N1 :.t e{ ' \ r. ' ) 

l l-, ' SD!-1 . WJ l te ( ' #de:' 1 ne SUPl:..RV:SOR_DATA_NR_!~DDS ' ) 

S DH . write ( s t r ( n o _B DDs l 1 
SD!-1 . wri te( ' \n ' ) 
SDH . .•. ,: te 1' ' der: r.e Së?ERV'.SOR_J/\".'A_ A~Pl!AbE".'_ S:ZE ' 1 
S)J-1 . wr1te (Stt ! .e r. (auta:ph) )) 

No SDJ-1 . wr i t e ( ' \ n ' ) 

l - 0 

f o r x in au t alph : 
SJ l! . ,·riL e ( ' #àe fin e SèJ PERVI SO R_ ::>ATA_ FVE:s; T_ ' 1 
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S01\ . wri t e (x . n a me . upper ()) 

J'l5 SDH . wr i te( ' ' ) 

SDH . wri t e ( s t r l i l J 

SD!l . w r i t e ( ' \n ' 1 
i + l 

SD H . write ( ' #d efir.e SlJPERV!S0R_ DATA_N0 _ EVE NT 

.wo SD H . wr 1te ( 1 \ n ' ) 

SD H . wr i t e ( ' ext er n co n s t ·r Au t oma t onCo nfi g 
SUP~RVl S0R_ DATA_N R_ AUT0MA T A] ; \ n ' ) 

SD H . wri t e ( ' ext e tn co n s t ·rA u t oma t o n Eve ~t 
SüPERV!S0R_DATA_ ALPIIA!3ET_ SfZEJ ; \ r. ' ) 

if no BDDs is not 0 : 
S0 11 . wr i t e ( ' e xt er n co n s t TBDDC o n f i g 

1 ; \n ' 1 
--1 0~ SD J--l . wr i te ( ' # ifdef _ cplusp lu s \ n ' J 

SëlH . wr1te ( ' ) \ n ' 1 
SD H . wri r.e ( ' / / • I NDE NT 0 N • \n ' ) 

SD H.w r i t e (' #e nd if ') 

SD H . •,ni t e ( ' \ n ' ) 
-11u SD H . wr i t e ( ' #e nd if // SU~ERV1SORDJ\TA. J~\p ' ) 

SDH . c:ose 

pr int ' S u p erv l so r Da ta . h writ t e n s u ccesf ul l y ' 

25 5\n ' 1 

Supervis orDa taAu t oma t o n Co n f i g[ 

s~~elvisor~ataAl ph abe t [ +-' 

Su p erv1 sorDa t aBD D [ SUPERV I S0R_ DAT A_ NR_BDDS--' 




