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In order to keep customers interested in revisiting, theme parks have to renew their attractions
from time to time. This means that there is a demand for new, innovative and spectacular
rides. A new development in this area is an attraction with Multi Movers: automated guided
vehicles that interact with each other, their environment and a central control unit. Because
of their interactivity and the fact that these vehicles have to be very safe for their passengers,
the prime design focus is on collision avoidance. Moreover, it is desirable to achieve a high
passenger throughput for the whole system.

In the framework of supervisory control theory (SC'T'), a method is defined for the synthesis of
supervisory control systems according to specifications of system components and requirements
represented by automata. The supervisor synthesized is by construction guaranteed to be non-
blocking. Whenever the system components or requirements change, a new supervisor can be
synthesized using adapted specifications. Additionally, the use of models enables the application
of model-based techniques and tools for thorough system analysis and systematic testing, which
help to improve the system overview for the engineers.

Assignment

The purpose of this project is to evaluate how the model-based engineering paradigm in com-
bination with supervisory control synthesis can contribute to the product development within
NBG. 'T'o this end, the supervisor design for the Multi Mover is chosen as the case study. To
irmplement the model-based engineering concept, a set. up should be proposed that allows for
application of model-based technigues.
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Summary

High-tech companies are often challenged to increase the functionality and quality of a product, while at
the same time they try to reduce the time-to-market and product costs. However, current practice shows
that this is not straightforward. As a result, there is a need for new engineering processes. In this project,
we concentrate on the engineering process of the part of the control system that is responsible for the
coordination of components.

Supervisory control theory uses formal models of the uncontrolled system and its control requircments
to synthesize a so-called supervisor. This supervisor is mathematically correct with respect to the formal
models of the uncontrolled system and the control requirements. This shifts the validation process from
debugging controller code to debugging the models of the uncontrolled system and the control require-
ments. Furthermore, the use of formal models enables the application of model-based techniques and tools
for thorough system analysis and systematic testing, which help to improve the system overview for the
engineers. As a result. supervisory control theory is expected to enhance the product development process,
since this theory allows us to synthesize the part of control software that is responsible for coordinating
components. The purpose of this project is to investigate how supervisory control synthesis can contribute
to the product development. The case study that is used in this project is a theme park vehicle that follows
a wire integrated in the floor referred to as the multimover. This vehicle concept offers the possibility for
new ride concepts with crossings, switches, junctions and driving into and out of dead-end tracks. Super-
visory control theory is used in this project to synthesize a supervisor that ensures safety, which includes
coordination of different components, such as anticipating on emergency and error signals and an accurate
proximity handling.

Within supervisory control theory, two frameworks are distinguished that are used widely for synthesizing
supervisors, namely the event-based framework of Ramadge and Wonham [Won84, Ram87] and the state-
based framework of Ma and Wonham [Ma05]. In this project. both frameworks are used to synthesize
a supervisor for the multimover. Furthermore, modelling and synthesis aspects of both frameworks are
compared with cach other. On the onc hand. the event-based framework can be extended with distributed
or hierarchical supervision. On the other hand, the state-based framework is more convenient for modelling
the control requirements, since it allows logical expressions. However. only centralized supervisors can be
synthesized using this framework. [n this project, supervisors are synthesized using both frameworks.
To have advantages of both frameworks. an automatic conversion of logical expressions to finite state
machines is proposed. Duc to this conversion, control requirements can be formulated as automata and
logical expressions and still use the event-based framework for synthesizing a distributed or a hierarchical
supervisor. The synthesized supervisors are implemented in the current control software environment of
theme park vehicles. The implementation set-up is developed in such a way, that supervisors synthesized
using either one of both frameworks can casily be embedded. This implementation is validated by means
of performing several test cases on a test set-up. Implementation testing showed the same behaviour as the
simulations, and the conclusion is drawn that safety is assured satistactorily by the synthesized supervisors.

The integration of supervisory control synthesis in the engincering process makes the control software more
evolvable. If the system or its requirements change, only a couple of models have to be adapted and a new
supervisor is synthesized. Furthermore, since the intended behaviour is specified in a modelling language
instead of a software programming language. engineers can have a better understanding of the control soft-
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ware, which can lead to an casier validation. In addition, the use of formal models enables the application
of model-based techniques, such as discrete-event simulation and hybrid simulation, which allows to detect
design errors in an carly stage of the product development process. As a result, less prototypes might pos-
sibly be developed. The conclusion is drawn that supervisory control synthesis has the potential to enhance
the product development process and is suitable for engineering controllers that coordinate components.
However, the absence of livelock in the implementation is currently not guaranteed. This could possibly be
eliminated by the synthesis of supervisors which are optimal in terms of timed behaviour.



Samenvatting

High-tech bedrijven worden vaak uitgedaagd om de functionaliteit en de kwaliteit van een product te ver-
hogen, terwijl tegelijkertijd de kosten en de marktintroductietijd van een product moeten worden verlaagd.
In de huidige praktijk blijkt echter dat dit nict eenvoudig is. Als gevolg hiervan is er een vraag naar nicuwe
productontwikkelprocessen. In dit project concentreren we ons op het ontwikkelproces van een gedeelte
van het besturingssoftware, dat verantwoordelijk is voor het coordineren van systeemcomponenten.

Supervisory control theory gebruikt modellen van het ongecontroleerde systeem en de eisen waaraan het
systeem moet voldoen om een zogenaamde supervisor te synthetiseren. Deze supervisor is wiskundig
correct ten opzichte van de formele modellen van het ongecontroleerde systeem en de eisen waaraan dit
systeem moet voldoen. Dit verschuift het validatieproces van het debuggen van softwarecode naar het
debuggen van de modellen van het ongecontroleerde systeem en zijn eisen. Verder maakt het gebruik van
modellen het mogelijk om modelgebascerde technicken en tools te gebruiken voor een uitgebreide systeem-
analyse en systematische tests. wat bijdraagt aan een beter systeemoverzicht voor de ingenieurs. Verwacht
wordt dat supervisory control theory het productontwikkelproces kan verbeteren, omdat deze theorie het
mogelijk maakt om het gedeelte van de besturingssoftware te synthetiseren dat verantwoordelijk is van
het coordineren van componenten. Het doel van dit project is om te onderzoeken hoe supervisory control
synthese kan bijdragen aan de productontwikkeling. De case dat in dit project is gebruikt is cen pretpark-
voertuig, dat cen draad kan volgen die in de vloer is aangebracht. Dit voertuigconcept maakt het mogelijk
om over Kruisingen, wissels en splitsingen te rijden. Dit pretparkvoertuig wordt ecen multimover genoemd.
In dit project gaat het om het synthetiseren van ecn supervisor die de veiligheid van de multimover waar-
borgt, wat ncerkomt op het anticiperen op foutsignalen en ecn accurate nabijheidsathandeling.

Twee raamwerken kunnen worden herkend in supervisory control theory die vaak worden gebruikt voor
het synthetiseren van supervisors, namelijk het event-based raamwerk van Ramadge en Wonham [Won84,
Ramg87] cn het state-based raamwerk van Ma en Wonham [Ma05]. Beide raamwerken zijn in dit project
gebruikt om ecn supervisor voor de multimover te synthetiseren. De modelleer- en synthescaspecten van
beide raamwerken zijn met clkaar vergeleken. Aan de enc kant kan het event-based raamwerk worden
uitgebreid om naast gecentraliseerde supervisors ook gedistribueerde en hiérarchische supervisors te syn-
thetiseren. Aan de andere kant biedt het state-based raamwerk meer modelleergemak, omdat de eisen niet
alleen met cindige toestandsmachines kunnen worden gemodelleerd. maar ook met logische expressies.
Echter, alleen gecentraliseerde supervisors kunnen met het state-based raamwerk worden gesynthetiscerd.
Om de voordelen van beide raamwerken te kunnen benutten, is cen automatische conversie voorgesteld
die simpele logische expressices converteert naar eindige toestandsmachines. Middels deze conversie is het
mogelijk om de cisen met logische expressies te modelleren, en toch een gedistribueerde of hiérarchische
supervisor te synthetiseren. De supervisors zijn geimplementeerd in de bestaande softwareomgeving van
de multimover. Het implementatieprototype is zo gemaakt dat supervisors, gesynthetisecerd met cen van
beide raamwerken, makkelijk kunncn worden geimplementeerd. De implementatie is gevalideerd door
verschillende testcases uit te voeren op cen testopstelling. De tests vertoonden hetzelfde gedrag als de
simulaties en de conclusie is getrokken dat de gesynthetiseerde supervisors kunnen worden gebruikt om de
veiligheid van de multimover te waarborgen.

De integratie van supervisory control synthese in het productontwikkelproces maakt de besturingssoftware
meer flexibel. Als het systeem of de cisen zijn veranderd, hoeven cr enkel cen paar modellen te worden
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aangepast. Een nicuwe supervisor kan dan meteen worden gesynthetiseerd. Aangezien het beoogde ge-
drag is gespecificeerd in cen modelleertaal in plaats van in cen programmeertaal, kunnen ingenicurs de
besturingssoftware beter begrijpen, wat tot cen makkelijkere validatie kan leiden. Het gebruik van forme-
le modellen maakt het mogelijk om modelgebaseerde technicken toe te passen, zoals discrete simulatie
en hybride simulatic. Dit kan fouten in ecn vroeg stadium van het productontwikkelproces helpen de-
tecteren en de ontwikkelkosten van prototypes mogelijk verlagen. Supervisory control synthese zou het
productontwikkelproces kunnen verbeteren en is geschikt voor het ontwikkelen van besturingssoftware dat
verantwoordelijk is voor het codrdineren van systeemcomponenten. De afwezigheid van livelock in de
implementatie kan echter niet worden gegarandeerd. Dit zou mogelijk kunnen worden geélimineerd door
synthese van supervisors die optimaal zijn qua tijdgedrag.
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Table 1: List of symbols.

Symbol Description

D Design

—{ E} Event set predicate

G Automaton representing a plant

G/ =y Abstraction of automaton (¢

n Automaton representing a requirement
L(G) Language represented by automaton G
L(G) Pretix closure of L(G)

L, (G) Marked language represented by automaton G
Mp Model of uncontrolled plant

Mg Model of the supervisor

Mp. Model of the requirements of the supervisor
R Requirements

S Automaton representing a supervisor
X Set of states

b, ¢ Set of marker states

X State

Xo Initial state

¥ Marker state

x| State predicate

vA Recalization

5 Empty string

by Alphabet. sct of cvents

bBg Abstraction alphabet

2 Kleene closure of ¥

Yo Set of controllable events

DR Set of observable events

bR Set of uncontrollable events

P Set of unobservable events

£ Transition map

o Event

w»

Sequence of events
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Chapter 1

Introduction

Development of high-tech systems is a challenging task, since functionality is often increasing due to more
demanding markets and increased competition. As a result, the design of a high-tech system is becoming
more and more complex. Additionally, more complex systems tend to have a longer development cycle and
as a consequence, it is difficult for industrial companies to remain competitive in ever changing markets.
The performance of a system in relation to the market can be indicated by the following Key Performance
Indicators (KPI):

Functionality
e Time-to-market

o Cost

Quality

In order to get more competitive, reducing cost and time-to-market is mandatory, while at the same time
functionality and quality should increase. However, current practice shows that the relation between these
indicators is often a trade-off. If, for example, one would improve the quality of a system, often the cost
and time-to-market are increased. For a new system generation, the functionality and quality are intended
to increase, due to customer demands. As a result, the time to market and cost are likely to increase as
well. In order to withstand these negative cffects, there is a demand for new engineering processes. In this
project, we focus on the engineering process of NBG Industrial Automation.

NBG Industrial Automation, located in Nederweert, provides services in the field of electronics, embedded
software and PC-software for industrial and medical applications. One of many products of NBG is the
multimover. a theme park vehicle that follows a wire that is integrated in the floor. The multimover is a
relatively new concept, since the vehicle acts and drives according to a scene program that is specified by
the theme park. The scene program specifies at what speed the vehicle should ride at a certain position.
when it should follow other vehicles cte. This concept makes the multimover a very flexible vehicle that
can be used in theme parks, museums and in other recreational activitics. The multimover is an example of
a high-tech system and is used as a case study in this project.

In the following sections, we focus on two engineering processes. First, the traditional engineering process
and subsequently, the model-based engineering process are explained and discussed. Then, the outline of
this thesis is presented.
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Chapter 1. Introduction

1.1 Traditional engineering

The traditional engineering process is usually based on Rook’s V-model [Roo86], implementing a 'divide
and conquer’ strategy. The system is decomposed into smaller parts that are developed separately. When
all parts are available, the parts are integrated to construct the system. For simplicity, only two levels of
hierarchy are considered in the following discussion. The higher level is referred to as the system and the
lower level is referred to as the components.

N
lesign r'uliz*fl \
(—> Ry I il /o5 I = k,‘ Z] i3
l / \
define ’ integrate i
{
define design ¥ 1
R £ Infrastructuye 1
- L
definis | mh:j:mlc |

L_» H”j design I)”H| ,«culizci:\ Z,, 1,’

Figure 1.1: The traditional system development process

Figure 1.1 shows a graphical representation of the traditional engineering process, introduced by [Bra08],
adapted by [The08]. Note that the focus in this picture is more on the representations of the systems and
less on the different phases of the system development as in the traditional V-model. In the initial phase,
the requirements of the system are defined, mostly together with the customer. The system requirements
R define its functionality. These requirements can include constraints. for example, on safety and perfor-
mance. In the next phase, a system design D of the system is made that satisfies the system requirements
R. The system design D specifies the architecture, the decomposition of the system, the internal behaviour,
and the technologies used. Furthermore, an infrastructure [ has to be designed that specifies the interaction
between all components.

After the system as a whole is designed, the system can be decomposed and the requirements for the com-
ponents R, through R, and component designs D; through D, can be set up. The component designs
D, through D,, specify how the components satisfy their requirements. Note that in this figure, the de-
velopment process is simplified. In practice, these different phases are not sequential. but can start before
the previous phase is finished. Furthermore. the development process has an iterative nature due to chang-
ing requirements or design errors that are discovered. If all components are designed and the designs are
verified, the component realizations Z; through Z,, are made. These realizations have to be checked if
they are according to the component designs D through D, and if the realizations satisfy the component
requirements 17| through R,,. This can be done by verification, validation and testing. Since the notions of
verification and validation are not univocal, the definitions from [Hop93] are adopted:

e Verification means “building the system right’: substantiating that the system correctly implements
its specification.

e Validation means ‘building the right system’: substantiating that the system performs with an accept-
able level of accuracy by comparing its performance with test cases or human experts.

When the realizations of all components are ready and checked, they can be integrated by means of an
infrastructure /. An infrastructure / is considered to be everything that connects components. Now, the
integrated system can be tested whether it conforms to the intended system design D and whether it satisfies
the system requirements R. At the end, the system is validated whether or not it meets all customer
demands.
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Traditionally, requirements and designs are mostly described by documents only. This can have several
disadvantages [The08]:

e Documents may contain ambiguous or inconsistent information. Furthermore, documents may be
incomplete or outdated. As a result. it is difficult to detect inconsistencies and to get a good system
overview.

e Due to the informal nature of these documents. it is difficult to process these documents automati-
cally.

e Documents are a static piece ol information which makes it dilficult to express and analyse the
dynamic system behaviour. As a result, determining the integrated system behaviour based on com-
ponent documentation only, is a difficult task.

Since documentation alone is not well suited to check the correctness of the system to be built, the be-
haviour of the system can only be verified systematically with testing when the complete system is real-
ized. Formal models can be integrated in the engincering process to overcome these disadvantages. Using
models in the engineering process is called model-based engincering. In the next section, the model-based
engineering paradigm is explained.

1.2 Model-based engineering

The model-based engincering (MBE) system development process as described in [BraO8]. is shown in
Figure 1.2. The main difference between the traditional engineering process and the model-based engi-
neering process is the inclusion of models in the development process. Before making realizations, all or
some components can be modelled. Making models cnables the use of a range of model-based analysis
techniques and tools to support the development process.

(_' Hlj design “lj nmdc}i ;

define

define j lesign
chine R desig

Y

f \

; \
integrate
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define ‘ mlcgr;\nc
N\ i 1 %,
fesign maodel /‘\ renlize
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/ ; ™ i
\\\..v' i \\_l\"

Figure 1.2: The model-based engincering system development process

We consider a model to be an abstract representation of a real component or system. Introducing models
in the development process has several advantages [Bra0O8]:

e Modcls support a systematic approach to specify component and system behaviour with more con-
sistency and less ambiguity than documents. Ambiguity is a lack of clear and exact use of words,
so that more than one meaning is possible. Consider for example the following sentence: “He ate
the cookies on the couch.”, which could mean that he ate the cookies which were on the couch. or it
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could mean that he was sitting on the couch when he ate the cookies. The constructs used in formal
models have a semantics defining precisely what they mean.

e Models make it casier to analyse dynamic behaviour as well as the performance of components or
systems.

e By simulating and validating models, errors can be detected in an early stage of the system devel-
opment process when no component is realized, which decreases risk in the system development
process. Furthermore, simulating and validating models increases overall confidence in the correct-
ness of the system.

If the models are validated and simulated and the conclusion is drawn that the system has the correct
functionality, components can be realized. However, unless exhaustive, simulation can only show that the
system might have correct behaviour and cannot guarantee correctness of the model. Formal verification
techniques can be used to prove properties of models and can guarantee the correctness of models.

In the case that only some component realizations are available, it is possible to apply hardware-in-the-
loop-simulation. In hardware-in-the-loop-simulation, the real hardware of the embedded system is used
and tested with models in which the environment is simulated [BroO3]. The models of the components that
are not available yet can replace their component realization. With this hardwarce-in-the-loop simulation
and testing. the overall behaviour can be analysed in an carly stage of the development process, which
decreases risk and increases confidence in the correctness of the system. If all components are realized.
all models can be replaced by the components. The final implementation can be verified if the complete
system fulfills its system requirements 12 and corresponds with its system design D.

However, the correctness of a model M, does not guarantee the correctness of a realization Z,. Further-
more, in some systems, the requirements change over time. As a result, each changed system requirement
results in changed requirements and designs for the components. The processing of these changes could
be time consuming and error-prone. since these changes have to be made by hand mostly. By integrating
supervisory control theory in the development process, these drawbacks can be partially addressed.

Supervisory control theory, explained in Chapter 2, cnables us to generate a certain part of the control
software and eliminates the manual design. The control software, derived according to this theory, is
mathematically correct with respect to models of the components and models of control requirements. As
a consequence, the design and the implementation do not need to be tested against the control requirements.
This changes the development process from implementing and debugging the design and implementation,
to designing and debugging the requirements. This means that the verification for the corresponding part
can be eliminated, the engineer can focus on validating the system.

The expectations are that the addition of supervisory control theory in the model-based engincering process

enhances the product development process. This brings us to the objectives of this project, stated in the
following section.

1.3 Objectives

The objective of this project is to investigate the applicability of supervisory control theory in the product
development process of NBG. The multimover is chosen as a case study for this project. A supervisor
needs to be synthesized and implemented on a real hardware platform. From this case study, conclusions
about the applicability of supervisory control synthesis at NBG can be drawn.

To this end, the following steps need to be carried out:

e Define models of a multimover and requirements associated with it that are nceded for synthesizing
a supervisor.
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o Implement this supervisor within the current software environment and investigate the advantages
and disadvantages of this set-up.

e Propose a toolchain that allows model-based engincering including supervisor synthesis.

e Investigate how supervisory control synthesis can be used within the product development of NBG
and study the applicability.

In the next section, the outline of this thesis is presented.

1.4 Outline

In Chapter 2, the basics of supervisory control theory are explained. Two supervisory control frameworks
are discussed, since these frameworks are most applicable, being the event-based framework of Ramadge-
Wonham [Ram87] and the state-based framework of Ma-Wonham [Ma05]. Subsequently, the engineering
process with inclusion of supervisory control theory is explained. At the end, a toolchain is proposed that
allows for automatic generation of the controller software.

The functionality of the multimover and the models from which a supervisor can be obtained are explained
in Chapter 3. In Chapter 4, modelling convenience of both supervisory control frameworks is discussed
and an automatic conversion of models that can be used for synthesis is proposed.

A prototype of the implementation of the synthesized controller software is discussed in Chapter 5. Fur-
thermore, potential pitfalls of this implementation and the applicability at NBG are addressed. This thesis
ends with conclusions and suggestions for further rescarch, presented in Chapter 6.



Chapter 1. Introduction



Chapter 2

Supervisory control theory

Supervisory control theory is used in this project to generate a specific part of the control software. In this
chapter, the theoretical basics are explained that are needed to understand supervisory control theory.

A high-tech system can be divided in roughly two parts: the physical uncontrolled hardware and the control
system. A schematic overview of a high-tech system is given in Figure 2.1. In this figure, the control system
is depicted in blue.

S y ( 1 v
SUPSIIASLY |Cnm'dinuling |4—-—-1 Processing | Tasks
control
\ | A
| |
¥ |
Resource control |7 Driving ’1—‘ (‘undilioningl
l I Resources

Sensors I

Transducers | Actuators

Figure 2.1: Schematic overview of a high-tech system

At the bottom level of this figure. the main structure is depicted, containing the physical hardware compo-
nents. Sensors and actuators are mounted on these hardware components to monitor the position or state of
these components and to actuate these components. These sensors and actuators are also called the trans-
ducers of the system. The sensor signals have to be processed and the actuators have to be controlled with
feedback control that assures that the actuators rcach the desired position in a desired way. This happens
at the level of resource control. Above the resource control level, we have supervisory control. It coor-
dinates the individual components and gives the desired functionality to the system. Supervisory control
includes scheduling, planning and dispatching functions [Pat89]. In this thesis, we only concentrate on the
supervisory control part of a high-tech system and which is referred to as the supervisor.

Supervisory control theory (SCT) is initiated by PJ. Ramadge and W.M. Wonham at the University of
Toronto, Canada [Ram87, Won84, Won08]. This theory allows to synthesize a model of the supervisor
from formal models of the uncontrolled system and formal models of the requirements. A graphical rep-
resentation of this synthesis is shown in Figure 2.2a. First, the uncontrolled system (from now on: plant)
is formally specified in terms of automata (A/p). A plant automaton describes the physically possible be-
haviour of the system to be controlled. Then. the requirement specifications of the supervisor are formally
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defined in terms of automata (Mp,). A model of the supervisor (M) is generated from these formal
models.

supervisor

: events enabled events generated
synthesize :
o= by supervisor by plant

plant

(a) Synthesis (b) The role of the supervisor

Figure 2.2: Supervisory control synthesis

The resulting supervisor can be used to supervise an uncontrolled plant (sec Figure 2.2b). The supervisor
can only react to observable events that are generated by the uncontrolled plant. The supervisor influences
the behaviour of the plant by disabling certain controllable events. The method guarantees that the system
consisting of the derived supervisor and the uncontrolled plant fulfills the requirements. If the supervised
model does not contain the desired functionality, the models of the uncontrolled plant or the requirecments
arc inadequate.

Different methods have been developed that allow for an automatic synthesis of a supervisor. The original
framework, the event-based supervisory control framework [Ram87. Won84], is explained in Section 2.3.
Since the main obstacle of this framework is computation complexity, several extensions have been de-
veloped that enhance the supervisor synthesis. A different approach is the state-based supervisory control
framework by Ma and Wonham [Ma05, Ma06]. This approach makes use of state tree structures that pro-
vide concurrency and hierarchy. This framework is explained in Section 2.4. Section 2.5 describes how
supervisory control theory can be embedded in the model-based engineering process. A toolchain that
allows for model-based engineering is given in Section 2.6.

Supervisory control theory makes use of formal language theory and finite state machines, so-called au-
tomata. The assumption is made that the reader has some basic knowledge of sct theory. The next section
explains what automata are.

2.1 Automata and languages

2.1.1 Automata

An automaton is a model of behaviour composed of a finite number of states and transitions between those
states. Each state should describe its behaviour in some measurable way [Cas07]. The transitions of an
automaton are labeled by events. An event may be identified with a specific action taken (e.g. open the
door, release the button etc.) and should be thought of as occurring instantancously.

Definition 2.1 (Automaton). An automaton is a quintuple
G=(X,X.{.x0. X ), with
e X : the finite state set.
e 3 : the finite alphabet i.c. the event sct.
o £: X x ¥ — X : the transition map. This map shows which transitions are possible at cach state.

e xo ¢ X : the initial state.
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e X,, € X : the set of marker states. The marker states are used to describe completed tasks. They
represcent a set of states which we want always to be reachable by any behaviour [Mal03).

In a physical system, not all ol the events can be influenced by a supervisor. This is captured within
supervisory control theory by dividing events in two classes: controllable events and uncontrollable cvents.
Controllable events are controlled by the supervisor (e.g. events of actuators). The controllable event set
is denoted by 3. Uncontrollable events cannot be controlled by the supervisor (e.g. a break-down event)
and the uncontrollable event set is denoted by ¥,.

Events can also be divided into observable and unobservable events, but this distinction is not used in this
thesis. The reader can assume that all events mentioned in this thesis are observable events, except for the
cvent 7, which is used for automaton abstraction (see Section 2.3.3).

In this thesis, event labels are written italic (e.g. breakdown) and state labels are written bold (c.g. Busy).
Furthermore, automata can also be presented graphically. In our graphical representation, states are denoted
by vertices, initial states are denoted by an unconnected incoming arrow and marked states are denoted by
filled vertices. Controllable and uncontrollable events are drawn with solid and dashed edges respectively.

Example 2.1.1

In this example, a small automaton is presented that models a machine. In the initial state, the machine
is idle. In this state, the machine can start processing a product. After some time, the product is finished
and becomes idle again. Furthermore, a breakdown is possible when the machine is processing a product.
If this happens, the machine has to be repaired before it can start processing a product again. Since the
operator is not able to stop the machine when it is busy. nor can he prevent the machine from breaking
down, these events are modelled as uncontrollable events. An automaton that represents this behaviour is:

7= (X Ef X0- X,n). with

Idle. Busy. Down}

start, finished, breakdown, repaired}

X ={
3 ={
Y. ={start, repaired}
3., ={finished, breakdown}
& &(Idle. start) = Busy. £(Busy. finished) = 1dle.
&(Busy. breakdown) = Down, &(Down, repaired) = 1dle
xo =Idle

X ={1dle}

A graphical representation of this automaton is given in Figure 2.3. X

repaired

1
Busy d— ————————————— Down
breakdown

Figure 2.3: The famous small machine model
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2.1.2 Languages

Automata represent languages. The language L(G) generated by G = (X, 32, &, xo, Xy ) contains all finite
sequences of events. A sequence of events forms a string.

Definition 2.2. L(G) = {s € X* : £(xgp,s) is defined }, with X* the Kleene closure of Y, i.c. the
collection of all finite sequences of events taken from X,

The marked language L,, (G) by G is the sct of strings (sequence of events), starting from the initial state
and cnding at a marker state of that corresponding automaton:

Definition 2.3. L,,(G) :={s € L(G) : £(xg,5) € X}

The prefix closure of L denoted by L consists of all prefixes of strings in L:

Definition 2.4. L := {s € X" : (3 < ¥*)[st € L]}.

The natural projection of a language can be found by replacing all events that are in the language 3. but not
in the projection language > by the empty string €:

Definition 2.5. Given ¥ and ¥ € Y. A mapping P : ¥* — ¥'" is called the natural projection with
respect to (3. X)), if

Ple) =

) o ifoeY
(i = { € OIhCYWlSL
(Vso € ¥ = P(s)P(m)

Now we know the basics of automata and languages, some properties of automata are explained that are
needed to understand the synthesis procedure.

2.2 Language properties

In this section, some properties of languages are explained. First, nonblocking is discussed and subse-
quently, controllability is discussed.

2.2.1 Nonblocking

To explain the property nonblocking. first reachability and co-reachability are explained.

A certain state x € X is reachable if it can be reached by a sequence of events from the initial state xg.
An automaton is said to be reachable if all its states in this automaton are reachable. In Figure 2.4a, state
4 is not reachable, since no sequence of events leads to this state, starting from the initial state.

A certain state x € X is co-reachable if a marker state x € X,,, can be rcached from this state. An
automaton is co-reachable if all its states are co-reachable. In Figure 2.44a, state 3 is not co-reachable, since

no sequence of events from this state can lead to a marker state.

An automaton is nonblocking if all states that are reachable, are also co-reachable. The automaton depicted
in Figure 2.4b is nonblocking, since from every reachable state, a marker state can be reached. Note that
this automaton is not reachable, since state 4 cannot be reached.

Definition 2.6 (Nonblocking). G is nonblocking, if L,,(G) = L(G).
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—2——> 0 © >0 —0- -0 ©
0 1 2 3 0 1 2
(a) Blocking automaton (b) Nonblocking automaton

Figure 2.4: Illustration of the nonblocking property

2.2.2  Controllability

Requirement models specify the desired behaviour of the plant that should be matched by adding a su-
pervisor. The supervisor can disable certain controllable events such that the controlled system contains
the desired behaviour. Note that the requirement models could require to prevent certain uncontrollable
cvents from happening. Nevertheless, uncontrollable events cannot be disabled by a supervisor. If this is
the case. controllable events should be disabled which lead to states with uncontrollable events that have to
be disabled. As a result, with the controllability property, no sequence of events exist that can lead to states
that are violating the nonblocking property or certain requirements [Mor07].

A language K is controllable with respect to an automaton (¢ and uncontrollable alphabet 32, if and only
if for all sequences of events possible in both (¢ and /v, after which an uncontrollable event is allowed by
(. holds that it is also allowed by K.

Definition 2.7 (Controllability). A language Iv is controllable w.rt. G and &, if

(KL,)NLG)CK.

Example 2.2.1

In Figure 2.5, two automata are given, automaton G (Figure 2.5a) and a language A represented by au-
tomaton S (Figure 2.5b). Both automata have the same alphabet ¥ = {a.b.c.d} with ¥, = {a.d} and
Y, = {b.c}. We want to check whether the language represented by automaton S is controllable w.r.t.
automaton (.

0 a ] b 2 a 3
—@———>0O-------- >0——
O;\
N
N
N
%
N
e N d
0 a 1 d 2 S
:
—o<______ TROST_____®0 o
b ¢ 4
(a) Automaton ¢ (b) Automaton .S

Figure 2.5: Hlustration of the controllability property

Both automata accept the string aba. However, if b is appended to this string, only automaton (& can accept
this string. Automaton S cannot accept this string, since there is no event b possible after aba. Since b
is uncontrollable, we can draw the conclusion that the language K, represented by automaton S, is not
controllable w.r.t. automaton GG and ¥,,. X

The language of a supervisor that is synthesized with this theory is always controllable w.r.t. the plant
models and the uncontrollable alphabet 32,. This means that whenever a plant automaton allows a given
uncontrollable event to occur, the supervisor automaton also allows that uncontrollable event to occur in its
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corresponding state. If a state is found in which an uncontrollable event is allowed by a plant automaton but
not by the supervisor automaton, this corresponds to a “bad state’, i.e. a state in which the controllability
condition is violated. The supervisor synthesis procedure disables as many controllable events as needed
in the supervisor to ensure that this *bad state’ is not recachable. Note that this could result in an empty
supervisor.

Both properties, nonblocking and controllability are important for synthesizing supervisors. In the remain-
der of this chapter, two frameworks are discussed that allow for supervisor synthesis. The first framework.
the event-based framework of Ramadge-Wonham [Ram87] is explained in the next section.

2.3 Event-based supervisory control

In this section, the event-based supervisory control framework, initiated by Ramadge and Wonham [Ram&7,
Won08], is explained. The event-based synthesis procedure makes use of the automaton product. This au-
tomaton product is cxplained below.

2.3.1 Automaton product

To build a more complex automaton, the product of two automata can be computed. This automaton
product is based on synchronization of shared events. This means that such an event can only happen if
both original automata are able to do that event. A state of the automaton product is a marker state if both
states in the original automata where it is referring to are also marker states.

Definition 2.8. Given automata Gy = (X.2,.&1.X0.1. Xm.1) and G = (X5, Y0, 8. %x0.2. Xim.2). the
automaton product G; x Gy is the automaton (X x X0. 31 U X0. & X &, (X0.1-%X0.2), X1 X Xm.2)
where
(&1(x1.0).x2) ifoe X =¥, and £ (x;,0) is defined
(Xl . {g(Xg., O')) if o € S-_g - 21 and {3()(2., (J') is defined
(&E1(x1,0).&(x0,0)) ifoe )Ny and §(xy,0) and & (x,, o) are defined
undefined  otherwise

&1 X &a((x1.x2).0)

Notice that the automaton product is commutative and associative. An example is given below how the
automaton product works in practice.

Example 2.3.1

In Figures 2.6a and 2.6b, two automata are given. The alphabet of automaton (' is {a, ¢} and the alphabet
of automaton 1 is {D. c¢}. As aresult, ¢ is a shared event between both automata. The resulting automaton
product is given in Figure 2.6¢. The state names of the automaton product refer to the states of the original
automata (G and I{. As can be seen, the event ¢ can only occur if both events b and a are done first.

2.3.2 Supervisor synthesis
Ramadge and Wonham have proven that, for a plant (¢ and a requirement /7, there always exists a supremal

controllable sublanguage K, € L,,(G) N L,, (/1) [Ram87, Won84]. The supervisor represents this
supremal controllable sublanguage K,,. As a consequence, the synthesized supervisor is:

o nonblocking, i.e. from every state of the supervisor, a sequence of event can lead to a marker state.
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0 C 1 0 C 1 1o

(a) Automaton (¢ (b) Automaton /{ (¢) Automaton product

Figure 2.6: Example of an automaton product

e controllable w.r.t. the plant (¢ and 32,,. This means that whenever a plant model accepts an uncon-
trollable event, the supervisor also accepts this uncontrollable event.

o maximally permissive, i.c. the supervisor only disables events to states that do not satisfy the non-
blocking or controllability property or are not allowed due to requirement models. Other behaviour
is always possible.

An example of how supervisor synthesis is performed is given below.

Example 2.3.2

In Figure 2.7, three automata arc given that represent two machines and one automatic guided vehicle
(AGV). The two automata of both machines contain a controllable event start that represents the starting
command and an uncontrollable event finished. The purpose of the AGV is to bring finished products from
the first machine to the second machine and finished products from the second machine to the storage
room. Since it is unknown where the product has to be stored inside the storage room, the event store is
uncontrollable and cannot be controlled by a supervisor.

l starty l starts
o<~ o - >0

finished, finished
(a) Machine | (b) Machine 2
starts l finished->
—selll e g
1 e § O oEmsaas - 2
Jinished store
(c) AGV

Figure 2.7: Plant models of Example 2.3.2

To synthesize a supervisor, the automaton product of these three automata has to be computed. This marks
the so-called legal behaviour of the system. The calculation of this automaton product results in Figure 2.8a.
Note that common events are synchronized.

A supervisor has (o be controllable and nonblocking. To fulfill the nonblocking property, the supervisor
has to ensure that states 6 and 7 are not active since from these states, a marker state cannot be reached.
However, the uncontrollable event finished, cannot be disabled. otherwise Definition 2.7 would be violated.
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l starty Sfinished, starty l starty Jiished,
&——>0------ > ———>0------- >
Ao A 2 3 Ao A 2
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\ \ \ \
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\ \ o \ \
% % starty finished starty % Y
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Ve N | | S Y \
store N store N : finisheds :,/illi.\'/l('dg store N store N :_/inisllt'(/;g
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S Y. v Se Y.
8 starty 9 8 starny 9
(a) Automaton product (b) Resulting supervisor

Figure 2.8: Automaton product and supervisor of Example 2.3.2

As a result, the supervisor has to prevent that state 5 becomes active. Therefore, all controllable events
(starty and starts) that lead to state S are disabled. After this, state 3 is not co-recachable anymore and the
supervisor has to disable the controllable event start; to prevent deadlock. If all these events are disabled,
the resulting automaton fulfills the nonblocking and controllability property and is a proper supervisor. The
resulting supervisor is depicted in Figure 2.8b. DY

A common challenge in synthesizing a supervisor is that the state space of the system grows exponen-
tially in the number of its components. Furthermore, a lot of requirements can also result in a so-called
statc-space explosion. As a result, the tooling may not be able to synthesize a supervisor due to mem-
ory constraints. To tackle this problem, a different supervision architecture can be used, ¢.g. hierarchical
interface-based supervision [Led05] and distributed / modular supervision [Su09b, Su09c]. In this thesis,
only distributed supervision is applicd.

2.3.3 Distributed supervision

With distributed supervision, the control problem is divided into subproblems. One supervisor is synthe-
sized for cach subproblem and they cooperate together as a “team’ to give the complete functionality to the
complete system. Distributed supervision is particularly interesting for two reasons: potentially low syn-
thesis complexity and high flexibility, since a change in the system may result in only a small number of
relevant local supervisors to be updated [Su09c]. In this subsection, we apply two different approaches to
synthesize distributed supervisors, namely coordinated distributed supervision [Su09c] and aggregate dis-
tributed supervision [Su(9b]. Please note that, for simplicity reasons, only distributed supervision with two
distributed supervisors is discussed. For a more general and formal explanation of distributed supervision,
the reader is referred to [Su09¢, Su09b].

In Figure 2.9, the supervision architecture with distributed supervision is depicted [Cas07]. As can be seen,
more local supervisors are synthesized to solve a certain subproblem. Note that these local supervisors do
not need to supervise the complete plant. We assume that the plant spontaneously generates events. Each
supervisor influences the behaviour ol the plant by disabling certain controllable events. In distributed
supervision, all supervisors are coupled with cach other by parallel composition (depicted in Figure 2.9
with [|). In a parallel composition, an event can only be executed if all automata, in which this event is
contained in its language, can execute it simultancously. Thus, automata are synchronized on common
events [Cas07].

Before both approaches for synthesizing distributed supervisors can be explained, another automaton op-
eration has to be explained, namely automaton abstraction.
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Figure 2.9: Distributed supervision

Automaton abstraction

Automaton abstraction [Su08a, SuO8b] can simplify an automaton by removing certain transitions. This
abstracted automaton has the important property that if an automaton abstraction is nonblocking, the orig-
inal automaton is also nonblocking under the following condition. To preserve the blocking property, the
automaton that needs to be abstracted, has to be standardized. To standardize an automaton, an extra event
7 has to be brought in, which is uncontrollable and unobservable. A standardized automaton is an automa-
ton which has an initial state with only 7-transitions from this initial state. Furthermore. this initial state is
not allowed to be marked and no events should lead to the initial state.

Definition 2.9. The automaton & = (X, X {7}.&. x0. X ) is standardized if

X0 (/ Xm

(Vx € X)[&(x.7) # 0 <
(Vo € X)E(x¢p.0) =0
(Vx € X)(Vo € XU {T})

X = Xg]
Xo ¢ {(x,0)

For abstraction, an abstraction alphabet, denoted by ¥/, needs to be specified in order to know which
cvents should be abstracted. At the end. the abstracted automaton is simplified by combining states that
are equivalent under weak bisimilarity. Two states are equivalent under weak bisimilarity if they cannot be
distinguished based on “observable™ behaviour. This “observable™ behaviour is specified by "%,

Definition 2.10. Given (i = (X.X.£.x¢. Xy ). let 3 € S and P : X% — Y* be the natural projection.
A marking weak bisimulation relation on X with respect to .’ is an equivalence relation R € X x X such
that, R € {(x.x') ¢ X x X|x € X,,, = x’ € X,,,} and

(V(x,x") € R)(Vs € Z*)(Vy € £(x.5))(3s" € Zx)P(s) = P(s') A (zy € &(X.s"))(y.y') € R

The largest marking weak bisimulation relation on X with respect to ¥/ is called marking weak bisimilarity
on X with respect to ¥,

An automaton G abstracted with abstraction alphabet ¥/ is denoted with G/ ~y.

Definition 2.11. Given GG = (X. Y., xg. X,,;) and ¥’ C 3. The automaton abstraction of (G with respect
to the marking weak bisimulation ~y: is an automaton G/ =y := (Z. Y. 6. 2¢. Zy, ) where

Z:=X/=yp:i={<x>={x"€ X|(x,x") ex ¥'}|x € X}
Zg =< Xg >
Zy={zcZlzNnX,, # 0}
§:2Z x ¥ — 2% where for any (z,0) € Z x %',
dz,0):={z' € Z|(Ix € z2)(Fu, v’ € (¥ — ¥)")E(x.uou') Nz’ # 0}
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A small example of an automaton abstraction is given below [Su08a].

Example 2.3.3

In Figure 2.10a, automaton G is depicted with ¥ = {7, a, b, ¢}. Note that automaton G is standardized,
since from the initial state, the only outgoing edge is a 7-cvent, the initial state is not marked and no
events lead to the initial state. Suppose our abstraction alphabet is ¥ = {7, ¢}. The resulting abstracted
automaton G/ =2y is depicted in Figure 2.10b. This automaton is constructed by reducing the alphabet of
the original automaton GG to 7 and ¢. Subsequently, for each state in the original automaton is evaluated
which ‘observable’ transitions arc possible. For example, if in state 1 event ¢ occurs, the active state can
be 1,2,3, or 4. This evaluation is done for cach state. Furthermore, the states 1, 2 and 3 of automaton G are
equivalent under weak bisimilarity. These states cannot be distinguished based on ‘observable’ behaviour.
As a consequence, these states are combined and result in state 1 in automaton GG/ ~y:.. Note that 4 is not
equivalent under weak bisimilarity with other states, since state 4 is a marker state and all other states are
no marker states. This automaton is a nondeterministic automaton, since states exist with outgoing edges
with the same event.

0 T 1 ¢ 2
2 2 O—————>
0 7 1 a 2 b g ¢ 4
o o >0 >0 > 1 ¢
T b ¢ 2
(a) Automaton ¢/ (b) Abstracted automaton GG/ =y

Figure 2.10: Example of automaton abstraction

X

Automaton abstraction is necded for synthesizing a distributed supervisor. Below is explained how a coor-
dinated distributed supervisor can be synthesized.

Coordinated distributed supervision

To synthesize a coordinated distributed supervisor, the control problem has to be divided in control sub-
problems. A local supervisor can be synthesized for every control subproblem. It is possible that some
plant models are needed for synthesis of more than one local supervisor. If all local supervisors are syn-
thesized, a nonconflicting check has to be performed, according to [Su08b]. If the local supervisors are
nonconflicting, then the local supervisors form a proper distributed supervisor for the complete control
problem.

However. il the local supervisors are conflicting, a coordinator has to be synthesized which solves this
‘conflict’. This coordinator can be synthesized from abstractions of the local supervisors combined with
its plant model by means of the product operator. In Figure 2.11, a schematic overview is given for the
coordinated supervisor design. In this overview only two local supervisors are synthesized. More local
supervisors can be synthesized in the same way.

First, all local supervisors 5, S, are synthesized out of plant models 7y, (G, and requirement models
. H,. After this, an abstraction of the automaton product of cach local supervisor S; and their plant
models ; is computed with a certain abstraction alphabet /. This abstraction alphabet 32 must contain
7 and shared events. A coordinator S can be synthesized from this abstraction product and, if necessary,
requirement models /1. If a coordinator S is synthesized, the local supervisors in combination with the co-
ordinator are nonconflicting. A multiple-level multiple-coordinator distributed supervisor can be computed
in the same way.

The main difficulty of coordinated distributed supervision is the choice of an abstraction alphabet. There
are no explicit guidelines for constructing an abstraction alphabet, however, so-called boundary events are
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Figure 2.11: Coordinated distributed supervisor design

not likely to be abstracted. Boundary events are shared cvents that are used in more local supervisors.
These events are not likely to be abstracted. since only shared cvents can create a conflict between local
SUpervisors.

Aggregated distributed supervision

tributed supervisors. The key to the success of this approach is the automaton abstraction technique, that
removes irrelevant internal transitions at each synthesis stage so that nonblocking supervisor synthesis can
be carried out on relatively small abstracted models [Su0O9b].

Aggregated distributed supervision uses an aggregative synthesis approach that computes nonblocking dis-

Wy = (G1 x 81)/ =z, u{-}ny

“1

o T |

Figure 2.12: Aggregated distributed supervisor design

In Figure 2.12, a schematic overview is given of the aggregated distributed supervisor design. Please note
that this figure shows only the design of a distributed supervisor design with two local supervisors.

First, a local supervisor S| can be computed from plant models ;| and requirement models I/,. Again,
an abstraction alphabet Y2} has to be constructed (which contains 7 and shared events) and an automaton
abstraction nceds to be computed from the automaton product of the plant models GG and the local super-
visor S7. The resulting automaton abstraction 117} is used as a part of the plant model in the synthesis of
the subsequent local supervisor. An aggregated distributed supervisor with more than two local supervisors
can be computed in the same way. This algorithm always terminates and [Su09b] proofs that the local su-
pervisors are a nonblocking distributed supervisor of the complete plant G under all requirements if every
local supervisor is nonempty.

The main difficulty of this approach is the order of the plant models for which a local supervisor is synthe-
sized, such that it yields a solution. In [Su09b], an example of this approach is given for a linear cluster
tool. This lincar cluster can be divided into four submodules and subsequently, the order of synthesis of
the local supervisors is found easily. However, more complex manufacturing systems may not have such a
structured setting and, as a result. it may be difficult to get a good order of components.

With distributed supervision, we conclude the section where the event-based supervisory control framework
is explained. In the next section, the other framework, i.c. the state-based supervisory control framework
is explained.
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2.4 State-based supervisory control

The state-based framework of Ma and Wonham [Ma05], is an extension of the original event-based frame-
work. This framework uses, similar to the event-based framework, discrete-event systems for describing
certain behaviour of the environment. However, a difference between both frameworks is that in the state-
based framework, every discrete-event system belongs to a state tree structure (STS), a formalism that is
computationally efficient for monolithic supervisor synthesis [Cai08]. To illustrate this, [Ma05] estimates
that, based on the STS formalism, optimal nonblocking supervisory control design can be performed for
systems of state size 10?* and higher.

2.4.1 Plant models

The entire state space of a system can be depicted by a state tree. State trees make use of different types of
states:

e simple states: states with no child states.

e AND superstates: states with child states and represent a cluster of parallel states. That is, for the
plant to be in the AND superstate, it must be at all child states simultaneously. In other words, AND
superstate model parallel processes.

e OR superstates: states with child states and represent a set of exclusive states. That is, for the plant
to be in the OR superstate, it must be at exactly one state of the child states.

An example of a state tree is given below.

Example 2.4.1

Consider the machine model of Example 2.1.1. Imagine we have two of these machines working in parallel.
The complete state space of this system can be modelled by a state tree as depicted in Figure 2.13. This
state tree consists of one AND superstate (System), which consists of two OR superstates (M1 and M2).
These OR superstates represent machine M1 and M2 which work in parallel. Each OR superstate consists
of three simple states, which represent three states of the machine model, Idle, Busy and Down. Notc that
cach ol these states is prefixed with the name ol the machine, e.g. M1 or M2, in order to distinguish all
states of both machines. Since cach machine can be in one state simultancously, each machine is modelled
as onc OR superstate. X

System

/\

M1 X M2

/\ /\

Ml1_lIdle ;) MI1_Busy (J M1_Down M2 _Idle ) M2_Busy ;) M2_Down

Figure 2.13: State tree of Example 2.4.1

In this thesis, only one type of state tree is used. This type of state tree consists of 3 levels. On the
top level, we have one AND superstate. This AND superstate consists of one or more OR superstates.
An OR superstate consists of simple states. Furthermore, the simple states of two OR superstates are
always disjoint. The transition relation between simple states can be defined with holons, a local transition
structure that describes the inner dynamics of OR components.
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For an OR superstate, a holon represents the transitions between the child states of this superstate. In
essence, a holon is a generalized automaton. Thus a set of system states organized in a state tree, equipped
with holons describing the system dynamics. Since we are using holons the same way as automata in this
project, we call holons from now on automata.

Example 2.4.2

In Figure 2.14, two automata arc depicted that represent the behaviour of the two machines of the state
tree depicted in Figure 2.13. As we can see, the behaviour of each OR superstate is described with one
automaton and the states of each automaton correspond with the child states of the corresponding OR
superstate,

!
M1 _Busy &~

MI1 Down

> M2_Down
ml _breakdown m2_breakdown

(a) Machine | (b) Machine 2

Figure 2.14: The automata of both machines of the state tree of Figure 2.13

2.4.2 Requirement models

Unlike the event-based framework, requirements can also be formulated in the state-based framework as
conditions over states. Note that in the event-based framework, requirements can only be formulated by
automata which specify sequences of events. The state-based framework allows to express requirements in
the following three ways:

e Type |: Mutual state exclusion. This type of requirement specifies which set of states may not be
active simultancously.

e Type 2: State-transition exclusion. This type of requirement specifies that a transition is not allowed
if a certain set of states is active.

e Type 3: Memory module. This type of requirement is an ordinary event-based requirement. specified
with an automaton.

[Jac09] has extended the allowed expressions of the state-based framework. Instead of the two state-based
expressions (type 1 and type 2), three generalized state-based expressions are proposed. These generalized
state-based expressions are described as logical expressions, based on propositional logic. We assume that
the reader knows the basics of propositional logic. More information about propositional logic can be
found in [Man85]. These expressions are converted to type | and type 2 expressions. In this thesis only
the syntax is given. For a formal proof of the conversion, the reader is referred to [Jac09]. Before the
three generalized state-based expressions are presented we introduce the used operators and predicates of
[Jac09] in Table 2.1.

The first general state-based expression is a state-formula SF. This allows us to formulate any logical
expression of state predicates, that must be satisfied by the plant under supervision.
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Table 2.1: The operators and predicates for the used logical expressions

Predicate  Description

x| True if and only if the plant under
Operator  Description supervision is in state ‘x’.
A Conjunction (AND) + I True if and only if at lcast one of
Y, Disjunction (OR) the cvents in the set of events E 1s
- Negation (NOT) cnabled by the supervisor.
= Implication - E True if and only if each event in

the set of events E is disabled by
the supervisor.

(a) Operators

(b) Predicates

Definition 2.12. A state-formula SF is defined as follows:

Op = V|A| =,
Prio=x]|,

SF ::= Pr| —~SF|SF Op SF.

Example 2.4.3

Reconsider Example 2.4.1, where the plant model is given of two machines that work in parallel. The
automata that specify the internal structure of the OR superstates M1 and M2 is given in Figure 2.3, but
now with prefixes M1 and M2 for all state names and prefixes m/ and m2 for all event names. In this
example, a logical expression is made that specifies that both machine may not be busy at the same time.
i.e. -~ M1_Busy | A M2_Busy |. K

The next genceralized requirement expression allows us to formulate any logical expression over state pred-
icates to imply that a sct of events must be disabled by the supervisor if the plant under supervision is in a
state in which the state-formula is true.

Definition 2.13. A gencralized state-transition exclusion (GST) is defined as
GST ::= (SF =+ E),

Example 2.4.4

Reconsider the previous example. The situation of both machines being busy can also be prevented with
disabling the event to start one machine if the other is busy. This can be specified by the following state-
transition exclusions M1_Busy | = — { m2_start } and M2_Busy | = — { ml_start }. X

The last expression states that if at least one of the events in set E is enabled, the state-formula must be
correct.

Definition 2.14. A gencralized transition-state formula (GTS) is defined as
GTS := (— E = SF),

Example 2.4.5

Reconsider the previous examples. The situation of both machines being busy can also be prevented if a
specification assures that il a machine is started, the other may not be busy. This can be specified by the
following transition state-formula: — { m/_start } = —M2_Busy | and — { m2_start } = — M1_Busy |.
X
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2.4.3 Supervisor synthesis

The state-based framework has a very powerful synthesis procedure applicable to systems of state size
10%* and higher. The reason for this powerful computation power is that the state-based framework does
not perform the reachability analysis. The controllability condition is modified into a weak controllability
condition, meaning that reachability is no longer a property of the controllability analysis.

The outcome of the synthesis is a state feedback control (SFBC) map. This means that feedback is given
based on the state of the system. This SFBC is encoded with binary decision diagrams (BDD). A BDD is
an acyclic directed graph which represents a boolean function, i.e. the outcome can be cither 0 or 1. The
supervisor synthesis produces control functions (encoded as a BDD) for each controllable event o € X..
These control functions f, are evaluated with the state of the system. The outcome can be either 0, which
means this event is disabled by the supervisor, or 1, which means that the event is enabled by the supervisor.

Example 2.4.6

Consider Example 2.4.1, where a state tree is constructed, which represents the state space of two machines
that are working in parallel. The transition structures of the OR superstates M1 and M2 are specified by
the automata depicted in Figure 2.14. However, all events of these automata are prefixed with the machine
number (c.g. mli_idle, m2_idle, ctc.), such that the languages of both automata are disjoint. Assume
that both machines are not allowed to be busy simultancously. In this example, a state-based supervisor
is synthesized that prevents the machines to be busy simultancously. The mutual exclusion requirement
can be formulated with the state-formula — (M1_Busy | A M2_Busy |). The synthesis produces control
functions, defined by BDDs, for all controllable events. Two relevant BDDs are given in Figure 2.15.

(a) BDD of m1_start (b)y BDD of m2_start

Figure 2.15: BDD functions of two controllable events

In Figure 2.15a, the control function of the controllable event m/_start is depicted, encoded as a BDD. This
BDD contains four nodes and edges between these nodes. True and false edges are depicted with solid and
dashed lines, respectively. To evaluate a BDD, nodes have to be evaluated. First, the initial node at the top
is evaluated. If M2_Down is active, i.e. if machine 2 is down, the true edge is followed to the next node.
Otherwise, the false edge is followed. The BDD evaluation terminates when node O or | is reached. If
the BDD cvaluation has 0 as outcome, the controllable event m/_start is disabled by the supervisor. If the
BDD evaluation has | as outcome, the controllable event m2_start is enabled by the supervisor. Note that
the only path to 0 is if machine 2 is neither down nor idle, i.e. the machine is busy. This is according to the
specification, machine 1 may not be started when machine 2 is busy. The BDD for the controllable event
m2_start can be evaluated in the same way. X

Note that this control map is slightly different than in the event-based framework. The event-based frame-
work uses automata to store the complete closed-loop language. As a result, a huge amount of memory is
nceded. The state-based framework uses a state feedback control map, which is encoded cfficiently using



22 Chapter 2. Supervisory control theory

binary decision diagrams (BDD). In other words, a state-based supervisor gives feedback based on the state
of the system and an event-based supervisor gives feedback based on the language of a system.

Now we have explained both supervisory control frameworks, we can discuss the integration of these
supervisory frameworks in the model-based engincering process. This is explained in the next section.

2.5 Synthesis-based engineering

To integrate supervisory control synthesis in the model-based engineering process, the system has to be
decomposed in a different manner as in the model-based enginecring process. Let us decompose the
system into a plant P and a supervisor S. Note that this clear separation between plant and supervisor,
is mostly not evident in traditional engineering. Although supervisory requirements are present, they are
mostly intermixed with regulative control requirements.

Figure 2.16 gives us a graphical representation of this framework [Sch09]. S/ P means a plant P under

supervision of a supervisor .S.
N ; ;
- lel synthesize ealize
mode ‘O synthesize J\[S reahze ZH

define

integrate integrate
' . v v
define R design
e e T e - (s 1)
e )
mntegrate integrate

define

L_» Rp design I)}‘§ model
-

realize

Zp

Figure 2.16: Supervisory controller synthesis framework

First, the requirements Rg,p of the controlled system are defined. After this, a design Dy, p of the system
is made and decomposed into a uncontrolled plant and a supervisory controller. After decomposition we
can set up the requirements of the supervisor Rg and the requirements of the uncontrolled plant Rp.
The requirements Rg of the supervisor are formally modelled resulting in a model A/, of the control
requirements. From the plant requirements R p, a design D p and one or more models A/p can be made.
A discrete-event model can be used to synthesize a supervisor. The model of the supervisor Afg can be
generated with supervisory control theory, with as input the discrete-event model of the plant and the model
of the control requirements A . These plant models can also be used to simulate the behaviour of the
uncontrolled plant under supervision of the model of the supervisor. After all models are derived, the
analysis techniques of the model-based engineering paradigm can be used to test the system in an early
stage of the system development process.

This means that in synthesis-based engineering, properties which are checked afterwards in traditional and
model-based engineering, are used as input for generation of a design of a component that is correct by
construction. As a consequence, the design and implementation do not need to be tested against the require-
ments, i.e. the verification can be eliminated. This changes the development process [rom implementing
and debugging the design and the implementation, to designing and debugging the requirements.

Advantage of this integration is that in case of changes in the required functionality only the control require-
ments M have to be updated and the uncontrolled plant A/ p might change. The supervisor is regenerated
and correct w.r.t. the requirements by construction. In other words, the system is more evolvable.

Note that with synthesis-based engineering, still no formal link exists between the plant models and the
plant realization. The plant model allows us to discover errors in an early stage, but the realization is
usually made informally.
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2.6 Toolchain

The CIF (Compositional Interchange Format) language [BeeO8, BeeO7] has been developed to provide a
generic modelling formalism and to establish inter-operability of a wide range of tools by means of model
transformations to and from CIF. The CIF language is based on hybrid automata. The language supports
hierarchy and modularity to deal with large scale systems, by providing operators for model re-use, par-
allel models and nested models. Processes can interact by shared variables, by communication via shared
channels and by synchronization by means of shared actions. Furthermore, arbitrary differential algebraic
equations are supported, for the modelling of continuous time behaviour. The CIF-toolset! provides tools
for simulation and translations to various verilication tools. Morceover, it can be used in hardware-in-the-
loop simulations and control prototyping. Furthermore, it facilitates code generation for various platforms.

N 7N ™ ]
= SR = SRt~ SCST [—=| Sl }—=| CODEGEN s —_—
| N o7 L_‘_.J Mo | PR
‘ - (——
|

I v
B/ PR/ Py | L ( ) ’
S e [SIMULATOR D 73 blMUl,/\'l(lR“\'] iSIMI'l.!\IOKRT (CONTROLLERRT|
. y [} "
| S 1 | ¢
= PR b=Pppab—At—
| N 0¥
=Py
N

Figure 2.17: Toolchain based on CIF

In Figure 2.17, a toolchain, based on CIF, is depicted that allows for synthesis-based engineering [Sch09].
In this figure, tools are depicted in blue. models with circles and realizations with rectangles. The re-
quirements and design of the plant P under supervision of a supervisor S are documented with S/ P and
S/Pp, and Sk and Py denote the requirement documents of the plant and supervisor, respectively. The
uncontrolled discrete-cvent behaviour of the plant are formally defined by means of automata, resulting in
a CIF model Pp;.cif. The control requirements Sy are formally defined by means of automata or logical
expressions, resulting in a CIF model Sj;.cif. From these models, a supervisor can be synthesized with a
supervisor control synthesis tool (SCST) and translated to the CIF language, resulting in a model of the
supervisor S.cif. Two tools are used for supervisor synthesis and translations exist to and from these two
uscd file formats:

e Supervisor Synthesis Package® (SSP) for the event-based supervisory control framework.

e Ma-Wonham's NBC tool” for the state-based supervisory control framework.

The CIF simulator can be used to simulate the model of the supervisor S.cif together with the discrete
event model of the plant P.cif in order to analyse its behaviour with respect to the control requirements.
Furthermore, the discrete-cvent model of the plant can be replaced by the hybrid CIF model of the plant
Pyyy-.cif. The model of the plant can also be replaced by the real hardware in order to test if the real
hardware corresponds with the models. If this does not correspond, the real hardware or the models could
be inadequate. The model of the supervisor can also be used for code generation (CODEGEN) and it can
be implemented on a real-time control platform which is connected to the actual hardware of the plant.

This section concludes the explanation of the supervisory control theory and supporting tools. Two frame-
works are discussed that allow for supervisor synthesis. Furthermore, the integration of supervisory control

'Downloadable at http://dev.se.wtb.tue.nl/projects/chi-tooling/downloads
2Downloadable at http: //dev . ¢
‘Downloadable at http://se.wtb.tue.nl/sewiki/wonham/s

.wtb.tue.nl/projects/chi-tooling/downloads
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synthesis to the engineering process is explained in Section 2.5 and the toolchain that supports the supervi-
sory controller design is presented in Section 2.6. In the next chapter, supervisory control theory is applied
to an industrial case in order to obtain a model of the supervisor.



Chapter 3

Case study: the multimover

In the previous chapter, the theory is explained that is needed for synthesizing supervisors. In this chapter,
supervisory control theory is applied to an industrial case of NBG Industrial Automation.

In the amusement park business there is a demand for new rides that diverge from the conventional roller
coaster or ferris wheel. A relatively new concept is the multimover: a vehicle that drives around while
following an invisible track. The track layout is defined by an underground clectrified wire that can be
detected by the vehicle. This offers the possibility for revolutionary new ride concepts with crossings,
switches, junctions and driving into and out of dead-end tracks.

Vehicles can interact with cach other in such a way that the passengers have influence on the ride expe-
rience. for example with target shooting systems and similar competitive features. By gaining a certain
score, new scenes can be unlocked. This interactivity and the fact that the passengers cannot sce the actual
track makes the ride more exciting because of the unexpectedness of the vehicle’s actions. A picture of a
multimover is given in Figure 3.1.

Figure 3.1: The multimover

3.1 Functionality

Multimovers are Automated Guided Vehicles that can follow an electrical wire integrated in the floor. This
track wire produces a magnetic field that can be measured by track sensors. Next to the track wire, (loor
codes are positioned, that can be read by means of a metal detector. These floor codes give additional
information about the track, e.g. the start of a certain scene program, a switch, junction or a dead-end. The

o
W
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scene program, which is read by the scene program handler, defines when the vehicle should ride at what
speed, when it should stop, rotate, play music and in which direction the vehicle should move (e.g. at a
junction).

An operator is responsible for powering up the vehicle and deploying it into the ride manually. The operator
also controls the dispatching of the vehicles in the passenger board and unboard area. The vehicle can
receive messages from Ride Control. Ride Control coordinates all vehicles and sends start/stop commands
to these vehicles. These messages are sent with wireless signals or by means of the track wire. Multimovers
are not able to communicate with other vehicles.

Safety is an important aspect of this vehicle. Therefore, several sensors are integrated in this vehicle
to avoid collisions. First, proximity sensors are integrated in the vehicle to avoid physical contact with
other objects. We can distinguish two types of proximity sensors. A long proximity sensor that senses
obstacles in the vicinity of six meter and a short proximity sensor that senses obstacles in the vicinity of
one meter. The vehicle should ride slower when an object is only detected by a long proximity sensor and
stop when an object is detected by the short proximity sensor. This stop is not an emergency stop. When
the short proximity sensor does not detect an object any more, the vehicle should start riding automatically.
Secondly, a bumper switch is mounted on the vehicle that can detect physical contact with other objects.
The vehicle should respond to this with an emergency stop. If an emergency stop is declared, an operator
has to deploy the vehicle back into the ride. Finally, an emergency stop has to be declared when the battery
power is too low or when a system failure occurs. The vehicle should not become active when the bumper
switch is still active or the battery power is still too low.

3.1.1 Supervisory control requirement

The functionality that is described above, is the functionality of the closed-loop system e.g. the hardware
and the controller software. Before the design of the supervisory controller can be made, requirements
of the supervisory controller should be set up. An overview of the control architecture with supervisory
control is given in Figure 3.2.

BErEsay | Supervisor |
control
\_ 1 A A A
| | | |
¥ 1 L2 2
Resource control ‘ LED RC ] ‘ Button RC ] i Motor RCT [ ... RC ]
Transducers l LED | | Button l l Motor l | e [

Figure 3.2: The control architecture

At the Towest level, we have the components (transducers) ol the multimover. In this figure, a LED, a
button and a motor are depicted. The next level is the level of resource control. This resource control
contains feedback control of these individual components, e¢.g. a PID-controller for a motor. The upper
level, supervisory control, coordinates the discrete behaviour of all components. The main requirement of
this supervisory controller is safety. This supervisory control requirement has three aspects:

e Proximity handling The supervisory controller has to assure that the multimover does not collide
with other vehicles or obstacles. To this end, proximity sensors are integrated at the front and back
which can detect an obstacle if it is within a certain range of the multimover. To avoid collisions, the
multimover should drive with a safe speed and stop if the obstacle is too close to it.

¢ Emergency handling The system should stop immediately and should be powered off when a colli-
sion occurs. To detect collisions, a bumper switch is mounted on the multimover. The same applies
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when the battery level is too low. The LED interface should give a signal when an emergency stop
has been performed. The multimover should be deployed back into the ride by an operator manually.

e Error handling When a system failure occurs (e.g. a malfunction of a motor), the system should
stop immediately and should be powered off to prevent any further wrong behaviour. The LED
interface should give a signal that an emergency stop has been performed. The multimover should
be deployed back into the ride by an operator manually.

3.1.2 Components

A graphical overview of components that are relevant to this project and their states is given in Figure 3.3.

User Interface
(3 11Ds 3 buttons) (o ofT)

Scene Program Handler
(on ofh)

Steer Motor
(on ofh)

Drive Motor

ton ofl stoppimng)

Ride Control

(slart stop)

Battery Bumper Switch
tempty ( ) {pressed released)
4 Proximity Sensors

factve mactne)

Figure 3.3: Relevant components of the multimover

3.2 Plant models

The plant models are models of the actual components and their low-level control. These models are needed
to fulfill the supervisory requirement. which is stated in the previous section. The control architecture of
the multimover is given in Figure 3.2. The plant models represent the actual behaviour of the transduc-
ers and their resource control. Within supervisory control theory, plant models are defined by automata.
Each transducer and its resource control are modelled by one automaton. Automata consist of states and
transitions labeled by (controllable and uncontrollable) events. In the following list. the representations
of the states and events of plant models are given. Unfortunately, we cannot generalize these modelling
guidelines. since they are case specific.

o States of the plant models represent all relevant states of cach resource (c.g. on, off, empty, active,
etc.).

e Controllable events represent relevant discrete commands/tasks (function calls) to the resource con-
trol (e.g. enable, disable, etc.). These actions can be controlled by the supervisory controller.
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e Uncontrollable events represent messages that are sent from the resource control to the supervisory
controller (c.g. a failure notification, a sensor event, etc.). These events cannot be controlled by the
supervisory controller.

When models are made, assumptions have to be made. The assumptions that are made in our models arc
listed below.

Assumption 3.1. The plant modcls arec made with the assumption that the resource control of the multi-
mover is working correctly. This means that if a command is given, the command is carried out correctly.
For example, if a drive motor is being enabled, we assume that the resource control of the drive motor
switches on the drive motor.

Assumption 3.2. The communication between the plant and the supervisor is infinite fast. This means
that if an event occurs at the plant (e.g a button is pressed), the supervisor is synchronized immediately.
Furthermore, this assumption means that events cannot overtake each other and cannot get lost.

In this section, the components depicted in Figure 3.3 are divided into two groups of components, namely
the buttons and sensors that monitor the state or position of a certain part of the multimover, and the actua-
tors, which actuate a certain part of the multimover. Furthermore, a plant model is introduced that models
the state of the multimover, since a lot of control requirements are based on the state of the multimover.
The cvent and state names that are presented in the remainder of this section are simplified, i.e. without
prefixes, for clarity reasons. All used event and state names are disjoint. For a complete overview of the
plant models, the author refers to Appendix A.

3.2.1 Buttons, sensors and Ride Control

In this subsection, the components are discussed that can detect a certain change of state of the multimover.
First of all, three buttons are integrated in the multimover and are used to reset the vehicle and to deploy the
vehicle into the ride. Moreover, several sensors are integrated in the multimover to detect certain changes in
the outside world. Proximity sensors can detect the proximity of an obstacle. A bumper switch can detect
physical contact with an obstacle. Furthermore, a battery meter is integrated in the vehicle to measure the
battery level of the multimover.

; active X stop
Inactive o ——-—__ Active o i(dn ___________ Stop
- T~ ’ i It =G e
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T nactive start
(a) Automaton of a sensor (b) Automaton of Ride Control

Figure 3.4: Automata of input components

Each button and sensor is modelled by one automaton. These automata have all the same structure and
an example is depicted in Figure 3.4a. A sensor can generate two events: active and inactive. Each event
labels the transition from one state to another, e.g. if a sensor becomes active, the event active is generated.
The automaton representing a button have corresponding names, ¢.g. on and off.

b=

Ride Control can send a *general start/stop’ command to all the multimovers to start or stop all the multi-
movers in an attraction. Ride Control sends these commands constantly with a certain interval. Therefore, it
is possible that the same command is sent over and over again. This behaviour is captured by the automaton
depicted in Figure 3.4b.

Note that these events of the automata presented in this subsection are all uncontrollable events, since the
supervisor cannot prevent them from happening.
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3.2.2 Actuators

Several actuators are integrated in the multimover that actuate a certain component of the multimover. In-
terface LEDs are used to show an operator the actual state of the multimover. Furthermore, the drive motor
moves the multimover and the steer motor steers the multimover in the direction of the wire integrated in
the floor. Lastly, the scene program handler reads the scene program and sends commands to the rotation
device, drive motor and audio device.
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Figure 3.5: Automata of actuators

In Figure 3.5a, the automaton of the steer motor is given. The relevant states of the steer motor are On and
Off. The actuation signals that are important for the supervisory controller are switching on the steer motor
(enable) and switching off (disable). This motor contains a hardware safety if the motor is short-circuited
or has a hardware failure. If this hardware safety is activated (error), the motor is automatically switched
off. Since the hardware safety can also be activated when the motor is switched off and still slowing down,
the event error is selflooped at state Off.

All LEDs of the multimover are modelled by the automaton depicted in Figure 3.5b. The LEDs of the
multimover can be in two states: On and Off. The events on and off represent the function call of switching
on and off of the LED.

In Figure 3.5c. the automaton of the drive motor is given. This automaton is basically the same as the
automaton of the steer motor. However, it contains an extra state Stopping, since a control requirement of
the multimover is that the steering motor may not be switched off if the multimover is still moving (e.g.
stopping), for safety reasons. Therefore, an extra event stop is introduced that stops the drive motor. If
the drive motor has stopped, the uncontrollable event disable is done and the drive motor is switched off.
Because we want to be able to set the maximum speed of the drive motor, the events fiv, fwslow, fuwstop,
bw, bwslow and bwstop are introduced. Also, the drive motor contains a hardware safety when the motor
is short-circuited or has a hardware failure. The motor is automatically switched off when this hardware
safety is activated. This is modelled with the event error.

Note that we could model the function call to switch on the steer motor if it is already on. However, since we
assume that the resource control is working correctly, we have not modelled this behaviour. Furthermore,
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if all possible function calls are modelled, one can end up with unnecessary complex plant models.

3.2.3 Multimover model

The multimover itself can also be in three states, namely Emergency, Reset and Active. This can be
modelled with an automaton as depicted in Figure 3.6. Emergency denotes the state of the multimover that
all components are switched oft and the multimover has to be resct manually by pushing the reset button.
If the reset button is pushed, the multimover should enter the state Reset. From this state, the multimover
can be deployed into the ride (Active) or can switch back to Emergency (if an emergency event occurs).
Since a lot of control requirements are based on the state of the multimover, this automaton is introduced
for modelling convenience.

Emergency
—So—

emergency

reset

emergency .
aclive

Active

Figure 3.6: Plant model of the multimover

3.2.4 Plant-modelling aspects

Making models of manufacturing systems is a craftsmanship. The original supervisory control theory does
not give any information how to model real life systems. In this subsection, some considerations about
making discrete models of components are discussed.

Uncontrolled plant vs. partially controlled plant

The plant components can be modelled in different ways. The components can be modelled with some
behaviour already restricted (partially controlled), or the physically possible behaviour with no restrictions
can be modelled. To give an example of a partially controlled plant, in Figure 3.7, a plant model is depicted
that represents the drive motor, steer motor and scene program handler in one automaton. In the beginning,
this automaton was suitable to model the behaviour of the multimover. However, this automaton already
has some control incorporated in the behaviour, since it is only possible to switch on and off the drive
motor, steer motor and scene program handler simultaneously. Furthermore, this plant model assumes that
a change of direction initiated by the scene program (mi_chdir), is carried out by the drive motor immedi-
ately. To get a better understanding of what behaviour is uncontrolled and what is desired (controlled), the
automaton of Figure 3.7 is rejected and three new automata are designed for the steer motor, drive motor
and scene program handler.

In the end, we have chosen for plant models that represent the uncontrolled behaviour of cach component.
In this way, plant models are obtained that match exactly the behaviour of the interface of the components.
Decomposing the system in an uncontrolled plant and a supervisor gives a clear view of the system’s
functionality. Nevertheless, the reader has to bear in mind that the supervisor synthesis is slightly more
difficult with these unrestricted plant automata. since more behaviour has to be restricted by means of
requirement models. However, with distributed supervision, this aspect does not have to cause a problem.
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Figure 3.7: An automaton representing three components

Which way of modelling is more suitable depends on the goal: e.g. for the purpose of implementation or
not.

Marked behaviour

Marker states are used to describe completed tasks. They represent a set of states which we always want to
be reachable by any behaviour [MalO3]. If more states in the same plant models are marked. one can not
assure that a certain marker state set is reachable. This is illustrated with an example.

Example 3.2.1

Consider the automaton in Figure 3.8a. For the sake of convenience, all events are controllable. In this
automaton we have two marked states, state 0 and 3, since these states represent a completed task (e.g. reset
and active). However, the nonblocking property assures that a marked state always is reachable. but not
necessarily all of them. If state 2 is active in Figure 3.8a, then marker state 0 is not reachable anymore. In
other words, if more marker states are reachable, one cannot assure that a certain marker state is recachable.

Now consider Figure 3.8b. In this automaton. only one state is marked. If we synthesize a supervisor for
this automaton, the resulting supervisor would disable event /3 from state | to 2, since state 2 and 3 are not
co-reachable. Since only one state is marked, one can always assure that this state is reachable. X

In the model of the multimover, only those states are marker states, that are active if the multimover is reset
and no sensors are active. Since only these states are marker states, the resulting supervisor always assures
that the multimover can be reset.
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Figure 3.8: Marked behaviour

3.3 Modules

A divide-and-conquer strategy is often applied to get a good overview of control problems. This means
that the control problem is cut into pieces and these smaller control problems are solved. We can divide the
control problem of the multimover into five subproblems:

e LED actuation An operator must be able by looking at the Interface LEDs to check in which state the
multimover is. This means that the states of the LEDs represent the current state of the multimover. It
is a task of the supervisor to actuate the LEDs according to the state of the multimover. Which LED
should be on and which should be off in every state of the multimover is summarized in Table 3.1.

Table 3.1: Active LEDs for cach state

Emergency Reset Active

ResetLED On Off Off
Forward LED Off On Off
BackwardLED Off On Off

e Motor actuation The drive motor, stcer motor and scene program handler have to be switched on
and off according to the state of the multimover. If the multimover is in the state Active. all motors
can be switched on. If the multimover is in the state Reset or Emergency, all motors have to be
switched off.

e Button handling The user interface of the multimover contains three buttons. First, a Reset button
is used to reset the vehicle if the multimover is active and deployed into the ride or is in the state
Emergency. Furthermore, a forward button and a backward button is used to deploy the vehicle into
a certain direction. A control task of the supervisor is to enter the corresponding state when a button
is pushed.

e Proximity / Ride Control handling Four proximity scnsors are integrated in the multimover to
detect obstacles that are in the vicinity of the multimover. Two proximity sensors are mounted on
each side of the multimover. On each side, we can distinguish two types of proximity sensors. A
long proximity sensor senses obstacles in the vicinity of six meter. If a long proximity sensor is
sensing an object in the traveling direction, the multimover should react on this with slowing down
to a safe driving speed. Furthermore, a short proximity sensor is integrated that senses obstacles in
the vicinity of one meter. If an obstacle is detected by the short proximity sensor, the multimover
should stop in order to prevent a collision.

As already told, Ride Control can send a “general start/stop” command to all multimovers in order to
stop and start the complete ride. Since a "general stop’ command of Ride Control can be considered
as a short proximity stop, we can see this as the same control task as proximity handling. If Ride



W
(98]

3.4. Requirement models

Control is sending a ‘general start’ command again, the multimover should start riding automatically
(depending of the state of the proximity scnsors in the current driving direction).

The control task of the supervisor is to slow down or stop the multimover if a proximity sensor is
activated in the travelling direction of the multimover or Ride Control is sending a ‘general stop’
command.

o Emergency handling In order to guarantee the safety of the passengers, the multimover should
be deactivated immediately when an emergency situation occurs. We can distinguish the following
emergency situations:

— Battery power too low
— Bumper switch collision detection
— Drive motor driver failures
— Drive motor not connected or defect
— Wire signal lost
— Steering motor not connected or defect
— Steering motor driver failures
It should not be possible to reset the multimover if the bumper switch is still activated or the bat-

tery power is still too low. A control task of the supervisor is to enter the Emergency state of the
multimover when an emergency situation occurs.

Now we have divided the control problem into subproblems, we call the control part that solves cach
problem a control module. In the next section, requirement models are presented that are used to synthesize
a supervisor for the multimover control problem.

3.4 Requirement models

In this section, requirement models are discussed that give the desired functionality to the multimover.
For the sake of simplicity, only the requirement models of the emergency handling control module are
discussed. For an explanation of all requirement models, the reader is referred to Appendix A. This also
holds for an explanation of all used event names and state names.

As already mentioned in the previous chapter, requirements have to be modelled by automata in the event-
based approach. The state-based approach allows the user to define requirements also by logical specifica-
tions. This section is divided into two subscctions to explain the requirements of both approaches.

3.4.1 Event-based model

In the event-based supervisory control framework, requirements can only be modelled with automata. The
requirements of the emergency control handling module are depicted in Figure 3.9.

The first requirement, depicted in Figure 3.9a. specifies that the events mm_active and mm_reset are only
allowed to take place if the bumper switch is not activated. This requirement can be modelled by taking
the plant automaton of the bumper switch and adding a self-loop with events mm_active and mm_reset at
the state that represents the bumper switch not being activated.

The second requirement, depicted in Figure 3.9b. specifies that the events mm_active and mm_reset are
only allowed to take place if the power level of the battery is sufficient. Again, this requirement can be
modelled by taking the plant automaton of the battery and by adding a self-loop with events mm_active
and mm_reset at the state that represents the battery being not empty.
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The last requirement, depicted in Figure 3.9¢, specifies when the event mm_emergency is allowed to occur.
The event mm_emergency is only allowed to occur after activation of the bumper switch (bs_press), the
power level of the battery becoming too low (ba_empty), a parse error of the scene program (sh_error), a
failure of the drive motor (dm_error) or a failure of the stecring motor (sm_error). If one (or a sequence) of
these ‘emergency events’ takes place, the requirement allows the occurrence of the event mm_emergency.
If the event nmun_reset takes place, occurrence of the event mm_emergency is not allowed. Note that this re-
quirement only puts restrictions on the occurrence of the event mm_emergency, all other events are allowed
to take place in any order without restrictions.

l bs_press l ba_empty
2 - s =SS
- __ _.-=0 - __ -
bs_release ba_ok
nun_reset mm_reset
mm_active mm_active
(a) (b)

sm_error
dm_error

sm_error sh_error
dm_error ba_empty
sh_error bs_press
ba_empry 4,
bs_press Fo1
l _pre |\ h
—————————— ¥
( ) mim_reset
m_reset Mm_emergency
(c)

Figure 3.9: Requirement models of the emergency module

3.4.2 State-based model

Within the state-based supervisory control framework, requirements can be modelled by logical expressions
and automata.

Logical expressions

[Jac09] proposes three generalized state-based expressions, described as logical expressions based on
propositional logic. In the Emergency handling control module, we are only using one type of general-
ized state-based expression, namely a generalized transition-state formula:

— { mm_reset, mm_active } =BS_Released | ABA_OK |

This generalized transition-state formula specifies that the multimover may only switch to active or reset
(mm_active or mm_reset) if the battery level is ok (BA_OK) and the bumper switch is released (BS_Released).

Automata

In the state-based model of the multimover, one memory is used as a requirement in the Emergency han-
dling control module. This memory is the automaton depicted in Figure 3.9c. As already described in the
previous subsection, this automaton tracks the sequence of 'emergency events’ and the event mm_reset and
determines when the event mm_emergency is allowed to occur, based on the previous sequence of events.
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3.5 Supervisor synthesis

Now all models are explained, we can synthesize a supervisor for the posed control problem of the multi-
mover. This section is divided into two subsections. The first subsection evaluates the supervisors synthe-
sized in the event-based framework. The second subsection evaluates the supervisor that is synthesized in
the state-based framework.

3.5.1 Event-based supervisor

As is known, the main obstacle of the event-based framework is the calculation complexity problem. The
cvent-based supervisor synthesis is based on the automaton product. As a result, a centralized event-based
supervisor is not possible to synthesize due to a state space explosion. To give an idea of the calculation
complexity, the number of states of the automaton product of the plant automata is approximately 50.000
states. One can overcome this problem by using a modular approach.

Coordinated distributed approach

With a modular approach, we divide the control problem into smaller subproblems. For cach subproblem,
a supervisor is synthesized. Since we have divided the control problem into control modules in Section 3.3,
we have synthesized a supervisor for every module. If all supervisors are synthesized. a nonconflicting
check has to be performed in order to guarantee the nonconflicting property.

The size (e.g. number of states and number of transitions) of cach modular supervisor is listed in Table 3.2.
As we can see, small supervisors can be achieved by dividing the control problem into smaller subproblems
and synthesize a supervisor for cach control problem. The size of cach supervisor depends on how many
components (¢.g. plant automata) are involved. Furthermore, the size of a supervisor also depends on how
restrictive the requirements are. If a lot of parallel behaviour is allowed, the number of states and transitions
of the supervisor can grow rapidly.

Table 3.2: Size of modular supervisors for each module

Module # states  # transitions
LED actuation 25 17
Motor actuation 41 222
Button handling 193 1541
Emergency handling 181 2149
Proximity handling 481 4513

Disadvantage of the modular approach is that the nonconflicting check is computationally expensive in
comparison to the modular synthesis. To give an illustration. cach supervisor can be computed within five
seconds, but the nonconflicting check takes about ten minutes. The nonconllicting check can be avoided
by using an aggregated modular approach.

Aggregated distributed approach

The main idea of the aggregated modular approach is to synthesize a supervisor, take an abstraction of the
automaton product of the synthesized supervisor with the plant models to filter out irrelevant information
and use this abstraction model as a plant model for the synthesis of the next supervisor. If all supervisors
synthesized with the aggregated modular approach are nonempty, then they arc guaranteed to be noncon-
flicting. However, aggregated modular approach needs a "good’ ordering of modules. To come up with this
order can be relatively difficult. To illustrate this, the same supervisors arce synthesized in a different order.



36 Chapter 3. Case study: the multimover

The results are listed in Table 3.3. As we can sce, the size of the supervisor depends heavily on the order
of synthesis.

Table 3.3: Size of modular supervisors depending on synthesis order

Module Order #states #trans. | Order #states # trans.
LED actuation 1 25 77 5 41 125
Motor actuation 2 41 222 2 257 1428
Button handling 3 465 3477 4 177 765
Emergency handling 4 89 626 3 118 609
Proximity handling 5 225 1953 1 481 4513

3.5.2 State-based supervisor

The state-based supervisory control framework of Ma and Wonham [Ma05] is known to be clficient for
monolithic supervisor synthesis. The synthesis tool produces within a second a BDD for every controllable
event. For the supervisory control problem of the multimover, the maximum BDD size is 15 and the
minimum BDD size is 1. The size of the BDDs can be reduced by variable ordening. Variable ordening is
the ordening of the OR superstates in the state tree. However, since the size of the BDDs was not too large
for implementation, variable ordening is not used in order to reduce the size of the BDDs.

3.6 Supervisor validation

The supervisors that are synthesized with both frameworks have to be validated in order to check if the
models of the controlled system represents the intended behaviour. This can be done by simulating the
behaviour of the plant P under supervision of supervisor S. The role of simulation in the synthesis-
based engincering framework is depicted in Figure 3.10. With simulation, the closed-loop behaviour of
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Figure 3.10: Simulation in the synthesis-based engincering framework

the system can be simulated to sce if the supervisor and plant conforms to the system design D, . Note
that simulation can find errors, but cannot prove the absence of errors. If the closed-loop behaviour is not
conform the system design D, p, the models that are needed for supervisor synthesis (M p and M) have
to be changed. In this section, two simulation techniques are discussed, namely discrete-event simulation
and hybrid simulation. Both simulation techniques can be performed with the CIF toolset.
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3.6.1 Discrete-event simulation

With discrete-cvent simulation, the state space of the closed-loop behaviour is explored by a state-space
stepper. With a state-space stepper, certain traces in the state space of the closed-loop system can be
cvaluated, whether the supervisor disables the right transitions in a certain state along the trace. With this
technique, even rare situations that are not likely to occur, can be simulated. Discrete-event simulation is
used excessively in this project in order to validate the synthesized supervisors.

However, models which are used for synthesis do not contain information about time, position or other
continuous information, which can be useful for analysing the dynamic behaviour of a system under control
of a supervisor. Simulation of models with discrete and continuous behaviour is called hybrid simulation,
which is explained in the next subsection.

3.6.2 Hybrid simulation

A more detailed model of the plant can be developed to study the dynamic or timed behaviour of the
plant under control of the derived supervisor. This can be done by refining the discrete plant model with
continuous behaviour. The following example explains how a discrete plant model can be hybrid.

Example 3.6.1

Consider the automaton depicted in Figure 3.11a, which is a model of a motor, that can be switched on
(enable) and off (disable). This automaton does not contain any timing information or other continuous
behaviour. This model is suitable to use for supervisor synthesis.

disable
Upef := 1
Off On
—~e =0

enable

enable
Upe f i =0

(a) Automaton (b) ClIF-automaton

Figure 3.11: Automata uscd for supervisor synthesis and hybrid simulation

In Figure 3.11b, the same automaton of a motor is depicted, only with an additional action at every event.
If the motor is switched on, a certain reference speed v,..; is set to 1. If the motor is switched off, the
reference speed v, s is set to 0. Then, the next process is a reference tracker, which models the resource
control of the motor:

UL Uper = @i=1
v Vpef — a:=10
U > Upep — @ i=—1

This process has three modes:

I the actual velocity v of the motor is lower than the reference speed v, . the motor should accelerate
(== 1).

o

the actual velocity v of the motor is equal than the reference speed v, s, the motor should not
accelerate (a := 0).

W

the actual velocity v of the motor is higher than the reference speed vy, the motor should decelerate
(a .= —1).
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The last modelled process contains information about the relationship between the position .z, velocity v
and acceleration a:

=

a=70

These three parallel processes interact with cach other by means of shared variables. Suppose that these
three processcs are a part of a larger model with a supervisor that switches the motor on and off every second
for a certain reason. These processes can be used in a hybrid simulation experiment. In Figure 3.12, the
results of this experiment are shown. As we can sce, the motor is switched off at ¢ = 0 and has no initial
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Figure 3.12: The hybrid simulation results

speed. At { = 1, the motor accelerates and the position x is increasing. Subsequently, the motor starts to
slow down at ¢ = 2 and starts accelerating at ¥ = 3. Then, the motor slows down at ¢ = 4 and stops at
t =5, by

Hybrid simulation can be useful for simulating models of systems with relevant dynamic or timed be-
haviour. However, hybrid simulation is not used in order to validate the supervisors of the multimover,
since the multimover does not contain dynamic or timed behaviour that was relevant for validation of
the supervisors. By only validating the supervisors and plant models with discrete-cvent simulation, we
were able to draw the conclusion that these models represent the components and their desired behaviour
satisfactorily.

In this chapter, models are presented which are needed for synthesizing a supervisor. Both supervisory
control frameworks [Won84, Ma05] have been used to synthesize a supervisor and the results are presented.
Furthermore, simulation techniques are discussed that can be used to validate the supervisor. In the next
chapter, both frameworks are discussed more thoroughly, to address the applicability of both frameworks.
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Frameworks for supervisor synthesis

The previous chapter describes how a supervisor with the correct behaviour can be synthesized for the case
study, the multimover. Two frameworks exist for supervisor synthesis, namely the event-based framework
of Ramadge and Wonham [Ram87, Won84] and the state-based framework of Ma and Wonham [Ma05]. In
this chapter, both frameworks are discussed more thoroughly in order to address the applicability of both
frameworks.

Two aspects of both frameworks are discussed in the following sections. In Section 4.1, the synthesis as-
pects of both frameworks are discussed. Then, modelling aspects are discussed in Section 4.2. This section
gives motivation to the next section where a conversion of logical expressions to automata is proposed. A
conversion tool has been built and an experiment has been carried out in order to check if a conversion
of logical expressions to automata is feasible. This is described in Section 4.4. This chapter ends with a
discussion of the proposed conversion in Section 4.5.

4.1 Synthesis aspects

In the previous chapters, two frameworks were discussed: the event-based framework of Ramadge and
Wonham [Ram87, Won84] and the state-based framework of Ma and Wonham [Ma05]. In this section, the
synthesis aspects are addressed.

The main challenge of the event-based supervisory control framework is calculation complexity, since the
product of all automata has to be computed to synthesize a supervisor and this computation is polynomial
in time. Furthermore, the number of states of this automaton product increases easily and as a result, the
product cannot be computed due to memory constraints. To overcome this difficulty, many approaches
have been suggested recently. Distributed supervision is introduced to avoid the calculation of the product
of all models. A distributed approach can also be useful to get a better overview of the functionality of
the system. In addition, a distributed supervisor has more implementation flexibility, since a change in the
target system may result in an update of only a couple of local supervisors [Su09c].

However. with distributed supervision, a nonconflicting check has to be performed which is also computa-
tionally expensive. The abstraction technique by [SuO8a] is a step in the right direction, since this technique
removes irrelevant transitions without losing nonblocking information. With a nonconflicting check based
on the abstraction technique of [SuO8b], coordinated distributed supervisors can be synthesized for sys-
tems with large state spaces. If an aggregative approach of synthesizing distributed supervisors is used,
nonconllictingness does not need to be checked.

Supervisory control theory guarantees that the synthesized centralized supervisor is optimal in terms of
permissiveness. This means that all behaviour is allowed as long as it docs not violate the requirements
or the nonblocking or the controllability property. However, no proof exists that a distributed supervisor
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is maximally permissive, which means that a distributed supervisor can be more restrictive in terms of
allowed behaviour.

The state-based framework has an efficient algorithm for synthesizing supervisors by using state-tree struc-
tures. However, at some point, the model can be too large for the state-based framework to calculate a
supervisor, since this approach is essentially a centralized approach [Su09b]. Furthermore, the state-based
framework docs not consider supervision under partial observation. Until now, no possibilitics exist to
work in a distributed way with the state-based framework.

4.2 Modelling aspects

The original event-based framework uses automata to describe plant models and requirement models. A
drawback of modelling requirements by automata, is that they may be not intuitive. Furthermore, if the
occurrence of a certain controllable event is strongly coupled with a lot of states, one can end up with
specifying large requirement automata. Even if an engineer is able to model such a requirement with
an automaton, it may be hard to convince other engineers that this automaton really specifies the right
behaviour as intended. In addition, system designers are often confronted with the following problem: how
do we know that a requirement in automata indeed captures the intended requirement?

Thus, defining requirements in a way that is intuitive and casy to understand is important for the engincer
to express the control requirements. The state-based framework is more convenient for modelling control
requirements than the event-based framework, since we can use state-based expressions and automata to
specify the desired behaviour. State-based expressions are expressions with conditions over states, which
are often found in system requirements. However, [Jac09] concludes that deriving these state-based ex-
pressions suitable for the state-based framework is an error-prone and meticulous task. To this end, some
logical specifications are proposed for automatic generation of these state-based expressions. With these
logical specifications, the engineer can express requirements by logical specifications, that naturally fol-
low from informal, intuitive requirements. Thesce logical specifications can be converted to the original
state-based expressions, which can be used for synthesizing a supervisor. An example of a requirement,
specified by an automaton (in the event-based framework) and by a logical specification (in the state-based
framework) is given below.

Example 4.2.1

Suppose we want to specify that the multimover only stops in the forward direction when Ride Control
is sending a ‘general stop’ command or the short proximity front sensor is active. In this example, we
specify this requirecment by an automaton and by a logical specification. Note that this requirement is the
occurrence of an event dm_fwstop under condition of a set of states.

Automaton

This requirement is modelled by an automaton in Figure 4.1. This requirement is basically the product
of the plant automata of Ride Control (see Appendix A.1.6) and the short proximity front sensor (sce
Appendix A.1.5), only with extra selfloops. It contains extra selfloops of the event dm_fiwstop in the
states that represent Ride Control sending the “general stop” command or the short proximity front sensor
being active. With these selfloops. the alphabet of the requirement automaton is extended with the event
dm_fwstop and therefore not allowing the event dm_fwstrop at the state that represents Ride Control giving
the ‘general start’ command and the short proximity front sensor being inactive.

Logical specification

The requirement stated above can be modelled with the following logical expression:

RC_Start | A PSF_Inactive | = — { dm_fiwstop }, which states that the event dm_fwstop is not allowed
when state RC_Start and statc PSF_Inactive are active. X

During this project, we have noticed that specifying some control requirements with logical expressions
is by far more intuitive than specifying them by automata. Nevertheless, the event-based framework can
be used for distributed supervision, hierarchical supervision and supervision under partial supervision. To
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Figure 4.1: Control requirement modelled by an automaton

have both advantages of modelling convenience and supervisor synthesis flexibility. we propose in the next
section a conversion of logical expressions to automata.

4.3 Conversion of state-based expressions to automata

In this section, a conversion is presented of the original two types of state-based expressions of the synthesis
tool of Ma and Wonham to automata. These state-based expressions are a mutual state exclusion and a
state-transition exclusion. In order to place conditions on states, it is convenient to use a logic formalism.
Therefore, state predicates of [Jac09] are used. A state predicate x | is true if and only if an automaton is
in state x.

4.3.1 Mutual state exclusion

The first type of state-based expression that is converted to an automaton is a type 1 specification of the
Ma-Wonham tool. This is a mutual state exclusion, which states that a set of states may not be active at the
same time.

Definition 4.1. A mutual state exclusion over n automata GG, with i = 1,.... n with corresponding state
predicate x; can be written as a logical expression by

( A x 1) 4.1

1E1..n

Consider we have n automata G; = (X,.Y,,§,. Xg.;- X, ) With7 = 1....., n where we want to prevent
that some states are active simultancously. The states of the product of all automata (v, ... G, represent
all possibilitics of state sets of all automata. If a certain state set is illegal, the corresponding state and all
in- and outgoing transitions in the automaton product have to be removed. Now, the mutual state exclusion
is satisfied by this requirement specified by an automaton. Note that a removal of a state in an automaton
could lead to the situation that other states are not reachable anymore. This situation is captured by taking
only the accessible part of an automaton, denoted by Ac((7) [Cas07].

Since only one state in an automaton can be active simultaneously, only one state predicate is used for each
automaton. Each automaton (i, has its own predicate x; |, which identifies a state of each automaton. Note
that in the following definitions. only those automata arc used that include states that we want to prevent
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to be active simultancously. Furthermore, we assume that the initial state of the resulting automaton is not
removed.

Definition 4.2. Consider automata &; = (X;,%,,&,,X0.;, Xm.;) and states x;, € X, fori = 1,...,n. The
automaton that corresponds to the mutual exclusion expression =(x; | A... A x, |) is defined by

Ac(X; x x X —{(x1,.. . x,)}
Y U Uy,
!
S s
(X0_| ..... X()_,,).
Xm.l X X an«n - {(xl ~~~~~ X,,)})

with &’ is a restriction of & x - -
codomain.

X£n t()Xl X .

Example 4.3.1
Consider two users that are using a shared resource. Each user is modelled with a plant model depicted

in Figure 4.2, containing a controllable event take and an uncontrollable event release. Note that in this
example, we have two plant models, ecach representing a user.

takeq takeo
—e< >0 —ov >0
Idle, ~~°"~--°77 Busy, Idle,  ~~~--"77 Busyo
release release

(a) User | (b) User 2

Figure 4.2: Plant models of the mutual state exclusion example

Assume that we want to prevent that both users take the shared resource, i.e. we demand that both
users may not be busy at the same time. We can specify this with the following state-based expression:
= ( Busy; | A Busy, | ), which specifies that the states Busy; and Busy, may not be active simultancously.
In Figure 4.3a, the product of both plant automata of Figure 4.2 is depicted. Each state of this automaton
product corresponds to a combination of states of the plant automata. In Table 4.3b, the corresponding
plant states of both users are given for cach state of the automaton product.

0 takey

releases releases

takes takeo

State  State User 1 State User 2
0 Idle, Idle>
\ y 1 Busy, Idle,
@; 2 Idle, Busy,
“ releaseq 3 Busyl Busy-_)

(Y AuremEbon produst (b) Corresponding plant states

Figure 4.3: Automaton product and corresponding states

State 3 corresponds with the state specified as undesired in the state-based expression, namely that both
users are busy. To prevent that this state becomes active, this state and all ingoing and outgoing transitions
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Figure 4.4: Automaton product and resulting requirement automaton

of this state are removed. Since all other states are accessible, no more states or transitions have to be
removed. This results in the requirement of Figure 4.4, specified as an automaton.

X

With this conversion, it is possible to construct automata that have no marker states. If a supervisor is
synthesized with a requirement with no marker states, the synthesis will produce an empty supervisor,
since no marker state can be reached at all.

4.3.2 State-transition exclusion

The next state-based expression is a state-transition exclusion, also known as a type 2 specification of the
Ma-Wonham tool. This state-based expression states that in a combination of states a certain transition is
not allowed.

Definition 4.3. A state-transition exclusion expression over n automata with ¢ = 1...., n and an event ¢
can be written as the following logical expression

( /\ X; | = (-) (4.2)

€1l..n

In this subsection, the conversion of this state-based expression to an automaton is stated. This conversion
uses also the automaton product. Two different cases of the state-transition exclusion can be distinguished.
The first case is when event e, that is not allowed in a certain state set, is alrcady in the alphabet of the
automaton product. If this is the case, all outgoing transitions labeled by e have to be removed at the state
specified in the state-transition exclusion. The second situation is when the event e, that is not allowed
in a certain state set, is not in the alphabet of the automaton product. To capture this expression with an
automaton, an extra automaton that contains only one state and a sclfloop labeled by e is added to the
automaton product. Note that if the event ¢ alrcady is included in the original automaton product, the
resulting automaton product will not change. However, if the event is not in the alphabet of the automaton
product, the event is added to the alphabet and the automaton product contains sclfloops labeled by e in all
states. The selfloop labeled by e needs to be removed at the state where the state predicate is true, according
to the state-based expression. In the two examples in this subsection. we consider both situations.

Definition 4.4. Consider automata G, = (X,,¥,.&,.X0,;. Xm, ). and x; € X, with 7 = 1,...., n, and
x € X; x --- x X,,, and an automaton G, = (X,. %, &.X0.c. Xm.c), where X, = {0}, ¥, = {e},
E:6.(0.¢) =0, xg,. = 0, and X, = {0}. The automaton that corresponds to the state-transition
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exclusion expression (x; | A... A X, |= ¢)isdefined by
Ac(Xy x -+ x X, x X,
L i | Byl Xy

with £(x, 0} = { undefined for x = (Xpseens X, ) No = e,
(&1 X .. X &, X & )(x,0) otherwise.

Example 4.3.2

In this example, a state-transition exclusion expression is converted to an automaton which satisfies this
expression. Consider the plant model depicted in Figure 4.5a. In this automaton, it is possible to switch
on the LED multiple times for a certain reason. Imagine that we want to specify in a requirement that we
do not want to switch the LED on if it is already on, e.g. LED_On | = -~ { LED_enable }. To construct
an event-based requirement, specifying this state-transition exclusion, our intuition is to remove the event

LED enable at state LED _On.

LED disable LED _enable LED_disable

LED enable LED _enable
= — \_/O

E ED JED_Off ED
LEDOT 2D disable “ED-O0 LEDON 6D diable  “L0-0

(a) LED automaton (b) Resulting requirement

Figure 4.5: A state-transition exclusion example

This is in accordance to Definition 4.4. However, in this example no automaton product needs to be com-
puted, since only one state predicate is specified. Furthermore, the event LED _enable is already included
in the alphabet of the automaton. Therefore, only at the state where the state predicate is true (LED_On),
the event LED_enable needs to be removed. The resulting requirement is depicted in Figure 4.5b. X

Example 4.3.3

In this example, a state-transition exclusion expression is converted to an automaton with an event that is not
included in the alphabet of automata over which the state predicates are defined. Reconsider Example 4.2.1,
where we want to specify that the multimover is not stopping in the forward direction when Ride Control
is sending a “genecral start’ command and the short proximity front sensor is inactive. This requirement can
be specified with the following state-based expression:

RC_Start | A PSF_Inactive | = —« { dm_fwstop }.

The plant models that are used arc depicted in Appendix A.1.

To construct an automaton that specifies the stated state-transition exclusion. the automaton product of the
plant models of Ride Control and the short proximity front sensor is computed, which results in Figure 4.6a.
In all states of this automaton, selfloops are added, except for the state where the state formula is true. This
results in the automaton, depicted in Figure 4.6b. Note that all states are still accessible and no further
adaptions have to be made.

X

The property of controllability does not have to be taken into account with the construction of automata.
Automata can specify whatever the engincer wants. The supervisor synthesis will take care of the con-
trollability property, such that the resulting supervisor is controllable w.r.t. to the plant models and ¥,
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Figure 4.6: Automaton product and resulting requirement

and satislies all requirements. Therelore, it also possible to construct requirement automata that disable
uncontrollable events in a certain state.

As experience has shown in the last years. often a lot of state-based expressions have to be specified in
order to synthesize a satisfactory supervisor for high-tech systems. The conversion that is proposed in the
previous section constructs an automaton for every single state-based expression. One can imagine that
the construction of a lot of automata can complicate the synthesis of a supervisor, since the event-based
synthesis is based on the automaton product. To analyze the performance of the conversion and the synthe-
sis procedure afterwards, an application is built in the programming language Python, that automatically
constructs automata out of state-based expressions. A more detailed explanation and the source code of
this application is given in Appendix B. Here only the syntax and the results are given.

The conversion is built in the Supervisor Synthesis Package as two functions, that make use of the already
existing functions. The first function constructs a requirement with a mutual state exclusion. The syntax is
given below. The function needs three arguments, namely 1) the names of the automata that are needed, 2)
the state set (between curly brackets) that needs to be excluded, and 3) the name of the resulting automaton.

The second function that is built is to construct automata out of state-transition exclusion expressions. The
syntax is given below. The function nceds three arguments, namely 1) the names of the automata that are
needed to construct the automaton product 2) the name of the automaton containing the event, that has to
be excluded. 3) the state set (between curly brackets) and the name of the event that needs to be excluded,
and 4) the name of the resulting automaton. Note that the syntax of both state-based expressions is based
on syntax of the synthesis tool of Ma-Wonham.

_specification (" Tnput_Ll.cfg, ..., Input_n.cfg’ " Input_e.cfg’ , " ({x_1; ..., %7 e)”’

The application has been tested with testcases in order to check if the right automata are produced as
output. After this, the logical expressions that are used for synthesizing a state-based supervisor for the
multimover are converted to automata, to check whether it is possible to synthesize a event-based supervisor
with automata and state-based expressions, which are converted to automata. More details and the results
of this experiment are discussed in the next section.
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4.4 Experiment

In order to check the feasibility of synthesizing event-based supervisors with requirements specified by
state-based expressions, the state-based model of the multimover is used. First, the logical specifications
are converted with the conversion tool of [Jac09] to type | and type 2 expressions for the Ma-Wonham tool.
After this, all type 1 and type 2 expressions are converted to automata, using the event-based plant models.
Note that the plant modecls of the synthesis tool of Ma-Wonham and the Supervisor Synthesis Package need
to be cquivalent, in order to perform a correct conversion. In Table 4.1, the numbers of automata that are
generated with the conversion application for each module is stated. Furthermore, the numbers of states
and transitions are stated of the automaton product of all converted automata for cach module.

Table 4.1: Results of the conversion

automaton product

Module # logical expr.  #automata # states  # transitions
LED actuation 6 9 4 15
Motor actuation 8 35 29 163
Button handling 2 4 9 31
Emergency handling 1 4 5 11
Proximity handling 8 14 33 257

As we can see, the state space of the resulting automata is relatively small. This is due to the fact that often
more or less the same requirement is constructed, only with a different disabled event in a different state.
As a result, the complete automaton product synchronizes most of the transitions and only a certain event
is disabled. To illustrate this, the computation of the automaton product of the state-based requirements of
the motor actuation module is discussed more thoroughly.

350 . . . i . ,
states

300 transitions | |
2 250¢F |
5 200f |
2 150t | : 1
2 100F |
50+ _

. Li— T , :
0 5 10 15 20 25 30 35

no. of automata

Figure 4.7: Numbers of states and transitions during computation of the automaton product

In Figure 4.7, the numbers of states and transitions arc depicted during computation of the automaton
product. The automaton product works sequentially, i.c. first the automaton product of the first automaton
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and the second automaton is computed. Then, the automaton product is computed of the result of the
previous automaton product with the third automaton etc. As we can sce, in the beginning, the number
of states and transitions of the automaton product is increasing, like expected. After this, the number of
transitions is gradually decreasing, due to the removal of transitions. The number of states is staying more
or less constant, since the converted state-based expressions are state-transition exclusion expressions,
which exclude a transition and no states. After addition of automaton 19 and 34 to the automaton product,
the number of states have decreased. This is due the fact that a certain part of the state space of the
automaton has become not accessible anymore. As a result, this part of the automaton is removed.

An event-based distributed supervisor has been synthesized with these requirement automata. This dis-
tributed supervisor is validated by means of discrete-event stepping and the supervisor has the expected
behaviour. No differences between the simulation results of the state-based supervisor and the event-based
supervisor were encountered.

4.5 Discussion

In the previous section, the results are shown for an example of conversion from logical expressions to
automata, that subsequently are used to synthesize an event-based supervisor. As we can see, a satisfactory
supervisor is synthesized with more modelling convenience. Furthermore, the state space did not explode,
despite of the fact that a lot of automata are generated. One has to bear in mind that this algorithm of
converting logical expressions to automata is not optimal. A direct conversion of logical expressions to
automata (without conversion to the type 1 and type 2 expressions of Ma-Wonham) might be more efficient.
In the case study worked out in this project, a more efficient conversion of logical expressions 1o automata
was not necessary.

madel Plant
R ———

(automata) \
Supervisor

synthesis
O (automaton)

model | Requirements /
—_—

(automata)

1

convert

I

wodel [ Requirements
e
(log. expr.)

Figure 4.8: The event-based framework extended with logical expressions

In Figure 4.8. a graphical overview is given of the conversion of logical specifications to automata. With this
conversion of state-based expressions to automata, we are now able to specify requirements with automata
and logical expressions. To investigate the applicability of this conversion, it is recommended to apply it
in other industrial cases.

Logical expressions provide a powerful method for specifying the exclusion of certain situations. However,
logical expressions are not suitable to memorize certain sequences of events. This can be done by automata.
Together, they form a sufficient modelling framework for specifying the requirements of the multimover.
[Seo07] proposes to specify state-based specifications by temporal logic. Temporal logic is known to be
a richer language than propositional logic and can be, as a result, more suitable to specify the control
requirements of complex high-tech systems. This can be investigated in further research.

In this chapter, we have discussed both supervisor frameworks more thoroughly. We have seen that both
frameworks have their advantages and disadvantages for synthesizing supervisors. Furthermore, the state-
based framework is often recognized as more convenient for modelling requirements, since requirements
can not only be modelled by automata, but also by logical expressions. However, in this chapter is shown
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that logical expressions can be converted to automata to synthesize event-based supervisors. The next
chapter describes an implementation of the supervisors of both frameworks in the current control software
of the multimover.



Chapter 5

Implementation

In the previous chapters, supervisory control theory has been explained and used to synthesize supervisors
for the multimover. Both the event-based framework and the state-based framework have been used to
synthesize a supervisor. The behaviours of the supervisors have been validated by means of discrete-event
simulation. The next step in the synthesis-based engincering process of Figure 5.1 is to implement the
supervisor. This chapter describes the implementation of both supervisors in the current control software
of the multimover.

realize

Zs

I i
integrate

r model ‘ synthesize

define

integrate
0S| Ry lju Papp Fomrmmimsam o oo mm s 5
T ! define inlc;;llc E
’ L» Rp iﬁdmign @ model realize Z]’

Figure 5.1: Implementation in the synthesis-based engineering framework

In Section 5.1, the differences between a controller and a supervisor are stated and a sct-up for implemen-
tation of a supervisor is proposed. Then, some implementation aspects are given in Section 5.2. Subse-
quently, a prototype of this implementation is described in Section 5.3. A description of the validation of
the implementation and experiments are described in Section 5.4 and Section 5.5, respectively. Lastly, this
chapter ends with evaluation of the supervisor implementation and the applicability in Section 5.6.

5.1 From supervisor to controller

The control problem for a generic dynamical system consists of influencing the behaviour of a system.
in order to satisfy given specifications. This is schematically shown in Figure 5.2a. This is achieved by
designing an appropriate control unit that uses information from the plant to influence this through the
available control mechanism [Bal92b].

49
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In the original supervisory control framework, a supervisor acts as a passive device that tracks events
produced by the plant and restricts the behaviour of the plant by disabling the controllable events [Bal92a].
This is schematically shown in Figure 5.2b. However, it is often the case that the plant does not gencrate all
controllable events on its own without being initiated. Normally, simple machines do not start their work
unless the start command is given. In this case, it is desirable to have a controller which not only disables
controllable events but also initiates the occurrence of particular controllable events [Die02]. Furthermore,
supervisory control theory is based on the assumption that the supervisor is always synchronized with
the state of the plant, i.c. there is no communication delay. However, in contrast to the synchronous

communication used in models, real systems often use asynchronous communication [Bra0O8].

controller

information

supervisor

control events generated
instructions by plant

plant

(a) A control system

Figure 5.2: The communication between the supervisor S and the uncontrolled plant P

plant

(b) The role of the supervisor

events enabled
by supervisor

So, a supervisor is not directly a controller, but can be seen as a dictionary of allowed events at each state
of the plant. This can be compared with solving a game of chess, where all allowed moves are listed in a
lookup table. From any position, the next move can be carried out by scarching the lookup table instead
of calculating the possible moves [Ber09]. In this section, the implementation of a controller is explained
that tracks the state of the plant and sends appropriate control actions back. We refer to this controller as a

supervisory controller.

The functionality of a supervisory controller can be roughly divided in two tasks. The supervisory con-
troller needs to track the state of the plant in order to give appropriate feedback to the plant. We call this
part of the controller the state tracker. Next, the controller is responsible for sending appropriate control
actions back to the plant based on the state of the plant. We refer to this part of the supervisory controller as
the control decision maker. In Figure 5.3, a schematic overview of a supervisory controller is given. In this
figure. we can distinguish the plant which represents the components and the low-level resource control.
and a supervisory controller (in red). This supervisory controller contains a state tracker which tracks the
state, a control decision maker which sends appropriate actions back to the plant and a supervisor which

contains all allowed behaviour.

uncontrollable events

State tracker

Plant I L Supervisor ‘

i lConlroI decision mukcj*————‘t

controllable events |

Figure 5.3: A supervisory controller

At some point, the plant will generate an event (e.g. a button is pressed, a sensor is activated ctc.). A
notification has to be sent to the state tracker. which updates the current state of the supervisor. This is
done by looking in the supervisor what the new current state is. Note that that only uncontrollable events
and no controllable events are tracked by the state tracker, since the supervisory controller has control over
the controllable events. If the state tracker is finished with updating the current state of the supervisor, the
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control decision maker has to search for an appropriate control action that can be sent back to the plant (c.g.
turn the LED on, turn off the motor etc.). Note that we assume that only controllable events are initiated
by the control decision maker. If an appropriate control action is found, this action is carried out and the
current state of the supervisor is updated again.

5.2 Implementation aspects

In literature, some information is available about problems that can occur if a controller is derived from a
model of a supervisor. These problems are discussed in [Mal03, Mal02, Die02].

5.2.1 Command selection problem

The supervisor synthesized with supervisory control theory is nonblocking according to Definition 2.6.
However, there is no guarantee that an implementation of the supervisor is also nonblocking. Even worse,
the resulting controller may be blocking due to ‘bad choices’ [Mal03, Mal02, Dic02]. This can be illustrated
by the example shown in [Mor(07].

Example 5.2.1

Consider a system of two machines that can be used for two tasks. One machine can work on task A
and the other machine can work on task B. These are controllable events: a supervisor may disable them.
The events f_A and f_B model the completion of the task. These are uncontrollable events: the supervisor
cannot influence the occurrence of these events. If both machines work at the same time, the system breaks
down. In Figure 5.4a, a representation is given of this system. Supervisory control theory can prevent this
system from a breakdown, by disabling the controllable events to the state Down. The resulting supervisor
is given in Figure 5.4b. The desired controller is a realization of the automaton model in Figure 5.4b.

At the initial state Idle, a choice has to be made which machine should be started next. However, when a
supervisory controller is implemented that has to select one of the signals start_A and start_B, we could get
into trouble; if the controller always selects start_A, the marked state Task_B is never reached. This results
in violation of the nonblocking property, since the marker state can never be reached (see Figure 5.4¢).

Idle

Task_A

start_B
Down Task_A Task_B Task_A
(a) Uncontrolled behaviour (b) Supervised behaviour (¢c) Blocking con-
troller

Figure 5.4: Generation of a blocking supervisory controller

X

Another problem that could occur when a supervisor is implemented is that the implemented supervisor
could end up in livelock, due to a wrong choice of events. Livelock is an endless loop of occurrences of
events without gaining any progress. This problem could occur when an infinite sequence of controllable
events is possible from the current state. This problem is illustrated by the following example.
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Example 5.2.2

An automaton is depicted in Figure 5.5. Consider this automaton as a part of the implemented supervisor.
Note that all events of this example are controllable and implemented as control actions. State 2 is marked
and can be considered as completion of a certain task. Note that all states of this automaton are nonblocking
according to Definition 2.6, since from every state a marker state can be reached. If the current state of
the supervisor implementation is state 0, the supervisory controller has a choice: either event a or b could
be sent. If in this state @ is always chosen, we have livelock, since marker state 2 is never reached and an
infinite sequence of events (a,b.a,b....) is chosen.

a b

(8]

Figure 5.5: An implementation containing livelock

X

Thus, an implementation of a supervisor cannot guarantee that a certain marker state is eventually rcached.
This problem, stated in the previous examples, is called the command selection problem. To avoid this
problem, [Mal03] proposes checking algorithms that can be used to ensure a nonblocking controller. Three
new propertics of discrete event systems are introduced. Petra Malik proved that if these properties hold
for an automaton, the resulting controller is nonblocking and the command selection problem is solved.
In this project, discrete-event simulation is used for validating the behaviour of the supervisor. However,
simulation cannot prove these propertics, which means that the implementation might still be blocking.

In [Mor07], an algorithm is presented that can synthesize deterministic controllers out of the conventional
plant and requirement models. However, only centralized controllers are taken into account and therefore
not applicable in our case. Furthermore, a synthesis method is developed in [Su(09a], that synthesizes
centralized supervisors which achieve also a time-optimal performance. One can imagine that an imple-
mentation without reachable marker states (Example 5.2.1) or containing livelock (Example 5.2.2) is not
time-optimal, since no progress is made. To this end, the synthesis of time-optimal supervisors for real
industrial systems is recommended as future rescarch.

5.2.2 Communication problem

The communication problem is another problem related to building controllers from supervisory control
models [Mal03]. This problem occurs when the controller sends a control action to the plant, but in the
meantime, the state of the plant is changed. This means that a control action is chosen based on an old state
of the plant.

The reason why this situation can occur, is that communication between the plant and the controller in the
real system is not synchronous. Let us investigate where the time delays are in our closed loop system. We
can distinguish three delays:

e Input delay. This delay is the time period that is necded from the time instance that an event occurs
in the plant until the time instance that the supervisory controller has received this message.

e Computation delay. This delay is the time period that is needed from the time instance that the
state tracker is updating the current state of the supervisor until the time instance that an appropriate
control action is chosen by the control decision maker.
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e Output delay. This delay is the time period that is nceded from the time instance that a message is
sent by the control decision maker to the plant until the time instance that the corresponding control
action is carried out by the plant.

To investigate the delays further into detail, a model is made in the specification language y [Bee06]
that simulates a closed-loop system with asynchronous communication behaviour. In this x model, the
asynchronous communication is modelled as a buffer between the plant and the supervisor, which delays
all messages for a certain time period. Since only the concept of asynchronous communication needs to be
modelled, only one buffer is used. The v model is based on the following assumptions.

Assumption 5.1. Events that are generated by the plant and related messages that are sent to the super-
visory controller cannot get lost and cannot overtake cach other. The same assumption applies for the
communication from the supervisory controller and the plant.

Consider the plant model of a timer in Figure 5.6a, which represents a timer that can be started (start) and
reset (reset). If the timer is expired, the uncontrollable event timeout occurs. The controllable events start
and reset are considered as output of the supervisory controller and the uncontrollable event timeout as
input of the supervisory controller.

reset °

(a) Plant model of a timer (b) x model

Figure 5.6: Communication delay example

The closed-loop system is modelled in \ as depicted in Figure 5.6b. The timer model is represented by
x process P, while the supervisory controller is represented by Y process S. The communication delay is
modelled with a buffer B between the timer P and the supervisory controller S. In this model, messages that
are sent from the timer P to the supervisory controller S have to wait for a certain time in the buffer B before
they are sent to the supervisory controller S. The y model is listed in Specification D.1 in Appendix D. 1.
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Figure 5.7: Results of simulation
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The message scquence chart, depicted in Figure 5.7, shows the behaviour of the y-model. At ¢ = 0.00,
the timer is started. It will expire at ¢ = 1.00. When the timer is expired, the timer sends a message to the
supervisory controller that the event has happened, but due to a communication delay, this is received by
the supervisor at ¢ = 1.10. In the meantime, a message is sent by the supervisory controller to the plant
that the event reset takes place at £ = 1.05 in order to reset the timer. So, the supervisory controller sends a
control action to the plant, based on an old state of the plant, since the supervisory controller ‘thinks’ that
the timer is not expired and is in state On, while the timer is already expired and is in state Off.

The sequence of events that is observed by the plant and by the supervisory controller is not captured by
the original plant model, since the timer observes the events start - timeout - reset and the supervisory
controller observes start - reset - timeout. It is unclear how both the timer and the supervisory controller
will react on these observations. A simple verification approach is suggested in [Mal02] in order to identify
a class of plants that are robust with respect to the communication problem. This verification approach can
be applied very casily.

Definition 5.2. Let G = (X, X. £, x0. X,y) be a deterministic automaton. The automaton G is ¥,.-% -
commuting, if for all x € X, 7. € >, and o, € >, such that, if both o and 7, is an accepting cvent at a
given state x € X, we have that £(x,0.0,) and (X, 0,0..) are both defined and €(x, 0,.0,) = £(x,0,0..).

A X.-¥,-commuting plant accepts a controllable event 7. and an uncontrollable event o, in any order
whenever both are accepted at a certain state. Furthermore, the order does not influence the future behaviour
of the system. If a plant is .-} ,-commuting, the following properties are satisfied.

e The plant accepts any message from a supervisory controller that only sends messages based on the
current state of the state tracker, even if it is delayed.

e Each supervisory controller, generated from a model containing the plant, accepts any message from
the plant, even if it is delayed.

o [f all messages are received, i.e. no messages are pending in the network, the state tracker can tell
the state of the plant.

We can casily verify that the plant model of the timer is not ¥.-3, -commuting. The controllable event
reset and the uncontrollable event timeoutr are accepted in the state On. However, the sequence of events
timeout - reset or reset - timeout is not accepted in state On.

5.3 Prototype implementation

In order to prove the concept of synthesis-based engincering, a prototype of a supervisory controller with
the synthesized supervisors is implemented in the existing control software of the multimover. For [lexibil-
ity, an implementation of both supervisors is proposed. A schematic overview of the control architecture
of the multimover with a supervisory controller is given in Figure 5.8. Note that, in order to implement
a supervisory controller, first the existing control software that has the same functionality needs to be
removed.

At the bottom of this figure, we can see all components and their resource controllers. Above the resource
control, an interface is made which is responsible for sending the correct events from the resource control
to the supervisory controller and sending the correct events from the supervisory controller to the resource
controllers. This interface makes use of a listener and notifier structure. This is a simple communication
paradigm. The resource control of each component can publish messages of a certain topic and can sub-
scribe to a certain topic, which means that they will receive all published messages of that topic. So, the
interface is subscribed to all relevant events and will receive them. This interface has to be coded manually,
since it is different for every system.
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Figure 5.8: Control architecture of the multimover with a supervisory controller

The next layer in Figure 5.8 is an implementation of a supervisory controller, which contains a state tracker
and control decision maker. This layer is written in such a way that it is independent of the supervisor
model, which supervisory control framework is used and the system itself. A general implementation of a
supervisory controller is written in pscudo-code in Algorithm I. As already told, the functionality of the
supervisory controller can be divided into two tasks, namely tracking the state of the system by the state
tracker (line 3 to 7) and making appropriate control decisions by the control decision maker (line 9 to 19).

Algorithm 1 Concept of supervisor implementation

loop
/I State Tracker
while Ien(list) > 0 do
L — pop(list)
5; UpdateSupervisor( L)
S—1
end while
// Control Decision Maker
if S = 1 then
10: E «— ComputeControlAction
if £/ # (0 then
if len(list)= 0 then
UpdateSupervisor( L)
ExecuteEvent(FE)
15: end if
else
S« 0
end if
end if
20: end loop

All (uncontrollable) events that are generated by the plant (e.g. button and sensor signals) are listed in
a buffer by the interface, which is a different process that also has access to this buffer. This buffer is
emptied by the state tracker by taking and removing the first element of the buffer (£ « pop(list)) and
subsequently, the current state of the supervisor is updated (line 5, UpdateSupervisor(5)). If the list is
empty, the state tracker knows the current state of the system. Based on this current state of the supervisor,
a control decision can be calculated.

If the current state of the supervisor has changed (S « 1), the control decision maker has to check if a



56 Chapter 5. Implementation

control action is possible. This is done by setting a boolean variable S to 1 (line 6), which activates the
control decision maker. First, a control decision is computed. If an appropriate control action is found
(line 11, E # 0), the event list has to be checked (line 12), to ensure that the supervisory controller has
made an appropriate control action based on the most actual state of the plant. If this the case, the state of
the supervisor is updated and the appropriate control action is exccuted. Note that this implementation does
not prevent the execution of a control action based on an old state of the supervisor. The communication
problem can still occur.

If no control action is possible (c.g. all controllable events are disabled by the supervisor), there is no need
to search for a control action over and over again. So, the boolean variable S is set to O (line 17), which
means the control decision maker is not executed anymore. If the state of the system changes again due to
the occurrence of an uncontrollable event, the control decision maker is activated again.

The next layer in Figure 5.8 is the supervisor itself, which contains the information about the allowed
behaviour, according to the requirements. This information can be generated from the model of the super-
visor. This is done by a script in Python (sce Appendix D.3), that reads the information from a CIF model
and stores this information in a lookup table. A lookup table is used for this information, since a lookup
table can be used with an efficient indexing operation, which could save in terms ol processing time. An
cxplanation of how an automaton is converted to a lookup table is mentioned in Appendix D.2.

The prototype implementation described above is suitable for supervisors of both frameworks, either event-
based or state-based. However, there are some differences with respect how the state is tracked and the
control decisions are made for both frameworks. These differences are stated below. A summary of the
differences between the implementation of the two supervisor types, synthesized with either one of both
frameworks is listed in Table 5.1.

5.3.1 Event-based implementation

A supervisor that is synthesized with the event-based framework contains the complete allowed language
of the closed-loop system, as mentioned in Section 2.4.3. This is stored in one or more automata. The
state is tracked by updating the current states of the automata if an event occurred. An automaton is only
updated if the event that has occurred is also in the language of this automaton. If an event occurs that is
not allowed by automata, then the model is inadequate, since the state tracker cannot track the state of the
system. If this happens, the supervisory controller and all components are switched off.

Control decisions are calculated by searching for controllable cvents that arc allowed by all automata. The
first controllable event that is found and allowed by all automata is chosen as the control action.

5.3.2 State-based implementation

A supervisor that is synthesized with the state-based framework uses automata and BDDs to store the state
feedback control (SFBC) map in. The automata are used to store the information when each controllable
cvent is allowed by the plant models and the BDDs are used to store the information when each controllable
cvent is allowed by the state-based expressions.

A state-based implementation uses the plant models and event-based requirements to track the state of the
system. All automata of the plant models and event-based requirements are updated if an uncontrollable
event occurs. If an uncontrollable event occurs that is not allowed by an automaton, the state of the system
cannot be tracked and the model of the supervisor in inadequate. If this happens, the supervisory controller
and all components are switched off.

Control decisions are calculated by searching for a controllable event that is allowed by all automata and
its BDD. The first controllable cvent that is allowed by all automata and its BDD is used as a control action.



5.4. Validation of implementation 57

Table 5.1: Difference in implementation for supervisors of both frameworks

Implementation State tracker Control decision maker

Event-based supervisor Update supervisor automata Search for controllable event
allowed by all supervisor au-
tomata

State-based supervisor Update automata Search for controllable event al-
lowed by all automata and its
BDD

5.4 Validation of implementation

In the previous section, a concept of implementation of supervisors is discussed. This concept is imple-
mented in the existing control software and validated. The test set-up is depicted in Figure 5.9. First of all,
only a state tracker was implemented and tested if the state tracker could update automata according to the
uncontrollable events that were generated. After this was validated, the control decision maker was imple-
mented and validated if the right control decisions were chosen at the right moments. A small event-based
supervisor was synthesized with two buttons and one LED as the plant, in order to validate the state tracker
and the control decision maker.

Subsequently, support for BDDs was implemented to implement supervisors of the state-based framework.
Only the control decision maker had to be validated again, since the BDDs are only used by the control
decision maker. A small state-based supervisor was synthesized with two buttons and one LED as the plant
in order to validate the implementation of the support for BDDs.

After the complete supervisory controller was validated, a script is made that converts the CIF models
to lookup tables. This conversion is validated by converting small automata to lookup tables. The lookup
tables that were generated, were according to the expectations. After this, both supervisors with two buttons
and one LED as the plant, that were implemented manually in the multimover. were generated from CIF
models. This was according the expectations, so the complete tool chain and implementation is validated
for these testcases.

Figure 5.9: A photo impression of the test set-up

5.5 Experiment

After the implementation and the conversion from the CIF-model to C was validated, the supervisors of
the multimover were implemented. First, the supervisor, synthesized with the event-based framework, was
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implemented. This implementation is tested by pushing buttons and activating and deactivating sensors.
With this implementation testing, a lot of situations were tested and validated. All relevant situations were
tested exhaustively, in order to validate the error handling, proximity handling and emergency handling.
We encountered that the multimover behaved the same as in the model in the supervisor. With these
tests, the conclusion is drawn that the event-based implementation and the model of the supervisor works
correctly. Subsequently, the supervisor synthesized with the state-based framework was implemented in
the supervisory controller. The multimover had the same behaviour as with the event-based model. The
conclusion is drawn that the state-based implementation works correctly.

After this, the control software is used on a real vehicle. The same tests were performed as on the test
sct-up. The outcome of these tests were the same as on the test set-up, which is shown in Figure 5.9.
The supervisory controller behaves the same as the model. The conclusion is drawn that the supervisory
controller and the supervisor models are correct.

In the previous subsections, two problems are addressed that can occur when a supervisory controller is
implemented, derived from a supervisor model. First of all, the command selection problem is addressed
in our implementation. Our implementation is verified for the command selection problem by means of
simulation. Discrete event simulation is used to check for infinite sequences of controllable events. If
an infinite sequence of controllable events is found, the requirement models were adapted. Simulation,
however, can only show the presence of these infinite sequences. but cannot prove the absence of them.
This means that the supervisory controller could still contain livelock. A recommendation is to check for
this property mathematically with a model checker, such that the absence of these infinite sequences can
be proven.

Secondly, the communication problem, described in Section 5.2.2 did not occur when the tests were per-
formed. This can be explained by the fact that the calculation of a control action of the multimover is much
faster than the reaction speed of the plant. The probability that a control action is computed based on an
‘old’ state of the plant is almost nil. However, theoretically, the communication problem can still occur and
remains a topic of future resecarch.

5.6 Synthesis-based engineering: evaluation

With the concept of implementation described in this chapter, we have performed all steps of the synthesis-
based engineering framework. In this section, we discuss the modelling convenience and the applicability
of all relevant steps of synthesis-based engineering, namely the supervisor synthesis and supervisor valida-
tion, as well as the implementation.

5.6.1 Modelling convenience

Plant models can only be defined by automata. We have experienced that this way of modelling components
is quite intuitive and straight-forward. Furthermore, components and their resource controllers can often be
reused. As a result, plant models that are made of these components can also be reused, which can reduce
time in the product development process.

In the beginning of this project. it appeared that specifying requircments by automata may not always be
intuitive. Since requirements can also be modelled in the state-based framework by logical expressions,
often this framework is chosen for synthesizing supervisors for industrial systems. The extension defined
in [Jac09] has made the modelling of requirements more convenient, since often a lot of state-based ex-
pressions of the synthesis tool of Ma-Wonham were needed for a satisfactory supervisory control problem
definition. In this project, both a state-based supervisor and an event-based supervisor are synthesized us-
ing requirements specified by logical expressions and automata. Further research needs to be done if other
control problems of NBG can also be modelled intuitively with automata and logical expressions.
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Requirements have to be defined in terms of behaviour, instead of in terms of software code, which is done
in traditional engineering. It appeared that modelling requirements with logical expressions and automata
is intuitive and easy to understand for engineers that do not have affinity with the control software. This
can lead to an easier validation with respect to the original informal specifications.

However, one has to take into account that modelling skills are needed for modelling components by
automata and requircments by automata and logical expressions. Time is needed to develop those skills.
Furthermore, a manual with modelling guidelines, and modelling tools that can be integrated in the existing
software development tools, can enhance the modelling process and speed up further acceptation.

5.6.2 Supervisor synthesis and validation

To address the opportunities of synthesis-based engineering, we compare the software engineering of NBG
with and without supervisory control synthesis. In Figure 5.10, the traditional software engineering process
and the synthesis-based software engineering process is depicted. Please note that this comparison is only
applicable for supervisory control software. In this figure, informal steps are denoted with & and formal
steps with =. In traditional software engineering (sce Figure 5.10a), documents R arc used for specifying
the requirements of the supervisory control software. Then, an informal design D of the software is made
and subsequently, the realization Z is made.

define RH design ! I)H realize A define R model realize VA

A A | L

(a) Traditional software engineering (b) Synthesis-based software engincering

Figure 5.10: Traditional softwarc engincering and synthesis-based software engincering

However, what in fact is done in traditional software engincering is that an engineering problem (the docu-
ment with requirements R) is translated informally into another engineering problem (the document with a
software design D). Subsequently, the last engincering problem is solved by realizing the software design.
As a consequence of informally designing and realizing software. the realization needs to be tested against
the requirements R and the design D.

With synthesis-based engineering (see Figure 5.10b), the manual design of a certain part of the software
is eliminated. Now, the informal document of requirements R is translated into a formal model of the
requirements A j. Synthesis-based engineering allows us to generate control software that is correct with
respect to the formal models of the requirements. As a consequence, the realization Z does not need to be
tested against the formal model of the requirements A/j;. Note that this is only correct if the realization Z
is derived correctly out of the model of the supervisor.

Both frameworks are used in order to synthesize a supervisor for the case study. It appeared that the state-
based framework is slightly more convenient for synthesizing supervisors, since the control problem does
not nced to be partitioned in order to avoid the state-space explosion, which can happen when supervisors
are synthesized in the event-based framework. However, distributed supervisors of the event-based frame-
work are likely to solve control problems for systems with even larger state spaces, since the state-based
framework is essentially a centralized approach.

Next, the supervisor synthesis has the advantage that the synthesized supervisors can be simulated imme-
diately. As a result, the engineer can get feedback immediately and the design-validate-redesign loop is
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shortened. Furthermore, the use of models allows application of model-based techniques, used for thor-
ough system analysis and testing, which help to get a better system overview. As a consequence, the use of
models can possibly reduce the cost of the production of expensive prototypes.

Furthermore, synthesis-based engineering offers advantages for products that are evolving over time. In
general, if the requirements of a system change, the formal requirements are likely to be adapted more
casily than a part of a software design. Subsequently, a new supervisor can be synthesized immediately,
without losing the consistency between the requirements and the realization, which is often a challenge
in traditional engincering. The multimover is an example of such an evolving product, since most theme
parks have their own specifications of their theme park vehicle.

5.6.3 Implementation

In this project, a prototype implementation is developed that can be used at NBG for many other appli-
cations. It supports supervisors synthesized with either onc of both frameworks. This is done in order to
give the engineer freedom in choosing which framework is more suitable for the control problem. The
prototype implementation performs satisfactorily and evaluates changes in the system’s state fast enough.
As aresult, this concept supervisor implementation is suitable for implementation in other systems.

A difference that is encountered between the implementation of the event-based supervisor and the state-
based supervisor is the memory size needed for the controller. The event-based supervisor needs much
more memory than the state-based supervisor. This can be explained by the fact that an event-based super-
visor contains the complete closed-loop language of a system, as stated in Section 2.4.3, while a state-based
supervisor only needs the state of the system in order to calculate a control action. However, the implemen-
tation of the event-based supervisor makes more use of lookup tables, which results in a significant faster
evaluation of the supervisors compared to the implementation of the state-based supervisors.

Synthesis-based engineering is applicable for control problems that coordinate components. The safety
issuc of the multimover is an example of such a control problem, since safety is assured by coordination
of all relevant components. However, the implementation takes a nondeterministic choice which control
action is exccuted, if more are possible. As a result, the implementation can guarantee that something will
certainly not happen, but cannot guarantee that something will happen eventually, since the implementation
can still contain livelock, due to a bad choice of control actions. Therefore, the implementation of optimal
supervisors in terms of time could be a next step and is suggested as further research.

Furthermore, this prototype implementation is suitable for model-based integration and testing, introduced
in [BraO8]. Figure 5.11 shows possible combinations of model-based integration. Figure 5.11a shows the
integration of the supervisory controller in the modelling environment. With this set-up, the implementation
of the supervisor in the control software can be tested more thoroughly. This set-up is suitable for evaluating
the choices that are made by the supervisory controller if more than one control action is possible and
which sequences of control actions are produced at each state. Furthermore, with this set-up, livelock can
be encountered in an early stage of the product development process. If the real plant is integrated in the
modelling environment (see Figure 5.11b), the interactions with the real plant can be simulated with the
model of the supervisor. Note that this set-up also allows that only a part of the real plant is integrated.

This section concludes this chapter about the implementation of supervisors. In this chapter, a concept
of implementation of a supervisor in the existing control environment of the multimover is described. To
prove the concept, an implementation of a supervisory controller is made, which is independent of the used
framework. Pitfalls of this concept of implementation are addressed and the conclusion is drawn that the
supervisory controller works correctly. In the next chapter, the conclusions and suggestions for further
research are given.
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Figure 5.11: Model-based integration and testing
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Chapter 6

Conclusions and suggestions for further
research

In the previous chapters, all steps to integrate supervisory control synthesis in the engineering process of
NBG are discussed. In this chapter, the conclusions and suggestions for further research are presented. The
conclusions of the previous chapters are presented in Section 6.1. This chapter ends with recommendations
for further research in Section 6.2.

6.1 Conclusions

The objective of this project is to test the applicability of supervisory control synthesis to the product
development process of NBG. To this end, a real product of NBG is chosen as a case study. This case
study is the multimover, an automated guided vehicle that is used in the amusement park business. For this
study, a supervisor for the multimover is synthesized that assures safety, which includes anticipating on
emergency and error signals and an accurate proximity handling.

Two main frameworks exist that can be used in order to synthesize supervisors, namely the event-based
framework of Ramadge and Wonham [Ram87, Won84] and the state-based framework of Ma and Won-
ham [Ma05]. Both frameworks are used to synthesize a supervisor for the multimover. Furthermore. the
synthesis aspects and modelling aspects of both frameworks have been discussed.

The synthesis of supervisors with the event-based framework often suffers from calculation complexity. As
a conscquence, the supervisor synthesis of the event-based framework may result in a so-called state-space
explosion. Nevertheless. the event-based framework can be used for synthesis of distributed or hicrarchical
supervisors. Two distributed supervisors have been synthesized for the control problem of the multimover
with the event-based framework, using automaton abstraction [SuO8a]. The state-based framework is more
efficient with respect to centralized supervisor synthesis. However. a disadvantage of the state-based frame-
work might be that only centralized supervisors can be synthesized with this framework. A centralized
supervisor has been synthesized for the control problem of the multimover with the state-based framework.

The state-based framework is often preferred for synthesizing supervisors for industrial systems, since this
framework is more convenient with respect to modelling the requirements. The state-based framework
allows to model requirements by logical expressions and finite state machines, while for the ¢vent-based
framework only finite state machines can be used. In this project, an algorithm is developed that automati-
cally converts basic logical expressions o [inite state machines. With this conversion, the user can specify
the requirements with logical expressions and finite state machines and synthesize a supervisor with the
event-based framework. An experiment has been performed with the model of the multimover and an
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event-based distributed supervisor has been synthesized with requirements specified by logical expressions
and finite state machines. The event-based supervisor synthesis did not suffer from calculation complexity.

The supervisors that have been synthesized using both frameworks have been implemented on a real em-
bedded platform of the multimover. To this end, a state tracker, that tracks the state of the multimover, and
a control decision maker which sends appropriate actions have been implemented. The prototype imple-
mentation is developed in such a way that supervisors, synthesized with either one of both frameworks, can
be implemented casily. The drawbacks of this prototype implementation have been addressed. While the
models are based on the assumptions that communication is synchronous, no problems were encountered
due to asynchronous communication between the components of the multimover and the supervisor imple-
mentation. However, the supervisor implementation could still contain blocking behaviour due to a wrong
choice of control actions [Mal03].

The prototype implementation has been validated on the real hardware platform and the conclusion is
drawn that the implementation controls the multimover satisfactorily, based on implementation testing.
The implementation showed the same behaviour as the models. Additionally, both frameworks are suitable
for implementation. Finally, a suitable concept of implementation for supervisory controllers has been
proven. With the prototype implementation of the supervisor in the control software, we have completed
the synthesis-basced engincering process. Subsequently, we state below the most relevant findings about the
usage of formal models and supervisory control synthesis in the product development process.

Formal models are a key clement in the synthesis-based engincering process. These formal models provide
a structured and systematic approach to specify component and system behaviour with more consistency
and less ambiguity than documents, because the model semantics precisely defines what a certain modelling
construct means [Bra0O8]. By working with formal models in an early stage of the product development
process, the engineers are forced to clarify all aspects of the system in an carly stage of the product devel-
opment process. Clarity contributes to a good design and correct control software. Furthermore, modelling
the uncontrolled system by finite state machines and modelling the requirements by finite state machines
and logical expressions is intuitive. However, modelling skills need to be developed to be able to model
control systems and time is nceded to develop those skills.

The automatic synthesis of a supervisor changes the software development process from designing and
debugging controller code into designing and debugging requirements, assuming correct plant models.
Since these requirements are modelled formally, we do not need to test the model of the supervisor against
the requirements, since it is mathematically correct by construction. Thus, the engineers can focus on
validating the system, not on verifying the software design. Subsequently, the requirements of a system
can change over time, due to customer demands. As a consequence, in traditional engineering, all changes
have to be made in the software design informally. and this is dilficult to do without introducing errors or
inconsistencies. With supervisory control theory, only plant models and requirement models have to be
adapted and a new supervisor can be synthesized, which is correct by construction. This means that the
system is evolvable, i.e. able to withstand changes.

In addition, the synthesized supervisors can be simulated immediately, which results in a short feedback
loop in the development process. Furthermore, the usage of models allows the application of model-
based techniques, such as simulation and formal verification, which can detect errors in an carly stage of
the system development process. As a result, the costs to develop expensive prototypes can possibly be
reduced. Furthermore, since the desired behaviour is specified in models instead of in the software code,
engineers can have a better understanding of the control software, which can lead to an easier validation of
the resulting control software with respect to the original informal specifications.

We end this section by considering how the Key Performance Indicators (KPI) of Chapter 1 might be
affected by synthesis-based engineering. While the functionality is increasing (F |), we conclude that the
quality can possibly increase, due to the fact that the software can be mathematically correct with respect to
the models of the requirements (Q T). Additionally, the time-to-market might decrease, since every change
in functionality needs only a small change in the models (T |). Finally, the product costs can possibly
be reduced (C |), since simulation allows the engineers to detect errors in an early stage of the product
development process, which leads to development of less prototypes.
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6.2 Suggestions for further research

In order to synthesize a supervisor, models have to be defined of the uncontrolled system and its control
requirements. In this project, the uncontrolled system is modelled by finite state machines and the control
requirements by logical expressions and finite state machines. Since we were able to model the supervisory
control problem satisfactorily, the conclusion can be drawn that the existing modelling environment is
sufficient for modelling the supervisory control problem ol the multimover. However, more case studices
need to be performed to test the applicability of the existing modelling environment to other industrial
control problems. To give an example, one can think of specifying control requirements with temporal
logic [Seo07].

A concept of a supervisory controller is developed that tracks the state of a system and determines an
appropriate control action according to the state of the system. However. it could be the case that an infinite
sequence of control actions is chosen or that a marker state is never reached and as a result, the system is
blocking, which is not desired. The properties of [Mal03] prevent a supervisory controller from doing
this. Therefore, model checkers could be used to check for these properties. Synthesizing supervisors that
are optimal with respect to time could probably also solve this problem, since supervisors which contain
livelock or non-reachable marker states are not time-optimal. Therefore, the synthesis of time-optimal
supervisors for real industrial systems is suggested as future rescarch.

Finally, the models that are used for supervisor synthesis assume that the communication between the
uncontrolled system and the supervisor is synchronous. However, in contrast to the synchronous commu-
nication used in models, real systems often use asynchronous communication. As a result, the supervisor
implementation could send a control action to the uncontrolled system that is based on a wrong state of
the system. The prototype implementation that is developed in this project did not show this behaviour.
However, this phenomenon could still occur. Therefore, a suggestion for further rescarch is to investigate
how the communication problem can be solved or avoided.
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Appendix A

Formal models

In this chapter, all used formal models are presented that are used for synthesizing a supervisor for the
chosen case study, the multimover. In the first section, all used plant models for synthesizing a supervisor
are presented.

A.1 Plant models

In this section, all plant models are presented. The alphabets of all plant models are disjoint. For clarity,
all state names and event names are prefixed with an abbreviation of the component name. For a full list of
used event names and state names, sce Appendix A.3 and Appendix A.4.

A.l1.1 Interface buttons

An interface button is represented by a small automaton with two uncontrollable events: the event that
represents the button being pressed (press) and the event that represents the button being released (release).
The user interface of the multimover contains three buttons: a reset, forward and backward button. In
Figure A. 1, the automaton representing the forward button is depicted.

fb_press
(s Sl e
FB_Released ~~=~----""7 FB_Pressed
Ib_release

Figure A.1: Automaton of the forward button

A.1.2 Interface LEDs

The user interface of the multimover contains three LEDs. Each LED is modelled by one automaton. The
automaton representing the forward LED is given in Figure A.2. Note that the initial states and marker
states of the LEDs can differ.
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l f_on

e o

FL_On
Sfoff

Figure A.2: Automaton of the forward LED

A.1.3 Bumper switch

This automaton represents the sensor mounted on the bumper of the multimover that can detect physical
contact with an object. The automaton of a bumper switch has the same structure as an automaton of a
button. See Figure A.3.

l bs_press
o< )
BS Released ~~~------" ~ BS_Pressed

bs_release

Figure A.3: Automaton of the bumper switch

A.1.4 Battery

This automaton represents the sensor that measures the battery level of the battery. If the battery level is
below a certain limit, a uncontrollable event ba_empty is sent. If the vehicle is charged, ba_ok is sent. The
automaton representing the battery is depicted in Figure A 4.

ba_cmpty

o< __ .
BA OK ~~------"7 BA_Empty

Figure A.4: Automaton of a battery

A.1.5 Proximity sensors

The multimover contains four proximity sensors, two at the front and two at the back of the multimover. On
cach side, we have a long proximity sensor and a short proximity sensor. If the multimover is riding forward
and the short proximity sensor on the forward side is activated, the multimover should stop immediately. If
only the long proximity sensor is activated. the multimover should drive at a safe speed. If the proximity
sensors at the back of the multimover are activated while it is riding in the forward direction, nothing
should happen. The proximity sensors are modelled like other sensors on the vehicle. In Figure A5, the
automaton of the short proximity front sensor is depicted.

A.1.6 Ride Control

In Figure A.6, the automaton of Ride Control is depicted. Ride Control can send two uncontrollable events:
rc_stop which denotes a “gencral stop” command and rc_start which denotes a ‘general start’ command.
This is modelled with a selfloop in cach state. since they can occur in any arbitrary order.
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l active

PSF_Inactive = R R S _I'SFJ\ctiw
inactive

Figure A.5: Automaton of a proximity sensor

re_stop

re_start { ‘,@;‘:

‘),o" B \I\ re_stop
—RC_Slur( “““““““““ RC ,Stof) -
re_start

Figure A.6: Automaton of Ride Control

A.1.7 Drive motor

This automaton represents the drive motor of the multimover (sce Figure A.7). The controllable events
dm_enable_fw and dm_enable_bw represent the drive motor being powered on with initial speed in the
forward direction or backward direction, respectively. From the state On, the maximum speed of the drive
motor can be determined. This is modelled by the selfloop with controllable events at state On. If the
drive motor does not behave like desired due to a hardware error, the uncontrollable event dm_error will
be declared, which turns off the drive motor immediately, since the motor is not reliable anymore. From
state On. it is possible to stop the drive motor with the controllable event dm_stop. The motor is switched
oft when the motor has stopped completely. This is modelled by the uncontrollable event dm_disable at
the state Stopping and brings us back to state Off.

dm_enable_fuw

dm_enable_bw dm_fw

DM On dm_fwslow
& dm_fwstop
dm_bw
dm_bwslow
dm_bwstop

DM_Off

dm_error
dm_stop

dm_enable_fw

\ Im_enable_bw,

\
am _error’ dm_stop
\

\
dm_disable™, %
%

DM _Stopping

Figure A.7: Automaton of the drive motor

A.1.8 Steer motor

The model of the steer motor contains the motor and track sensor that controls the steering action of the
multimover. The automaton model of the steer model is depicted in Figure A.8. The only discrete modelled
behaviour is switching on (sm_enable) and switching off (sm_disable) the steer motor. If a hardware error
occurs, the uncontrollable event sm_error takes place which switches off the steer motor. Note that this
uncontrollable event can also occur at state Off, namely when the steer motor is still slowing down.
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sm_enable

SM_Off SM_On
—es >
AR == mmm o " -
o
\\ 7
sm_error sm_disable

Figure A.8: Automaton of the steer motor

A.1.9 Scene program handler

The Scene Program Handler (see Figure A.9) reads the scene programs provided by the customer and sends
certain commands to the rotation device, drive motor, steer motor and audio player. Since only starting
(sh_enable) and stopping (sh_disable) the reading of the scene program is relevant for our supervisor, only
these events are modelled. Because a scene program could contain a command that the multimover should
start driving in the opposite direction, the uncontrollable event sh_chdir is modelled. If the scene program
file contains a parse error, the multimover should stop moving and enter the emergency mode. If a parse
error is read, the uncontrollable event sh_error will occur.

sh_error
sh_chdir

-~

l sh_enable { ,‘
e
SH_Oft SH_On

sh_disable

Figure A.9: Automaton of the scene program handler

A.1.10 Multimover

The automaton depicted in Figure A.10 consists of three internal controllable events that are used to specify
the state of the multimover. The desired behaviour of the multimover can roughly be divided in three states
and this plant model represents these three states:

o MM _Active In this state, the multimover is active and operational.

o MM _Emergency The multimover ends up in this state after an emergency happened. If this state
is active, all motors are powered off and the multimover must be reset to be deployed into the ride
again.

o MM _Reset If this state is active, the system is reset and waiting for being deployed into the ride.

A.2 Requirement models

In this section, all requirement models are presented. For cach module, all logical expressions and automata
are explained that are used to specify the intended behaviour of the multimover.
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mm_reset
MM_Emergency —
_*O/’\

mm_emergency

MM _Reset

mm_reset

mm_emergency .
: mm_active

MM _Active

Figure A.10: Automaton of the multimover

A.2.1 LED module
Logical expressions

The ResetLED may only be switched off if the status of the multimover is active or reset.
— { rl_off } = (MM_Active | V MM_Reset |)

The ResetLED may only be switched on if the status of the multimover is emergency.
— { rl_on } = MM_Emergency |

The ForwardLED may only be switched on if the status of the multimover is reset.
»{ fl_on } » MM_Reset |

The ForwardLED may only be switched off if the status of the multimover is active or emergency.
s { fl_off } = (MM _Active | Vv MM_Emergency |)

The BackwardLED may only be switched on if the status of the multimover is reset.
— { bl_on } = MM_Reset _

The BackwardLED may only be switched off if the status of the multimover is active or emergency.
— { bl_off } = (MM_Active | V MM_Emergency |)

A.2.2 Motor module
Logical expressions

The Scene program handler may only be switched off only if the status of the multimover is reset or
emergency.
» { sh_disable } = (MM _Reset | Vv MM_Emergency |)

The Drive Motor may only be stopped if the status of the multimover is reset or emergency and the Scene
program Handler is off.
— { dm_stop } = (MM_Reset | v MM_Emergency |) A SH_Off |)

The Steer Motor may only be switched off if the status of the multimover is reset or emergency and the
Drive Motor is off.
— { sm_disable } = (MM_Reset | Vv MM_Emergency |) A DM_Off |)

The Steer motor may only be switched on if the status of the multimover is Active.
» { sm_enable } = MM_Active |

The Drive Motor may only be switched on if the status of the multimover is Active and the Steer Motor is
on.
» { dm_enable_fw, dm_enable_bw } = (MM_Active | A SM_On |)
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The Scene Program Handler may only be switched on if the status of the multimover is Active, the Steer
Motor is on and the Drive Motor is on.

— { sh_enable_on } = (MM_Active | ASM_On | ADM_On |)

The Drive Motor may only execute another drive command if the multimover is Active.

» { dm_enable_fw, dm_enable_bw, dm_fw, dm_fwslow, dm_fwstop, dm_bw, dm_bwslow, dm_bwstop '}
= MM_Active |

Automaton

The automaton depicted in Figure A.11 specifies the relationship between the scene program handler and
the drive motor. If the scene program handler reccives a command to change the direction sh_chdir, the
active state of the drive motor is changed.

dm_fw
dm_fwslow
dm_fwstop

\

\
| sh_chdir
1

sh_chdir

dm_bw
dm_bwslow
dm_bwstop

Figure A.11: Requirement of the motor module

A.2.3 Button module

Logical expressions

The multimover may only switch to Active if the forward button or the backward button (not both) is
pressed and the resetbutton is not pressed.
— { mm_active } = (((FB_Pressed | A BB_Released |) V (BB_Pressed | A FB_Released |)) A — RB_Pressed |)

The multimover may only switch to Reset if the reset button is pressed.
> { mm_reset } = RB_Pressed |
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Automata

The automata depicted in Figures A.12a and A.12b determine the occurrence of the events dm_enable_fiv
and dm_enable_bw. Both events are only allowed if the corresponding interface button is pressed (fb_press
or bb_press) and the multimover has become active (mm_active). Note that these requirements is the
occurence of an event under condition of a sequence of events and is therefore specified by an automaton.

mm_active
mm_emergency
mm_reset

mm_emergency
mm_reset

fb_press

fb_release 4
T fb_release
dm_enable_fn

mm_reset
mm_emergency

mm_dactive

LA
(|
‘oo

Ib_press
1b_release

(a)

mm_active
mm_emergency
mm_reset

mm_emergency
mm_reset

bb_press

-~
bb_release |
T bb_release
dm_enable_bw

mm_reset
mme_emergency

nun_active

LA

[ |

‘o

S
bb_press
bb_release

(b)

Figure A.12: Requirements of the button module

A.2.4 Emergency module
Logical expressions

The multimover may only switch to reset and active only if the bumper switch is not active and the battery
is not empty.
— { mm_reset, mm_active } = (BS_Released | A BA_OK |)

Automata

The automaton specified in Figure A. 13 determines the occurrence of the event mm_emergency. This event
is only allowed after en ‘emergency event’ occurred, c¢.g. the steer motor sending an error (sm_error),
the drive motor sending an error (dm_error), the scene program handler sending an error (sh_error). the

battery becoming empty (ba_empty) or the bumper switch being pressed (bs_press).

A.2.5 Proximity module
Logical expressions
The multimover must stop driving in the forward direction only if Ride Control is in the status Stop or the

short proximity sensor in the forward direction is active.
> { dm_fwstop } > (RC_Stop | V PSF_Active |)
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sm_error
dm_error

sm_error sh_error
dm_error ba_empty
sh_error bs_press
ba_empty P
bs_press ‘]

mm_reset

mm_emergency

Figure A.13: Requirement of the emergency module

The multimover must stop driving in the backward direction only if Ride Control is in the status Stop or
the short proximity sensor in the backward direction is active.
— { dm_bwstop } = (RC_Stop | V PSB_Active |)

The multimover must continue driving in the forward direction only if Ride Control is in the status Start
and the short proximity sensor in the backward direction is inactive.
— { dm_fwslow, dm_fw } = (RC_Start | A PSF_Inactive |)

The multimover must continue driving in the backward direction only if Ride Control is in the status Start
and the short proximity sensor in the backward direction is inactive.
— { dm_bwslow, dm_bw } = (RC_Start | A PSB_Inactive |)

The multimover must slow down in the forward direction only if the Front Long Proximity Sensor is active.
— { dm_fwslow } = PLF_Active |

The multimover must drive at regular speed in the forward direction only if the Front Long Proximity
Sensor is inactive.
» { dm_fw } = PLF_Inactive |

The multimover must slow down in the backward direction only if the Backward Long Proximity Sensor
1s active.
— { dm_bwslow } = PLB_Active |

The multimover must drive at regular speed in the backward direction only if the Backward long Proximity
Sensor is inactive.
— { dm_bw } = PLB_Inactive |

Automata

The proximity module contains one requirement specified by an automaton. Since this automaton is too
large to depict here, only a description is given. This requirement specifies the occurrence of the events
dm_fw, dm_fwslow, dm_fwstop, dm_bw, dm_bwslow, dm_bwstop and dm_stop. Each of these events are
not allowed to take place twice without the occurrence of another event in between.
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A list of all used events is given in Table A.2. In this table, the controllability of cach event is stated
(Uncontrollable / Controllable), together with a short description of the representation of cach event.

Table A.1: List of events.

Event

u/C

Description

mm_active
mm_reset
mm_emergency
bb_press
bb_release
fb_press
fb_release
rb_press
rb_release
bl_on

bl_off

f_on

S_off

rl_on

rl_off
dm_enable_fw
dm_enable_bw
dm_fw
dm_fwslow
dm_fwstop

dm_bw
dm_bwslow
dm_bwstop

dm_stop
dm_disable
dm_error
sm_enable
sm_disable
sm_error
sh_enable
sh_disable
sh_error
sh_chdir
re_start
re_stop
bs_press
bs_release
psf_active
psf_inactive
plf_active
plf_inactive

sisleleolisisislotsisislsliclintal=lal= el N5

)

@
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The multimover switches to statce MM_Active.

The multimover switches to state MM _Reset.

The multimover switches to state MM_Emergency.

The backward button is being pressed.

The backward button is being released.

The forward button is being pressed.

The forward button is being released.

The reset button is being pressed.

The reset button is being released.

The backward LED is being switched on.

The backward LED is being switched off.

The forward LED is being switched on.

The forward LED is being switched off.

The reset LED is being switched on.

The reset LED is being switched off.

The drive motor is being switched on in the forward direction.

The drive motor is being switched on in the backward direction.

The maximum speed of the drive motor in the forward direction is set to 0.5 1 /s.
The maximum speed of the drive motor in the forward direction is setto 0.2 1/ s.
The maximum speed of the drive motor in the forward direction is set to 0.0 1 /s.
The maximum speed of the drive motor in the backward direction is set to
0.5m/s.

The maximum speed of the drive motor in the backward direction is set to
0.2 m/s.

The maximum speed of the drive motor in the backward direction is set to
0.0 m/s.

The drive motor is decelerating to a speed of 0.0 m/s.

The drive motor has no speed and is being switched off.

The drive motor is broken and is being switched off.

The steer motor is being switched on.

The steer motor is being switched off.

The steer motor is broken and is being switched off.

The scene program handler is being started with reading the scene program.
The scene program handler is being stopped with reading the scene program.
The scene program handler has found a parse error.

The scene program handler has received the command to change direction.

The command “start” of Ride Control is received.

The command ‘stop” of Ride Control is received.

The bumper switch has become active.

The bumper switch has become inactive.

The short proximity sensor on the forward side has become active.

The short proximity sensor on the forward side has become inactive.

The long proximity sensor on the forward side has become active.

The long proximity sensor on the forward side has become inactive.

Continued on next page
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Table A.1: List of events (continued).

Event U/C  Description

psb_active U The short proximity sensor on the backward side has become active.
psb_inactive U The short proximity sensor on the backward side has become inactive.
plb_active U The long proximity sensor on the backward side has become active.
plb_inactive U The long proximity sensor on the backward side has become inactive.
ba_empty U The battery level has become too low.

ba_ok U The battery level has become sufficient.

A.4 State list

Table A.2: List of states.

State Initial  Marked Description

MM _Active The multimover is in state “Active’.

MM _ Reset v The multimover 1s in state “Reset’.

MM_Emergency / The multimover is in state *“Emergency’.

BB_Pressed The backward button is pressed.

BB_Released v v The backward button is released.

FB_Pressed The forward button is pressed.

FB_Released / v, The forward button is released.

RB_Pressed The reset button is pressed.

RB_Released v v The reset button is released.

BL_On The backward LED is switched on.

BL_Off "4 The backward LED is switched off.

FL_On / The forward LED 1s switched on.

FL_Off / The forward LED is switched off.

RL_On / The reset LED is switched on.

RL_Off v The reset LED is switched off.

DM_Off v/ v The drive motor is switched on in the forward direction.

DM_On The drive motor is switched on in the backward direction.

DM_Stopping The drive motor is decelerating to a speed of 0.0 m/s.

SM_On The steer motor 1s switched on.

SM_Off / o The steer motor is switched off.

SH_On The scene program handler is switched on and reading the scene pro-
gram.

SH_Off / J The scene program handler is switched off.

RC_Start v/ v The last received command of Ride Control is “start’.

RC_Stop The last received command of Ride Control is “stop’.

BS_Pressed The bumper switch is pressed.

BS_Released / v The bumper switch is released.

PSF_Active The short proximity sensor on the forward side is active.

PSF_Inactive 4 "4 The short proximity sensor on the forward side is inactive.

PLF_Active The long proximity sensor on the forward side is active.

PLF_Inactive v v The long proximity sensor on the forward side is inactive.

PSB_Active The short proximity sensor on the backward side is active.

PSB_Inactive v v The short proximity sensor on the backward side is inactive.

PLB_Active

The long proximity sensor on the backward side is active.

Continued on next page
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Table A.2: List of states (continued).

State Initial  Marked  Description
PLB_Inactive v/ v The long proximity sensor on the backward side is inactive.
BA_Empty The battery level is too low.

BA_OK 7 v The battery level is sufficient.
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Logic expression converter

In this chapter, the source code is listed that converts the type | and type 2 expressions of the synthesis tool
of Ma-Wonham to automata, which is used in Chapter 4. The source code uses functions of the Supervisor
Synthesis Package!.

B.1 Source code

The source code consists of four files, which contain a class structure (data.py). an expression parser
(parser.py), the frontend functions (frontend.py) and other functions (func.py).

B.1.1 data.py

Specification B.1: Python script of used data structure

s class TypelRequirement (object):

ST TR T Siaral s
15 def __str__ (self):
state_set_text = "{" + ", " . join(self.state_set) + "}
return "Typel: " -+ tate_set_text
class Type?Requirement (object):
0
def nit__ (self, state_set, event):

state_set
self.event = event

30

IDownloadable at http: //dev.se.wtb.tue.nl/projects/chi- tooling/downloads
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def str__(self)
state_set_text = "{" + ", ".join(self.state . MR
35 return "Type2: " + state_set_text + ", " + self.event

B.1.2 parser.py

Specification B.2: Python script of parser

from aut_expr import data

import ply.lex as lex
s import ply.yacc as yacc

10 tokens (
* LPAREN" ,
" RPAREN',
, ’
’
R LY’,
15 ' COMMA’ ,
IR
)
20 ¥ty
re\)’
L
- ,
N
vy
25 r*la-zA-2_][a-zA-Z_0-9]+"
def t_newline(t)
£y
0 el <lineno % len(t.value)
t_ignore Y o
3s
def t_errcr (t):
raise rror (" egal character ’'%s'" % e[0])
1w def
1)
def p_spec?(p):
15 pec LPAREN StateSet COMMA TD RPAREN’
pl0] = data.Typel2Requirement (p[2],p[4])
def
RCURLY’
)
def p_States_ 1 (p):
“States @ IDf
plo s}
55
def p_States_2 (p):
"States : States i
p(0] pll] + [pl3
60
def p_error(p):
raise ValueError ("Syntax error in input!")
65

def parse (data):
lexer = lex.lex ()
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lexer.input (data)

Yy yacc (debug=1)
p=yacc.parse (data)

return p

85

B.1.3 frontend.py

n

0

10

[

Speciflication B.3: Python script of used frontend functions

from aut_expr import parser, data, £

def make_typel_specifi tion(aut_fnames, logical_spec, req_fname):

utomata (coll, aut_fnames, False, False)

data.TypelRequirement) :

th parsing")

aut , State_tuple fun t_autcmata (aut_list, typelspec.state_set)
result, state_map func.make_product_with_mapping(aut_

illegal_state = state_map . state_tuple]

result.remove_state(illegal_state)

save_automaton (result, "Requirement saved in %s", reg_fname)

def m specificatior fnames, aut " ol S
col collecticn.Colleetion ()
ta (col alse)

e2spec = parser.parse(logi

if not isinstance (typeZspec, data.TypeZRequirement):
raise ValueError ("Error with parsing")

aut_list, state_tuple func.sort_automata(aut_list, typeZspec.state_set)
result, state_map func.mak ict_with_mappi it list)
state state_map([state_tuple]

aut = load_automaton(coll, aut_fname, False, False
event = func.search_event (aut, type2spec.event)
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illegal_edges=|]

70 S e ¢
if event in 1abet :
edges list (state.get_outgoing(event))
if len(edges) > 0:
for edge in edges:
75 result.remove_edge (edge.pred, edge.succ, edge.label)
else:
raise ValueError e net j edge of stateset" % event)
8(

esult.add_event_set (set ([event]))
is_standardized = result.is_standardized()
for s in result.get_states():
85 if s is not state:
if not (is_standardized and s is result.initial):
result.add_edge_data (s, s, event)

save_automaton (resull, "Requirement saved in %s", req _fname)

B.1.4 func.py

Specification B.4: Python script of used functions

s from automata import product, common

def rt_automata (aut_11 state_name_list):

10
L5
20
)
25
for state_name in state_name_list:
for aut in aut_list:
30 for _state, aut_state_name in aut iteritems () :
if aut_state_name state_name:
if state_name in 3
raise Valuet contaln same state "\
_state_name)
38 ked_names.add (
sorted_aut_1 append (aut)
state_tuple.append(aut.get_state (aut_state))
state_tuple = tuple(state_tuple)
40
if not len (aut st) = len(sorted_aut_list):
raise ValueError ("Not all automata needed!")
if aut not in sorted_aut_list;
45 raise ValueError ("Multiple states belong to one automaton")

return sorted_aut_list, state_tuple
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def make_product_with_mapping(aut_list):
S0 T

55 +
o0 complete_state_map = {(}
if len(aut_list) = 1:
result = aut_list[0]
for i in result.state_names:
05 complete_state_map|[ (result.get_state(i),)] result.get_state (1

return res , comple

e_state_map

o

line ("Must do %$d produc mputations." % gt =
result = aut_list[0]
70 for idx, aut in enumerate (aut_list[1l:
oldresult = result
result, state_map = prod t.prox ._map (result, aut)
msg = “"Product #%d done: %d states, %d transitions” \

result.get_num_states (), result.get_num_edgss())

- 1)
map state_map
old_map complete_state_map
S0 _state_map)
D)
&S
return result, complete_
def search_event (aut, eventname):
Rl
9§

100

for event in aut.alphabet:
if event.name eventra
return event

108
[

not found in automaton" eventname)

raise ValueError ("Event %r
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Appendix C

Supervisor synthesis

In this chapter, the script file of Specification C.1 is listed that is used for converting the state-based ex-
pressions of the multimover to automata. Furthermore. all supervisors of the event-based framework are
synthesized in this script. The script that is used for synthesizing a supervisor with the state-based frame-
work is listed in Specifications C.2 and C.3.

C.1 Event-based supervisor synthesis

Specification C.1: Batch lile ol event-based supervisor synthesis

from automata import frentend

frontend.
£

ntend.
i frontend.m
f ntend.
f ntend.mak
frontend.me
ntend.
15 frontend.
froftend.r

frontend.n
frontend.m

ntend.make_g

20 frontend.

frontend.make

frontend.

frontend.make_

frontend.

froentend.m
frontend.r
frontend.
0 frontend.m
frontend.

is
frontend.make_type2_spec ition (“MM.cfg’,'RL.cfg’,’ ({MM_Emergency},rl_off)’,’SpecLMl.cfg’)
frontend. p_typel speci a on (" MM I g’,"’" ({MM_Reset}, -

10 frontend.make_typeZ_spe ication ( s ({MM_Active),rl_c )
frontend.make_ spe £ a( +! ({MM_Emergency’, B )

89



90

45

60

70

80

85

frontend.make_type2_specification('MM.cfg’,’'FL.cf
frontend.make_type2 specification('MM.cfg’,’FL.cf
frontend.make_type2 specification('MM.cfg’,’BL.cf

Appendix C. Supervisor synthesis

g’," ({MM_Active},fl_on)”’
g’,’ ({MM_Reset}, fl
g’," ({MM_Emergency}

;' SpecLMS.cfg”)
_off)’, " SpeclM6.cfg’
Bl _oF) ", “ SpEcTMTwc Eg?

frontend.make_type2_specification('MM.cfg’,’BL.cfg’,’ ({MM_Active},bl_on)’,’ SpecLM8.cfg”’)

frontend.make_type2_specification(’MM.cfg’,’BL.cfg’,’ ({MM_Reset}, bl_off)’,’SpecLM9.cfg’)

frontend.make_product ("SpecLMl.cfqg,; SpecLM2.cfg; SpecLM3.cfg, SpecLMd.cfg, SpecLM5.cfgqg, =
SpeclLM6.cfg; SpecLM7.cfg, SpecLM8.cfg, SpecLM%.cfg’ *SpecLM.cfg’

frontend.make_dot (*SpeclM.cfg’,’ SpecLM.dot”)

frontend.make_type2_specification(’MM.cfqg’,’SH.cfg’,’ ({MM_Active},sh_disable)’,”’ cfgt
)

frontend.make_type2_ 1ficdtion ("MM.cfq’;"DM:cfg’ ;" ({MM_Active)},dm_stop) ",  SpecMM2.cfg’)

frontend.make_type2__ fication(’SH.cfg’,'DM.cfg’,’ ({SH_On},dm_stop)’, ' SpecMM3.cfg’)

frontend.make_type2_ fication("MM,cfg’,’SM.cfg’,’ ({MM_Active},sm_disable)’,’ SpecMM4.cfg’
)

frontend.make_type?2 ification(’'DM.cfg’,’ g, * sm_disable)’,” SpecMMS.cfg’

frontend.make_type2__ flieation | DM .Eg! . Lt s fSpecMMb.
cEg*)

frontend.make_type2_specification('MM.cfq’,’SM.cfg’,’ ({MM_Emergency},sm_enable)’,’SpecMM7. «
cfg’)

frontend.make_type2_.
frontend.make_type2_.
.efg”)

frontend.make_type?2

specifi
specification(’

cation ("MM.
MM .

_specification (’MM.

SpecMM.0 .cfg’)
frontend.make_type2_ specification('MM.cfg’, " DM.cf
cfqr)
frontend.make_type2 specification('MM.cfqg” ;' DM.
cfg”)
frontend.ma ification|’ SM,.efg”, " DM, cf
)
frontend.
)
frontend.make_type Ton" MM.e
cfg”)
frontend.make_type?2 fication (! MM:
frontend.make_type2 icat'ioni’ SM.
frorntend.make_type2 ication(’DM.
frontend.make_type cation(’ DM,
eEg* )
frontend cificatien(’ MM.gfg*, "DM.cf

frontend.r ification (*MM.
ety
frontend.make_type?2_specification('MM.cfg’,’DM.cf
cfgh)
frontend.make_type2 specification('MM.cfg’,’DM.cf
frontend.make_type2 _specification(’'MM.cfg’,DM.c
cr”:')
frontend.make_type2_specification(’'MM.cfg’,’DM.cf
ety )
frontend.make_type2_specification(’MM.cfg’,’DM.cf
frontend.make_type2 specification(/MM.cfg’,’DM.cf
frontend.make_type2_specification('MM.cfg’,’DM.cf
frontend.meke_typ specificatdion(YMM. gfg’, ‘DM . cf
frontend.make_type2_specification('MM.cfg’,’DM.cf
frontend.make_type2_specification(’'MM.cfg’,’DM.cf
frontend.make_type2_specification(’ efg”,; "MM.cf
frontend.make_type2_specification ("'DM.cfg’,'MM.cf
frontend.m cificdation(” cfg” ;' MMcf
ification ("S5H,.gfg”, " MM, of

ct (' SpeeMML .oty ogh
o l.cfyg, Spe ecM
SpecMM] =fg, 'rg, 8 Sp
SpecMM18; cfq, upeCW 19 «cEfgy S Sp
SpecNM/d cfg, SpecMM25.cfgs S Sp
SpecMM30.cfg, SpecMMil i S Spe
SpecMM.cfqg’)

frontend.make_type2_spec

fg” ,
g9

, " ({MM_Reset },sm_enable)
. ({NM_Hmerqency},dm_enahle_fw)'

*SpecMM8.cfg’)
r'SpecMM9 =
({MM_Emergencyl, —

gt dm_enable_bw)’, "

({MM_Reset },dm_enable_fw)", " SpecMMl1.

;" ({MM_Reset},dr_enable _bw)’

"SpecMM12.

Off

},dm_enabl
,dm_enable_]

_enable

’

h_enable)’; " SpecM) s &fg*t)
}ssh.enable)”;’ SpecMM17 .cfg”
_enable)’, " SpecMM18.cfg’)
’ o

g',sh_enable)

3", ydm_fw)*,"S

ag’,” ({(MM_Emergency},dm_fwslow)

g’ ;" ({MM_Emergency},dm_Zwstop)’,’SpecMM22., —
g’," ({MM_Emergency!},.dm_bw)’, " SpecMMZ3.cfg’

, " ({MM_Emeraency},dm_bwslow) ", ' SpecMM24.
g’," ({MM_Emergency},dm_bwstop)’, ' SpecMM25.
q',’({MM_keset),dm_fw)’,’SpecMM76 cfg’

g’y " ({MM_Reset },dm_fwslow) ', SpecMM27.cfg’)
g’ " },dm_fwstop)’,’SpecMM28.cfg’
g’,” ({MM_Reset ), dm_bw)’, " SpecMM29.c )

g’," ({MM_Reset },dm_bwslow)"*,’'SpecMM30.cfg’

o | Reset },dm_bwstop)',’ SpecMM31l.cfg’
g’ " ({SM_On},mm_acti ve)’,'ﬁpec%MJZ.cf;’i
q',’(lDV On},mm_active)’,’SpecMM33.cfg’

g’ @ _Stopping},mm_active)’,”’ 4, —
3’ ., ({SH_On},mm_active)’,' SpecMM35

SpecMM3 SpecMMS .cfg, +

M9. efyg, MM 1lete, >
SpecMM17
SpecMM23.c
SpeCMM79.‘

r ification("FB.cfg, BB.cfg’,'MM.cfqg’,” ({FB_Released, BB_Released}, <
mm_active)’,’ SpecBMl.cfg’
frontend.make_type2_ specification(’BB.cfg, FB.cfg’,"MM.cfg’,’ ({BB_Pressed,FB_Pressed}, +«=
mm_active)’,’SpecBM2.cfg’)
frontend.make_type2_specification(’RB.cfg’,'MM.cfg’,’ ({RB_Pressed},mm_active)’,’ SpecBM3.cfg’ «

)



C.1. Event-based supervisor synthesis

o5

100

108

1o

120

2%

130

135

140

150

155

160

frontend.make_type2_specification(’RB.c
)
frontend.make_product (' SpecBMl.cfg, Spe

frontend.make_type2_specification(’BS.cf

fa’ ;4 MM .cfgr

" ({RB_Released},mm_reset)

*," ({BS_Pressed},mm_reset)’,

91

v ;" SpecBM4 s dfg?

' SpecEMl.cfg’)

frontend.make_type2_specification(’BS.cfg’,’MM.cfg’,’ ({BS_Pressed},mm_active)’,SpecEM2.cfg’ «—
)

frontend.make_type2_specification(’BA.cfg’,'MM.cfg’,’ ({BA_Empty},mm_reset)’,’SpecEM3.cfg’

frontend.make_type2_specification(’BA.cfg’,'MM.cfq’, pty},mm_active)’,’SpecEM4d.cfg’)

frontend.make_product (' SpecEMl.cfg, SpecEM2.cfg, SpecEM3.cfg, SpecEM4.cfg’,’SpecEM.cfg’

frontend.make_type2 specification(’RC.cfg, PSF.cfg’,’DM.cfg’,’ ({RC_Start,PSF_Inactive}, «
dm_fwstop)’,’ SpecPMl.cfg’

frontend.make_type2_specification(’PSB.cfg, RC.cfg’,’'DM.cfg’,’ ({PSB_Inactive,RC_Start}, «
dm_bwstop)’,’ SpecPM2.cfg’

frontend.make_type2 specification(’RC.cfg’,’DM.cfqg’,’ ({RC_Stop },dm_fwslow)',’SpecPME.chW

frontend.make_type2_specification (’RC.cfg’,’DM.cfg’,’ ({RC_Stop},dm_%Zw)*,” SpecPMd.cfg’

frontend.make_type2_ specification (“PSF.cfg’,’DM.cfg’,’ ({PSF_, Actlvel,dm fwslow)’,'SpecPMS.cfg <
’

)
frontend.make_type2_specification(’PSF.cfg’,’DM.cfg’,’ ({PSF_Active),dm_fw)’,’SpecPMb.cfg’
rentend.make_type2_ specification(’RC.cfg’,’DM.cfg”,’ ({RC_Stop},dm_bwslow)’, ' SpecPM7.cfg’

frontend.make_type2_specification('RC.cfg’,’DM.cfg’,’ ({RC_Stop},dm_bw)’,’ SpecPMB8.cfqg’

frontend.make_type2_specification ("PSB.cfg’,’DM.cfqg”’,’ ({PSB_Active),dm_bwslow)’,’SpecPM9.cfg —
")

frontend.make_tyg ;" ({PSB_Activel},dm_bw)’,’ 5S¢ B

frontend.make_typeZ_. SpHlel " ({PLF_Inactive},dm_fwslow)’,’SpecPMil.
cfg”)

frontend.make_type2 specification(’PLF.cfg’,’DM.cfg’,’ ({PLF_Active},dm_fw)’,” SpecPMl2.cfg’

frontend.make_type2_specification ('PLB.cfg’,’DM.cfq’,’ ({PLB_Inactive},dm_bwslow)’,”’ SpecPMl3. «—
cfg”)

frontend.make_type2_specification(“PLB.cfg’,’DM.cfag’,’ ({PLB_Activel},dm_bw)’,’SpecPMl4.cfg’)

frontend.make_product (‘ SpecPMI1.
Spect etg,
qpeCPMl\ cfa,

?nsCPM

frontenrnd. BL.¢

frontend.

make_product (" FL.cfg
make_supervisor (' Plant LM.

frontend.make_product (' MM.
frontend.make_product (' SpecMM.cfgqg,
frontend.make_superviso

cfg, DM:.cfg,

(' PlantMM.cfg’,

frontend.
frontend.
frontend.

make_product (' FB. PfQ,
make_product (‘ Spe
make_supervisor ('Pla

make_product (' BS

rontend.
frontend.make pr<duct(’bpe REQ_.
frontend.make_supervi qu('PldﬂftM efg’ ,

frontend.
frontend.
frontend.

make_product (DM E
make_product (* SpecPM.cfqg,

make_ sor ("Pl

.cfg,

supervi an

rontend.make_nonconfl
SupervisorEM.cfg,

et ing_check {*

frontend.make_product (‘FL.cfg, BL.

frontend.make_supervisor ('PlantLM.

cfg,
efig*

. " SpeclLM.

19

RL. efg,

SM.cfg, SH.cfg
_MM.cfg’,
" SpecMM.cfg’

..cfg’

RL

» EEGy
. " SpecM.cfg”

MM.cfg’, "Pl

afgt, ¢

MM.cfg,
REQ_|

MM.cfg’
, ' SupervisorAl_LM.cfg’)

antLM. e
SupervisorC_

5 qpex\'i

DM. efg” ;" PlantBM.efg’ )
BM2.cfg’,"SpecBM.cfg”)

! SupervisorC_BM.cfg’)

g’
_EM.cfg*)

»€fg, PLB.

; "Plant M. efg*)

t PP lamtE

—3

EM

cfg’)

isorBM.cfg,
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frontend.make_sequential_abstraction(’PlantlM.cfg, SupervisorAl_LM.cfg’,’tau, mm_active, —
mm_emergency, mm_reset’,’SupervisorAl_LM_abstraction.cfg”’

165 :
frontend.make_product ( SupervisorAl_LM_abstraction.cfg, DM.cfg, SM.cfg, SH.cfg’,’PlantMM.cfg «
")
frontend.make_product (*SpecMM.cfg, REQ_MM.cfg’,’SpecMM.cfg’)
frontend.make_supervisor ("PlantMM.cfg’,’SpecMM.cfg’,’ SupervisorAl_MM.cfg’
frontend.make_sequential_abstraction(’PlantMM.cfg, SupervisorAl_MM.cfg’,’tau, mm_active, —
mm_emergency, mm_reset, dm_stop, dm_enable_fw, dm_enable_bw, dm_fw, dm_fwslow, i
dm_fwstop, dm_bw, dm_bwslow, dm_bwstop, dm_error, sm_error, sh_error’,’' <
SupervisorAl_MM_abstraction.cfg’)
170
frontend.make_product (* SupervisorAl_MM abstraction.cfg, RB.cfg, BB.cfg,; FB.cfg’,’PlantB
")
frontend.make_produc
frontend.make_supervisor (' PlantBM.cfg’,’ SpecBM.cfg’, ' SupervisorAl_BM.cfg’
175 frontend.make_sequential_abstrac
mm_emergency, mm_reset, dm_stop, dm_fw, f
dm_bwstop, dm_erro

o
n
Q
1

SupervisorAl_BM.cfg’,’tau, mm_active, —
wslow, dm_fwstop, dm_bw, dm_bwslow, —
upervisorAl_BM_abstraction.cfg”)

sm_error, sh_e

frontend.make_product (’

5 BM_abstraction.cfg, BS.cfg, BA.cfg’,’PlantEM.cfg’)
frontend.make_product ('S

"

1

g, REQ_EM. efg” , * SpecEM.ofig?)

.cfg’,"SpecEM.cfg’,’ SupervisorAl_FM.cfg’
_abstraction(’PlantEM.cfqg, SupervisorAl_EM.cfg’,’tau, dm_stop, dm_bw «
, dm_bwslow, dm_bwstop, dm_fw, dm_fwslow, dm_fwstop’,’SupervisorAl_EM_abstraction.cfg’)

180 frontend.make_superviso
frontend.make_sequentia

frontend.make_product (‘SupervisorAl_EM_abstraction.cfg, RC.cfg, PSF.cfg, PSB.cfg, PLF.cfqg, &3
lantPM.cfg’

PLB.cfg',"E

185 frontend.make_product (* SpecPM.cfg, REQ_PM.cfg',’SpecPM.cfg’
frontend.make ipervisor (' PlantPM.cfg’ "8 fg”,”

190 7 =

frontend.make_product ("DM.cfg, RC.cf
rontend.make_product (“SpecPM.cfg,
rontend.make_supervisor ("PlantPM.c
rontend.make_sequential_abstraction ("P
dm_disable, dm_enable_bw, dm_enable_fw, dm_error,

PSB. efy, PLF,cfg, PLB.ofg’.,."PlaptPM.eigt

PhohoEn

;'tau,; dm_stop, —

p, dm_bwslow, dm_fw, —

dm_fwslow, dm_fwstop’,’SupervisorA2_PM_abstraction.cfg’)

200 frontend.make_product (* SupervisorA2_PM_abstraction.cfyg, MM.cfg, SM.cfg, SH.cfg’,’'PlantMM.cfg «—
")

rontend.make_product (" SpecMM.cfg, REQ_MM.cfg’,’SpecMM.cfg’)

rontend.make_super fg* SpecMM.ctg”’ ; 81 isorA2 _MM.cfg’

rontend.make_sequential_abstraction('PlantMM.cfg, SupervisorAZ_MM fg”,;"tau, mm_active, 2
mm_emergency, mm_reset, dm_enable_fw, dm_enable_bw, dm_error, sm_error, sh_error’;’
SupervisorA2_NMM_abstraction.cfg’)

fisor (' PlantMM;c

HhothoHh

o~

208 )
frontend.make_product (" Supervi
rontend.make_product (" Spe : &f
rontend.make_supervisor ('PlantEM.cfg
rontend.make_sequential_abstraction(’PlantiEM
mm_emergency, mm_reset, dm_enable_fw, dm_enable_bw’,

BA.cfg’,"PlantEM.cfg”)

o

r—w.

.cfg”)

fg*,"tau,; mm_active, —

pervisorA2_FEM_abstraction.cfg’)

th

M

210

frontend.make_product (' Supervisor?

")
frontend.make_product (' SpecBM.
frontend.make_supervisor (‘Plan
218 frontend.make_sequential_abstrac
mm_emergency, mm_reset’, ’Su

g", "SpecBM.cfg")
ervisorA2_BM.cfg’)

visorA2_BM.cfg’;"tau, mm_active; -3

BL.cfg, RL.cfg",’PlantlM.cfg «
'

)
frontend.make_supervisor (“PlantlM.cfg’,’ SpeclM.cfg’, ' SupervisorA2_LM.cfg’)




C.2. State-based supervisor synthesis

C.2 State-based supervisor synthesis

Specification C.2: Batch file of state-based supervisor synthesis

93

root = plant

{

plant = AND {MM, FB, BB, RB, BS, BA, PSF, PLF,

, ButtonM3, ButtonM4, Emergenc

5 -
}
"_Active |
10 PLF_Active }
}
}
15 OR {
OR {
OR {
OR
20
oto Motor 1, MotorM32, Motor
ButtonM3 OR {ButtonM30, ButtenM31, ButtonM32}
ButtonM4 OR (ButtonM40, ButtonM4l, ButtonM42)
25 EmergencyM3 OR {EmergencyM30, EmergencyM3l}
ProximityM OR {ProximityM0, ProximityMl, ProximityM2
PY o3 ity m
FB
30
35
EB
t}
{bb_release, bb_press)
10 {
1S
S0
<S5
60
BL
bl sn, bl_off}
68
}
70
RL
{ £ By Z }

PSB,;
M3, ProximityM}

RC, FL, BIL,

SM,;

>



94

75

80

85

90

95

100

105

Lo

120

130

140

150

{

[RL_Off rl_on RL_On]
[RL_On rl_off RL_Off]
}

BS

{e)

{bs_release, bs_press}

{

[BS_Released bs_press BS_Pressed]
[BS_Pressed bs_release BS_Released]

{ba_empty, ba_ok}

{

[BA_OK ba_empty BA_Empty]
A_Empty ba_ok BA_OK]

BSF
{}
{psf_active, ps

(2]

_inactive}

f_active PSF_Active]
_Ilnactive]

i}

fdm_enable_fw,

dm_stop}

{dm_error, dm_disable}

{

[DM_Off dm_enable_fw DM_On|
[DM_Off dm_enable_bw DM_On]
DM_On dm_error
!|DM_Stopping dm
{DM_Stopping dm
[DM_Stopping dm_enable_fw DM_On]
[DM_Stopping dm_enable_bw DM_On]
[DM_On dm_stop DM_Stopping]
[DM_Off dm_stop DM_Stopping

[DM_On dm_fw DM_On]
[DM_On dm_fwslow DM_On]j

dm_

fWSt(P,
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dm_bw;

dm_bws 1

ow,
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[DM_On dm_fwstop DM_Cn]
[DM_On dm_bw DM_0On]

155 [DM_On dm_bwslow DM_On]
[DM_On dm_bwstop DM_On]

}

160 sm_enable, sm_disable}

M_Off sm_enable SM_On)
(0)

(s
[SM_On sm_disable Off]
165 [SM_Cn sm_error SM_Off])
[SM_Cff sm_error SM_Off)
}
170 sh_disable}
sh_error}
{
[SH_Off sh_enable SH_On]
[SH_On sh_disable SH_Off]

178 [SH_On sh_error SH_On]
[SH_On sh_chdir SH_On])
b

MM
180 {mm_active, mm_emergency, mm_reset}
{}
1
[MM_Emergency mm_reset MM_Reset |
[MM_Reset mm_emergency MM_Emeragency]
i8S [MM_Reset mm_active MM _Active
(MM_Active mm_reset MM_Reset |
[MM_Active mm_emergency MM_Emergency]

190  MotorM3

{dm_fw, dm_fwslow, dm_fwstop, dm_bw, dm_bwslow, dm_bwstop, dm_stop, dm_enable_fw,

dm_enable_bw}

{sh_chdir, dm_disable, dm_error}

)
MotorM30 dm_enable_fw MotorM3l
>torM31 dm_fw MotorM3l

[MotorM31 dm_fwslow MotorM31]

[MotorM31 dm_fwstop MotorM31]

[MotorM30 dm_enable_bw MotorM32)]

[MotorM32 dm_bw MotorM32]
200 [MotorM32 dm_bwslow MotorM221
orM32 dm_bwstop Motor
[MotorM32 dm_stop MotorM33]
[MotorM31 dm_stop MotorM33]
[MotorM33 dm_disable MotorM30]
[MotorM30 sh_chdir MotorM30
[MotorM33 sh_chdir MotorM33]
[MotorM31 sh_chdir MotorM32])
[MotorM32 sh_chdir MotorM31]
[MotorM31 dm_errcr Motor)
200 [MotorM32 dm_error MotorM30]

[MotorM33 dm_error MotorM30]

195

208

ButtonM3
215 {mm_active, mm_emergency, mm_reset, dm_enable_fw}

{fb_press, fb_release}

{
[ButtonM30 f ase ButtonM30]
uttonM30 £ s ButtonM31
20 [ButtonM31 fb_release ButtonM30]

([ButtonM30 mm_active ButtonM30]

[ButtonM30 mm_reset ButtonM30

[ButtonM30 mm_emergency ButtonM30]

[ButtonM31 mm_reset ButtonM31]

355 [ButtonM31 mm_emergency ButtonM31]

w w

[ButtonM31 mm_active ButtonM3Z]

[ButtonM32 fb_press ButtonM32
230 [ButtonM32 fb_release ButtonM32]
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[ButtonM32 dm_enable_fw ButtonM30]

[ButtonM32 mm_reset ButtonM30]

[ButtonM32 mm_emergency ButtonM30]
LI

ButtonM4
{mm_active, mm_emergency, mm_reset, dm_enable_bw}
{bb_press, bb_release}

240 {

[ButtonM40 bb_release ButtonM40]
[ButtonM40 bb_press ButtonM41]
[ButtonM4l bb_release ButtonM40]
[ButtonM40 mm_active ButtonM40]

25 [ButtonM40 mm_reset ButtonM40]
[ButtonM40 mm_emergency ButtonM40]
[ButtonM4l mm_reset ButtonM4l]
[ButtonM41l mm_emergency ButtonM4l

250 [ButtonM4]l mm_active ButtonM42)

[ButtonM42 bb_press ButtonM42]
[ButtonM42 bb_release ButtonM42]

55 [ButtonM42 dm_enable_bw ButtonM40]
[ButtonM42 mm_reset ButtonM40]
[ButtonM42 mm_emergency ButtonM40

}
260 EmergencyM3
{mm_ ency, mm_reset}
{sm_error, dm_error, sh_error, ba_empty, bs_press)
{
Emergen
208 EmergencyM31
dm_error EmergencyM31]
sh_error Emery M3
ba_empty Emer YcyM31]
bs_press EmergencyM31]
270 sm_error EmergencyM31]
1l dm_error EmergencyM31]
|[EmergencyM3l sh_error EmergencyM3l]
|[EmergencyM3l ba_empty EmergencyM31]
[EmergencyM3] bs_press
275 Erezéen mm_emergen
|[EmergencyM3i! mm_reset
)
ProximityM
280 {dm_stop, dm_fw, dm_fwslow, dm_fwstop, dm_bw, dm_bwslow, dm_bwstop}

[ProximityM0 dm_stop ProximityMO]
[ProximityM]l dm_stop ProximityMO]
285 [ProximityM2 dm_stop ProximityMO0]
[ProximityM3 dm_stop ProximityMO]
[ProximityM4 dm_stop ProximityMO]
[ProximityM5 dm_stop ProximityMO0]
[ProximityMé6 dm_stop ProximityMO0]

290
|ProximityMO ProximityMl1]
roximi
[ProximityM3 dm_fw ProximityMl]
[ProximityM4 dm_fw ProximityMl]
295 [ProximityM$ dm_fw PreximityMl

ProximityMé dm_fw ProximityMl

[ProximityMO dm_fwslow ProximityM2]
[P imityM! dm_fwsl
300 [ProximityM3 dm_fwslow ProximityM2
[ProximityM4 dm_fwslow ProximityM2]
[ProximityM5 dm_fwslow ProximityM2]
[ProximityMé6 dm_fwslow ProximityM2]

308 [ProximityMO dm_fwstop ProximityM3]
dm_fwstop ProximityM3]
(ProximityM2 dm_fwstop ProximityM3]
[ProximityM4 dm_fwstop ProximityM3]
[ProximityM5 dm_fwstop ProximityM3]
30 [ProximityMé dm_fwstop ProximityM3]
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[ProximityMO0 dm_bw
[ProximityMl dm_bw
[ProximityM2 dm_bw ProximityM4]
3s [ProximityM3 dm_bw ProximityM4]
[ProximityM5 dm_bw ProximityM4)
[ProximityM6é6 dm_bw ProximityM4]

[ProximityM0 dm_bwslow ProximityM5]
320 [ProximityMl dm_bwslow ProximityM5]
[ProximityM2 dm_bwslow ProximityM5]
[ProximityM3 dm_bwslow ProximityM5]
[ProximityM4 dm_bwslow ProximityMS]

ityM5]

[ProximityM6 dm_bwslow Proxim

325
roximityM0 dm_bwstop ProximityMé]
[ProximityM]l dm_bwstop ProximityM6]
[ProximityM2 dm_bwstop ProximityM6]
[ProximityM3 dm_bwstop ProximityM6]
330 j ximityM4 dm_bwstop ProximityM6]

_bwstop ProximityM

138 {FB_Released BB_Released RB_Released FL_Off BL_Off RL_Off BS_Released BA_OK PSF_Inactive
PLF_Inactive PSB_Inactive PLB_Inactive RC_Start DM_Off SM_Off SH_Off MM_Emergency

rs
ButtonM30 ButtonM40 E }
{MotorM3, ButtonM3, ButtonM4, EmergencyM3, ProximityM}

Specification C.3: Batch file of used logical expressions of state-based supervisor synthesis

-> rl_off ==> ( MM_Active MM_Reset )
-> rl_on ==> MM_Emergency
10
= f1_or
15 ~> fl off == ( MM_Emergency
bl_con
20
== 1l off > ( Ve )
25
sh_disable ( MM_Reset cy )
0
> dm_stop ==> ( ( MM_Beset MM.Emergency ) & SH_Off )
s --> sm_disable > ( ( MM_Reset MM_Emergency ) & DM_Off )
> sm_enable > ( MM_Active

40
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--> ( dm_enable_fw, dm_enable_bw) ==> ( MM_Active & SM_On )

-> sh_enable -=> ( MM_Active & SM_On & DM_On )

45
-——> dm, stop, dm_bw, dm_bwslow, dm_bwstop ) ==> MM_Active
Vs 3 7
S0 -> mm_active ==> ( SM_Off & DM_Off & SH_Off )
55
> -=> ( ( ( FB_Pressed & BB_Released ) | ( BB_Pressed & FB_Released ) ) & ~ «—
)
60 ——> mm_reset ==> RB_Pressed
65
( mm_x mm e ) ( )
70
75 hd
> dm_fwstop ==> ( RC_Stop )
==> dm_bwstop = ( RC_Stop PSB_Active
80
(——> dm_fwslow, dm_fw ) ==> ( RC_Start & PSF_Inactive
85 (——> dm_bwslow, dm_bw ) ==> ( RC_Start & )
—=> dm_fwslow => PLF_Active
a0
——> dm_fw ==> PLF_Inactive
——> dm_bwslow > PLB_Active
9s

—=> dm_bw ==> PLB_Inactive




Appendix D

Implementation

D.1 Communication delay example

In this section, the y-model is presented that simulates a communication delay between a supervisor and
a component. Process P is a model of the plant model of a timer, depicted in Figure 5.6a and consists of
modes Off and On. Process 3 is a model of a buffer, modelled as a conveyer, which delays all incoming
cvents from process S for 0.1 time unit before sending it to process 7. Process S is a model of a supervisory
controller that sends appropriate control actions (start and reset) to the timer. Simulation of this \-model
results in the message sequence chart of Figure 5.7.

Specification D.1: y model of a communication delay example

s from standardlib import
proc P (chan a?, b!: string) =
[ moa ff = ( a%x; ( ® "timer"® skip; Cn )
10 )
5 O ( a?x; x "reset" > skip; Off
| time > .00 and time <=1.01 > b!"timeout"; Off
)
, var x: string L
IS HH ;i
|
proc 5(chan a?,b!: string, val t: real)
20 var ys: (string, real) , X: string e
% a?Ry Y8 ys ++ [ (%x,time + t)
; len(ys) 0
( a?2Xj ys:= ys ++ (%, time + t)
delay hd(ys). time; b!'!hd(ys).0; ys:= tl(ys)
o3 )
)
0
proc S(chan a!, b?: string)
mode S0 ( time >= 0.00 and time - 0.0 > skip
i al"timex"
i S
35 )
» Bl ( time > .05 and time < 1.06 —> skip
i al" er"

10 ; S0

99



100

)

, var y: string s
S0
15
model M()
chan a,b,c: string
SM(a,b) || B(b,c,0.1) || S(a,c)

Appendix D. Implementation

D.2 Explanation lookup tables

In this section, an explanation is given how a automaton is converted to a lookup table. Consider Specifica-
tion D.2, which contains a lookup table of the plant model of the drive motor (see Figure A.7). Lines 1-13
specifies the alphabet of the automaton. Furthermore, the boolcan variable after cach event name indicates

if this event is controllable (TRUE) or uncontrollable (FALSE).

Then, line 15-27 specifies the transition structure of the automaton of the drive motor. Each row in this
lookup table corresponds with the same row of the alphabet list of linc 1-13 and each column corresponds
with the originating state of this particular event in the automaton. Note that the automaton of the drive
motor contains three states, which corresponds with the number of columns. The value of each index cor-
responds with the destination state of this transition with this particular event in this particular originating
state. If no transition is possible with a particular event from a particular state, OXxFFFF is listed.

Specification D.2: Example of an automaton specified with a lookup table

static const TAutomatonEvent Sur

)ATA

’
UE )}

UPERVISOR_DATA_EVENT_DM_ENAB

TR
LR\ DATA_EVENT_DM_DI 5

10 {

0t nwuwdi

9]
]

15 static const un:

0xE F. 1 OxFEFF,

D.3 CIF to C conversion

In Specification D.3, the source code is listed that converts CIF automata to lookup tables in C. Further-
more, the BDD information is also converted to a BDD structure in C. The source code of this conversion
takes one input argument, which is the location of the CIF-model containing the supervisor. The source

code is compatible with CIF revision 5501.
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CIF to C conversion

Specification D.3: Python script of CIF to C conversion

101

import os
import s

VERSION = 5501’

site_packages = Ncne
for py_ver in PY_VE
path ="/opt/se/c

if os.path. :
site_packages path
break

assert site_pack

if not site_packages.startswita ("%SITE")

from chinetics.core import exceptions

- [*2.3, "2.4F, *B.5 )

+ sys.path

from chinetics.l.anguages.common.hybrid import expression

from chinetics
from chinetics.la

try:
set
except Namek

ror:

import cif_xml_reader

cif.core cif

and site_packages not in sy

import cifaction, cifterm, \

core_cif_tree,

from sets import Set as set, ImmutableSet as frozenset

def exprZcpp(expr):
if isinstance (expr,
return ' (%s &§& %

elif isinstance (expr, expression.Or):

return ’ (%s |

elif isinstance (expr, e
return ’'! (%s)’ % ex

elif isinstance (expr, (e
return ‘currentState[ %s

elif nstance (expr, expres In)
strvar expr2cpp (expr.left_child)
strelem |[expr2cpp(e) for e in expr.right_child.items]
strin =" | *.join([*%s == ’ % (strvar, e) for e in strelem])

return “ (%s)’ % strin

ts)’ % ( exprZcpp(expr.left

pp(expr.righ

elif isinstance (expr, expression.Literal):

exprstr str (expr
1f isinstan expr
return ' %d’
if exprstr = "fals
return '%s’
elif exprstr
return ’%s’
else:
return ’%s’ % expr

elif 1

instance (expr, expression.

Minus):

return ’'-%s’ % expr2cpp (expr.child)

elif isinstance (expr,
o

return "%s == %5

oc M

’

(

elif isinstance (expr, expression

xpression:Equal) :
expr2cpp (expr.left_child)
expr2cpp (expr.right_child) )

.Conditional) :

cifmodel

.Variable, expression.MinusedVaria
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cond_expr r
0 for alt in expr.alts:
if cond_expr == '':
cond_expr expr2cpp(alt)
else:
cond_expr cond_expr % expr2cpp(alt)
85 return cond_expr % ‘CONDEXPRERROR’

elif isinstance (expr, expression.ConditiocnalAlternative):

invert = False
guard_expr expr.guard
90 while isinstance (guard _expr, expression.Not):
invert = not invert
guard_expr = guard_expr.child

if invert:
return ' (%s 2?2 %$%s : %s)’ % (expr2cpp(expr.guard),

95 expr2cpp (expr.value))
else:
return ’ (%s ? t%s)’ % (expr2cpplexpr.guard),
expr2cpp (expr.value))
&

elif isinstance (expr, (expression.Tuple, expression.Array, expression.Set)):

100 if isinstance(expr, expression.Set):
if len(expr.items) == 0:
return ’%d, emptystring % (len (expr.items), ', ".join([expr2cpp(i) for i

tems]))

in expr.

else:
return %5’ % (len(expr.items), *, ‘.Jjoin(lexpr2cpp(i) for i in expr.
1 )
108 if isinstance( expression.Array) :
return "%d, %s % (len(expr.items),’, ’.Jjoin(lexpr2cpp(i) for i in expr.items]))
else:

o

return ’S$s’ % for i in expr.items])

elif nstance (expr, r
1o a sry isinstance(expr.funcexpr, fon.Punctien)
assert expr.funcexpr.friendly_name feval_bdd’

a5eert

return

else:
1S raise ValueError ('Unexpected expression: %s’ % expr

return s

= cif_xml_reader.CifXmlReader ()
reader.read_cif_xml_file(sys.argv[1],[])

120 core_cif tree.AtomicAutCollector ().collect (spec)
125
C = open ("SupervisorData.c’, 'w’)
S.write (' // «INDENT-OFFx\n’
C.write (" #include <stddef,h>\n")
swrite (“#include "Typedefs.h"\n")
130 .write (“#include "SupervisorData.h"\n’)
“.write (’#include "Debug.h"\n’)
a diet |
statedict = {}
138
for aut in auts:
if aut.name != 'bdd’
SDC.write (’\n’)
140 SDC.write (’'static const TAutomatonEvent SupervisorData’
(aut .name)
(“Alphabet [] {\m* )
¢t = {1}
[ER for Ibl in aut.labels:
alphabetdict {1lbl.n k
k =k + 1
SDC.write
SDC.write
150 SDC.write
if Ibl.controllable.value:
SDC.write (TRUE")
else:
SDC.write ("FALSE®)

155 SDC.write (’},\n’
SDC.write ('};\n’)
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SDC.write (’\n’)
SDC.write (’static const unslé
SDC.write (aut.name)

160 SDC.write (’TransitionTable(] = {\n’

locdict = {}

i=0
for loc in aut.locations:
165 locdict [loc.name] =1
i=1i+1
statedict[loc.name]= aut.name
aut locdict.append(locdict)
TransitionTable = []
170 for j in range(len(aut.location

TransitionTable.append (’ OXFFFF’)
for stt, edgs in aut.edges.iteritems():
for edg in edgs:
TransitionTablelal

habetdict [edg.action.label]

SupervisorData’)

s)~_en(aut.labels)):

edg.sourcelLocation.name] ]=locdict [edg.targetlLocation.name]

178 for TransitionTable:

SDC.write (str(i))
SDC.write (', ')
write ("\n’)

e 16 Nt )

180

{\n")
for aut in auts:
if aut.name != 'bdd’
185 locdict = {}
i 0
for loc

write (f § X
swritel(”

n
]

190

.write (aut.name)
.write(’Alphabet,\n")

.write (! sizeof (SupervisorData’)
C.write(aut.name)

v wmWunuvu

0

198

0 0 un

Jwrited’ SupervisorData’)
.write(aut.name)
DC.write (' TransitionTable, \n”’
DC.write ("’ sizeof (Supervisorbata’)
DC.write(aut.name)

m

4]

n

200

(4]

0

WC.write(” L)

n 0

2

208 sweted(” . \n")
.write(’ (sizeof (SupervisorData’)

.write (aut.name)

a

N Ly n
aa

s}

Twrite(’ (sizeof (SupervisorData’
.write (aut.name)

2]
(@]

210

C.write(’TransitionTable) / sizeof (unslé))

SupervisorbDataAutomaton

.write(’Alphabet) / sizeof (TAutomatonEvent),\n’)

DC.write(’ TransitionTable) / sizecf (unslé), \n’

DC.write(str(locdict laut.initLocation.name]))

'\Nn')

SDC.write(’Alphabet) / sizeof (TAutomatonEvent)) \n’

SDC.write (' Yo NB®)
ShE.wrive (* jp\n?)
autalph set ()
28 for aut in auts:
if aut.name != 'bdd’:
for 1lbl in aut.labels:
autalph.add(lbl)
ite (’const TAutomatonEvent
SUPERVISOR_DATA_ALPHABET_SIZE| = {\n’)

SDC.wr

220
for x in autalph:
SDC.write (' {SUPERVISOR_DATA_EVENT_’)
SDC.write(x.name.upper())
SDC.write(’, )
208 if x.controcllable.value:
SDC.write (' TRUE')
else:
SDC.write (’FALSE')
SDC.write (" },\n")
23 SDC.write(”};\n’

SupervisorbataAlphabet

*len(aut.locations) tlocdict [

—

103

.
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38 initval = {}
for var, val in spec.externalVal.iteritems():
initval [var.name] = expr2cpp (val
for var, val in spec.body.val_hidden.iteritems():
initval [var.name] = exprZcpp(val)
240
EventName=[]
for aut in auts:
245 if aut.name “bdd’
SDC.write ("\n")
SDC.write (' // BDD-information\n’)
variable_set = set ()
variable_set |= aut.variables
250 variables [var.name for var in variable_set]
InitialNode=[]
for variable in variables:
if variable.startswith (’bdddata_"') :
55
EventName.append (variable.replace ('"bdddata_’, '*))
tempvar=initval [variable] .replace(” 7,’")
260 tempvar-tempvar.split (’,")
[1
itialNode.append (temp ek
265 tempvar.pop (0)
numberoftuples-int (tempvar [0])
tempvar.pop(0)
for 1 in range (numberoftuples):
270
nodent int (tempvari0
if nodenr 0
SDC.write (7 const
DC.write (var replace ('bdddata_",
275 e ("Node’)
(tempvar (0])
(*TrueStates|] {(\n")
tempvar.pop (0)
280 E .
te .pop (0)
1f int (tempvar[0])>=0:
tempvar.pop (0}
285 else:
tempvar.pop (0)
numperoftruestates=int (tempvar[0])
te .pop (0)
290 if numberoftruestates<-0:
numberoftruestates=1
for j in range(int (numberoftruestates)):
tempvar [0] tempv 0] wxreplage (& " e )
295 for locdict in locdict :
if tempvar (0] im locdict:
if nodenr
{")
¥ (dutlocdige .
300
ct [tempvar |
tempvar.pop (0)
308 if nodenr >= 3
[ruebdge.append (tempvar(0])
tempvar.pop (0)
if nodenr >= 2:
310 Falsekdge.append (tempvar (0])

tempvar.pop (0)
if nodenr >= 2:
SDC.write (" };\n")

Appendix D. Implementation

TRDDTrueState SupervisorData’

1y

index (locdi

0

ct)))
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SDC.write(’\n’)
3 SDC.write (’const TBDDNode SupervisorData’)
SDC.write(variable.replace ('bdddata_’, ’'))
SDC.write(’Nodes[] = {\n’

SDC.write (* {NULL, O,
SDC.write(’ {NULL, 0,
20 for k,1 in enumerate(Truek
print k
SDC.write (* {7y

SDC.write (’SupervisorData’)
write(variable.replace ('bdddata_’, "))
.write(’Node’)
.write(str(k+2))
.write(’TrueStates’
.write(”, sizeof (')
C.write(’SupervisorData’)
.write(variable.replace ('bdddata_’, "’))
write (’Node’)
write(str(k+2))
write(’ TrueStates’)
write(’)/sizeof (TBDDTrueState), ‘)
C.write (1)
JHEIte ", )
.write(FalseEdge|0]
seEdge.pop (0)
.write(”},\n")
0 SDC.write(’};\n")

SDC.write (“\n’)

328

130

135

= len(EventName)
if no_BDDs is not 0:

s SDC.write ('const TBDDConfig SupervisorDataBDD([3SUPERVISOR_DATA_NR_BDDS| il

for i,3 in enumerate ( g

wn

vrite(’ {5 RVI

w

.write (j.upper ())
DC.write(’, *)
DC.write(InitialNode[0])
itialNode.pop(0)

is0

DC.write(’, SupervisorData’)

h un—nmon

DC.write ()
DC.write(’'Nodes, sizeof (SupervisorData’)
DC.write(?)
DC.write(’Nodes) / sizeof (TBDDN«
C.write(”};\n")

SDC.write (" \n’
SDC.write(’// ~INDENT-ON=\n‘)

00 SDC .close

u 0

e)},\n")

9]

print ’SupervisorData.c written succesfully’

368

w
9
jasd

open (’SupervisorData.h’, ‘w’)

T

.write (' #ifndef
.write ('’ #defin
.write(’\n")
.write(’#ifdef
«write(’// +»INDEN
.Wwrite('extern "C"
.write (’#endif\n’)
.write('\n")
.write("#include "
ite(’#include
.write (' #include
write("\n’)
.write(’#define SUPERVISOR_DATA_NR_AUTOMATA ]
swrite(str({len(auts)))
write(’'\n’)
i.write(’ #define SUPERVISOR_DATA_NR_BDDS i)
.write(str (no_BDDs)
.write(’\n*)

SDH.write (’ #define SUF VISOR_DATA_ALPHABET_SIZE )

SDH.write(str (len(autalph)))
390 SDH.write("\n’)

i=0

for x in autalph:
SDH.write (' #define SUPERVISOR_DATA_EVENT_’)

O U uu

B
H

cpl

L wunwmwuwonwnt n
=it ESNC]
i il e R o

@}
fo o3

B0

J O
s+

=}
=

hwwnhwnmwwnmnwn
=) =
b= of b =4

RESY

o
=

w
o O
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.write(x.name.upper())

395 .write(’ ")
.write(str(i))
.write(‘\n")
i it 1
.write(’#define SUPERVISOR_DATA_NO_EVENT 255 \n?
100 i.write ("\n")
.write(’extern const TAutomatonConfig SupervisorDataAutomatonConfig|[
SUPERVISOR_DATA_NR_AUTOMATA]; \n’)
SDH.write (“extern const T ent StpervisorDataAlphabet [ «
"-RVISOR_DATA_AI \n")
if no_BDDs is not 0:
SDH.write ('extern const TBDDConfig SupervisorDataBDD [SUPERVISOR_DATA_NR_BDDS
1:\n")
s SDH.write (' #ifdef __ _cplusplus\n’
SDH.write (" }\n")
SDH.write(’// »INDENT-ONx\n’)
SDH.write (’ #endif’)
.write("\n’)
1o j.write (’ #endif // CA_HE\n")

1. CLO8e

print 'SupervisorData.h written succesfully’






