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Abstract 

The current trend in the design of high-precision positioning systems is towards lightweight 
structures, which are capable of faster accelerations. Flexible dynamics play a prominent role 
in the behavior of such systems, resulting in the fact that performance variables cannot be 
measured. The aim of this research is to explicitly deal with flexible dynamica! behavior in 
control design. The key idea is to infer the performance variables from measured variables by 
means of a model. System identification and model validation methods for the new control 
strategy are developed and applied to a prototype lightweight motion system. An accurate 
model of the system dynamics is obtained and used to improve the performance on the 
prototype setup beyond the limitations imposed by standard control techniques, thereby 
giving a proof of concept of this new control theory for lightweight motion systems with 
flexible dynamics. 
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Chapter 1 

Introduction 

1.1 Background 

Improved speed and accuracy are two demanding aspects that are required for high-precision 
positioning systems, and advanced motion control techniques play a crucial role in achieving 
these performance requirements. Amongst these techniques, is the field of optimal control, 
which aims on optimizing the performance of positioning systems, by adjusting feedback 
and feed-forward control. Other research fields are, for instance learning control, which is 
especially suitable for repetitive tasks, and adaptive control, focusing on systems that work 
under changing conditions. These advanced control techniques are often model based, and 
rely on accurate modeling of the underlying dynamics. Therefore, research focuses on system 
identification, which is a fast , reliable , and often inexpensive way to obtain accurate models. 

Another important aspect influencing the achievable performance of high-precision po­
sitioning systems, is the design of the structure. In order to be able to achieve high accel­
erations, the current developments are towards lightweight systems. One of the common 
consequences of this trend, is that the stiffness is reduced, and flexible dynamics are more 
prominent in the system behavior. This complicates the design of motion controllers, and 
rises the question how to control lightweight systems with flexible dynamics. 

An example of a high-performance motion system is a wafer scanner, which is a machine 
involved in the production of integrated circuits , that are used in various components of 
computers and other electronic devices. These integrated circuits consist of chips of silicon, 
in which patterns are etched in a photolithographic process. 

In the photolithographic process a silicon wafer is coated with a photoresistant material, 
then the desired pattern is projected on the wafer through a reduction lens. The photore­
sistant material is washed away depending on the amount of exposure, thus forming the 
pattern, and the silicon is etched away using acids. 

Typically, the positioning of the wafer during this process, requires nano-scale precision, 
and due to the costs of these machines, a high throughput is desired. In other words, 
a wafer scanner is one of the most demanding high-precision positioning systems that is 
commercially available. The current generation of wafer scanners is not yet lightweight, and 
further study on the control of flexible dynamics is desired to make this possible. 

1.2 Motivation 

The demand for faster production, requires high-performance motion systems that are capa­
ble of high accelerations. This leads to a trend in the designs of these machines, in which the 
weight of the moving part is reduced. By virtue of Newton's second law, F = ma, reducing 



8 1.2. Motivation 
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Figure 1.1: Schema tic two-dimensional sketch of a wafer scanner. 
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Figure 1.2: Control scheme with a flexible structure G which has input u, collocated output 
y and noncollocated output z. 

mass leads to higher accelerations, when the same force is applied. Often, the consequences 
is that the stiffness of the structure also is lowered. 

Depending on the design, lightweight systems often have a very low stiffness, such that 
the first eigenfrequency w = ~ is relatively low, compared to conventional designs. If 
the first eigenfrequency is in the bandwidth of the controller, this can lead to severe perfor­
mance degradation. One of the problems occurs, when position measurement at the desired 
performance location is not possible. In wafer scanners, for example, accurate positioning of 
the wafer is desired. However, it is not possible to measure the position of the wafer during 
normal operation, because this would interfere with the production process. Therefore, the 
position is measured at different locations, as is sketched in Figure 1.1. When the motion of 
the system is dominated by rigid body dynamics this does not impose any problems, since 
the position of the wafer is fixed relative to the sensors. However, when flexible dynamics 
play a significant role, this is no longer the case. Then, it is possible that good performance 
is obtained at the sensor location, while there is severe performance degradation in the area 
where the wafer is located. This can be explained as follows. 

Consider a flexible structure G = [ G 2 Gy r, with input u , collocated measurement 
output y and noncollocated performance output z, on which feedback control is applied by 
controller K, such that reference signal ry is tracked, as is shown in Figure 1.2. 

It can be easily shown that if IGyKI » 1, then the closed-loop transfer function from 

ry to y, given by Ty = I~G:K, is close to one, which is desirable because it assures good 

tracking. However, the transfer function from ry to z , given by T 2 = 1 féKK' then becomes 

approximately g..., which causes vibrations in the structure when the sy;tem is excited at 
y 

frequencies where IG2 I » IGyl , i.e., there is good tracking in y , and poor tracking inz. 
As an example the flexible structure in Figure 1.3, consisting of two identical masses m 

connected by a spring k and a damper d, is considered. A force u can be applied to the first 
mass , and the displacement of the two masses are y and z. Feedback control is applied to 
output y, such that the flexible dynamics are in the bandwidth of the controller. 

A simulated closed-loop step response of the controlled flexible structure, is shown in 
Figure 1.4. This figure shows a good response of the first mass y (green - ), which is the 
point where the system is actuated and measured for feedback-control. The second mass z 
(blue - ) shows large vibrations, caused by flexibility in the structure. For a rigid structure, 
the response of y and z would have been identical, and this problem would not occur. This 
shows that it is essential to take the flexibility of a structure in account in controller design, 
and that it can severely influence the achievable performance. Consequently, this motivates 
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Figure 1.3: Flexible structure, consisting of two identical masses m connected by a spring k 
and a damper d. 
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Figure 1.4: closed-loop step response, showing the vibrations caused by flexible dynamics 
in the bandwidth of the controller, for a two-mass-spring-damper system, with performance 
output z (blue -) and measured output y (green --) . 

the importance of accurate modeling of the relevant dynamics , needed for controller design 
for flexible systems. 

1.3 Literature 

Structures with flexible dynamics have been studied in literature extensively, especially for 
structures with a relatively simple geometry such as mass-spring-damper systems, beams 
and plates, see e.g. 130, 31]. For more complex structures, often finite element analysis 
methods are used, see e.g. 16]. 

Feedback control of structures with flexible dynamics has mainly focused on attenuation 
of vibrations in the structure Il, 21, and on enhancing the performance of the measured 
output 113]. However, in the case that the performance output cannot be measured for 
feedback control, theoretica! limitations on the achievable performance apply 112, 22, 24]. 
The remaining question is: how can control be used to overcome the limitations imposed by 
flexible dynamics? 

An initia! approach towards the answer of this question is found in inferential control, 
which infers the performance variable from measured plant output. Many successful appli-
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cations of inferential control are reported in process control, see e.g. , [28, 39, 45, 47], but 
application to structures with flexible dynamics is not common. 

Inferential control relies on accurate modeling of the system dynamics. A fast and reliable 
method of obtaining such models, is by means of system identification. Since the quality 
of a model depends on its intended use, identification of the plant dynamics are related 
to the control objective, see [5, 15, 34, 44]. It is essential that uncertainty and errors in 
the model are addressed appropriately, see [32, 33], such that robust controller designs can 
be obtained. The identification and validation methods in the literature assume that the 
performance variables are measured, and thus can not be applied directly to the inferential 
control structure without modifications. Furthermore, it is not straightforward to cast the 
inferential control problem in the generalized plant framework, which is commonly used in 
optimal robust control [10, 45]. 

The literature does not answer the question how control can deal with structures with 
flexible dynamics , when the performance variables are not measured, and how to obtain 
control-relevant models for these structures by means of system identification. In Section 
1.4, is discussed how this problem is approached in this thesis. 

1.4 Approach 

In Section 1.2, a motivation was given for studying control of flexible structures. lt was 
shown that flexible dynamics in the controller bandwidth, can have severe consequences for 
the achieved performance, when performance is desired at a location where no sensors are 
present. Although in the literature control of structures with flexible dynamics has been 
studied, the question whether it can deal with performance variables that are not measured, 
is still open. In order to determine whether control is able to deal with this problem and 
how it can be clone, an experimental setup is available. This setup consists of a flexible 
metal beam, which represents a prototype next-generation lightweight wafer scanner. It will 
be used to study whether flexible dynamics are feasible in high-precision motion systems. 
The research question in this thesis is: 

What is the infiuence of fiexible dynamics in next-generation lightweight positioning 
systems, when the measured variables are not the performance variables, and how can 
motion con trol be used to deal with fiexible dynamics? 

This question will be divided into several subquestions, that will be answered in this 
thesis. The first subquestion follows directly from the first half of the research question: 

l. What is the infiuence of fiexible dynamics in lightweight positioning systems, when the 
measured variables are not the performance variables? 

Standard H=-optimal control is applied to a representative test case and it is shown that 
the standard problem, does not result in a solution with a satisfying level of performance. 
Therefore, another control configuration may be desirable, which leads to the following 
question: 

2. Which control configuration is suitable for systems with fiexible dynamics, when the 
measured variables are not the performance varia bles? 

To answer this question, the possibilities of inferential control for flexible systems are inves­
tigated. lnferential control is a technique of which certain implementations are common in 
chemical process control, applied when a performance output is not available for feedback. 
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Figure 1.5: Representative scenario for control of high-precision positioning systems with 
flexible dynamics, with input u = a 1 = a3, measured output y = ~ and performance 
variable z = s2. 

This concept is cast in an 1t00-framework, such that performance and robustness can be 
assessed quantitatively. 

For model based control techniques, such as 1t00-optimal control, it is essential that the 
relevant dynamics are modeled accurately. The third question therefore is: 

3. How can an accurate model of a system with fiexible dynamics be obtained, that con-
tains the dynamics that are relevant f or controller design? 

System identification is a fast and reliable way to obtain an accurate model of a system. 
Therefore, a control-relevant system identification procedure will be studied, and applied to 
the inferential control configuration. 

Every model inevitably contains deviations from the real system, and therefore the next 
subquestion concerns the validity of the obtained model. Because modeling errors are closely 
related to robustness, the question is stated as follows: 

4. H ow can modeling errors be addressed, such that robustness of the subsequent controller 
design can be achieved? 

To answer this question, a model validation procedure for robust control is investigated, in 
which the modeling errors are addressed appropriately. The model validation procedure is 
then applied to the inferential control configuration. 

In the last subquestion, all aspects are combined in the implementation on the experi­
mental setup, such that the achievements of the new control configuration can be evaluated: 

5. Design and implement robust optimal inferential controllers on the experimental setup, 
and evaluate the achieved performance. 

A proof of concept is desired before further development of lightweight wafer stages will be 
clone. Therefore, this project focuses on the flexible beam experimental setup, which acts as 
a prototype for future lightweight wafer stages. The situation sketched in Figure 1.5 will be 
used as a representative scenario, with input u = a 1 = a3 and measured output y = ~­
The performance z is desired in the center of the beam, i.e., z = s2. This situation is 
closely related to the intended application that was sketched in Figure 1.1 . The achieved 
performance on the setup, gives a good indication of the possibilities for motion control of 
next-generation wafer stages. 

1.5 Outline 

This report is organized as follows. 
In Chapter 2, some relevant aspects of the flexible beam are discussed. First the details 

of the experimental setup will be treated, followed by frequency domain identification of the 
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setup. Nonparametric models will be identified, for later use in the model identification and 
validation procedures. Furthermore, an analytica} model of the flexible beam, based on first 
principles, will be compared to the nonparametric model, to gain insight in the dynamics of 
the system. 

In Chapter 3, 1i00-optimal inferential control is discussed. First the concept of internal 
stability is treated, followed by controller synthesis for optimal performance. Then, it is 
explained how model uncertainty is included in the 1i00-framework, such that robust con­
trollers can be designed. Furthermore, the inferential control structure for flexible systems is 
introduced, and cast in a form that suits the 1i00-framework. In simulations it is compared 
with standard control. 

In Chapter 4, control-relevant identification for the inferential control structure is treated. 
A criterion for control-relevance is shown, and a method to minimize the criterion is dis­
cussed. Then, an identification experiment is performed on the experimental setup, design 
aspects such as weighting filter design are discussed, and the results are presented. 

In Chapter 5, optimal performance controllers are synthesized for the standard and 
inferential control structures. These controllers are compared to each other, and a factor 4.2 
improvement in performance is shown for the inferential controller. Finally, the controllers 
are implemented on the experimental setup, and the results are validated. 

Chapter 6 covers the model validation procedure. The influence of disturbances in mea­
surement data and systematic errors in the identified model are addressed appropriately. 
The validity of the model is evaluated with experiments, and the results are presented and 
discussed. 

In Chapter 7, robust performance synthesis for the standard and inferential control struc­
tures is performed, and the worst-case performance of the inferential control configuration is 
shown to be 4.6 times higher than for standard robust control. The synthesized controllers 
are implemented on the flexible beam setup, and the experiments validate the results. 

In Chapter 8, the conclusions and recommendations are presented, in A controller syn­
thesis is discussed, and in B is explained how model sets can be graphically represented in 
Bode diagrams. 
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As was motivated in the introduction, flexible dynamics in lightweight wafer stages can 
cause severe performance problems, when the sensors are not located at the points where 
performance is needed. Currently, no lightweight wafer stages are available, because it 
is not clear whether control can deal with flexible dynamics. Wafer stages are complex 
three-dimensional structures with six motion degrees of freedom, and a controller design 
procedure, that can deal with flexible dynamics , as well as the complex structure of the 
system, is desired. 

In order to investigate control of flexible structures, a prototype lightweight positioning 
system is available for experiments. The setup consists of a flexible beam with three actua­
tors and an equal amount of sensors, and can be used to study the representative scenario in 
Figure 1.5. The flexible beam can be analyzed in a two-dimensional plane, such that is has 
two motion degrees of freedom, i.e., translation and rotation, and has the flexible dynamics 
that will be characteristic for lightweight wafer stages. 

This chapter is an introduction to the flexible beam experimental setup, which is used 
throughout this thesis to confirm the theory with experiments. The purpose of this chapter 
is to get familiar with the experimental setup and the dynamics of this prototype lightweight 
positioning system, and none of the research questions in Section 1.4 are answered yet. 

First, a short description of the setup and its properties is given in Section 2.1. Then, 
in Section 2.2, an initia! indication of the dynamics of the beam is obtained by means of 
an identification experiment. The experiment is arranged such that an unbiased frequency 
response of the setup is obtained. This gives a first indication of the locations of resonances 
and anti-resonances, and can be used for initia! controller design. In Section 2.3, the flexible 
beam setup is modeled as an Euler-Bernoulli beam, which has been studied in literature 
extensively 130, 31 , 43J. The fact that modeling of such systems is well-known, is a great 
advantage in understanding the underlying physical relations of the flexible dynamics. Fur­
thermore, finite element models are available in literature, see e.g. 161, which can be used 
for accurately simulating the system behavior and controller synthesis. Finally, in Section 
2.4 the conclusions of this chapter are presented. 

2.1 Description of the experimental setup 

The experimental setup consists of a flexible steel beam with dimensions 500 mm x 20 mm x 
2 mm. Four degrees of freedom are fixed with leaf springs, such that only one free translation 
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and rotation remain, as is shown in Figure 2.1. Figure 2.la shows a photo of the setup, and 
Figure 2 .1 b shows a schematic sketch, on w hich the actuator and sensor locations ai and si 

are indicated, as well as the remaining degrees of freedom (red). 
Hard real-time data acquisition is implemented using a PowerDAQ control board, and 

Linux RTAI with Matlab Simulink as rapid control prototyping system, see l25j . The beam is 
actuated by three current-driven voice-coil actuators , and the position is measured with three 
contactless fiber-optie displacement sensors, with a resolution in the order of magnitude of 
0.25 µm , using a sampling frequency of 1000 Hz. This means there is one sensor and actuator 
pair more, than needed for full controllability of the rigid body motion degrees of freedom of 
the system. In the scenario sketched in the introduction, see Figure 1.5, the second sensor 
and actuator pair will not be used during normal operation of the plant. Furthermore, 
in this thesis only the translation of the beam is considered, such that the system can be 
considered being a SISO system, and there is no need to deal with the additional complexity 
of MIMO control. The input will be applied to the first and third actuator, i.e. u = a 1 = a3 , 

and y = 81 !83 will be measured for feedback. However , during identification of the system, 
performance output z = s2 will be measured, such that a model that contains the relevant 
flexible dynamics can be obtained. 

In the work of Hendriks [191, the following relevant characteristics of the setup have been 
determined by experiments: 

• The system is dominated by linear dynamics, although some small nonlinearities occur. 

• The signal to noise ratio of the plant output is around 50 dB. 

• The effects of aliasing are small for the used sampling frequency. 

These good properties make reliable system identification possible, and allow using linear 
control theory. 

2.2 Frequency response function identification 

nonparametric models can be obtained from data, and when identification is carried out 
properly, an accurate first indication of the dynamics of a system is obtained. In the approach 
used in this thesis, a deterministic periodic input signal is used to obtain identification 
data of the experimental setup. This has certain advantages over random excitation of the 
system, as shown in literature 127, 40, 3, 18j. Furthermore, this plays an important role 
in the identification and validation procedures in Chapters 4 and 6. The most important 
properties are discussed in this section. 

2.2.1 Signal leakage 

Since signal analysis is carried out numerically, the analyzed signals, as well as their spectra, 
need to have finite length and resolution. Choosing input signals in a clever way, can have 
certain advantages as is shown in literature 121 , Ch. 2Jl40, Ch. 2j. From this literature the 
theory in this subsection can be extracted. 

Sampling can be expressed in the continuous time domain, as a multiplication of a signal 
u (t) with a series of Dirac impulses, 

00 

Ud ( t) = L U ( t) Ó ( t - kT8 ) , (2.1) 
k=-oo 
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(a) 

(b) 

Figure 2.1: Photo of the experimental setup (a), and sketch of the setup (b) showing the 
two unrestricted degrees of freedom (red) and the sensor and actuator locations, Si and ai. 
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or in the discrete time domain as 

(2.2) 

where, kis an integer number. The sampled signal is brought the frequency domain by the 
following Fourier transform: 

00 L Ud (k) e-jwkT, . (2.3) 
k= -ao 

Although the signal ud (k) evolves in discrete time, it's spectrum is defined in the continuous 
frequency domain. Note that because k is integer , this spectrum is periodic with period 

2,r 
Ws = r· 

Eq~ation (2.3) considers an infinite number of samples, i.e. , k = -oo, . . . , oo. Because 
measurements are performed in finite time, Üd (t) is multiplied with a rectangular window 
w (t) , which is defined as follows 

{
1 if O ~ t < T 

w ( t) = 0 elsewhere. 

This selects a finite number of samples, and therefore reduces (2.3) from an infinite summa­
tion to 

N-l L ud (k) e-jwkT.. ' 

k=O 

where Nis the number of samples in period T . 

(2.4) 

In Figure 2.2a the spectrum W (w) of a rectangular window w(t), for T = 2 is shown. 
The magnitude of W (w) shows an oscillation that decreases in magnitude away from the 
origin. This spectrum has zero cross-overs at multiples of w = 2;, which is an important 
property in the motivation for choosing periodic input signals, as can best be explained by 
discussing a sinusoidal signa!. 

Fora sinusoidal signa! u (t) = sin (wut), the Fourier transformation 

U (jw) = j1r (ó (w + Wu) - ó (w - Wu)) (2.5) 

consists of two Dirac impulses at ±wu, When the sinusoidal signa! u (t) is multiplied with 
the window w (t) , in the frequency domain the spectra U (w) and W (w) must be convoluted. 
Since convolution with a Dirac impulse shifts the origin of a function , W (w) * U (w) is the 
sum of two shifted spectra W (w), with their origins at ±wu, 

With this knowledge, the favorable property of the rectangular window can be shown. 
In Figure 2.2 the spectra of two windowed sinusoidal signals are shown. The first sine has 
a frequency Wu = l01r rad/s (blue -), which is a multiple of 2;. Observe that by evaluating 
the spectrum at w = n 2; ( x ), the spectrum has a value at ±101r, i.e., the exact frequency 
of the signa!, and is zero elsewhere. This is a perfect frequency domain representation of 
the signa!, since both the frequency and magnitude of the signa!, can be obsei;ved from the 
spectrum. The second sine has a frequency Wu = 12.51r rad/s (red --), which does not 
align with the zeros of the window spectrum. When the spectrum is evaluated at w = n 2; 
( x), it can be seen that the content of the signa! is smeared over neighboring frequencies, 
and the information regarding the magnitude and frequency of the signa! is not clear in 
the spectrum. This effect is called leakage, and strongly motivates the use of multi-sine 
excitation signals, with frequency content at w = n 2; and zero elsewhere. 
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Figure 2.2: (a) Spectrum W (jw) of window w (t). (b) Spectra of windowed sines, with 
frequency Wu = l01r rad/s (blue - ), which is a multiple of ~ ( x ) , and with frequency 
Wu = 12.51r rad/s (red --), which does not match the grid. 

2.2.2 Bias and variance 

Although signal leakage can be completely removed by using periodic input signals, there 
are still other sources that can cause bias and variance in the estimated transfer function. 
Since this is not desirable , it is important to be aware of the maximum error that can be 
present in a model. These modeling errors are described in [27, 40] for periodic excitation 
signals and in l3, 18, 27, 40] for random excitation. 

From the spectra of the measured periodic input and output signals, U ( k) and Y ( k), the 
frequency response is estimated as G (jwk) = ~~zi. Because of measurement and actuation 
noise in the measured signals, these spectra can be split up in the true spectra, U0 (k) and 
Yo (k), and circular complex normally distributed noise [40, S. 14.16], Nu (k) and Ny (k) , 
i.e., 

U (k) 

y (k) 
Uo(k)+Nu(k) , 

Yo(k)+Ny(k). 

(2.6) 

(2.7) 

According to [40, S. 2.4], the relative bias b (k) of G (jwk) caused by this noise , is given by 

b (k) = IE {G} - Go = _ exp (- IU~l
2

) ( 1 _ a}u Uoay) , (2_8) 
Go au au ay Yoau 

and if the signal-to-noise ratio (SNR) of the input, ~, and output, 1Y2..l, are larger than 
CT U Uy 

10 dB, the bias of G (jwk) is less than 0.01 %. This is due to the periodicity of the input and 
output signals. It is also claimed that for stochastic excitation the maximum possible bias 
is much higher. 

In the case that there is no actuation noise, al = 0, the estimate of the plant is unbiased, 
for both periodic and random excitations. However, it should be noted that noise excitation 
introduces leakage effects , as discussed in the previous subsection, and therefore the estimate 
still contains systematic errors. 

In l40, S. 2.4) the variance ab of G (jwk) is given by 

a2 = IC 12 ( a} + al - 2!>t ( a}~)) . (2.9) 
G o 1Yol2 1Uol2 YoUo 
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lt can be seen that the variance also benefits from a high signal-to-noise ratio. The most 
straightforward way to accomplish a high SNR, is by increasing the power of the input 
signa!. However , when periodic excitation is used, it can also be achieved by averaging over 
sequentia! periods. By averaging over M periods, the averaged spectrum X M of a signa! 
x (t) is given by 

(2.10) 

The expected value of the spectrum, given by 

(2.11) 

is the same for every period and therefore remains constant. On the other hand , the variance, 
which is given by 

(2.12) 

does change. By assuming that the noise of each period is uncorrelated with all other 
periods, the variance is 

(2 .13) 

This means that the signal-to-noise ratio of XM is given by 

IXMI = v'M'IXol, 
axM ax 

(2.14) 

and thus is concluded that averaging over periods increases the SNR of the signa!. Since 
this applies to both the input and output signa!, the signal-to-noise ratios of both U and 
Y increase, which means that both the bias and variance decrease. In [27] it is stated that 
for stochastic input signals the transfer function estimation is asymptotically unbiased with 
increasing M, hut the variance remains constant. 

2.2.3 Experimental results 

For estimating the frequency response of the system, a closed-loop measurement has been 
carried out. This has been clone by exciting the system with a multi-sine on the plant 
input. This multi-sine contains multiples of 1 Hz, up to the Nyquist frequency, with a 
uniform spectrum and random phase. The period time is 1 s, which is also the width of 
the rectangular window. This choice assures that no signa! leakage occurs, as explained in 
Subsection 2.2.1. A measurement of 1200 s has been carried out, which means that the 
signal-to-noise ratio 11:hl of the output, is increased by more than 30 dB relative to its actual 

ay 

value. The input signa! is known exactly, i.e., a& = 0, and therefore the SNR of the is oo. 
The resulting transfer function estimations shown in Figure 2.3, are obtained from closed­

loop measurement data, by dividing the process sensitivity by the sensitivity. The figure 
shows G 2 (blue -), the frequency response from input u = a 1 = a 3 to performance output 
z = s2, and Gy (green --) which is the frequency response from u to measured output 
y = 81 ! 83 . lt is clear that there are some similarities, as well as some differences between 
these two responses. First of all it can be seen that in the low frequency range both frequency 



Chapter 2. Modeling of the flexible beam experimental setup 19 

Bode diagram 

50 

~ 
.J2.. ., 
-0 = ·ä 
"" ,.l -50 

::E 

-100 

180 

1 . ~ 

1 1 : 
90 1 : I '. 

0 

~ 
..::: 
0.. 

-90 

-180 
10' 10' 10' 

Frcquency IHzl 

Figure 2.3: Transfer function estimation of the experimental setup, with Gz (blue - ) the 
frequency response from u = a 1 = a3 to z = s2, and Gy (green - -) the response from u to 
Y - ~ - 2 . 

responses are identical. In this region only the rigid body dynamics of the flexible beam 
are excited. For higher frequencies , the resonances of both responses are located at the 
same frequencies and the magnitudes are similar. The phase of the resonances at 35 Hz 
and 185 Hz are opposite for Gz and Gy, while for the resonance at 430 Hz t he phase is the 
same. T he appearance and location of the anti-resonances is different for the two outputs, 
and in these regions the performance problem indicated in Section 1.2 wil! most likely be 
present. The resonances at 4 Hz and 10 Hz are caused by the suspension of the beam on 
leaf springs, the other resonances are caused by the flexibility of the beam, which will be 
further discussed in the next section. 

2.3 First principles modeling of a flexible beam 

One of the reasons for choosing a flexible beam as experimental setup, is that first principles 
modeling for beams is well-studied in literature 114, 30, 43, 49]. A physical model is important 
in explaining the dynamica! behavior of the system, and interpreting results of simulations 
and experiments. For more complex systems, such as a wafer stepper, analytica! modeling 
based on first principles is often burdensome. However, in this thesis the model is used to 
study whether control can deal with flexible dynamics. When results are established, it may 
be unnecessary to derive analytica! models for more complex systems. 

A flexible beam (also known as Euler-Bernoulli beam) with free ends, is described by the 
following partial differential equation, 

éPw(x,t) Elä4w(x,t) _ ( ) 
m ät2 + äx4 - p x' t ' (2.15) 
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where x is position, t is time, w is the lateral deflection of the beam, mis the mass, Eis the 
Young's modulus, I is the second moment of area, and p contains all external (lateral) farces. 
Ifthe problem is assumed to be separable in time and space, i.e., w (x, t) = W (x) f (t) , (2.15) 
can be written as two ordinary differential equations, 

EI 84W (x) _ 2 a2w (x) = O 
8x4 w m 8t2 , 

d
2~?) + w 2 f (t) = 0. 

(2.16) 

(2.17) 

In general, this assumption is valid for partial differential equations in the form of (2.15). 
By solving the eigenvalue problem, the eigenfrequencies Wr, and mode shapes Wr, that are 
nontrivial solutions for (2.16) can be found. The deflection is then given by, 

00 

W (x , t) = L Wr (x) Qr (t), (2.18) 
r=l 

where the dynamics are described by an infinite set of uncoupled ordinary differential equa­
tions, 

(2.19) 

In the frequency domain this gives the following summation for the transfer function, 

G( ) = ~ Wr(x)Pr 
x , s ~ 2 2 . 

r=l S +wr 
(2.20) 

Note that this is a model of the undamped dynamics of the beam. If desired, a damping 
term can be added to (2.15), see for instance [7], or proportional damping can be added to 
(2.20). For more details on this particular model, see [17, Ch. 2]. 

Figure 2.4 shows the mode shapes Wr (x) of the translational modes (-), and the rota­
tional modes (--) , as well as the locations of the sensors and actuators , at 50 mm, 250 mm 
and 450 mm. lt can be seen that the rotational modes are unobservable by the average of s 1 

and s3 , due to their rotational symmetry, and by s2 which is located in the nodes of these 
mode shapes. This means that these modes do not influence the input-output behavior 
of the system, the specific choice of sensor and actuator locations. The difference in the 
dynamics of Gy and G z is explained by analyzing the translational mode shapes as in the 
following paragraphs. 

The eigenfrequencies of the system are independent of the locations of actuators and 
sensors, which means that the poles of Gy and G z are identical. The pole at 35 Hz is caused 
by mode 3, the pole at 185 Hz is caused by mode 5, and the pole at 430 Hz is caused by 
mode 7. The poles at 5 Hz and 10 Hz are not caused by the flexibility of the beam, but by 
the leave springs on which the beam is suspended. These poles can be linked to the rigid 
body modes, mode 1 and 2. 

Although the poles are identical for both transfer functions , the zeros are not. Because 
the transfer function is a summation of modes, see (2.20), the sign of the phase of two 
neighboring modes will determine whether or not there will occur a zero between these 
poles, as shown in [31] . When the sensors and actuators are collocated, as is the case for Gy, 
the sign of the mode shape is the same at both the sensor and the actuator location. This 
means that actuation in positive direction, will cause a displacement in positive direction 
for all translational modes. Therefore, a zero will occur between any two neighboring poles. 
When sensors and actuators are noncollocated, as for Gz, it is also possible that actuation 
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Figure 2.4: First seven analytica! mode shapes of a flexible beam with the same parameters 
as the experimental setup. The translational modes are solid lines, the rotational modes are 
dashed lines. Actuator a 1 and sensor s 1 are positioned at 0.05 m, sensor s2 at 0.25 m, and 
actuator a3 and sensor s3 are at 0.45 m. 

in a positive direction, will cause a displacement in negative direction at the sensor location. 
This is the case for modes 3 and 5. Therefore, between mode 1 and mode 3 no zero occurs, 
since they have opposite phase, but between modes 3 and 5 there is a zero, because they 
have the same phase. The fact that a zero occurs between modes 1 and 3 indicates a 
performance problem if IGyKI » 1 at this frequency, as explained in Section 1.2. Note that 
if the actuators had been positioned at the ends of the beam, there would not have been 
any zeros in Gz, because this guarantees an alternating sign for neighboring modes. 

Although this analytica! model explains the dynamics of the flexible beam, it is unprac­
tical to work with since it describes the deflection of the beam with an infinite number of 
modes. Therefore, the finite element method, see e.g. l6J, has been used to derive the state­
space model in Figure 2.5, as described in l14J. This figure also shows the nonparametric 
model and it can be seen that , although there is a very close match between the finite el­
ement model model and frequency response function, at some frequencies there are small 
differences in the dynamics. First of all the rotational modes 4 and 6 are not observed in the 
finite element model, but are present in t he frequency response of the setup, at respectively 
100 Hz and around 330 Hz. Furthermore, in the nonparametric model the effects of aliasing 
are visible, at approximately 170 Hz and 330 Hz. This is caused by resonances lying beyond 
the Nyquist frequency, and can be linked to higher order modes that have been excluded from 
the analytica! model. The last difference between the frequency response function and the 
physical model, occurs at approximately 130 Hz, and is caused by a nonlinear phenomenon 
in the setup. 

2.4 Conclusions 

In this chapter, an introduction to the flexible beam experimental setup has been given. A 
nonparametric model of the plant dynamics has been identified and analytica! modeling of 
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the flexible beam has been discussed , leading to the following conclusions. 

• The nonparametric model of the flexible beam setup, obtained by means of system 
identification, provides a first indication of the true plant dynamics, and can therefore 
be used for manual controller design. During the identification experiment periodic 
multi-sine excitation signals have been used, which results in a frequency response 
function that is unbiased. By using large measurement times and averaging over 
periods, the obtained model has a low variance. These are valuable properties for the 
parametric identification method in Chapter 4 as well, since it relies on an accurate 
frequency response function of the true plant dynamics. 

• The obtained finite element model can be used for simulation of the open-loop or 
closed-loop system response , and to predict the outcome of controller synthesis, prior 
to parametric identification of the plant. This is helpful during weighting filter design 
for the parametric identification procedure in Chapter 4. 

• The analytica! model of the flexible beam provides insight in the dynamics of the 
system, which is helpful in understanding the problems occurring in control of struc­
tures with flexible dynamics. It shows that the representative scenario in Figure 1.5 
will indeed cause performance problems on the flexible beam, and therefore it can 
be concluded that the setup is a suitable prototype to study control of light-weight 
positioning systems. 



23 

Chapter 3 

1i00-optimal inferential control 

For the development of next generation wafer stages with flexible dynamics, developments 
in new control theory will play an important role. In Section 1.2, it was shown that standard 
control techniques do not guarantee good performance for structures with flexible dynamics, 
and therefore a new approach is proposed in this chapter. 

Because wafer stages are complex MIMO structures, 1i00-optimal control will be used. 
This control technique is well studied in literature, see for instance [10, 16, 451, and is able 
to deal with such complex systems. Furthermore, it is able to deal with model uncertainty, 
in contrast to 1i2-optimal control , see e.g. [45). 

To deal with the flexible dynamics in lightweight structures, inferential control will be 
used. This control technique is used in chemical process control, see [4 , 28, 45, 471, when a 
performance output is not available for feedback. This is similar to the scenario in Section 
1.4, that represents the difficulties in control of structures with flexible dynamics. In order 
to obtain 1{00-optimal inferential control, the control problem must be formulated such that 
it can be used with standard controller synthesis algorithms, that it can provide internal 
stability, and that it is able to deal with model uncertainty. 

Since 1{00-optimal inferential control will be an extension of the standard robust control 
techniques, in Section 3.1 some important aspects of 1i00-optimal control are discussed. 
Then, in Section 3.2 inferential control is introduced, and cast in the generalized plant 
formulation. In Section 3.3, the conclusions of this chapter are presented. 

3.1 1-l00-optimal control 

Controller design for complex MIMO structures is often cumbersome, and not straight­
forward to understand. Therefore, 1i2 and 1i00-optimal control are often used to design 
controllers that stabilize the plant and optimize its performance, since they are able to deal 
with MIMO problems appropriately. In contrast to the 1i2-optimal control 1{00 -optimal 
control can be used to synthesize controller designs, that are robust against model uncer­
tainties. This makes 1{00-optimal control, a suitable choice for complex structures such as 
wafer stages. 

In this section, standard 1{00 -optimal control will be discussed, as it is known in literature, 
see e.g. [45). The goal of 1{00-optimal control is to minimize the 1{00-norm of a (weighted) 
closed-loop system, which is useful in perspective of optimizing performance objectives and 
robustness against uncertainties. The following relevant aspects are discussed in this section. 

Internal stability of the closed-loop system is a general objective in control engineering, 
because this is a requirement for meaningful controller design. This subject is discussed 
in Subsection 3.1.1. Then, in Subsection 3.1.2 the synthesis of optimal and suboptimal 
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Figure 3.1: closed-loop feedback structure with plant Gy and controller K. 

controllers is discussed, and Subsection 3.1.3 is about the presence of model uncertainties in 
the context of 'H.00-control. 

3.1.1 Internal stability 

In order to keep all signals in a closed-loop system finite, it is a requirement that the plant 
G is internally stabilized by controller K. In the scenario introduced in Section 1.4, G z 
does not influence the dynamics of the feedback loop, and therefore it is not included in the 
following definition of internal stability, but is should be noted that G z E R'H.00 is sufficient 
for the result to hold. 

Definition 3.1 (Internal stability [50, Ch. 51). Consider the closed-loop system in Figure 
3.1 which is well posed and has no hidden unstable modes. Then, this system is internally 
stable if and only if all states of K and Gy go to zero from all initial states, when w 1 = 0 
and w2 = 0. 

This is the case when e1 and e2 are bounded signals for any bounded inputs w1 and w2. 

This requirement is satisfied if all four closed-loop transfer functions from w = [ w2 w1 ] T 

to e = [ e2 e1 ] T are stable, i.e., 

[ 
J - GySK G S] 

-SK S E R'H.oo, (3.1) 

with S = (I + KGy)- 1
, hence this is called the four-block problem. If Gy E R'H.00 and 

K E R'H.00 the closed-loop system is internally stable if and only if S E R'H.00 • 

Equation (3.1) is equivalent to 

[ ~Y ] S [ K I ] E R'H.oo, (3.2) 

which has the same poles and is commonly used instead. 

3.1.2 Controller synthesis 

The 'H.00-norm is equal to the maximum singular value of a transfer function. By weighting 
the closed-loop transfer functions of a system, such as the sensitivity or complementary 
sensitivity, it can therefore be used as a measure for the achieved performance. lt is also 
equal to the induced 2-norm or induced power-norm [45] . The 'H.00-norm can be computed 
according to the following theorem. 

Theorem 3.1 ('H.00-norm computation [9, Ch. 21). The 'H.00 -norm can be computed by 
iteratively finding the smallest 1 , such that 

[ 
A+BR- 1 DTC 

-CT (I + DR- 1 DT) C 
BR- 1BT ] 

-(A+BR- 1DTC)T , 
(3.3) 
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Figure 3.3: Plant Gy and the interconnection structure form the generalized plant P. 

where R = ,I - DT D , and (A , B , C, D) is the state-space realization of the system, has no 
eigenvalues on the imaginary axis. 

The controller problem is often cast in the general control configuration in Figure 3.2, 
which was introduced by Doyle [8], because problems in this form can be solved with the 
available controller synthesis algorithms. In Figure 3.2 configuration the generalized plant 

contains the plant G and the four-block interconnection structure, where w = [ ry ru ]T 
are the external inputs and disturbances, and z = [ y u ] T the outputs. The control 
objective then becomes: compute the controller that minimizes the transfer function from w 
to z, i.e., minimize the closed-loop transfer function. The general control configuration can 
be extended with an uncertainty model in a straightforward fashion , as shown in Subsection 
3.1.3. Here, this control configuration is used to analyze the four-block problem (3.2), and 
in Section 3.2 also the new control theory will be cast in this form. 

The internal structure of P for the four-block problem (3.2) is shown in Figure 3.3, and 
is given by 

Gy ] I . 
-Gy 

(3.4) 

Using the general control configuration, the control problem can be solved by finding sub­
optimal controller K (,), such that 

(3.5) 

where W and V are weighting filters , and iteratively searching for the minimal value of,. 
Suboptimal controller synthesis is explained more detailed in Appendix A. 

The four-block optimization problem (3.5) can be formulated as a normalized left coprime 
factor robust stabilization problem, and therefore it is possible to find an exact solution for 
the optimal value of,, as proved in [29, Ch. 4]. The solution for the optima! value of, is 
given by 

1 

ropt= inf. . IIF1 (P, K)ll 00 = (1 - Il [ N D ] ll~)- 2
, 

K stab1hzmg 
(3.6) 
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Figure 3.4: Genera! control figuration with model uncertainty. 

where { N, ÏJ} is a left coprime factorization 1 of Gy . This eliminates the iteration step 

required for computing the optimal controller. 

3.1.3 Model uncertainty 

An accurate and exact model of the plant is available for controller synthesis as described 
above. However , in practice there are differences between the model and the plant, due to 
modeling errors, or because the system dynamics are too complex to be described by one 
model. In order to address these differences, model uncertainty can be used to analyze the 
stability properties of a controller for a set of plants, i.e., the robustness of the controller 
can be analyzed. This motivates the use of the 1-f.00-norm in a control context, because it 
provides an upper bound for all transfer functions in a matrix, over all frequencies. In the 
four-block problem (3.2) , consequently an upper bound for the sensitivity is found , and thus 
a minimum for the stability margins is provided. In contrast, the 1-f.2-norm bounds the area 
under the transfer functions, and does not guarantee any robustness. 

Uncertainty in the dynamics of the plant can be modeled with a stable perturbation 
D. , llb.11

00 
< 1 on the nominal model. The general control figuration in Figure 3.2 can be 

extended with this D.-block as shown in Figure 3.4. 
By applying the lower fractional transformation M = :Fi (P, K) the so-called M D.­

structure in Figure 3.5 is obtained, which can be used to analyze the stability of a closed-loop 
system with uncertainties, using the well known small gain theorem. 

Theorem 3 .2 (Small gain theorem). Suppose ME 'R'J-f.00 . Then the interconnected system 
shown in Figure 3. 5 is well-posed and internally stable for all D. E 'R'J-f.00 if and only ij 

(3.7) 

The proof of this theorem can be found in, for instance, [50, Ch. 9]. 
The essence of the small gain theorem is , that if both M and D. are stable, the only 

possible source of instability is the feedback loop, and it is proved that the closed-loop system 
is internally stable if and only if IIMub.11

00 
< 1, which is called robust stability. Similarly, it 

can be evaluated whether (normalized) performance criteria are met , with IIM22D.P ll 00 < 1. 
In this case llb.Pll oo is an artificial perturbation, i.e. , it is nota model uncertainty but only 
an expression which is equivalent to the performance criterion. 

For a system with uncertainties, the solution for the optimal controller as given in the 
previous subsection can no longer be used. However, in literature [10] a controller synthesis 
algorithm is available, of which numerical implementations exist. 

1See Definition 4.2. 
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Figure 3.5: The M D.-structure can be used to analyze stability of an closed-loop system 
with uncertainties. 

When there are multiple uncertainties, i.e., the D.-block is MIMO, the perturbations can 
possess a certain structure, in which case the structured singular value µt!. [37] should be 
used to analyze stability and performance instead of the 7-t00-norm, which can substantially 
reduce the conservatism of the solution. 

Definition 3.2 (Structured singular value [37]). The structured singular value is defined as 

µé!. (M) = ( mJn {ä (D.) ID. E a , <let (J - D.M) = O} )-l , 
unless det (J - D.M) -=/- 0 'vD. E a , in which case µt!. (M) = 0. 

In this definition the structure of D. is given by 

a = { diag (<>1lr,, .. . , óslrs , D.s+1, · · ·, D.s+F) 

(3.8) 

l<>i E C, D.s+j E cmj Xm;, 1 :Si :S s, l :S j :S F} . (3.9) 

Structures where D.s+J is not square are also possible, although in the literature this as­
sumption is often made, see for instance [37, 45]. 

Note that when both robustness and performance are evaluated, the problem is always 
structured, i.e. , 

and thus µ;5,. (M) should be used. 

3.2 Optimal inferential control 

3.2.1 Motivation 

(3.10) 

In the previous section, the four-block problem (3.2) was introduced. By minimizing I in 
(3.5), the optima! controller for plant Gy can be found, i.e., the performance at measured 
output y is optimized. However, for the representative scenario on the flexible beam setup, 
as introduced in Section 1.4, performance is required at output z. So far, this requirement 
has not been included in the control problem, and good performance of output z is therefore 
not guaranteed. 

To illustrate that optima! performance at measured output y does not imply good per­
formance at z, an optima! controller for Gy has been computed, using the finite element 
model from Section 2.3. Figure 3.6 shows the simulated step response of the closed-loop 
system, for both outputs. Although the response of measured output y is optima!, the 
response of performance output z shows a large vibration. From this example, it can be 
concluded that optima! control for Gy is insufficient to guarantee good performance for the 
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model. 

whole system. This is in contrast with optimal control of rigid structures, and once more 
motivates a different approach for systems with flexible dynamics. 

3.2.2 lnferential control 

For structures with flexible dynamics, where performance output z is not equal to the mea­
sured output y, standard control theory is insufficient and new methods must be explored. 
A solution can be found in the literature on chemical process control [28, 39, 45, 47]. In 
chemica! plants, often the performance variable is not available during normal operation. 
To solve this problem, a secondary measurement is used to control the performance variable 
indirectly, which is called inferential or indirect control. 

The two control configurations that are commonly used, are shown in Figure 3.7. In 
control configuration (a), measured output y is used for feedback control. The reference 
signal rz for the performance output, is filtered by F to obtain a reference signal ry = Frz 
that is needed in the control loop. Control configuration (b) estimates z by z = Ey, and 
uses the estimate for feedback control. 

The intended use of this control theory is 1t00-optimal control, and therefore the control 
configuration in Figure 3.8 is introduced. In this control configuration, the controller takes 
the reference signal rz and measured output y as inputs, i.e., in contrast to standard feedback 
controllers, the inferential controller has two degrees of freedom, K = [ K 1 K 2 ] . The 
filter F and estimator E are absorbed in the controller, and maximum freedom in the 
controller design is allowed. T his freedom will be left to the controller synthesis algorithm, 
such that an optimal result can be achieved. 
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Figure 3.8: Inferential control configuration for motion systems with flexible dynamics. 
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3.2.3 1t00-optimal inferential control 

In Section 3.1 the use of 1i00-optimal control for complex structures, such as wafer stages, 
was motivated. In Subsection 3.2.1, it was shown that for structures with flexible dynamics 
standard optima! control is not sufficient, and therefore in Subsection 3.2.2, the inferential 
control structure was introduced. 

In this subsection, the inferential control structure is cast in a form that is suitable for 
1i00-optimal controller design. It is desired that standard robust control techniques can 
be used, and internal stability must be provided for this control structure. Furthermore it 
should be possible to extend the structure with an uncertainty model, and that performance 
for both the measured variable and the performance variable is part of the optimization 
criterion. 

In order to provide internal stability for the inferential control configuration, inputs and 
outputs are added to the control scheme in Figure 3.8. These inputs and outputs are chosen 
such that the four-block problem (3.2) is contained in the closed-loop transfer function. This 
closed-loop transfer function is given by 

(3.11) 

Observe that the lower right part is the four-block problem (3.2). Since the closed-loop 
system (3.11) consists of nine blocks, it will be called the nine-block problem. 

When z would be chosen as performance output, the optima! solution for the controller 
synthesis problem would be [ 0 K2 ] , i.e., tracking the reference signa! would not be pos­
sible. Therefore, a reference filter Tr is introduced, as shown in Figure 3.9, and consequently 
ez = z -TrTz is the performance output, instead of z. The reference filter Tr E R1i00 should 
be chosen such that it resembles the desired closed-loop behavior, in order to obtain a mean­
ingful problem formulation. It is important to choose Tr carefully, because it influences the 
optima! controller design. Note that Ty in this structure is not the reference signa! for y, 
but represents measuring noise instead. 

Now, the control structure in Figure 3.8 can be cast in the genera! control structure in 
Figure 3.2 as described in [36]. The resulting generalized plant P is shown in Figure 3.10, 
and is given by 

-Tr 0 Gz Gz 
0 0 Gy Gy 

P= 0 0 I I (3.12) 
0 I -Gy -Gy 
I 0 0 0 

The closed-loop transfer function is given by 

F,(P, K) - [ ;: ] S [ K, 1 K, 
[ T, 

0 n J ] - ~ 0 
0 

(3.13) 

Since the structure of the problem is now defined, it can be verified whether it provides 
internal stability. 

Proposition 3.1 (Internal stability [361). Consider the closed-loop system in Figure 3.9 
which is well posed and has no hidden unstable modes. Then, this system is internally 
stable, i.e., for r,, = Ty = Tz = 0 all states of K, G and Tr tend to zero from all initia[ 
states, if and only if Ft (P, K) E R'Hoo-
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Figure 3.9: Inferential control structure suitable for the generalized plant formulation. 

1------------ ---- ----
1P(G) ~~ 1 
1 - 1 

WE: ~1~~ Tr ~-~---:}' 

Ufb 

Figure 3.10: Plant G , reference filter Tr , and interconnection structure form the generalized 
plant P. 

The proof of 3.1 is similar as in [50, Lemma 5.31, using that Tr E R1t00 • 

Using (3.13), the optimization criterion for the inferential control configuration becomes 

.J(P,K) = IIWFi(P,K)Vll 00 - (3.14) 

This optimization criterion has two degrees of freedom, i.e., K = [ K1 K2 ] and shows 
certain similarities to the two-degree-of-freedom controllers in [23]. However, here the ex­
tra degree of freedom is used to infer the performance variables, instead of enhancing the 
performance of the measured variables. 

The optimization problem can be solved using the standard suboptimal controller syn­
thesis algorithm as described in Appendix A. Similar to the standard four-block problem 
(3.2), the inferential control structure can be extended with perturbations in the form of 
~-blocks. 

3.3 Conclusions 

In this chapter, 1-{00-optimal inferential control has been discussed, and the following con­
clusions are drawn. 

• The standard optima! control problem formulation does not deal adequately with 
structures with flexible dynamics, because it considers the measured variables to be 
the performance variables. The new inferential control configuration allows the use of 
performance variables that are not used for feedback, and has a two degree of freedom 
controller design that is used to improve the performance. 
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• In the inferential control configuration, the performance variables are inferred from 
the measured output of the system. This requires accurate knowledge of the system 
dynamics, and thus relies on the availability of high quality models. 

• The inferential control configuration can be cast to fit the genera! control configuration 
(Figure 3.4). Therefore, standard robust control techniques can be used for controller 
synthesis, and model uncertainty can be added as usual. Stability of the closed-loop 
transfer function provides internal stability of the system. 

Hereby, it can be concluded that the new inferential control structure is successfully com­
bined with H00-optimal control, maintaining the advantages of both methods. Since the 
new control theory relies on accurate modeling of the plant dynamics, a control-relevant 
identification procedure is proposed in Chapter 4. 
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Chapter 4 

Control-relevant identification 

Inferential control, as introduced in Section 3.2, infers the performance output z from the 
measured output y. Since the relations between these two outputs are determined by the 
dynamics of the plant , it is crucial that an accurate model of these dynamics is available 
for controller synthesis. The intended use of inferential control is on the next-generation 
lightweight wafer stages, which are complex MIMO structures that are not straightforward 
to model accurately. Therefore, here will be focused on system identification, which is a 
reliable and fast method to obtain an accurate model of the system dynamics. Because the 
model is needed for controller synthesis, the goal of the identification procedure is to obtain 
a parametric model of the dynamics that are relevant for 1t00-optimal control, i.e., accurate 
modeling of the closed-loop dynamics is desired. 

To identify the dynamics of a system, the difference between model and plant dynamics 
has to be minimized. In this chapter, a control-relevant identification criterion is used 
for this purpose. The optimal control-relevant model is then obtained by minimization of 
the identification criterion. In Section 4.1, coprime factorizations are discussed, since they 
play an important role in the identification procedure as proposed in this chapter. Section 
4.2 is about the control-relevant identification criterion, which is related to the controller 
optimization criterion. Then, in Section 4.3, coprime factorization of the identification 
criterion is discussed, which reduces the size of the optimization problem such that the 
computational costs of the identification algorithm are reduced. Section 4.4 is about the 
algorithm for minimization of the identification criterion. In Section 4.5 the control-relevant 
system identification procedure is confronted with the flexible beam experimental setup, in 
order to verify the results on a real system. Finally, in Section 4.6, the conclusions of this 
chapter are presented. 

4.1 Coprime factorization 

The motivation for using coprime factors in the control-relevant identification procedure is 
based on two aspects. The first aspect is that it reduces the size of the identification criteria 
from four and nine blocks, to two and three blocks, for the standard and inferential control 
problem respectively, as is shown in Section 4.3. Generally, this reduces the computational 
costs of the identification algorithm. Furthermore, using coprime factors in the parametriza­
tion of model sets, has the advantage that it guarantees the plant is contained in the model 
set, if it is stabilized by the controller used during experiments. In this section, coprime 
factorization will be defined and a motivating example for using coprime factor uncertainty 
will be given. 
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Definition 4.1 (Coprime [291). Suppose ÏJ, N E R1i00 have the same number of rows. 
Then ÏJ and N are left coprime if and only if there exist U, V E R1i00 such that the Bézout 
identity 

ÏJV +NU= I, ( 4.1) 

is satisfied. 

Similarly, if D and N have the same number of columns, they are right coprime if there 
exist U and V such that V D + U N = I. Using this definition, the coprime factorization of 
a system is defined as follows. 

Definition 4.2 (Coprime factorization [291). The pair { ÏJ, N} constitutes a left coprime 

factorization (LCF) of G E R if and only if 

l. ÏJ is square and invertible, 

2. G = b- 1&, 

3. ÏJ and N are left coprime. 

Similarly, the pair { D , N} is a right coprime factorization (RCF) of G, if they are right 
coprime and G = N D- 1 . A useful property of this definition is that ÏJ and N cannot have 
identical right half-plane zeros, because ( 4.1) then will not hold. Therefore, b- 1 N cannot 
have an unstable pole-zero cancellation, i.e. , it has no hidden unstable modes. 

Example 4.1 (Motivation for coprime factor uncertainty). Consider an unstable plant 
Go = 

8
~ 2 , which is stabilized by proportional feedback controller K = 200. The plant is 

modeled by ê = 
8

~ 2 , that is stable in contrast to the plant. This difference is illustrated 
in Figure 4.l(a) , that shows the step responses of the open-loop plant (-) and model (--). 
The closed-loop step responses in Figure 4.l(b) , on the other hand, show a remarkable 
similarity between the unstable plant and the stable model. 

When robust control is pursued, it is a stringent requirement that the plant is included in 
the model set. With most common uncertainty structures, such as additive or multiplicative 
uncertainty, it is not possible to achieve this because ~ would be required to be unstable. 
However , the coprime factor uncertainty structure shown in Figure 4.2, is able to include 
unstable plants in the model set. The model set of this uncertainty structure is given by 
[29] 

where { N, ÎJ }is a RCF of ê, and ~N , ~D are uncertainty models. The plant Go corresponds 

with ~N = 0 and ~D = 4, i.e. , ~N , ~D E R1i00 • The unstable plant is thus modeled solely 
by stable transfer functions. 

4.2 Control-relevant identification criterion 

To be able to use the proposed inferential control method, which is model based, it is impor­
tant to have an accurate model of the dynamics of the system, such that the performance 
output z can be inferred from the measured output y. In order to obtain a model that 
contains the dynamics that are relevant for this purpose, and also for subsequent controller 
design, further analysis of the control objective is needed. 

The aim of 1i00-optimal control is to minimize the control criterion, given by 

.J (Po, K) = IIWF1 (Po, K) Vll 00 . ( 4.2) 
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Figure 4.1: open-loop step response of the plant Go (-) and model ê (--) (a), and closed­
loop step response (b). 

N 

Figure 4.2: Coprime factor uncertainty structure of model set Q 
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This norm depends on the closed-loop transfer function of generalized plant Po and controller 
K. Since the exact dynamics of the real system are not given by an analytica! expression, a 
model P needs to be used for controller synthesis. In [44], the triangle equation for norms 
is used to obtain an upper bound for ( 4.2), and then interpreted as follows. 

The upper bound for ( 4.2) is given by 

(4.3) 

Minimizing the first term of the right-hand side of this equation, is interpreted as finding 
the optimal controller for the model P. The second term is interpreted as the worst-case 
performance degradation due to designing a optimal controller for the model P, rather than 
for the plant Po. This second term, therefore is a measure for the control-relevance of 
a model, and is used as identification criterion. The control-relevant model identification 
problem is therefore stated as 

( 4.4) 

Ideally, this norm should be minimized for the optimal controller, i.e., K = K 0 Pt_ However , 
because the optimal controller is unknown, in the identification procedure an experimental 
controller Kexp is used. By iterating optimization of the model and controller, both the con­
troller design and model improve. However, because in ( 4.4) always a controller is used that 
is designed for the previous model, convergence to the minimum of ( 4.2) is not guaranteed. 

4.3 Coprime factorization of the identification criterion 

The identification problem ( 4.4) will not be solved in this formulation. Instead, it will be 
expressed in coprime factors , as motivated in Example 4.1. By using coprime factorization 
as in the following approach, the optimization problem can be reduced in size. For stan­
dard optimal control, this leads to reduction of the four-block problem (3.2) to a two-block 
problem, and for the inferential control structure, the nine-block problem (3.13) reduces to 
a three-block problem. Generally, this reduces the computational cost of the identification 
algorithm. 

The coprime factorization of the plant that is used to reduce the size of the identi­

fication criterion, is based on a left coprime factorization { De, Ne} of the experimen-

tal controller K exp, and diagonal weighting matrix V, i.e., the pair { De, Ne} denotes 

an LCF of [ K~xpVi I K;xpVi Vi ] . This coprime factorization is chosen such, that 

Ne = [ Ne,3 1 N e,2 N e,1 ] is co-inner, which is defined as follows. 

Definition 4.3 (Co-inner [29, Ch. 21). A stable p x m transfer function X (s) , with p::::: m 
is co-inner if 

XX* =l 

for all s E jR 

A property of co-inner transfer functions, is that they do not influence the 1-t=-norm in 
a right multiplication, i.e., if X is co-inner, IIYII= = IIY XII=. Here, this property will be 
used to reduce the size of the identification problem for the inferential control configuration 
as in [36], but this method is applicable to other control configurations as well. 
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Substituting the closed-loop transfer function (3.13) in the identification criterion (4.4), 
gives 

(4.5) 

Using the pair { De, Ne }, (4.5) can be written as 

(4.6) 

00 

Exploiting the fact that Ne is co-inner, an important step can be taken, ( 4.6) can be reduced 
to 

.7 (P,K"'') - w ( [ ~;:: ] ( b, + N,,,v,-'Go,, r' -

[ ~: l ( ÏJ, + N,,,v,-'á, r) (4.7) 
00 

This reduces the number of columns of the transfer function matrices in the identifica­
tion criterion from three to one, which consequently will reduce the computational cost 
for finding the optima! model. In [36, Sec. IV] it is shown that the pair { N, D}, with 

N = [ Nz I Ny f, defined by 

(4.8) 

is a right coprime factorization of G. First, it is shown that { N, D} is a stable factorization 
of G, and then that there exist U, V E R1t00 such that the Bézout identity is satisfied, which 
makes {N, D} a RCF of G. Using this definition, the control-relevant identification criterion 
can be written as 

min 
N" Ny ,b 

(4.9) 

which clearly shows that the identification problem can be solved by obtaining the optima! 
control-relevant coprime factors. The algorithm used to minimize ( 4.9) is discussed in the 
next section. 
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4.4 Minimizing the control-relevant identification crite-. 
rion 

The control-relevant identification criterion ( 4.9) depends on the coprime factorization of 
the model ê and the plant G0 . Since the dynamics of the plant are not known in advance, 
they are acquired from experiments. Then, the measurement data is used to obtain the 
parameters of the model ê. Therefore, the identification procedure consists of the following 
three steps: 

l. Obtain F1 (Po, Kexp) from a closed-loop experiment, 

2. Determine the control-relevant coprime factors {No ,z, No ,y , D0 } of the plant as in (4.8), 

3. Minimize the control-relevant identification criterion (4.9) over { Nz, Ny , ÎJ }· 

Note that for the inferential control structure, the closed-loop transfer function F1 (Po , K exp) 
has nine blocks, and thus also includes measurement data from z, that is not used for 
feedback. 

The procedure is carried out in the discrete frequency domain, for two reasons. ldentifica­
tion of the model requires minimization of an 1t00-norm, which is relatively straightforward 
in the frequency domain, in contrast to the time domain. Furthermore, this allows for 
nonparametric validation, as discussed in Chapter 6. 

The minimization of the control-relevant identification criterion Section 4.2 is performed 
using the reliable , well-conditioned algorithm in [34], which consists of Lawson 's algorithm in 
conjunction with Sanathanan-Koerner [42] and Gauss-Newton iterations, to minimize ( 4.9) 
over the frequency grid. In this algorithm the coprime factors are parametrized as canonical 
right matrix fraction descriptions, 

where 0 is a real-valued parameter vector. The optima! parameters are found by iteratively 
solving the following weighted nonlinear least squares problem 

( 4.10) 

using Sanathanan-Koerner iterations on a linear problem, such that a solution close to the 
optimum is found. The solution is then further refined, using Gauss-Newton iterations on 
the nonlinear problem. The weighting is determined using Lawson's algorithm, 

This type of weighting ensures the 1t00 minimization of the norm in ( 4.9), after convergence 
of the iteration. The next section will show the results for an experiment, carried out on 
the flexible beam setup. 

4.5 ldentification of the experimental setup 

As can be seen in the triangle equation (4.3), during the fitting procedure the same weight­
ing filters need to be used as for controller synthesis. This section discusses the choice of 
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Figure 4.3: closed-loop control structure. 

weighting filters for identification and controller design of the flexible beam experimental 
setup. First, weighting filters will be designed using r{,00 loop-shaping techniques. Then, 
the designed weighting filters are verified using the finite element model of 2.3, before the 
dynamics of the experimental setup are identified. 

4.5.1 1{00 loop-shaping 

Loop-shaping is a method that is commonly used in control engineering, since it is a straight­
forward way to design a controller, that satisfies some common performances objectives and 
has sufficient robustness margins. This method is extended for r{,00-optimal control in [29], 
such that it can be used to design controllers for complex MIMO systems. Alternatively, 
the closed-loop transfer functions can be shaped, which is also common in optima! con­
trol , or signal-based approaches or numerical optimization can be used, see [45, Ch. 2]. 
An advantage of loop-shaping is that it allows specification of integrators and roll-off in a 
straightforward fashion. 

Loop-shaping 

Common objectives for motion control are adequate tracking of a reference signal, distur­
bance rejection, robustness against uncertainties and low noise transmission. These ob­
jectives can be expressed as requirements on the closed-loop transfer functions , which are 
related to the open-loop transfer functions. Therefore, by shaping the open-loop transfer 
functions , the performance objectives can be satisfied. 

For the system in Figure 4.3, the error e = ry - y is given by 

e = Sry - Sd + Tn , (4.11) 

where S = (I + GK)- 1 is the sensitivity, and T = I - S is the complementary sensitiv­
ity. Note that in this control configuration, all outputs of G are used for feedback, i.e., 
performance output z is not included in this configuration. 

Effective tracking and disturbance rejection, are obtained when ll ell 2 is small compared to 
llry 11 2 and lldll 2 . Therefore, it is desirable that the maximum singular values of the sensitivity 
is small, i.e. , 

ä(S) « 1. ( 4.12) 

Similarly, 
ä (SG) « 1, (4.13) 

guarantees adequate rejection of disturbances on the plant input. These closed-loop objec­
tives are achieved by shaping the open-loop transfer functions such that 

q_ (GK) » 1 and q_ (K) » 1. (4.14) 
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Figure 4.4: loop-shaping objectives. 
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Figure 4.5: Shaped plant G8 • 

In similar fashion, closed-loop and open-loop criteria, for robustness and low noise trans­
mission are found. It is desirable that 

1f (KS) « l, (4.15) 

because this guarantees robustness against additive uncertainties, and that 

1f (T) « 1 (4.16) 

for robustness against multiplicative uncertainties on the plant output, and low noise trans­
mission. These closed-loop objectives are satisfied when 

1f (GK) « l and 1f (K) « 1. ( 4.17) 

The conflicting requirements on the open-loop and controller gains in (4.14) and (4.17), 
clearly show the presence of a trade-off between performance and robustness. Generally, 
adequate tracking and disturbance rejection are selected as objectives in the low frequency 
region, while low noise transmission and robustness are selected at high frequencies. This is 
graphically shown in Figure 4.4. 

Shaped plant 

According to [291, the performance (4.14) and robustness (4.17) objectives of the loop­
shaping method, can be included in the optimal control problem, by adding weighting filters 
W1 and W2 as shown in Figure 4.5. These weighting filters shape the singular values of 

(4.18) 

according to the loop-shaping method, such that the design requirements are met, i.e., a (Gs) 
is shaped instead of a (GK). Because W1 and W2 are weighting filters, they do not need to 
stabilize the plant, and therefore no information regarding the phase of G8 is needed. The 
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Gain margin: 
Phase margin: 

Modulus margin: 

11 dB at 184 Hz 
22.9 ° at 37.2 Hz 
8.64 dB at 38 Hz 

Table 4.1: Minimum stability margins for Kexp_ 
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stability of the closed-loop system is left to the optimal controller synthesis. However, W1 

and W2 need to be chosen such that Gs does not have any hidden unstable modes. 
Once the optimal controller Ks for the shaped plant has been synthesized, it can be 

transformed back to the final controller K = W 1 K 8 W2. Since this does not change the 
actual loop in Figure 4.5, if Ks is a stabilizing controller for G8 , then Gis stabilized by K. 
The advantage of this method, is that the control engineer has great insight and influence on 
the resulting controller , by specifying roll-off and integrating action in the weighting filters, 
i.e. , the desired loop shape. If needed, it is still possible to extend the optimization problem 
with an uncertainty model , as discussed in Subsection 3.1.3, and synthesizing an suboptimal 
controller using the method in [lOJ. 

4.5.2 Weighting filter selection 

The optimal control criterion (3.14) and control-relevant identification criterion in Section 
4.2, depend on the dynamics of the model and plant, hut also on the experimental controller 
Kexp and weighting filters. The design of the experimental controller and weighting filters 
will be discussed in this subsection. 

First the experimental controller K exp is designed, using standard loop-shaping tech­
niques. Then, weighting filters W1 and W2 as in (4.18), are designed for 'H.00 loop-shaping 
of the four-block problem (3.2). Then, this approach is extended to the inferential control 
configuration. 

Experimental controller 

As shown in ( 4.5) , the identification criterion depends on the controller during the exper­
iment, Kexp. This controller is designed by loop-shaping, using the frequency response 
function obtained from experiments on the setup. lt was chosen to use a relatively low order 
controller , which does not contribute to a unnecessary high model order. The controller 
consists of a lead-lag compensator, integrator and high frequency roll-off, and is given by 

K exp = k 1/(21rfz)S + 1 1 1/(21rfr )S + 1 
1/(21rf,,)S + l 1/(21rf, )S + 1 S 

(4.19) 

where 

fz 3.67Hz, 

fp 77Hz, 

li 2.75Hz, 

fr 121 Hz, 

and k is chosen such that a first cross-over frequency of 11 Hz is achieved. The resulting 
loop shape and sensitivity are shown in Figure 4.6, and in Table 4.1 the stability margins 
are shown. 
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Figure 4.6: Designed loop shape (a) and sensitivity (b) for the frequency response function 
of Gy and experimental controller K exp . 
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Figure 4.7: Fourth order weighting filter W1 , designed for H00 loop-shaping. 

Weighting filters for the standard control structure 

For optimal control of the four-block problem (3.2), H00 loop-shaping is applied. The 
weighting filters that form the shaped plant (4.18) , are designed as follows. 

The input weighting filter W1 is designed similar to the experimental controller , and is 
given by ( 4.19), with parameters 

fz 20Hz, 

fp 180 Hz, 

li 15Hz, 

fr 480Hz, 

and a bandwidth of 60 Hz. The output weighting filter for Gy is W2 = 1. This choice of 
weighting filters is possible because Gy is a SISO system, for complex MIMO systems the 
design of W2 and W1 generally is more cumbersome. Note that although the structure of W1 

is similar to Kexp , it is not a stabilizing controller. This weighting filter shapes the singular 
values of W2Gy W1 , and does not consider the phase of the open-loop transfer function, that 
is left to the controller synthesis algorithm. The bandwidth of 60 Hz is well beyond the first 
resonance of the setup at 35 Hz, which means that the flexible dynamics of the beam can 
be excited. 

Weighting filters for the inferential control structure 

T he weighting filters for the inferential control structure, are based on the approach used 
for the four-block problem. Weighting filter W1 remains identical, because the input of the 
plant has not changed, but W2 becomes a diagonal weighting matrix, since the plant has 
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Figure 4.8: Reference filter Tr. 

both y and z as output. Then, the shaped plant is 

(4.20) 

where a is a sealing factor that can be used to scale Gz, such that it is the same order of 
magnitude as Gy. For the flexible beam setup a = 1 is a suitable choice, since Gz already 
is of comparable order of magnitude as Gy , as can be observed from the frequency response 
function in Figure 2.3. 

The reference filter Tr is chosen as the desired closed-loop transfer function from T z to 
z , such that the upper-left part of (3.13) is optimal when it is minimized. Below the desired 
bandwidth Tr is one, since this assures good tracking of the reference signal. Above 60 Hz it 
has a 6th order roll-off, in order to minimize the influence of resonances at higher frequencies. 
The reference filter is given by 

where fb = 60Hz, and is shown in Figure 4.8. When the plant is shaped as in (4.20), Tr 
should be multiplied by a. 

The weighting filters W and V are appended to F1 ( P, K) according to the identification 
criterion 4.5, and weigh the inputs and outputs of the closed-loop transfer functions. They 
are chosen in a similar way, as for the two degree of freedom controller design in [231, such 
that the upper-left or lower-right blocks can be emphasized. The used weighting is 

o o l [ /31 1 0 and V = 0 
0 1 0 

o o l 1 0 , 
0 1 
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Figure 4.9: Experimental controller Kexp (blue -· ), standard optimal controller Kf P 

(green -- ) and optimal inferential controller Kf:P (red - ) for the first principles model. 

with f31 = f32 = 1.25. This increases the influence of the upper-left block, which is the 
transfer function from Tz to z , i.e., it increases the importance of tracking in the optimization 
problem. 

Controller synthesis s imulation 

In order to verify whether the selected weighting filters result in a satisfying controller design, 
prior to identifying a model of the dynamics of the plant, controller synthesis is simulated on 
the finite element model of Section 2.3. This step is optional, but is of great aid in rapidly 
selecting and testing weighting filters for the optimal controller synthesis algorithm. When 
the weighting filters are selected, the time consuming identification procedure only has to 
be performed once, i.e., with the selected weighting filters. The controller for the identified 
model is then assumed to be close to the controller based on the finite element model, i.e ., 
an indication of the final result is available beforehand. Note once more that this step is not 
necessary to obtain satisfying results. 

The optimal controllers for the finite element model of the flexible beam are shown 
in Figure 4.9. A clear difference between the standard optimal controller Kf P, and the 
optimal inferential controller Kf:P , can be seen in the region around the first resonance of 
the system. The standard optimal controller has a large gain around 28 Hz, which improves 
the closed-loop transfer function for measured variable y, but causes also high gain in the 
transfer function from reference signal Tz to performance variable z , as is shown in Figure 
4.10. This is the main cause of the large, lightly damped vibrations in z , that are present in 
the simulated step response of the closed-loop system in Figure 4.11. The optimal inferential 
controller has a much smaller gain in this frequency range, and therefore the performance 
of z is improved with inferential control, i.e., overshoot and settling time are substantially 
improved, while the performance of y is still acceptable. 
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Figure 4.10: Closed-loop transfer functions of the finite element model with the controllers 
in Figure 4.9, K exp (blue - ·), KfP (green--) and KfP (red-) . 
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Figure 4.12: Closed-loop nonparametric identification of the experimental setup. 

4.5.3 Experimental results on the flexible beam setup 

In order to validate the proposed identification procedure, it is examined on the flexible 
beam experimental setup. First, a closed-loop nonparametric identification experiment is 
carried out, following the procedure described in Subsection 2.2.3. The obtained closed-loop 
frequency response function is shown in Figure 4.12. Note that input Tz is not shown in this 
figure, because the experimental controller Kexp is SISO. In the inferential control structure 
this implies K 1 = K 2 , and thus the response of the system to r 2 and ry is identical , i.e., 
the first column can be duplicated. The frequency response function is used to determine 
the control-relevant coprime factorization of the plant (4.8), which is shown in Figure 4.13 
(blue -). 

This figure also shows a 9th order fit model (green --). lt can be clearly seen that 
the fit is relatively accurate at frequencies where the magnitude of the coprime factors is 
large. These are the control-relevant dynamics of the plant. On the other hand, in the low 
magnitude regions a relatively large bias appears, because the dynamics in these regions are 
less relevant for control. 

This model is obtained by the iterative procedure described in Section 4.4, using 50 
Lawson iterations. Figure 4.14 shows the convergence of (4.10). lt can be seen that after an 
initial fast decrease, this criterion slowly converges to a constant value. Figure 4.15 shows 
the Lawson weighting Wi after 4, 5, 15, and 50 iterations. lt can be seen that between 15 
and 50 iterations the Lawson weighting does not change significantly. 

Figure 4.16 shows the maximum singular values of the modeling error Ei, after 4, 5, 15, 
and 50 iterations. Observe that the 11 points with the largest magnitude, are approximately 
of identical height. This is a result of the order of the model, which allows the identification 
algorithm to use 10 parameters to minimize the error. Consequently, the error cannot 
be reduced any further when 11 points are of equal magnitude, and the algorithm stops 
con verging. 
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Figure 4.13: T he control-relevant coprime factorization of t he measurement data (blue - ), 
and the identified model (green - - ) . 

3.2 

3.1 

3 

2.9 

"' 2.8 

2.7 

2.6 

2.5 

2.4 

5 10 15 20 25 30 35 40 45 50 

k 

Figure 4.14: Convergence of the Lawson iterations. 



Chapter 4. Control-relevant identification 49 

0.5 

0.4 

;3 0.3 

0 .2 

0.1 

10
1 

Frequency [Hz] 

Figure 4.1 5: Lawson weighting w after 4 (blue • • • ), 5 (green- ·), 15 (red --) , and 50 
( cyan - ) iterations. 

3.5 

3 

2.5 I :, : 

2 -..:::, 
10 

1.5 

0.5 

.. ,: 
.~_ r '·'-'" 

o~--~~-~~~~~--~~-~~~~~--~-~~ 

10' 10
1 10' 

Frequency [Hz] 

Figure 4.16: Maximum singular values off, after 4 (blue • • • ), 5 (green-·) , 15 (red - -) , 
and 50 ( cyan - ) iterations. 



50 

"' 
~ 

0:, 
:::2. 

<l> 
-0 = ·ä 
~ 

::E 

;::,, 

~ 

50 ~ 

0 

- 50 , 

-100 

50 

o, 

-50 

- 100 
10° 10' 

Bode diagram 

From: u 

Fl'equcncy IHzl 

4.6. Conclusions 

102 

Figure 4.17: The frequency response function (blue -) and identified plant (green --). 

Figure 4.17 shows the resulting control-relevant fitted plant. The dynamics below the 
desired bandwidth, as well as the resonances at 185 Hz and 430 Hz, are fitted accurately, 
which means that they have a large influence on the controller optimization criterion. 

4.6 Conclusions 

Optimal control, and especially optimal inferential control, relies on accurate modeling of 
the control-relevant dynamics. Therefore, in this chapter a control-relevant identification 
procedure has been proposed, and the following conclusions are drawn. 

• An optimal control-relevant identification criterion for inferential control has been 
obtained. This is a direct consequence of the new inferential control structure, and 
the corresponding control objective. 

• The control-relevant identification criterion for the inferential control structure, can 
be minimized using the numerically reliable algorithm in [34] . It is possible to ob­
tain accurate models of systems in which the performance variables are not used for 
feedback. The algorithm requires data from the performance output of the plant, this 
implies that it has to be measured in the identification experiments. 

• During the identification experiments it is possible to use a standard feedback con­
troller, designed by rules of thumb commonly used by engineers. There is no need to 
use an initial inferential controller during the experiments. 

• The theory is confirmed by experiments, resulting in an accurate model of the plant 
dynamics that can be used for synthesis of an optimal controller. 
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• The finite element model of the flexible beam is of great aid in designing weighting 
filters for the identification procedure and controller synthesis. However, it is not 
necessary to use such a model to obtain similar results. 

lt can be concluded that the proposed identification procedure can be successfully applied 
to structures with flexible dynamics, and that a model of the control-relevant dynamics can 
be obtained in this fashion. Since the purpose of a control-relevant model is subsequent 
optima! controller synthesis, this will be discussed in Chapter 5. 
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In Chapter 3, an '}-{00-optimal inferential control method for motion control of high-performance 
positioning systems with flexible dynamics, has been introduced. Because an accurate model 
of the plant is essential for model-based controller synthesis, in Chapter 4 a control-relevant 
identification procedure was proposed, and a model of the flexible beam experimental setup 
has been obtained using this procedure. The obtained model is relatively accurate in the fre­
quency ranges that are relevant for (inferential) controller design, but relatively inaccurate 
in other frequency ranges. 

The theoretica! results of these chapters are promising, but need to be verified. Therefore, 
in this chapter the theory is confronted with a true system, the flexible beam experimental 
setup. First, in Section 5.1 standard and inferential controllers are synthesized using the 
control-relevant model. By inspecting the optimized values of the control criteria, inferential 
control is compared to standard optima! control. 

Then, in Section 5.2 simulations of the closed-loop behavior of the control-relevant model 
are compared to the response of the true system. If the response of the model closely ap­
proaches the true system behavior, this indicates that the control-relevant dynamics have 
been modeled accurately. Furthermore, these experiments will confirm the improved perfor­
mance of the inferential control configuration. Finally, in Section 5.3 the conclusions of this 
chapter are presented. 

5.1 Controller synthesis 

With the obtained control-relevant model, optima! controllers are synthesized for the four­
block problem (3.2) and nine-block problem (3.13). Figure 5.1 shows the obtained standard 
optima! and optima! inferential controllers, along with the experimental controller. Observe 
that these controllers are very similar to the controllers that have been obtained for the 
first principles model, in Figure 4.9. Especially in the frequency ranges between the poles 
of the plant, i.e., between 35 Hz and 185 Hz and between 185 Hz and 430 Hz, the controller 
gains are smaller. This is connected to the magnitude of the control-relevant model in these 
frequency ranges, that is larger than for the first principles model. 

Table 5.1 shows the obtained values for the various performance criteria. From these 
values some conclusions can be drawn: 

• The values for the experimental controller Kexp are significantly larger than for the 
optima! controllers Kf P and Kf;P. This indicates that the experiment al controller 
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Figure 5.1: Experimental controller Kexp (- ·), standard optimal controller Kf P (--),and 
optimal inferential controller KrP (- ). 

.J (P, K) p CR 
4 

123.01 
3.12 

196.82 
32.44 

7.80 

Table 5.1: Obtained values of the performance criteria for the controllers shown in 5.1, 
evaluated for the control-relevant four-block P.fR and inferential block structure PfR. 

has a low performance compared to the 1i00-optimal controllers. For the control­
relevant identification procedure, it is desirable that the performance of Kexp is close 
the performance of the optimal controllers. Therefore, t he results may be improved 
by iterating identification and controller synthesis, as discussed in [44]. 

• The performance criterion for the optimal inferential controller .J (PfR,KrP) , is 4.16 
times smaller than .J ( PfR, Kf P) for the standard optimal controller. This indicates 
a significant increase in performance using inferential control. 

• From the same criteria, it follows that the standard optimal controller Kf P is not 
optimal for the inferential control configuration. Therefore, it can be concluded that 
the four-block problem (3.2) is not sufficient to design controllers for systems with 
flexible dynamics. 

In Figure 5.2 the closed-loop transfer functions from reference rz to outputs z and y, 
are shown for, Kexp (blue -·), KfP (green--) and KrP (red-). Although a common 
measure for the performance of a system is the bandwidth of the control loop, this figure 
shows that for flexible structures this is not necessarily true. From the closed-loop transfer 
function from rz toy, it can be observed that the optimal four-block controller (green --) 
has a bandwidth of approximately 25 Hz, but for output z this controller causes a peak value 
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Figure 5.2: closed-loop transfer functions , corresponding to the controllers in Figure 5.1, 
Kexp (blue -·), Kf P (green--) and Kf;P (red-). 

of more than 20 dB in the closed-loop transfer function, which decreases the performance 
of the system significantly. Furthermore, beyond the bandwidth frequency the magnitude 
of the closed-loop transfer function is relatively large around the poles of the plant, which 
indicates high noise transmission at these frequencies. 

Figure 5.2 also shows that for the optimal inferential controller (red - ) the closed-loop 
transfer function for output z is substantially improved. The magnitude is larger than O dB 
for frequencies up to approximately 44 Hz, hut in contrast to the result of the standard 
optimal controller it is relatively flat . However, based on the transfer function from Tz toy , 
one might conclude that this system has a much lower bandwidth. 

5.2 Confirming theory with experiments 

In Section 5.1, optimal controllers have been synthesized using the model of the flexible 
beam setup, that was obtained by means of control-relevant identification in Chapter 4. One 
controller is synthesized using standard control techniques, and considers only the measured 
variable, the second controller is synthesized using the inferential control configuration that 
includes the performance variable in the problem. These controllers are used to confirm the 
new control theory by means of simulations and experiments, as follows. 

Simulations and experiments on the flexible beam will be performed using the represen­
tative scenario sketched in Section 1.4. The design of the experiments is shown in Figure 
5.3. The beam is actuated with input u near both ends of the beam. At the same locations, 
the displacement of the beam is measured, and these two measurements are averaged to 
calculate the displacement of the point y, which is used as feedback variable to control the 
displacement of the center of the beam. This approach assumes that the beam is rigid, 
i.e., the beam does not bend. T he real displacement in the center of the beam is given by 
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z 

- - - - - ------------
y 

u 
u 

Figure 5.3: Design of experiments on the flexible beam setup. The beam is actuated with 
input u near both ends of the beam. The position of measured variable y is used for feedback 
control, and performance variable z is recorded to confirm the new control theory. 

the performance variable z . Generally, the dis placement in the center of the beam is not 
equal to the measured displacement, i.e. , z =/- y. During the experiments the closed-loop 
step response of the measured variable y and performance variable z are both recorded to 
confirm the improved performance of the new inferential control configuration. 

First, simulations are performed using the control-relevant model from Subsection 4.5.3. 
The simulations give an indication of the improved performance of the new inferential con­
trol configuration, compared to the standard control theory. Figure 5.4 shows the simulated 
closed-loop step response , of the experimental controller Kexp (blue -·), the standard opti­
mal controller Kf P (green - -) and the optimal inferential controller Kf/ P (red -), on the 
control-relevant model. The performance of Kf;P shows substantial improvement compared 
to Kf P , as also is indicated by the values for the performance criteria in Tab Ie 5.1. 

The standard optima! controller Kf P (green - - ) excites the flexible dynamics of the 
beam, causing lightly damped vibrations in the structure. These vibrations can be observed 
in the response of the performance variable z, which is obviously undesirable. The optimal 
inferential controller Kf;P (red - ) shows a remarkable improvement on this point , the vibra­
tions have a substantially smaller maximum amplitude and are more damped. This results 
in less overshoot and a faster settling time for the performance variable z. 

The measured output y also seems to benefit from the reduced internal vibrations of the 
structure. The initial response to the step is slower, but it remains faster than the exper­
imental controller. The overshoot is of similar magnitude as for the other two controllers, 
and the settling time improves. It can be concluded that the new control theory is improves 
the performance on the model substantially. 

Next , a similar experiment is performed on the experimental flexible beam setup. Figure 
5.5 shows the implementation of the experimental controller Kexp (blue -·), the standard 
optima! controller Kf P (green --) and the optimal inferential controller Kf;P (red -) on 
the experimental setup. The reference signa! r z makes a step of 0.05 mm after 0.1 s. If 
this figure is compared to Figure 5.4, it is obvious that the response of the true plant is 
exceptionally close to the simulations, and thus the following two conclusions can be drawn: 

• The closed-loop step responses of the control-relevant model , and experimental setup 
show similar results. This is a strong indication that the control-relevant model con­
tains the dynamics of the plant that dominate the closed-loop behavior of the setup, 
i.e., the plant dynamics have been identified successfully. 

• The new inferential controller design is implemented on the true system and improves 
the performance substantially. Hence, the new control theory is confirmed by experi­
mental results. 
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Figure 5.4: Simulated closed-loop step responses, corresponding to the controllers in Figure 
5.1, Kexp (blue -·) , KfP (green--) and K/;1 P (red - ). 
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5.1 , Kexp (blue -·), KfP (green--) and Kf;1P (red-), on the flexible beam experimental 
setup. 
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5.3 Conclusions 

The results that have been shown in this chapter, are promising for control of the next­
generation lightweight wafer stages with flexible dynamics. The following conclusions are 
drawn. 

• A proof of principle is delivered for the inferential control configuration, and the per­
formance is improved substantially compared to standard optima! control. 

• There is a strong indication that the dynamics of the experimental setup are iden­
tified accurately, i.e., the control-relevant identification procedure has been applied 
successfully to a structure with flexible dynamics. 

The control-relevant model that was obtained in Subsection 4.5.3, has been used synthe­
size controllers achieving nomina! performance on the model. These controllers have been 
successfully applied to the experimental setup, hut in genera! this cannot be guaranteed. Be­
cause of differences in the dynamics of the true plant and identified model, internal stability 
on the experimental setup is not necessarily provided. 

By addressing these differences in an uncertainty model, the step towards robust stabi­
lization of the plant can be taken. In Chapter 6, a model validation procedure is proposed, 
in which the model errors are addressed such that robust controllers that provide internal 
stability for the true plant, can be synthesized. 



59 

Chapter 6 

Model validation for robust control 

In Chapter 4, it was shown how a control-relevant model can be identified. Although the 
difference between the model and measurement data is minimized in this procedure, it is 
inevitably that modeling errors are present. Furthermore, the experimental data contains 
noise and disturbances. 

In order to confirm that the model accurately describes the dynamics of the plant, it 
needs to be validated by comparison to measurement data. Common validation methods 
attribute modeling errors completely to disturbances or noise, and consequently models with 
systematical errors are invalidated [ 27]. However , these validation methods solely consider 
the nomina! model. Robust control is able to deal with model sets, and can be used to 
address systematical model errors , such that the true plant dynamics are encompassed by 
the model set. This motivates a different approach towards model validation for robust 
control. 

For models with a given uncertainty model, (in)validation methods can be found in 
literature, see e.g. [41 , 46]. In order to obtain a meaningful validation problem, such an un­
certainty model should be chosen with care. The model error consists of systematical errors, 
noise and disturbances. Systematical errors influence the stability properties of the model, 
and should therefore be encompassed by the model set. However , noise and disturbance can 
not influence stability and should be treated differently, and it is therefore essential that 
they are correctly separated from the systematical errors. 

V 

M 

Mo 

dist ur ban ces 

Figure 6.1: Structure of the model validation problem. 
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The model validation method that is proposed in [33] makes a suitable trade-off for the 
contributions of systematical errors, noise and disturbances to the model error, as follows. 
lt compares the plant and the model in a structure as shown in Figure 6.1. In this figure , M 
is the nomina! model with a perturbation .Ó.u and a noise term v. The model is compared 
with the plant Mo, which has the same input as the model and additionally some external 
disturbances. The model is not invalidated if there exists a model in the model set that 
produces the same data as the plant, i.e. , there exists 11.ó.ull oo < ïu such that E = 0. The 
key problem is to separate the true plant dynamics in the output of M 0 , from noise and 
disturbances. The solution lies in the use of periodic excitation signals. The repetitive part 
of the output can then be contributed to the system dynamics, while variation over the 
periods is caused by noise and disturbances. Therefore, the steps in the model validation 
procedure are: 

1. Estimate a disturbance model from measurement data, 

2. Determine the smallest perturbation that validates the model, 

3. Design an overbound for the perturbation to obtain a parametric uncertainty model. 

This procedure relies on the underlying structure of M, that is used to parametrize the 
perturbations. In Section 4.1 , it was already motivated that coprime factorizations should 
be used, this is discussed in more detail in Section 6.1. In Section 6.2, the model validation 
procedure is explained in more detail , regarding the disturbance model and parametrization 
of the uncertainty model. The theory in these two sections is mainly based on the work of 
Oomen [33]. In Section 6.3, the theory is confronted with a true system, i.e., the flexible 
beam experimental setup. The chapter ends with some conclusions in Section 6.4. 

6.1 Dual-Youla parametrization 

The parametrization of the uncertainty model is essential in the model validation proce­
dure. In order to be able to validate a model, it is required that the plant dynamics are 
encompassed by the model set, otherwise it is impossible to match the experimental data. 
Therefore, the dual-Youla parametrization is used. 

Definition 6.1 (Dual-Youla parametrization). The dual-Youla parametrization for the four­
block problem (3.2) is given by 

(6.1) 

where { IV, Î)} is a right coprime factorization of ê, and {Nk, Dk} is a RCF of K. 

The dual-Youla parametrization is graphically shown in the block scheme in Figure 6.2. 
The parametrization has the following property: Given that K stabilizes ê, all models 
stabilized by K are given by Ç. This property has two important consequences: 

1. The true system is encompassed by the model set, i.e., Go E Ç, 

2. All models Gin model set Ç are stabilized by K. 

This parametrization plays a key role in the model validation procedure, since it provides 
the necessary conditions for validation of the control-relevant model. 

In order to explain the special properties of the dual-Youla parametrization, first in 
Subsection 6.1.1 the control interpretation of the Bézout identity will be discussed, then in 
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K b-1 JÎ1 y 

Figure 6.2: Dual-Youla parametrization for the standard four-block problem. 

Subsection 6.1.2 the stability property of the dual-Youla parametrization is discussed. It 
should be noted that feedback from all outputs of the plant is assumed, and therefore below 
the parametrization of the four-block problem (3.2) will be discussed, i.e. , G should be read 
as Gy and Kas K2. Since internal stability of the four-block problem is sufficient for internal 
stability of the inferential control configuration (3.13), this still gives valuable results. In 
Subsection 6.1.3 the uncertainty structure will be extended to include perturbations on z, 
i.e., a dual-Youla parametrization for the inferential control structure is given. 

6.1.1 Control interpretation of the Bézout identity 

It can be shown that the Bézout identity has an important interpretation in control theory. 

Consider a plant G with RCF {N, D}, and controller K with LCF { Nk , Îh } · Then, it can 

be shown that internal stability can be evaluated by a Bézout identity as follows [48J. 
The closed-loop transfer function is 

T (G, K) = [ ~ ] (I + KG)- 1 
[ K I ] , (6.2) 

and by substituting the coprime factorizations this becomes 

(6.3) 

The coprime factors are stable by definition, and therefore 

(6.4) 

By defining a second right coprime factorization of the plant, G = NzD-; 1 = (NZ) (DZ)- 1 

with Z = ( bkD + NkN) -l, it can be shown that bkDz + NkNz satisfies the Bézout identity 

as follows. Note that Z must be stable in the definition of the coprime factors , and thus 
T (G, K) E Rri00 • 

( bknz + NkNz)-
1 

z-1 
( bkn + NkN)-

1 

I. 

(6.5) 

(6.6) 

(6.7) 



62 6.1. Dual-Youla parametrization 

And therefore, 
(6.8) 

This means that for any RCF of G, and LCF of K, a Bézout identity is satisfied if and only 
if the closed-loop system is internally stable. Similarly, this can be shown for a LCF of the 
plant, and RCF of the controller. 

6.1.2 Stability properties of the model set 

The favorable properties of the dual-Youla parametrization are combined in the following 
theorem, which is dual to [50, Thm. 12.17] in the sense that controller K and plant G have 
been exchanged, such as in [48]. 

Theorem6.1 (dual-Y<?ula): LetK= NkD-,; 1 = b-,; 1 Nk beRCFandLCFof K overR1i00 , 

and let ê = JÎ1 b- 1 = b- 1 JÎ1 be RCF and LCF of ê over 'R,1{00 . Then, the set of all proper 
plants that are internally stabilized by K , are parametrized by 

(6.9) 

or 

(6.10) 

such that 

(6.11) 

Using the parametrization (6.9), it can be shown that the corresponding Bézout identity 
is satisfied for any D.u E R'H00 , as follows: 

Dk ( ÎJ + NkD.u) - Nk (N + DkD.u) 

DkÎJ - NkJÎT + ( DkNk - NkDk) D.u 

I. 

(6.12) 

(6.13) 

This proves that if the nomina! model ê is internally stabilized by K, then all plants G in 
the model set are also internally stabilized by K. 

The converse is also true, this can be shown as follows. Suppose a proper plant G is 

stabilized by controller K, i.e., Z = ( DkD + NkN )-l E R'H00 , and define the perturbation 

D.u by 

Then 

b + NkD-,; 1 (Nz - N) 
b + b; 1Rk (Nz - N) 

b-,; 1 
( bkb - NkJÎT + NkN z). 

If the Bézout identity is satisfied for the RCF of ê, this is equal to 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 
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(6.19) 

(6.20) 

(6.21) 

(6.22) 

By using that Dk!:J.u E RH.00 by definition (6.14), and Nk !:J.u E RH.00 which follows from 
(6.22), together with the Bézout identity that is satisfied for the LCF of ê, it follows that 

I 
- -
D (Dk!:J.u) - N (Nk!:J.u) E RH.oo. 

(6.23) 

(6.24) 

This means that if ê is internally stabilized by a controller K, then all stabilized plants are 
parametrized by (6.9). With t his important result it is shown that Go ,y can be parametrized 
as part of the model set. However, the performance output of the plant is not taken into 
account yet. The next subsection explains how Gz can be included in the parametrization. 

6.1.3 Uncertainty in the inferential control structure 

In order to ensure that Go,z can be parametrized by the model set, a second 6-block 
is introduced. The structure of the dual-Youla parametrization for inferential control, is 
shown in Figure 6.3, where the four-block problem (gray) is extended (black) with the 
inferential part of the controller K 1 , the performance output of the plant Nz, and the 
second perturbation /:J. z . The parametrization of the plant then becomes 

(6.25) 

lt can be observed that, provided that K 1 , /:J. z E RH.00 , the uncertain plant is still internally 
stabilized by K 2 . T he block scheme in Figure 6.3 can be rearranged to form an M 6-
structure as in the validation setup in Figure 6.1. After addition of the weights that were 

used in t he identification procedure, M with input Wm = [ u.c., u.c.,. 1 r3 r2 r1 ] T and 

output z = [ Y.c. Y.c. 1 z y u f, is then given by 

0 0 ( Î) + K2Ny ) -l [ K1 K2 I ]v 
A A -1 

]V M= 0 0 D + K2Ny [ K1 K2 I 

We 0 

w [ ;: ] ( / + K,é, r 1 

(6.26) 

0 WyDk K1 K2 I ]v 
0 -WuNk 

The 6-block that matches M has a block diagonal structure 

(6.27) 

Note that it is also possible to make the 6-block 2 x 1, since the first two rows of M are 
identical. Here is chosen not to do so, because in the diagonal structure /:J.z and 6u can be 
identified separately. Note also that in contrast to Gz in (6.25) does depend on 6u . The 
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Figure 6.3: Dual-Youla parametrization for the inferential control structure. 

difference between the open-loop and closed-loop case will be discussed more thoroughly in 
Subsection 6.2.3. 

The dual-Youla parametrization (6.25) for the inferential control structure has the same 
properties as the parametrization Figure 6.2 for the standard case, and therefore it can be 
used for the model validation procedure in similar fashion. In the next section, the model 
validation procedure and experimental results on the flexible beam will be discussed. 

6.2 Model validation procedure 

In order to validate a model, the systematic errors, noise and disturbances need to be 
addressed appropriately. If the dynamics of the model are different than those of the plant, 
the stabilizing properties of a subsequent controller design are influenced, and this can lead 
to undesirable closed-loop behavior. Therefore, it is necessary to take these errors in account 
during controller design, and to model them as a perturbation ~ on the model M, as in 
Figure 6.1. In contrast, noise and disturbances do not influence the stability of the system, 
and therefore they should be contributed to a separate disturbance model. 

The first step in the model validation procedure is to obtain a disturbance model. The 
remaining errors, that are not addressed by the disturbance model, are then contributed 
to systematic errors. This requires the disturbance model to be deterministic, which is 
not common in literature, and therefore it is discussed in Subsection 6.2.1. In Subsection 
6.2.2 a disturbance model is obtained for the flexible beam experimental setup. Then, the 
systematic errors can be obtained using the generalized structured singular value problem, 
as discussed in Subsection 6.2.3. 

6.2.1 Estimating a deterministic disturbance model 

As explained in the introduction of this chapter, the differences between model and data are 
caused by disturbances and model errors. lt is essential that both are addressed appropri-
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ately. Since there is a trade-off between the size of the perturbation and disturbance models, 
the contribution of the disturbances is not allowed to be too large, because this implies a 
perturbation model that is too small, and consequently it is not guaranteed that the dynam­
ics of the true system are included in the model set. Conversely, if the disturbance model is 
too small, the uncertainty model is overly conservative, at the expense of lower performance. 
Therefore, it is essential that the disturbances are estimated accurately, which is done using 
the procedure in [33]. This procedure uses a frequency domain approach that is consistent 
with the control-relevant identification procedure, and is evaluated at a frequency grid wi. 
An advantage of this approach is that the disturbance model can be nonparametric, so no 
approximation errors occur. 

lt is not straightforward to estimate a deterministic disturbance model directly, and 
therefore it will be derived from a stochastic description, which is common since noise and 
disturbances often are of a stochastic nature. The disturbance is modeled as a stochastic 
variable v = H 0 e, where e comes from a distribution with zero mean and unit covariance. 
Under this assumption the Fourier transform Viv ( e1w,) of v , converges toa circular complex 
normal distribution for N ------> oo [40, Ch. 14], which is defined as follows. 

Definition 6.2 (Circular complex normal distribution [40, Ch. 141). Fora complex random 
vector Z , the circular complex normal distribution Nc (mz , Cz) is defined by its mean mz, 
covariance matrix Cz = c; ~ 0, and the circularity property 

(6.28) 

Although this stochastic model characterizes the disturbance, it is not suitable for the 
model validation procedure. Therefore, the disturbance will be modeled as a complex per­
turbation of which the magnitude is determined by the covariance of the disturbance and 
a probability level. First it must be assured that the elements of VN are uncorrelated, this 
can be achieved using the following transformation, 

(6.29) 

where r: follows from the eigenvalue decomposition of the covariance 

(6.30) 

The diagonality of Av ( w;) = diag ( À 1, ... , Àn) ensures there is no correlation between the 
elements. A deterministic disturbance model is obtained in the form of a structured pertur­
bation, of which the magnitude 

(6.31) 

is chosen such that it is an "upper bound" for the disturbance, with probability o: E [0, 1). 
The perturbation has a diagonal structure defined by the set 

a v = {diag(ó1 , ... ,ón)lóq E C , q = 1, . . . ,n} , (6.32) 

which has the same size as Av. The deterministic disturbance model is then given by 

V (wi) = { Tv (wi) ~vV (wi)l~v E Bav }, where B denotes the unit ball, i.e. , ll~vllO() :S 1. 

In practice the covariance and mean of VN are not known a priori, but need to be 
estimated from measurement data ZN. The covariance is estimated with 

(6.33) 
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where the mean is given by 

(6.34) 

These estimators converge to the true values of Cv and mz for nexp --+ oo. 
With the deterministic disturbance model, the model validation setup in Figure 6.1, now 

can be examined in the frequency domain, by taking the Fourier transforms of the input 
signal Wm, and the output signals z and Zm, as shown in Figure 6.4. In this figure, the 
residual of the model is given by 

(6.35) 

Note that only D.u is still unknown in the right hand side of the equation. This equation also 
clearly shows the trade-off between the sizes of the model perturbation and the disturbance 
model. When the disturbance model is too large, consequently the perturbation model 
becomes too optimistic, which is undesirable because then it is not guaranteed that the plant 
dynamics are encompassed by the model set. This optimism can be reduced by considering 
the output of the model, 

Z = Fu (M ,D.u) Wm + TvD.vVl. (6.36) 

By normalizing (6.36) it becomes 

(6.37) 

Then, by increasing the input with a factor a the following result is obtained, 

z Fu (M ,D.u) aWm TD. Vl 
-~--~--+ V V 

llaWmll2 llaWmll2 
(6.38) 

Fu(M,D.u)wm TD. Vl 
-------+ V V 

IIWmll2 a II Wmll2. 
(6.39) 

For a > 1 this implies that the first term remains constant hut that the second term, which 
is the disturbance model , decays. Consequently, the perturbation model will become less 
optimistic. Note that instead of increasing the input with a, it is also possible to average 
over M periods to obtain a = ../M, similar as in Subsection 2.2.2. 

6.2.2 Experimental results for disturbance modeling 

The theory from the previous subsection is confronted with a true system, by performing 
experiments on the flexible beam setup. In these experiments the system is excited with 
four input signals. 

The first experiment, is the identification experiment from Subsection 4.5.3, that uses a 
multi-sine input signal with frequency content at multiples of 1 Hz, and random phase. Using 
random phase, prevents the input signal from having large amplitudes when all sines are at 
their maximum amplitude at the same time. This input signal is also used, in the second 
experiment, to verify the results with a second measurement , i.e., with different noise and 
disturbances. The third experiment uses an input signal with the same frequency content, 
hut the sines have different random phase. In the last experiment the frequency content is 
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Figure 6.4: Model validation problem in the frequency domain. 

spaced 1 Hz apart, starting at 0.5 Hz up to the Nyquist frequency. The input signals used in 
the third and fourth experiment are not related to the first input signa!, and can therefore 
be used to verify that the identified model does not depend on the input signa!. 

For the four obtained data sets, the deterministic disturbance model V (wi ) is calculated 
and the results are shown in Figure 6.5 . lt can be seen that at certain frequencies differences 
between the disturbance models occur. However, at the locations of resonances they show 
the same behavior, i.e., the magnitude is larger than at the surrounding frequencies. This 
can be explained by comparing the magnitude of the disturbance model to the magnitude 
of the plant, as follows. 

In order to get an idea of the magnitude of the disturbances in relation to the nonpara­
metric model of the plant, Figure 6.6 shows the frequency response of the plant (blue - ) and 
the 99% probability interval (yellow area) of the disturbance model. It can be concluded 
that at the frequencies where the magnitude of the frequency response function is large, 
the disturbances are relatively small, and that the relatively large disturbances occur in the 
zeros of the plant. This may explain why the largest differences between the disturbance 
models in Figure 6.5, occur around the the zeros of the plant. 

Figure 6.6 also shows the identified model (green - -). Observe that not all model errors 
can be contributed to noise and disturbances, since the model is not entirely contained by 
the 99% probability interval. Note that this figure only shows the results of one experiment 
for clarity, hut in the validation procedure all four experiments are used. 

With these disturbance models, a model set can be obtained such that the uncertain 
model is not invalidated. 
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Figure 6.5: Bounds on the disturbances in the data, with a 99% probability level. The 
four data sets are obtained during identification (blue • • • ), with the same input signa! as 
the identification (green -·) , with different phase (red --), and different frequency content 
(cyan -). 

6.2.3 Addressing systematic modeling errors 

The goal of this step in the model validation procedure, is to obtain the smallest model set 
that is not invalidated by the experimental data. In this step the systematic modeling error 
needs to be addressed, such that in conjunction with the disturbance model, at least one 
model in the obtained model set explains the measurement data. This can be evaluated by 
rearranging the problem to a form that can be solved using a generalization of the structured 
singular value µ. 

In Subsection 6.1.3 it was claimed that under closed-loop conditions, the perturbations 
~ z and ~u could be separated. This is shown by the following proof, which considers the 
closed-loop transfer function of the nine-block problem, given by 

(6.40) 

By substituting Gz and Gy with the dual-Youla parametrization for the inferential control 
structure (6.25) in the right hand side of the equation, this becomes 



Chapter 6. Model validation for robust control 

i=i" 
~ 

"' ] 
::: 
bi) ., 

::E 

.2..._ 

"' ~ 
..0:: 
i:i.. 

ë:ï" 
~ 

"' "Cl 
E ·a 
iè° 

::E 

0 

1 
i:i.. 

40 

20 

0 
-20 

-40 

-60 

-80 

-100 
10" 

180 

90 

0 

-90 

-180 

10" 

40 

20 

0 
-20 

-40 

-60 

-80 
-100 

10" 

180 

90 

0 

-90 

-180 

10" 

Bode diagram G, 

10' 

Frequency IHzl 

(a) 

Bode diagram G" 

10' 

Frequency IHzl 

(b) 

69 

102 

102 

Figure 6.6: The 99% probability interval of the disturbance model (yellow area) around 
the frequency response function of the plant (blue - ) , compared to the identified model 
(green --), for Gz (a) and Gy (b). 
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[ 
Nz +6z l ( ÎJ - Nk6u )-l (J + K2Gy)-l [ K1 T(G,K) Ny + Dk6u K2 I ] (6.41) 

ÎJ- Nk6u 

[ 
Nz + 6 z l ( Î) - N,6.. + K,G, ( Î) - N,6..) r' [ K, Ny + Dk6u K2 (l3,fo2) 

ÎJ- Nk6u 

By substituting the Gy again with the dual-Youla parametrization, and K 2 with its right 
coprime factorization, the terms containing 6u cancel out, 

T(G,K) 

l ( Î) + K,N, r' [ K, I], (6.45) 

and therefore under closed-loop z does not depend on the uncertainty 6u, which means that 
6u and 6z can be separated. Using this result , it is straightforward to derive M (6.26) from 
the block scheme in Figure 6.3. 

For the four-block problem (3.2) , the model validation setup in Figure 6.4, can be rear­
ranged as in Figure 6. 7, which represents the validation problem for the four-block structure, 

(6.46) 

Similarly, for 6 z the validation problem becomes 

(6.47) 

Note that (6.46) and (6.47) are matrix equations that are evaluated at the frequencies Wi in 
the frequency grid. Since these problems are identical , only the four-block problem will be 
discussed here. In Section 6.3 the results for both problems will be shown. 

In the parametrization of the model set (6.25) it is required that 6u E R'H00 , such that 
it is guaranteed that the model is valid. In order to reduce the size of the model set, and 
thus to reduce potential conservatism, this is replaced with ll6u ll

00 
< ïu (wi)- The minimal 

model set can then be obtained by searching for the smallest ïu that does not invalidate the 
model. 

Then the last step that remains in the model validation procedure, is testing the validity 
of a model set for a given Ïu. Since both 6u and 6v need to be considered, this is not a 
straightforward problem. The solution can be found in the generalized structured singular 
value, which is defined as follows. 
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Figure 6.7: Graphical representation of matrix equations (6.46) and (6.47), evaluated at the 
frequencies wi in the frequency grid. 

Definition 6.3 (Generalized structured singular value [381). The generalized structured 
singular value (GSSV) is defined as 

(6.48) 

The GSSV is used to analyze a system with the structure shown in Figure 6.8. Here & 
is a structured perturbation with 

(6.49) 

The interconnection structure M contains the relevant closed-loop transfer functions selected 
from M (6.26), appended with an additional input and output for the disturbance model. 
For the ~u this becomes 

and in the inferential control configuration (3.13) the structure for ~z becomes 

0 

0 ÎJ + K2Ny -l [ ~l K2 J ] VWm ] . 

Zm-Wêz(1+K2êy)- [ Ki K2 J ]VWm 

Note that Tv V and îu, rz are absorbed in the structure, and therefore & is in the unit ball 
as in (6.49). 

At the frequencies wi this problem can be evaluated for any a E C\O, and the minimum 
value of îu (wi ) such that 

(6.50) 
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M 
0 

Figure 6.8: lnterconnection structured used in the generalized structured singular value. 

can be obtained. In [35, Sec. 6.2] it is proved that (6.50) is equivalent to the following 
proposition: 

Proposition 6.1 (135, Proposition 231). The model is not invalidated if and only if 

flli (M11 - M12X22M21, M21 - M22X22M21) > 1, 

where X22 is a matrix that satisfies X22M22 = /. 

(6.51) 

With the generalized structured singular value, a tool is available that makes a clear 
distinction between the models that are invalidated and those that are not. The minimum 
value of îu (wi) can then be obtained, using a bisection algorithm. The next section discusses 
the experimental results on the flexible beam setup. 

6.3 Obtaining a model set for the flexible beam setup 

As mentioned in Subsection 6.2.2, four data sets have been used to derive an equal number 
of disturbance models. For each of these data sets, the minimum values for îu (wi) and 
î z (wi), such that the model is not invalidated, have been calculated using the dual-Youla 
parametrization for inferential control, and the generalized structured singular value flli , as 
discussed in Subsection 6.2.3. Since only one uncertain model at a time can be used for 
controller synthesis, the maximum values of îu (wi) and î z (wi) will be used. This assures 
that the model is not invalidated by all four data sets. 

The controller synthesis algorithm also requires that the uncertainty model is parametric, 
since it needs to be absorbed in the generalized plant structure. Therefore, a parametric 
upper bound for îu (wi) and îz (wi) is designed. In order to avoid conservatism this bound 
needs to be tight. However, a relatively low order is desirable in the perspective of robust 
controller design. Therefore, for îu (wi) an 8th order state-space model is designed, and for 
rz (wi) a 15th order. The result is shown in Figure 6.9, where the values of îu (wi) and îz (wi) 
are shown (blue •) , along with the resulting nonparametric uncertainty model (blue --), 
and the parametric overbound (green - ). 

In the parametrization of the plant (6.25) the right coprime factorization of the nominal 
model plays an important role. Figure 6.10 shows the uncertainty in the RCFs of this plant, 

(6.52) 

At each frequency wi, the uncertainty is a circle in the complex plane, ofwhich the magnitude 
of ru (wi) or îz (wi) determines the radius. This means that the minimum and maximum of 
the magnitude and phase, can be derived using basic geometry. Note that this is possible 
because D-z and D-u are independent (1 x 1) blocks. In Figure 6.10 the magnitude of the 
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Figure 6.9: Minimum values of,,, and rz over wi such that the model is not invalidated 
by the measurement data (blue ·) , maximum of these values (blue --), and the designed 
parametric overbound (green - ). 

right coprime factorization of Gis shown (red --), along with the perturbations around it 
(cyan area). In Appendix B, it is discussed how this graphical representations of the model 
sets are made. lt can be seen that the influence of the model uncertainty is the largest in 
the high frequency range for N z and Ny, and in less extent in the low frequency range for 
D. Around the desired bandwidth, as specified in the weighting filter design in Subsection 
4.5.2, the perturbations have relatively small magnitude for all three coprime factors. This 
is a direct consequence from the control-relevant identification procedure, that provides a 
close approximation of the measurement data in this frequency range. Note that also the 
magnitude of the perturbation on the resonance at 185 Hz is relatively small. This pole can 
cause instability of the closed-loop system for high controller gains, and is therefore relevant 
for control. 

The same can also be observed in Figure 6.11, which shows the nominal model (red --) 
and nonparametric perturbations (cyan area) corresponding with these coprime factors, and 
the data of the four experiments (blue •), for Gz (a) and Gy (b). The figure also shows 
that all data points lie within the bounds on magnitude and phase of the model set , which 
indicates that the uncertain model is consistent with the measurement data. 

The final result is shown in Figure 6.12, which shows the nominal model (red --), 
parametric uncertainty (cyan area), and measurement data (blue •), for Gz (a) and Gy 
(b). It can be seen that the designed overbound resembles the shape of the nonparametric 
uncertainty closely, and although it is larger than the nonparametric model at all frequencies , 
the bounds on the perturbations are still tight in the control-relevant frequency ranges, i.e., 
in the bandwidth of the controller and at the resonance at 185 Hz. 
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Figure 6.10: T he nonparametric perturbations 1 (wi) from Figure 6.9 (cyan area) on the 
coprime factorization of the nominal model (red --), as in (6.52). 

6.4 Conclusions 

The modeling errors in the model obtained by the control-relevant identification procedure 
in Chapter 4, are addressed in an uncertainty model, by means of model validation for robust 
control. The most important conclusions from this chapter are as follows. 

• The dual-Youla parametrization is extended for the inferential control configuration, 
maintaining its beneficia! properties. This guarantees that the dynamics of the true 
plant are encompassed by t he model set, if the plant is stabilized by the experimental 
controller. 

• For the flexible beam experimental setup, the magnitude of the model uncertainty 
below the desired bandwidth frequency of the closed-loop system, as well as at the 
resonance at 185 Hz, is tight. Hence, it can be concluded that the identified model is 
the most accurate in these frequency ranges. 

• For the flexible beam, the model uncertainty in the inferential control structure consists 
of two independent 1 x 1 blocks. This is an advantageous property, since it implies 
that the bounds on both uncertainty blocks can be determined separately. 

• The uncertainty bounds on the experimental setup, obtained with the model validation 
procedure, are close to the nomina! model and experimental data, resulting in a model 
set that is not overly large. This will result in small conservatism of the subsequent 
robust controller designs. 

With the validated model set, it is now possible to synthesize controllers that robustly 
stabilize the plant and optimize the worst-case performance of the model set. This will be 
discussed in Chapter 7. 
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Figure 6.11: Measurement dat a (blue ·) , and nonparametric perturbations 'Y (wi ) from Figure 
6.9 (cyan area) on the nomina! model (red --) , for G z (a) and Gy (b) according to the 
parametrization in (6.25). 
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Figure 6.12: Measurement data (blue • ), and overbound of the nonparametric perturbations 
1 (wi) from Figure 6.9 (cyan area) on the nominal model (red --), for Gz (a) and Gy (b) 
according to the parametrization in (6.25). 
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Chapter 7 

Robust controller synthesis 

With the model set obtained in Chapter 6, it is possible to synthesize robust controllers that 
guarantee that the true plant is internally stabilized. A reliable procedure to synthesize 
optima! robust controllers, is by means of D-K iteration, see for instance [26, 45]. In this 
procedure the µ-synthesis problem is solved iteratively, by determining a sealing matrix D 
based on the upper-bound for µt:;. (M) , and designing an '}-{00-optimal controller K for the 
scaled problem. Although a globally optima! solution is not guaranteed, many successful 
applications have been reported. 

The standard µ-synthesis problem aims at optimizing both robustness and performance 
at once. However , in the model validation procedure presented in Chapter 6, the model 
uncertainty has been determined accurately and the required robustness is known, i.e. , 
there is no need optimize robustness. Therefore, the so-called skewed-µ-synthesis, as in 
[11] , is discussed in Section 7.1. In Section 7.2 controllers are synthesized and the results are 
discussed. Closed-loop step responses are simulated using these controllers and the identified 
model, the controllers are also implemented on the experimental setup. The results are 
presented in Section 7.3. In Section 7.4, some conclusions are drawn. 

7 .1 Skewed µ-synthesis 

Standard µ-analysis expresses robustness and performance in one single number µ6.. For 
optima! controller synthesis, this implies that there is only one optimization criterion, in 
which optimizing performance and robustness are coupled. Therefore, this method cannot 
deal with uncertainties of which the bounds already have been determined, such as the 
uncertainty model obtained in Chapter 6. This is explained in the following example. 

Example 7.1 (µ-synthesis). Consider the Mt::.-structure (see Figure 3.5) , for which an 
optima! controller is computed by means of µ-synthesis , with respect to 

A [t::. o] t::. = 0 D.p . 

Additionally, it is given that the model uncertainty is ll!::.11
00 

< 1. Then, consider the 
following possible results of the controller synthesis algorithm. 

l. µ1,. (M) = 2: The controller is robust against uncertainties llt::..11
00 

< ½, which is 
insufficient for stabilization of all plants in the model set. 

2. µ1,. (M) = ½: The controller is robust against uncertainties llt::..11
00 

< 2, i.e. , it is overly 
robust, at the expense of lower performance. 
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Both results are undesirable in the given scenario, and therefore another approach is moti­
vated. 

The problem in Example 7.1 can be solved by means of skewed µ-synthesis 1111, which 
considers the following two cases, where {3 bounds the uncertainty, i.e., 11~11

00 
< /3, and a is 

the performance level, i.e., IIFu (M, ~)11
00 

< a: 

l. Given {3 , determine the smallest a with the property that, for any uncertainty bounded 
by {3, an 1i00 performance level a is guaranteed. 

2. Conversely, given a, determine the largest {3 with the property that, again, for any 
uncertainty bounded by {3, an H00 performance level of a is guaranteed. 

Here we are interested in the first case, since this allows a predetermined value {3 to quantize 
the amount of uncertainty in the model, as it was determined in the model validation 
procedure in Chapter 6, and then optimizes the performance level a. Skewed µ is defined 
as follows. 

Definition 7.1 (Skewed µ 1111). 

(7.1) 

unless det ( J + LiM) f:. O\f l E Ä, then µi = 0. Additionally, Ä is given by 

(7.2) 

with ~ and ~P in complex spaces of appropriate dimensions. 

The optimization problem for robust controller design then becomes 

(7.3) 

As said before this can be achieved by using a modification to the D-K iteration algorithm. 
In the D-K iteration algorithm the optima! controller is found by iteratively solving for 

(7.4) 

where Dis a block diagonal sealing matrix that commutes with Li, and K and D are modified 
alternately. By including 

(7.5) 

in the D-K iterations, i.e., 

(7.6) 

and updating U for every iteration, the optima! controller for the skewed µ problem can be 
obtained. 
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Figure 7.1: Experimental controller Kexp (blue -·), robust optima! controller K,f-P 
(cyan --) and robust inferential controller KfP (magenta -). 

7.2 Robust optimal controllers 

The robust optima! controller K,f-P ( cyan - - ) and robust optima! inferential controller 
Kf P (magenta - ), obtained using the skewed µ-synthesis of the previous section are shown 
in Figure 7 .1, together with t he experimental controller (blue - •) . In gener al, the robust 
controllers in this figure, are close to the controllers for the nomina! model in Figure 5.1. 
This can be explained by the uncertainty of the control-relevant dynamics , that is relatively 
small. The gains for the robust controllers are lower over t he full frequency range, and for 
the inferential controller the shape has changed around the anti-resonance and resonance at 
approximately 25 Hz and 35 Hz, respectively. 

In Table 7 .1 the obtained values of the ( worst case) performance criteria are shown. From 
these values some conclusions can be drawn. 

• For each controller the performance is better on the nomina! model, than the worst 
case performance on over the model set, i.e, J (PPR , K) ::; Jwc (Pi , K). This follows 
directly from the fact that Jwc (Pi, K) is a measure for the worst case performance. 

• The nomina! performance of the optima! inferential controller, is better than the nom­
ina! performance of the standard optima! controller, J ( PfR, Kf:P) < J ( PfR, K.r) . 
In contrast, t he worst case performance of the optima! inferential controller, is lower 
than the worst case performance of t he standard optima! controller , JWC (Pg, Kf:P) > 
Jwc (Pg , Kf P). Therefore, it can be concluded that the inferential controller is more 
sensitive to model uncertainties. 

• For the nine-block problem, the worst case performance of the robust inferential con­
troller, Jwc (Pg , Kf P) = 10.88, which is a factor 6.48 improvement relative to the per­
formance of the optima! inferential controller for the nomina! model, J WC (Pg, Kf:P) = 
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.J (P, K) pCR 
4 

P,CR 
9 

p'fC p fC 
Kexp 123.01 196.82 125.50 201.38 
KNP 

4 3.12 32.44 5.37 39.30 
KNP 

9 7.80 70.54 
KRP 

4 4.09 41.18 4.10 49.45 
KRP 

9 9.34 10.88 

Table 7.1: Obtained values of the performance criteria for the controllers shown in Figure 
7.1, evaluated for the control-relevant four-block P.fR and inferential block structure PfR, 
and the worst case performance for the model sets of the standard P4 and inferential P9 

problem. 

70.54. This indicates a large improvement in the robust performance for the inferential 
controller. In contrast , the nomina! performance has decreased. 

• The worst case performance of the robust inferential controller, .J (PfC, K!}-P) = 
10.88, which is a factor 4.55 improvement compared to the performance of the stan­
dard robust controller, .J (P'fc, KfP) = 49.45 , i.e., inferential control has a positive 
influence on the achieved worst case performance. 

• T he performance of the robust controllers on the nomina! model, is close to the worst 
case performance. This is indicates that the model uncertainties are relatively small, 
in the context of controller synthesis. 

Figure 7. 2 shows t he closed-loop transfer functions from reference signal r, to outputs 
y and z, for the controllers in Figure 7.1. lt can be observed that in the high frequency 
range, the magnitudes of the closed-loop transfer functions for the robust controllers have 
decreased, relative to the magnitude of the nomina! performance controllers in Figure 5.2. 
This is a consequence of the lower gain of the robust controllers, and reduces the high 
frequency noise transmission of the system. 

Furthermore, the figure shows that for the inferential controller (magenta - ), the mag­
nitude has decreased even more around 40 Hz, as a result of the changed shape of the robust 
controller . Consequently, the "bandwidth" for output z has decreased, and slightly less per­
formance is expected on the nomina! model. This is in accordance with Table 7.1, which 
shows that the performance criterion .J ( p9CR, Kf;P) is larger than .J ( Pf R, KS1P). Note 
that this does not imply, that the performance on the experimental setup decreases, since 
the performance of the experimental setup is only bounded by the worst case performance, 
i.e. , .J (Po , K) ::; .;wc (P , K). 

7.3 Confirming theory by experiments 

Figure 7.3 shows the simulated closed-loop step responses for t he designed controllers on 
the nomina! model. lt can be observed that the responses of the robust standard optima! 
controller (cyan - - ) and robust inferential controller (magenta-) , are close to controllers 
that are optimized for nomina! performance in Figure 5.4. T his is a result of the model 
validation procedure, t hat assures a tight bound for the perturbations on the nomina! model. 

This last conclusion is also confirmed by the experimental results, shown in Figure 7.4, 
which shows very similar results as Figure 7.3 for the simulations. 
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Figure 7.2: closed-loop transfer functions, corresponding to the controllers in Figure 7.1 , 
experimental controller Kexp (blue - •) , robust optimal controller Kf P ( cyan - - ) and robust 
inferential controller KfP (magenta - ). 

7.4 Con cl usions 

In this chapter it has been discussed how controllers can be synthesized for models that are 
validated for robust control. The following conclusions are drawn. 

• Skewed µ-synthesis is able to deal with uncertain models of which the magnitude of the 
perturbations has been determined prior to controller synthesis, such as models that 
have been validated with the model validation procedure from Chapter 6. Therefore, 
controllers designed using the skewed µ-synthesis, guarantee stabilization of the true 
system without being overly conservative. 

• For the flexible beam, the increased robustness of the controller slightly decreases the 
performance, compared to the controllers optimized for nomina! performance. How­
ever, the difference in performance between the inferential controller and standard 
robust controller, is still present. Hence, robust inferential control can be safely ap­
plied to structures with flexible dynamics, and substantially improve the performance. 

With robust controller synthesis for the validated model , the proof of principle for the new 
inferential control technique is complete. Safe implementation on structures with flexible 
dynamics is possible, and all steps leading to this result have been confirmed by experi­
ments on a prototype light-weight positioning system. In Chapter 8, the final conclusions of 
this thesis are presented along with recommendations for future research on this promising 
technique. 
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Figure 7.3: Simulated closed-loop step responses , corresponding to the controllers in Figure 
7.1, the experimental controller Kexp (blue -·) , robust optima! controller K.f-P (cyan --) 
and robust inferential controller KfP (magenta - ). 
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Chapter 8 

Conclusions and recommendations 

8 .1 Con cl usions 

Control of high-precision positioning systems, requires advanced motion control techniques, 
to satisfy the demands on speed and accuracy. The trend in design of these systems is towards 
lightweight structures, capable of high accelerations. The mass is reduced at the expense 
of stiffness of the structure, and consequently flexible dynamics become more prominent in 
the system behavior. This rises the question how this influences the performance of the 
system, and how control is able to deal with it. This question is answered, by studying a 
representative scenario on a flexible beam. In Section 1.4, the research questions for this 
theses are presented , and the conclusions will be discussed in the same order. 

1. Structures with flexible dynamics have internal degrees of freedom, and rigid body dy­
namics are not sufficient to describe the behavior of such structures. Optimal control 
of the measured variables is possible, but excitation of the flexible dynamics causes 
vibrations in the structure and deteriorates the performance outside the sensor loca­
tions. 

2. The inferential control configuration is able to deal with flexible systems in which the 
performance variables are not measured. 

(a) The performance problem that is caused by excitation of the flexible dynamics 
of the system, is not part of the standard optimal control problem formulation, 
which is based on rigid body behavior of the plant and considers the measured 
variables to be the performance variables. Consequently, the resulting controller 
designs have low performance on systems with internal dynamics. 

(b) The inferential control configuration includes the performance variables in the 
control problem, and thereby is able to deal with systems with flexible dynamics. 
It is possible to synthesize 'H.00 optima! controllers for the inferential control 
configuration, using well-known reliable algorithms. 

( c) In the inferential con trol configuration, the performance variables are inferred 
from the measured output of the system. This requires accurate knowledge of 
the system dynamics, and thus relies on the availability of high quality models. 

3. An accurate model, suitable for the inferential control problem, can be obtained by 
using the control-relevant identification procedure. This has been confirmed by exper­
iments on the flexible beam setup. 
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(a) A control-relevant identification criterion for the inferential control structure is 
obtained. Minimization of the identification criterion requires data from the 
measured variables, as well as the performance variables. Therefore, in the iden­
tification experiment both need to be measured. 

(b) A numerically reliable well-conditioned algorithm, that minimizes the control­
relevant identification criterion, is available in [34]. 

( c) During the identification experiments it is sufficient to use a controller that is 
designed by the rules of thumb commonly used by control engineers and it is not 
necessary to design an initial inferential controller for the experiment. 

(d) The plant dynamics that are the most relevant for control, are closely approx­
imated by the identified model. This is confirmed by experiments, which show 
very similar closed-loop responses compared to the simulations with the fitted 
model, indicating that the same dynamics dominate the response. 

(e) The finite element model of the flexible beam gives a good indication of the per­
formance that can be achieved with optimal control. The identification procedure 
and controller synthesis algorithm use the same weighting filters , and therefore 
the finite element model is useful for the selection of weighting filters for the 
identification procedure. 

4. The model validation procedure for robust control, can be used to address systematic 
modeling errors, and to obtain a model set that is suitable for robust controller design. 
This is confirmed by experiments on the flexible beam setup. 

( a) The favorable properties of the d ual-Youla parametrization are extended to the 
inferential control structure. lt is guaranteed that all plants that are internally 
stabilized by the experimental controller, are included in the model set, i.e., the 
dynamics of the true system are included in the model set. 

(b) For the flexible beam, the model uncertainty in the inferential control structure 
consists of two independent 1 x 1 blocks. This is advantageous, since it implies 
that the bounds on both uncertainty blocks can be determined separately. 

(c) The uncertainty bounds on the experimental setup, obtained with the model 
validation procedure, are close to the nominal model and experimental data, and 
result in a model set that is not overly large. 

5. Optimal controllers have been designed and implemented on the flexible beam, with a 
significant increased performance as a result. 

(a) The nominal performance of the optimal inferential controller has improved by 
a factor 4.16, compared to the standard optimal controller. This is a large im­
provement, that is confirmed by experiments on the experimental setup. 

(b) There is a factor 4.55 improvement in the worst case performance for the robust 
inferential controller, compared to the standard robust controller. Experiments 
on the flexible beam setup indicate a similar improvement in performance. 

( c) The controller that is optimized for performance on the nominal model, will not 
result in optimal performance for the true system. This is confirmed by the worst 
case performance criterion for this controller, which is a factor 9.04 larger than 
for the nominal model. 

(d) The worst case performance of the robust inferential controller is 6.48 times im­
proved, compared to the nominal controller. Therefore, the robust inferential 
controller bas the best guaranteed performance level for implementation on the 
plant. 
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With the answer to all research questions, the main question of this thesis, " What is the 
inftuence of ftexible dynamics in next-generation lightweight positioning systems, when the 
measured variables are not the performance variables, and how can motion control be used 
to deal with ftexible dynamics'?", is answered. 

Inferential con trol can significantly improve the performance for systems with ftex­
ible dynamics. A proof of concept has been delivered, by validating the approach on a 
prototype high performance positioning system with ftexible dynamics. 

8.2 Recommendations 

From the conclusions in the previous section, a few recommendations for future research are 
formulated. 

• Apply inferential control to flexible structures with more complex geometries. 

A proof of concept has been given for a flexible beam. This is 'a simplified form of a high­
performance positioning device, of which the dynamics have been studied extensively in 
literature. This makes it relatively straightforward fora mechanica! engineer, to interpret the 
behavior of the system and the obtained results. There are no limitations in the used theory 
that restrict application to flexible structures for which analytica! modeling is cumbersome, 
and it is valuable to confirm this with experiments. 

• Verify the obtained results on a MIMO system with flexible dynamics. 

The theory has been applied toa SISO system, which has one measured variable, and one 
performance variable. There are no restrictions on the number of inputs and outputs for 
the used methods, and it would be interesting to investigate the results on a system with 
multiple feedback-loops , or multiple performance variables. 

• lnvestigate the relations between inferential control and over-actuation, see e.g. [43]. 

In the inferential controller design as shown in this thesis, flexible dynamics play a prominent 
role. Over-actuation is another subject that is concerned with the internal dynamics of 
motion systems, and it is to be expected that these fields of research are related. It would 
be interesting to study these relations, and explore the possibilities of inferential control on 
over-actuated systems. 

• Design an algorithm that computes a tight parametric overbound on the model uncer-
tainty. 

Currently, no algorithm is available and a overbound has to be designed manually. This 
design is cumbersome and time-consuming, so an algorithm with low computational cost, is 
a desirable improvement. 

• lnvestigate the influence of external disturbances on inferential control. 

In standard feedback control, all external disturbances enter the feedback loop directly, and 
can therefore be attenuated by the controller. For systems with flexible dynamics, it is also 
possible that a disturbance enters the system at a location that is noncollocated with the 
measured output. It would be interesting to study the consequences of such disturbances. 
See [12, 22] for initia! results in this direction. 
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The suboptimal 'H,00 problem is to find a stabilizing controller K for generalized plant P , 
such that 

11.ri (P,K)ll 00 ~ ,, (A.l) 

where 1 > rmin, i.e. 'Y is larger than the optima! value "/min· In order to solve this problem, 
the approach in [29, Ch. 3J is followed. First, it gives some definitions and assumptions. 
Theo, a set of controllers satisfying ( A. l) is parametrized, according to Theorem A. l. Fi­
nally, a close to optima! controller is obtained using a bisection algorithm. The method in 
[29, Ch. 3J is as follows. 

Consider the standard plant P E lR with dimensions (P1 + P2) x (m1 + m2), given by 

that satisfies the following assumptions. 

Assumptions 

l. (A, B2, C2) is stabilizable and detectable, 

2. rank(D12) = m2 and rank(D21) = P2, 

3. D12 = [ 1:
2 

] , D21 = [ 0 lp2 ] , and Du 

accordingly, 

4. D22 = 0, 

Du 
D21 

k [ 
A -jwl 

5. ran Ci B2 ] 
D12 

= n + m2 for all w E lR, 

[ 
A - jwl B1 ] 

6. rank C
2 

D
21 

= n + P2 for all w E JR. 

(A.2) 

D1112 ] 
Du22 

is dimensioned 
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Then define 

R 

R 

~ ] where Die = [ Dn D12 ] , 

0 ] [ Dn ] 
0 where D.1 = D

21 
. 

(A.3) 

(A.4) 

The stabilizing solution to an algebraic Riccati equation (ARE) is denoted via its associated 
Hamiltonian matrix as 

where this implies X = X* and 

XA+A*X-XPX+Q=0 , Re[.-\i(A-PX)] <0. 

Then, define X O<J, Y()(J as ARE solutions (assuming they exist) by 

and define 

Ric{[ 
Ric { [ 

-~* ] - [ -cf Die ] R-1 [ Di.C1 

_oA ] - [ -ii~:1 ] R-1 [ D.1Bi 

[ 3:] 
-R-1 [D;'.C1 + B* X()(J ] , 

[ Hn H12 H2 ] 

- [B1D:1 + Y ()(JC*] R-1. 

B* l}) 
Cl}) 

All stabilizing controllers achieving (A.l) are given by the following theorem. 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Theorem A.1 (Stabilizing controllers [29, Thm. 3.14]). For the standard plant (A.2), that 
satisfies the assumptions 1-6, 

1. there exists an intemally stabilizing controller K such that ( A. l) , if and only if: 

(a) ,>,1 , ,1=max(a-[ Dm1 D1112 ] , a-[ Dim Di121 ]), and 

(b} there exist X()(J:::: 0 and Y()(J:::: 0, such that p(XO(JYO(J) < 1 2. 

2. IJ above conditions are satisfied, all rational and intemal stabilizing controllers such 
that (A.l) is satisfied, are given by K = F1 (Ka, <I>) for any <I> E R1t";:_,2 xp2 with 
ll<I>ll()(J :=:; ,, where 

Ka= [ Kn K12 ] s [ GA 
~K~2-1 -+-,K~2_2_ = , 1 

C2 

B, l (A.13) 

(A.14) 
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and 

where 

D12br2 

b 21 b21 

Ê2 

ê2 

Ê1 

ê1 

À 

l - D1121 (-y2J - D1111Dr111 )-
1 

D r121, 

l - D r112 ('-y2 l - D 1111Dr111)-
1 

D1112, 

(B2 + H12) ÎJ12, 

- ÎJ21 (C2 + F12Z), 
A A 1 A 

-H2 + B 2D 12 D11, 
A A 1 A 

F2Z + D11D21 C2, 
A A 1 A 

A + H1C + B2D12 C1, 

( - 2 )-1 Z = I - ï Y00 Xoo . 
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(A.15} 

(A.16} 

(A.17} 

(A.18} 

(A.19} 

(A.20) 

(A.21} 

(A.22} 

A suboptimal controller close to the optimal controller can then be found using the 
following bisection algorithm. 

l. Select 1 > rl , see item l.a in Theorem A. l, and a tolerance µ. 

2. Check whether the condition in item l.b of Theorem A.l is satisfied: 

Yes: Let ïu := 1 and 1 := 11 ~ 1" . Repeat step 2 if ïu - 1 > µ. 

No: Let ,1 := 1 and 1 := 11 ~ 1". Repeat step 2. 

3. When the bisection algorithm has reached the tolerance µ , use ru to compute Ka . 
T hen, a suboptimal controller is given by K = :F1 (Ka, <I>). 

Remarks 

1. An exact solution exists if P 12 and P21 are square. 

2. An exact solution also exists for the coprime factor robust stabilization problem, as in 

[29, Ch. 4]. For a plant set Ge:,. with { N, D} the normalized LCF of nominal plant 

ê, given by 

(A.23} 

the optimal controller is obtained by computing K = :F1 (Ka, 0) using 
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This appendix discusses the graphical representation of model sets in Bode diagrams. In 
Section B. l is discussed how bounds for magnitude and phase of a SISO model set are 
derived. In Section B.2 is discussed how bounds on the magnitude and phase can be deter­
mined when two sets are multiplied. Finally, in Section B.3 is discussed how a model set 
can be inverted. 

B.l Representation of the model set 

Consider a model set 
Nt;. =N(w)+D.N(w), (B.l) 

with N (w) the nominal model and D.N (w) the model uncertainty, such that 

116.N (w)l1 00 ~ 'YN (w). (B.2) 

At any given frequency this model set forms a disc in the complex plane, with center N and 
radius rN, as shown in Figure B.l. 

Using the exponential form of complex numbers, 

(B.3) 

where rN and <PN are the magnitude and phase of any point N on the disc, respectively. 
Observe from Figure B.2a that the minimum and maximum magnitude in the model set are 
given by 

(B.4) 

(B.5) 

Derivation of the minimum and maximum phase of the model set requires some trigonom­
etry as shown in Figure B.2b. In this figure the two tangents of the disc that go through 
the origin of the complex plane, are drawn. The points where the tangents touch the disc, 
are the points with minimum and maximum phase. Using the two right triangles, created 
by connecting these points with the origin and the center of the disc, the minimum and 
maximum phase are given by 

</> N + arcsin ( "YN / r N ) 

</> N - arcsin ( "YN / r N ) • 

(B.6) 

(B.7) 
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Figure B.2: Minimum and maximum magnitude (a) and phase (b) of the circle. 

Note that if the disc covers the origin, the minimum magnitude is r~~n = 0, and there are 
no bounds on the phase. 

B.2 Multiplication of model sets 

Consider two model sets LA and MA of the same form as in (B.1) , that form the set NA 
upon multiplication, 

(B.8) 

Using the exponential form (B.3) for Land M, a point N in the model set is given by 

N LM 
TLej</>1,rMej<f>M 

TLTMej(</>1,+</>M). 

(B.9) 

(B.10) 

(B.11) 
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By taking 

N also is in t he exponential form, i.e., 
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(B.12) 

(B.13) 

(B.14) 

Then, the minimum and maximum magnitude of N 6. are determined as follows. The 
domains rL,:,. and rM,:,. are given by 

(B.15) 

(B.16) 

and a function f that maps rL,:,. x rM,:,. to rN,:,., i.e., f : rL,:,. x rM,:,.-+ rN,:,., is defined as 

f (rL , rM) = rLrM, (B.17) 

i.e. , rN = f (rL, rM ), see (B.12) . The range off is then given by 

(B.18) 

and therefore the minimum magnitude of N 6. is given by 

(B.19) 

and the maximum magnitude is 
(B.20) 

In similar fashion the range of the phase is determined. The domains <PL,:,. and <PM,:,. are 
given by 

[
,;,min ,;,max] 
'+'L,:,. ,'+'L ,:,. , 

[
,;,min ,;,max ] 
'+'M,:,.,'+'M,:,. , 

and a function g : <PL,:,. x <PM,:,. -+ <PN,:,. , is defined as 

The range of g is 
,;, = [,;,min + ,;,min ,;,max + ,;,max] 
'+'N,:,. '+'L,:,. '+'M,:,., '+'L,:,. '+'M,:,. , 

and consequently the minimum and maximum phase of N 6. are 

B.3 

.rl\ Inin 
'+'N,:,. 
,;,max 
'+'N,:,. 

lnversion of a model set 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

Consider the model set D6. of the same form as (B.1) , in the exponential form (B.3) . Then, 

N 
1 

(B.27) -
D 

1 
(B.28) 

ro eJ<i>D 

1 -J</> IJ (B.29) - e 
ro 



96 B.3. Inversion of a model set 

By defining 

1 
(B.30) 

(B.31) 

N is again in exponential form. The minimum and maximum magnitude and phase of N .6. 

are then determined again in similar fashion. The domains for the magnitude and phase of 
D .6. are given by 

[rmin rmax] 
D1:,.> Dt:. , 

[
,..min ,._max] 
'l'D1:,. ,'l'D1:,. , 

and functions f: rv""-. TN1:., g: </JD1:.-. </JN1:. are defined by 

f (rv) 

g (</Jv) 

1 

i.e., TN = f (rv) and </JN = g (</Jv). The ranges off and gare 

ranf 

rang 

[1/ruuLx 1/rmln] D 1::,. , D,o. , 

[
_,._max _,._min] 

'l'Dt:. , 'l'D1:,. , 

(B.32) 

(B.33) 

(B.34) 

(B.35) 

(B.36) 

(B.37) 

and consequently the bounds on the magnitude of N .6. are known. Note that in case D .6. 

covers the origin, r0~ = 0 and the range off is [1/r0;,_•, oo), i.e. , the magnitude only has a 
lower bound. This is explained in the following example. 

Example B.1. Given is a model set D.6. = b + f1v, with b = -l + j and llf1vll 00 :S 'YD, 

and N.6. = 1/D1:.. First, consider the case that 'YD = 1 such that the model set does not cover 
the origin. This is shown in Figure B.3. Observe that the edge of the disc remains a circle 
when it is inverted, although the interior of the disc is deformed and N is not the center of 
this circle. 

2.5 

2 

1.5 

0.5 

0 

-0.5 

-1 ----------~ 
-3 -2 -1 

Real 
0 

0.5 

0 

-0.5 

$ -1 ..s 
-1 .5 

-2 

-2.5 

. 0 
-3~-~-------~ 
-3 -2 -1 

Real 
0 

Figure B.3: On the left, the edge of the model set D.6. (-) is shown, with nominal model b 
( *), other interior points of the model set ( - - ) , and the origin ( o). On the right, the same 
is shown for N.6. = l/D1:.. 

Now, consider the case that 'YD = 2 such that the origin is covered by the disc formed by 
model set D.6. , as shown in Figure B.4. Observe that the edge of the disc remains a circle 
when it is inverted, hut now the interior of the disc is mapped to the exterior, and hence a 
minimum for the magnitude can be found. 
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2 

Figure B.4: On the left, the edge of the model set DD. (- ) is shown, with nominal model ÎJ 
( * ), other interior points of the model set (-- ), and the origin ( o ). On the right , the same 
is shown for Nó. = I/De,.. 

Remark 

Bounds on the magnitude can also be derived as in 1201 , where a Möbius transformation is 
used. The Möbius transformation is a more general method, that maps one complex space to 
another , which is frequently encountered in complex analysis. The method in 1201 confirms 
the results that have been found for the bounds on the magnitude, the uncertainty bounds 
on the phase are not considered. 
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