
 Eindhoven University of Technology

MASTER

Context-driven motion planning at non-equipped intersections

Steenhof, E.P.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c851b508-4545-4611-8c94-db2171214288

Context-driven motion planning at non-equipped
intersections

Master Thesis

E.P. Steenhof
0856593

Integrated Vehicle Safety

Master: Automotive Technology
Department: Mechanical Engineering
Research Group: Control Systems Technology

TUe Supervisors: prof. dr. ir. W.P.M.H Heemels
dr. ir. E. Silvas

External committee: dr. ir. M. C. F. Donkers
TNO Supervisors: ir. N.J. Brouwer

ir. B.A. Kupers

Report ID: CST2021.013

Eindhoven, April 2021

Acknowledgement

Writing this last section brings me to the end of my master thesis and my student life. I started this

thesis with COVID-19 being a virus far away from the Netherlands. However, in the second month of

my thesis things changed rapidly. From going to the TNO office every day and playing Ping-Pong

with colleagues during lunch break to working from home alone for months. I can look back on the

last one year as a tough, but very productive period and as one full of learning.

Working at TNO has shown me how a research company operates and also helped immensely in

shaping me as a professional. I would also like to take this opportunity to express my gratitude to all

the people I have met at TNO and to thank TNO for giving me this opportunity.

First of all, I want to thank my supervisors for all the support they have provided me throughout the

thesis.

Maurice Heemels, your enthusiasm for the field of systems and control, and inspiring ideas is

something that motivated me a lot. Thank you for all your valuable feedback throughout my thesis

and to always challenge me to improve.

Emilia Silvas, your eye for detail and the ability to catch the smallest of the missing links, while also

managing your TNO work, is something which has always fascinated me and I highly look up to. I am

really grateful for all the Teams coffee meetings we had about my thesis, life and the future.

Jochem Brouwer, your technical insights were really helpful for me throughout the thesis and really

improved my understanding in the field of control. Furthermore, you made me realize I should be

proud of what I have achieved in my thesis and that really helped my confidence.

Berend Kupers, your vision with regards to the practical aspects of the thesis really helped me

understand on what I should focus on and what is required of me. I am really thankful for your

support. Also, I really appreciated, the unfortunately few coffee corner talks we all had at TNO to

clear my doubts within short notices. You both did a fantastic job in supervising me even in this crazy

and difficult COVID-19 period. You both found the right balance of assisting me while still challenge

me. Thank you both very much for all the effort you but in my thesis.

Next, I want to thank my friends, for all their support and wonderful moments created throughout the

duration of the my student life, really appreciated. Special thanks to Niels Lodder for challenging me,

providing helpful tips and for the office banter, really made working from home easier. I would also

like to specially thank my dear friend Daniël de Snoo for being a big emotional support.

Finally, I want to sincerely thank my parents for all the unconditional love and support they have

provided me over the years. It is because of your hard work and sincere support I have reached this

milestone today. I am truly grateful for that and I want to thank them both for inspiring me to become

an engineer.

CONTENTS

I Introduction 2
I-A Contributions and proposed approach . 3

II Problem formulation 3
II-A Automated vehicle architecture . 4

III State of the art 4
III-A Behavioral planners reflection . 4

III-A1 Finite State-Machine . 5
III-A2 Reinforcement Learning . 5
III-A3 Partially Observable Markov Decision Process . 5
III-A4 Inverse Reinforcement Learning . 5

IV Decentralized context-based MPC motion planner 6
IV-A Perception block . 6

IV-A1 Environmental perception . 6
IV-A2 Context information categorization . 6

IV-B Hierarchical FSM behavioral planner . 6
IV-B1 Level one: type of turn . 6
IV-B2 Level two: high or low priority . 6
IV-B3 Level three: Stop or Go . 6

V Control 7
V-1 Trajectory Generation and Tracking . 7

V-A Reference generator . 7
V-A1 Path Smoother Spline . 7
V-A2 Velocity Profiler . 7

V-B Model Predictive Control . 7

VI Validation results at multiple intersections 8
VI-A Simulation assumptions & choices . 8
VI-B Relevant combinations of test-cases . 9
VI-C Traffic light intersection . 9
VI-D Fourway intersection without priority pre-assigned (NPA) . 10

VII Conclusion 12

Appendix A 15
A-A Intersection use-cases . 15
A-B Context information categorization . 15
A-C Hierarchical FSM . 16

A-C1 Hierarchical FSM level 2 . 16
A-C2 Hierarchical FSM level 3 left turn . 16
A-C3 Hierarchical FSM level 3 straight . 16
A-C4 Hierarchical FSM level 3 right turn . 16

A-D Closest reference point calculation . 17
A-E Kinematic bicycle model . 17
A-F Successive linearization . 18

Appendix B 18
B-A MPC parameter tuning results . 18

B-A1 Prediction horizon tuning . 18
B-A2 State cost matrix tuning . 19
B-A3 Input cost matrix tuning . 20

B-B Additional simulation results . 21

Context-driven motion planning at non-equipped
intersections

1st E.P. Steenhof
Department of Mechanical Engineering (CST)

Eindhoven University of Technology
Eindhoven, The Netherlands
e.p.steenhof@student.tue.nl

Abstract—In recent years, several Intersection Managment
(IM) methods have been proposed to regulate autonomous
vehicles at traffic intersections. Centralized IM methods are
able to improve the throughput and regulate autonomous ve-
hicles at intersections. However, these methods rely on two-way
vehicle-to-everything (V2X, X2V) communication, which in many
situations, including in urban scenarios where human-driven
and autonomous vehicles coexist, are not always economically
or technically feasible. Therefore, in this paper a decentralized
motion planning method is presented for intersections, which
does not require V2X communication and solely relies on the
ego-vehicle on-board sensors. As a result this method provides a
safe crossing at non-equipped intersections (i.e., no intersection-
to-vehicle communication). The decentralized motion planning
method integrates a high-level hierarchical finite-state machine
(FSM) with Model Predictive Control (MPC) techniques. A
hierarchical FSM is used as the behavioral layer of the algorithm,
which is based on traffic rules and uses boolean logic to incorpo-
rate context information. Additionally, a MPC-based controller
is used to track the reference trajectory of the ego-vehicle
and to account for the kinematic constrains. A numerical case
study involving five intersection types is provided to validate the
proposed method. As we will demonstrate, the proposed solution
is able to regulate the ego-vehicle at five different intersection
types without the requirement of V2X communication, whilst
also respecting the kinematic behavior of the ego-vehicle.

Index Terms—Decentralize motion planning, model predictive
control, finite-state machine, context information categorization.

I. INTRODUCTION

The first motorized vehicle dates back to 1885, when Karl
Benz first introduced the internal combustion car to the world
[1]. Since then, the car has made enormous technical advances
in terms of safety and reliability, by either using passive
or active safety improvements in vehicles. Passive safety
improvements include airbags, seat belts and high energy
crumble zones, in order to reduce injury on the passengers in-
case of an accident. Active safety systems focus predominantly
on accident prevention and include Electronic Stability Pro-
gram (EPS), Autonomous Emergency Braking System (AEBS)
and Lane Keep Assist (LKA) [2].

Despite these advancements, the number of traffic deaths
and injuries are increasing in the Netherlands [3]. A compre-
hensive study on road safety [4] concluded that, human errors
were the sole cause in 94% of all accidents. In contrast, only
2% of all accidents were due solely to mechanical failures

(e.g., blowout tire) and 2% were only caused by environmental
factors (e.g., weather conditions) [4]. Other studies [5–7] show
that human errors play a crucial role in traffic congestion
and accidents. Furthermore, recent studies indicate that driver
errors contribute to up to 75% of all roadway crashes [8].

In particular traffic accidents that are related to intersections
occur all too often. Statistic studies from several European
countries show that 43% of all road injury accidents are
related to intersections [9]. In the USA, about 96% of all
intersection related accidents are caused by human drivers
[10]. Human negligence is the major cause of these traffic
accidents. As such there is a need for reducing human-caused
traffic accidents (or even eliminating them altogether). A
promising solution might be by moving the responsibility of
driving from the human driver to the vehicle [11].

One technique that fits the later solution directly is In-
tersection Management (IM), which takes away the involve-
ment of the human drivers by increasing the control effort
from current intersection infrastructure designs (e.g., traffic
light intersections). A literature study [12] shows that 93%
of all proposed intersection management methods rely on
fully automated and fully connected vehicles. Relatively little
intersection management methods assume the coexistence of
both Autonomous Vehicles (AV) and Human driven Vehicles
(HV) or non-connected vehicles.

Existing approaches for IM methods can, firstly be cat-
egorized into two different approaches, active and passive.
An active approach (e.g., [13]) relies on vehicle-to-everything
communication (V2X, X2V) while a passive approach (e.g.,
[14]) does not. Secondly, IM methods can either be centralized
or decentralized. Centralized methods (e.g., [15–17]), rely on
a centralized control unit at each intersection. Centralized
methods, however, could require a lot of time and money to
realize, because they require alterations to intersections [18].
An easier way is to apply decentralized methods (e.g., [19,
20]), because they use existing intersection layouts and alter
them as little as possible, in order to increase integration and
to reduce cost. In this paper we will be interested in passive
decentralized solutions given these benefits. Finally, note that
existing approaches for IM methods can be categorized into
three different categories, optimization-based, rule-based and
hybrid.

Optimization-based methods (e.g., [16, 21, 22]) have been

2

developed to handle autonomous vehicles at intersections
for mixed-traffic (i.e., both HV and AV) scenarios. The
optimization-based methods can easily handle multiple goals
and complex conditions by changing objective functions,
constraints, and searching algorithms. However, optimization-
based methods may lead to prohibitively high computational
burden and may not always provide a global optimal solution
(e.g., minimal travel time for all the vehicles) in the time in-
terval required for intersection management [23]. Furthermore,
according to [23], the computational burden of optimization-
based methods significantly increases with increasing traffic
volumes and the complexity of the situation (e.g., more
road-users). Therefore, it might be difficult to implement
optimization-based methods in real-time without the use of
expensive massive cloud computing services.

Rule-based methods (e.g., [13, 15]) have successfully been
developed to improve safety at intersection for mixed traffic
scenario. Rule-based methods are easier to comprehend and to
design, compared to optimization-based methods [12]. Further-
more, the computational burden of ruled-based methods are
lower compared to optimization-based methods [12]. However,
the design complexity of the rule-based method significantly
increases when considering multiple goals (e.g., improve
safety while also increase traffic throughput) and constraints in
the model [12] due to, for example, rule explosion. The design
of such systems and guarantees on their correct functionality
could become complicated then.

Hybrid methods combine both rule-based and optimization-
based methods and have been implemented for intersec-
tion control problems (e.g., [19]). Since hybrid methods are
partially based on rules, their computational burden is less
compared to optimization-based methods, making them more
amendable for real-time implementation. The optimization
part of hybrid methods improves their adaptivity to changing
circumstances compared to rule-based methods. Nevertheless,
a different combination of rule-based and optimization-based
methods may lead to a significantly different performance [12]
and as such effective design methods are needed.

A. Contributions and proposed approach

The research in this paper aims to advance the state of the
art by introducing a novel method, which is as generic as
possible and is able to handle the most common intersection
types:
• T-intersection
• Roundabout
• Fourway no priority pre-assigned (NPA fourway)
• Fourway priority pre-assigned (PA fourway)
• Traffic light intersection (TL)
These intersection types also function as the use-cases for

this research and are graphically shown in Appendix A-A.
The goal in this paper is to design a motion planning method,
which is fully decentralized and only relies on data gathered by
the ego-vehicle sensors at the intersection. Note that gathering
data using wireless communication (i.e., X2V) is deliberately
excluded, since in a mixed (human driven and autonomous

vehicles) driving scenario not all vehicles are expected to be
fully connected. This paper presents three main objectives in
the context of motion planning for autonomous vehicles at
intersections:
• A decentralized motion planning algorithm that only re-

quires data gathered by the on-board ego-vehicle sensors.
• A context information categorization approach, which

converts sensor data into logic boolean expressions.
• Integration of a hierarchical finite-state machine with

model predictive control techniques.
In order to achieve these objectives, a ruled-based approach

is used, because a rule-based approach is easier to design and
to comprehend. Furthermore, the low computational burden
makes it attractive for real-time implementation. The algo-
rithm proposed in this paper is inspired by the algorithm
developed in [24], where a high level ruled-based approach
is integrated with a vehicle controller. The remainder of the
paper is organized as follows. Section II provides the problem
formulation with Section II-A explaining the terminology of
the automated vehicle architecture. Section III provides a
reflection on behavioral planners. In Section IV the proposed
solution is explained and Section V explains the integration
of MPC techniques within the proposed solution. Section
VI provides the simulation results in order to validate the
proposed solution. Section VII is dedicated to concluding
remarks on the proposed solution.

II. PROBLEM FORMULATION

The goal of the motion planning module is to calculate
appropriate actuation setpoints (e.g., steering angle and ac-
celeration) for an autonomous vehicle, which uses a set of
waypoints and is able to adapt to dynamically changing
context information at intersections. The path of the ego-
vehicle through the intersection is assumed to be given by
a set of waypoints, which are a set of coordinate points in a
global space. Mathematically this can represented as,

W , {(xg(o), yg(o)) ∈ R2 | o ∈ N}, (1)

where xg : N −→ R and yg : N −→ R refers to the oth

longitudinal position and the lateral position respectively, in
the global space. These waypoints are the input for the context-
based motion planning problem as show in Fig. 1.

Context-based
motion planning

Fig. 1. Context-based motion planning input and output overview.

To enable context-based motion planning and control of the
vehicle, the actuator inputs need to be calculated. This requires
finding the required δ(t) steering and ax(t) acceleration set-
points that adapt to changing context information (e.g., traffic

3

light color change) at intersections. These actuator setpoints
are the desired output of the context-based motion planning
problem as shown in Fig. 1. An automated vehicle architecture
needs to be designed in order to generate these outputs in a
structured way. The terminology of such an architecture is
explained in the next section.

A. Automated vehicle architecture

The core competencies of an automated vehicle architecture
can be subdivided into three main categories [25], namely
perception, planning, and control, as depicted in Fig. 2. In this
paper the core competencies of an automated vehicle architec-
ture are integrated in order to validate the proposed context-
based motion planning solution at multiple intersections. Each
competency is explained in more detail below. Furthermore,
assumptions on the out of scope competencies are defined.

Perception

Planning

Control

Environmental
Perception

Localization

Mission Planning

Behavioral planner

Trajectory generation

Low level actuation
control

Trajectory tracking

Path generation

Motion planning

Fig. 2. Automated vehicle architecture overview, showing core and sub-core
competencies and highlighting in grey the competencies related to this paper.

Perception refers to the ability of an autonomous system to
collect information from the environment and extract relevant
data. Environmental perception refers to developing a contex-
tual understanding of the environment, such as the location
other road-users (with respect to the ego-vehicle), detection
of road markings, traffic signs, and categorizing data by their
relevance. Localization refers to the ability of the ego-vehicle
to determine its position with respect to the environment (e.g.,
GPS coordinates). In this paper a fixed world coordinate frame
is used for the localization of the ego-vehicle. The exact
location of other road-users with respect to this fixed world
coordinate frame is unknown.

Planning refers to the process of making purposeful deci-
sions in order to achieve the ego-vehicle’s higher order goal,
such as driving from city A to city B. The mission planner
(i.e., the route planner) considers high level goals, such as the
end destination and which roads should be taken to achieve
this end destination. The path generator generates appropriate
paths and sets of actions to achieve local objectives (e.g., turn
right at a specific intersection), with the most typical objective

to reach the end goal destination. The mission planner and path
generator block are outside of the scope of this paper and will
be assumed available. It is assumed that the AV knows if it
wants to turn left, right or go straight through at a specific
intersection, given by a set of waypoints.

The behavioral planner (i.e., the decision maker) makes
decisions to properly interact with other road-users and follow
traffic rules, and thereby generates actions, such as change
lanes, overtake, proceed through or stop at the intersection
etc. The trajectory generator additionally adds the velocity
information to the path generated by the path generator based
on the action (e.g., stop or go at an intersection) decided by
the behavioral planner [25].

The control competency, refers to the ego-vehicle’s ability
to closely follow the reference trajectory (i.e., trajectory track-
ing). A control algorithm is used to select appropriate actuator
input set points to carry out the planned motion and correct
tracking errors [26]. Low level actuation control uses these
actuator set points as reference set points for actuator control
(e.g., electric motors).

The motion planning module within an automated vehi-
cle architecture, as shown in Fig. 2, consists of four sub-
competencies and is a broad research topic. The motion
planner is responsible for calculating a safe, comfortable, and
kinematically feasible trajectory from the current position of
the ego-vehicle to the end goal position [26]. Depending on
the application, the goal position may differ, such as the
center of the stop line at the next intersection, or the next
desired parking spot. The motion planner could use informa-
tion about static and dynamic obstacles around the vehicle and
generates a collision-free trajectory that satisfies dynamic and
kinematic constraints on the motion of the vehicle. However,
the main objective of the motion planner in this paper is to
regulate the ego-vehicle at five different intersections without
the requirement of V2X communication, to correctly adapt
to changing context information (e.g., changing traffic light
color) and to correctly interact with other road-users (e.g.,
give way according to traffic rules). So in order to lower
the computational burden of the created solution the motion
planner in this paper does not take active obstacle avoidance
(i.e., driver around an obstacle) into account.

III. STATE OF THE ART

A. Behavioral planners reflection

An autonomous vehicle system requires a behavioral plan-
ner in order to function, as shown in Fig. 2. In this Section four
different behavioral planners (Finite State-Machine, Reinforce-
ment Learning, Partially Observable Markov Decision Process,
Inverse Reinforcement Learning), are compared to each other
and are evaluated based on the following four Key Performance
Indicators (KPI’s): Complexity: The ease for a designer to
understand, grasp and apply the method. Maintainability: The
ease to adapt the method, e.g., when requirements are revised
or added. Scalability: The ease to incorporate more road-
users and various driving scenarios. A method with better
scalability requires less amount of work to be revise when

4

the driving scenarios become more crowded or more complex
due to, for example, different road layouts, traffic signs or
incorporating different types of road-users (e.g., pedestrians
and cyclists). Computation/Data Burden: The computational
burden and the amount of data required in order to make
the method function properly. The behavioral planners are
evaluated using the KPI’s and from a high-level point of view
(i.e., not regarding specific urban traffic use-cases).

1) Finite State-Machine: A finite state-machine (FSM) is a
model that describes the behavior of a system in each state.
Based on the current state and a given input, the FSM performs
state transitions and produces outputs. There are basic types
like Mealy and Moore machines and more complex types like
Harel and Unified Modeling Language (UML) state charts
[27–29].

According to [30] the FSM has the following four advan-
tages. Firstly, the rules that have to be checked are limited to
the different states and the transition conditions. Rules that do
not apply to the current state can be left out. This limits the
conditions that have to be checked at every iteration. Secondly,
the (traffic) rules can be applied directly to different state
transitions and scenarios. Thirdly, the implementation of FSM
as a behavior planner is simpler than other behaviour planner
methods. FSM visually shows how the states change due to
dynamic changes in the system, influenced by the environment
and other road users. This also enables to quickly find faulty
or unexpected behaviour of the system. Fourthly, the data
cost and the computational burden are low due to the discrete
nature.

However, FSM has the following three disadvantages [30]:
Firstly, rule-explosion (i.e., low maintainability) could occur
when complex use cases need to be handled, leading to a rapid
increase in the number of rules/states (i.e., rule explosion).
Secondly, dealing with a noisy environment could be difficult
for a FSM, for example, if a low signal to noise value makes
it impossible to validate a transition condition (e.g., yield sign
detection). Leading to undesired behaviour of the autonomous
vehicle. Thirdly, the handling of newly encountered traffic
situations. Due to the discrete nature of this approach, the pre-
programmed logic of the system could react in an incorrect
way, i.e., guaranteeing correct behavior could be difficult.

2) Reinforcement Learning: Reinforcement Learning (RL)
is a form of machine learning in which an agent learns how
to interact with a given environment by taking actions and
receiving a continuous reward. This reward works in a similar
way to cost functions in optimal control algorithms. The agent
could start by interacting with a simulated environment. At the
start the agent will not be good at the particular task. However,
over time as the agent tries to maximizes its reward, the agent
might eventually learn how to master the task (more details
on this method can be found in [31]).

There are three advantages [30, 32], for reinforcement
learning. Firstly, there is less rule explosion compared to the
FSM method. Secondly, the scalability of the algorithm is
better. The algorithm could learn new scenarios directly from
newly created simulation environments. Thirdly, the algorithm

can safely filter out failure cases (e.g., AV not stopping for a
red light) in a simulation environment.

While reinforcement learning is a very interesting and
highly promising area of research, there are two major dis-
advantages according to [30]. Firstly, many simulation envi-
ronments used to learn the policies required for autonomous
driving are often too simplified. Due to this simplicity, the
policies learned may not be transferable to real world traffic
environments. Severe computational requirements occur when
more realistic simulators are used. Secondly, there is an issue
concerning safety. It is, according to [30],“difficult to perform
rigorous safety assessment of a learned system, as they are
mostly black boxes in terms of the way in which decisions
are made.”

3) Partially Observable Markov Decision Process:
(POMDP) uses a special reinforced learning model with
rewards, which has the main advantage, according to [32], that
it is able to make decisions in case there is uncertainty in the
system and there are unobservable states (more details about
how the POMDP model works can be found in[33]). However,
according to [32], POMDP models lead to a computationally
high burden behaviour planner, due to the added mathematical
complexity of POMDP models compared to the traditional RL
models.

4) Inverse Reinforcement Learning: In Inverse Reinforce-
ment Learning (IRL) rather than trying to obtain a policy given
a reward function, the approach is to use data gathered from
human actions to create the maximum reward policy instead
of learning such a policy on its own. Once the reward policy
is learned by the IRL model, the behavioral planner could
execute driving decisions similarly to a human driver.

IRL methods, according to [30], have two main advantages.
Firstly, the scalability of the algorithm is better than the FSM
method and the RL model. This is because IRL can use newly
gathered data, from other road users (e.g., human drivers), to
learn how to handle newly encountered scenarios. Meaning
that IRL could keep on improving when more data is available
for the maximum reward policy. Secondly, the maintainability
is better compared to the FSM method, since it does not
necessarily requires a predefined set of rules.

IRL is promising as a behaviour planner, however it has the
following three disadvantages [34]. Firstly, data acquisition:
IRL requires massive data sets to train the algorithm, these data
sets should be unbiased and of good quality. Data acquisition
might also be difficult due to privacy laws and regulations.

Secondly, the computational burden: IRL requires sufficient
time to learn and develop a good maximum reward policy with
a considerable amount of accuracy and relevancy. Depending
on the application, IRL also needs high computational power
to process the data quickly enough for real-time traffic appli-
cations.

Thirdly, high error-susceptibility: IRL is an autonomous
system but highly susceptible to errors. For example, in case
an IRL algorithm is trained with data sets small enough to
be noninclusive. This could lead to biased predictions coming
from a biased data set. Leading to a chain of errors that could

5

remain undetected for long periods of time, because of the
automated nature and complexity of the algorithm.

In Table I an overview of the discussed behaviour planners
is shown, against the four KPI criteria. In this thesis the FSM
method is used as the behaviour planner for the proposed
solution, because the low computation burden and complexity
makes it the most attractive method to handle complex urban
scenarios within reasonably computation times. Furthermore,
the low data requirement of the FSM method makes it an
attractive choice for a behavior planner where no V2X com-
munication is available. The design of the FSM behavioral
planner is explained in detail in Section IV-B.

TABLE I
BEHAVIOUR PLANNERS HIGH-LEVEL KPI OVERVIEW

FSM RL POMDP IRL
Computation/Data Burden ++ - - - -

Scalability - +/- + ++
Complexity ++ +/- - -

Maintainability - + + ++

IV. DECENTRALIZED CONTEXT-BASED MPC MOTION
PLANNER

In this thesis a decentralized (i.e., implemented inside the
ego-vehicle) context-based MPC motion planning algorithm
is designed, which combines the three core competencies (as
described in Section II-A) of an automated vehicle architec-
ture (shown in Fig. 2). The block diagram of the proposed
decentralized context-based MPC motion planner algorithm is
shown in Fig. 3.

Context

FSM

Reference
Generator

MPCVehicle Model

yield_sign = priority, yield, none

drive_status = [0/1]

veh_det_L = [0/1]
veh_det_R = [0/1]
veh_det_S = [0/1] Logics Go/Stop

Radar data

Control

Vehicle Sensors

Perception

light_status = green, orange/red,
none

Go Stop

Planning

Fig. 3. The block-diagram of the decentralized Context-based model-
predictive control motion planning algorithm.

The function of each block is explained in more detail in
the next sections.

A. Perception block

The perception block consists of two sub-blocks, namely the
vehicle model and vehicle sensors. The vehicle model block
is a kinematic bicycle model and is used for the localization

part of the algorithm (Fig. 2), using world coordinates. The
vehicle sensors handle the environmental perception part of the
algorithm (Fig. 2). In order to connect the perception and the
planning competencies (black dotted and purple dotted blocks
in Fig. 3), context information categorization is required, as
explained below in more detail.

1) Environmental perception: The vehicle sensors provide
crucial information on the driving environment and provide the
environment perception. Environmental perception consists of
two critical elements: Firstly, detect and recognize traffic light
color and traffic signs, which is assumed to be available, i.e.,
a processing algorithm using the camera on the ego-vehicle is
able to give this information. Secondly, road-users detection,
which is handled by short-range radars on the ego-vehicle.

2) Context information categorization: Logic boolean ex-
pressions (green box in Fig. 3) are used as the context cate-
gorization, since the FSM requires logic transition statements.
The radars in the vehicle split the font view into three detection
zones: Left, Straight and Right (as shown in Fig. 17 in
Appendix A-B), each with their own logic boolean conditions.
0 means no road-user is detected, 1 means a road-user is
detected in this radar zone. Furthermore, traffic light status
and yield sign detection are also implemented using a logic
boolean expression. All these logic booleans are used in the
Hierarchical FSM, which is described in Section IV-B.

B. Hierarchical FSM behavioral planner

Using hierarchy in the FSM (thus obtaining a hierarchical
FSM) improves, according to [30], the maintainability and the
scalability of the FSM behavior planner we will create. A three
level hierarchical FSM is created as the behavior layer of the
proposed algorithm (FSM box in Fig. 3).

In this Section the three level hierarchical FSM is explained,
from top to bottom. In Fig. 4 the blue blocks are level one, the
red blocks are level two and the black blocks are level three
of the hierarchical FSM.

1) Level one: type of turn: The first level of the hierarchical
FSM consists of three different states (left turn, straight, right
turn), which correspond to the three types of manoeuvres (i.e.,
left turn, straight and right turn) the ego-vehicle can make
at an intersection. Each of these manoeuvres has its own
logic boolean expression and functions as the state transition
conditions as shown in Fig. 4.

2) Level two: high or low priority: The second level of the
hierarchical FSM consists of two different states being high
priority and low priority road. The transition between these
two states depends on context (environment perception) logic
boolean conditions, e.g., if a yield sign or a traffic light is
detected, as shown in Fig. 18. Since these are the boolean
conditions of the transition of level two, both these states are
inside the parent states Straight, Left Turn and Right Turn of
level one (as shown in Fig. 4).

3) Level three: Stop or Go: The third level consists of two
states Go and Stop, which are both inside the parent states
HighPriorityRoad and LowPriorityRoad of level two. Now the
context logic boolean conditions (green box in Fig. 3) of the

6

Straight

Left Turn Right Turn

turn_type == Left

turn_type == Straight

turn_type == Right

turn_type == Right

turn_type == Left

Fig. 4. The blue blocks are the first level, the red blocks are the second level
and the black blocks are the third level of the hierarchical FSM.

radar detection zone are used. The transition statements are
designed such that the ego-vehicle is obeying the traffic rules.
For example, when the ego-vehicle is on a high priority road
and wants to turn left, in case it detects a vehicle in the front
radar it should stop to give priority to the upcoming traffic
(Fig. 19), as mandated by the Dutch traffic rules (see [35] to
find all the Dutch traffic rules). This leads to different boolean
expressions on the transition between the Go and Stop state
depending on the previous higher level states (turn type and
high or low priority), as shown in Fig. 19 until 24 in Appendix
A-C.

V. CONTROL

Based on the two state decision Go or Stop made by the
hierarchical FSM a reference trajectory will be generated
by the reference generator (yellow box in Fig. 3) and is
explained in Section V-A. In order to closely follow the
reference trajectory from the reference generator, a control
algorithm (Control layer in Fig. 3) is required to calculate
appropriate actuator inputs (i.e., steering angle and acceler-
ation of the ego-vehicle). Model Predictive Control (MPC)
has seen an uprise in automotive applications [36] and has,
according to [25], some attractive advantages compared to a
PID controller. Firstly, MPC allows for an easier design of
a multi variable feedback controller. Secondly, MPC respects
actuator limitations by setting constrains. Thirdly, MPC uses
an objective function to optimize the control input effort. The
MPC algorithm is explained in Section V-B.

1) Trajectory Generation and Tracking: There are two
general approaches to trajectory generation with known path
information. The first approach uses the optimization method
to both generate a trajectory and to track it simultaneously.
This method integrates both the generation and tracking tasks
into one optimization problem. This approach is often applied
for optimal time application (e.g., [37]). Running the opti-
mization problem in real time is a challenge due to limited
processing power, and may lead to high computation times
for planning in a complex environment [25] (e.g., urban
scenarios). The second approach is to decouple trajectory
generation and tracking. This is the approach used in this

thesis, since this approach reduces the computational burden
of the Model Predictive Control algorithm.

A. Reference generator

The Reference generator (yellow block in Fig. 3) consists
of two main parts. Firstly, the Path Smoother Spline part
generates a smooth continuous vehicle path. Secondly, the
Velocity Profiler generates a velocity profile of the driving
path that satisfies a set of specified kinematic constraints.

1) Path Smoother Spline: The Path Smoother Spline block
generates a smooth continuous vehicle path, consisting of
a sequence of discretized (sampled) waypoints, by fitting
the input reference path waypoints to a second order cubic
spline. The path-smoothing algorithm interpolates a parametric
cubic spline that passes through all input discretized reference
waypoints points, converting a C1-continuous path to a C2-
continuous path ([38, 39] for more details).

2) Velocity Profiler: Choosing the correct velocity profile
can, according to [40], improve smoothness, reduce wear,
and lower transfer times for a broad range of motion control
applications. Trapezoidal profiles tend to increase wear [41],
because of several discontinuities between the acceleration
regions, which could lead to unsought vibrational effects.
S-curve profiles solve this problem, but are more complex
mathematically and thus increase the computation time of the
algorithm. The Velocity Profiler generates a s-curve velocity
profile of a driving path that satisfies the following set of
specified kinematic constraints:
• The maximum allowable speed of the vehicle.
• The maximum longitudinal acceleration and deceleration

of the vehicle.
• The maximum longitudinal jerk of the vehicle.
The generated velocity profile is a seven-interval curve. At

each time interval within the curve, the jerk, acceleration,
and velocity of the vehicle change to satisfy the specified
constraints (see [42] for more details).

B. Model Predictive Control

The general form of the MPC problem for an autonomous
vehicle, solved at discrete steps, used in this paper is formu-
lated as,

min
Vk

J(s(k), Vk), (2a)

s.t. si+1|k = f(si|k, vi|k), ∀ i = 1, ..., Np, (2b)

s0|k = s(k), (2c)

Vk = (v0|k, ..., vNp−1|k), (2d)

si|k ∈ Ci|k, ∀ i = 1, ..., Np, (2e)

vi|k ∈ Vi|k, ∀ i = 0, ..., Np − 1, (2f)

where s and v represent the states and inputs of the system
respectively, J is the cost term representing the trajectory
following error, f represents the vehicle kinematics, Ci|k repre-
sents the state constrains, Vi|k represents the input constraints

7

and (2c) represents the initial state condition at any time step
k. Vk is the vector of stacked inputs obtained over a prediction
horizon Np, which refers to the length of the look-ahead
window for which future states and inputs are predicted. The
general form MPC problem (2a) can be rewritten to a the
reference trajectory tracking problem, which uses a quadratic
cost function and is given by,

min
Uk

Np−1∑
i=0

(
(ξi|k − ξrefi|k)TQ(ξi|k − ξrefi|k) +

(ui|k − urefi|k)TR(ui|k − urefi|k) +

∆uTi|kE∆ui|k

) (3a)

s.t. ξi+1|k = mKB(ξi|k, ui|k), ∀ i = 0, ..., Np−1, (3b)

ξ0|k = ξ(k), (3c)

Uk = (u0|k, ..., uNp−1|k), (3d)

ξmin ≤ ξi|k ≤ ξmax ∀ i = 1, ..., Np, (3e)

umin ≤ ui|k ≤ umax ∀ i = 0, ..., Np − 1, (3f)

∆ umin ≤ ∆ui|k ≤ ∆umax ∀ i = 0, ..., Np − 1, (3g)

where (3a) represents the quadratic cost function with a finite
horizon, where state weight matrix Q � 0, input weight matrix
R � 0 and input rate weight matrix E � 0 are (semi-)positive
definite matrices. ξrefi|k represents the prediction reference
states. (3b) represents the non-linear kinematic vehicle model
(as explained in Appendix A-E). (3c) represents the initial
state conditions at any time step k, (3d) represents the vector
of stacked inputs obtained over the prediction horizon, (3e)
represents the vehicle state constrains, (3f) represents the
vehicle input constrains, (3g) represents the vehicle input rate
constrains.

The kinematic bicycle (plant) model (mKB) is a non-linear
system (for more details see Appendix A-E). Although some
non-linear MPC (NMPC) techniques are proposed in literature
[43, 44], it should be noticed that the computational effort
necessary in non-linear techniques is much higher than in
linear MPC (LMPC). In NMPC a nonlinear programming
problem is solved online, which could be non-convex, and also
could have a larger number of decision variables. Furthermore
the global minimum, according to [45], is in general difficult
to find. Thus a linear technique is proposed to overcome
the problem related to the computational burden of NMPC.
The fundamental idea of this technique consists in using a
successive linearization approach, as outlined in [46], yielding
a linear, time-varying description of the system. According to
[46] it is possible to transform the non-linear optimization
problem to be solved at each sampling time (approximately)
in a Quadratic Programming (QP) problem. These type of
problems are convex and can be solved rapidly by numerically
robust optimization algorithms.

The reference generator (Section V-A) provides reference
conditions for the ego-vehicle, over the prediction horizon. The
prediction reference states (ξrefi|k) are calculated by filtering the
reference spline points, which have been generated by the path
smooth spline and the velocity profiler (inside the Reference
Generator). This filtering requires the closest reference spline
point to the current ego-vehicle states. The closest reference
spline points calculation is explained in Appendix A-D. To
adapt to these changing operating conditions, MPC supports
updating the prediction model and its associated nominal
conditions at each optimization step. This can be useful
when, for example, in the corners the heading angle φ of
the ego-vehicle can change from 0 to 90 degrees within the
prediction horizon. This leads to the plant model and the
nominal conditions to vary over the prediction horizon, so
a time-varying MPC algorithm will be used. Such a linear
time-varying (LTV) model is useful when controlling periodic
systems or nonlinear systems that are linearized around a time-
varying nominal reference trajectory provided by the reference
generator. The MPC algorithm used in this paper thus requires
a LTV prediction model and is explained in detail in Appendix
A-F.

VI. VALIDATION RESULTS AT MULTIPLE INTERSECTIONS

In this Section, the proposed decentralized context-based
MPC motion planning algorithm is validated using the five
use-cases (i.e., intersection types) as described in Section I-A.
Firstly, the assumptions and choices regarding the simulations
are explained. Secondly, the results of relevant combinations
of test-cases is shown using tables. Thirdly, the results of a
left turn at a traffic light intersection are explained to show
the proper behavior of the algorithm. Fourthly, the results of
a straight drive at a NPA fourway are explained, to show
the conservative behavior (i.e., ego-vehicle waits unnecessar-
ily long) of the algorithm. The context-based MPC motion
planning algorithm is implemented as a constrained MPC
problem in MATLAB using the adaptive MPC toolbox with
design parameters provided in Table II. The MPC parameters
(Q,R,Np) in Table II have been determined by sensitivity
analysis, the results of this analysis is shown in Appendix
B-A. The hierarchical FSM is designed using the state-flow
Simulink toolbox.

A. Simulation assumptions & choices

In this Section the simulation assumptions and choices
are given for perception, planning and control competencies
(dotted blocks in Fig. 3). For the perception module the
following assumptions and choices are defined: Firstly, the
intention of other road users are unknown. Secondly, no target
classification is taken into account (i.e., critical and non-critical
targets). Other road-users are only detected or not detected.
Thirdly, the context logic only can change every simulation
time step (Ts = 0.1 s). Fourthly, the sensors have a fixed
detection range. Finally, sensor failure and fault detections are
not taken into account.

8

TABLE II
DESIGN PARAMETERS - SIMULATION SETTINGS.

Ego-vehicle
Mass 1280 [kg]

Distance COG to rear axle 1.08 [m]
Distance front and rear axle 2.60 [m]

Actuator & comfort constraints
Steering angle ∗ 37/180π [rad]

Longitudinal acceleration ∗ 0.2g [m/s2]
Longitudinal deceleration ∗ −0.3g [m/s2]

Longitudinal Jerk ∗ 0.25g [m/s3]
Steering angle rate ∗ 500/180π [rad/s]

Max longitudinal velocity # 13.88 [m/s]
MPC settings

State cost matrix Q diag(0.2 0.2 0 0.8)
Input cost matrix R diag(0.05 0)

Input rate cost matrix E diag(0.001 0.001)
Prediction horizon Np 10

Sample time Ts 0.1 [s]
∗ Input constraint, # State constraint

For the planning module the following assumptions and
choices are defined: Firstly, the other road-users obey the
current set of dutch traffic laws [35]. Secondly, there is no
V2X communication. Thirdly, the red and orange traffic light
is treated equally, both lead to a Stop request.

For the control module the following assumptions and
choices are defined: Firstly, whenever a Stop request is re-
ceived, the ego-vehicle will brake to standstill in 20 [m] from
its current position. Secondly, whenever a Go request is re-
ceived, the ego-vehicle will accelerate to the desired reference
velocity within 30 [m]. Thirdly, the reference waypoints (W
in (1)) are in the middle of the road. Finally, the MPC state
and input cost matrices do no change during the simulation.

B. Relevant combinations of test-cases

Different test-cases have been simulated to find the coverage
of the algorithm regarding the five different use-cases (as
described in Section I-A). There are already 90 possible test-
cases that can be simulated, when assuming there is only one
vehicle coming from each direction at a current time and not
taking into account the possible trajectories (e.g., turn right
or left at the intersection) the other road-users can follow.
However, test-cases can be combined to only relevant test-
cases. The test-cases of PA fourway and T-intersection use-
cases are combined into one results table, since a T-intersection
is a PA fourway with one road less. The T-intersection has less
variety in possible test-cases compared to the PA fourway use-
case. The roundabout test-cases are simulated as a right turn,
since joining and exiting a roundabout requires a right turn
locally by the ego-vehicle in right-hand traffic countries. A
traffic light intersection can be seen as a fourway intersection
where the priority transition changes with time instead of the
ego-vehicle position at the intersection. A green light indicates
a high priority road and a red or an orange light indicates a low
priority road, as indicted by state transition conditions shown
in Fig. 18. The results of all the relevant test-cases are shown in
the Tables III, IV, V, VI for the NPA fourway, Traffic light, PA
fourway/ T-intersection and roundabout use-cases respectively.

The results that are indicated with a ’+’ in the tables, mean that
the algorithm works as intended (i.e., the Stop and Go request
are correct). An example of correct behavior is explained in
Section VI-C. The ’o’ indication means the algorithm works,
however it shows a conservative behavior (i.e., receives a Stop
request when it should be allowed to receive a Go request).
The ’o’ indicator is further explained in Section VI-D.

TABLE III
TEST-CASE RESULTS FOR THE NPA FOURWAY INTERSECTION, ’+’

PASSED, ’O’ CONSERVATIVE.

NPA fourway Vehicle detected in radar zone

Turn EV L S R L&S L&R S&R L&S&R

Right + + + + + + +

Straight + + o + o o o

Left + o o o o o o

TABLE IV
TEST-CASE RESULTS FOR THE TL INTERSECTION, ’+’ PASSED, ’O’

CONSERVATIVE.

Traffic Light Vehicle detected in radar zone

Turn EV Priority L S R L&S L&R S&R L&S&R

Right
High + o + o + o o

Low + + + + + + +

Straight
High + + + + + + +

Low + + + + + + +

Left
High + + + + + + +

Low + + + + + + +

TABLE V
TEST-CASE RESULTS FOR THE PA FOURWAY INTERSECTION &

T-INTERSECTION, ’+’ PASSED, ’O’ CONSERVATIVE.

PA fourway & T-int Vehicle detected in radar zone

Turn EV Priority L S R L&S L&R S&R L&S&R

Right
High + + + + + + +

Low o o o o o o o

Straight
High + + + + + + +

Low o o o o o o o

Left
High + o + o + + o

Low o o o o o o o

C. Traffic light intersection

In this test-case scenario, the ego-vehicle wants to make a
left turn at a traffic light intersection. In Fig. 5 the context
at the intersection is shown, when the ego-vehicle received a
Stop request (at t = 0 s), since the traffic light for the ego-
vehicle is red as shown in Fig. 7. The Stop request leads to
a deceleration as shown in Fig. 8 and thus to a decrease in

9

TABLE VI
TEST-CASE RESULTS FOR THE ROUNDABOUT INTERSECTION, ’+’ PASSED,

’O’ CONSERVATIVE.

Roundabout Vehicle detected in radar

Turn EV Priority L S R L&S L&R S&R L&S&R

Right
High + + + + + + +

Low + o + o + + o

the longitudinal velocity as shown in Fig. 7. At t = 9 s the
traffic light turns green (Fig. 7), however the ego-vehicle does
not directly receive a Go request, because the front radar (as
shown in Fig. 6) detects the purple vehicle. Since, according
to the dutch traffic rules [35] turning traffic have to give way
to straight through traffic. At t = 10.5 s the purple vehicle is
outside of the front radar detection zone and the ego-vehicle
receives a Go request and starts to accelerate (Fig. 8). This is
the desired behavior of the motion planning and thus receives
the ’+’ indicator in the result Table IV.

Fig. 5. The context information at the traffic light intersection when the
ego-vehicle received a Stop request.

D. Fourway intersection without priority pre-assigned (NPA)

In this scenario the ego-vehicle wants to cross a NPA
fourway. Since no yield sign, priority sign or traffic light is
detected, the intial priority of the ego-vehicle is set to low
priority. In Fig. 9 the intersection context is shown when the
ego-vehicle received a Stop request, because the purple vehicle
was detected by the right radar. The ego-vehicle should indeed
stop since, according to the traffic rules [35], vehicles coming
from the right have priority at NPA intersections. The ego-
vehicle starts to decelerate and comes to a standstill as shown
in Appendix B-B Fig. 35 and Fig. 36. Fig. 10 shows a context
situation where the ego-vehicle receives the Go request and is
able to pass through the intersection. Since it has priority over
the yellow vehicle detected in the left radar and no vehicle

Fig. 6. The context information at the traffic light intersection when the light
turns green for the ego-vehicle (blue).

0 5 10 15 20
0

0.5

1

G
o

S
to

p

0 5 10 15 20
0

2

4

6
G

o

S
to

p

Controller

Reference

Fig. 7. The traffic light color status and longitudinal velocity of the ego-
vehicle as a function of time.

is detected in the right radar (Fig. 10). The proposed motion
planning algorithm shows conservative behavior, an example
of this behavior is shown in Fig. 11. The ego-vehicle should
be allowed to start accelerating, since both the purple and
yellow vehicle move away from the ego-vehicle. However,
with the current FSM design the ego-vehicle still receives
a Stop request since it detects a vehicle in both the right
and left radar. This is considered conservative behavior and
thus is marked with a ’o’. In the current algorithm design no

10

0 5 10 15 20

-0.5

0

0.5

0 5 10 15 20

-2

0

2
G

o

S
to

p

Fig. 8. The actuator input generated by the MPC controller, the horizontal
dotted lines show the actuator limits.

information on the driving direction of the other vehicles at
the intersection is taking into consideration, leading to this
conservative behavior. A solution would be to improve the
context information to incorporate lane direction information
of all the road-users (e.g., drive-towards critical target or drive-
away non-critical target).

Fig. 9. The context information at a no priority pre-assigned fourway
intersection when the ego-vehicle received a Stop request.

Fig. 10. The context information at a no priority pre-assigned fourway
intersection when the ego-vehicle receives a Go request, since no vehicle
is detected in the right radar.

Fig. 11. The context information at a PA fourway intersection, yield signs
indicate the low priority roads. The ego-vehicle (blue vehicle) wants to make
a left turn and keeps receiving a Stop request (conservative behavior) since it
detects the yellow vehicle.

11

VII. CONCLUSION

In this paper a context-based motion planning method for
autonomous vehicles to safely cross intersections is presented,
which is decentralized (i.e., inside the ego-vehicle) and does
not require equipped (i.e., I2V) intersections or connected
vehicles. Since it is not economically feasible to equip every
traffic intersection, and furthermore, in mixed traffic scenarios
not all vehicles are expected to be connected with each other.
To solve this, the proposed method only relies on context infor-
mation generated based on the on-board ego-vehicle sensors.
The proposed method converts this context information into
logic booleans, based on traffic rules. These logic booleans
lead to state transitions in a hierarchical finite-state machine
behavior planner, leading to either a Go or a Stop request for
the ego-vehicle. A reference generator converts the desired
path into a kinematically feasible trajectory for the ego-
vehicle, based on the Go or Stop request from the hierarchical
FSM. The MPC controller calculates desired inputs for the
ego-vehicle in order to track the generated trajectory by the
reference generator, while respecting the actuator limits of the
ego-vehicle. Simulation results using five different intersection
layouts demonstrate the effectiveness of the proposed method,
without the need of V2X communication and without the
requirement of a specific FSM design for each intersection
layout, while also obeying traffic rules. The proposed method
shows conservative behavior (i.e., the ego-vehicle waits un-
necessarily long) when other road-users are driving away
from the ego-vehicle, due to the current context information
implementation. Future work should be aimed at reducing this
conservative behavior by adding critical target and non critical
target categorization and dynamical information of the other
road-users with respect to the ego-vehicle. Furthermore, multi-
lane intersections should be taken into consideration and also
at least two autonomous vehicles using the proposed motion
planning algorithm at the same moment in time and at the
same intersection.

REFERENCES

[1] Erik Eckermann. World history of the automobile. SAE,
2001.

[2] Yves Page et al. “The evaluation of the safety ben-
efits of combined passive and on-board active safety
applications”. In: Annals of Advances in Automotive
Medicine/Annual Scientific Conference. Vol. 53. Asso-
ciation for the Advancement of Automotive Medicine.
2009, p. 117.

[3] CBS Doden en gewonden in het wegverkeer. https : / /
www.cbs .nl /nl - nl /maatschappij /verkeer- en- vervoer /
transport - en- mobiliteit /mobiliteit /verkeersongevallen/
categorie-verkeersongevallen/doden-en-gewonden- in-
het-wegverkeer. Accessed: 05-04-2020.

[4] Santokh Singh. Critical reasons for crashes investigated
in the national motor vehicle crash causation survey.
Tech. rep. 2015.

[5] S Weber et al. “Different types of distraction causing
accidents”. In: Presentation at the DDI (2018).

[6] Teimour Allahyari et al. “Cognitive failures, driving
errors and driving accidents”. In: International journal
of occupational safety and ergonomics 14.2 (2008),
pp. 149–158.

[7] Thomas A Dingus et al. “Driver crash risk factors and
prevalence evaluation using naturalistic driving data”.
In: Proceedings of the National Academy of Sciences
113.10 (2016), pp. 2636–2641.

[8] Neville A Stanton and Paul M Salmon. “Human error
taxonomies applied to driving: A generic driver error
taxonomy and its implications for intelligent transport
systems”. In: Safety Science 47.2 (2009), pp. 227–237.

[9] A Molinero Martinez et al. “Accident causation and pre-
accidental driving situations”. In: Part 1 (2008), p. 176.

[10] Crash Factors in Intersection-Related Crashes: An On-
Scene Perspective. https://crashstats.nhtsa.dot.gov/Api/
Public/ViewPublication/811366. Accessed: 05-04-2020.

[11] Caner Filiz. “Can Autonomous Vehicles Prevent Traf-
fic Accidents?” In: Accident Analysis and Prevention.
IntechOpen, 2020.

[12] Elnaz Namazi, Jingyue Li, and Chaoru Lu. “Intelli-
gent intersection management systems considering au-
tonomous vehicles: a systematic literature review”. In:
IEEE Access 7 (2019), pp. 91946–91965.

[13] Kurt Dresner and Peter Stone. “A multiagent approach
to autonomous intersection management”. In: Journal of
artificial intelligence research 31 (2008), pp. 591–656.

[14] John Khoury and Joud Khoury. “Passive, decentralized,
and fully autonomous intersection access control”. In:
17th international IEEE conference on intelligent trans-
portation systems (ITSC). IEEE. 2014, pp. 3028–3033.

[15] Guni Sharon and Peter Stone. “A protocol for
mixed autonomous and human-operated vehicles at
intersections”. In: International Conference on Au-
tonomous Agents and Multiagent Systems. Springer.
2017, pp. 151–167.

12

[16] Pengfei Taylor Li and Xuesong Zhou. “Recasting and
optimizing intersection automation as a connected-and-
automated-vehicle (CAV) scheduling problem: A se-
quential branch-and-bound search approach in phase-
time-traffic hypernetwork”. In: Transportation Research
Part B: Methodological 105 (2017), pp. 479–506.

[17] Xi Liu, Ping-Chun Hsieh, and PR Kumar. “Safe in-
tersection management for mixed transportation sys-
tems with human-driven and autonomous vehicles”. In:
2018 56th Annual Allerton Conference on Communica-
tion, Control, and Computing (Allerton). IEEE. 2018,
pp. 834–841.

[18] Intelligent transportation systems Vehicle-to-Vehicle
Technologies Expected to Offer Safety Benefits, but a
Variety of Deployment Challenges Exist. https://www.
gao.gov/assets/gao-14-13.pdf. Accessed: 06-03-2021.

[19] Gabriel Rodrigues de Campos, Paolo Falcone, and Jonas
Sjöberg. “Autonomous cooperative driving: a velocity-
based negotiation approach for intersection crossing”.
In: 16th International IEEE Conference on Intelli-
gent Transportation Systems (ITSC 2013). IEEE. 2013,
pp. 1456–1461.

[20] Xiangjun Qian et al. “Decentralized model predictive
control for smooth coordination of automated vehicles
at intersection”. In: 2015 European control conference
(ECC). IEEE. 2015, pp. 3452–3458.

[21] Peiqun Lin et al. “Autonomous vehicle-intersection co-
ordination method in a connected vehicle environment”.
In: IEEE Intelligent Transportation Systems Magazine
9.4 (2017), pp. 37–47.

[22] Muhammed O Sayin et al. “Information-driven au-
tonomous intersection control via incentive compati-
ble mechanisms”. In: IEEE Transactions on Intelligent
Transportation Systems 20.3 (2018), pp. 912–924.

[23] Kazi Shah Nawaz Ripon, Jostein Solaas, and Håkon
Dissen. “Multi-objective evolutionary optimization for
autonomous intersection management”. In: Asia-Pacific
Conference on Simulated Evolution and Learning.
Springer. 2017, pp. 297–308.

[24] Arda Kurt and Ümit Özgüner. “Hierarchical finite state
machines for autonomous mobile systems”. In: Control
Engineering Practice 21.2 (2013), pp. 184–194.

[25] Scott Drew Pendleton et al. “Perception, planning,
control, and coordination for autonomous vehicles”. In:
Machines 5.1 (2017), p. 6.

[26] Brian Paden et al. “A survey of motion planning and
control techniques for self-driving urban vehicles”. In:
IEEE Transactions on intelligent vehicles 1.1 (2016),
pp. 33–55.

[27] Edward F Moore et al. “Gedanken-experiments on
sequential machines”. In: Automata studies 34 (1956),
pp. 129–153.

[28] George H Mealy. “A method for synthesizing sequential
circuits”. In: The Bell System Technical Journal 34.5
(1955), pp. 1045–1079.

[29] David Harel. “Statecharts: A visual formalism for com-
plex systems”. In: Science of computer programming
8.3 (1987), pp. 231–274.

[30] Steven Waslander and Jonathan Kelly. Motion Planning
for Self-Driving Cars. https : / / www . coursera . org /
lecture /motion- planning- self - driving- cars / lesson- 1-
behaviour-planning-tPdVH. [Online; accessed 18-Aug-
2020]. 2020.

[31] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[32] Wilko Schwarting, Javier Alonso-Mora, and Daniela
Rus. “Planning and decision-making for autonomous
vehicles”. In: Annual Review of Control, Robotics, and
Autonomous Systems (2018).

[33] Nikos Vlassis, Matthijs TJ Spaan, et al. “A fast point-
based algorithm for POMDPs”. In: Benelearn 2004:
Proceedings of the Annual Machine Learning Confer-
ence of Belgium and the Netherlands. 2004, pp. 170–
176.

[34] Filecloud. Top 5 Limitations of Machine Learning in an
Enterprise Setting. https://www.getfilecloud.com/blog/
2018/06/top-5-limitations-of-machine-learning-in-an-
enterprise- setting/\#.Xz0ejzVcKUl. [Online; accessed
18-Aug-2020]. 2020.

[35] Reglement verkeersregels en verkeerstekens 1990 (RVV
1990). https://wetten.overheid.nl/BWBR0004825/2020-
01-01. Accessed: 05-04-2021.

[36] Davor Hrovat et al. “The development of model pre-
dictive control in automotive industry: A survey”. In:
2012 IEEE International Conference on Control Appli-
cations. IEEE. 2012, pp. 295–302.

[37] Tobias Kunz and Mike Stilman. “Time-optimal tra-
jectory generation for path following with bounded
acceleration and velocity”. In: Robotics: Science and
Systems VIII (2012), pp. 1–8.

[38] Michael S Floater. “On the deviation of a paramet-
ric cubic spline interpolant from its data polygon”.
In: Computer Aided Geometric Design 25.3 (2008),
pp. 148–156.

[39] Marko Lepetič et al. “Time optimal path planning
considering acceleration limits”. In: Robotics and Au-
tonomous Systems 45.3-4 (2003), pp. 199–210.

[40] Chuck Lewin. “Mathematics of motion control pro-
files”. In: Performance Motion Devices, Inc.: Westford,
MA, USA (2007), pp. 1–5.

[41] José Román Garcı́a Martı́nez et al. “Assessment of
jerk performance s-curve and trapezoidal velocity pro-
files”. In: 2017 XIII International Engineering Congress
(CONIIN). IEEE. 2017, pp. 1–7.

[42] Jorge Villagra et al. “Smooth path and speed planning
for an automated public transport vehicle”. In: Robotics
and Autonomous Systems 60.2 (2012), pp. 252–265.

[43] Hong Chen and Frank Allgöwer. “A quasi-infinite hori-
zon nonlinear model predictive control scheme with
guaranteed stability”. In: Automatica 34.10 (1998),
pp. 1205–1217.

13

[44] Frank Allgöwer et al. “Nonlinear predictive control and
moving horizon estimation—an introductory overview”.
In: Advances in control. Springer, 1999, pp. 391–449.

[45] Michael A Henson. “Nonlinear model predictive con-
trol: Current status and future directions”. In: Comput-
ers & Chemical Engineering 23.2 (1998), pp. 187–202.

[46] F Kühne. “Predictive control of nonholonomic mobile
robots”. PhD thesis. Master thesis, Federal University
of Rio Grande do Sul, Porto Alegre, RS, Brazil, 2005.

[47] Pranjal Biswas. “Human-like Trajectory Generation for
Autonomous Driving”. MA thesis. De Zaale Eindhoven:
Eindhoven University of Technology, 2019.

[48] Yiqi Gao. “Model predictive control for autonomous
and semiautonomous vehicles”. PhD thesis. UC Berke-
ley, 2014.

[49] A Galip Ulsoy, Huei Peng, and Melih Çakmakci. Au-
tomotive control systems. Cambridge University Press,
2012.

[50] Rajesh Rajamani. Vehicle dynamics and control.
Springer Science & Business Media, 2011.

[51] Georg Schildbach and Francesco Borrelli. “Scenario
model predictive control for lane change assistance on
highways”. In: 2015 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE. 2015, pp. 611–616.

[52] Eric W Weisstein. “Simpson’s rule”. In:
https://mathworld. wolfram. com/ (2003).

[53] Joao P Hespanha. Linear systems theory. Princeton
university press, 2018.

[54] Kendall E Atkinson and Weimin Han. Elementary nu-
merical analysis. Wiley New York, 1993.

14

APPENDIX A

A. Intersection use-cases

In this section the five different intersection types are shown
and those intersection types also function as the use-cases for
this research.

EV

V2

V1

Fig. 12. Illustration of the T-intersection use-case, where the ego-vehicle (EV)
is shown in blue.

EV

V1

V2

Fig. 13. Illustration of the roundabout use-case, where the ego-vehicle (EV)
is shown in blue.

EV

V1

V2

Fig. 14. Illustration of the no priority pre-assigned intersection (NPA fourway)
use-case, where the ego-vehicle (EV) is shown in blue.

V1

EV

V2

V3

Fig. 15. Illustration of the priority pre-assigned intersection (PA fourway)
use-case, where the ego-vehicle (EV) is shown in blue.

EV

V1

V2

Fig. 16. Illustration of the traffic light intersection use-case, where the ego-
vehicle (EV) is shown in blue.

B. Context information categorization

Straight

RightLeft

Fig. 17. The three detection zones of the radar sensors available on the
ego-vehicle.

15

C. Hierarchical FSM

In this section level two and three of the hierarchical FSM
are shown. The figures show the state transition conditions.

1) Hierarchical FSM level 2: High or Low priority

HighPrioirityRoad LowPrioirityRoad

(light_status == none && sign_det == none && vehicle_det_R == 1) ||
(light_status == red, orange) ||(sign_det == yield)

light_status == green ||sign_det == priority ||
(light_status == none && sign_det == none && vehicle_det_R == 0)

Fig. 18. Second level of the Level 3 hierarchical FSM, two states high priority
and low priority road types.

2) Hierarchical FSM level 3 left turn: Stop or Go

HighPriorityRoad

GO
drive_status = 1

STOP

drive_status = 0

vehicle_det_S == 1

vehicle_det_S == 0

Fig. 19. Level 3 hierarchical FSM high priority left turn.

LowPriorityRoad

GO

drive_status = 1

STOP
drive_status = 0

vehicle_det_L == 1 || vehicle_det_S == 1 ||
vehicle_det_R == 1 || light_status == red, orange

vehicle_det_L == 0 && vehicle_det_S == 0 &&
vehicle_det_R == 0 && light_status != red, orange

Fig. 20. Level 3 hierarchical FSM low priority left turn.

3) Hierarchical FSM level 3 straight: Stop or Go

HighPriorityRoad

GO
drive_status = 1

Fig. 21. Level 3 hierarchical FSM high priority straight.

LowPriorityRoad

GO

drive_status = 1

STOP

drive_status = 0

vehicle_det_L == 1 || vehicle_det_R == 1 ||
light_status == red, orange

vehicle_det_L == 0 && vehicle_det_R == 0 &&
light_status != red, orange

Fig. 22. Level 3 hierarchical FSM low priority straight.

4) Hierarchical FSM level 3 right turn: Stop or Go

HighPriorityRoad

GO
drive_status = 1

Fig. 23. Level 3 hierarchical FSM high priority right turn.

LowPriorityRoad

GO
drive_status = 1

STOP
drive_status = 0

vehicle_det_L == 1 ||light_status == red, orange

vehicle_det_L == 0 &&
(vehicle_det_R == 1 || vehicle_det_R == 0)
&&light_status != red, orange

Fig. 24. Level 3 of hierarchical FSM low priority right turn.

16

D. Closest reference point calculation
The closest reference spline point is found by computing

the hypotenuse (black lines in Fig. 25) between between
the current ego-vehicle state (blue point in Fig. 25) and all
spline reference points (yellow points in Fig. 25). The spline
point with the shortest hypotenuse (green line in Fig. 25)
distance (Euclidean distance) is chosen as the first point for
the linear time interpolation ξref0|k , in order to calculate the
reference prediction states (ξrefi|k) for the entire prediction
horizon (i = 0, ..., Np.

Fig. 25. Closest reference point calculation using the Euclidean distance,
between the reference points (yellow points) and the current position of the
ego-vehicle (blue point).

E. Kinematic bicycle model
Different coordinate frames are required to define the states

of the ego-vehicle, the reference path and the vehicle inputs.
Two main coordinate frames are used, which are shown in Fig.
26. Each of the coordinates frames are defined as follows:
• Global coordinate frame (OgXgY g): The origin of the

global coordinate frame, at any time, is a fixed point in
space and is denoted by the g superscript.

• Ego-vehicle coordinate frame (OeXeY e): The origin of
the ego-vehicle coordinate frame, at any time, lies at
the instantaneous Centre of Gravity (COG) of the ego-
vehicle, with its X-axis aligned with the instantaneous
heading of the ego-vehicle with respect to the global
coordinate frame and is denoted by the e superscript.

The MPC algorithm needs a model in order to predict
future states. In this section the choice of the model is
explained. Extensive studies have been performed regarding
vehicle dynamic modelling over the years [48–50]. Since the
research in this paper is limited to low speed (< 50km/h) in
urban intersection scenarios and not at the limits of vehicle
handling, the vehicle model for the MPC algorithm will be a
kinematic bicycle model shown in Fig. 27.

The kinematic bicycle model can be extended by also
considering the body side-slip of the vehicle with respect
to the COG of the ego-vehicle as done in [51]. Leading to
the following equations of motions for the kinematic bicycle
model with respect to the COG of the ego-vehicle

ẋg = vex cos(φe + βe), (4a)

Fig. 26. Illustration of both world and local ego-vehicle coordinates [47]

Fig. 27. Kinematic bicycle model [47]

ẏg = vex sin(φe + βe), (4b)

φ̇e =
vex cos(βe)

L
tan(δe), (4c)

βe = arctan

(
lr
L

tan(δe)

)
, (4d)

v̇ex = aex,u, (4e)

where vex is the longitudinal velocity in [m/s], φe is the
heading angle in [rad], δe is the steering angle of the front
wheel in [rad], L is the wheelbase in [m], βe the body side-slip
angle, lr in [m] is the distance of the rear axle from the COG
and aex,u is the local longitudinal acceleration of the vehicle
in [m/s2]. The equations above are compactly represented by

ξ̇ = mKB(ξ, u) (5)

where ξ = [xg, yg, φe, vex]T is the state vector, while u =
[aex,u, δ

e]T is the input vector.

17

F. Successive linearization

As explained in Section V-B, the MPC algorithm requires a
LTV prediction model. This linear prediction model is calcu-
lated using successive linearization of the non-linear bicycle
model explained in Section A-E. Fig. 28 shows the interac-
tion between, the reference generator, successive linearization
block, non-linear plant model and the MPC. The math behind
Successive Linearization block is done for a simulation step
k and is repeated at the next simulation step k + 1.

Reference
Generator

Successive
Linearization

MPC Non-linear
Plant

Fig. 28. Illustration of the closed-loop LTV MPC control diagram, showing
the interaction between the reference generator, MPC controller and the plant
model.

The goal of the successive linearization is to provide the
MPC algorithm with discretized linear state-space matrices
Ā, B̄ as shown in Fig. 28 and given by,

Ā = (Ai, ..., Ai+Np
)

B̄ = (Bi, ..., Bi+Np
)

(6)

where i represents the current prediction step. In order to get
the discrete matrices Ai, Bi, the continuous time linear state-
space matrices At(i) and Bt(i) need to be discretized. This
is done using the Simpson’s Rule (as explained in detail in
[52]). The continuous time linear state-space matrices At(i)
and Bt(i) at each prediction step i are generated by evaluating
the Jacobian matrices [53],

At(i) =
∂mKB(ξ̄(i), Ū(i))

∂ξ
,

Bt(i) =
∂mKB(ξ̄(i), Ū(i))

∂u
,

(7)

where mKB represents the kinematic bicycle model (5),
ξ̄(i) is an approximation of the prediction state, Ū(i) is an
approximation of the input sequence. Ū(i) is give by,

Ū(i) =

[
Ūδ
Ūa

]
=

[
ūδ(i), ..., ūδ(i+Np − 1)
ūa(i), ..., ūa(i+Np − 1)

]
(8)

where Ūδ is the previous calculated (k−1) steering angle input
sequence by the MPC algorithm. This sequence is initialized
to zeros for the initial simulation step (k = 1). Ūa is a linear
approximation of the acceleration input sequence which is
calculated by

ūa(i) =
vrefx (i+ 1)− vrefx (i)

Ts
,∀i = 1, ..., i+Np − 1, (9)

where vrefx is longitudinal reference velocity generated by the
velocity profiler, Ts is the sample time. The next approxi-
mation of the prediction state ξ̄(i + 1) is done by numerical
approximation using the forward Euler method [54], which is
given by,

ξ̄n(n+ 1) = ξ̄n(n) +
Ts
h
mKB(ξ̄n(n), Ū(i)),

∀ n = 1, ..., h,
(10a)

ξ̄n(1) = ξ̄(i) (10b)

ξ̄(1) = ξ(k) (10c)

ξ̄(i+ 1) = ξ̄n(h) (10d)

where i is the current prediction step, (h = 10) is the
amount of increment steps, (Ts = 0.1) is sample time of
the simulation. The initial approximation ξ̄(1) is equal to
initial state of the current simulation step ξ(k). All steps
above are done for the entire prediction horizon Np (i.e.,
i = 1, ..., Np − 1).

APPENDIX B

A. MPC parameter tuning results

1) Prediction horizon tuning: Firstly, the prediction horizon
Np is tuned, the values for the MPC parameters Q,R,Np are
given in Table VII.

TABLE VII
PREDICTION HORIZON TUNING VALUES

N1 N2 N3 N4
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R 0 0 0 0 0 0 0 0
Np 3 5 10 20

TABLE VIII
RMS ERROR VALUES FOR DIFFERENT PREDICTION HORIZON LENGTHS

RMSE value

Np x [m] y [m] φ [rad] Vx [m/s]

3 2.120 2.568 0.363 1.436

5 0.015 0.033 0.052 0.028

10 0.014 0.036 0.052 0.028

20 0.013 0.036 0.052 0.028

The RMS error (RMSE) of the different states (shown in
Table VIII) show that a longer prediction horizon Np > 10
does not lead to a significant change in RMS error. So in
order to reduce the computation time a prediction horizon of
Np = 10 is chosen.

18

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

N1

N2

N3

N4

Fig. 29. Longitudinal and lateral position error against time for different
prediction horizon lengths.

0 5 10 15 20 25

-0.5

0

0.5

0 5 10 15 20 25

-2

0

2

N1

N2

N3

N4

Fig. 30. Actuator inputs against time for different prediction horizon lengths.

2) State cost matrix tuning: Secondly, the state cost matrix
Q is tuned, the values for the MPC parameters Q,R,Np are
given in Table IX.

TABLE IX
STATE COST MATRIX TUNING VALUES

Q1 Q2 Q3 Q4
Q 1 1 1 1 1 1 0 1 0 0 1 1 0.2 0.2 0 0.8
R 0 0 0 0 0 0 0 0
Np 10 10 10 10

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1

Q1

Q2

Q3

Q4

Fig. 31. Longitudinal and lateral position error against time for different state
cost matrices.

TABLE X
RMS ERROR VALUES FOR DIFFERENT STATE COST MATRICES

RMSE value

Q x [m] y [m] φ [rad] Vx [m/s]

1 1 1 1 0.011 0.04 0.052 0.028

1 1 0 1 0.002 0.005 0.054 0.010

0 0 1 1 0.716 0.678 0.007 0.003

0.2 0.2 0 0.8 0.002 0.006 0.054 0.009

Fig. 31 shows that the state cost matrix of Q4 (i.e., Q =
diag(0.2 0.2 0 0.8) leads to an acceptable RMS error of
the different states (as shown in Table X) and does not lead
to an uncomfortable steering inputs (as shown in Fig. 32).

19

0 5 10 15 20 25

-0.5

0

0.5

0 5 10 15 20 25

-2

0

2

Q1

Q2

Q3

Q4

Fig. 32. Actuator inputs against time for different state cost matrices.

3) Input cost matrix tuning: Thirdly the input cost matrix
R is tuned, the values for the MPC parameters Q,R,Np are
given in Table XI.

TABLE XI
INPUT COST MATRIX TUNING VALUES

R1 R2 R3 R4
Q 0.2 0.2 0 0.8 0.2 0.2 0 0 0.8 0.2 0.2 0 0.8 0.2 0.2 0 0.8
R 0 0 0.05 0 0.1 0 0.15 0
Np 10 10 10 10

TABLE XII
RMS ERROR VALUES FOR DIFFERENT INPUT COST MATRICES

RMSE value

R x [m] y [m] φ [rad] Vx [m/s]

0 0 0.002 0.006 0.054 0.009

0.05 0 0.012 0.016 0.057 0.017

0.1 0 0.047 0.066 0.065 0.035

0.15 0 0.108 0.172 0.080 0.053

In order to reduce the steering womble at t = 4s and t =
12s in Fig.34 and to have an acceptable RMS error on the
states (as shown in Table XII the input cost matrix will be
equal to R = diag(0.05 0).

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25

-0.1

-0.05

0

0.05

0.1

R1

R2

R3

R4

Fig. 33. Longitudinal and lateral position error against time for different input
cost matrices.

0 5 10 15 20 25

-0.5

0

0.5

0 5 10 15 20 25

-2

0

2

R1

R2

R3

R4

Fig. 34. Actuator inputs against time for different input cost matrices.

20

B. Additional simulation results

In this section additional results for the ego-vehicle driving
straight through at a NPA fourway are given, as explained in
Section VI-D.

0 5 10 15 20
0

0.5

1

G
o

S
to

p

0 5 10 15 20
0

2

4

6

8

G
o

S
to

p

Controller

Reference

Fig. 35. The longitudinal velocity of the ego-vehicle for the NPA fourway
test-case as a function of time.

0 5 10 15 20

-0.5

0

0.5

0 5 10 15 20

-2

0

2

Fig. 36. Actuator inputs calculated by the MPC algorithm for the NPA
fourway test-case, the horizontal dotted lines show the actuator limits

21

