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Multiphysics modelling of Ionic Polymer-Metal Composite actuators
with the Finite Element Method

Abstract

Ionic Polymer-Metal Composites are emerging as soft, smart, electromechanical actuators that can be
used in devices such as linear peristaltic pumps. The pump in question uses a monolithic actuator, ma-
chined to have multiple actuation units. For optimisation of its performance, stress-relief slits are cut
between actuation units in kirigami-like patterns. Due to the complex geometries in which this results,
further optimisation requires a numerical model to perform design studies with.
In this work a grey-box, electromechanical model was used to compose a IPMC-plate FEM element
which was implemented in a FEM framework. The mechanical aspects of the new element are derived
from the Plate Theory since this fits the sheet-like shape of IPMC material. The plate curvature was
made dependent on charge, calculated via a Transmission Line model of the IPMC, establishing elec-
tromechanical coupling. Thereafter, the physics of the element was numerically verified by analysing
problems with known solutions. This included limit cases with respect to the electronic degree of free-
dom and tests for convergence. Furthermore simulation results were shown of complex, monolithic
actuators, representative of those driving the peristaltic pump, as proof-of-concept for the new element.
additionally, it was shown that performance, in terms of displacement and stresses, could be qualita-
tively analysed. The work was concluded by demonstrating the effectiveness of kirigami patterns with a
comparison between actuators with and without the kirigami slits.
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Multiphysics modelling of Ionic Polymer-Metal Composite actuators
with the Finite Element Method

1 Introduction

Ionic Polymer-Metal Composites (IPMC) are a composite material comprised of a thin membrane of
Electroactive Polymer (EAP) plated with metal electrodes on its surfaces [13]. When electronically
stimulated, an IPMC will bend according to the distribution of voltage across its metal electrodes. What
sets IPMCs apart from other electromechanic materials, such as piezoelectric ones, is the fact that the
material itself is soft. Furthermore, IPMCs are capable of deforming to higher strains, by as much as
two orders of magnitude greater, and are capable of doing so for lower drive voltages[6].

The membrane polymer has anions fixed in its configuration. These anions are balanced by hydrated,
mobile, cations in the liquid that the IPMC is wetted in. The electrodes on the surface of the IPMC serve
to conduct electrons from one point on the surface of the sheet to another.
The uses of such a composite material are either as electromechanical actuator or sensor. In sensor mode
a potential difference is generated by deformation of the IPMC whereas in actuation mode, a potential
difference is posed over the electrodes.
The applied voltage causes the hydrated cations to be attracted to the negative electrode and redistribute
themselves accordingly. Together with the cations, the water molecules migrate towards the anode. This
results in the polymer network expanding near the anode and contracting near the cathode [7]. The
combined swelling and shrinking of the polymer induces curvature to the sheet of IPMC, bending it. A
schematic representation of the construction and working principle of IPMCs is shown in Figure 1.1. It
shows that water and cations are homogeneously distributed in an IPMC in rest and non-homogeneously
distributed when provided with a potential difference.

Figure 1.1: Schematic representation of the electromechanical coupling in IPMC material [9].

In sensor mode, the IPMC sheet is bent by external, mechanical loads. Due to this bending, mobile
particles are displaced from the region loaded in compression to the region loaded in tension; from one
electrode to the other. As a result of the unequal anion-cation distribution, a potential difference is posed
on the electrodes and a small current may be produced [8].

In prior research a linear peristaltic pump was made driven by a monolithic IPMC actuator [17]. The
pump moves fluid by means of a membrane excited by a traveling wave, driven by the IPMC actuator.
The actuator itself was made from a Nafion membrane plated with platinum electrodes.

Henk A. de Reuver | ID: 0892382 1
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In order to manufacture the monolithic actuator, one sheet of IPMC material is worked to create eight
mechanically attached but separately operating IPMC actuating units. In order to create these separate
units, the electrodes on the surfaces are electronically decoupled by etching away some of the metal with
laser micromachining methods.
Furthermore, stress relieving, kirigami-inspired slits are cut through the sheet to increase the magnitude
of curvature of the actuation units, increasing pumping efficiency. Additionally, holes are machined
through the actuation units such that a water tight membrane can be attached. The complete actuator
design is shown in Figure 1.2 where blue indicates intact IPMC material, white etched IPMC material
and grey removed IPMC material.

Figure 1.2: Design of the distributed IPMC actuator for use in a linear peristaltic microfluidic pump in
top view. Etched areas are represented in white, the IPMC actuator units are colored in dark grey and
cuts and holes in light grey [17]

The IPMC actuator still requires optimisation, mostly in the kirigami pattern, to increase pumping effi-
ciency. The problem is that the complex geometry of the actuator makes it difficult to make predictions
on the performance for variations in the design; a numerical approach is needed.
The goal of this project is to make a numerical simulation tool that is capable of modelling the elec-
tromechanical behaviour IPMC actuators. Furthermore, it must be able to handle complex geometries
such as the one described above, with the purpose to analyse the effect of variations in design to the
performance of the actuator. The numerical model is to use the Finite Element Method (FEM) since it
is well suited for complex geometries.

The first step towards the final product is to select a model for the electrical response of the IPMC to
applied electric loads from the literature. The output of the electric model then has to interact with a
separate mechanical model to translate applied electric load into deformation of the geometry. The two
selected models and their governing equations are introduced in Chapter 2.
The second step is to convert the models from the literature into a suitable format for the Finite Element
approach; into a matrix-vector system of equations. The required steps and mathematical operations are
explained, from start to finish, in Chapter 3.
Next is to implement these systems of equations into a FEM framework. This framework is responsible
for the administration of all geometrical and parametric inputs, for the assembly of a single system of
equations from these inputs combined with the electric and mechanical models and for producing an
organized array of outputs. A readily available, open-source FEM code[3] was used as explained at the
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end of Chapter 3.
Once implemented, it is important to verify that the numerical results are accurate and reliable and that
the model can handle complex geometrical features. To this end, an IPMC actuator is modelled and
simulations are performed with varying material parameters and simulation settings. The numerical
results are compared to analytical results for accuracy and tested for convergence for reliability. This
results of this process is provided in Chapter 4.
The final part of this work is a presentation of use cases of the multiphysics FEM simulations. Proof is
shown that the intended simulations, for which this model was made, can be performed and analysed.
These simulations and their results are shown in Chapter 5.

Henk A. de Reuver | ID: 0892382 3
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2 IPMC Modelling

In order to model an IPMC actuator, the material behaviour is subdivided into an electric module and a
mechanical module. To this end, the IPMC material must be given an electric degree of freedom on top
of its mechanical degrees of freedom. The two modules need to be coupled such that the mechanical
degrees of freedom are dependent on the electric degree of freedom.
The electric degree of freedom and its governing equations are derived in Chapter 2.1 of this report. The
mechanical degrees of freedom and their governing equations and, more importantly, the electrome-
chanical coupling are explained in Chapter 2.2 of this report.

2.1 Electronic behaviour
Models for the electric behaviour of IPMCs are available as black-box [14], grey-box [4] [11] and
white-box [5] [12] models. The black-box models tend to be described in the frequency domain due to
the system identification tools used whereas white-box models are described in the time domain as these
are derived from theory.
Since the model in this work is to be implemented into a FEM framework, we require it to be described
in the time domain. Furthermore, since the priority is to obtain good qualitative results, a grey-box
modelling approach is selected.
This model describes the response of a material to electric inputs with a circuit of resistors, conductors
and capacitors [11]. This representative electric circuit models the electric properties of the IPMC ma-
terial from electrode to electrode.

The unit circuit in this work consists of a capacitor (C) placed in series with a conductor (W ). In par-
allel with these two components is another conductor (G). Capacitor C introduces the time-dependent
behaviour of the electric response, characteristic of IPMCs. Each unit circuit is connected to the electric
input via a series of surface resistors (Ra and Rb).
Figure 2.1 shows the electric layout of a sheet of IPMC material in side-view. Note that the array of unit
circuits resembles a Transmission Line problem; a well-documented topic in Electrical Engineering for
which analytical solutions are readily available.

1 2 3

1’ 2’ 3’

Ra Ra Ra

Rb Rb Rb

GW

C

GW

C

GW

C

Electrode

Polymer

Figure 2.1: IPMC material represented by a series of representative electric circuits.

In this unit circuit, each component can be attributed to a physical phenomenon. Starting with resistors
Ra and Rb; these can be attributed to the conductivity of the electrodes. They are dependent on the type
of material used and the geometry of the electrodes. The effect of surface resistance can be observed by
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the rate with which the induced curvature decreases with distance from the applied potential difference.
The capacity of capacitor C is a measure for how many cations can be accumulated near the anode as
well as the ionic charge of the accumulated cations. Its effect can be observed through the maximum
deflection of the IPMC actuator
The conductor W is then closely linked to the mobility of these cations. The less resistance in their path
through the polymer, the quicker they allow for the accumulation of cations near the anode. The effect
of W is observed through the deformation rate of the IPMC actuator.
Conductor G can be attributed to the current flowing between electrodes without performing work on
the cations; it causes a loss of energy.

2.1.1 Electric potential
From the transmission line problem identified in the previous section as presented in Figure 2.1, we may
obtain a differential equation. In particular, the partial differential equation for the potential difference
over the surfaces of the IPMC can be obtained for the one-dimensional case [11] as:

C
∂3p

∂x2∂t
+W

∂2p

∂x2
−R(G+W )C

∂p

∂t
−RGWp = 0 (2.1)

It describes the electric potential difference (p), in space and time, over the electrodes (1 − 1′, 2 − 2′,
. . . , n − n′) of the IPMC. Parameters C, W , and G represent the electric components from Figure 2.1
and R = Ra+Rb.

In order to extend the differential equation to two dimensions we use the fact that the plated electrodes
are metallic, making them inherently isotropic. Furthermore, since the polymer membrane is already
assumed to have constant out-of-plane properties over the first in-plane direction, we simply extend
that assumption to the second. Using these properties, Equation 2.1 can therefore be interpreted as a
two-dimensional equation with x = x(x, y).

2.1.2 Charge
With potential difference p, obtained in the previous section, across the electrodes we can isolate the
series RC circuit with conductor W and capacitor C and analyse them separately from the rest of the
representative electric model. Figure 2.2 shows the observed electric circuit with voltage p(t) as the
solution from Equation 2.1, W the conductivity of the resistor and C and q the capacitance and charge
on the capacitor, respectively.

~p(t) W

C q

Figure 2.2: The RC circuit to charge capacitor C from the representative electric model with p(t) the
potential difference over the electrodes of the actuator.

From the circuit of Figure 2.2, using Kirchhoff’s voltage law, we obtain that electric potential p(t) is
equal to the sum of the voltage drop over conductance W and the voltage drop over capacitor C. This
yields an equation with potential, current and charge as:

p(t) =
i(t)

W
+
q(t)

C
(2.2)

where i(t) is the current through the circuit as a result of p(t).
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Using the definition of current, charge per second, we find that the current through C is equal to the
change in charge over time and obtain a differential equation for charge as:

CWp(t) = C
dq

dt
+Wq(t) (2.3)

2.1.3 Analytical solutions of limit cases
As a way to check the obtained equations for potential and charge, we mathematically investigate cases
where one of the parameters of the representative electric circuitR, C,W orG approaches either zero or
infinity. For each of these limit cases we can provide the analytical solutions to the potential and charge
fields.

First we investigate the case in which the surface resistance of the IPMC is reduced to zero. Physically
this could mean that the electrodes are so thick and conductive that their resistance becomes completely
negligible with respect to conductors W and G.
Given that R = 0 Ω mm−1, Equation 2.1 reduces to:

∂

∂t

(
∂2p

∂x2

)
+
W

C

∂2p

∂x2
= 0 (2.4)

Where, due to the absence of surface resistance, the potential is no longer dependent on the spacial
dimensions such that:

∂p

∂x
= 0,

∂2p

∂x2
= 0 (2.5)

The solution to this problem is a uniform potential difference across the entire IPMC. This also removes
spatial dependence from the charge field even though the equation for charge does not reduce. Addition-
ally, note that while the potential difference is no longer time dependent, the charge still is.

Secondly, we investigate the case in which capacitance of the IPMC reduces to zero. Physically, this
could mean that there are no mobile ions throughout the polymer and any ions that are present are not
separated.
Given that C = 0 mF mm−1, the equations for potential and charge reduce to:

∂2p

∂x2
−RGp = 0

q = 0

(2.6)

The solution to the potential field has become independent of time and should result in an exponential
decay in space away from the constrained boundary. This potential difference does not, however, result
in any charge in the capacitor.

Thirdly, we investigate the case in which the capacitive conductance of the IPMC reduces to zero. The
physical meaning of this could be that there are no mobile ions throughout the polymer. There can,
however, exist a separation in the fixed anions and cations such that there is a constant dipole.
Given that W = 0 Ω−1mm−1, Equations 2.1 and 2.3 are reduced to:

∂2p

∂x2
−RGp = 0

dq

dt
= 0

(2.7)

Note that this yields the same solution to the potential difference as the case of zero capacitance. This is
to be expected since neither case allows current to pass capacitor C. Therefore the charge in the capaci-
tor remains in its initial state which, notably, is not necessarily fully discharged.

Henk A. de Reuver | ID: 0892382 6
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Finally, we investigate the case in which the conductance of the IPMC membrane approaches infinity.
Physically, this means that the polymer is electrically highly conductive and thus bypasses current past
the capacitor; a short circuit.
Given that G→∞ Ω−1mm−1, Equation 2.1 reduces to:

∂p

∂t
+
W

C
p = 0 (2.8)

Where, due to the short circuit condition, no potential difference between electrodes is possible such
that:

p = 0 (2.9)

In which case Equation 2.3 reduces to:

C
dq

dt
+Wq(t) = 0 (2.10)

The solution to this problem is no potential difference between electrodes anywhere on the IPMC except
on the constrained boundaries. This solution is temporally constant. The solution to the charge shows
an exponential decay in time towards the fully discharged state, if it were initially charged.

2.2 Mechanical behaviour
Now that we have introduced the electrical behaviour of IPMCs, we can put our attention to the mechan-
ical behaviour of the material. We begin by making the observation that a sheet of IPMC material is
usually thin. So thin, in fact, that it is not necessary to model the out-of-plane dimension of the sheet ex-
plicitly[2]. Reducing the modelling space from three to two dimensions certainly lowers computational
costs. A mathematical model fitting this description is the Plate Theory, derived from the mathematical
description of beams [2]. Additionally, due to the lack of an out-of-plane dimension, the representative
electric circuits, which connect surface to surface, are contained in a single element. This makes solving
for the electric degree of freedom simple.

In this chapter we will start from a free body diagram and derive expressions for the force equilibrium
in each of the three dimensions. Note that the out-of-plane dimension is included since loads may be
exerted on the two-dimensional plate in this direction.
From a second free body diagram, we will derive two more equilibrium equations; those for the mo-
ments about the two in-plane directions.
These resulting five differential equations govern the deformation of the IPMC sheet in its five mechan-
ical degrees of freedom: translation in three dimensions and rotation about the in-plane axes.

2.2.1 Force equilibrium equations
Beginning with the force equilibrium equations of an object, we usually start with a free-body diagram.
Therefore, we introduce Figure 2.3 showing an infinitesimal IPMC plate element subjected to internal
shear and normal forces, Q and N respectively. On top of that is an external load F with components in
all three dimensions. The plate element in question has small deflections with angles αx and αy in the
in-plane directions x and y respectively.

Henk A. de Reuver | ID: 0892382 7
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y

z

x

αy

αx

Q

Q

Q  + dQ

Q + dQ

x

x x

y

y y

F

FFx

z

y

Nx

N + dNx x

Ny

N + dNy y

N  + dNxy xy

N  + dNxy xy

Nxy 

Nxy 

Figure 2.3: An infinitesimal IPMC plate element with deflection angles αx and αy and its internal shear
and normal forces N and Q, respectively. Adapted from: [10]

The complete derivation of the force equilibrium equations, starting from the free body diagram up to
the differential equations, can be found in Appendix A. Only the resulting differential equations are
given in the remainder of this chapter.

From the force equilibrium in x-direction, the following differential equation is obtained:

∂Nx

∂x
+
∂Nxy

∂y
+ Fx = 0 (2.11)

Similarly, the force equilibrium in y-direction leads to the second equilibrium equation:

∂Ny

∂y
+
∂Nxy

∂x
+ Fy = 0 (2.12)

Finally, the plate equilibrium equation for the forces in z-direction is given by:

∂Qx
∂x

+
∂Qy
∂y

= −Fz (2.13)

The above three equations constitute the governing equations of a plate element in the translational
degrees of freedom.

2.2.2 Moment equilibrium equations
After the force equilibria, we want to repeat the same process to obtain the moment equilibrium equa-
tions. Therefore we introduce Figure 2.4 showing the free body diagram of an infinitesimal IPMC plate
element subjected to internal moments M about the in-plane axes.
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y

z

x

αy

αx

Mxy 

Mxy 

M  + dMxy xy 

M  + dMxy xy 

Mx 

M  + dMx x  

M  + dMy y   

My 

Figure 2.4: An infinitesimal IPMC plate element with deflection angles αx and αy and its internal
moments M. Adapted from: [10]

The complete derivation of the moment equilibrium equations, starting from the free body diagram up
to the differential equations, can be found in Appendix A. Only the resulting differential equations are
given in the remainder of this chapter.

From the moment equilibrium in x-direction, the equilibrium equation for moments about the x-axis is
found to be:

∂Mxy

∂x
+
∂Mx

∂y
= 0 (2.14)

Similarly, the moments equilibrium about the y-axis produces an equilibrium equation given by:

∂My

∂x
+
∂Mxy

∂y
= 0 (2.15)

2.2.3 Electromechanical coupling
With the separate electric and mechanical behaviours of IPMC now discussed, we will have to fins a
way to bring the two together in order to incite electroemchanical coupling. To add electromechanical
deformation to the IPMC model we will add charge q as a term to the force and moment equilibrium
equations. In this way, the charge will do its work from within the material itself, affecting the internal
normal forces N, shear forces Q and moments M of the plate.
Before we add the charge term, we find the definition of these forces and moments, shown in Figures
2.3 and 2.4, from the Classical Lamination Theory [1] as:

N = Aε0 + Bκ (2.16)

Q = Q̄γ (2.17)

M = Bε0 + Dκ (2.18)

where ε0 is the in-plane strain on the bending neutral plane of the plate element, κ is the plate curvature
and γ is the out-of-plane shear strain. Matrices A, B and Q̄ are material properties of the composite
plate.
With these expressions we are able to describe non-isotropic materials stacked into a composite mate-
rial. With these equations, it is worth noting that matrix B contains only zeros for isotropic laminates
[1] such as an ideal IPMC plate.
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Now to apply the charge into these equations as per the modelling strategy [11]. Since we want it to
induce only bending, and not normal or shear strains, we include it only as a factor in the definition
of plate curvature κ. This extra, charge dependent term will induce curvature by adding to the internal
normal forces N and internal moments M through Equations 2.16 and 2.18 respectively. Curvature is
then defined as:

κx =
∂αx
∂x

+ k1q, κy =
∂αy
∂y

+ k2q, κxy =
∂αx
∂y

+
∂αy
∂x

(2.19)

where, for the benefit of progress, we assume k1 and k2 to be some constants during the rest of this work.
Note that by making this assumption, the model cannot account for back-relaxation of the actuator. Since
the back-relaxation does significantly impact IPMC bending behaviour, it might be worthwhile in the
future to introduce time dependence to these factors.

The definitions of the strain vectors ε0 and γ remain as they are in the non-electromechanical case. Their
definitions are given by:

ε0
x =

∂u

∂x
, ε0

y =
∂v

∂y
, ε0

xy =
∂u

∂y
+
∂v

∂x
(2.20)

γxz =
∂w

∂x
+ αx, γyz =

∂w

∂y
+ αy (2.21)
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3 IPMC in FEM

Having obtained all of the required IPMC modelling equations in the previous section, it is time to im-
plement them into a Finite Element scheme. For the sake of convenience, an existing FEM framework
is taken wherein the new governing equations will be implemented through a dedicated IPMC element.
The chosen framework is an open-source Python code called PyFEM[3]. This code was already capable
of modelling standard plate elements with much of the same governing equations as derived in Chapter
2.2 with the exception of electromechanical coupling, of course.

In order to implement the IPMC specific equations a dedicated element type with electric and mechanical
degrees of freedom is added to the framework.
In order to implement its governing equations, they have to be converted into matrix-vector format such
that they can be solved numerically [15]. That means they have to be written in the form of:

Ka = f (3.1)

where K is called the stiffness matrix, a is the vector containing the solutions to all degrees of freedom
and f is the vector containing all the forces, both internal and external.
For a single node, vector a is defined as:

a =
[
p u v w rx ry

]T (3.2)

where p is the potential difference over the electrodes of the IPMC and u, v, w, rx and ry are the dis-
placements in x-, y-, and z-direction and the curvatures in x- and y-direction, respectively.

In the remainder of this chapter, we will derive stiffness matrix K as well as the internal forces in vector
f piece-by-piece. First we derive the contributions of the electric governing equation to each in Chapter
3.1. Secondly, we derive an equation to calculate the charge from potential distribution p in Chapter 3.2
Then, each of the mechanical contributions to the stiffness matrix and internal forces is calculated in
Chapter 3.3.
Lastly, all of the obtained components are reassembled into the single matrix-vector system of equations
of Equation 3.1 in Chapter 3.5.

3.1 Electric stiffness matrix
We begin the process of obtaining the components of the total stiffness matrix with the electric behaviour
of IPMCs, taking the complete partial differential equation, in strong formulation, as given in Equation
2.1. After some rewriting, this becomes:

∂

∂t
(∇ · ∇p) +∇ ·

(
W

C
∇p

)
− ∂

∂t

(
R (G+W ) p

)
− RGW

C
p = 0 (3.3)

In order to solve this differential equation later on, we require it to be put into weak formulation first and
then to be discretised in both space and time [16].
The weak form of the differential equation is obtained by integrating every term over the domain in
which we work (Ω) and multiplying each with a so-called test function (ν) which we will define later on
[18]. The weak form of the electric governing equation is:∫

Ω

∂

∂t
(∇ · ∇p) ν dΩ +

∫
Ω
∇ ·
(
W

C
∇p

)
ν dΩ

−
∫

Ω

∂

∂t

(
R (G+W ) p

)
ν dΩ−

∫
Ω

RGW

C
pν dΩ = 0 (3.4)
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Next, we would like to include the test function inside the brackets on the second derivative terms. This
will aide in reducing the order of these derivatives. Moving the test function can be accomplished using
the product rule for differentiation as:

(∇ · ∇p) ν = ∇ · (∇pν)−∇ν · ∇p (3.5)

By substituting the right hand side terms of Equation 3.5 into the weak formulation of the PDE, we
obtain:

∂

∂t

∫
Ω
∇ · (∇pν) dΩ− ∂

∂t

∫
Ω
∇ν · ∇p dΩ

+

∫
Ω
∇ ·
(
W

C
∇pν

)
dΩ−

∫
Ω
∇ν · W

C
∇p dΩ

− ∂

∂t

∫
Ω
R (G+W ) pν dΩ−

∫
Ω

RGW

C
pν dΩ = 0 (3.6)

Now that the test functions are neatly inside the brackets in the second derivative terms, we can apply
Gauss’ divergence theorem, given by: ∫

Ω
∇ · a dΩ =

∫
Γ

a · ~n dΓ (3.7)

Applying Gauss’ theorem on Equation 3.6 yields:

∂

∂t

∫
Γ
ν∇p · ~n dΓ− ∂

∂t

∫
Ω
∇ν · ∇p dΩ

+

∫
Γ
ν
W

C
∇p · ~n dΓ−

∫
Ω
∇ν · W

C
∇p dΩ

− ∂

∂t

∫
Ω
R (G+W ) pν dΩ−

∫
Ω

RGW

C
pν dΩ = 0 (3.8)

which no longer contains any second order derivative.

The boundary integrals in Equation 3.8 are subject to the boundary conditions of the problem. The
PyFEM framework contains a separate routine which enforces the boundary conditions after the system
of equations has been solved. This allows us to omit the boundary integrals from this equation, which
then simplifies to:

∂

∂t

∫
Ω
∇ν · ∇p dΩ +

∫
Ω
∇ν · W

C
∇p dΩ

+
∂

∂t

∫
Ω
R (G+W ) pν dΩ +

∫
Ω

RGW

C
pν dΩ = 0 (3.9)

Next, we use the Galerkin method to approximate the potential field p as a linear combination of expan-
sion functions. We do this by discretising the potential field into n elements and multiply the potential
difference over each element with their respective shape function ϕ. Furthermore we separate the vari-
ables of p, time and space, while doing so. This yields:

p(~x, t) =

n∑
j=0

pj(t)ϕj(~x) (3.10)
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Next we substitute Equation 3.10 into Equation 3.9. At the same time we choose the test functions ν
such that they correspond to the element shape functions ϕ to obtain:

n∑
j=1

∂pj
∂t

(∫
Ω
∇ϕi · ∇ϕj dΩ +R (G+W )

∫
Ω
ϕi × ϕj dΩ

)

+

n∑
j=1

pj

(
+
W

C

∫
Ω
∇ϕi · ∇ϕj dΩ +

RGW

C

∫
Ω
ϕj × ϕi dΩ

)
= 0 (3.11)

All that stands in the way to solve this system of equations is the time derivative in the first term on the
left-hand side. This derivative, approximated by an explicit Euler scheme, becomes:

∂pj
∂t

k+1

=
pk+1
j − pkj

∆t
(3.12)

where k represents the current time step, for which the potential field is known, and k+ 1 represents the
next time step to be solved. Then, by definition:

pk+1
j − pkj = ∆pk+1

j (3.13)

We substitute these two expressions into Equation 3.11 to obtain:

n∑
j=1

∆pk+1
j

[
1

∆t

(∫
Ω
∇ϕi · ∇ϕj dΩ +R (G+W )

∫
Ω
ϕi × ϕj dΩ

)

+

(
W

C

∫
Ω
∇ϕi · ∇ϕj dΩ +

RGW

C

∫
Ω
ϕj × ϕi dΩ

)]
=

−
n∑
j=1

pkj

(
W

C

∫
Ω
∇ϕi · ∇ϕj dΩ +

RGW

C

∫
Ω
ϕj × ϕi dΩ

)
(3.14)

We now have a system of n linear equations with n unknowns. It can be written in matrix-vector notation
as:

∆pk+1 ·
(

Kpp +
Cpp

∆t

)
= fp,int · pk (3.15)

where Kpp and Cpp are the stationary and instationary contributions to stiffness matrix from Equation
2.1 and fp,int is the contribution to the internal forces vector from that same equation. They are defined
as:

Kpp|i,j =
W

C

∫
Ω
∇ϕi · ∇ϕj dΩ +

RGW

C

∫
Ω
ϕi × ϕj dΩ (3.16)

Cpp|i,j =

∫
Ω
∇ϕi · ∇ϕjdΩ +R(G+W )

∫
Ω
ϕi × ϕjdΩ (3.17)

fp,int|i = −W
C

∫
Ω
∇ϕi · ∇ϕj dΩ− RGW

C

∫
Ω
ϕi × ϕj dΩ (3.18)

3.2 From potential to charge
Now that we are able to obtain the potential difference over the actuator, we need to obtain a numeri-
cally solvable expression of Equation 2.10. This could be achieved similarly to the PDE for potential.
This is rather complex, however, for such a simple equation. Instead, it can be solved more easily by
approximating the time derivative with an explicit Euler scheme. This yields:

dqk+1

dt
=

qk+1 − qk

∆t
(3.19)
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After substituting this expression into the differential equation for charge, we get:

C
qk+1 − qk

∆t
+Wqk+1 = CWpk+1 (3.20)

For which we can isolate qk+1 on the left-hand side. This results in an equation to directly calculate the
charge in capacitor C, namely:

qk+1 = C
Wpk+1∆t+ qk

C +W∆t
(3.21)

3.3 Mechanical stiffness matrix
Having obtained an expression to solve for the charge throughout the IPMC, we can move on with the
mechanical stiffness and force contributions with electromechanical coupling. There are five mechanical
contributions to each; one by each of the Equations 2.11, 2.12, 2.13, 2.14 and 2.15. These will be the
starting point of obtaining the mechanical contributions of stiffness matrix K.

3.3.1 Force equilibria
Starting from the force equilibrium equations for normal forces, we first obtain the weak form of both
of these equations. The complete derivations of these weak forms are shown in Appendix B.
The in-plane weak formulations, for x- and y-directions respectively, are given by:∫

Ω

∂ν

∂x
NxdΩ +

∫
Ω

∂ν

∂y
NxydΩ = 0 (3.22)

∫
Ω

∂ν

∂y
NydΩ +

∫
Ω

∂ν

∂x
NxydΩ = 0 (3.23)

We obtain the components to force vector N from Equation 2.16. Writing out the individual expressions
yields:

Nx = A11ε
0
x +A12ε

0
y +A16ε

0
xy +B11κx +B12κy +B16κxy

Ny = A12ε
0
x +A22ε

0
y +A26ε

0
xy +B12κx +B22κy +B26κxy

Nxy = A16ε
0
x +A26ε

0
y +A66ε

0
xy +B16κx +B26κy +B66κxy

(3.24)

After we plug Equations 2.19 and 2.20 into Equation 3.24, we can expand Equation 3.22 to obtain its
contribution to the mechanical stiffness matrix. This is given by:

Kuu,u|i,j =

n∑
j=0

∫
Ω

∂ϕi
∂x



A11

A16

0
B11

B16


T

∂ϕj
∂x

+


A16

A12

0
B16

B12


T

∂ϕj
∂y

+

∂ϕi
∂y



A16

A66

0
B16

B66


T

∂ϕj
∂x

+


A66

A26

0
B66

B26


T

∂ϕj
∂y

 dΩ

(3.25)
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The same expansion of Equation 3.23 leads to its own contribution to the mechanical stiffness matrix as:

Kuu,v|i,j =
n∑
j=0

∫
Ω

∂ϕi
∂y



A12

A26

0
B12

B26


T

∂ϕj
∂x

+


A26

A22

0
B26

B22


T

∂ϕj
∂y

+

∂ϕi
∂x



A16

A66

0
B16

B66


T

∂ϕj
∂x

+


A66

A26

0
B66

B26


T

∂ϕj
∂y

 dΩ

(3.26)

Similarly, in order to obtain the component to the mechanical stiffness matrix provided by Equation
2.13, we first have to derive its weak formulation. This derivation is shown in Appendix B and leads to:∫

Ω

∂ν

∂x
QxdΩ +

∫
Ω

∂ν

∂y
QydΩ = 0 (3.27)

where shear forces Qx and Qy are defined by Equation 2.17 and can be written as:

Qx = Q44γxz +Q45γyz

Qy = Q45γxz +Q55γyz
(3.28)

Then, after combining the above equations and plugging in the definition of the out-of-plane shear
strains, we obtain the last force contribution to mechanical stiffness matrix K as:

Kuu,w|i,j =

n∑
j=0

∫
Ω

∂ϕi
∂x




0
0
Q44

0
0


T

∂ϕj
∂x

+


0
0
Q45

0
0


T

∂ϕj
∂y

+


0
0
0
Q44

Q45


T

ϕj

+

∂ϕi
∂y




0
0
Q45

0
0


T

∂ϕj
∂x

+


0
0
Q55

0
0


T

∂ϕj
∂y

+


0
0
0
Q45

Q55


T

ϕj

 dΩ

(3.29)

3.3.2 Moment equilibria
For the two moment contributions to the mechanical stiffness matrix we repeat much of the same process
as for the force equilibria. First we convert Equations 2.14 and 2.15 to their weak formulations. These
derivations are shown in Appendix B and result in:∫

Ω

∂ν

∂x
Mx dΩ +

∫
Ω

∂ν

∂y
Mxy dΩ = 0 (3.30)∫

Ω

∂ν

∂x
Mxy dΩ +

∫
Ω

∂ν

∂y
My dΩ = 0 (3.31)

From Equation 2.18 we write down the individual components of the moments and obtain:

Mx = B11ε
0
x +B12ε

0
y +B16ε

0
xy +D11κx +D12κy +D16κxy

My = B12ε
0
x +B22ε

0
y +B26ε

0
xy +D12κx +D22κy +D26κxy

Mxy = B16ε
0
x +B26ε

0
y +B66ε

0
xy +D16κx +D26κy +D66κxy

(3.32)
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These expressions, along with Equations 2.19 and ?? are plugged into the weak formulations of the
moment governing equations and their contributions to the stiffness matrix are retrieved.
For the moments about the x-axis, this is:

Kuu,rx|i,j =
n∑
j=0

∫
Ω

∂ϕi
∂x



B11

B16

0
D11

D16


T

∂ϕj
∂x

+


B16

B12

0
D16

D12


T

∂ϕj
∂y

+

∂ϕi
∂y



B16

B66

0
D16

D66


T

∂ϕj
∂x

+


B66

B26

0
D66

D26


T

∂ϕj
∂y

 dΩ

(3.33)

and for the moments about the y-axis, the contribution to the stiffness matrix is:

Kuu,ry |i,j =

n∑
j=0

∫
Ω

∂ϕi
∂x



B16

B66

0
D16

D66


T

∂ϕj
∂x

+


B66

B26

0
D66

D26


T

∂ϕj
∂y

+

∂ϕi
∂y



B12

B26

0
D12

D26


T

∂ϕj
∂x

+


B26

B22

0
D26

D22


T

∂ϕj
∂y

 dΩ

(3.34)

3.4 Electromechanical coupling
With all of the components to the total stiffness matrix sorted, we have still not coupled the electrical
and mechanical behaviour. In fact, compared to the non-electromechanical case, the mechanical contri-
butions to the stiffness matrix are not any different. The cause of this is that in their derivation, all terms
with a dependency on charge were systematically moved to the other side of the equation. This other
side must therefore contain the electromechanical coupling of the system.

It turns out that moving these charge dependent terms to the other side of the equations has led to ex-
pressions that we can equate to the internal forces, a part of vector f in Equation 3.1. These internal
forces then add to the solutions of the displacements and rotations in vector a, causing the IPMC to
deflect. Only at this point will the IPMC element differ from a standard, mechanical plate element. Thus
without any applied electric load nor any charge in the material, the IPMC element simplifies to the
standard plate element.

Otherwise, with charge q present, the internal force due to the force equilibrium in x-direction is given
by:

fint,u|i = −qi
∫

Ω

∂ϕi
∂x

(k1B11 + k2B12) +
∂ϕi
∂y

(k1B16 + k2B26) dΩ (3.35)

of which the complete derivation is found in Appendix B; as are the other internal force terms in this
chapter.
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Likewise, the internal force due to the charge in the IPMC originating from the force equilibrium in
y-direction is given by:

fint,v|i = −kqi
∫

Ω

∂ϕi
∂y

(k1B12 + k2B22) +
∂ϕi
∂x

(k1B16 + k2B26) dΩ (3.36)

Again, it is important to note that matrix B only contains zero values for IPMCs [1], which are, ideally,
isotropic laminates. The normal force contributions to the force vector will therefore also be zero. This
makes sense since a nonzero component would cause contraction or elongation of the element, which is
not observed behaviour of IPMC.

Then, we remember that the out-of-plane, internal shear forces were not dependent on curvature and
therefore neither on charge. This means that the shear force has no contribution to force vector f , thus:

fint,w|i = 0 (3.37)

Now for the contributions to the internal forces due to the moment equilibrium equations. For the
moments about the x-axis, it is shown in Appendix B that the contribution is:

fint,rx|i = −qi
∫

Ω

∂ϕi
∂x

(k1D11 + k2D12) +
∂ϕi
∂y

(k1D16 + k2D26) dΩ (3.38)

And for the moments about the y-axis it is:

fint,ry |i = −qi
∫

Ω

∂ϕi
∂x

(k1D16 + k2D26) +
∂ϕi
∂y

(k1D12 + k2D22) dΩ (3.39)

Unlike matrix B, matrix D does not consist only of zeros. However, values D16 and D26 are zero when
both electrodes of the IPMC are equal in thickness [1]. Nevertheless, the internal force for rotations rx
and ry will therefore be nonzero as long as one of the factors k1, k2 as well as the charge are nonzero.
These nonzero force terms will induce rotation of the element nodes leading to curvature of the mesh.

3.5 Total system of equations
In the beginning of this chapter, we introduced a general matrix-vector system, namely Equation 3.1,
that can be solved numerically and which should represent all governing equations selected in Chapter
2. In Chapters 3.1, 3.3 and 3.4 we obtained all individual contributions of the governing equations to
that system of equations. Now, it is time to assemble the total stiffness matrix K and force vector f .

To this end we first define the mechanical stiffness matrix, assembled from the components to all the
plate equilibrium equations found in Chapter 3.3, as:

Kuu =



Kuu,u|1,1 . . . Kuu,u|1,n
Kuu,v|1,1 . . . Kuu,v|1,n
Kuu,w|1,1 . . . Kuu,w|1,n
Kuu,rx|1,1 . . . Kuu,rx|1,n
Kuu,ry |1,1 . . . Kuu,ry |1,n

...
. . .

Kuu,u|n,1
. . . Kuu,u|n,n

...
...


(3.40)

and, similarly, the deformation vector as:

u =
[
u v w rx ry

]T (3.41)
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Then the final system of equations to solve in the FEM framework becomes:[
Kpp + Cpp/∆t 0

0 Kuu

] [
∆p
∆u

]
=

[
fext,p − fint,p
fext,u − fint,u

]
(3.42)

where fint,u denotes all mechanical internal force contributions and fext are the externally applied loads
to the actuator.

It is worth noting that fint,u, and therewith the solution to the mechanical degrees of freedom, is depen-
dent on p. This requires the system of equations to be solved in a staggered manner. This means that for
every time step, first the system of equations must be solved only for the potential field. Then, for the
same time step, the system of equations can be solved for deformation.
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4 Numerical Verification

In the previous chapters, we have selected a modelling method and worked out the necessary mathemat-
ics. Now that this has all been implemented into PyFEM, the FEM framework, it is time to check the
results from simulations that we know the (approximate) solution to.
We start with an introduction to the geometry, constraints and standard parameters used for the verifica-
tion simulations in Chapter 4.1.
The first check will be to see if the potential field solution near the boundary between etched and un-
etched elements is correct. This can be found in Chapter 4.2.
Then, a series of simulations will be performed for limit cases with respect to the electrical parameters,
which should match the solutions in Chapter 2.1. The results of these simulations can be found in Chap-
ter 4.3.
Thirdly, the mechanical governing equations are tested for a problem with a known solution, a can-
tilevered beam, in Chapter 4.4.
Having checked both electrical and mechanical problems separately, the electromechanical coupling is
verified in Chapter 4.5.
Finally, we will verify that the solutions to the potential, charge and out-of-plane displacement converge
with mesh refinements, in Chapter 4.6, and with time step reduction, in Chapter 4.7.
Additionally, a small study was performed on the geometrical instabilities that may occur with simula-
tions using IPMC elements. These instabilities are only present in exceptional cases and are thus added
to the Appendix in C

4.1 Geometry and constraints
For the announced verification simulations, a common geometry is constructed; a rectangular actuator
of 40 mm wide by 75 mm long by 2 mm thick. A square hole with 10 mm long sides is cut all the way
through; with its center point located halfway across its width and 30 mm away from the base. The last
25 mm of its length has had the electrodes of both top and bottom surfaces etched away.
Figure 4.1 shows the geometry schematically.

25 mm 10 mm

50 mm 25 mm

4
0

 m
m

IPMC

Etched

Figure 4.1: Schematic top-view representation of the actuator geometry used in the verification simula-
tions

At the base the actuator is fully clamped as shown in the figure. All translational and rotational degrees
of freedom at that edge are constrained to zero. The potential difference over the electrodes at the
clamped base is constrained to 1 Volt.
Furthermore, unless otherwise specified, the relevant parameters used for all simulations in this chapter
are:
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Electrical Mechanical Other

R 0.05 Ωmm−1 E 1.00 MPa ∆t 0.10 s
C 0.03 mFmm−1 ν 0.25 thickness 2.00 mm
W 0.04 Ω−1mm−1 k1 0.0
G 0.007 Ω−1mm−1 k2 1.0

Table 4.1: Standard simulation parameters for the verification simulations

The orders of magnitude for these numbers were taken from the paper by Vunder et al.[11]. Capacitance
C and Conductivity W were moved closer together to obtain a resistor-capacitor time constant of less
than 1 second. This time constant is a measure for the charging time of the capacitor. Reducing the time
constant increases the rate at which the actuator responds and thus allows for the simulation of fewer
time steps to model a fully bent actuator. This time constant is given by:

τ =
C

W
(4.1)

The value of conductivity G was increased by an order of magnitude in order to make its effect observ-
able. Lastly, the surface resistance R was lowered in order to decrease the decay of potential difference
over distance. This makes it that the actuator bends more evenly over its length instead of only at its
base. This leads to more observable curvature.

4.2 Etched IPMC
The geometry of the previous section is first put to work in a simulation to confirm that the solution to
the potential field around an etched boundary is correct. We run this simulation, with the geometry from
Figure 4.1, and compare it to one where the square hole of that same geometry is replaced by etched
material. If all is well, the solutions to the two simulations should be equal.

The solutions to the potential and charge were recorded over the length of the actuator on its centerline.
Figure 4.2 shows the comparison between the solutions to the potential on the left and to the charge on
the right.

0 10 20 30 40 50 60 70

Actuator length (mm)

0

0.2

0.4

0.6

0.8

1

P
o
te

n
ti
a
l 
d
if
fe

re
n
c
e
 (

V
)

With etched elements

Without etched elements

0 10 20 30 40 50 60 70

Actuator length (mm)

0

0.01

0.02

0.03

0.04

0.05

0.06

C
h
a
rg

e
 (

m
C

)

With etched elements

Without etched elements

Figure 4.2: Potential difference and charge distributions for an IPMC actuator with a square hole and
one with a square etching.
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The figure shows that the solutions to the potential difference are perfectly equal. Even though there is
etched material where the hole would normally be for one of the simulations, these etched elements do
not conduct electricity and no solution to the potential difference is present. This explains the lack of
data between 25-35 mm as well as the lack of data after 50 mm.
The difference in charge between the two simulations is equal as well. The three data points between
25-35 mm are from the etched elements that fill the square hole in the second simulation. Even though
these elements do not conduct electricity, the solution vector for charge is initialised at 0 mC; thus a
solution is still provided by the FEM framework. This same phenomenon explains the data points in the
etched elements after 50 mm; which are present for both simulations.
As additional proof that the simulation results are equal, the root mean square error for both potential and
charge was calculated. Both errors are exactly zero, from which we can conclude that etched geometries
can be modelled without issue.

4.3 Qualitative analysis of the electric response
From testing the boundary between etched and IPMC elements, we move on to simulations of limit cases
with respect to the electric parameters of the IPMC material. These simulations are set up to mimic the
problems from Chapter 2.1.3.

In the first simulation test case, we eliminate the surface resistance of the IPMC (R = 0 Ωmm−1) and
observe that the entirety of the unetched part of the actuator instantly settles to 1V potential difference
and remains as such indefinitely. According to the analytical solution from Chapter 4.3 this is correct.
Figure 4.3, made with Paraview, shows graphically the simulation result with the potential distribution
on a color map. It shows a uniform potential difference over the IPMC material.

Figure 4.3: Potential difference distribution over an IPMC actuator for the limit case simulation with
zero electric resistance in the electrodes.

To check the spatial dependence of the solutions, potential difference and charge data were collected
over the length of the actuator and over the edge of the hole, visible in Figure 4.3 as a horizontal, white
line.
Figure 4.4 shows the two solutions along that line for the simulations of all limit case problems.
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Figure 4.4: Electric response of an IPMC actuator, for four limit cases, to a 1V step signal (starting at
t = 0s), graphed over its length.

It shows the uniform distribution of the potential difference, for the first limit case, and a uniform accu-
mulation of charge due to this potential distribution. It matches the analytical solution in Chapter 2.1.3.

Secondly, to check the time dependence of the solutions, the potential and charge data are recorded over
time on the top left corner of the square hole. Figure 4.5 shows the potential on the left and the charge
on the right for the results of all limit case simulations.
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Figure 4.5: Electric response of an IPMC actuator, for four limit cases, to a 1V step signal (starting at
t = 0s) of a single point on the actuator, graphed over time.

For the first limit case, it shows that the potential distribution is not dependent on time while the charge
still is. This corresponds to the analytical solutions derived in Chapter 2.1.3. Furthermore, the charge
curve shows that the capacitor is almost fully charged within one second. This is the result of the chosen
values for the capacitance of C and the conductivity of W and their ratio as described by Equation 4.1.
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Also note that the capacitance of the IPMC is equal to the capacitance of C multiplied with the thickness
of the material.

For the second test case, we eliminate the capacitance of the IPMC (C = 0 mFmm−1) causing the
capacitor not to conduct any electricity. We observe that the solution instantly settles to an exponentially
decaying potential distribution over the length of the actuator. This is in agreement with the analytical
solution in Chapter 4.3.
Figure 4.6 shows graphically the potential difference distribution over the unetched part of the actuator.

Figure 4.6: Potential difference distribution over an IPMC actuator for the limit case simulation with
zero capacitance.

Figure 4.4 shows the potential difference and charge along the length of the actuator for the current limit
case. The exponential potential difference decay shows a little kink at a distance of 25 mm away from
the base. Not coincidentally, this is exactly where the square hole boundary starts. This hole causes
the potential to ’pool up’ near the blockage of current. Once past this blockage, the potential difference
decays exponentially anew. The charge graph is zero everywhere, as expected for a capacitance of zero.
Figure 4.5 shows their evolution over time. Since there is no capacitance, the potential distribution is
independent of time and the charge remains zero. These results all correspond to the analytical solution
in Chapter 2.1.3.

For the third test case we eliminate the conductivity through the capacitor (W = 0 Ω−1mm−1). This
causes all current to bypass the capacitor preventing it from charging or discharging; similar to the
second test case.
Figure 4.7 shows an equal potential distribution to that of the second test case, as was expected from the
analytical solution in Chapter 2.1.3.
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Figure 4.7: Potential difference distribution over an IPMC actuator for the limit case simulation with
zero capacitive conductivity.

Figure 4.4 also shows that the potential distribution over the length of the actuator for this case is equal
to the second case. The same is true for the distribution of charge. However this is equal to the previous
case only because the initial state of charge of the actuator in this case was zero everywhere.
Figure 4.5 shows that the potential difference over time is stationary and that the charge in the material
does not change over time.

For the final test case, we eliminate the resistance through the polymer (G → ∞ Ω−1mm−1). For
increasingly high values of conductance, the solution to the potential difference drops to zero quicker
and quicker. At some value of conductance, the simulation becomes unstable, though, and the solution
starts to oscillate. The chosen value for G is low enough not to cause significant oscillation.
Figure 4.8 graphically shows that the potential distribution over the actuator starts at 1V at the base and
almost instantly drops to zero.

Figure 4.8: Potential difference distribution over an IPMC actuator for the limit case simulation where
the electric conductivity of the polymer approaches infinity.

The potential difference and charge are shown over the length of the actuator in Figure 4.4. It tells the
same story as the figure above; potential difference away from the constrained boundary is zero due to
the approximate short-circuit of the material. Consequently, only close to the base of the actuator charge
can accumulate since only here the potential difference can be nonzero.
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Figure 4.5 shows that the top-left corner of the square hole is sufficiently far away from the base that a
potential difference does not build up here. Because of that, charge also cannot accumulate; both remain
zero.

4.4 Cantilevered plate
With the electric behaviour of the IPMC element checked in the previous chapter, it is time to make sure
that the mechanical governing equations of the IPMC element are implemented correctly as well. To
this end a simulation is set up without any applied electric potential. By doing this, we make sure that
all results are obtained through the mechanical governing equations exclusively.
The simulation geometry consists of a long, slender, beamlike plate which is loaded by a distributed
external force over the edge of the tip. The base of the plate is fully clamped and constrained to zero
potential difference.
The relevant geometric and material parameters to this problem are given in Table 4.2. The simulations
is performed with a mesh consisting of square elements 2.5 mm in size.

Property Value

F -0.50 [N]
L 100 [mm]
b 10.0 [mm]
t 1.00 [mm]
E 1.00 [MPa]

Table 4.2: Geometric and material parameters to the clamped plate simulation with purely mechanical
loads.

The simulation result of this problem is checked against the analytical solution to the tip deflection of
a cantilevered beam. For the given geometry and constraints, the analytical solution to the deflection at
the tip is given by:

wmax =
FL3

3EI
(4.2)

where the moment of inertia is:

I =
bt3

12
(4.3)

Then the deflection of the tip, as calculated by Equation 4.2, is -2.0 [mm]. The tip deflection as provided
by the simulation with the IPMC element is -1.95 [mm]. This equates to a relative error of only 2.5%;
therewith concluding that the IPMC elements are sufficiently accurate for mechanical loading.

4.5 Electromechanical deflection
We have confirmed that both electric and mechanical problems on their own are calculated correctly and
provide good results. Now we need to check that the electromechanical coupling is working correctly
as well.
For this problem, we take the cantilevered beam from the previous section, Chapter 4.4, and add a 1V
potential difference constraint to the clamped base. Furthermore, we remove the external load at the tip
and set surface resistance R to zero as this gives us a homogeneous charge distribution over the entire
IPMC.
With a known and homogeneous charge in the IPMC we can manually calculate, from Equation 2.19,
what the curvature must be. Additionally, from tip to base, the curvature must increase linearly at the
rate of the magnitude of the charge per unit of length.
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Figure 4.9 shows, in black, the rotation of the nodes of the cantilevered beam over its length. Due to
the uniform charge distribution, each passed node adds an equal amount of rotation to the total, making
it linear. The red markers represent the cumulative sum of the charge, multiplied with the element size,
over the length of the actuator; starting from zero.
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Figure 4.9: Cumulative sum of the charge, multiplied with the mesh element size, and rotation over the
length of a non-etched, rectangular IPMC actuator without surface resistance.

From the figure it is apparent that the net amount of rotation of each node on the length of the actuator
is equal to the cumulative sum of charge multiplied with the size of the corresponding element. This
means that the added rotation with each node is equal to it charge multiplied with the element size.
This indicates that Equation 2.19 is implemented correctly. The electromechanical coupling thus works
as intended.

4.6 Mesh convergence
Now that we have confirmed that the models for both electric and mechanical degrees of freedom have
been implemented correctly and yield the expected results, it is time to check for convergence. First
we will check that the solutions converge for reducing element sizes. To this end, four different meshes
were made where the element size was halved at each step.
Figure 4.10 shows these meshes side-by-side from coarsest to finest. The absolute element size of each
of these square-element meshes is given in Table 4.3.
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Figure 4.10: Meshes for the verification geometry, numbered #1 to #4 from coarsest to finest.

Mesh #1 Mesh #2 Mesh #3 Mesh #4
Element
size [mm] 5.00 2.50 1.25 0.625

Table 4.3: Absolute element sizes of all square-element meshes of the mesh convergence simulations.

Since there is no analytical solution on hand, convergence will be checked with respect to the solution
of the finest mesh. The root mean square error of each simulation, to the results from the finest mesh, is
shown in Table 4.4.

RMSE w.r.t. Mesh #4

Property Mesh #1 Mesh #2 Mesh #3

p [V] 1.40E-3 5.39E-4 1.55E-4
q [mC] 2.22E-5 8.34E-6 2.40E-6
w [mm] 2.71E-4 7.78E-5 1.97E-5

Table 4.4: Root mean square error of the electric properties and out-of-plane displacement of IPMC
nodes not on the boundaries.

The table shows that all solutions converge superlinearly for decreasing element size.

4.7 Time stepping convergence
The second check for convergence is with respect to time. Reducing the time step between subsequent
cycles should result in more and more accurate results and the simulation results should show conver-
gence. Simulations with time steps between 0.1 and 0.0001 seconds have been performed.
The chosen time intervals for the convergence simulations are given in Table 4.5.
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∆t1 ∆t2 ∆t3 ∆t4 ∆t5
Time
interval [s] 0.10 0.05 0.01 5E-3 1E-3

Table 4.5: Time stepping intervals of the mesh convergence simulations.

For these simulations we lack an analytical solution as well so convergence will be tested with respect
to the simulation with the smallest time step. The root mean square of each simulation, to the results
from the smallest time step, is shown in Table 4.6.

RMSE w.r.t. ∆t5

Property ∆t1 ∆t2 ∆t3 ∆t4

p [V] 3.71E-3 1.86E-3 3.46E-4 1.54E-4
q [mC] 9.42E-4 4.62E-4 8.44E-5 3.75E-5
w [mm] 8.76E-4 4.31E-4 7.89E-5 3.50E-5

Table 4.6: Root mean square error of the electric properties of IPMC nodes not on the boundaries.

The table shows that all solutions converge superlinearly for decreasing time step.
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5 Use Cases

Now that we have a working and tested FEM model for IPMC actuators, it is time to explore its capa-
bilities. First up, in Chapter 5.1, is an example of a parameter study testing the electric response of a
simple rectangular IPMC actuator to changes in the electrical parameters. Secondly, in Chapter 5.2, we
model a monolithic actuation unit as introduced in Chapter 1 of this report. Finally, in Chapter 5.3, we
compare an actuator with kirigami slicing patterns to one without and show that it significantly affects
the deflection of the actuator.

5.1 Parameter study
In the first show of use cases, we perform a parameter study on the electric material properties of IPMCs.
More specifically, we test the response in deflection when changing the electric material properties. Each
of the components from the electric representative circuit R, C, G and W are subjected to a variation
for this study.
The geometry used to perform the parameter study is the same rectangular IPMC actuator described in
Chapter 4.4. The electric material properties are the same as in Table 4.2, unless otherwise specified.
With these simulations, the clamped edge is constrained to a 1V potential difference instead of 0V and
the mechanical load at the tip is removed.
Figure 5.1 shows the deflection over the length on the centerline of the actuator.
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Figure 5.1: Deflection of a non-etched, rectangular IPMC actuator for varying electric material proper-
ties.

From the deflection results of the parameter variation for the surface resistance R, we see that every
decrease in surface resistance leads to an increase in deflection. This may seem obvious, however, if
we look at the deflection for increasing capacitance C we see that the final increase led to a decrease in
deflection. This phenomenon occurs due to the fact that the capacitors near the base of the actuator con-
duct so much current that the later capacitors are unable to charge and therefore induce less curvature.
For reducing leakage conductivity G, we see again that the actuator deflects more with less leakage;
which is to be expected.
The last parameter we look at is the capacitive conductivity W . Either increasing or decreasing it with
respect to the baseline leads to less deflection of the actuator. This is intuitive for the case of less con-
ductivity but for the case of more conductivity we once again run into the situation that much of the
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current flows through the IPMC close to the base, hindering the curvature at locations further away.

With these results a sensitivity analysis can be done on the electric parameters. This could be used to
optimise the use of materials in the composite. A similar analysis could be performed for the thickness
of the polymer membrane or any other property.

5.2 Monolithic actuator with eight actuation units and no Kirigami
The second use case is one that showcases the capability of the IPMC element to be used to model
monolithic actuators. This use case is an important one since the purpose of this work is to be able
to calculate the electromechanical response of actuators such as these; comprised of multiple actuation
units. A simulation was set up to specifically resemble the monolithic actuators that will be modeled
with it in future research.

This monolithic actuator is designed with eight IPMC actuation units in a two-by-four array. The ac-
tuator is subdivided into four sets of opposing actuation units moving together. In order to decrease
simulation time, only two actuation units are modelled explicitly. The rest of the geometry is implied
with the use of constraints. The explicitly modelled units are the two middle units each of separate
actuation pairs.
The edge on the symmetry plane is constrained to zero displacement and zero curvature in the in-plane
direction, normal to the edge. These constraints serve to impose symmetry on the geometry.
The exposed sides besides the actuation units are constrained to zero displacement in the direction out-
of-plane and in the direction in-plane, normal to the edge.
Lastly, the base of the actuator is fully clamped and the units are constrained to a ±1V potential differ-
ence.
Figure 5.2 schematically shows the geometry and constraints of this problem. Note that the roller guides
on the sides indicate that longitudinal displacements are permitted as well as all rotations.
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Figure 5.2: Schematic representation of a twin-actuation-unit IPMC actuator representative of an actua-
tor comprised of eight units.

With this simulation, the free sides of the actuator are not modelled. If the behaviour at those locations
is of interest, the geometry and constraints can be adapted to suit. The constraints as chosen not only
represent an eight-unit actuator, but are valid for any twin row actuator with eight or more units.
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The deformation that results from the mentioned simulation is shown in Figure 5.3. The colors are
representative of the potential difference over the actuation units, where red means a positive and blue a
negative voltage.

Figure 5.3: Three-dimensional representation of the displacement field of a simulated monolithic IPMC
actuator with eight actuation units. Red indicates a positive voltage up to 1V, blue indicates a negative
voltage down to -1V.

In order to promote displacement for better visualisation, the Young’s modulus of the etched elements
was reduced by 90% with respect to that of the IPMC. Furthermore, the displacement was scaled by a
factor 3 for visualisation.

Figure 5.4 shows the stresses on the bottom of the etched parts of the actuator resulting from the defor-
mation. Note that the cut-off corners in the IPMC actuation units is a flaw in the graphical representation
of the solution and not an actual phenomenon.

Figure 5.4: Stresses in the monolithic actuator with eight actuation units.

The figure shows that most of the stress in the etched part of the actuator is concentrated near the centers
of the tips of the actuation units. Images like these could be used to identify regions where implementing
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stress-relieving Kirigami cuts is most effective.

5.3 Monolithic actuator with two actuation units and Kirigami
Now that we know that the FEM model is able to simulate monolithic IPMC actuators, the next step is
to add Kirigami patterns and compare the displacements to their non-Kirigami counterparts.
To this end, we propose a monolithic actuator comprised of only two actuation units moving together.
The two units are placed opposite to each other and are electronically separated by an etched region in
between. Only half of the actuator is modelled explicitly and constraints are added to enforce symmetry.
At the plane of symmetry, the displacement of the edge is constrained in the out-of-plane direction and
the direction in-plane, normal to the edge. Additionally, curvature in the direction normal to the edge is
constrained to zero. The base of the actuator is fully clamped and constrained to 1V potential difference.
The electric parameters of the simulation are given in Table 4.2 and the geometry is shown in Figure 5.5.
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Figure 5.5: Schematic representation of one half of a monolithic IPMC actuator with two actuation units.

The first simulation with this geometry is executed without kirigami cutting patterns. The second simu-
lation will include a cutting pattern on the etched part. The cuts are directed transversely to the actuator
and rectangular in shape; 5 mm long by 1 mm wide. Head-to-tail the cuts are spaced 5 mm apart. The
rows of Kirigami cuts are staggered and spaced 1 mm apart. The row closest to the actuation unit is 1.5
mm away from the tip of that unit.

Figure 5.6 shows the potential difference and displacement over the length of the actuator on the center-
line at t = 1.0 s in black. It shows that for an identical potential distribution, the actuator with Kirigami
cuts is able to deflect significantly more.
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Figure 5.6: Potential difference and deflection at the centerline of IPMC actuators with and without
Kirigami stress-relief cuts from t = 0.1 s to t = 1.0 s.

The grey lines in the figure indicate the potential distribution and deflection of the actuators from t = 0.1
s to t = 0.9 s in nine steps.
Results like these can be used to evaluate or compare the effectiveness of different Kirigami patterns in
actuators.

Figure 5.7 shows a three dimensional view of the same two actuators from the same simulation in their
deflected state at t = 1.0 s.

Figure 5.7: Three-dimensional representation of the displacement field of IPMC actuators with two
actuation units, with and without Kirigami patterns.

With the increased deflection from Kirigami patterns comes reduced strength of the etched membrane.
It is important to know at which point the slits have compromised the integrity of the actuator too much.
Therefore, the stresses can be displayed over the geometry as shown in Figure 5.8.
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Figure 5.8: Close-up of the stresses in the etched regions of IPMC actuators with two actuation units,
with and without kirigami patterns.

Note that the stresses in the first row of elements from the actuation unit into the etched part is not shown.
This is caused by a flaw in the graphical representation of the solution and not an actual phenomenon.
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6 Conclusion

IPMCs are a soft, smart, electromechanical composite material. Active research is done on its use as
actuator in a linear peristaltic pump [17]. These monolithic actuators with multiple actuation units are
manufactured from a single sheet of IPMC. The research focuses on the use of slit patterns in the actu-
ator to increase performance. In aid of this research, we develop a numerical model, making it possible
to perform numerical analyses on the complex geometries of actuators such as these.
To this end we have selected models from the literature to represent both the electric and mechanical
behaviour of IPMC actuators. We then established a one-way electromechanical coupling by adding
charge dependent terms to the mechanical model.
Subsequently, we converted the coupled models into a system of equations and integrated into PyFEM, a
Python based FEM framework. The work was tested with simulations of problems with known solutions
as numerical verification.

A fully functional IPMC-plate FEM element was developed which can be used in PyFEM. With it, it
is possible to simulate complex IPMC actuator geometries such as monolithic actuators comprised of
multiple actuation units.
Furthermore, it was shown that the use of slit patterns in IPMC actuator design significantly affects the
performance of the actuator. The simulation outputs, such as deformation and stress, make extensive
design analyses on such designs possible and allows the user to make qualitative predictions on the per-
formance of IPMC actuators.

The following opportunities for further development of the FEM element may be worthwhile: Firstly,
the simulations do not model the back-relaxation of strain; which is characteristic of IPMCs. In the
future this could be implemented, for instance, by changing the coupling quantity from charge to its
time derivative, current, since charge only accumulates for a step signal while current also recedes.
Another option is to exchange constant coupling terms k1 and k2 with instationary ones.
Secondly, IPMCs cannot be modelled in sensor mode due to the one-way nature of the introduced
electromechanical coupling; with deformation dependent on charge and not vice-versa. In order to
model the sensor mode of IPMCs, an additional model could be introduced which makes the electric
degree of freedom dependent on deformation.
Lastly, while it was verified numerically, the model was not validated empirically. We know that the
model behaves as expected but not if it does so accurately in magnitude. This makes the model suited
for qualitative studies on the design and material properties of actuators. However, for quantitative
results, the modelling parameters need to be validated against experimental results.
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A Plate Equations

A.1 Force equilibrium equations
From the free-body diagram in Figure 2.3 it follows that the sum of forces in x-direction is given by:

(Nx + dNx) dy cosαx − (Qx + dQx) dy sinαx+

(Nxy + dNxy) dx−Nxydx−Nxdy + pxdxdy = 0 (A.1)

For an infinitesimal element we assume small deformation angles such that cosαx ≈ 1 and sinαx ≈ αx.
We then substitute these into the equation above and divide every term by dxdy to obtain:

∂Nx

∂x
+
∂Nxy

∂y
−Qx

αx
dx
− ∂Qx

∂x
αx + px = 0 (A.2)

In this equation, the plate deflection angles (αx and αy) can be expressed in terms of displacement in
z-direction (w) according to:

αx =
∂w

∂x
, αy =

∂w

∂y
(A.3)

Plugging these into Equation A.2 and omitting the higher order terms leads to Equation A.4.
Similarly, if we follow the same steps for the force equilibrium in y-direction, we obtain Equation A.5.

∂Nx

∂x
+
∂Nxy

∂y
−Qx

∂2w

∂x2
+ Fx = 0 (A.4)

∂Ny

∂y
+
∂Nxy

∂x
−Qy

∂2w

∂y2
+ Fy = 0 (A.5)

Next we assume that the shear forces Q in these equations are negligibly small, leading to the plate
equilibrium equations for forces in the planar dimensions presented in Equations A.6 and A.7.

∂Nx

∂x
+
∂Nxy

∂y
+ Fx = 0 (A.6)

∂Ny

∂y
+
∂Nxy

∂x
+ Fy = 0 (A.7)

The plate equilibrium equation for the forces in z-direction is obtained in a similar manner and is given
by:

∂Qx
∂x

+
∂Qy
∂y

+Nx
∂2w

∂x2
+ 2Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
+ Fz = 0 (A.8)

For the IPMC element we use a linearized version of the equilibrium equation above, which is given by:

∂Qx
∂x

+
∂Qy
∂y

= −Fz (A.9)

A.2 Moment equilibrium equations
Similar to the force equilibria, we begin by taking the sum of moments about the x-axis from the free-
body diagram in Figure 2.4 as:

−Mxdy + (Mx + dMx) dy −Mxydx+ (Mxy + dMxy) dx = 0 (A.10)
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Dividing this by dxdy yields the equilibrium equation for the x-direction. The same procedure is used to
find the equilibrium equation for the y-direction. Respectively, the moment equilibria about the x- and
y-axes are:

∂Mxy

∂x
+
∂Mx

∂y
= 0 (A.11)

∂My

∂x
+
∂Mxy

∂y
= 0 (A.12)
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B Mechanical Stiffness Matrix

B.1 Force Equilibria Weak Form
B.1.1 Force Equilibria In-Plane
Starting from the force equilibrium in x-direction, we derive the weak form of Equation A.6 by integra-
tion over the domain Ω and multiplying with test functions ν. The weak form then is:∫

Ω

∂Nx

∂x
ν dΩ +

∫
Ω

∂Nxy

∂y
ν dΩ = 0 (B.1)

Using the product rule we split each term to obtain:∫
Ω

∂

∂x
(Nxν) dΩ−

∫
Ω

∂ν

∂x
Nx dΩ +

∫
Ω

∂

∂y
(Nxyν) dΩ−

∫
Ω

∂ν

∂y
Nxy dΩ = 0 (B.2)

Then, using Gauss’ theorem we convert the appropriate terms from integrals over the domain into inte-
grals over the boundary, resulting in:∫

Γ
(Nxν) · ~n dΓ−

∫
Ω

∂ν

∂x
Nx dΩ +

∫
Γ

(Nxyν) · ~n dΓ−
∫

Ω

∂ν

∂y
Nxy dΩ = 0 (B.3)

Since boundary conditions are handled in the solver of the FEM framework, we can omit these terms
from the PDE for now and obtain:∫

Ω

∂ν

∂x
NxdΩ +

∫
Ω

∂ν

∂y
NxydΩ = 0 (B.4)

Then for the equilibrium in y direction. Starting from Equation A.7, we can derive the force balance in
y-direction in weak form in much the same manner as we did for the equilibrium in x-direction. We get:∫

Ω

∂ν

∂y
NydΩ +

∫
Ω

∂ν

∂x
NxydΩ = 0 (B.5)

B.1.2 Force Equilibrium Out-of-Plane
For the force equilibrium in z-direction, we start from Equation A.9, integrate over the domain and
multiply by the test functions to obtain:∫

Ω

∂Qx
∂x

ν dΩ +
∂Qy
∂y

ν dΩ = 0 (B.6)

We apply the product rule to split the terms and obtain:∫
Ω

∂

∂x
(Qxν) dΩ−

∫
Ω

∂ν

∂x
QxdΩ +

∫
Ω

∂

∂x
(Qxν) dΩ−

∫
Ω

∂ν

∂y
QydΩ = 0 (B.7)

Then applying Gauss’ theorem we convert some of the terms to boundary integrals, yielding:∫
Γ

(Qxν) · ~n dΓ−
∫

Ω

∂ν

∂x
QxdΩ +

∫
Γ

(Qxν) · ~n dΓ−
∫

Ω

∂ν

∂y
QydΩ = 0 (B.8)

Omitting the boundary terms, we are left with the weak formulation of the out-of-plane force equilibrium
as: ∫

Ω

∂ν

∂x
QxdΩ +

∫
Ω

∂ν

∂y
QydΩ = 0 (B.9)
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B.2 Moment Equilibria Weak Form
The weak form of Equation A.11, the moment equilibrium about the x-axis, is given by integration over
the domain and multiplication with the test functions as:∫

Ω

∂Mxy

∂x
ν dΩ +

∫
Ω

∂Mx

∂y
ν dΩ = 0 (B.10)

Then we apply the product rule to obtain:∫
Ω

∂

∂x
(Mxyν) dΩ−

∫
Ω

∂ν

∂x
Mxy dΩ +

∫
Ω

∂

∂y
(Mxν) dΩ−

∫
Ω

∂ν

∂y
Mx dΩ = 0 (B.11)

Next we use Gauss’ theorem to convert half of the integrals to boundary integrals, yielding:∫
Γ

(Mxyν) · ~n dΓ−
∫

Ω

∂ν

∂x
Mxy dΩ +

∫
Γ

(Mxν) · ~n dΓ−
∫

Ω

∂ν

∂y
Mx dΩ = 0 (B.12)

Since boundary conditions are handled by the solver, we remove the respective integrals from the equa-
tion. What remains is the weak formulation of the moment equilibrium about the x-axis:∫

Ω

∂ν

∂x
Mx dΩ +

∫
Ω

∂ν

∂y
Mxy dΩ = 0 (B.13)

The same steps are repeated to obtain the weak formulation of the moment equilibrium about the y-axis
as: ∫

Ω

∂ν

∂x
Mxy dΩ +

∫
Ω

∂ν

∂y
My dΩ = 0 (B.14)

B.3 The Mechanical Stiffness Matrix
B.3.1 Mechanical Stiffness Matrix I
We begin the process of obtaining the stiffness matrix by plugging in the definitions of strain ε0 and
curvature κ into Equation 3.24. This is then plugged into the weak form of the force equilibrium in
x-direction. This gives us:∫

Ω

∂ν

∂x

(
A11

∂u

∂x
+A12

∂v

∂y
+A16

(
∂u

∂y
+
∂v

∂x

)
+

B11

(
∂αx
∂x

+ k1q

)
+B12

(
∂αy
∂y

+ k2q

)
+B16

(
∂αx
∂y

+
∂αy
∂x

))
dΩ+

∫
Ω

∂ν

∂y

(
A16

∂u

∂x
+A26

∂v

∂y
+A66

(
∂u

∂y
+
∂v

∂x

)
+

B16

(
∂αx
∂x

+ k1q

)
+B26

(
∂αy
∂y

+ k2q

)
+B66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ = 0

(B.15)

Next, we move all charge dependent terms to the right-hand side and restructure the terms to obtain:∫
Ω

∂ν

∂x

(
A11

∂u

∂x
+A12

∂v

∂y
+A16

(
∂u

∂y
+
∂v

∂x

)
+B11

∂αx
∂x

+B12
∂αy
∂y

+B16

(
∂αx
∂y

+
∂αy
∂x

))
+

∂ν

∂y

(
A16

∂u

∂x
+A26

∂v

∂y
+A66

(
∂u

∂y
+
∂v

∂x

)
+B16

∂αx
∂x

+B26
∂αy
∂y

+B66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ =

− q
∫

Ω

∂ν

∂x
(k1B11 + k2B12) +

∂ν

∂y
(k1B16 + k2B26) dΩ

(B.16)
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With the expanded weak formulation of the force equilibrium in x-direction ready, we exchange the test
functions ν with the element shape functions ϕi:

ν = ϕi (B.17)

Furthermore, we apply the Galerkin method to discretise the degrees of freedom as:

u =

n∑
j=0

ujϕj , v =

n∑
j=0

vjϕj , rx =

n∑
j=0

αx|jϕj , ry =

n∑
j=0

αy|jϕj (B.18)

After plugging in and shuffling the terms around, we obtain the discretised force equilibrium in the
x-direction as:

n∑
j=1

∫
Ω

(
∂ϕi
∂x

(
A11

∂ϕj
∂x

+A16
∂ϕj
∂y

)
+
∂ϕi
∂y

(
A16

∂ϕj
∂x

+A66
∂ϕj
∂y

))
uj +(

∂ϕi
∂x

(
A16

∂ϕj
∂x

+A12
∂ϕj
∂y

)
+
∂ϕi
∂y

(
A66

∂ϕj
∂x

+A26
∂ϕj
∂y

))
vj +(

∂ϕi
∂x

(
B11

∂ϕj
∂x

+B16
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B16

∂ϕj
∂x

+B66
∂ϕj
∂y

))
rx|j+(

∂ϕi
∂x

(
B16

∂ϕj
∂x

+B12
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B66

∂ϕj
∂x

+B26
∂ϕj
∂y

))
ry|jdΩ =

−qi
∫

Ω

∂ϕi
∂x

(k1B11 + k2B12) +
∂ϕi
∂y

(k1B16 + k2B26) dΩ

(B.19)

The equation above is part of the system of equations given in Equation 3.1 with the stiffness matrix
components on the left hand side, the degrees of freedom part of vector a and the internal force term on
the right-hand side.
Then if follows that the component in x-direction of the displacement stiffness matrix (Kuu) becomes:

Kuu,u|i,j =

n∑
j=0

∫
Ω

∂ϕi
∂x



A11

A16

0
B11

B16


T

∂ϕj
∂x

+


A16

A12

0
B16

B12


T

∂ϕj
∂y

+

∂ϕi
∂y



A16

A66

0
B16

B66


T

∂ϕj
∂x

+


A66

A26

0
B66

B26


T

∂ϕj
∂y

 dΩ

(B.20)

and the corresponding internal force is:

fint,u|i = −qi
∫

Ω

∂ϕi
∂x

(k1B11 + k2B12) +
∂ϕi
∂y

(k1B16 + k2B26) dΩ (B.21)

B.3.2 Mechanical Stiffness Matrix II
After substituting Equations 3.24 and the definitions of strain and curvature into the weak formulation
of the force equilibrium in y-direction, we apply the Galerkin method as in Equations B.17 and B.18
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and rearrange the terms to obtain:
n∑
j=1

∫
Ω

(
∂ϕi
∂y

(
A12

∂ϕj
∂x

+A26
∂ϕj
∂y

)
+
∂ϕi
∂x

(
A16

∂ϕj
∂x

+A66
∂ϕj
∂y

))
uj +(

∂ϕi
∂y

(
A26

∂ϕj
∂x

+A22
∂ϕj
∂y

)
+
∂ϕi
∂x

(
A66

∂ϕj
∂x

+A26
∂ϕj
∂y

))
vj +(

∂ϕi
∂y

(
B12

∂ϕj
∂x

+B26
∂ϕj
∂y

)
+
∂ϕi
∂x

(
B16

∂ϕj
∂x

+B66
∂ϕj
∂y

))
rx|j+(

∂ϕi
∂y

(
B26

∂ϕj
∂x

+B22
∂ϕj
∂y

)
+
∂ϕi
∂x

(
B66

∂ϕj
∂x

+B26
∂ϕj
∂y

))
ry|jdΩ =

−qi
∫

Ω

∂ϕi
∂y

(k1B12 + k2B22) +
∂ϕi
∂x

(k1B16 + k2B26) dΩ

(B.22)

which is part of the system of equations from Equation 3.1. The component in y-direction of the dis-
placement stiffness matrix is then identified as:

Kuu,v|i,j =
n∑
j=0

∫
Ω

∂ϕi
∂y



A12

A26

0
B12

B26


T

∂ϕj
∂x

+


A26

A22

0
B26

B22


T

∂ϕj
∂y

+

∂ϕi
∂x



A16

A66

0
B16

B66


T

∂ϕj
∂x

+


A66

A26

0
B66

B26


T

∂ϕj
∂y

 dΩ

(B.23)

and the corresponding internal force as:

fint,v|i = −kqi
∫

Ω

∂ϕi
∂y

(k1B12 + k2B22) +
∂ϕi
∂x

(k1B16 + k2B26) dΩ (B.24)

B.3.3 Mechanical Stiffness Matrix III
The contribution to the mechanical stiffness matrix due to the force equilibrium in z-direction is found
by first substituting Equations 3.28 and 2.21 into the weak formulation of the force equilibrium. This
yields:∫

Ω

∂ν

∂x

(
Q44

(
∂w

∂x
+ αx

)
+Q45

(
∂w

∂y
+ αy

))
dΩ+

∫
Ω

∂ν

∂y

(
Q45

(
∂w

∂x
+ αx

)
+Q55

(
∂w

∂y
+ αy

))
dΩ = 0 (B.25)

Which we restructure to:

n∑
j=1

∫
Ω

(
∂ϕi
∂x

(
Q44

∂ϕj
∂x

+Q45
∂ϕj
∂y

)
+
∂ϕi
∂y

(
Q45

∂ϕj
∂x

+Q55
∂ϕj
∂y

))
wj+

ϕj

(
Q44

∂ϕi
∂x

+Q45
∂ϕi
∂y

)
αx|j + ϕj

(
Q45

∂ϕi
∂x

+Q55
∂ϕi
∂y

)
αy|jdΩ = 0 (B.26)
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Next, we identify the contribution to the mechanical stiffness matrix as:

Kuu,w|i,j =
n∑
j=0

∫
Ω

∂ϕi
∂x




0
0
Q44

0
0


T

∂ϕj
∂x

+


0
0
Q45

0
0


T

∂ϕj
∂y

+


0
0
0
Q44

Q45


T

ϕj

+

∂ϕi
∂y




0
0
Q45

0
0


T

∂ϕj
∂x

+


0
0
Q55

0
0


T

∂ϕj
∂y

+


0
0
0
Q45

Q55


T

ϕj

 dΩ

(B.27)

And, since the right-hand side of Equation B.36 is zero, the internal force term becomes zero as well:

fint,w|i = 0 (B.28)

Note that the obtained stiffness matrix component is not only dependent on the derivatived of the shape
functions, but also the shape functions themselves directly. This required these components to be inte-
grated in a so-called reduced integration scheme, which effectively reduces the order of the element.

B.3.4 Mechanical Stiffness Matrix IV
For the mechanical stiffness components from the moment equilibrium about the x-axis, we take much
the same steps as before. First we plug the definitions of strain and curvature into Equation 3.32 and
then substitute that result into the weak formulation of the moment equilibrium. We obtain:∫

Ω

∂ν

∂x

(
B11

∂u

∂x
+B12

∂v

∂y
+B16

(
∂u

∂y
+
∂v

∂x

)
+

D11

(
∂αx
∂x

+ k1q

)
+D12

(
∂αy
∂y

+ k2q

)
+D16

(
∂αx
∂y

+
∂αy
∂x

))
dΩ+

∫
Ω

∂ν

∂y

(
B16

∂u

∂x
+B26

∂v

∂y
+B66

(
∂u

∂y
+
∂v

∂x

)
+

D16

(
∂αx
∂x

+ k1q

)
+D26

(
∂αy
∂y

+ k2q

)
+D66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ = 0

(B.29)

Then we move all charge dependent terms to the right-hand side and reorganise the terms, yielding:∫
Ω

∂ν

∂x

(
B11

∂u

∂x
+B12

∂v

∂y
+B16

(
∂u

∂y
+
∂v

∂x

)
+D11

∂αx
∂x

+D12
∂αy
∂y

+D16

(
∂αx
∂y

+
∂αy
∂x

))
dΩ+

∫
Ω

∂ν

∂y

(
B16

∂u

∂x
+B26

∂v

∂y
+B66

(
∂u

∂y
+
∂v

∂x

)
+D16

∂αx
∂x

+D26
∂αy
∂y

+D66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ =

− q
∫

Ω

∂ν

∂x
(k1D11 + k2D12) +

∂ν

∂y
(k1D16 + k2D26) dΩ

(B.30)
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Next we apply the Galerkin method to dicretise the domain and obtain:

n∑
j=1

∫
Ω

(
∂ϕi
∂x

(
B11

∂ϕj
∂x

+B16
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B16

∂ϕj
∂x

+B66
∂ϕj
∂y

))
uj +(

∂ϕi
∂x

(
B16

∂ϕj
∂x

+B12
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B66

∂ϕj
∂x

+B26
∂ϕj
∂y

))
vj +(

∂ϕi
∂x

(
D11

∂ϕj
∂x

+D16
∂ϕj
∂y

)
+
∂ϕi
∂y

(
D16

∂ϕj
∂x

+D66
∂ϕj
∂y

))
rx|j+(

∂ϕi
∂x

(
D16

∂ϕj
∂x

+D12
∂ϕj
∂y

)
+
∂ϕi
∂y

(
D66

∂ϕj
∂x

+D26
∂ϕj
∂y

))
ry|jdΩ =

−qi
∫

Ω

∂ϕi
∂x

(k1D11 + k2D12) +
∂ϕi
∂y

(k1D16 + k2D26) dΩ

(B.31)

From which we find the contribution to the mechanical stiffness matrix to be:

Kuu,αx|i,j =
n∑
j=0

∫
Ω

∂ϕi
∂x



B11

B16

0
D11

D16


T

∂ϕj
∂x

+


B16

B12

0
D16

D12


T

∂ϕj
∂y

+

∂ϕi
∂y



B16

B66

0
D16

D66


T

∂ϕj
∂x

+


B66

B26

0
D66

D26


T

∂ϕj
∂y

 dΩ

(B.32)

and the contribution to the internal force vector to be:

fint,αx|i = −qi
∫

Ω

∂ϕi
∂x

(k1D11 + k2D12) +
∂ϕi
∂y

(k1D16 + k2D26) dΩ (B.33)

B.3.5 Mechanical Stiffness Matrix V
Similarly for the moment equilibrium about the y-axis we begin by substituting Equation 3.32 and the
definitions of strain and curvature into the weak formulation of the moment equilibrium about the y-axis.
We get:∫

Ω

∂ν

∂x

(
B16

∂u

∂x
+B26

∂v

∂y
+B66

(
∂u

∂y
+
∂v

∂x

)
+

D16

(
∂αx
∂x

+ k1q

)
+D26

(
∂αy
∂y

+ k2q

)
+D66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ+

∫
Ω

∂ν

∂y

(
B16

∂u

∂x
+B26

∂v

∂y
+B66

(
∂u

∂y
+
∂v

∂x

)
+

D12

(
∂αx
∂x

+ k1q

)
+D22

(
∂αy
∂y

+ k2q

)
+D26

(
∂αx
∂y

+
∂αy
∂x

))
dΩ = 0

(B.34)
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Then we move the charge dependent terms to the right-hand side and reorganise the terms on the left-
hand side to obtain:∫

Ω

∂ν

∂x

(
B16

∂u

∂x
+B26

∂v

∂y
+B66

(
∂u

∂y
+
∂v

∂x

)
+D16

∂αx
∂x

+D26
∂αy
∂y

+D66

(
∂αx
∂y

+
∂αy
∂x

))
dΩ+

∫
Ω

∂ν

∂y

(
B12

∂u

∂x
+B22

∂v

∂y
+B26

(
∂u

∂y
+
∂v

∂x

)
+D12

∂αx
∂x

+D22
∂αy
∂y

+D26

(
∂αx
∂y

+
∂αy
∂x

))
dΩ =

− q
∫

Ω

∂ν

∂x
(k1D16 + k2D26) +

∂ν

∂y
(k1D12 + k2D22) dΩ

(B.35)

Which is discretised with the Galerkin method to produce:

n∑
j=1

∫
Ω

(
∂ϕi
∂x

(
B16

∂ϕj
∂x

+B66
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B12

∂ϕj
∂x

+B26
∂ϕj
∂y

))
uj +(

∂ϕi
∂x

(
B66

∂ϕj
∂x

+B26
∂ϕj
∂y

)
+
∂ϕi
∂y

(
B26

∂ϕj
∂x

+B22
∂ϕj
∂y

))
vj +(

∂ϕi
∂x

(
D16

∂ϕj
∂x

+D66
∂ϕj
∂y

)
+
∂ϕi
∂y

(
D12

∂ϕj
∂x

+D26
∂ϕj
∂y

))
rx|j+(

∂ϕi
∂x

(
D66

∂ϕj
∂x

+D26
∂ϕj
∂y

)
+
∂ϕi
∂y

(
D26

∂ϕj
∂x

+D22
∂ϕj
∂y

))
ry|jdΩ =

−qi
∫

Ω

∂ϕi
∂x

(k1D16 + k2D26) +
∂ϕi
∂y

(k1D12 + k2D22) dΩ

(B.36)

From which we are able to find is contribution to the mechanical stiffness matrix as:

Kuu,αy |i,j =
n∑
j=0

∫
Ω

∂ϕi
∂x



B16

B66

0
D16

D66


T

∂ϕj
∂x

+


B66

B26

0
D66

D26


T

∂ϕj
∂y

+

∂ϕi
∂y



B12

B26

0
D12

D26


T

∂ϕj
∂x

+


B26

B22

0
D26

D22


T

∂ϕj
∂y

 dΩ

(B.37)

and its contribution to the internal force vector of:

fint,αy |i = −qi
∫

Ω

∂ϕi
∂x

(k1D16 + k2D26) +
∂ϕi
∂y

(k1D12 + k2D22) dΩ (B.38)
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C Geometrical instabilities

The validation geometry was designed to include sharp edges to investigate possible numerical instabil-
ities. Due to the nature of the IPMC simulations, mid-plane strains remain small and stress singularities
do not occur. The simulations do suffer from another instability: wrinkling. Two cases in which this
instability occurs are shown below.

C.1 Potential difference
Firstly, Figure C.1 shows the solution to the potential difference between the electrodes for two slightly
differing geometries, based on the verification geometry described in Chapter 4.1.

Figure C.1: Wrinkling instability in the potential difference solution alleviated by removing sharp edges
in the geometry.

The simulation result on the left shows a wrinkling instability whereas the one on the right doesn’t.
Through the alleviation of the problem it appears that the sharp edges of the square hole are the culprit
of the instability.

Figure C.2 shows a close up of the potential difference solution in the geometry with sharp edges. The
color map was adjusted and the mesh is shown for better visualisation.
The figure shows that the wrinkling instability is highly dependent on the shape, size and direction of
the elements. The highlighted features show that the wrinkling is mainly propagated on the diagonal
from the lower left node to the upper right node. Feature 1. shows a change in wrinkle direction due
to a change in mesh directionality. Feature 2. shows a wrinkle failing to propagate along the rib of an
element.
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Figure C.2: Wrinkling instability in the potential difference solution is highly mesh dependent.

Figure C.3 shows once more the solution to the potential difference between the electrodes for a near
identical simulation. In this simulation a triangular mesh was used instead of the quadrangular mesh on
which the wrinkles seemed to propagate so well.
The result is that the wrinkle instability has vanished entirely; likely due to the lack of element diagonals
on which to propagate.

Figure C.3: Wrinkling instability in the potential difference solution alleviated by using triangular mesh.

The wrinkling instabilities in the potential field are caused by using elements with too low of an order
of integration. Triangular meshes are more stable than quadrangular meshes and thus allow for a lower
order. Any standard linear element with a full integration scheme will not produce this instability,
though.
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C.2 Displacement
Wrinkling instabilities may also occur due to a geometry being improperly constrained. From the
clamped boundary condition we remove only the constraint for out-of-plane displacement on all nodes
but the two on the corners of the actuator (highlighted by arrows).
Figure C.4 shows the solution to the displacement magnitude and the severe wrinkling that results; the
result is not scaled.

Figure C.4: Wrinkling instability in the potential difference solution is highly mesh dependent.

The problem is remedied as soon as the two out-of-plane constraints on the clamped edge are applied to
two nodes of the same element. Alternatively, the wrinkles also disappear when triangular elements are
used.
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