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Clustering Based Model Reduction Method for
Interconnected Port Hamiltonian Systems

Mayukh Samanta
Department of Electrical Engineering

Technische Universiteit Eindhoven
Eindhoven, The Netherlands

m.samanta@student.tue.nl

Abstract—This paper proposes different dissimilarity measures
that are especially relevant for port Hamiltonian systems. Com-
putational schemes are developed for clustering methods that are
based on these dissimilarity measures. Comparisons of the results
are given in a number of examples.

Index Terms—Order Reduction; port-Hamiltonian Systems;
Structure Preserving; Large-Scale Systems

I. INTRODUCTION
The port Hamiltonian framework has become a powerful

tool for modelling and control of complex physical systems
over the years [21], [14] and [17]. It makes use of the
kinetic and potential energy equations to model the system,
which enables a multi-physics model to capture the physical
properties of the system such as stability and passivity. The
port Hamiltonian modelling approach is also able to model
mechanical, electrical and other forms of physical systems
together. Interconnection of various port-Hamiltonian systems
together is known as physical network system. It is evident
from [7], [4], [12], [1] that, the physical network system can
be treated as a graphical network consisting of nodes and
edges. A graphical network is of special interest because the
information about the interconnections between nodes gives
the physical interpretation to the states in the state space
model.

Figure 1 depicts a graphical network system sharing
information among the nodes and interacting with the envi-
ronment. A connected graph is represented as G = (V, E),
where V is a (finite) set denoting the vertices (nodes) of the
network and E ⊂ V × V describes the edges (interaction with
environment or nodes). Throughout this paper, we consider
networks without self loops. This means that there are no
elements V ∈ V such that (V,V) ∈ E .

In case of a physical network system, the vertices
represent individual port Hamiltonian systems and the edges
represent the energy exchange between two port Hamiltonian
systems. Increasing the number of port Hamiltonian systems
leads to an increase in complexity of such a physical network
system, causing difficulty in its analysis and control. Hence,
in order to simplify such network systems model reduction
techniques are used.

There are mainly two ways to simplify a network system:
• Nodal approximation

Figure 1. Graphical network systems

• Topological simplification
In nodal approximation [18], each node (physical system) is
simplified by using Krylov-based and Gramian-based model
reduction. In topological simplification [9] we simply remove
less important systems and update the network structure. In
this research we focus on topological simplification of physical
network system.

Clustering techniques are one of the popular ways to
do topological simplifications on graphical network systems,
as presented in [9]. In a clustering technique a simplified
network is obtained, by grouping similar behaving neighboring
systems (which form the vertices of the network graph) and
merge their states to obtain a single system that represents
the original cluster. Each new resulting cluster is then treated
as a node in a simplified network. The simplified network
generates an updated interconnection topology which has
a clear physical interpretation. In order to cluster similar
behaving systems together into a single cluster, we must
define how different each system is from one another. The



difference in the behaviour between two systems are given
by dissimilarity. The systems placed in same cluster will
have low dissimilarity when compared to the systems from
other clusters. The main focus of this research work is to
explore various energy properties of port Hamiltonian systems
to define the dissimilarity measurement and finally develop an
algorithm to simplify a physical network system.

The paper has been organised in the following way.
First the notations used in the paper has been explained
in section II. In section III, literature related to clustering
technique have been explored and research questions that will
be answered through this paper is presented. Preliminaries
regarding port-Hamiltonian systems and physical network
systems are provided in section IV. The problem setting is
stated in section V. In Section VI, various ways to define
dissimilarities have been explored, which is followed by brief
explanation about hierarchical clustering algorithm in section
VII. The topological simplification for a physical network
system has been presented in section VIII. Next, the error
between a full network and a simplified network for different
dissimilarity measurements is discussed in section IX. Finally,
various dissimilarity measurements have been compared in
section X followed by the conclusions in section XI and the
possible extensions of the research have been provided in
section XII.

II. NOTATION

• Ḣ represents the time derivative of function H : R→ R.
• 0n is a zero matrix of size n× n.
• 0n×m is a zero matrix of size n×m.
• 〈a, b〉 refers to the Euclidean inner product of vectors a

and b of the same dimension.
• In is the identity matrix of size n× n.

III. LITERATURE AND PROBLEM FORMULATION

A considerable amount of work has been done with
reference to clustering of graphical network system. Until now
various mathematical properties have been used for clustering
of graphical network systems. In [9], [4], [8], [6] and [5]
dissimilarity between two nodes is defined as the H2−norm
of their transfer function deviation. The difference of states in
a semi-stable system has been used to define the dissimilarity
in [15]. In [11] the dissimilarity between two subsystems
of a bi-directional network is given by H∞-norm of their
transfer function. In [2] the controlablity and observability
property has been used to cluster the network system. Lastly
[13] focuses on data driven reduced-order models. Here, the
snapshot of a trajectory is used to create clusters. From the
literature provided it can be observed that, none of these
techniques address the utilization of a physical property to
simplify a network system. An important physical property
such as energy can provide a lot of information regarding
energy distribution in the network. This information can be
utilized to keep high energy subsystems and remove low
energy subsystems from simplified network system. As the
main interest lies in developing a clustering algorithm that

makes use of the energy properties associated to the network,
we formulate our research questions for physical network
systems as follows:

How to simplify a network of neutrally (lossless) inter-
connected port Hamiltonian systems to get

1) a simplified network that preserves the port Hamiltonian
property ?

2) a simplified network in which the interconnections pre-
serve their neutrality?

3) a simplified network, where the energy distribution
(Hamiltonian energy function) still represents physical
energy?
Since, our main research questions are with respect to

interconnected port Hamiltonian system, in next section the
preliminaries of the same is provided.

IV. PRELIMINARIES

A. Linear port Hamiltonian system

A linear port Hamiltonian system excluding algebraic
constraints and without feedthrough term takes the following
form [10]

Σ :

{
ẋ = (J −R)Qx(t) +Bu(t)
y(t) = B>Qx(t)

(1)

where, H(x(t)) = 1
2x(t)>Qx(t) is total energy (Hamil-

tonian), with Q = Q> > 0 as the energy matrix and
R = R> ≥ 0 being the dissipation matrix. The matrix J
and B represent the internal interconnection structure of the
port Hamiltonian system, with J = −J>. Thus, we have
J as skew-symmetric and R as positive semi definite. The
state variables x(t) ∈ Rn of port Hamiltonian system are
known as energy variables because the total energy H(x(t))
is expressed as a function of these variables. Additionally, the
variables u(t) ∈ Rm, y(t) ∈ Rm represent the power variables,
since their product u(t)>y(t) = 〈u(t), y(t)〉 equals the power
supplied to the system. For all trajectories (u(t), x(t), y(t))
that satisfy (1), the rate of change of energy with respect to
time is given by (2).

Ḣ(x(t)) = 〈Qx(t), ẋ(t)〉 (2)

Ḣ(x(t)) = 〈Qx(t), (J −R)Qx(t) +Bu(t)〉 (3)

Ḣ(x(t)) = 〈y(t), u(t)〉 − 〈Qx(t), RQx(t)〉 (4)

Next observation is that in (1), H(x(t)) = 1
2x(t)>Qx(t)

satisfies the dissipation inequality given by (5).

Ḣ(x(t)) = 〈u(t), y(t)〉 − x(t)>Q>RQx(t) ≤ 〈u(t), y(t)〉
(5)

Now we define the passivity property of the port Hamil-
tonian system:

Definition 1: A system Σ as in (1) is said to be passive if
there exists a differentiable storage function H(x) : Rn → Rn
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satisfying H(x) ≥ 0 and H(0) = 0 such that it satisfies the
dissipation inequality given in (5).

Now we consider two special cases corresponding to
R = 0 or R > 0. If R = 0, we have no internal dissipation
and the dissipation inequality (5) reduces to equality

Ḣ(x(t)) = 〈u(t), y(t)〉 (6)

When R > 0, we have a energy dissipating system and
the inequality (5) reduces to strict inequality

Ḣ(x(t)) = 〈u(t), y(t)〉 − x(t)>Q>RQx(t) < 〈u(t), y(t)〉
(7)

In this research work the main focus will be on energy
dissipating systems. In order to give a better idea about
port Hamiltonian system, the physical representation of such
systems is provided in Figure 2.

In Figure 2, every input-output pair represents a power
(Pi) delivering port, with Pi = yiui. Here (ui, yi) are
components in the input, and output vector (u, y) of equal
dimension. Then (ui, yi) define the port-variables at the ith

port of the system and Pi := u>i yi denotes the power delivered
to the system through its ith port. The total power delivered
to the system Σ is given by:

P (t) = u>(t)y(t) =

n∑
i=1

Pi(t) (8)

Where, n is number of ports, inputs u(t) = col(u1, ...un)
and outputs y(t) = col(y1, ...yn). The ports shown in Figure 2
will be used for interconnection with other port Hamiltonian
systems. According to [3] and [16], physical systems of the
form (1) can be interconnected using gyrator interconnections
or (ideal) transformer interconnections.

Figure 2. Port Hamiltonian system

B. Interconnected port Hamiltonian systems

The gyrator interconnection of two port Hamiltonian
systems is done in the following steps.

Step 1:
Let us consider two generic port Hamiltonian systems

of the form (1). First input and output ports are divided into
its internal and external components. The internal ports are
used to couple two port Hamiltonian systems and the external
ports are used to interact with the environment. The equation
of the form (1) will be rewritten after splitting its internal and
external ports.

Σi :


ẋi = (Ji −Ri)Qixi +Binti uinti +Bexti uexti

yinti = Bint>i Qixi
yexti = Bext>i Qixi

∀i = 1, 2.

(9)
where :

• Ji = −J>i represents internal interconnections of the
system Σi.

• xi ∈ Rni are the energy variables.
• Ri = R>i � 0 and Qi = Q>i > 0 are the dissipation and

energy matrix of Σi respectively.
• uinti , yinti ∈ Rmint

i , where mint
i is the dimension of

internal inputs and outputs.
• uexti , yexti ∈ Rmext

i , where mext
i is the dimension of

external inputs and outputs.

Step 2:
In a gyrator interconnection the internal output (yint1 ) of

system Σ1 goes to the internal input (uint2 ) of the system Σ2

and internal output (yint2 ) of system Σ2 is fed back to internal
input (uint1 ) of the system Σ1 as shown in Figure 3

The gyrator interconnection gives us the relation as
shown in (10).

uint1 = −C12y
int
2

uint2 = C>12y
int
1

(10)

Figure 3. Gyrator Interconnection of port Hamiltonian system
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Here C12 is the gain factor, with which the output of Σ1 is
fed to the input of Σ2. Putting (10) in matrix form leads to
(11). [

uint1

uint2

]
=

[
0 −C12

CT12 0

]
︸ ︷︷ ︸

S

[
yint1

yint2

]
(11)

where :

• C12 is a mint
1 ×mint

2 real-valued matrix.
• The interconnection between two port Hamiltonian sys-

tems are given by matrix S in (11), which is of the size
(mint

2 +mint
1 )× (mint

2 +mint
1 ).

• The S matrix is a skew symmetric matrix .

Note 1: It must be noted that, while S from (11) gives
the relation between the internal input and internal output vari-
ables, we use this relation to convert internal input variables
in terms of energy variables i.e, xi and it is represented in M
matrix as shown in (12).

[
uint1

uint2

]
=

[
0n1 −C12B

int>
2

C>12B
int>
1 0n2

]
︸ ︷︷ ︸

M

[
Q1 0n1

0n2 Q2

] [
x1
x2

]
(12)

Note 2: It should be noted that S in (11) represents
the internal interconnection between two port Hamiltonian
systems.

The gyrator interconnection is called lossless intercon-
nection because it holds the following property [3], [16]

〈
uint
1 , yint

1

〉
+
〈
uint
2 , yint

2

〉
= 0 (13)

Step 3:
We will replace the internal inputs of Σi in (9) with the

internal output of port Hamiltonian system using relation from
(11).

Σ1 :


ẋ1 = (J1 −R1)Q1x1 +Bint1 (−C12)yint2 +Bext1 uext1

yint1 = Bint>1 Qix1
yext1 = Bext>1 Qix1

(14)
Step 4:
Replace the internal output of the second subsystem with

its state relation from (9) in (14)

Σ1 :

 ẋ1 = (J1 −R1)Q1x1 −Bint1 C12B
int>
2 Q2x2 +Bext1 uext1

yint1 = Bint>1 Qix1
yext1 = Bext>1 Qix1

(15)
Step 5:

Repeat Step 3 and Step 4 for subsystem Σ2 and then
we can write the overall state equation for two interconnected
port Hamiltonian system as shown in (16)

[
ẋ1
ẋ2

]
=

[
J1 −R1 −Bint1 C12B

int>
2

Bint2 C>12B
int>
1 J2 −R2

]
︸ ︷︷ ︸

A

[
Q1 0n2

0n1
Q2

]
︸ ︷︷ ︸

Q

[
x1
x2

]

+

[
Bext1 0n2×mint

2

0n1×mint
1

Bext2

]
︸ ︷︷ ︸

B

[
uext1

uext2

]

[
yext1

yext2

]
=

[
Bext>1 0>

n1×mint
1

0>
n2×mint

2
Bext>2

]
︸ ︷︷ ︸

B>

[
Q1 0n2

0n1
Q2

] [
x1
x2

]

(16)

Where
• x1(t) ∈ Rn1 and x2(t) ∈ Rn2 are the vectors of energy

variables for Σ1 and Σ2 respectively. Here n1 and n2 are
dimension of Σ1 and Σ2 respectively.

• Q1 and Q2 are the energy matrices of Σ1 and Σ2

respectively.
Due to lossless interconnection as shown in (13), the

Hamiltonian energy function of the overall system is given by
(17).

H(x) = H(x1, x2) =
1

2
[x>1 Q1x1 + x>2 Q2x2] (17)

Note 3: The internal ports from (9) used for interconnec-
tion totally disappears from input and output matrix in (16).
As a result, the rate of change of energy in the system depends
only on the external ports.

C. Graphical representation of interconnected port Hamilto-
nian system

As mentioned previously, we focus on topological sim-
plification of the physical network system. Now, we will
find the graphical representation from the interconnected port
Hamiltonian systems. First, let us consider A matrix from (16).
We rewrite the A matrix as shown in (18)

A = A1 −A2 (18)

Where, A1 is skew symmetric part and A2 is symmetric
part of matrix A. We have A1 = J +K, A2 = diag(R1, R2)
as shown in (19).

A =

[
J1 0n2

0n1
J2

]
︸ ︷︷ ︸

J

+

[
0n1

−Bint1 C12B
int>
2

Bint2 C>12B
int>
1 0n2

]
︸ ︷︷ ︸

K

−
[
R1 0n2

0n1
R2

]
︸ ︷︷ ︸

R

(19)
Where,

• J is skew-symmetric matrix containing the stacked in-
ternal interconnections of individual port Hamiltonian
systems.

• R contains the stacked dissipation matrices R1 and R2.
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• K is a skew symmetric matrix containing the intercon-
nections between each port Hamiltonian system.

• K is defined by property 1.

Property 1.
K12 = −K>21 (20)

Proof. Consider K from (19), we can see that
Bint1 C12B

int>
2 = (Bint2 C>12B

int>
1 )>. Let us consider

K21 = Bint2 C>12B
int>
1

K12 = −Bint1 C12B
int>
2

(21)

Where, K21 ∈ Rn2 × Rn1 and K12 ∈ Rn1 × Rn2 ,
with n1 and n2 being the dimensions of systems Σ1 and Σ2

respectively.
From (21) we get:

K12 = −Bint1 C12B
int>
2 = −(Bint2 C>12B

int>
1 )> = −K>21

(22)

The terms K12 and K21 in K can be treated as weight
matrix for bi-directional edge connection between two nodes
as shown in Figure 4.

Substituting (21) in (19) leads to (23)

A =

[
J1 0n2

0n1 J2

]
︸ ︷︷ ︸

J

+

[
0n1 K12

K21 0n2

]
︸ ︷︷ ︸

K

−
[
R1 0n2

0n1 R2

]
︸ ︷︷ ︸

R
(23)

Since both J and K in (23) are skew symmetric, we can say
that the interconnected port Hamiltonian system is also a port
Hamiltonian system.

Now that the interconnection between two port Hamil-
tonian systems has been established, next we extend the two
interconnected port Hamiltonian systems to a physical network
system consisting of N interconnected port Hamiltonian sys-
tem. Each of these port Hamiltonian systems are of the form
as given in (9). Now, ith and jth port Hamiltonian systems are
interconnected using gyrator interconnection relation given in
(11), with Cij possibly port dependent (not the same for every
port). Then we eliminate the internal input - output ports using
relation given in (12). This gives a physical network system

Figure 4. Two node representation of two interconnected port Hamiltonian
system

consisting of N interconnected port Hamiltonian system as
given by (24).

ẋ = [J +K −R]Qx+Buext

yext = B>Qx
(24)

Where, x = [x1, . . . , xN ], uext = [uext1 , . . . , uextN ] and
yext = [yext1 , . . . , yextN ]. Expanding J , R, K, Q and B ac-
cordingly leads to (25). Now that the network structure of the
interconnected port Hamiltonian system has been shown, in the
next section the problem setting for the network simplification
of physical network system (24) will be elaborated.

J =


J1 0n2

0n3
. . . 0N

0n1
J2 0n3

. . . 0N

0n1 0n2

. . . . . .
...

...
...

...
. . . 0N

0n1
0n2

. . . 0N−1 JN



R =


R1 0n2 0n3 . . . 0N
0n1

R2 0n3
. . . 0N

0n1
0n2

. . . . . .
...

...
...

...
. . . 0N

0n1
0n2

. . . 0N−1 Rn



K =


0n1

K12 K13 . . . K1n

K21 0n2 . . . K2(n−1) K2n

...
. . . . . . . . .

...
K(n−1)1 K(n−1)2 . . . 0N−1 K(n−1)n
Kn1 . . . . . . Kn(n−1) 0N



Q =


Q1 0n2 0n3 . . . 0N
0n1 Q2 0n3 . . . 0N

0n1
0n2

. . . . . .
...

...
...

...
. . . 0N

0n1
0n2

. . . 0N−1 QN



B =


Bext1 0mext

2 ×n1
. . . 0mext

N ×nN

0mext
1 ×n1

Bext2 . . . 0mext
N ×nN

...
...

...
...

0mext
1 ×n1

0mext
2 ×n2

. . . BextN


(25)

V. PROBLEM SETTING

In this research we consider a special case of network
systems known as multi agent systems, which assumes that all
the systems in the network are identical in nature. Hence Σi
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in (9) are considered as identical port Hamiltonian systems.
Rewriting (9) for identical systems we get (26)

Σi :



ẋi = (Ji −Ri)Qxi + Σji=0B
int
i uinti + Σki=1B

ext
i uexti

yint1 = Bint>1 Qixi
...
yintj = Bint>j Qixi
yexti = Bext>1 Qixi
...
yextk = Bext>k Qixi

(26)

where,
• j is the number subsystems with which Σi is intercon-

nected and k is the number of external inputs.
• xi(t) ∈ Rn is the vector of energy variables.
• n is the dimension of identical port Hamiltonian systems.
• uinti , yinti ∈ Rmint

, where mint is the dimension of
internal inputs.

• uexti , yexti ∈ Rmext

, where mext is the dimension of the
external inputs.

• Ji is n × n skew-symmetric matrix and Ri > 0 is a
positive definite matrix of same size.
Since we are considering strictly dissipative systems, that

is R > 0, it follows from (5) that

Ḣ(x(t)) = 〈uext, yext〉 − x>Q>RQx < 〈uext, yext〉 (27)

Next, in order to define the stability of the system we
consider uext = 0 in (27), which leads to (28).

Ḣ(x(t)) = −x>Q>RQx < 0 (28)

From definition 1 we can say that H(x) serves as a
lyapunov function. With H(x) > 0 for x 6= 0 and (28) we
can say that Ḣ(x) < 0 along the solutions of the differential
equation. Thus, the origin x = 0 is asymptotically stable.

The network of N port Hamiltonian subsystems will be
of the form (24). In order to do network simplification, first the
definition of dissimilarity must be established. In the following
section energy based dissimilarity will be explored.

VI. ENERGY BASED DISSIMILARITY MEASUREMENT

Let us consider two identical port Hamiltonian systems
Σi and Σj of the form (9) with
• Hamiltonian energy functions Hi and Hj .
• Internal interaction given by skew symmetric matrices Ji

and Jj .
• Dissipation matrices Ri and Rj
• Energy variables xi ∈ Rn and xj ∈ Rn

In this paper the dissimilarity between Σi and Σj is
defined in the three following ways.

a) Dissipation matrix.
b) Dissipation gramian.
c) Asymptotic hamiltonian energy.

A. Dissipation Matrix
As mentioned in Section IV, the dissipation matrix R

refers to the internal dissipation. It contains all the coefficients
of resisting or damping components. For example, if an
electrical network contains resistances, then the resistances
of individual sub-systems will be stored in dissipation matrix
R. Hence we can define the dissimilarity between two port
Hamiltonian systems as the difference of their resistances,
which will be given by sum matrix norm of the difference
between dissipation matrices Ri and Rj .

According to [19] sum matrix norm is given by the sum
of element magnitudes, as shown in (29)

‖A‖sum =
∑
i,j

|aij | (29)

Proposition 1. The dissimilarity between Σi and Σj is given
by Dij , as shown in (30).

Dij = ‖Ri −Rj‖sum (30)

D is the N×N dissimilarity matrix consisting of dissim-
ilarities between all the port Hamiltonian systems and Dij is
the element in ith row and jth column giving dissimilarity
between Σi and Σj . In (30), Dij represents the sum of
differences between all the resistances. Ri and Rj are the
dissipation matrices of Σi and Σj respectively.

B. Dissipation Gramian
Here, the dissipated energy is used to define the dissim-

ilarity between Σi and Σj . Since the port Hamiltonian system
under consideration dissipates energy over time, the dissipation
provided in (27) is considered first

Ḣ(x(t)) = uext>yext − x(t)>Q>RQx(t) (31)

Where,
• Q = diag(Q1, . . . , QN )
• x(t) = col(x1(t), . . . , xN (t)) and x(t) is the state vari-

able generated in the model (24) of the network system.
The state response is given by (32)

x(t) = eAtx0 +

∫ t

t0

eA(t−τ)Buext(τ)dτ, t ≥ t0 (32)

In order to compare the dissipation through every port
Hamiltonian system, the external input is set to zero in (31)
and (32). Then, all the port Hamiltonian systems are set to
be starting from some initial condition x0 at time t = t0 and
let the energy dissipate over time. Since the external input is
zero, (32) becomes

x(t) = eAtx0 (33)

Note 4: It should be noted that here we are considering
dissipation equality of the whole network. As mentioned
previously in (12), the internal input appear in M matrix after
applying gyrator interconnection. Thus, we set only external
inputs to be zero and not the internal inputs. The internal
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input represents the energy flow between the port Hamiltonian
systems.

Substituting (33) in (31) we get

Ḣ(x(t)) = −
(
eAtx0

)>
Q>RQ

(
eAtx0

)
(34)

Ḣ(x(t)) = −x>0 eA
>tQ>RQeAtx0 (35)

Here, (35) represents energy decay due to dissipation only.
Integrating both sides with respect to time from t0 to t1

Ḣ(x) = −x>0
(∫ t1

t0

eA
>tQ>RQeAtdt

)
︸ ︷︷ ︸

Dg(t0,t1)

x0 (36)

H(x(t1))−H(x0) = −x>0
(∫ t1

t0

eA
>tQ>RQeAtdt

)
︸ ︷︷ ︸

Dg(t0,t1)

x0

(37)
It is observed from (37) that, the amount of dissipation

over a time depends on the gramian Dg(t0, t1) and initial
condition x0 at time t = t0. Here we will treat the matrix
Dg(t0, t1) as a dissipation gramian matrix, which indicates
the dissipation capacity of the port Hamiltonian systems.

Dg(t0, t1) =

∫ t1

t0

eA
>tQ>RQeAtdt (38)

The dissipation gramian in (38) depends on time t0 and
t1. Thus in order to remove dependence of time from (38),
we take t0 = 0 and t1 −→ ∞. Dg is the infinite dissipation
gramian having block structure, where each block show how
much energy can be dissipated through each port Hamiltonian
system over infinite time horizon.

Dg =

∫ ∞
0

eA
>tQ>RQeAtdt (39)

Lemma 1. The dissipation gramian for infinite time horizon
is the solution of the lyapunov equation given by (40).

A>Dg +DgA = −Q>RQ (40)

Proof.

A>Dg +DgA =
∫∞
0
A>eA

>tQ>RQeAtdt

+
∫∞
0
eA

>tQ>RQeAtAdt

(41)

A>Dg +DgA =

∫ ∞
0

d

dt

(
eA

>tQ>RQeAt
)
dt (42)

A>Dg +DgA =
[
eA

>tQ>RQeAt
]∞
0

(43)

A>Dg +DgA =
[
eA

>tQ>RQeAt
]∞
0

(44)

From (27), it follows that our system is asymptotically
stable. As the dissipative system is asymptotically stable we
get eAt −→ 0 as t −→∞

Thus (44) for asymptotic stability becomes:

A>Dg +DgA = −Q>RQ (45)

The dissipated energy from (37) is used to define the
dissimilarity between Σi and Σj . Since the dissipated energy
in (37) is dependent on x0, we will make the following
assumption,

Assumption 1. The initial condition for Σi and Σj are same
i.e. xi0 = xj0 = α. Where xi0 and xj0 are the initial conditions
of Σi and Σj and α is a fixed non-zero initial condition for
all subsystems.

The dissipated energy from (37) gives us the total energy
dissipated through the entire network. In order to extract
the energy dissipated through only Σi we set all the initial
conditions to zero, except that of Σi in x0 of (37). The energy
dissipated over infinite time horizon is given by (46).

Hi(x(∞))−Hi(x(0)) = −e>i Dgei (46)

where, ei is a vector of size 1×(n×N), with initial conditions
of all except that of Σi set to zero. For example, if we consider
dissipation energy of 4th port Hamiltonian system with n = 2
we set e4 = col(0, 0, 0, 0, 0, 0, α, α, 0, 0...). Here, Dg is the
solution of dissipation gramian from (45).

Note 5: Here it is important to note that dissipated energy
depends quadratically on α.

Proposition 2. The dissimilarity measurement can be given as
the difference in asymptotic dissipation energy between each
port Hamiltonian system and is given by (47).

Dij = |e>i Dgei − e>j Dgej | (47)

Since the dissipated energy depends quadratically on α,
the dissipated energy difference, that is, dissimilarity between
Σi and Σj also depends quadratically on α. However this
does not effect the clustering because of the assumption
that initial condition for every port Hamiltonian system is
considered same. Hence the dissipated energy through every
port Hamiltonian system is quadratically scaled by α.

C. Asymptotic Hamiltonian Energy
In this section, the Hamiltonian energy is used to de-

fine the dissimilarity measurement. The Hamiltonian energy
function will be used to find out the energy distribution
throughout the network. Our main interest lies in the energy
distribution as t −→ ∞. In order to do so, step input
through the external ports are applied to (32) and we compute
limt→∞ x(t). Here x(t) includes the states of whole network
,that is, x(t) ∈ RN×n. Applying limt−→∞ to the hamiltonian
energy function for the whole network leads to (48).

lim
t→∞

H(x) = lim
t→∞

1

2
x(t)>Qx(t) (48)
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Theorem 1. The asymptotic hamiltonian energy function of
the whole network is given by (49)

lim
t→∞

H(x(t)) = 1>mB
>A−>QA−1B1m (49)

Proof. The external step input uext(τ) that is applied to (32)
is a vector of dimension m for all time t, where m is the total
number of external input applied to the whole network. The
step input to every kth external input channel is given as

uextk (t) =

{
1 if k = i, t ≥ 0

0 if k 6= i, t ≥ 0
(50)

Hence we get the external input for all time t as a vector
of size m.

uext(τ) = 1m (51)

Taking zero initial condition and substituting (51) in (32)
we get

x(t) =

∫ t

0

eA(t−τ)B1mdτ (52)

Let t− τ = σ, we get −dτ = dσ.
Taking upper limit τ = t, we get σ = t− t = 0
Taking lower limit τ = 0, we get σ = t− 0 = t
Using change of variables to integrate (52)

x(t) =

∫ 0

t

−eA(σ)B1mdσ (53)

Switching limits we get:

x(t) =

∫ t

0

eA(σ)B1mdσ (54)

x(t) = A−1[eAσ]t0B1m (55)

x(t) = A−1[eAt − I]B1m (56)

Since we are interested in limt→∞ x(t), we take t −→
∞. According to (27) the given network of system is asymp-
totically stable, thus eAt −→ 0, as t −→ ∞ . Applying this
limits to (56) we get

lim
t→∞

x(t) = −A−1B1m (57)

Here, limt→∞ x(t) is a column vector of size N × n
Substituting (57) to (48) we get

lim
t→∞

H(x(t)) = (A−1B1m)>QA−1B1m (58)

lim
t→∞

H(x(t)) = 1>mB
>A−>QA−1B1m (59)

Let us denote limt→∞ x(t) as x(∞) for ease of notation.
The asymptotic Hamiltonian energy of ith port Hamiltonian
system is given by

lim
t→∞

Hi = xi(∞)>Qixi(∞) (60)

Here, xi(∞) is the column vector of states belonging to
Σi from (57).

Proposition 3. The dissimilarity is given by the asymptotic
energy difference between Σi and Σj

Dij = | lim
t→∞

Hi − lim
t→∞

Hj | (61)

As the measurement of dissimilarity has been defined
in three different ways, the next step is to cluster similar
behaving port Hamiltonian systems together into single cluster.
In this research work, the hierarchical clustering algorithm is
employed to cluster two similar behaving port Hamiltonian
systems. The hierarchical clustering algorithm will be elabo-
rated in the next section.

VII. HIERARCHICAL CLUSTERING ALGORITHM

Hierarchical clustering is an algorithm that groups simi-
lar objects into groups called clusters. The definition of cluster
with respect to a connected graph is given as follows:

Definition 2: Consider a connected graph Gr = (Vr; Er).
Here Gr represents the simplified network. A non-empty index
subset of Vr is called a cluster of graph Gr. Vr is a collection
of clusters {C1, C2, . . . , Cr} and Ci is the ith cluster which
is created by merging similar behaving port Hamiltonian
systems.

In this research, the number of clusters refers to the
number of port Hamiltonian systems in the simplified network.
If we have N interconnected port Hamiltonian systems in
the full network, then we have r port Hamiltonian systems
in simplified network such that N > r. Hierarchical cluster-
ing typically works by sequentially merging similar clusters.
In the previous section, the dissimilarity between two port
Hamiltonian systems which serves as the distance between two
port Hamiltonian systems was discussed. After obtaining the
dissimilarity matrix, it is necessary to determine from where
can the distance be computed. For example, it can be computed
between the two most similar parts of a cluster (single-
linkage), the two least similar bits of a cluster (complete-
linkage), the center of the clusters (mean or average-linkage),
or some other criterion [20].

A small example of hierarchical clustering is provided in
Figure 5. Here it is seen that, first the top two red clusters are
merged together into a single cluster as they are the closest.
Then the two red clusters on the right are merged together. In
the end there is a single cluster, which contains all the clusters.

After creating clusters for a given r using hierarchical
clustering technique, we compile all the information regarding
the port Hamiltonian systems present in various clusters in the
aggregation matrix P . Aggregation matrix is defined by (62).

P := col(p(C1), p(C2), . . . , p(Cr)) (62)
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Figure 5. Hierarchical Clustering

Where,
• p(Ci) is a tall matrix of size (n×N)×n. Recalling from

section V, n is the dimension of identical port Hamilto-
nian system and N is the number of interconnected port
Hamiltonian systems.

• The kth block of p(Ci) is of size n×n. The kth block is
equal to an identity matrix In when kth port Hamiltonian
system ∈ Ci or 0n otherwise.
The aggregation matrix is used for topological simplifi-

cation of the network system with N port Hamiltonian systems
to r port Hamiltonian systems, which is discussed in the
following section.

VIII. TOPOLOGICAL SIMPLIFICATION OF PHYSICAL
NETWORK SYSTEM

Now, we consider the model reduction problem of the
network system of the form (24). We use the graph clustering
method proposed in [9]. We recall some basic definitions in
graph clustering from [9].

For a given aggregation matrix P , the reduced order
system is given by

Σ̂


ẋr =

(
Ĵ + K̂ − R̂

)
︸ ︷︷ ︸

Â

Q̂xr + B̂uext

yext = B̂>Q̂xr

(63)

Where,
• Ĵ=P>JP is a skew matrix matrix.
• K̂ = P>KP is a skew matrix matrix.
• R̂ = P>RP is a positive definite matrix.
• B̂ = P>B.
• Q̂ = P>QP is a positive definite matrix.

The matrix property preservation of reduced order matrix
is provided in appendix C.

Example 1
Consider four port Hamiltonian systems interconnected

as shown in Figure 6. The J , K, R and B matrices of the
system under consideration are given by

J =


J1 0n 0n 0n
0n J2 0n 0n
0n 0n J3 0n
0n 0n 0n J4



R =


R1 0n 0n 0n
0n R2 0n 0n
0n 0n R3 0n
0n 0n 0n R4



K =


0n K12 K13 K14

K21 0n 0n K24

K31 0n 0n K34

K41 K42 K43 0n



B =


Bext1 0n×mint

0n×mint Bext2

0n×mint 0n×mint

0n×mint 0n×mint



(64)

The graphical representation of the system in Figure 6
is given by Figure 7.

Here the network is simplified to three interconnected
port Hamiltonian systems. Let the three clusters be defined as
C1 = {Σ1,Σ2}, C2 = {Σ3} and C3 = {Σ4}. The projection

Figure 6. Four port Hamiltonian systems interconnection
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Figure 7. Graphical representation of example 1

matrix for the clsuters is given by:

P =


In 0n 0n
In 0n 0n
0n In 0n
0n 0n In

 (65)

Using the aggregation matrix in (65) to obtain the
simplified network of the form (63), we get (66).

K̂ =

 K12 +K21 K13 K14 +K24

K31 0n K34

K41 +K42 K43 0n



Ĵ =

 J1 + J2 0n 0n
0n J3 0n
0n 0n J4



R̂ =

 R1 +R2 0n 0n
0n R3 0n
0n 0n R4



B̂ =

 B1,ext B2,ext

0n×mint 0n×mint

0n×mint 0n×mint



(66)

The Ĵ and K̂ is rewritten as

K̂ =

 0n K13 K14 +K24

K31 0n K34

K41 +K42 K43 0n



Ĵ =

 J1 + J2 +K12 +K21 0n 0n
0n J3 0n
0n 0n J4


(67)

In (67) it should be noted that, Ĵ contains the term K12

and K21 with the internal interconnections of Σ1 and Σ2. This
shows that the dynamics of the new cluster Σ12 contains the
dynamics of the interconnection as well. This is represented in

Figure 8. Σ12 cluster

Figure 9. Reduced graphical representation of example 1

Figure 8. The Figure 9 shows the new graphical representation
for the simplified network.

Finally the clustering algorithm for the interconnected
port Hamiltonian system is presented as follows:

Input: J , K, R, Q and B for n interconnected port
Hamiltonian systems and desired number of port Hamiltonian
systems r in simplified network.
Output: Ĵ , K̂, R̂, Q̂ and B̂ of a simplified network.

1) Select the measurement used for dissimilarity.
2) Based on the three choices discussed in Section VI:

Based on dissipation matrix
a) Compute the dissimilarity matrix based on the dissipa-

tion matrix (30).
Based on dissipation gramian

a) Compute the dissipation gramian Dg .
b) Compute the dissimilarity matrix (47).
Based on Asymptotic Hamiltonian energy

a) Compute the limt→∞ x(t) (57).
b) Compute the dissimilarity matrix as shown in (61).

3) Implement hierarchical clustering algorithm using the
dissimilarity matrix.

4) Construct aggregation matrix P based on the clusters
generated by hierarchical clustering algorithm.

5) Generate Ĵ , K̂, R̂, B̂ and Q̂ using the aggregation matrix
as shown in (63).
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It must be noted that different choices of rth order
clustering will lead to different simplified networks. Hence, it
is a challenge to compute the most suitable aggregation matrix
P such that the error between full network and simplified
network |Σ − Σ̂| is small. Hence in next section we look
into error computation between full network and simplified
network.

IX. ERROR APPROXIMATION
When we reduce a model using model reduction tech-

niques, the reduced order model is the approximated model of
full order model. Thus we will get discrepancies between the
full network and the simplified network. Based on different
dissimilarity measurements, we get different reduced order
model and hence different modelling errors, with the full
network system Σ and simplified network Σ̂ given by (24)
and (63) respectively. Let uext and ûext, yext and ŷext denote
the input and output of full network and simplified network
respectively. We define inputs and outputs of the full network
and simplified network as shown in (68).

uext = ûext

e = yext − ŷext (68)

Where, e is the error. Considering the error system Σe mapping
uext −→ e given by (69).

Σe :

{
ẋe(t) = AQxe + Buext
yexte = B>Qxe

(69)

where, state vector xe = [x, xr]
> , yexte = yext − ŷext

and

A =

[
J +K −R 0Ns×r
0Ns×n Ĵ + K̂ − R̂

]
B =

[
B

B̂

]
Q =

[
Q 0Ns×r
0Ns×n Q̂

] (70)

Now, the error approximation for three types of dissim-
ilarity measurements are shown.

A. Dissipation matrix
Theorem 2. The approximation error between the full network
and the simplified network is given by (71)

Error = ‖R− PR̂P>‖sum (71)

Proof.
R̂ = P>RP (72)

Pre and post multiplying by P and P> we get

PR̂P> = PP>RPP> (73)

Since PP> 6= I we therefore have PR̂P> 6= R. Thus
projection of R̂ is not equal to R.

Since R and R̂ does not have the same dimension.
In order to find the error between dissipation matrix of full

network and simplified network, we project back the reduce
order dissipation matrix to full order and then take their
difference to find the error.

B. Dissipation gramian

Theorem 3. The approximation error between the full network
and simplified network will be the difference between the
asymptotic energy dissipated, as given by (74).

Error = |x>nDgxn − x>r Dgrxr| (74)

where, Dgr is the dissipation gramian of the reduced order
model. xn is the initial condition and xr is the projected initial
condition given by (75)

xr = P>xn (75)

According to proof provided in appendix A, dissipation
gramian of projected system is not equal to projection of
dissipation gramian , that is, Dgr 6= P>DgP . Hence, Dgr

needs to be calculated from the lyapunov equation of the form
(45), which is given by

Â>Dgr +DgrÂ = −Q̂>R̂Q̂ (76)

Note 6: The initial condition xn can be scaled up or
down by the factor α. Thus, we can make an important
conclusion that is, even though the clustering is not affected by
the factor α as shown in (47), the approximation error depends
quadratically on the value α. However, the trend of decay in
error with increasing number of cluster will remain the same
for different values of α, as shown in Figure 14, Figure 15
and Figure 16 in section X.

C. Asymptotic Hamiltonian Energy

Theorem 4. The approximation error between the full network
and the simplified network will be the difference in their
asymptotic energy, given by (77).

Error = |x(∞)>Qx(∞)− xr(∞)>Q̂xr(∞)| (77)

According to the proof provided in appendix B xr(∞) 6=
P>x(∞). Thus, xr(∞) must be computed from an equation
of the form (57).

xr(∞) = −Â−1B̂1m (78)

X. RESULTS

In this section the clustering algorithm developed is
applied to RLC circuits interconnected to each other as a
ladder as shown in Figure 10. For ease of visualization we have
selected number of interconnected port Hamiltonian systems
to be 20. First we do the modelling of the interconnected port
Hamiltonian system. For simplicity purpose, the modelling is
done for three RLC circuits interconnected to each other.
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Figure 10. Ladder RLC circuit

Figure 11. Separated RLC circuit

A. MODELLING

First we will break down the ladder circuit presented
in Figure 10 and treat each of the circuits as a separate port
Hamiltonian system as shown in Figure 11. Next we make
the gyrator interconnection structure between them as shown
in Figure 12.

Figure 12. Node diagram of Figure 10

Step 1:
Let us consider circuit 1 in Figure 11 and write down its

equations using port Hamiltonian formulation and Kirchhoff’s
laws, as shown in (79).[

IC1

VL1

]
=

[
0 1
−1 −R1

] [
VC1

IL1

]
+

[
0 −1
1 0

] [
Vleft
I1

]

y =

[
0 1
−1 0

] [
VC1

IL1

]
(79)

Where, [
VC1

IL1

]
=

[
1
C 0
0 1

L

]
︸ ︷︷ ︸

Q1

[
q1
φ1

]
(80)

Here C is capacitance of capacitor L is inductance of the
inductor and Q1 is the energy matrix of the RLC circuit 1.

Step 2:
Separating internal and external ports from (79) leads to

(81).

Σ1



[
IC1

VL1

]
=

[
0 1
−1 −R1

] [
VC1

IL1

]
+

[
−1
0

]
I1 +

[
0
1

]
Vleft

y1ext =
[

0 1
] [ VC1

IL1

]
= IL1

y12int =
[
−1 0

] [ VC1

IL1

]
= −VC1

(81)
From Figure 12, the left port of Σ1 and right port Σ3

are the external ports and rest of the ports are internal ports.
The S matrix from (11) for both system 1 to 2 and system 2
to 3 is given by (82)[

uint12

uint21

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

S1

[
yint12

yint21

]

[
uint23

uint32

]
=

[
0 1
−1 0

]
︸ ︷︷ ︸

S2

[
yint23

yint32

] (82)

Step 3:
Now we can write the complete state space of the form

(24), which is given by (83).
IC1

VL1
IC2

VL2
IC3

VL3

 =


0 1 0 1 0 0
−1 −R1 0 0 0 0
0 0 0 1 0 1
−1 0 −1 −R2 0 0
0 0 0 0 0 1
0 0 −1 0 −1 −R3




VC1

IL1
VC2

IL2
VC3

IL3

+


0 0
1 0
0 0
0 0
0 −1
0 0


[

Vleft
I3

]

yext =

[
0 1 0 0 0 0
0 0 0 0 −1 0

]

VC1

IL1
VC2

IL2
VC3

IL3


(83)

The state space for 20 RLC circuits follows the same
structure as (83).
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Figure 13. Number of clusters vs dissipation matrix error
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Figure 14. Number of clusters vs dissipation gramian error for 10 different
values of α with 0 ≤ α ≤ 100

B. SIMULATIONS

Here we compare the clusters created by implementing
all three dissimilarity matrices. The clusters are created by
taking maximum distance between clusters for hierarchical
clustering algorithm. Finally we plot the error with respect
to the number of clusters, in order to compare the decay in
error.

1) Dissipation matrix based dissimilarity: The dissim-
ilarity measure is given by (30). The approximation error is
given by (71) and the error with increasing clusters decreases,
as shown in Figure 13.

2) Dissipation gramian based dissimilarity: The dis-
similarity measure is given by (47). The approximation error
is given by (74). As we have mentioned previously, the dissim-
ilarity matrix and the error depends on the initial condition and
it will be scaled up by the value α . We will vary α from one
to hundred and plot the approximation error with increasing
number of clusters as shown in Figure 14.

The top most curve and lower most curve in Figure 14
represents the α = 100 and α = 1 respectively. Due to the
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Figure 15. Number of clusters vs dissipation gramian error for α=1
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Figure 16. Number of clusters vs dissipation gramian error for α=100

quadratic dependence of the error on α and plot scaling it may
look like the curves are different. Now we look at the cluster vs
error plots for both initial conditions separately. From Figure
15 and Figure 16, the trend of decrease in error is same. Hence
it is verified that clustering is independent of initial condition
α.

3) Asymptotic energy based dissimilarity: The dissim-
ilarity measure is given by (61). The approximation error is
given by (77) and the error with increasing clusters is shown
to decay slowly as shown in Figure 17.

C. COMPARISON OF NETWORK CLUSTERING

In this section the comparison of clustering using dif-
ferent dissimilarity is shown via network diagram. For the
comparison of simplified networks, ten clusters has been
selected to be present in the simplified network.

The Figure 18, Figure 19 and Figure 20 shows the
ladder structure of interconnection between 20 RLC port
Hamiltonian systems. In the mentioned figures the nodes
having same colour represent their cluster, that is, the nodes
with same color will be placed in same cluster for simplified
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Figure 17. Number of clusters vs asymptotic energy error
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Figure 18. Full network for asymptotic energy based dissimilarity

network. It is evident from Figure 21, Figure 22 and Figure
23 that the simplified network based on different dissimilarity
measurements differ from each other. Hence we can see the
difference in the error approximation in Figure 13, Figure 17
and Figure 15.

XI. CONCLUSION

In this paper a state of the art clustering technique was
developed for physical network system. Furthermore three
different dissimilarity measurements and approximation error
based on asymptotic energy, dissipation matrix and dissipation
gramian was proposed. A new aggregation matrix for the clus-
tering of port Hamiltonian system was also formulated. After
applying the clustering based model reduction on physical
network system we were able to obtain a simplified network
which was a port Hamiltonian system. This simplified network
had a lossless interconnection and its energy was indeed
represented by a Hamiltonian energy function.
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Figure 19. Full network for dissipation matrix based dissimilarity
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Figure 20. Full network for dissipation gramian based dissimilarity

From the results it can be concluded that, the trend of
approximation error varies based on the choice of dissimilarity
and the proposed choices of dissimilarities leads to clustering
that are time invariant. That is, the cluster formation only
depend on the choice of r and no other variables.

XII. FUTURE SCOPE

Firstly, instead of gyrator interconnection the transformer
interconnection [ [3], [16]] could be used for interconnection
of transformer interconnection. Since, this state of the art con-
cept of clustering has a wide range of applications. Hence, this
framework can be extended for systems which are described
by PDE’s (partial differential equations). In this research work
we have considered only dissipative network system, further
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Figure 21. Simplified network after clustering for asymptotic energy based
dissimilarity
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Figure 22. Simplified network after clustering for dissipation matrix based
dissimilarity

work needs to be done on conservative or energy generating
network systems. Furthermore we can also study how energy
gets distributed in the physical network system in frequency
domain.
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APPENDIX

A. Proof of reduced order dissipation gramian

Starting from the following equation

Dgr =

∫ ∞
0

eÂ
>tQ̂>R̂Q̂eÂtdt (84)

Replacing Â, Q̂ and R̂ in (84)

Dgr =

∫ ∞
0

eP
>A>PtP>Q>PP>RPP>QPeP

>APtdt

(85)

Dgr =

∫ ∞
0

P>eA
>tPP>QTPP>RPP>QPP>eAtPdt

(86)

Dgr = P>
(∫ ∞

0

eA
>tPP>Q>PP>RPP>QPP>eAtdt

)
P

(87)
Since PP> 6= IN×n, we can see that infinite dissipation

gramian of projected system is not equal to projection of
dissipation gramian . Therefore Dgr 6= P>DgP .

B. Proof for asymptotic energy error

Applying the external input from (50) and (51) with zero
initial condition to state response for simplified network which
is of the form (52)

xr(t) =

∫ t

0

eÂ(t−τ)B̂1mdτ (88)

Let t− τ = σ, we get −dτ = dσ.
Taking upper limit τ = t, we get σ = t− t = 0
Taking lower limit τ = 0, we get σ = t− 0 = t
Using change of variables to integrate (88)

xr(t) =

∫ 0

t

−eÂσB̂1mdσ (89)

Switching limits we get:

x(t) =

∫ t

0

eÂσB̂1mdσ (90)

x(t) = Â−1[eÂσ]t0B̂1m (91)

x(t) = Â−1[eÂt − I]B̂1m (92)

As t −→ ∞ we have eÂt −→ 0, as the system is
asymptotically stable. Thus we get

lim
t→∞

xr(t) = −Â−1B̂1m (93)

Substituting Â and B̂ in (93)

lim
t→∞

xr(t) = −(P>AP )−1P>Bu (94)

lim
t→∞

xr(t) = −P−1A−1P−>P>Bu (95)

Since P is not invertible, we have xr(∞) 6= P>x(∞)

C. Preservation of port Hamiltonian property in simplified
network

We will prove the property of preservation separately for
Ĵ , K̂ and R̂. First we show that Ĵ is skew symmetric matrix.
Consider (43) from example 1. We take Ĵ matrix

Ĵ =

 J1 + J2 0 0
0 J3 0
0 0 J4

 (96)

In order for the Ĵ to be skew symmetric, sum of J1 and J2
must be skew symmetric. In the above equation (96) J1 and
J2 are skew symmetric matrices.

∴ J>1 = −J1, J>2 = −J2 (97)

(J1 + J2)> = J>1 + J>2 = −J1 − J2 = −(J1 + J2) (98)

So, Sum of two skew symmetric matrices is always skew
symmetric matrix. Hence Ĵ must be skew symmetric matrix.

Next we take K̂ matrix from (43)

K̂ =

 K12 +K21 K13 K14 +K24

K31 0n K34

K41 +K42 K43 0n

 (99)

In order for the K̂ to be skew symmetric, sum of K12

and K21 in block diagonal must be skew symmetric as well
as the sums in off-diagonal block must be skew symmetric.
We have the following relation from (22)

K12 = −K>21 (100)

Taking sum of K12 and K21

K12 +K21 = −K>21 +K21 (101)

By the skew symmetric matrix property we get

K21 −K>21 ∈ skewn (102)

Considering off-diagonal block sum for K14 +K24 and
K41 +K42

(K14 +A24)> = A>14 +A>24 (103)

K>14 +K>24 = −K41 −K42 (104)

K>14 +A>24 = −(K41 +K42) (105)
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From (102) and (105) we can say that K̂ is also skew
symmetric matrix.

Now we will prove that R̂ is still positive definite. Take
R̂ from (43)

R̂ =

 R1 +R2 0n 0n
0n R3 0n
0n 0n R4

 (106)

In the above equation (106) Ri > 0,∀i = 1, 2, 3, 4.
Hence the sum R1 +R2 will be positive definite.

Thus from the above arguments provided, we can say
that the simplified network system with r clusters will have
port Hamiltonian property.
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