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Abstract

Experimental work on the electrical percolation threshold of polymeric host materials enriched
with electrically conductive nanofillers has produced highly scattered results even for superficially
identical formulations. In the literature, many explanations for the underlying phenomenon have
been put forth. In particular, the presence of electromagnetic or flow fields is almost inevitable
in the production process of nanocomposites and is suggested to be the partial cause of this
mutual disagreement in the experiments. To investigate this, we theoretically model percolation
in two types of material. First, we consider dispersions of hard spherical particles subject to shear
flow. We set up a model that combines a heuristic criterion for percolation and a Smoluchowski
theory for the pair structure in shear flow. We find that the structural deformation induced
by the shear flow increases or decreases the percolation threshold depending on the shear rate
and the surface-to-surface distance over which electron transport occurs. Next, we numerically
investigate equilibrium dispersions of hard nanorods subject to external orienting and disorienting
quadrupolar fields using the connectedness Ornstein-Zernike formulation, explicitly taking their
orientational degrees of freedom and liquid-crystalline transitions into account employing a formal
minimisation of the Onsager free energy. We find that external quadrupolar fields can significantly
increase the percolation threshold, cause complex re-entrant percolation behaviour, and induce
bi- and triaxiality in the shapes of nanofiller clusters.

Geometric percolation of colloidal particles iii






Contents

Abstract iii
Contents v
1 Introduction 1
2 Geometric percolation in the liquid state 3
2.1 Introduction . . . . . . . . . . . 4
2.2 Cluster Size . . . . . . . e e e 5
2.3 The pair distribution function . . . . . . . ... ... 6
2.4 The pair connectedness function . . . . . . ... ... oL 9
2.5 Conclusion . . . . . . . e e 11
3 Molecular dynamics and numerical cluster analysis 13
3.1 Introduction . . . . . . . . . . . . . e e e 14
3.2 Molecular dynamics . . . . . . ... L e 14
3.3 Cluster analysis . . . . . . . . . .. e 18
3.4 Discussion and conclusion . . . . . . . .. . ... 26
4 Percolation of spherical colloids in shear flow 27
4.1 Introduction . . . . . . . . . . L 28
4.2 A heuristic percolation criterion . . . . . . .. ... 29
4.3 Pair correlation function . . . . . . . . ... 32
4.4 Comparison with simulation data . . . . . . .. .. ... ... 0L 37
4.5 Percolation threshold . . . . . . . . . . . . ... . 41
4.6 Discussion and conclusion . . . . . .. ... Lo 44
5 Percolation of hard nanorods in an external field 45
5.1 Introduction . . . . . . . . . . . e e e 46
5.2 Omsager theory . . . . . . . . . e 48
5.3 Geometric percolation . . . . . . . .. .. 53
5.4 Finite aspect ratios . . . . . . ... Lo 60
5.5 Discussion and conclusion . . . . . . . .. ... 65
6 Conclusions and outlook 67
Acknowledgements 71
Bibliography 71
Geometric percolation of colloidal particles v



CONTENTS

Appendix

A Derivation of equation 4.10

B Solution of equation 4.12

C The excluded-volume approximation
D Isotropic correlation lengths

E Particle correlations

F Numerical procedure

F.1 Lebedev quadrature . . ... ... ... ..
F.2 Numerical solution procudure for Eq. (4.12)
F.3 Integration of the Ornstein-Zernike relation

81

81

84

88

90

92

vi

Geometric percolation of colloidal particles



Chapter 1

Introduction

The addition of nanoparticles such as carbon nanotubes, carbon black, silver nanowires or graphene
to common plastics can enhance their conductive properties tremendously [1-8]. For instance, the
incorporation of a slight amount of a carbon nanotube additive into an insulating polymeric host
has been shown to increase its electrical conductivity by over ten orders of magnitude [7]. These
polymer composites have stirred up a great interest for industrial applications in photovoltaics
[9, 10], optoelectronics [11], gas sensing [12], and liquid crystalline displays [13]. They have
additionally been suggested for use as actuators [14, 15], smart materials [16, 17], electromagnetic
interference shields [18], and optically transparent yet electrically conductive films [19].

Ordinarily, the large effect that nanoparticles have on the conductive properties of their
insulating host material is seen in the context of percolation theory [20-22]. If sufficiently many
nanofillers are added to the host, they form a conductive network that spans the entire material.
It is through this network that electricity (or heat) can be conducted efficiently. At the particle
density where a system spanning network is created, a sharp increase in the conductive properties
of the material can be observed [23]. The packing fraction associated with this network formation
is called the percolation threshold. Percolation theory is primarily aimed at finding this particle
concentration. We stress that percolation theory does not predict the actual conductivity of the
resulting nanocomposite; it is solely a geometric framework for establishing if a material-spanning
network exists.

Common engineering applications require that the nanoparticle density in such composites
be as low as possible to retain the advantageous properties of plastics such as their optical
transparency, mechanical flexibility, and low manufacturing costs [24]. Therefore, the goal is
to design conductive polymer composites that have a nanofiller concentration just above the
percolation threshold. It has been shown that this threshold is highly dependent on the degree of
anisometry of the nanoparticles [25-27]. For instance, the percolation threshold of ideal rod-like
particles scales inversely proportional to their aspect ratio (the length-over-width ratio) [27].
This means that, in theory, it is possible to make the percolation threshold arbitrarily low by
increasing the slenderness of the particles. However, since long, stiff particles, such as carbon
nanotubes, are prone to breaking, there is a practical limit to the aspect ratio of conductive fillers
in nanocomposites [28]. Therefore, it is important to be able to predict the percolation threshold
quantitatively to efficiently manufacture conductive polymeric materials.

A major challenge has surfaced in recent decades. It turns out that the percolation threshold
is not only very sensitive to the particle shape but also to many other factors, such as their
size polydispersity [29-32], inter-particle interactions [33] and to the homogeneity [34] as well as
isotropy [35] of their dispersion in the host. This sensitivity is so large, in fact, that results of
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CHAPTER 1. INTRODUCTION

percolation experiments under laboratory conditions seem difficult to replicate on a quantitative
level due to imperfections such as particle aggregation and alignment by the mixing process [36].
This also implicates that comparisons between experimental studies and theoretical work on the
percolation threshold are qualitative at best.

To understand why these factors have such a significant impact on the percolation threshold,
extensive analytical analyses have been conducted on all of the abovementioned characteristics for
dispersions of rod-like particles [31, 35, 37]. Even after this host of work, physical understanding
of the effects of the manufacturing process on the presence of conductive networks in the resulting
composite remains lacking. One of the underlying fundamental difficulties is the inherent non-
equilibrium nature of the way nanoparticles are commonly dispersed in the polymeric host. When
the particle positions are subsequently frozen by polymerisation, a non-equilibrium structure
remains. This raises foundational questions around the use of equilibrium liquid state theory to
gain insight into the clustering properties of materials with non-equilibrium structures.

To take on this fundamental problem, we theoretically model percolation in a colloid of
spherical particles subject to a shear flow. Since such a material is not in equilibrium, we choose
to engage this problem with a percolation model that requires only structural input to estimate
the percolation threshold. We provide this structural information by solving the non-equilibrium
Smoluchowski equation on the two-particle level for the perturbation of the structure relative to
that of the corresponding equilibrium material. Since the equilibrium structure of a dispersion of
hard spheres is reasonably well understood, we are able to calculate the percolation threshold as
a function of the shear strength. We compare the results of this theory with simulation results to
establish its accuracy.

To aid the understanding of equilibrium percolation as well, model percolation in an
equilibrium dispersion of long, hard, rodlike particles in external orienting and disorienting
quadrupolar fields that model the external structural influences of externally applied flow or
electromagnetic fields. Since we consider this dispersion in a state of thermal equilibrium with
respect to these fields, we can use canonical liquid state theory, adapted for connectedness, to
find the percolation threshold. We find that the percolation behaviour in this material is very
rich due to the complex interplay between the (dis)orientation induced by the external field and
the alignment caused by the excluded volume interactions between the hard rods. To gain further
insight, we also analyse the dependence of the particle aspect ratio on the percolation threshold
and evaluate the cluster shape in various regimes.

The remainder of this report is divided into five chapters. In the next two chapters,
we describe the concepts and methods that we use in the later chapters to gain a physical
understanding of the percolating behaviour of particles that experience external influences. In
Chapter 2, we present a theoretical framework on the structure and connectivity in equilibrium,
based on liquid state theory. In Chapter 3, we describe how to conduct molecular dynamics
simulations and numerical clustering analysis. In Chapter 4, we use the concepts introduced
in Chapters 2 and 3 to describe percolation of spheres in a shear flow. In Chapter 5, we apply
the concepts discussed in Chapter 2 to model percolation in the second material, i.e., long rods
subject to external fields. In the last chapter, we give a conclusion and outlook.
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Chapter 2

Geometric percolation in the
liquid state

Summary

In this chapter, we present a brief, non-rigorous overview of the methods that have been developed
in the context of liquid state theory to find the structure and degree of clustering of anisometric
particles in equilibrium. In particular, we discuss the canonical Ornstein-Zernike equation and
how it can be adapted to describe connectedness instead of structure. The aim of this chapter
is mainly to introduce the underlying physical framework of the methods that we use in later
chapters.

Geometric percolation of colloidal particles 3



CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

2.1 Introduction

The goal of this work is to study material spanning conductive networks of particles. In order for
pairs of particles to conduct electricity, they do not need to physically touch. If two particles are
close enough together, electrons can undergo quantum-mechanical tunnelling to ‘hop’ from one
particle to another. The rate at which they do so decays exponentially with the surface-to-surface
distance of the particles [38].

This exponential decay does not need to be taken into account explicitly to model the
percolation threshold. It is believed that modelling particle connectedness as a sharp cut-off
distance produces equivalent results to an exponentially decaying connectedness probability.
Therefore, throughout this work, we do not explicitly take into account the conductivity of the
particles, but use a geometric criterion to determine whether particles are connected. For this,
we use the so-called cherry pit model: we surround each particle with a connectivity region. If
two connectivity regions of particles overlap, we consider them connected. This region does not
add any new inter-particle interactions. Therefore, the particles do not know whether they are
connected to another particle or not.

(b)

Figure 2.1: Spherocylindrical (a) and spherical (b) cherry pit particles: we consider hard-
core particles with diameter D surrounded by a connectivity shell of size X which determines
whether particles are connected. In the case of spherocylindrical particles, we have not drawn the
hemispherical end-caps for clarity.

In the case of spherical and spherocylindrical particles, we define the thickness of this
connectivity shell around the particle by (A — D)/2, where D is the hard core diameter of the
particles. Here, A is the total diameter of the connectivity region. This geometry is visualised in
Fig. 2.1.

We note that since this cherry pit model does not introduce any new interactions between
particles, we are effectively assuming that the particles are impervious to applied electric potentials
and temperature gradients between particles. This assumption may hold only if the host matrix
is fully polymerised, and the particle positions and orientiations are effectively frozen in before

4 Geometric percolation of colloidal particles



CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

the conductivity experiment is initiated.

We consider a dispersion of IV anisometric particles in a volume V' with thermal energy
kT = 1/B. In principle, such a dispersion can have a position-dependent number density
p(r), which we explicitly take into account in this chapter. Since we are mostly interested in
homogeneous dispersions however, we drop the position dependence in later chapters and consider
it to be a constant p(r) = p = N/V. Each particle has orientational degrees of freedom. To
accommodate for them, we assign to each particle an unit orientation vector u. We define the
orientational distribution function ¢ (u) such that the probability of finding a particle with an
orientation in [u,u + du] is ¥»(u)du. In the isotropic case, where the orientations of all particles
are equally likely, we have 1(u) = 1/4m.

To find the particle density at which macroscopic clusters appear, we need to quantify the
size of the clusters as a function of density. This is the aim of the remaining sections of this
chapter.

2.2 Cluster size

A common method to tackle this problem is to start from the framework of liquid state theory.
In the theory of liquids, the pair correlation function g(ry,rs,us, us) quantifies the probability
to find two particles at positions ry and ro with orientations u; and ug [39]. It is normalised
such that [[[[ dridraduidusp(r)p(r2)i(ur)y(uz)g(ri, re, ur, us) = N2, where the integrations
range over all positions and orientation of the particles. The pair correlation function provides
detailed information about the microstructure of the arrangement of particles in gases, liquids and
solids, and can be used to determine, among others, the static structure factor, the compressibility
and the pressure of a material.

For notational convenience, we may choose to abbreviate the positions and orientations
of all particles in the following sections. For example, we write the pair correlation function
9(1,2) = g(r1,r2,us,uz). Note that in this new notation, we write the integral [d1(...) to
abbreviate [[driduip(ri)y(us)(...). For example, the normalisation of the pair correlation
function is now abbreviated by [[d1d2g(1,2) = N2

To use the methods of liquid state theory to our problem of geometric percolation, we
divide the pair correlation function into two new functions g(1,2) = g™ (1,2) + ¢*(1,2), the pair
connectedness function g*(r,r’,u,u’) and the blocking function g*(r,r’,u,u’). They describe
the probability of finding connected and disconnected particles with the specified positions and
orientations. With these definitions and corresponding normalisations, it is straightforward to see
that the number of connected particle pairs is equal to N. = 3 [[ d1d2g*(1,2), where the factor
of one half is to avoid double counting.

We can use the expression for the number of particle pairs to find the average cluster size [40].
The argument goes as follows. Suppose we have a particle dispersion in which there are nj clusters
consisting of k particles. The total number of particles is known, and thus we have N = 3", nik.
The probability that a particle belongs to a cluster of k particles is now kny/N. Therefore the
average size of the cluster a randomly chosen particle belongs to is given by S = ", k*ny/N. The
total number of connected particle pairs can now be calculated as the total number of connections
within one cluster, summed over all clusters: N, = >, nik(k —1)/2 = N(S —1)/2. Using this
last identity, together with the earlier obtained expression for N., we find

S:1+%//dld2g+(1,2)7 (2.1)

We note that this definition of S corresponds to the weight average cluster size, and not the number
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CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

average. We define the percolation threshold to coincide with the location of the divergence of
this function. In Chapter 3, we show that this is indeed the choice that gives results consistent
with simulations.

2.3 The pair distribution function

In liquid state theory, a successful approximation of the pair distribution function g can be
obtained by the Ornstein-Zernike relation. We can adapt this relation to find an approximation
for g™ as well. First, we give a quick overview of the canonical Ornstein-Zernike relation, with
emphasis on the underlying structure rather than mathematical rigour. For a more complete
overview, we refer to Hansen & McDonald [39]. The derivation of the Ornstein-Zernike relation
assumes that particles only interact through pair interaction potentials U(1,2), and that the
material is in an ergodic state of thermal equilibrium.

Ornstein and Zernike showed that the pair correlation function g can be related to another
function C' via an integral equation that was later named after them [11]

g(1,2) = 1+ C(1,2) + /d3C(173)(g(372) _). (2.2)

Here, C is called the direct correlation function®, which can in principle be obtained by taking
the second functional derivative of the excess free energy with respect to the density. Relation
(2.2) is a recipe for finding the pair distribution function g, if the excess free energy is known.
This, however, is in general not the case, and one often has to resort to (ad hoc) approximations
of C.

The structure behind the Ornstein-Zernike relation is more clearly visible if we solve it
recursively for g. This yields

9(1,2) =1+ C(1,2) + /d30(1,3)0(3,2) (2.3)
+ // d3d4C(1,3)C(3,4)C(4,2) + .. .,

which is an infinite sum of integrals. It turns out insightful to write such integrals as diagrams
based on graph theory. The above equation then becomes?

90,2 = 1+ (O~ +(O——@——2) (24)
+@ N . N . N @+

These diagrams allow us to see the structure in the integral expressions. Such diagrams always
consist of circles linked by bonds. The white circles, called root points, denote the arguments of
the expression that the diagram stands for. For example, the values of all diagrams in the above
expression depend on the positions and orientations of particles 1 and 2. The black circles, called
field points, denote integrations in the expression. For example, a single black circle denotes the
operator f d3(...), acting on the remainder of the expression that the diagram represents. The
integration variable 3 can be named anything and is therefore not specified in the black circle. A

INote: in many standard texts, the direct correlation function is denoted by the small letter ¢, which in this
work is reserved to denote a concentration. We chose to make it a capital to avoid confusion.

2For clarity, we have omitted prefactors that are usually included to account for the multiplicity of the diagrams
[39].

6 Geometric percolation of colloidal particles



CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

bond connecting two circles indicates a function with the two points associated with the circles
as arguments. A C-bond connecting two white circles labelled ¢ and j denotes the expression
C(i, ) for example.

Eq. (2.4) tells us that the correlations between the locations and orientations of particles
are transmitted through chains of intermediate particles. The correlations between directly
neighbouring intermediate particles are quantified by the direct correlation function C.

As a result of the ability to apply both graph theory and density functional theory to these
diagrams, it can be shown that the direct correlation function C'(1,2) can also be expressed as an
infinite sum of integrals. In fact, it has been found to equal the sum of a subset of all diagrams
consisting of two white root points labelled 1 and 2 and an arbitrary number of black field points,
connected by bonds that are associated with the Mayer function f(1,2) = exp(—pU(1,2)) — 1.
In our case of impenetrable particles, f = —1 if the particles overlap and f = 0 if they do not.
An added constraint to the diagrams in the expansion of C' is that they cannot contain a circle
that would leave the diagram disconnected upon its removal. Such circles are called connecting
circles. The first few terms in the expansion of C' are written down below

=D~ & =
2 Lo
+ ...

In the above diagrams, we have omitted the labels f above all bonds for clarity. For example,

@—‘—@ is not part of the expansion because it contains a black connecting circle.

To summarise, we have expressed the pair distribution function g as an infinite sum of
integrals of the direct correlation function C' (Eq (2.3)), which in turn can be calculated as an
infinite sum of integrals of the pair potential (hidden in the Mayer functions f). The usual path
forward is to devise an approximation of C' either by explicitly neglecting many of the diagrams
in its expansion or by bringing forward another expression of C in terms of U and possibly g.
After having approximated C, a corresponding approximation can be found for g by solving the
Ornstein-Zernike integral equation (2.2). Examples of classical approximations of the expansion
(2.5) are the Percus-Yevick, hypernetted chain and second virial closure relations, each with their
own merits [39]. In later chapters we make use of both the second virial closure as well as the
Percus-Yevick closure.

The second virial closure is only accurate in the limit that N/V — 0, and consists of
neglecting all but the first diagrams in the above expansion. Therefore, the remaining closure is
written as

LR e%:
Rl

C(1,2) ~ f(1,2). (2.6)

The Percus-Yevick closure is more sophisticated, and yields accurate results up to interme-
diate packing fractions. Its functional form is given by

C(1,2)(f(1,2)+ 1) = f(1,2)g(1,2), (2.7)

which can be shown to exactly reproduce all second and third order diagrams in the expansion of
C(1,2) [42].

Geometric percolation of colloidal particles 7



CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

Together with either one of these closures, the Ornstein-Zernike equation (2.2) can be
solved to find the pair correlation function. In the case of homogeneous dispersions of spherical
particles, the pair correlation function becomes dependent only on the distance between the
particles r = |ry — rq| and is then often referred to as the radial distribution function. We plot
the pair correlation function for a dispersion of hard spherical particles in Fig. 2.2, together
with simulation results®. It is clear that the Percus-Yevick closure is accurate for much higher
densities, even near until the fluid-solid transition (which occurs between pliquidD3 = 0.94 and
psotia D® = 1.04 [43]), whereas the second virial closure fails early in the low-intermediate density
regime. Since we use the Percus-Yevick closure in Chapter 4 again to find the equilibrium pair
correlation function, we report a numerical iterative procedure for finding a solution to the
Ornstein-Zernike equation in App. F.

Simulations
= == Percus Yevick

m— Second Virial

D3 = 1.2 ? \ g - - —

D3 — 0.9556——.

T

D?=0.5

Pair correlation function g(ry, o)

0 1 2 3 4 5
|I'2 — I'1|/D

Figure 2.2: Comparison of the pair correlation functions obtained with the second virial and
Percus-Yevick closure for a homogeneously dispersed liquid of hard spheres. The different curves
correspond to different densities. We have added an offset between them for clarity. For reference,
we also plot the pair correlation function from a simulation of the same particles.

31In fact, the dots and lines in Fig. 2.2 are for particles that interact through the potential given in Eq. (4.22)
with €9 = 100, € = kT, and o = 2-1/6 D, This potential very closely matches hard-sphere interactions, while
being more convenient for simulations than true hard-sphere interaction potentials.
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CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

2.4 The pair connectedness function

Coniglio et al. use the expansions of g and C' to find an expression for the pair connectedness
function g [40]. To do this, they imagine that particles interact with two effective pair potentials,
one describing the interactions between connected particles U™, and the other describing the
interactions between disconnected particles U*. They are defined such that UT = U and U* = oo
if the particles are connected and U = oo and U* = U if they are not. This definition of U+ and
U* ensures that exp(—BU) = exp(—BU™) + exp(—BU*). We can now define the corresponding
Mayer functions f* = exp(—BU™) and f* = exp(—pU*) — 1, such that f = f* + f*. Note that
these new effective potentials are not connected to physical forces in any way. They are simply
introduced to be able to conduct a mathematical cluster analysis.

Now that we have defined a way in which we can divide bonds between particles in connected
and disconnected contributions, we can also divide the expansion of the direct correlation function

C =C* +C* Eq. (2.5). If we denote a connected fT(rz,rs3) bond with a bold line %

and a disconnected f*(ra,r3) bond with a dotted line @-@ , the separation can be carried
out diagrammatically. For example, the expansion up to third order becomes

All diagrams with a continuous path of f™ bonds between the white root points describe a
situation in which particles 1 and 2 are connected, and therefore are part of the expansion of C',
which we call the direct connectedness function. Thus, we write the first terms of the expansion

of Ct as
<>@-@@4@é@@ o
o o

where all the other diagrams belong to C'*. It is straightforward now, to also divide the expansion
of g in a connected part g+ and a disconnected part g*. Since g is written as a sum of linear
chains of C' bonds, see Eq. (2.4), it is intuitive that the expansion of g* consists solely of chains
of CT bonds; if there had been any C* bond in a such a chain, the two white particles would not

Geometric percolation of colloidal particles 9



CHAPTER 2. GEOMETRIC PERCOLATION IN THE LIQUID STATE

be connected. Therefore, we can write

ct ct ct
gt(1,2) :M+H (2.10)
ct ct ct
c* ct
All remaining diagrams, such as @ ------ within the expansion of g add up to g*.

The definitions of fT and f* require us to also include the unity term in ¢ in the expansion of
g*.

At this point, we have everything that we need in order to make headway. We have an
expression of the cluster size as a function of the pair connectedness function g* (5.7), and in

turn an expression of g% in terms of CT, which can be rewritten recursively as
gt(1,2) = C*(1,2) +/d30+(1,3)g+(3,2), (2.11)

and finally, we have an expression of C*, see Eq. (2.9).

The last hurdle is to find an appropriate approximation for the direct connectedness function
C*. The simplest nontrivial approximation of CT is the second virial approximation, which can
be obtained by neglecting all diagrams but the first, to end up with

CT(1,2) = f1(1,2) (2.12)

A connectedness Percus-Yevick closure can also be constructed, although its form is slightly less
elegant [40, 44]

CT(1,2) » f7(1,2)g7 (1,2) exp(BUT) + f7(1,2)9(1,2) exp(BU) (2.13)

In contradiction to the excellent results of the regular Percus-Yevick closure, the connectedness
Percus-Yevick closure shows clear deviations from simulation data, which can be seen in Fig.
2.3, where we show percolation threshold calculated with the Percus-Yevick closure. The Percus-
Yevick closure clearly overestimates the percolation threshold significantly [44]. For a quantitative
predictions, one must therefore find either a better closure of the connectedness Ornstein-Zernike
equations, or use another, possibly heuristic, theory.

10 Geometric percolation of colloidal particles
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@® Simulations
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Figure 2.3: The dimensionless percolation threshold for hard spheres calculated with the connec-
tedness Ornstein-Zernike equation in conjunction with the Percus-Yevick closure as function of
the ratio between the hard sphere diameter and the connectivity length. The calculations were by
R. de Bruijn using the methods presented in [//]. We also print Monte Carlo simulation results
of the same material due to M. Miller.

2.5 Conclusion

In this section, we have briefly discussed the structure of the methods from liquid state theory
that allow us to quantify the equilibrium structure of a liquid through the Ornstein-Zernike
equation, and how to adapt this equation to the connectedness Ornstein-Zernike equation in
order to describe the clustering behaviour of particles. This allows us to calculate the particle
density at which the weight averaged cluster size diverges, which coincides with the density at
which material spanning clusters first appear, also called the percolation threshold.

We also show that there is a stark contrast between the regular and connectedness version
of the Ornstein-Zernike relation regarding the accuracy of the Percus-Yevick closure.

Geometric percolation of colloidal particles 11






Chapter 3

Molecular dynamics and
numerical cluster analysis

Summary

We present and analyse a method of finding the relation between the structural and the clustering
behaviour of dispersions of hard spherical particles by means of computer simulation methods.
The methods we present are able to find the percolation threshold in excellent agreement with
literature values for relatively small particle trajectory data sets. In full accordance with earlier
findings, we find that the spatial correlations induced by the hard-core inter-particle interactions
create a non-linearity in the way that the percolation threshold scales with the particle size
relative to a connectivity distance. This non-linearity is due to the complex interplay between
two phenomena that are dominant at different particle sizes: the excluded volume interactions
decrease the number of direct connections each particle can form. However, excluded volume
effects also increase the local density around the hard core particle, increasing the number formed
connections. Together, these phenomena cause the percolation threshold as function of the size of
the hard-core diameter to have a local minimum.
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3.1 Introduction

In this chapter, we describe the techniques we use to study the clustering behaviour of hard,
spherical particles by means of computer simulations. The goal is not to show findings novel to
the literature, but rather to describe comprehensively the simulation method we apply in Chapter
4. The first section of this chapter is devoted to molecular dynamics simulations. Specifically, we
discuss how to solve the Langevin equation in a many particle simulation. In the second section,
we explore how a set of particle trajectories from a molecular dynamics simulation can be used to
gather clustering information, and in particular we describe an efficient method of finding the
percolation threshold. In the last section, we discuss and conclude our results.

3.2 Molecular dynamics

In order to elucidate the time-resolved clustering behaviour of particles, we first need a way to
generate their trajectories. Monte Carlo simulations are cusomarily used to this end due to their
computational efficiency. However, it is difficult to apply them to out-of-equilibrium systems,
which we intend to investigate in Chapter 4. Therefore, we instead use molecular dynamics
simulations to find particle trajectories. In this section, we give a brief description of this method.
If a more comprehensive overview is required, several textbooks have been composed on the
subject, e.g., the monograph of Rapaport [45].

Very generally, molecular dynamics simulations involve the large-scale integration of New-
ton’s second law of motion. First, a specified number of particles N is given a position that
lies somewhere in three-dimensional space, and they are additionally assigned a random initial
velocity such that the temperature of the material corresponds to a prescribed value by the
equipartition theorem. For each particle, the force acting on that particle is calculated, and an
approximation is made regarding the change of its velocity and position over a small but non-zero
time step At. This force might be due to some external influence, such as an electric field, or
it can be induced by the interaction with another particle. Subsequently, all particle positions
and velocities are now updated, and the forces are recalculated. This exercise is repeated until
the trajectories of the particles allow for a sufficiently strong statistical analysis. Typically, a
simulation consists of a total of 10° — 10° time steps.

3.2.1 Langevin dynamics

In practice, simulations are often course-grained to improve the efficiency and thereby the total
time the simulation takes to run. This implies that some or all of the internal detail and degrees
of freedom of simulated molecules or groups of molecules are discarded, retaining only much
simpler entities for the computer to deal with. For example, it is not unusual in such simulations
for a micron-sized colloidal particle to be treated as a point particle with no internal structure.
This point particle interacts with similar point particles by an effective pair potential that is
introduced such that it reproduces the behaviour of the original particles as accurately as possible.
The search for an effective pair potential that accurately represents the often complex interactions
of larger particles is highly non-trivial in many cases and often has to be based on an intricate
understanding of the many-body behaviour of type of particle in question [46].

In the study of colloidal suspensions, there is another highly effective method one can use
to simplify a molecular dynamics simulation. A colloidal suspension typically consists of large
solute particles that are dispersed in a solvent of much smaller particles. In most cases, the
equilibrium behaviour of the solvent is reasonably well understood and one is mostly interested
in the behaviour of the solute. To that end, solvent particles are often completely removed from
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the simulations, but have their effects taken into account implicitly [47]. The collisions of small
solvent particles with large solute particles are then modelled by a random force acting on the
solute particles. The equation of motion describing the evolution of the trajectory x;(t) of a large
solute particle under the influence of such an implicit solvent is called the Langevin equation,
which is given by

d2 i d 7
mid—; = —VU() — 5; + /2kpTHF, () (3.1)
fort=1, ..., N. The Langevin equation states that for every particle, the product of its mass

m; and its acceleration is equal to the sum of three forces. The first force, which is expressed
in terms of a potential energy above, is due to the conserved interactions of this solute particle
with all other solute particles, in combination with all externally applied forces. The second force
describes the damping effect that the solvent particles exert. A particle moving at some velocity
through the solvent has to displace all the solvent particles in its way. This force is modelled as
the product of a constant damping parameter v and the velocity of the particle. According to
Stokes’ law, the damping parameter is related to the size of the particles according to v = 3muo,
where o is the diameter of the particle, and u is the dynamic viscosity of the medium. The third
and last force is a random force, which describes the way the small solvent particles collide with
a stationary solute particle as a random force F,.. This random force has a mean of zero and is
delta-correlated in time, implying that

(Fo(0)=0 and  (F,(t1)F.(t2)) = 6tz — t1), (3.2)

where 4(t) is the dirac-delta distribution and the angular brackets denote an ensemble average.
The prefactor of this random force in Eq. (3.1) can be derived from the Fluctuation Dissipation
Theorem [48]. The random force term is also responsible for maintaining the temperature of the
dispersion, and is, therefore, sometimes also called a Langevin thermostat.

3.2.2 Interactions

The interactions between particles in molecular (or Langevin) dynamics simulations can be very
complex. However, our goal is to model hard-core particles, which only prohibit any particle
overlap but do not undergo other interactions. In molecular dynamics simulations, it is impractical
to use ‘true’ hard-sphere potentials, since their corresponding forces are non-analytic'. Instead,
we use a potential that is related to the so-called Lennard-Jones potential. The Lennard-Jones

potential is given by
oy 12 o6
vt =1 () (2)"). (33)

Here, € is a parameter that controls the strength of the potential, and o is the size of the particle.
This potential approximates the way in which very typical electroneutral atoms interact, and was
first used to predict the viscosity of Argon [50]. The first term models the hard repulsion between
particles ultimately due to the Pauli exclusion principle. The second term is the attraction caused
by Van der Waals forces, which model the combined electromagnetic attraction caused by London,
Debye, and Keesom forces [51].

To model hard-core particles, however, it is customary to ignore the attractive part of
the potential and only use the short-ranged repulsion. We accommodate this by adapting the

1To use a true hard-sphere potential in a molecular dynamics simulation, it is possible to model the hard-core
dynamics using so-called event-driven simulations [49]. This, however, is outside the scope of the present work.
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Lennard-Jones potential to what is often called the Weeks-Chandler-Andersen potential [52]

1e((9)" = (2)") +e r <25

(3.4)
0, r> 264,

Uwcal(r) = {

The removal of the attractive tail of the Lennard-Jones potential causes particles to lose the
inclination to aggregate. This ensures that the particles remain homogeneously dispersed through-
out the simulation domain, which is essential, since the degree of homogeneity has been shown
to have a major influence on the percolation threshold [22, 53]. In the rest of this chapter, we
use the value of o to refer to the size of the particles. Note that results calculated for ‘hard’
particles interacting through a Weeks-Chandler-Anderson potential with a particle size o should
differ slightly with respect that calculated for particles of the same size interacting with a true
hard-sphere potential. We discuss this in more detail in Section 3.3.

3.2.3 Time integration

After having calculated the total force acting on a particle, we need to translate this to an
approximation of the displacement of that particle in a finite time period At. To do this, we
could resort to simple Taylor polynomials,

x(t + At) = x(t) + v(t)At + a(t)AT252 +..., (3.5)
v(t+ At) =v(t) +a(t)At+. .. (3.6)
a(t) = %F(t) (3.7)

where we define F(¢) as the total force on a particle, and its velocity v(t) and acceleration
a(t) as the first and second time derivatives of the particle trajectory. Neglecting all higher order
terms provides us with a direct way to calculate the displacement of all particles given the force
acting upon them. Unfortunately, this method is notoriously unstable and requires the time step
At to be chosen impractically small to prevent non-physical explosions [45]. In this work, we
use a different time integration scheme, called the Velocity Verlet scheme, which is both more
accurate and less prone to instabilities [54].
The Velocity Verlet scheme is very similar to the naive scheme outlined above, but uses
a better approximation for the velocity. This results from the fact that this algorithm is one
order more accurate than the more simple Taylor method above?. At any time step, the scheme
consists of performing the following steps in succession: [55]
1. Calculate the new positions using x(t + At) = x(t) + v(t)At + a(t)Ath;
2. Using the new position vectors, calculate the new forces on all particles using the pair
potentials;
3. Calculate the new acceleration using the force derived from the new particle positions
a(t + At) = LF(t + At);
4. Calculate the new velocity using the average of the new and the old acceleration v(t+ At) =
v(t) + At(a(t) + a(t + At)/2.
The properties of this scheme cause it to be very well suited for molecular dynamics
simulations, and it has been adopted as one of the most commonly used integration schemes

[55].

2The order of an integration scheme describes the scaling of the discretisation error. A second order scheme is
a scheme for which the local discretisation error scales with At2.
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3.2.4 Boundary conditions

All macroscopic systems—whether they are breaths of air or bars of metal-—consist of too many
particles to simulate explicitly using modern computers. For example, a typical breath of air
contains roughly 102° molecules, whereas the largest molecular dynamics simulation performed to
date included ‘only’ 10° particles, and needed to run on 130,000 processors to reach a performance
of 1 ns per day [56]. In order to gain any information about bulk properties of materials, it is
therefore necessary to introduce periodic boundary conditions. This means that we simulate
particles in a finite simulation box, and imagine that this box tiles all of space. Every particle in
our simulation box also exists in all other boxes as a periodic image. An illustration of this idea
is given in Fig. 3.1.
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Figure 3.1: Two-dimensional illustration of periodic boundary conditions. The central simulation
box envelops three particles. One of which is about to leave the box on the right, as its image
enters on the left.

In principle, every particle should feel the presence of all images of all other particles and
all images of itself. However, by convention, we only calculate the interaction between a particle
and the nearest image of another particle, such that the maximal number of interactions to be
calculated is equal to N(N — 1)/2. This convention has the requirement that the box size is
much bigger than the range of the interaction. For especially long-ranged interactions such as
Coulombic forces, more elaborate methods have been constructed [57]. A second consequence of
the finite size of the simulation box is that no correlations can be obtained over a length scale
longer than halve of the box size. Therefore, in a simulation of a physical phenomenon that
has long range spatial correlations, care must be taken to make the simulation box sufficiently
large.

In this chapter, we conduct several Langevin dynamics simulations using the LAMMPS
software package that implements the methods we have outlined above [58]. We conduct the
simulations in Lennard-Jones units, meaning that the mass m, Boltzmann constant kg, particle
size o and interaction strength unit ¢ are set to unity. Unless otherwise specified, we set the
temperature to T = ¢/kp, the damping constant to v = 10, and the time step to At = 10737,
where 7 = y/mo? /e is the unit of time. To obtain SI values of the parameters listed above, a
choice has to be made for the mass, size and interaction strength of the simulation. For example,
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if we set the particle size to equal one nanometer, the mass to m = 10% g/mol and the interaction
strength such that T'= 300 K, we find by Stokes’ law that the dynamic viscosity of the solvent
is somewhat lower than that of water. We stress that this choice is not unique, and that our
simulations are equally valid for any other choice of units, as long as the other parameters are
re-interpreted accordingly.

We initialise the simulation by placing every particle on a lattice and equilibrate the
simulation for at least 1007. After this initial equilibration time we save the particle positions
every time unit 7 for a total simulation time of 10*7. We use these particle trajectories in order
to calculate the cluster sizes.

3.2.5 Shear simulations

In Chapter 4, we perform simulations of dispersions of particles in simple shear flow. This means
that we assume that the colloidal particles are not dispersed in a solvent at rest, but in a solvent
with a positionally dependent velocity v, = 4y, where  is the shear rate. To effectively simulate
this with an implicit solvent, we need to implement two changes. Firstly, whenever a particle
passes one of the periodic boundaries in the y-direction, we need to remap its velocity in the
z-direction to match its new location. For example, if a particle leaves the positive y-boundary,
its image entering the simulation through the negative y-boundary has its x-velocity changed by
—~4Ly, where L, is the box dimension in the y-direction. Such boundary conditions are called
Lees-Edwards boundary conditions [59].

The second aspect we need to change is the thermostat. To ensure that we are simulating
particles at a given temperature T, we need to take into account that the background shear
velocity should not contribute to the calculation of the global temperature. Therefore, one needs
to use the velocity of the particles relative to the local background velocity in the temperature
calculation. This choice effectively means that we simulate the particles in local equilibrium with
respect to the moving background fluid.

Having implemented these adaptations, our simulations show a linear velocity profile as
intended. To be quantitative and be able to compare with other work, two dimensionless numbers
are often introduced. The first is called the Peclet number Pe = 402 /4Dy, and is used to quantify
the strength of the shear flow, relative to the diffusion. In its definition, Dy = kpT '/~ is the single
particle diffusion constant, which can also be determined by calculating the slope of the mean
squared displacement of isolated particles ((x(t) — x(0))?) = 6Dyt in the absence of a flow field.
The second number is the particle Reynolds number Re,, = psy0?/4n = 3mpsio® /4y, where ps
is the density of the solvent. The particle Reynolds number quantifies the relative effect of the
flow and the inertia on the motion of the particle. Using the example parameters of above, and
assuming that the solvent is water, these dimensionless numbers are given by Pe = 2.5§ and
Re, ~ 10724, where % is given in units of 77!. The fact that the particle Reynolds number is
low indicates that the role of inertia is small. Indeed, in much of the analysis on sheared colloidal
dispersions, the particle Reynolds number is assumed to vanish. This places us in the Stokes flow
regime, where the governing equations for the particle motion are linear [60]. Throughout the
remainder of this document, we make the same assumption.

3.3 Cluster analysis

In this section, we describe the methods that we apply in order to analyse particle clustering.
Throughout this document, we approach connectivity and percolation purely geometrically, i.e.,
we introduce some distance criterion A to be satisfied in order to consider particles connected,
as described in Chapter 2. Since this does not introduce any new interactions or bonds, we can
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simply use the full molecular dynamics trajectories without any alterations, and extract the
clustering behaviour. We use the same connectivity criterion as described in Chapter 2: if the
distance between the centres of mass of two particles is smaller than the connectivity length A,
we consider the particles to be directly connected. Two particles can be indirectly connected
through direct connections with other particles, in which way larger clusters are created.

To calculate what particles should be grouped into clusters, we perform a full hierarchical
clustering procedure to find the linkage matrix for a given set of particle positions, using the
algorithm presented in Ref. [61]. The rows of the linkage matrix in essence describe the order
in which clusters are merged as the connectivity length A increases. Each row of the matrix
includes the labels of the particles that are merged, and the distance between the clusters that are
merged. For example, the first row always indicates that the pair of particles with the smallest
mutual distance is merged into a cluster of two particles. The last row describes the merger of
two clusters into a single cluster that encompasses all particles in the simulation box.

Using this linkage matrix, it is relatively easy to find how the particles should be divided
into clusters for a specific value of A. To do this, we iterate over the rows of the matrix, clustering
particles as prescribed, until we reach a merger with a cluster distance larger than our value of
A

3.3.1 Mean cluster size

Having defined the way in which we cluster particles, it is now possible to measure how the
average cluster size behaves as we change the density and hard-core diameter of the particles. In
Fig. 3.2a, we logarithmically plot the average cluster size for varying connectivity volume fraction,
that we define as o) = mpA3/6 for two system sizes. In the figure, we also make a distinction
between the number average cluster size ), kng/ >, nx = N/ >, ni, and the weight average
cluster size ), k%*ny /N, where ny is the number of clusters of k particles. As is to be expected,
for very low connectivity volume fractions, both mean cluster sizes are unity, since no particles
are connected. As the connectivity volume fraction increases, the mean cluster size also increases,
until it saturates when all particles are connected. The mean cluster size in that case is equal to
the total number of particles in the simulation, which is a finite-size effect.

In the intermediate regime, the number average cluster size and the weight average cluster
size show qualitatively different behaviour. The number average cluster size seems to increase
exponentially with the connectivity volume fraction, visible from the linear behaviour in the figure.
The weight averaged cluster size, however, seems to diverge at a fixed connectivity length. Of
course, since our system is finite, a real divergence is impossible giving rise to a quick saturation
of the cluster size. The location of this divergence of the weight averaged cluster size can be
identified as the percolation threshold, as we stated in Section 2.2. We can clarify this by plotting
the same figure for non-interacting particles, in which case the percolation threshold is established
to six decimal places to be mpA3/6 = 0.341889(3) [62]. This value roughly coincides with the
inflection point of the weight average cluster sizes in Fig. 3.2b.

If we compare Fig. 3.2a with Fig. 3.2b, we can clearly see the effect that the hard core
repulsion has on the mean cluster size. This effect is twofold. Firstly, the repulsion in the
case of interacting particles prevents particles from being connected as long as the connectivity
length is smaller than the particle diameter. This means that the mean cluster size only starts
significantly increasing as the connectivity volume fraction is larger than the hard core volume
fraction mpo3/6 ~ 0.37. Secondly, the excluded volume effect of the hard cores also decreases the
variance in the nearest neighbour distances between particles. This implies that the connectivity
length at which all particles are connected in a single cluster is much lower. This is clearly visible
in the figures through the fact that the number average cluster size saturates at much lower
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Figure 3.2: The weight- and number-averaged cluster size for hard (a) and penetrable (b) spheres
as a function of the connectivity volume fraction wpA\3/6 at number density po® = 0.7. In figure
(b), we indicate the literature value of the percolation threshold, which coincides with the location at
which the weight averaged cluster size grows most rapidly. Both the number- and weight-averaged
cluster size are shown for two different system sizes of N = 10% and N = 10* particles. This
system size determines to what value the mean cluster sizes saturate.

connectivity length for interacting particles than it does for non-interacting particles.

It is possible to obtain the percolation threshold by the analysis of how the weight averaged
cluster size behaves as the connectivity length increases, at constant density. However, a more
accurate and direct method has been developed in literature, which relies on finding the probability
that a percolating cluster appears in a simulation, and investigating how this probability scales
with system size. In the next section, we analyse and apply this method to find how the percolation

threshold behaves as the ratio o/\ changes.

3.3.2 Percolation threshold

In the thermodynamic limit, the percolation threshold is well-defined. That is, there exists a
volume fraction above which a percolating network always forms, and below which it never forms.
A percolating network can be understood as a network that spans the entire material, or in
other words, a network that creates a path from one side of the material to the other. In a
finite simulation, unfortunately, there are two difficulties that are not present in ‘infinitely’® large
materials. Firstly, the definition of a percolating network is ambiguous. Should this imply that
the network touches opposite ends of the simulation box, or that it connects to its image through
the periodic boundaries to form an effectively infinite network? Secondly, in finite systems, the
percolation threshold does not exist, i.e., there is a nonzero probability that a dispersion of
particles well below the percolation threshold happens to span the entire simulation box. This

3By infinite, we mean that it satisfies the thermodynamic limit. For all our intents and purposes, any macroscopic

material is infinite.
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means that we need a way to extract the percolation threshold from finite simulations, while it is
by definition a process that happens on infinite scales. In short, the first problem is how to define
a percolating cluster in a finite system, and the second is how to define the percolation threshold.
We deal with the former first and revisit the latter later in this section.

The question of how to define a percolating cluster in finite simulations has been answered
in different ways in the literature [63]. The most common approach is to define a percolating
cluster to be either a spanning cluster or a wrapping cluster. A spanning cluster is a cluster
that constitutes a continuous path from any boundary of the simulation box to the opposite
boundary. It does thereby span the simulation box, but it does not necessarily span the periodic
continuation of the simulation box. A wrapping cluster is a cluster that is connected through the
periodic boundaries to an image of itself, thereby spanning the continuation of the simulation box,
but not necessarily the simulation box itself. In some works, a percolating network is required to
span both the simulation box and its periodic continuation. In this work, we call such clusters
bridging. To clarify this, we graphically illustrate our three different definitions of a percolating
cluster in Fig. 3.3. In Fig. 3.3a, we show an example of a spanning cluster. Additionally, we
show a bridging and a non-bridging wrapping cluster in Figs. 3.3b and 3.3c. We stress that all
bridging clusters also belong to the set of all spanning and wrapping clusters.

Percolating
Cluster

Non-
percolating
cluster

(a) (b) (c)

Figure 3.3: Three different definitions for percolating clusters, illustrated in two dimensions:
(a) A spanning cluster that connects the boundaries of the simulation box, but does not span the
periodic continuation of the simulation boz; (b) A bridging cluster which spans both the simulation
bozx and its periodic continuation; (c) A wrapping, but not bridging cluster that spans the entire
material but not the simulation boz.

Each of the three definitions has been used in the literature of simulations of the percolation
threshold. For example, Refs. [64—66] use spanning clusters in their analysis, Refs. [53, 67] use
wrapping clusters, and [68] use bridging clusters. The difference between the latter two definitions
is subtle and not often made explicit, but as we show later in this chapter, if all wrapping clusters
are included, a significantly more accurate prediction for the percolation threshold is obtained at
a given simulation size at the cost of being slightly more computationally expensive.

One should also choose whether to require a percolating cluster to percolate in at least any
one or two directions [63], or in precisely one, two or three directions [69]. For simplicity, we
choose to require that a percolating network percolates in at least any one of the three directions.
We note that all of the above definitions converge to the same percolation threshold as the
simulation size increases. The speed of this convergence, however, may vary.

We now address the second problem we posed earlier this section. In order to define the
percolation threshold in a finite system, such that it is independent of the simulation size and
that it corresponds to the percolation threshold of an infinitely large material, we calculate the
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percolation probability P,(A) as a function of the connectivity volume fraction A. This probability
corresponds to the fraction of particle configurations that include a percolating cluster if the
connectivity length is set to a value of A. In the thermodynamic limit, this probability is zero below
the percolation threshold and one above. However, in finite simulations, it is a monotonically
increasing function that becomes steeper as the number of particles increases.

We calculate this probability in a method similar to that presented by Nigro et al. [70]. Given
the set of particle positions at ¢;, we calculate the critical value A ; for the connectivity length that
first produces a percolating cluster. This critical value indicates that in that particle configuration
a percolating network is produced for all A > A, since increasing the connectivity length can
never disconnect any particles. Therefore, we can use the set of these critical connectivity lengths
to find the percolation probability P,(A). The resulting approximation is

1 X
BN~ & D I = M), (3.8)
=1

where ¥(z) is the Heaviside step function and N; is the number of particle configurations
sampled.

The procedure described above is different from the more common discrete sampling
of P,(A), where the probability function is estimated at several predefined values of A by
generating and averaging over a large number of independent configurations for each A. We
believe that the advantages of the method we use over this discrete sampling method are that each
particle configuration contributes information for all A, reducing the total number of independent
configurations necessary to get similarly strong statistics. Additionally, this method ensures that
the percolation probability P,(A) is monotonically increasing by construction, further decreasing
the statistical noise in the final probability function. Lastly, it eliminates all interpolation errors
that are introduced when the value of the percolation probability is needed at some specified value
of the connectivity length A\ that was not part of the set of values on which it was sampled.

To find the critical value of the connectivity length A.; in a sample, we perform a full
hierarchical clustering procedure to find the linkage matrix for a given set of particle positions
without taking the boundary conditions into account. As explained earlier, this linkage matrix
quantifies in which order the particles should be clusters with increasing A. After this linkage
matrix is calculated, it is not difficult to determine to which cluster each particle belongs for
a specific connectivity length A. This information can be used to determine whether or not a
spanning, wrapping or bridging cluster has formed. The algorithm for detecting spanning and
bridging clusters from here is trivial.

To find all the wrapping clusters, we construct a cluster graph in which each vertex is a
cluster and each edge indicates a connection from one cluster to another through one of the
periodic boundary conditions?. We also include information about through which boundary the
connections are made. In order to find a continuous path from one cluster to an image of itself,
we use a breadth-first search algorithm on the cluster graph [71]. This procedure is visualised by
the schematic in Fig. 3.4. If such a path is found for any cluster, we know that a percolating
cluster exists and what particles it comprises. With a simple binary (bisection) search, we can
now determine the smallest A for which a percolating cluster is formed, which we call A.;. The
set of A, ; for all ¢ lets us determine the percolation probability with Eq. (3.8). We note that in
three dimensions, the continuous wrapping paths from a cluster to one of its images can become
quite complex.

Once the percolation probability function is obtained, there are several methods available

4In the language of graph theory, a vertex is a circle, and an edge is a connection between circles.
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Figure 3.4: Schematic of the procedure by which we determine the existence of a wrapping
cluster. Given a set of particle positions, we first naively divide them into clusters without taking
the boundary conditions into account. Next, we construct a graph containing information about
what cluster is connected to what other cluster through the periodic boundaries. For example, an
arrow from 1 to 2 labelled with a Fx indicates that 1 is connected to 2 through the —x-boundary,
and 2 to 1 through the +x-boundary. We perform a breadth-first search on this graph to find a
continuous path from any cluster to an image of itself. The final wrapping cluster in the cartoon
consists of the clusters labelled 1, 2, and 3, including all their images.

by which the percolation threshold can be extracted. In the thermodynamic limit, we know that
the percolation probability vanishes below the percolation threshold, and is equal to unity above
it. This allows us to find the percolation threshold with relative ease in a multitude of ways. For
example, one can find the connectivity volume fraction where the percolation probability equals
some specified value, say P, () = 0.5, for multiple simulation sizes at constant number density and
extrapolate this location to 1/N — 0, where N is the number of particles in the simulation box
[68]. There are many more methods for achieving the same results, some of which have the benefit
of determining the relevant critical exponents en passant [66]. A relatively simple method, which
we employ in this work, is to find the intersection between two percolation probability curves at
different system sizes [63]. If the simulation contains sufficiently many particles, this intersection
point accurately approximates the percolation threshold. In Fig. 3.5, we show the percolation
probabilities obtained for spanning, wrapping and bridging clusters for different cluster sizes for
non-interacting particles. Each curve is determined from the trajectories from one molecular
dynamics simulation, from which in every time span of 7 one particle configuration is used up to
a total of N; = 10* configurations. In Fig 3.5, we also indicate percolation threshold.

We find that the intersections of the probability curves for all three methods converge to
the same percolation threshold. However, the wrapping method converges significantly faster and
for smaller system sizes than the other two methods do, corroborating the earlier findings of Ref.
[63]. Another interesting feature in Fig. 3.5 is the considerable difference between the curves
pertaining to the curves of wrapping and bridging clusters. At the percolation threshold, the
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Figure 3.5: Percolation probability curves Py, as a function of the connectivity volume fraction
7pA3/6 for the three different definitions of percolating clusters of nmon-interacting particles:
spanning clusters, wrapping clusters and bridging clusters. Each set of probability curves is plotted
for four different system sizes N. The dashed black line indicates the known percolation threshold
[62], and the insets show where the curves for the different definitions intersect each other.

fractions of wrapping clusters that bridge is smaller than 50%, independent of the simulation
size. This means that at the threshold, most clusters are not connected to any of their six nearest
images, but to ones located in further away cells.

In the rest of this work, we use the intersection between the probability curves of simulations
of N = 500 and N = 4000 with the wrapping cluster criterion to determine the percolation
threshold, with a total of N; = 10* configurations. For non-interacting particles, this yields a
percolation threshold of mpA3/6 = 0.34187, which deviates less than 0.01% from the literature
value [62].

Having fully established the methods by which we can determine the percolation threshold,
we can evaluate the effect that hard-core interactions exert on it. To do this, we conduct molecular
dynamics simulations for different values of the Lennard-Jones particle size o at constant number
density. In Fig. 3.6a, we plot the resulting percolation threshold as a function of o/A. We see
that for small to intermediate o, the percolation threshold decreases, whereas for high o, the
trend reverses and the percolation threshold increases with an increase in particle size.
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Figure 3.6: (a) The dimensionless percolation threshold mpA3/6 as a function of the ratio of
the particle size o and the connectivity length X\, as determined by the procedure described in the
main text. Also plotted are the results of the equilibrated hard-sphere (diameter o) Monte Carlo
simulations due to Miller [72]. In (b) we present the pair distance distribution (x r2g(r)) at
connectivity volume fraction pmA®/6 = 0.3 for varying o /X ratios. The area under these curves is
proportional to the coordination number, i.e., the average number of direct connections that each
particle has.

This behaviour can be explained as the result of the interplay between two physical
phenomena. These phenomena can be seen more clearly in Fig. 3.6b, where the pair distance
distribution, which is proportional to r2g(r), is plotted at the percolation threshold for three
different values of the ratio o/\ as a function of the particle distance. We show only small
distances 0 < r < A, where the pair of particles form direct connections. If o/ = 0, the pair
distance distribution scales quadratically with r, since g(r) = 1 in that case. For 0 < o/\0 < 1,
the excluded volume interactions prohibit particles from being very close together, which decreases
the number of direct connections each particle has. This phenomenon causes the percolation
threshold to increase as o/ increases, and causes the very steep rise for high o/\, since the
volume in which particles can be directly connected becomes very small. For intermediate values
of o/, this effect is subdominant to a second phenomenon, which causes the local minimum in
the percolation threshold seen in Fig. 3.6a.

Since an increase of the hard excluded volume increases the particle crowding, the local
density around a particle’s hard core increases. This in turn increases the number of direct
connections each particle has. The connections that this phenomenon adds are more important for
long-range connectivity than the connections that the hard particle excludes, because they bridge
larger distances. This the reason why the percolation threshold can be decreased by excluded
volume interactions.

In Fig. 3.6a, we also plot the results of equilibrated Monte Carlo simulations of percolation
of hard spheres due to Ref. [72]. We see that for small o/, the deviations with our data are
negligible and can be attributed to statistical noise on either side. For larger values of o /A,
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we can see the effect of the different interaction potentials, implicating that a Weeks-Chandler-
Andersen potential slightly increases the percolation threshold compared to a true hard-sphere
potential.

3.4 Discussion and conclusion

In this chapter, we have described a simulational method and analysis framework to find the
percolation threshold in dispersions of spherical interacting particles. We find that our method
gives results consistent to very high accuracy with known literature values. The influence of hard
core interactions between the particles either decreases or increases the percolation threshold
depending on the size of the particle relative to the connectivity length. This nonlinearity is
explained as the combined effect of two phenomena. On the one hand, the excluded volume
interactions decrease the number of direct connections each particle makes by decreasing the
volume in which particles can be connected. On the other, the expulsion of particles by the
excluded-volume effects causes a local increase in the microscopic density around the particles,
which aids long-range connectivity. Concluding, we believe that a comparison between previous
literature data and results generated by the method described in this chapter provide sufficient
confidence that we can apply the method to finding the percolation threshold in sheared suspensions
too. Therefore, we apply the method described above to percolation of this non-equilibrium
system to test the accuracy of the theoretical work presented in Chapter 4.

Currently, a method of analytically predicting the percolation threshold of (hard) spheres
with quantitative precision remains elusive [73]. In contrast to the case of rodlike particles,
described in Chapter 5, closures for connectedness Ornstein-Zernike equation fail to quantitatively
predict the percolation threshold, despite being highly accurate for predicting the structure
of hard-sphere fluids [44]. Other methods, such as the one we extensively use in Chapter 4,
often rely either on fitting procedures or other heuristic arguments. In the interest of aiding
the development of new analytical tools with more predictive power, we provide spatial and
temporospatial pair connectedness, blocking and correlation functions slightly above and below
the percolation threshold for various values of the hard sphere volume fraction, in Appendix
E.
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Chapter 4

Percolation of spherical colloids in
shear flow

Summary

In this chapter, we present a model that is designed to predict the percolation threshold in
an out-of-equilibrium dispersion of spherical particles subject to simple shear flow. The model
combines the heuristic percolation criterion of Alon et al. with a theoretical description of the
shear-induced distortion of the structure by Blawzdziewicz et al. for dilute suspensions without
hydrodynamic interactions [74, 75]. To test the accuracy of the model and its ingredients, we
compare with simulation results. We find that shear flow can both slightly increase and decrease
the percolation threshold, depending on the connectivity length. We conjecture that the decrease
is due to the emergence of shear-induced linear contact clusters. This conjecture is supported by
our simulation finding that shear flow elongates clusters.
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4.1 Introduction

If a polymer composite host is enriched with nanofiller particles, the degree of homogeneity of the
dispersion of the nanoparticles is of great influence to the resulting enhancement of the properties
of the polymer composite [76]. Hence, great care is taken in the manufacturing process to disperse
the nanofillers evenly. Often this is done by techniques such as sonication, manual mixing or
shear mixing, followed by casting and curing the composite [77]. These methods can successfully
help dispersing the particles and preventing aggregation of the nanofillers. However, because the
curing is done relatively quickly after the mixing—to prevent aggregations—the structure of the
nanofillers is essentially frozen in, preventing them to reach their thermodynamic equilibrium
configurations.

This means that if the goal is to model the percolation threshold in such polymer composites,
the use of equilibrium liquid state theory as described in Chapter 2, is fundamentally flawed since
the particles cannot be assumed to behave as if they would in equilibrium. To circumvent this
issue, a quantitative, out-of-equilibrium percolation theory is needed. Unfortunately, no such
theory is known to the authors. An alternative is to take a more heuristic approach, such as we
do in this chapter. We use a simple geometric criterion for the percolation threshold that was
developed to be able to predict the percolation threshold for particles of any shape from their pair
correlation function® [74]. We combine this with a Smoluchowski equation for the pair correlation
function of particles in shear flow. Together, these two ingredients provide us with a relatively
simple way to qualitatively predict the percolation threshold in sheared dispersions.

In this work, we restrict ourselves to dispersions of spherical particles. In principle, a model
such as this could be constructed for anisometric particles as well. However, the complicated
dynamics of such particles induced by a shear flow in combination with their phase transition
behaviour would render such a model either much more complicated or much less predictive.
Even spherical particles exhibit nontrivial properties induced by shear flow. For example, an
applied shear flow is known to either increase or decrease the viscosity of the medium significantly
depending on the strength of the flow field, phenomena which are known as shear thinning and
thickening [60]. Additionally, sheared particles have been reported to aggregate hydrodynamically
in chain-like structures at low to moderate volume fractions [78, 79], and have been predicted to
exhibit long-range order near walls [80]. Moreover, a shear strain can hysteretically deform the
crystalline structure of densely packed spherical particles into a so-called sliding layer structures,
or can break it completely in case of sufficiently strong flow fields [81].

In equilibrium, hard-core particles have infinitely brief collisions. In sheared dispersions of
which the particles are sufficiently large that the shear flow dominates the diffusive mobility of
the particles, however, two hard-core repulsive particles may hydrodynamically stick to each other
for finite contact times. On the basis of this insight, de Gennes conjectures that infinite clusters
appear at some critical volume fraction, where such clusters comprise an infinite number of
physically touching particles [82]. This is in close analogy with the cherry-pit percolation problem
where the particles need not touch to be considered connected. Because of the sheared origin of
these ‘contact clusters’, de Gennes argues that such clusters must have a very transient nature,
meaning that connections between particles are formed and broken in accordance with some
average contact time. These conjectures has recently been provided with evidence by simulations,
which find the emergence of simulation spanning contact clusters at volume fractions around
© = 0.3—0.4, depending on the simulation size [33]. Additionally, the simulations indicate that the
clusters are roughly linear, extremely transient and that they conform reasonably well to standard
isotropic percolation theory. Two-dimensional simulations of similar sheared dispersions also
show that such clusters have a highly transient nature, indicated by their stretching, compressing,

Lwhich will turn out to be accurate as long as the particles are not very ‘pointy’.
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and rotating behaviour, the latter leading to the transport of particles in the gradient direction
perpendicular to the flow field [84].

Many theories have been proposed to describe the structure of particles in a flow field
analytically. The starting point of which is often the Smoluchowski equation that describes
the dynamics of the many-body particle distribution function [85, 86]. The N-body equation is
averaged over N — 2 degrees of freedom to yield an equation for the 2-body distribution, which
is closely related to the pair correlation function. In its general form, this equation exactly
reproduces the dynamics of the many-body distribution function at the Brownian timescale,
taking into account all many-body colloidal and hydrodynamic interactions. It is, however,
still of little practical use since it explicitly contains the unknown 3-body distribution function,
for which an equation can be constructed similarly by averaging over the N — 3 degrees of
freedom. This equation then contains a 4-body distribution, and so on, creating a hierarchy of
coupled integro-differential equations. In practise, one often approximates the 3-body interactions
either by factorising them into 2-body interactions [87-89] or related approximations [90-93],
or by neglecting them altogether [75, 94-96]. A similar choice must be made for hydrodynamic
interactions: they are either disregarded [75, 89, 93], approximated by some heuristically known
parametrisation [94], or taken into full account at the two-body level [91, 97].

In this chapter, we follow the work of Blawzdziewicz and Szamel who disregard all hydro-
dynamic and three-body interactions to produce an equation for the pair correlation function of
hard spheres in a simple shear flow that can be solved analytically with relative ease [75]. The
resulting radial distribution function is believed to become exact in the dilute limit, and has been
shown to reproduce the known shear-thinning behaviour of hard spheres qualitatively, and shows
the same kind of boundary-layer behaviour as theories based on more complete Smoluchowski
equations [95].

This chapter is structured as follows. Firstly, we outline the heuristic percolation criterion
of Alon, Balberg and Drory [74] that predicts the percolation threshold based only on the
pair correlation function. Secondly, we give an overview of the Smoluchowski based theory of
Blawzdziewicz and Szamel and its predictions for the pair correlation function of sheared particles.
Thirdly, we combine the two theories into a single framework that predicts the percolation
threshold in a sheared suspension. Throughout this chapter, we make comparisons with molecular
dynamics simulation results to establish the validity of the made assumptions and to assess how
they can be improved.

4.2 A heuristic percolation criterion

In this section, we describe the percolation criterion developed by Alon et al. [74], developed to
predict the percolation threshold for anisometric particles based only on geometric structural
input. In the presence of non-equilibrium flow fields, its geometric and heuristic nature is an
advantage, since it is not rooted in equilibrium statistical mechanics. The model has been shown
to give accurate results for permeable spheres, cubes, circles and squares, and does not lose its
predictive power when polydispersity or attractive particle interactions are introduced [67].

We present the criterion specifically for monodisperse hard spheres. For a presentation
applicable to particles that are anisometric, polydisperse in size or shape, or interact with different
interparticle potentials, we refer to Refs. [67, 74]. We consider a dispersion of N spherical particles
with diameter D that are impenetrable, i.e., we assign an infinite energy to a configuration where
any pair of particles overlap and zero energy otherwise. We disperse them homogeneously in a
volume V', such that the macroscopic number density is p = N/V. The structure encoded in the
pair correlation function g(r) can be calculated accurately with the Ornstein-Zernike relation
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in conjunction with the Percus-Yevick closure as described in Chapter 2. If the centre-to-centre
distance of a pair of particles is smaller than the connectivity length A, we call them directly
connected.

Alon, Balberg and Drory postulate that the percolation threshold must be determined by
two length scales. The first, I, is the average distance between directly connected particles (that is,
particles with a mutual distance < ). The second, Lo, is given by the average distance between
particles that both have two or more direct connections. Such particles are seen as the backbones
of a percolating cluster, since only by particles with two or more connections, connectivity can be
propagated. All such particles have a mantle of directly connected neighbours around them that
are on average a distance [ away from each other. Alon et al. state that a percolating cluster
exists if the mantles of such particles overlap. In other words, percolation threshold is determined
by the condition Ly = 2I, which is visualised in Fig. 4.1.
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Figure 4.1: Percolation is postulated to occur when the average nearest distance Lo between a
pair of particles with two or more connections is smaller than twice the average distance between
directly connected particles, i.e., particles whose mutual distance is smaller that the connectivity
length .

To find the percolation threshold, we only need to calculate both the length scales and find
at what density they are equal. We start by calculating the weighted distance [ between two
directly connected particles. Since the probability of finding a particle in a volume d3r at position
r relative to a test particle is equal to pg(r)d3r, we surmise that the mean squared distance

reads 5 )
2 fVA d3rg(r)r
Jy, drg(r)

Here, we integrate over a so-called connectivity volume V) being the volume around a particle in
which the centre of another particle can travel while remaining directly connected to the first.

(4.1)

In our case of spherical connectivity volumes, we simply have ka dPr = 4r fo’\ drr2. For the
averaging, we use the second moment of the pair correlation function g(|r|) over the volume Vj,
instead of the first because it gives slightly better results, according to Alon and coworkers. It
essentially gives the regions in the connectivity shell that are farther away a larger weight.

The second length scale Lo is defined as the average closest distance between particles
that each have two or more connections. To approximate this length scale, we assume that
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the probability that a randomly chosen particle has k direct connections obeys the Poisson
distribution P, = B* exp(—B)/k!, where B is the average number of connections per particle.
This assumption turns out to be exact if the particles are ideal [98, 99], and from our simulations
we find it to be accurate for non-ideal particles too, see Fig. 4.2a. The effective density of particles
that have at least two neighbours is now easily calculated

p2=p(l— Py —P1) (4.2)
=p(1—(1+ B)exp(—B)). (4.3)

The average volume per particle that has two or more neighbours is 1/p2. Assuming that
this volume is spherical, Alon et al. find the average distance between particles with at least two
neighbours to be Ly = 2(4mpy/3)~ /3. The average number of neighbours B in the expression of
p2 can be evaluated from

A
B=p d3rg(r) = 47rp/ dr?g(r). (4.4)
Vi D

The condition 2] = Lo is now an equation that depends only on the pair correlation function
g(r) and the number density p. In equilibrium, the pair correlation function can be calculated
from liquid state theory as described in Chapter 2.

The logical path forward is therefore to combine the condition with the Ornstein-Zernike
relation and the Percus-Yevick closure. Using Brent’s root finding algorithm [100], we numerically
solve this nonlinear set of equations to obtain the percolation threshold as function of D/A. The
result is presented in Fig. 4.2b, where we also plot our simulation results and the solution of
the connectedness Ornstein-Zernike relation closed with the Percus-Yevick approximation. It is
clear that this simple criterion outperforms this closure and is quantitative up to a few per cent.

With this simple percolation criterion, we can investigate the influence of a flow field on
the percolation threshold with only the radial distribution function as input. Unfortunately,
calculating this function for an arbitrary flow field is not straightforward. Therefore, we dedicate
the next section to the method we use to obtain it in simple shear.
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Figure 4.2: (a) Distribution of direct connections at the percolation threshold at several dens-
ities determined with our molecular dynamics simulations of hard spheres. The lines are the
corresponding Poisson distributions. The figure shows that even at high densities, the number
of connections are approzimately Poisson distributed. (b) Percolation threshold as function of
the hard-core diameter D scaled by the connectivity length A of the particles. The line shows
the prediction of the method of Alon et al., and the dots are Monte Carlo results due to Mark
Miller. The predictions from liquid state theory with the Percus-Yevick closure from Chapter 2
are indicated by the diamonds.

4.3 Pair correlation function

In this section, we focus on finding the pair correlation function of a colloidal dispersion of hard,
spherical particles in a flow field. To simplify our analysis, we only consider simple shear flow,
which we define by imposing the macroscopic velocity field V = 4yx, where  is the shear rate.
To simplify comparisons with our simulations and other works, we introduce a dimensionless
parameter that quantifies to what degree particle transport occurs through the background
velocity field relative to thermal particle diffusion. We identify this parameter as a Peclet number
and define it as Pe = 4D?/4Dy. Here, D is the hard-core diameter of the particles as before, and
Dy is the self-diffusion constant, which by Stokes’ law can be related to the solvent viscosity as
we eluded to in Chapter 3. We have chosen to include a factor of 4 in the definition of the Peclet
number because it is usually defined in terms of the hard-core radius of particles instead of the
diameter.

We derive an approximation for the pair correlation function g(r, Pe) for a sheared dispersion
from the many-body Smoluchowski equation. This equation describes the time-dependent N-body

probability density function Py(ry,...,rn,t) of interacting particles on Brownian time scales,
and it can be derived from the Langevin equation (3.1) in the limit that the particles’ inertia is
subdominant to the viscous damping [101]. This limit is reached at timescales where the diffusive

mean squared displacement of the particles is much larger than their inertial displacement, i.e.,
if t > 2mDy/kgT. Here we have defined m as the particle mass and kg7 as the thermal
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energy.
If we neglect all hydrodynamic interactions between the particles, we can write down this
many-body Smoluchowski equation as [85]

N

oP . N

TtN = Vi (DoViPy + DofSPxV ;¥ — 4y; PxX), (4.5)
i=1

where 3 = (kgT)~! is the inverse thermal energy, V; is the gradient operator with respect to the

ith particle position r; (i = 1,2,...,N), and ¥ is the potential energy, which we assume to be

pair-wise additive
N N

U(ry,...,ry) =Y > Ulr,r;). (4.6)
i=1 j>i
Here U(r;,r;) is the pair potential between particles 7 and j. For hard particles, U(ri,rs) = oo if
the particles overlap and U(ry,ry) = 0 if they do not.

From the Smoluchowski equation (4.5), we can derive an equation for the pair correlation
function by integrating over the positions of particles 3, ..., N, because this integration results in
an equation for the 1- and 2-body probability density functions P; and P, which can be related
to the pair correlation function g as

_ Ps(rq,ra,t)
Py(ry,t)Py(re,t)’

where the 1- and 2-body probability density functions can be obtained from their N-body
counterpart by integrating out the other particle positions

g(r1,r2,t) (4.7

Pl(rl,t) :/dl‘g ...dI‘NPN(I‘h...,I'N,t); (48)
Pg([‘l,rg,t) :/dr3...dI‘NPN(I‘l,...,I'N,t). (49)

In Egs. (4.8) and (4.9), the integration ranges over all of three-dimensional space for each
integrated particle position.

The full integration of the Smoluchowski equation over the coordinates r; (i = 3,4,...,N) is
slightly involved and its details are not crucial in order to understand the remainder of this chapter.
Therefore, we present the results here and refer to Appendix A for the complete derivation. In the
derivation, we have divided the pair correlation function in an equilibrium contribution go(r) and
a shear-induced perturbation d¢g(r, Pe), such that g(r,Pe) = go(r) + dg(r, Pe). The equilibrium
pair correlation function go(r) is only dependent on the radial coordinate and therefore is often
referred to as the radial distribution function. Since equilibrium statistical mechanics provides
an accurate theory for the equilibrium pair correlation function, as discussed in Chapter 2, we
aim our focus mainly at the shear-induced perturbation. The integration of the Smoluchowski
equation (4.5) results in a boundary value problem for this perturbation.

5
2Dy V26g — w% =0 r>D, (4.10)
or T r

where we note that dg = 0 for r < D.
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This boundary value problem is the starting point of the theory of Blawzdziewicz and
Szamel [75]. To find an analytical solution, we use arguments similar to theirs, which were
partly inspired by the work of Elrick [102]. The differential equation (4.10) essentially ensures
conservation of mass, while the boundary condition (4.11) requires that there is no mass flux into
excluded volume of the hard-core particles. In the derivation of this boundary-value problem from
the Smoluchowski equation, several assumptions and approximations were made. We enumerate
them below.

1. We assume that the pair-distribution function is stationary, that is, dg/9t = 0. This holds
if the shear velocity field has been present for sufficiently long that the structure of the
dispersion has had time to fully develop.

2. We assume that the macroscopic density is homogeneous. In this case, we can use P (ry,t) =

1/V, and g(r1,12) = g(r) = V2Py(r1,r2), where we define r = |ry — 1.
We assume that the particles only interact through additive pair interactions, see Eq. (4.6).

4. As already mentioned, we neglect all hydrodynamic interactions, that is, we neglect all
interactions between particles that are mediated by the solvent. These include both short-
ranged lubrication forces and long-ranged hydrodynamic many-body interactions. The
validity of this approximation depends both on the volume fraction of the dispersion and
on the shear rate. It is known that if either one of those parameters is large (e.g. ¢ > 0.2
or Pe > 10), significant qualitative changes are seen in the structure of sheared dispersions
due to the presence of these interactions [103, 104]. If both are low, however, the differences
seem mainly of quantitative nature.

5. Egs. (4.10) and (4.11) are derived in the dilute limit that the volume fraction ¢ — 0. This
means that we neglect all many-body correlations by disregarding the effect that particle
crowding causes structural correlation apart from that caused by the pair potential itself.
This approximation causes our theory to be invalid anywhere outside the very dilute regime,
since we have seen in Chapter 2 that visible structural correlations start to occur at very low
densities. In fact, with this approximation we implicitly assume that the equilibrium pair
correlation function go(r) = exp(—SU(r1,r2)) = ¥(|r| — D), where 9(r) is the Heaviside
step function. To extend the validity of our theory to higher densities, we re-introduce
many-body correlations at a later stage in this chapter.

The last approximation removes all density dependence from the shear-induced perturbation
of the pair correlation function. By comparison with molecular dynamics simulations, we test to
what degree this is the case later this chapter.

We proceed by nondimensionalising Eqgs. (4.10) and (4.11) by introducing new variables

v = (2,2 = r,/ﬁ and 8¢’ (2',y',2") = dg(z,y, z), such that Eqs. (4.10) and (4.11)
read

@

V25g — ’359/—0 "> V2P 4.12
9=y = > e, (4.12)
86/ /1,0 /1,7

g _TY sy =LY r' = v/2Pe. 4.13
al ! !

T T T

The influence of the strength of the shear flow is now completely contained within the location
of the boundary. To solve this boundary-value problem, we first find solutions to Eq. (4.12) in
terms of Green’s functions and then use a method similar to the method of images to satisfy the
boundary condition (4.13). Because the full derivation of the solution might distract from our
message, we present it in Appendix B, and simply state the result here.

The result of the boundary-value problem is given by the infinite linear combination of
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functions T, 5(r'):
5g'(x') = Y CPT/4(x') 1> V/2Pe, (4.14)
a,3=0

in which C*# are coefficients that are determined by the boundary condition. The functions
T(;B(r’ ) are given by

a2 = (4.15)
1 /°° 1\*? \/T O\ /0 a\"? y? 2% 322 —y'1)?
- dr [ — — | = — +7— ) exp| - —— — ).
4/, T 72 412 \ Oz’ oy’ ox’ A A7 Ar(T2+12)

We find the coefficients C*? by expanding the boundary condition in terms of spherical harmonics.
To do this, we first insert T},5(r') into the right-hand side of the boundary value (4.13) and

subsequently write the result as a linear combination of real-valued spherical harmonics Yy, (')
with coefficients ]f{’[} for each o and S.

6Tl;ﬁ z'y' = Im W
G~ g Las =2 D JapYim(E). (4.16)

=0 m=—1

Here, the real spherical harmonics are defined in terms of the regular spherical harmonics fflm(f")
as

2 (V= (c)mym) = VA= (V) m<o

% (f/lfm + (_1)mf/lm) — \/i(-l)ane (}A/l|m|) m > 0.
Each coefficient ]g}} can be determined by multiplying both sides of Eq. (4.16) with the corres-
ponding real spherical harmonic and integrating over the entire boundary, that is, the surface of

the sphere with ' = v/2Pe. Due to the orthogonality of the real spherical harmonics, this yields
the expansion coefficients

27 T 8T/ i
= [ do’sin(ﬂ')Ylm(G',¢')< e _ T Tc;ﬁ>. (418)
0 0

r

Using the fact that 2y’ /r'? = /47 /15 Ys, ('), we now write the full boundary condition
(4.13) as

9] [e'S) l
. 8P .
>N N i) = | S Yaol®) 1= V2Pe, (4.19)

a,B=0 =0 m=-1 15
or, more compactly,
- Im 8mPe
Z CcoP gl = R 01,20m,-2, (4.20)
a,3=0

for all integers 0 <[ < oo and —I < m <[, again due to the orthogonality of the real spherical
harmonics. Eq. (4.20) is a system of infinitely many linear equations in the coefficients C'*%.

To summarise, we have expressed the solution of the boundary value problem constituted by
Egs. (4.12) and (4.13) as an infinite linear combination of the functions T,s(r") with coefficients
C*B, which in turn can be expressed as the solution of an infinite system of linear equations
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with coefficients jé’g The latter coefficients can be calculated with Eq. (4.18). The solution as
presented above have a slightly different form than those presented by Blawzdziewicz et al. The
reason for this difference probably stems from a different choice of dimensionless variables.

To make headway, we proceed by solving the linear system of Eq. (4.20) numerically,
truncating all terms for which a+ 8 > lhax and all equations for which I > [;,.x. As we know that
—I <'m <[ by the definition of the spherical harmonics, and that ]ZE =01if [ —m is odd (the
corresponding real spherical harmonics are not even in z, which they have to be in our expansion
since our boundary value problem is), we are left with a square system of real-valued linear
equations that is easily solved. We also numerically perform the integrations given in Eqs. (4.18)
and (4.15) respectively using a Lebedev quadrature and Simpson’s rule [55, 105]. In Appendix F,
we describe the numerical procedure in more detail.
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Figure 4.3: The influence of a simple shear flow in the xy-plane on the radial distribution
function of hard, spherical particles. In Figs. (a), (b), and (c) we show the function dg(r,Pe) =
g(r,Pe) — g(r,0) for Pe = 0.1, 2.5, and 10.0. In (d), (e), and (f), we show the influence of simple
shear with the same shear rates on the perturbation of the structure factor (S(q,Pe) — S(q,0))/,
where ¢ is the hard-core volume fraction of the dispersion and S(q,Pe) is the static structure
factor where the flow field is quantified by the Peclet number Pe.

The results that follow a truncation given by l,.x = 10 are visualised in Fig. 4.3. In the
literature, the results are often presented in terms of the perturbation of the structure factor
S(a,Pe) = 1+p [ dr(g(r,Pe)—1) exp(ir-q), because this quantity can be measured experimentally
with scattering experiments. Therefore, we also present the perturbation of the structure factor
S(q,Pe) — S(q,0), which might aid in comparing with literature. The results from our numerical
procedure are visually indistinguishable from those by Blawzdziewicz and Szamel.

We see that for all Peclet numbers, the perturbation in the structure respects the inversion
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symmetry of the boundary value problem (4.10) and (4.11). In addition, we observe that for
low Peclet numbers, the compressional (zy < 0) and extensional quadrants (zy > 0) of dg are
very similar in shape, but different in sign. This indicates that positive and negative fluctuations
in the pair correlation function are diffusively dissipated in a similar way, as long as they are
small. When they become larger, as the Peclet number increases, this symmetry is broken, and a
boundary layer is formed in the compressional quadrant, whereas a low-density ‘wake’ is formed
in the extensional quadrant, in which the pair correlation function can be close to zero for high
Peclet numbers.

The presence of this long wake induces a negative boundary layer in the low q structure
factor. Dhont showed that the width of this boundary layer scales with Pe!/? and that its presence
causes the structure factor to be non-analytic in Pe, that is, for small Pe

S(q,Pe) # So(q) + PeSi(q) + Pe®Sy(q) + Pe®Sz(q) + .. ., (4.21)

for any set of functions S;(q) [95].

In the work on the analytical method presented by Blawzdziewicz and Szamel [75] that
we use here, a detailed comparison is made with the similar analytical theories of Dhont [95],
Schwarzl and Hess [92], and Ronis [106]. Additionally, Blawzdziewicz and Szamel show that this
method qualitatively reproduces the shear thinning behaviour that was found in experiments for
this type of particle. In the remainder of this work, we set l,.x = 10, because the inclusion of
more terms in the expansion does not visually change the results up to Pe, but does cause the
method to become computationally expensive. Blawzdziewicz and Szamel also state that this
cut-off leads to sufficiently converged results.

4.4 Comparison with simulation data

We now have an approximation of the pair correlation function, which is the only quantity
required as input for our percolation criterion. Nothing now restrains us from calculating the
percolation threshold for colloidal suspensions in shear flow. However, before we do so, we think
it is important to first establish to what extend our theoretical prediction of the pair correlation
function compares to simulations. In other words, we want to make sure that this theory gives
accurate results such that we can correctly interpret the obtained percolation threshold at a later
stage. To that end, we perform Langevin dynamics simulations along the lines as described in
Chapter 3.

In Chapter 3, we have performed all simulations with the standard Weeks-Chandler-Andersen
potential. This potential is introduced because when simulated, it gives results for macroscopic
material properties that are accurate up to the high density regime [107]. However, slight
deviations might occur at lower densities in the microscopic structure. To simplify the comparison
between the theoretical and simulation results, we therefore slightly adapt the potential to better
model hard spheres by rescaling the potential by a constant ¢y. The new potential is given
by

o\ 12 a\6 1/6
dege ((;) — (;) ) + €p€, r< 264

(4.22)
0, r>26q,

Uwca(r) = {

In the rest of this chapter, we set eg = 100, € = 1kgT and D = 2%/6¢. We visualise this change in
the pair-potentials in Fig. 4.4. We stress that the difference between a Weeks-Chandler-Andersen
potential with €5 = 1 and ¢y = 100 is unlikely to result in large changes to macroscopic material
properties, including the percolation threshold. This potential was merely chosen to be able to
eliminate the soft characteristics in the microstructure.
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Figure 4.4: The figure shows the pair potentials we use in this work as function of the particle
distance. The analytical theory of this chapter is based on a hard-sphere potential of which we

compare the results to the results of simulations of particles interacting with a Weeks-Chandler-
Andersen potential with eg = 100.
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Figure 4.5: The pair correlation function g(r,Pe), equilibrium pair correlation function go(r)
and its perturbation 0g(r,Pe) of a dispersion of hard particles in a shear flow, obtained with
Langevin dynamics simulations, discussed in Chapter 3. The pair correlation function g(r, Pe) was
obtained from a simulation at a volume fraction ¢ = 0.1 at Peclet number Pe = ¥D? /4Dy = 10.1,
and go(r) was obtained from a simulation at Pe = 0 at the same volume fraction. The perturbation
dg(r,Pe) is calculated by taking the difference of the two.

In order to find the perturbation of the pair distribution function in our simulations, we
perform three simulations. Firstly, we perform a simulation in the absence of flow in very dilute
conditions (¢ ~ 10~%) to obtain the free-particle diffusion constant Dy by measuring the mean
squared displacement ((r(t) — r(0))?) = 6Dyt and calculating its slope. The result never differs
more than 2% from Einstein’s theoretical prediction of Dy = kpT'/v. To obtain the equilibrium
pair correlation function go(r), we perform a simulation in the absence of a flow field at some
volume fraction ¢. To find the shear-dependent pair correlation function g(r, Pe), we subsequently
perform a simulation at the same volume fraction with the flow field turned on at shear rate ¥
with corresponding Peclet number Pe = 4D?/4Dj. In the last expression, we use the diffusion
constant Dy from the dilute equilibrium simulation, and we check whether the imposed shear
rate ¥ matches the resulting velocity profile in the sheared simulation. The perturbation of the
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pair correlation function is again defined by dg(r, Pe) = g(r, Pe) — go(r). An example of the three
functions in that expression from a typical simulation is given in Fig. 4.5.
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Figure 4.6: Comparison between theory and simulations of the shear-induced perturbation of the
pair-correlation function 0g(r, Pe) at low and high volume fractions of hard, spherical particles in
the flow-gradient plane. The figures in the first column (a, d) correspond to the theoretical model,
whereas the second (b, e) and third (c, f) column correspond to low and high volume fractions ¢.
The first row (a-c) represents dispersions at Peclet number Pe ~ 1, and for the second Pe ~ 10.
Each row shares a colour bar that indicates the values of §g(r,Pe). For clarity, we added a thin
black line at r = D indicating the theoretical excluded volume of hard, spherical particles. Note
that both dilute simulations were not conducted at the same density. For the low-Peclet case, we
set p = 0.1, whereas we choose p = 0.01 for the high-Peclet case.

In this Fig. 4.5, we see that the perturbation dg(r, Pe) has qualitatively the same features
as the theoretical model in Fig. 4.3c. That is, we see a boundary layer developing in the
compressional quadrant, and a wake in the extensional quadrant. However, the observant reader
might also notice a qualitative difference between the theoretical and simulation data. It seems
that a second-order peak in the pair correlation function is now present, whereas it is not in the
equilibrium function go(r). This indicates that the presence of shear flow induces a local density
increase near the boundary in the compressional quadrant, which might suggest that shear-induced
chain-formation is taking place as observed in experiments [78, 79]. This phenomenon is not
present in the theory presented in Fig. 4.3c, since the theoretical model is derived with the
assumption that three-body correlations are negligible. The latter difference is also visible in
the equilibrium pair correlation function, which distinctly deviates from a step function. In the
next section, where we use the pair correlation function to calculate the percolation threshold, we
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Figure 4.7: Shear-induced perturbation of the pair-correlation function ég(r,Pe) of spherical
particles along three different curves in the flow-gradient plane according to the theory and to
stmulations at volume fraction ¢ = 0.01 and ¢ = 0.4 for Peclet number Pe = 10. Figure (a),
(b) and (c) correspond to the perturbation at constant radial distance if r = 1.2D, and along the
curves r=1r(x+ Y)/V2, and r=r(—z+ §) /2 respectively.

make a correction for this discrepancy.

To make a more comprehensive comparison between theoretical and simulation results, we
present Figs. 4.6 and 4.7. In Fig. 4.6 we show the shear-induced perturbation in the zy-plane for
two different Peclet numbers in a low- and high-density simulation. We see that at a low volume
fraction ¢, the results qualitatively match the theoretical model excellently, at least up to Pe = 10.
In the high-density case, however, we find that the many-body interactions induce highly complex
correlations, which are qualitatively different from the behaviour that our theoretical model
captures. Such correlations are also present in the equilibrium pair correlation function at this
density. However, the perturbation of the shear-flow on these structural correlations is a nontrivial
one. At low Peclet numbers, we see that the peaks of the equilibrium pair correlation function
are either enlarged or suppressed depending in the compressional and extensional quadrant
respectively. The opposite happens with the troughs. This means that in the compressional
quadrant, the flow increases the amount of structural correlations, whereas the opposite happens
in the extensional quadrant. If the strength of the shear flow is increased, this behaviour persists
in the compressional quadrant but deforms in the extensional quadrant creating interesting
structural patterns.

A more quantitative comparison is made in Fig. 4.7, where we plot the same data presented
in Fig. 4.6d-{f along the curves characterised by r = 1.2D, ¢ = n/4 and ¢ = 37 /4 all lying in
the xy-plane, where we define 6, and ¢ as the polar and azimuthal coordinate. The figure shows
that the theoretical model slightly underestimates the shear-induced perturbation at very low
volume fractions. This slight discrepancy might be induced by a number of factors, such as
numerical discretisation errors or non-convergence of Eq. (4.20) for [y, = 10. Additionally, it
might be induced by simulation inaccuracies such as finite time-stepping or the slight failure of
the pair potential to represent a true hard sphere potential. The combined effect of the latter
two explanations can also be seen at the particle boundary in the compressional quadrant in
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Fig. 4.6, where it is visible that other particles are able to non-physically penetrate the r < D
region slightly. At high volume fractions we again see that the theoretical model qualitatively
fails to predict the high-density features of dg(r,Pe). In fact, we see the emergence of a new
peak in the perturbation of the pair correlation function at constant radius (leftmost plot). In
the constant-angle plots (middle and right), we primarily see a large increase in the structural
correlations for high densities, which is to be expected.

We have shown that we have obtained an approximation of the shear-induced perturbation
of the pair-correlation function that is quantitative at low densities. In this work, we make no
attempt at improving this approximations for many order correlations, since we believe that
the current theory is sufficient to capture the qualitative behaviour of the percolation threshold
of sheared dispersions, at least as long as the percolation threshold is located at low hard-core
volume fractions, which is the case if the hard-core diameter D is sufficiently small compared to
the connectivity length .

To proceed, we use the theory of this section in the next section in conjunction with the
heuristic presented in Section 4.2 to approximate the percolation threshold.

4.5 Percolation threshold

Since we are in possession of a geometric criterion to find the percolation threshold that requires
only a pair correlation function as input, and of an estimate for the effect that simple shear exerts
on that pair correlation function, we can now combine the two models to find the influence of a
flow field on the percolation threshold, which is our primary goal.

In the previous section, we evaluate the pair correlation function as the sum of its equilibrium
value and a distortion, the former of which we approximate by go(r) = exp(—BU(r)), with U(r)
the hard-sphere interaction potential. In doing so, we have removed all density dependence
from the pair correlation function g(r,Pe), which is only valid if the volume fraction ¢ < 1. To
extend the validity of our model, we re-introduce the density dependence in the pair correlation
function in an ad hoc fashion by approximating the equilibrium contribution with the solution of
the Ornstein-Zernike equation closed with the Percus-Yevick approximation that we describe in
Section 2.3. The resulting pair correlation function is now the sum of an accurate equilibrium
term and a low-density shear-induced perturbation.

We now numerically integrate the pair correlation function over the connectivity shell to
find an approximation of the two implicitly density dependent length scales [ and Lo as they are
defined in Section 4.2. We subsequently use Brent’s root finding method to find the density that
satisfies 21 = Lo for a given ratio D/\.

In Fig. 4.8a, we present our results on the effect of shear flow on the percolation threshold
according to our model. We compare them to simulation results plotted in Fig. 4.8b. If the
hard-core diameter D goes to zero and particle interactions become negligible, we find that the
effect of the shear flow on the percolation threshold is almost non-existent. This is to be expected,
of course, since the flow field does not induce any structural changes if the particles do not
interact, i.e., if D = 0. In the intermediate and high D /A regime, the results show that an applied
shear flow can both increase and decrease the percolation threshold of a material depending on
the hard-core size and strength of the flow field.

We conjecture that the shear-induced decrease of the percolation threshold is closely related
to the emergence of shear-induced contact clusters [82-84]. Even at volume fractions where
such clusters are finite, they might play a significant role in aiding long-range connectivity and
therefore in decreasing the percolation threshold with respect to the equilibrium situation.

Fig. 4.8 indicates that there is good qualitative agreement between our theoretical model
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Figure 4.8: Theoretical (a) and simulation (b) results of the dimensionless percolation threshold
of a dispersion of hard spherical particles subject to a simple shear flow as function of the ratio of
the hard core diameter D and connectivity length A\. The strength of the shear flow is quantified
with the Peclet number Pe. The lines in (b) are guides to the eye. Note that the set of Peclet
numbers is not exactly equal in both figures.

and simulation results of the percolation threshold. Our model correctly predicts the shear flow
to induce an increase and subsequent decrease of the percolation threshold and gives an accurate
approximation of the location of the cross-over between these two regimes. Quantitatively, our
theory seems to overestimate the effect of the shear flow on the percolation threshold especially
at high D/X, where the hard core volume fraction is high and the shear flow significantly affects
many body correlations as we show in Fig. 4.6.

We stress that we neglect all hydrodynamic interactions in both the theory and simulations,
without providing any justification for this simplification. Therefore, we do not expect that either
our theory or simulation results provide quantitative agreements with experiments. However,
since hydrodynamical interactions have been shown to not qualitatively change the structure of
sheared dispersions at sufficiently low densities, we expect our results to qualitatively hold even if
hydrodynamical interactions are properly included.

In order to find an indication to what extend clusters are elongated due to the shear flow,
we calculate the gyration tensor for each cluster in a molecular dynamics simulation, and average
over all clusters and 10? independent particle configurations. Given that we have particle positions
r; that all belong to the same cluster, where 7 = 1,...,%k and k is the number of particles in that
cluster, we can define the gyration tensor in the form of a matrix reading

k
S — % >y~ R)(x; ~ R)”, (4.23)

where R is the centre of mass position of the cluster. Since most clusters contain only one particle,
giving S = 0, it is useful to take the weight average instead of the normal number average of S to
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give more significance to larger clusters and to get better statistics.

The eigenvalues and -vectors of the resulting mean gyration tensor give information about
the shape of the average cluster [108]. The eigenvectors lie along the principal axes of the clusters
and the eigenvalues give the corresponding moments. In Fig. 4.9a we plot the eigenvalues as
a function of the Peclet number below the percolation threshold at volume fraction ¢ = 0.16
and D/ = 0.82. We label the eigenvalues such that A3 > A > \;. We find that the eigenvector
corresponding to Ay always lies along the z-axis, whereas the remaining two eigenvectors always
lie in the xy-plane. In Fig. 4.9a we see that the clusters grow when the strength of the shear flow
increases. Interestingly, we also see that the smallest eigenvalue is largely unaffected by the flow
field for this particular choice of parameters. Additionally, the flow field causes the clusters to
become triaxial, that is, their sizes are notably different along their three principal axes.
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Figure 4.9: (a) Figenvalues and (b) ratio of largest and smallest eigenvalue of the mean gyration
tensor of particle clusters as a function of the strength of the shear flow. The eigenvalues were
obtained by calculating the gyration tensor averaged over each cluster in a simulation of N = 1000
particles below the percolation threshold at connectivity volume fraction wpA3/6 = 0.30 and
D/X\ =0.82. The corresponding hard-core volume fraction is ¢ = 0.16.

In Fig. 4.9b, we plot the ratio of the largest and smallest eigenvalue as a function of the
Peclet number. This ratio is a measure of the anisometry of the particles and it seems to increase
linearly with the Peclet number in this regime. Due to a lack of time, we have not been able to
perform a more comprehensive study of how this anisometry behaves throughout our parameter
space. It remains to be seen whether the linear increase found for this particular set of parameters
is characteristic of the shear-dependent cluster shape, or if more complex shear-induced elongation
behaviour exists.

Our observation of these elongated clusters gives some, yet inconclusive, evidence for our
conjecture that the shear-induced decrease of the percolation threshold is caused by the emergence
linear contact clusters. We have not yet performed any other analysis to further substantiate this
claim. Follow-up work shall therefore need to shed more light on this issue.
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4.6 Discussion and conclusion

In this chapter, we have presented a model that gives a qualitatively accurate description of the
percolation threshold of sheared suspensions of spherical particles in the absence of hydrodynamic
interactions. The model is based on the conjunction of a heuristic percolation criterion presented
by Alon, Balberg and Drory [74] and the theory for the shear-induced distortion of the pair
correlation function by Blawzdziewicz and Szamel [75]. In order to test the validity of the two
works, we have compared both independently with results of Langevin dynamics simulations as
described in Chapter 3.

Alon, Balberg and Drory’s percolation criterion is based on a purely geometric argument,
applicable in out-of-equilibrium materials. It states that the percolation threshold is achieved
if two length-scales are equal. This equality condition results in a nonlinear equation of the
density that only requires the pair correlation function as external input. In accordance with
earlier simulation studies [67, 74], we find that the heuristic percolation criterion gives accurate
agreement with simulations for hard, spherical particles for all ratios of the hard-core diameter
and the connectivity length.

Using the theory of Blawzdziewicz and Szamel, we provide the pair-correlation function
that is required as input for the percolation heuristic. This work approximates the shear-induced
perturbation of the dilute pair correlation function on the Smoluchowski equation at the two-
particle level, neglecting all hydrodynamic interactions and influences of three-body correlations
on this perturbation. We use this perturbation together with the equilibrium structure provided
by standard liquid state theory (see Chapter 2) to find an approximation of the pair correlation
function that is accurate up to the intermediate density regime, in which the coupling between
many-body interactions and the imposed shear flow become non-negligible. We show by means
of Langevin dynamics simulations that the theory for the perturbation of the pair correlation
function in shear flow is very accurate in the dilute limit. However, as expected, significant
deviations start to occur as the particle volume fraction increases.

Put together, the two theories provide a predictive framework for the percolation threshold
in sheared suspensions that gives semiquantitative agreement with simulations of hard spherical
particles. Both the theory and simulations indicate that shear flow can increase or decrease the
percolation threshold depending on the hard-core diameter, connectivity range, and shear rate.
We postulate that the decrease is due to the emergence of linear clusters of particles that aid
long-range connectivity.

A decrease in the percolation threshold of suspensions due to shear-induced clusters has also
been found in experiments. In particular, Schueler et al. have showed that they could engineer
the percolation threshold of carbon black in a polymer resin to be as low as 0.06 vol% by using
shear flow to induce particle aggregations with low fractal dimensions [109]. This stands in stark
contrast to the ‘equilibrium’ percolation threshold of carbon black, which is roughly 0.2-0.3 vol%.
Micrographs of the resulting structure show that material-spanning aggregations are formed that
include a high fraction of the carbon black particles.

The heuristic framework presented in this chapter can in principle be adapted for anisometric
particles. However, as the particle shape departs far from sphericity, the heuristic percolation
criterion fails [67]. To model percolation of sheared dispersions of rods, for example, significant
changes in the structure of this criterion are required. Additionally, the Smoluchowski equation
should be adapted to account for the rotational diffusion of anisometric particles and the non-
isotropy of the particle mobility.
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Chapter 5

Percolation of hard nanorods in
an external field

Summary

We present a numerical study on the continuum percolation of rodlike particles in the presence of
orientational and disorientational quadrupolar fields. With this research, we aim to qualify the
effects of externally applied axial and planar orientational order on the concentration at which
percolating networks form. We perform a comprehensive analysis of the behaviour of the weight
average number of particles in a cluster as function of the strength of the external field, the
particle density, and particle aspect ratio, taking into explicit account the intrinsically induced
order by excluded volume effects, including the concomitant low-density phase transitions. We
find that these external quadrupolar fields can raise the percolation threshold substantially and
cause exotic, nontrivial behaviour of the cluster size and shape.
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5.1 Introduction

Because of the fact that the percolation threshold in homogeneous materials scales approximately
inversely with the aspect ratio of network forming particles [27], it is especially beneficial from an
engineering perspective to use highly anisotropic nanofillers. In this spirit, a large fraction of the
physics literature on percolation is focused on describing networks and percolation behaviour of
rodlike particles, both theoretically and experimentally. This is a challenging subject not only
due to the phenomena mentioned in Chapter 1, but also due to the fact that rodlike particles
spontaneously self-organise orientationally at low packing fractions. These phase transitions are
hard to prevent because the particles undergo them driven fully by entropy [101, 110]. This
implies that in order to investigate the influence of factors such as length polydispersity or
dispersive inhomogeneity on the percolation threshold, one has to take the phase behaviour of
long rodlike particles into careful consideration.

In addition to entropy-driven alignment, externally induced alignment is ubiquitous in real
materials due to processes in their manufacturing such as shear strains and externally applied
electromagnetic fields. Therefore, in order to comprehend the structure and percolation of highly
anisotropic nanoparticles, we must understand the interplay between internal and external particle
alignment.

Finner et al. have shown that such dispersions of rod-like particles in external orienting
fields exhibit complex behaviour [111]: in the dilute limit, the particles cannot create material-
spanning clusters. As one adds more particles, the average network grows, until its size diverges
at the percolation threshold. At even higher densities, however, the alignment induced by the
external field and excluded-volume interactions can suppress percolation. This is called re-entrance
behaviour. To restore the percolating state, one could fruitfully choose to add even more particles,
regaining system-spanning networks. However, testament to the nonlinearity of the interplay
between the effects on the network size of the addition of particles and the induced alignment
induced by those additional particles, percolation can again break down and form again at even
higher densities. In summary, as the density increases monotonically and everything else remains
constant, percolation can appear from a non-percolating state up to three times [111].

With the present work, we would like to extend Finner’s numerical analysis of percolation
in orientational fields, by also considering disorientational fields. Disorientational fields can
exist both as external electromagnetic quadrupolar fields and as the flow field resulting from
the uniaxial compression of the sample material. Additionally, one could conceivably model the
confinement of nanorods between two walls as them being subject to a strong disorientational
field in three dimensions.

The word ‘disorientational’ might be considered a misnomer. The difference between an
orientational and a disorientational field is that the former pushes particles towards an axis
whereas the latter pushes them away from an axis toward the plane perpendicular to that axis.
Paradoxically, a disorientational field does induce order and can cause a phase transition from an
unordered isotropic phase to an ordered liquid crystalline phase [112]. Furthermore, in rod-like
dispersions subject to disorientational fields, a symmetry breaking can occur that is not seen
in materials subjected to orientational fields. We try to clarify the physical reason behind this
distinction below.

In a dispersion of rod-like particles subject to a small external orienting field, the particles
align slightly along the field axis. If the density is increased, excluded volume effects can induce a
phase transition from what is called the paranematic state to the nematic state, in which the
particles are strongly aligned. The axis along which the particles are aligned, which is called the
nematic director, is the same as the external field axis. The resulting orientational distribution
therefore possesses azimuthal symmetry, see Fig. 5.1.
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Figure 5.1: Orientational distribution of rod-like particles subject to an orientational external
field directed along the z-axis. The colour indicates the fraction of particles aligned in the
corresponding direction with increasing probability density from blue to white to red. The figure
shows the phase transition from a low-density paranematic state (left), to a high-density nematic
state (right).

In a dispersion of those same particles subject to a small disorientational field, however,
the particles align away from the field axis. Now, if the particle density is increased, the same
phase transition to a nematic state can occur. In this case, the nematic director always lies in
the plane perpendicular to the field axis, see Fig. 5.2. Because of the fact that the external field
and the excluded volume effects do not drive the particles in the same direction, the resulting
nematic phase is biaxial, i.e., it is no longer symmetric under rotations around the director. If
the external disorienting field becomes infinitely strong, it forces all particles to be oriented in
the zy-plane.

Finner’s numerical work found partial disagreement with the results of an earlier analytical
treatment of Otten et al. on the influence of externally induced particle alignment on the
percolation threshold [113]. This is especially relevant because it is almost inevitable to introduce
some sort of particle alignment during the manufacturing process, whether or not intentionally.
For computational reasons, Finner et al. only considered external orientational fields and not
disorientational case. In this chapter, we present a more comprehensive study on the effects of
external quadrupolar fields on the percolation threshold.

In this chapter, we conduct an extensive numerical study on the properties and behaviour of
rod-like particles subject to a quadrupole field; both orientational and disorientational. Thereby
we extend earlier works, which either only consider orientational fields [111] as described above,
or perform computations on a lattice [114], or do not take into account the excluded volume
interactions between rods [115]. We investigate how the percolation threshold depends on the
system parameters, i.e., the particle concentration, external field strength, particle aspect ratio and
a connectivity criterion that specifies particle connections. We also briefly investigate the shape
of non-percolating clusters and its dependence on the underlying thermodynamic phase.

The remainder of this chapter is divided into three parts. Firstly, we devote a section on
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Figure 5.2: Orientational distribution of rod-like particles subject to a disorientational external
field which drives the particle orientations away from the z-axis. The colour indicates the fraction
of the particles aligned in the corresponding direction with increasing probability density from blue
to white to red. The figure shows the phase transition from a low-density antinematic state (left),
to a high-density nematic state (right).

Onsager theory, which allows us to find the orientational distribution function for particles and
the locations of the relevant phase transitions in the limit of infinite aspect rations. Secondly, we
apply continuum percolation theory to find when dispersions of those particles percolate. In the
last section, we investigate the effect of the aspect ratio by extending the theory presented in the
previous sections.

5.2 Omnsager theory

A dispersion of impenetrable rod-like particles has been shown to undergo a transition from a
isotropic phase to a nematic phase by Onsager in one of his seminal papers [116]. His treatise,
which is believed to become exact in the limit of infinitely slender particles, is based on the balance
of translational and orientational entropy. He shows that at sufficiently high concentrations, the
particles must orient themselves along a common axis, called the nematic director, because this
configuration allows for more translational freedom in the expense of rotational freedom, thereby
increasing the total entropy. Onsager theory was shown to become quantitatively accurate if
L/D =100 [117).

5.2.1 The orientational distribution function

In this work, we use Onsager’s framework to find the particle orientational distribution function
1(u), where the orientation is given in spherical coordinates by u = (sin  cos ¢, sin § sin ¢, cos )7
with 6 and ¢ the polar and azimuthal angle. We assume that the particles can be accurately
modelled as spherocylinders having length L and diameter D. The particles are impenetrable,
meaning that we assign an infinite energy to a configuration where any two particles overlap.
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Apart from this excluded volume interaction, the particles do not interact. We introduce a
dimensionless parameter ¢ = mpL?D /4, which is equal to the product of the aspect ratio and
the hard-core volume fraction in the slender-particle limit. Here p = N/V, is the macroscopic
number density. The parameter ¢ plays the role of the particle concentration in the rest of our
work and we address it as such. However, note that any remark we make containing a phrase
like “as the concentration increases” can also be interpreted to mean “as the particle aspect ratio
increases”.

We assume that the particles are subject to an external field of quadrupole type. This is the
most natural external field to consider, since it respects the symmetries of the rod-like particles.
We rotate our coordinate system such that the field axis coincides with the z-axis. This field
assigns an energy to each particle given by

ICBLT = —K cos? 0. (5.1)
Here kpT is the thermal energy and K is the dimensionless field strength. If K is positive, the
particles favour being aligned along the z-axis, and we call the field orientational. If K is negative,
however, the particles prefer to be aligned in the xy-plane, and the field is called disorientational
or planar.
Onsager showed that the free energy per particle in units of thermal energy can be written
up to an arbitrary constant as

4

N = et (m(u) + —((jux W)’ = K (cos6). (5.2)
In the above equation, we introduced a shorthand notation for the angular averaging operator
(...) = [du(...)¥(u), where the integration runs over all orientations on the unit sphere'. The
first term in the free energy corresponds to the translational entropy of an ideal gas, while
the second accounts its orientational entropy. The third term describes the excluded volume
interactions and essentially is a measure of the size of the average volume that is not available to
a particle because of the other particles. The size of this volume is proportional to the average
length of the cross product of the two particle orientations, or, more simply put, proportional to
the average sine of the angle between two particle orientations. This product can be calculated
explicitly in terms of the orientations of two particles with orientations u and u’ to be

luxu|= \/1 — (cos B cos ' + sin O sin @’ cos(p — ¢/ ))°. (5.3)

The goal of Onsager theory is to find the equilibrium orientational distribution function v (u),
which quantifies how the particles are oriented in thermal equilibrium. An expression for the
equilibrium orientational distribution function can be obtained by formally minimising the free
energy with respect to ¢(u) under the normalisation constraint that the orientational distribution
must integrate to one. This yields the Onsager equation

P(u) = %exp <Kcos2 6 — %qu X u’|>') : (5.4)

where Z is a constant that ensures normalisation. Eq. (5.4) is a nonlinear integral equation
for ¢¥(u) due to its presence in the angular integral in the exponent. A successful method for
approximating the solution of the Onsager equation, applied by Onsager himself for K = 0

! Mutatis mutandis for the primed variable.

Geometric percolation of colloidal particles 49



CHAPTER 5. PERCOLATION OF HARD NANORODS IN AN EXTERNAL FIELD

and by Khoklov and Semenov for K # 0, consists of guessing the functional form of ¢ (u; {«;}),
dependent on some combination of parameters {o;} and then minimising the free energy (5.2)
with respect to these parameters. However, numerical analysis has shown that some results from
this procedure are quantitatively inaccurate [118, 119].

Therefore, we choose to solve this equation numerically with the method of recursive
iteration: first we make a rough estimate of the function ¥ (u) and then use Eq. (5.4) to find a
better approximation. We repeat this until the solution has converged. We treat the procedure as
converged when the maximal difference between two subsequent iterations is smaller than 10~8.
In fact, it has been shown that this procedure is highly convergent when applied to the Onsager
equation [120]. Typically, a numerically accurate solution is found after roughly 10-30 iterations.
To approximate the integral, we use the Lebedev quadrature of order 131, yielding highly accurate
approximations of integrals on the unit sphere. More information on this quadrature in given in
Appendix F.1.

5.2.2 Order parameters and the phase diagram

Given the equilibrium orientational distribution function ¢ (u), we can quantify the amount of order
in a dispersion of particles by looking at two order parameters. The first, S; = (3({cos?6) —1)/2,
is the conventional nematic order parameter, which quantifies to what extend the rods are aligned
along the z-axis (which coincides with the external field axis). This order parameter is unity if
all particles are aligned along this axis, and vanishes if the particles are distributed isotropically.
If all the particles are aligned in the zy-plane, we have S; = —1/2. Knowledge of S; can be used
to identify if the particles are in the isotropic or nematic phase in the case of orienting fields
(K >0).

The second order parameter, Sy = (cos(2¢) sin® §), quantifies to which extend the orienta-
tional distribution is asymmetric with respect to a rotation about the azimuthal axis and can
be used to see if a phase transition has occurred in the case of disorienting fields. S equals
zero if the orientational distribution is symmetric with respect to rotations around the z-axis,
and S; = 1 if all particles are oriented along the z-axis. In the case of disorientational fields, a
nematic field could develop along all directors in the xy-plane because each of these directions
is energetically equivalent. The result of the numeric recursive iteration therefore depends on
our initial guess of the orientational distribution. We choose this initial guess such that, if the
particles organise themselves in a nematic phase for K < 0, the resulting director always lies
along the z-axis.

Figure 5.3 shows the density dependence of both order parameters for orientational and
disorientational fields. For sufficiently strong orientational fields (K = 1 qualifies), we find that
both order parameters increase continuously with concentration; there is no sharp transition
between a slightly ordered and a very ordered liquid crystal. However, in the case of strong
disorientational fields, K = —2 for example, the figure shows that such a transition exists: at some
concentration the derivative of the order parameters is discontinuous. Khokhlov and Semenov
found that this continuous phase transition occurs for arbitrarily strong disorientational fields
and show that it occurs at ¢ = 372/16 ~ 1.85 for K — oo [112].

Onsager found that for sufficiently small external fields, the particles can lower their free
energy by separating into two phases, a low density unordered phase, and a high density ordered
phase. To find the value of the densities of two coexisting phases, the common tangent method
is often used. This method translates to the requirement that the two phases are in thermal
equilibrium: the pressures and chemical potentials are equal in both phases.

The dimensionless pressure p and chemical potential y can both be expressed in terms
of the free energy F', whose value we can evaluate having already found the equilibrium (u),
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Figure 5.3: The order parameters Sy = (3(cos?0) —1)/2 and So = (cos(2¢) sin? 0) as function of
concentration for (a) orienting fields and (b) disorienting fields. The insets show the orientational
distribution function at the concentration corresponding to their locations. The colours used have
the same meaning as in Fig. 5.1 and 5.2.

as [101]

___c¢c (9F\ _ »0f _ L (oFN
P kT (8V>N’T_Cﬁc and - p= T (aN)VﬁT_Hp/C' (5:5)

For a fixed field strength, we can solve the system of equations p(c1) = p(c2) and p(cy) =
w(ce), where ¢; # ¢o. The solutions are shown as function of K in Fig. 5.4. From this Figure,
we can identify six phases. If the external field K is equal to zero, and the particle dispersion is
sufficiently dilute, the orientational distribution function takes a constant value ¥ (u) = 1/4m,
meaning that there is no order. This phase, which is not indicated in the figure, is called isotropic.
In the isotropic phase, it is easy to show that S; = Ss = 0. If the concentration is increased to
fall in the range ¢ € (3.290,4.191), the particles spontaneously separate into isotropic domains of
density ¢ = 3.290 and high density nematic domains where ¢ = 4.191. If ¢ > 4.191, all particles
are in the nematic phase. We find the location of the boundaries of the phase coexistence region,
commonly referred to as binodals, to at least three decimal places consistent with their literature
values [121].

If we point our attention to a dispersion subject to an orienting external field K > 0,
the behaviour we find is dependent on the field strength. If the field is weak, the qualitative
behaviour is unchanged: upon an increase of concentration, the now called paranematic phase
(the field induces slight nematic order) transitions to a nematic phase through a region of phase
coexistence. If the field is strong enough, however, the distinction between the external field
induced paranematic phase and the concentration induced nematic phase vanishes. This region
in which this distinction is lost is called superparanematic. The corresponding critical point is
located at K = 0.255 and ¢ = 3.2.

A disorienting field causes qualitatively different behaviour than an orienting field. Instead
of a critical point, a tricritical point (K = —1.18, ¢ = 2.86) marks the suppression of phase
coexistence. At this tricritical point, the discontinuous phase transition transitions into a
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Figure 5.4: Phase diagram of long rod-like particles in the concentration/external field plane.
We can identify several phases by their distinctive symmetries. For sufficiently weak external
fields, the dispersion can separate in a high density and o low density phase. The region in which
this can occur is enclosed by the binodals, which are indicated as solid lines. We find a critical
point at K = 0.255 and a tricritical point at K = —1.18. At the tricritical point, the binodals
converge, and form a continuous phase transition between the antinematic and biaxial nematic
phase.

continuous one. For K < 0, the antinematic and the biaxial nematic phase are separated by
this continuous phase transition, of which the location is determined by the location of the
discontinuities in the derivatives of the order parameter So, see Fig. 5.3b for example.

This phase diagram is not a new result. It was calculated by Khoklov and Semenov by
analytical variational methods and by Varga et al. using similar numerical methods to ours
[112, 118, 119]. Varga et al. showed that the methods employed by Khokhlov and Semenov
overestimate the critical and tricritical field strength by a factor of approximately 2. Our
calculations corroborate that finding and show precise agreement with those of Varga and
coworkers.

In real dispersions of long rods, other ordered high density phases such as the smectic
phases can also be found. Therefore, the diagram printed in Fig. 5.4 is only complete if the
particle aspect ratio is sufficiently high that we can justify taking the low-density limit.
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5.3 Geometric percolation

Having found a way to quantify the orientational distribution using Onsager theory, we can now
start to deal with our main target: percolation. We use the framework we set up in Chapter
2 to find the percolation threshold. We assume that each particle has a connectedness shell
with diameter A\, which determines the regions in which we consider particles to be connected.
In Chapter 2, we discussed how to find the weight average cluster size within this model. For
homogeneously dispersed rodlike particles, it can be expressed as

S=1+p / dr({g* (v, w,u'))Y, (5.6)

where g7 now only depends on the distance between the particles instead of both their absolute
positions, such that we can define the coordinate r as ro — ry. In this case, the density p is not
dependent on any spatial coordinate. As we showed in chapter 3, it is appropriate to define the
percolation threshold as the density at which this function diverges.

Note also that the definition of the average cluster size S is very similar to that of the static
structure factor at vanishing wave length, but instead of an integration over g, the cluster size
is found by integrating only over the connectedness part of g, named g*. Due to this striking
similarity, we find it irresistible to generalise by interpreting the average cluster size S as the value
of the ‘connectedness structure factor’ S* at zero wave vector S = S*(q = 0), such that

ST(a) =1+ p{(g" (g, u,0)))’, (5.7)

and
At N —iq-r + /
g (01,11,11)—/611"6 g (r,u,u). (5.8)

This interpretation of ST allows us to extract not only information on the size of the clusters
of particles, but also about their shape by considering nonzero wave vectors. We exploit this in a
later section. For now, we focus solely on the cluster size.

5.3.1 The pair connectedness function

We make headway by applying theory introduced in Chapter 2. We have an expression of the
cluster size as a function of the pair connectedness function g (5.7), and in turn an expression
of g% in terms of CT, which can be rewritten recursively as

o () = CF o)+ p A (€ gt W) (59)

and finally, we have an expression of C*, see Eq. (2.9). We hinted earlier at the fact that this
problem might be more natural to tackle in Fourier space than in real space, which is more
tangible here due to the convolutional nature of the integral above. To determine the cluster size,
or more generally the connectedness structure factor, we need the Fourier transform of the pair
connectedness function §T, see Eq. (5.7). Therefore, we solve Eq. (5.9) in the Fourier domain as
well. We have

it (q,u,w') = CF(q,u,v') + p(CT(q,u,u”)§" (g, u”, )", (5.10)

where we assume that the dispersion of particles is homogeneous in space, and where we use the
fact that a convolution product in real space becomes a normal product in reciprocal space. If
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the orientational distribution is isotropic, the orientational averages factorise and Eq. (5.10) can
be averaged over u’ and solved straightforwardly [122], giving

S*Hq) =1+ p<<é+(q’u’u,)>>l N (5.11)
()

where the percolation threshold can be easily identified to be at p = 1/{({(C(0,u,u’)))’. In
symmetry-broken phases, such as the nematic and antinematic, this expression does not give
the correct value for the percolation threshold, and we must solve the full integral equation
(5.10) and subsequently average to find the cluster size. However, the so-called excluded-volume
approximation p = 1/((C(0,u,u’)))’ is an occasionally used approximation in analytical models
for approximating the percolation threshold. In Appendix C, we investigate to what degree this
approximation gives accurate results in symmetry-broken phases.

Since we expect the percolation threshold for long rods to be at low volume fractions, we do
not need a sophisticated closure for the Ornstein-Zernike equation. Therefore, we use the second
virial approximation

1 if 1 and 2 are connected and do not overlap, (5.12)
0 otherwise. ’

C+(172) ~ f+(172) - {
This approximation is believed to become exact in the limit that L/D — oo, since, in that limit,
the particle density at the threshold goes to zero with D/L [123]. The second virial closure is
especially well suited for application in the Fourier domain. This can be easily seen by considering
the fact that CF(0,u,u’) is just the real-space integral of C*(r,u,u’). By Eq. (5.12), we can
interpret f+ (0,u,u’) as the volume of space that one particle can occupy while being directly
connected to a second particle, given their orientations u and u’. This volume can be calculated
to be

CH(0,u,0) ~ f(0,uu) (5.13)
1
= 2L%(A = D)fu x w| + 2rL (A = D?) + = (* = D)
~2L*(\ — D)|u x u'|,

where the second and third term in the second line account for the effects of the end-caps of the
spherocylinders, which become negligible as L/D — oo [115]. We use the second virial closure for
now. In Sec. 5.4, we employ a better approximation for particles with finite slenderness. The fact
that this ju x u’| term shows up here as well as in Onsager theory is not a coincidence. In fact,
one could state that this is due to the very definition of the direct correlation function being the
second derivative of the excess free energy with respect to the density. This means that limit in
which this virial approximation holds is equivalent to the Onsager limit. In this limit, the second
virial approximation for percolation becomes exact in the same way that the Onsager free energy
does.

5.3.2 Percolation islands

Having established a theoretical model for the pair connectedness function §+(q,u,u’) and the
associated cluster size S = 1 + p((g7(0,u,u’)))’, we can now employ a numerical procedure
to investigate the behaviour of these functions. First, we find the orientational distribution
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function as described in Sec. 5.2. The second step is solving the integral equation (5.10).
However, we can reduce the dimensionality of the problem by averaging this equation over u’,
and solving for 2(u) = (§1(0,u,w’))’. In terms of this intermediate function h, the connectedness
Ornstein-Zernike equation now reads

R "

) = (¢ (0,u, u')>' +p(CF(0,uu b)) (5.14)

with S =1+ p <iL(u)> In contrast to the nonlinear Onsager equation for the orientational

distribution function, Eq. (5.14) is linear. This means that we do not need to perform the
recursive iteration described in Sec. 5.2. Instead, we discretise it, and write it as a matrix
equation, which is straightforward to solve

h=Db+ Ah, = h=(I-A)"'b, (5.15)

where h; = h(uw;), b = 3, Yw;CT(0,u;,1u;), and A;; = pC+(0,u;,u;)w;1p;. Here we define
1; as the discretised orientational distribution function and w; as the weight associated with
grid-point u; in the angular integration described in Appendix F.1.

The cluster size is now easily calculated with S =1+ p ), h¢;w;. A positive finite value
for S indicates a non-percolating dispersion, whereas a percolating dispersion is characterised
by an non-physical, negative cluster size. We find the percolation threshold by requiring that
1/S = 0, which translates to the physical requirement that the average cluster size diverges at the
onset of percolation. A visual explanation of this procedure is provided in Fig. 5.5. We perform
a linear interpolation in order to accurately find the percolation threshold. In Fig. 5.5, also the
isotropic spinodal is indicated. This is the concentration below which the recursive iteration of
the Onsager equation starting from a nematic trial function, converges to an isotropic distribution
instead [124].

We have scanned the parameter space spanned by our three main parameters ¢, K, \/D
to obtain a comprehensive diagram that shows when percolation occurs, which we show in Fig.
5.6. If the connectedness shell thickness A < 1.15D, the alignment induced by the external field
and concentration prevents percolating clusters from appearing all together. This was shown
analytically and confirmed by Monte Carlo simulations by Finner et al. [125]. If 1.15D < A\ <
1.236D, enclosed percolation islands are present [111, 125]. In this regime, for sufficiently weak
external fields, percolating particle clusters are formed in the dilute phases (isotropic, paranematic,
and antinematic). Upon an increase in the concentration or field strength, the additional induced
alignment causes the percolating clusters to disconnect. This interplay between the effects of an
increase in concentration causes very complex behaviour in the region around A = 1.24D. Here,
the percolation islands fan out, and transform from islands to peninsulas to normal coastlines.
Within this transition there are examples of repeated re-entrance effects, where percolating
clusters can form and break down multiple times.

A second observation we make from Fig. 5.6 is that the biaxial nematic phase, which
can occur if K < 0, displays qualitatively different percolation behaviour than the uniaxial
nematic phase (K > 0). The presence of the continuous phase transition for K < 0, creates a
non-differentiability in the percolation diagram which is not present for K > 0.

5.3.3 Correlation lengths

We can use the connectedness structure factor ST (q) to investigate the shape of non-percolating
clusters, to get a clearer understanding of the effects of biaxiality in the orientational distribution
function on cluster formation. We quantify the shape of the clusters by evaluating the small
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Figure 5.5: Inverse cluster size as function of concentration for K =0 and \/D = 1.21. The
percolation threshold is obtained by requiring that the mean cluster size diverges, i.e., 1/S = 0.
This figure illustrates the method that we use to find the percolation threshold for any value of the
external field strength K and the connectivity range A\/D. In the figure, also the phase coezistence
region and the isotropic spinodal are indicated as reference.

q — 0 behaviour of the structure factor. First, we wil identify the correlation lengths in the
small-wavelength expansion of the connectedness structure factor, and we subsequently illustrate
a method of efficiently obtaining them. To start, we can immediately write down the expansion
of the structure factor for small q

1 925+ , 1028+ , 1928+

202 |mo™ 2 0 | "2 0

St(q) =S5*(0) + e+, (5.16)

q=0

because of the symmetry argument that our theory must be invariant to the transformation
q — —q, since our particles are inversion symmetric. This means that any term that is not even
in all spatial directions, ¢z, gy, and ¢, must vanish. The coefficients in front of the quadratic
terms in ¢ give us information about the shape of clusters. Therefore, it is customary to interpret
them in terms of correlation lengths. Here, we define the correlation lengths as

SHa@) -1 _ (5 (quu’))
SHO) =1 {{g"(0,u,u)))

=1-8¢ -8 -EC+..., (5.17)
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Figure 5.6: The occurrence of percolation for varying concentration c, external field strength
K and connectedness shell thickness A\/D. For very low concentration, no percolating cluster
exists. As the concentration increases, a percolating cluster is formed and possibly destroyed (and
sometimes reformed) dependent on the value of the external field strength and the connectivity
range A\/D. Also indicated in the figure are the binodals and second order phase transition
computed from Onsager theory, see Fig. 5.4.

where £, is the correlation length in the z-direction, and so on. These correlation lengths are
qualitative, not quantitative, measures of the average dimensions of a cluster, and therefore are
better suited to indicate cluster shape than size. To calculate these lengths, we need to calculate
the pair connectedness function for finite wave vectors. To do this, we first require to obtain an
expression for the direct connectedness function C*(q,u,u’) = f*(q,u,u’). In the slender rod
limit and for gD < 1, this can be shown to equal

A N L L
CHaun) = (@) =220 - D)l lio (ga-u)in (Faw)  Gas)

using Straley’s oblique coordinate system [113, 126], where the spherical Bessel function jo(z) =

sin(x)/z. With this expression, it is now possible to solve the connectedness Ornstein-Zernike equa-

tion (5.10) to get the full wave vector dependence of §T, and extract the correlation lengths.
However, there is a numerically less expensive way to go about this problem. We can derive

an expression for the leading order anisotropic term in an expansion of the pair connectedness

function

9*3* (g, u,u)

9404 qq ..., (5.19)

q=0

9 (@ u,u’) =g"(0,u,u) +
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where we define the double dot product : as the sum of the element-wise product of the matrices,
and diadic products with (ab);; = a;b;, where a and b are vectors. In Eq. (5.19), the linear
term drops out for symmetry reasons.

9°4* (q,uu’)

9q0q

correlation lengths, see Eq. (5.17). Therefore, we can restrict our calculation to finding this
matrix instead of the full g*(q,u,u’). We derive an expression for this matrix by taking the
second derivative of the connectedness Ornstein-Zernike equation (5.10) and evaluating at g = 0.
Because the first derivatives of both g+ and C+ vanish at q = 0, this simplifies to

The matrix of coefficients contains all the information we need to find the

9g"(q,u, )
0qoq

_ 9Ci(qu)
B dqdq

q=0

1
~t "ol
9404 g7 (0,u n1)>

> . (5.20)
q=0

= —+:(A = D)L*u x v'|(uu + u'v') we can formulate a

p< 92C*t(q,u,u”)

62§+ (q7 u//7 u/)

-l-p<CA""(0,u7 u’”) 9q0q

9*>C* (quu’)

Using the fact that Fada

‘q:O
closed equation for the coefficients that we need to calculate the correlation lengths?,
0%3* (g, u,u)

dqdq

1
=— 6()\— D)L*u x v|(uu + u'u)

q=0
"

1
— 2o = D)L (Ju x u|(wu + u"u")g* (0,u”, w))

> : (5.21)
q=0

We can simplify the numerics by averaging this equation over u’, and solving the result one
matrix element at a time, since the elements are not coupled. The correlation lengths are now

easily calculated using
!/
, (5.22)
q=0

where the Greek index a can denote any of the Cartesian coordinates. We numerically find that
the off-diagonal elements vanish, as we predicted with symmetry arguments.

In Fig. 5.7, we plot the correlation lengths at different connectivity lengths and field
strengths. For any orientational external field K > 0, we find as expected that the correlation
lengths perpendicular to the field, £, and &,, are equal. The relative value of the parallel
correlation length, £,, is determined by the phase the dispersion is in. Naturally, in the isotropic
phase (K = 0) it is equal to the perpendicular lengths, see Fig 5.7a. As a check of our numerical
procedure, we verify that the correlation lengths in the isotropic phase in the low density limit
are equal to L/6, which can also be calculated analytically, see App. D. Upon the entrance of
the nematic phase, we see that the parallel correlation length is significantly larger than the
perpendicular ones, indicating that clusters in the nematic phase are elongated. This was found
in earlier work as well [111, 113, 125]. In the low density paranematic phase, the external field

a2g+ (q’ u//’ u/)

2 _DL2 "
T 2p(0 ><|u><u| e

52 _ 7} p anJr(q’ ll, ll/)
T 728 (0)— 1 92

2This identity was misprinted in our earlier work [111]. This error does not affect any of the results, or
subsequent equations, of that work.
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Figure 5.7: Correlation lengths as function of the concentration along vertical slices in Fig.
5.6. The subfigures correspond to the slices across the isotropic-nematic transition at K = 0,
A/D =1.1 (a), and across the antinematic-biazial nematic transition at K = =5 (b), \/D = 1.2;
K =-45,A/D =124 (¢), and K = —4, \/D = 1.23 (d). We see a wide variety of behaviour
across this transition, depending on the field strength and connectivity length.

causes a slight alignment of the particles, which in turn causes a slight elongation of the clusters,
mildly mimicking the behaviour in the nematic phase.

If we consider a negative field strength, we can clearly see the effects of biaxiality on the
cluster shape. In the low density antinematic phase, the particles are oriented away from the
z-axis slightly. This results in the fact that the correlation lengths in the direction perpendicular
to the field axis are higher than the parallel one. We therefore expect that the clusters in this
phase take the shape of oblate spheroids. When the antinematic-biaxial nematic continuous phase
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transition is approached, the clusters become larger, increasing the correlation lengths. Dependent
on the connectivity length this increase may or may not cause percolation, see Figs. 5.7b—5.7d.
At the phase transition, indicated in the figures with black dashed lines, the correlation lengths
&, and &, show a clear cusp, and start to decrease when the concentration is increased further.
The correlation length along the director, which is defined to coincide with the z-axis in this
phase, however does not show this nondifferentiability, and keeps increasing monotonically. The
relative strength of the external field and the internal aligning field caused by excluded volume
effects determines the ratio of the two correlation lengths perpendicular to the director £, and &,.
In this phase therefore, we conclude that the ellipsoidal clusters are triaxial.

5.4 Finite aspect ratios

In the preceding sections, we looked at the phase behaviour and percolation of infinitely slender
nanorods. The question arises in what way this behaviour changes when the particle aspect ratio
decreases from infinity. In the context of Onsager theory, a few methods have been developed
to account for particles with a finite length-diameter ratio. The best known one, produced by
Lee and Parsons independently, is based on interpolating between the free energy of infinitely
slender particles produced by Onsager and the Carnahan-Starling free energy of spheres. This
approximation produces highly accurate phase diagrams, and has been widely used in literature
[127-129]. An alternative method, called Scaled Particle Theory, is based on an interpolation of
the work required to insert a very large and a very small particle into the dispersion [130, 131].
This estimation of the work is used to correct the free energy. Scaled Particle Theory has been
shown to produce more accurate results when applied to percolation theory by Finner et al. [132].
For this reason, we choose to use this method. A detailed comparison between both methods and
Monte Carlo simulation results is presented in by Finner et al., who showed that Scaled Particle
Theory predictions for the percolation threshold deviates less than 10%, even for rods with aspect
ratios down to L/D = 5 [132]. Here, we give a quick overview of this theory before applying it to
the percolation problem. We first use scaled particle theory to adjust the Onsager free energy to
take into account the end-caps of the particles, and find the equilibrium orientational distribution
function. Subsequently, we use the same adjustment for the direct connectedness function C’*, in
order to accurately find the percolation threshold.

5.4.1 Scaled Particle Theory

We model our N particles as spherocylinders with cylindrical length L, diameter D. This definition
implies that the so-called ‘full” aspect ratio equals (L + D)/D. However, in this work we refer the
to aspect ratio as the simple ratio L/D. The volume fraction of this dispersion is given by

N (7LD?* rD? D 2D?
= ) =e(Z+22 2
4 V( I 6) C<L+3L2>’ (5.23)

where V is the volume available to the rods.

Cotter and Wacker derived an expression for the Scaled Particle Theory free energy of
spherocylindrical particles, that incorporates an approximation of virial terms beyond the second.
This free energy is given up to a constant by [130, 131, 133]

N;;T =f=h (&p) + (Iny(u) + A (110) +§ (&)2 — K{cos®0),  (5.24)

60 Geometric percolation of colloidal particles



CHAPTER 5. PERCOLATION OF HARD NANORODS IN AN EXTERNAL FIELD

h
where o (L)Q /
_ —Z \D /
A_3+W3%+2<<\uxu\>>, (5.25)
and
12(L +1) (2L +1 L(L£+1
po 2B NCaHY B B4 wyy, (5.26)
(2+3%) T (2+35)

where the new L/D-dependence is due to the Scaled Particle Theory approximation. It is not
hard to show that this free energy reduces to expression (5.2) as D/L — 0 and ¢ — 0.

From this expression of the free energy, we find the equilibrium orientational distribution
function by requiring that § f/d1 = 0, and solving the resulting integral equation

P(u) = %exp (K cos? ) — STFC {Ju x u’|>/> , (5.27)

where Z is a normalisation constant, and

1 2+2%
r= <1 + 2 Q) : (5.28)

is the Scaled Particle Theory correction factor. Note that Eq. (5.27) is identical to Eq. (5.4)
for the infinite aspect ratio case if I' = 1. Indeed, it is easy to see that I' — 1 as L/D — oo at
constant c.

Using the equilibrium orientational distribution function ¢ (u), we can calculate the dimen-
sionless pressure p and chemical potential ;1 in the same way as described in Section 5.2. We

n 3
R R
and
p=In (190@) + (Ingp(w)) + (1 + 24) (1“"@)
+ <A + ZB) (&0)2 +B (ﬁ(p)g — K{cos? ). (5.30)

Using the pressure and chemical potential, we calculate the binodals and second order
phase transition by the same method as described in Sec. 5.2. The resulting phase diagrams for
L/D =100 and L/D = 20 are plotted in Fig. 5.8.

From this figure, we conclude that the external field strengths at the critical and tricritical
points are only weakly dependent on the aspect ratio. The critical and tricritical volume fractions,
however, are proportional to D/L as L/D — oo. This could have also been concluded from
Sect. 5.2. At aspect ratios below roughly one hundred, we find a clear deviation from this
scaling behaviour, which is in excellent agreement with simulations and numerical work at K =0
[133].

3Note: here, the dimensionless pressure is defined slightly differently than in Sec. 5.2.
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Figure 5.8: Phase diagram of hard spherocylinders with aspect ratios L/D € {c0,100,20} in
terms of a scaled volume fraction as function of the external field strength K. Within the enclosed
region, high and low density phases coexist. We calculated the location of the binodals using the
Onsager free energy, with Scaled Particle Theory corrections for the finite aspect ratios. The
terminology of the phases is shown in Fig 5.4.

5.4.2 Percolation of spherocylinders

To apply the Scaled Particle Theory correction also to the calculation of the cluster size, we
closely follow the procedure presented in Ref. [115]. We rescale our contact volume with the
same parameter I' that we used to rescale our excluded volume, given by Eq. (5.28), such that
the closure of the Connectedness Ornstein-Zernike equation (5.10) reads,

CH(0,u,u’) =Tf+(0,u,u). (5.31)

In this equation, the contact volume, including the contributions by the hemispherical end-caps
is given by

70, u,w') = 2L*(\ — D)|u x u'| + 2w LD? <(g>2 - 1) + 4”;73 ((g)g - 1) . (5.32)

where ) is the connectivity length. The new second and third terms account for the effects of
the hemispherical end-caps. We note that the form of closure (5.31) is not based on physical
arguments, but rather on considerations of convenience. However, in our view it makes sense to
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use the same renormalisation in the excess free energy as in the direct connectedness function
because there is a strong physical connection between the two. Additionally, it can be shown
that this approximation yields very accurate results for aspect ratios L/D > 10 [115]. By the
same methods described in Sec. 5.3.2, we now solve the connectedness Ornstein-Zernike equation
and find the cluster size as function of the volume fraction, aspect ratio, connectedness criterion,
and external field strength.

The percolation threshold can again be found by the requirement that the cluster size
diverges. This procedure results in the percolation diagrams shown in Fig 5.9. Here we plot
for aspect ratios L/D = 100 and L/D = 20 the percolation thresholds for several different
connectedness criteria as function of the external field. The diagram for L/D — oo is given in
Fig 5.6. The percolation thresholds are expressed in terms of the product of the volume fraction
and the aspect ratio ¢L/D, which in the slender particle limit is the exact definition of our
parameter c.

We find in full agreement with our earlier numerical work that the finite particle slenderness
introduces a high concentration percolation transition. After all, a finite dispersion with sufficiently
many particles always percolates. The location of this high concentration percolation threshold
is strongly dependent on the aspect ratio. Apart from this additional percolation threshold,
our results show that the diagram does not change qualitatively as the aspect ratio decreases
to L/D = 20. However, if the particle anisometry is decreased further, the percolation islands
and peninsulas disappears entirely. For spherical particles, at L/D = 0, the diagram has lost its
dependence on the external field, as the orientation of spheres has no influence on percolation
within our model. In this regime, the concentration at which percolating clusters appear is only
dependent on the ratio between the connectivity criterion and the particle diameter.
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Figure 5.9: Percolation threshold for spherocylinders with aspect ratio L/D = 100 (a) and
L/D =20 (b) as function of the external field strength K for different connectedness criterion
A/D. The hatched region is the region of phase coezistence.
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5.5 Discussion and conclusion

We have numerically investigated the effect of external field induced antinematic order on the
percolation threshold and cluster shape in dispersions of spherocylindrical particles. This was
performed in the context of a self-consistent combination between Onsager theory of the isotropic-
nematic phase transition and the connectedness Ornstein-Zernike equation by Coniglio and
coworkers [40, 116]. We applied Scaled Particle Theory corrections to incorporate approximations
of the higher order virial terms in the Onsager free energy and used a similar approximation for
the direct connectedness function. This allowed us to generalise our findings to rods with aspect
ratios of down to approximately L/D = 10.

For small connectivity lengths, we find that percolation islands form in the concentra-
tion/external field plane, meaning that upon an increase of concentration, percolating clusters
can form and break down subsequently. For particles with finite aspect ratios, as we usually
encounter in real materials, a high density percolation threshold always exists. If the connectivity
length increases, the percolation islands grow, and eventually fan out, connecting to this high
density threshold. On the other hand, when the connectivity length is large enough, the low
density percolation can never be broken down by the induced order due to the external field or
excluded-volume effects, and it always precedes the abovementioned high density percolation
threshold. To the best knowledge of the authors, no simulations have been conducted of percola-
tion of nanorods subject to externally applied quadrupolar fields. However, our results in the
disorientational regime show surprising qualitative resemblance with the percolation diagrams of
simulations of nanorods in shear flow [134]. However, we expect this similarity to be coincidence
because the authors show that this re-entrant perclation behaviour is due to rod aggregation
instead of alignment.

As the aspect ratio decreases, and the rods increasingly resemble spheres, the effects
described above disappear. For spherical particles, indeed, the influence of the external field
vanishes, because the average surface to surface distance cannot any longer be influenced by the
rotational degrees of freedom. For homogeneously dispersed spherical particles, the percolation
threshold is uniquely determined by the ratio A/D as we have seen in previous chapters.

It is a major challenge to disperse carbon nanotubes isotropically in polymer composites, not
only due to the intrinsically occurring phase transitions, but also due to the used manufacturing
processes such as spin coating and shear mixing [135]. Even in controlled laboratory experiments,
external electric, magnetic or flow fields are omnipresent and our results show that the effects
of such weak external fields on the percolation threshold can be rather significant. We believe
that this fact can explain a part of the scatter in the experimental data of the conductivity of
nanocomposite materials.

Additionally, we calculated correlation lengths to get insight into the shape of nonpercolating
clusters. Our results confirm earlier findings that from the isotropic to nematic phase cluster go
from spherical to elongated. Moreover, across the continuous antinematic-biaxial nematic phase
transition, we find that the clusters transition from being oblate spheroids to triaxial prolate
ellipsoids. The highly anisometric shape of clusters in these phases can be exploited to generate
materials that have anisotropic conductivity properties [136].
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Chapter 6

Conclusions and outlook

The aim of this work has been to investigate the behaviour of the percolation threshold of particle
dispersions. We considered two different models:
e a non-equilibrium dispersion of hard spherical particles subject to a simple shear flow, and,
e an equilibrium dispersion of hard rodlike particles subject to external quadrupolar fields.
The common denominator of these two distinct dispersions is that they are both meant to model
the influence of experimentally induced external influences on the percolation threshold in polymer
composites.

With the first model, we have found that the influence of shear flow on the percolation
threshold of a dispersion of spherical particles can be captured by a simple heuristic model
semi-quantitatively. The model predicts that the percolation threshold is slightly increased if the
connectivity length is large with respect to the particle diameter, and decreased up to roughly
10% if the particle diameter is close to the connectivity range. We postulate that this decrease
is caused by the emergence of linear contact clusters that have been experimentally observed
in sheared dispersions [78]. To provide a further indication for this conjecture, we show that
subpercolating clusters elongate due to the shear flow for a certain choice of parameters. We,
however, do not provide conclusive evidence for our claim.

The theoretical model slightly overestimates the influence of the shear flow on the percolation
threshold when compared with molecular dynamics simulations. This discrepancy might be caused
by a variety of factors, but is probably due to the heuristic nature of the used criterion or the
fact that we neglected all shear-induced many-body correlations.

The second model shows the highly complex physics that arise when the particles are non-
spherical and hard. Such particles are known to self-organise entropically into liquid-crystalline
phases. The combination of this internally driven alignment with externally applied aligning or
disaligning fields leads to a variety of symmetry-broken phases. We show that the percolation
threshold is highly sensitive to the degree of alignment in a dispersion of rodlike particles. This
sensitivity is manifested by the fact that material-spanning clusters can form and break down
multiple times with increasing particle density, while keeping all other relevant parameters
constant. We also show that this behaviour is present over a wide range of particle aspect
ratios, and causes the cluster shape to become bi- or tri-axial depending on the underlying
thermodynamic phase.
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Outlook

Due to the heuristic nature of the percolation criterion we applied to find the percolation threshold
in the first model, we do not have a way of analytically investigating the degree of anisometry
of the particle clusters. To provide further evidence for our conjecture that the decrease in
the percolation threshold is due to the emergence of linear clusters, it would be interesting
to investigate the cluster shape more comprehensively and to measure the percolating cluster
statistics depending on the shear rate with molecular dynamics simulations. Unfortunately, we
have not found the opportunity to conduct such an analysis with a sufficiently satisfactory degree
of comprehensiveness. Therefore, we leave this problem to further research.

Additionally, to make our model more quantitative, several improvements could be made.
First of all, shear-induced many-body correlations could be taken into account. This can be
done, for example, by including three-body correlations explicitly in the Smoluchowski theory
and close the theory by approximating the three-body correlations in terms of the two-body
correlations. Alternatively, one could leverage our knowledge of the equilibrium material to use
the Percus-Yevick pair correlation function as the equilibrium structure directly in Eq. (A.14),
effectively including many-body correlations implicitly.

In addition to many-body interactions, we have neglected hydrodynamic interactions entirely
throughout this analysis. To include them, one must incorporate the tensorial mobility of the
particles explicitly. For example, this can be achieved by including hydrodynamic interactions
in the form of pairwise lubrication forces as is done in Ref. [91]. Such a procedure is especially
applicable if the shear flow is strong relative to thermal diffusion and the the particle volume
fraction is high.

To do away with the heuristic nature of the theory altogether, it might be possible to
formulate a dynamic percolation theory from dynamic density functional theory or power functional
theory similar to how connectedness Ornstein-Zernike theory is derived from liquid state Ornstein-
Zernike theory [137]. However, as far as is known to the authors, no such formulation exists in
the literature. Alternatively, Fortuin and Kasteleyn have shown that the percolation can also
be considered in terms of generalised Ising, or Potts models [138, 139]. Since methods exist to
study the dynamics of Ising models in external fields, see for example Ref. [140], it is imaginable
that such methods could also be applied to the percolation problem. However, even if dynamical
percolation could be studied this way, it is not entirely straightforward to apply such lattice
models to continuum systems, although the formalism exists [141].

To extend our model to non-spherical particles also, it is necessary to adapt the Smoluchowski
theory to account to include the resulting anisometric structures as well. For particles with very
high aspect ratios, the percolation criterion that we have used, has been shown to fail, and must
be adapted to retain its predictive power.

Although simulations of Kwon et al. show that dispersions of rodlike particles in shear flow
have strikingly similar re-entrant percolation behaviour to that we observed for rods in external
quadrupolar fields [134], the underlying cause is probably different. Indeed, in the case of our
work, percolation is suppressed by external-field-induced particle alignment, whereas Kwon and
coworkers show that hydrodynamic agglomeration of rods is the origin. To properly theoretically
model percolation in sheared suspensions of hard rods, therefore, a dynamical percolation theory
needs to be set up that can incorporate not only the entropically driven particle alignment, but
also the shear-induced particle aggregation.

68 Geometric percolation of colloidal particles



CHAPTER 6. CONCLUSIONS AND OUTLOOK

Acknowledgements

I would like to express my special thanks of gratitude to my supervisors Paul van der Schoot and
René de Bruijn for their continual encouragement, participation and support, and without whom
this document would not be lying before you. Additionally, I thank Shari Finner and Mark Miller
for their very useful and enlightening discussions. Lastly, I would like to thank all members of
the Soft Matter and Biological physics group for their action-packed coffee breaks, captivating
conversations, and—especially during the world-wide pandemic—much-needed company.

Geometric percolation of colloidal particles 69






Bibliography

1]

C.Y.Li, L. Li, W. Cai, S.L. Kodjie, and K.K. Tenneti. Nanohybrid shish-kebabs: Periodically
functionalized carbon nanotubes. Advanced Materials, 17:1198-1202, 2005.

M. Moniruzzaman and K.I. Winey. Polymer nanocomposites containing carbon nanotubes.
Macromolecules, 39:5194-5205, 2006.

T. Wu, E. Chen, Y. Lin, M. Chiang, and G. Chang. Preparation and characterization of melt-
processed polycarbonate/multiwalled carbon nanotube composites. Polymer Engineering &
Science, 48:1369-1375, 2008.

K.H. Kim and W.H. Jo. A strategy for enhancement of mechanical and electrical properties
of polycarbonate/multi-walled carbon nanotube composites. Carbon, 47:1126-1134, 2009.

J.A. King, M.D. Via, J.A. Caspary, M.M. Jubinski, I. Miskioglu, O.P. Mills, and G.R.
Bogucki. Electrical and thermal conductivity and tensile and flexural properties of carbon
nanotube/polycarbonate resins. Journal of Applied Polymer Science, 118:2512-2520, 2010.

B. Hornbostel, P. Pétschke, J. Kotz, and S. Roth. Single-walled carbon nanotubes/polycar-
bonate composites: Basic electrical and mechanical properties. physica status solidi (b),
243:3445-3451, 2006.

B.K. Satapathy, R. Weidisch, P. P6tschke, and A. Janke. Tough-to-brittle transition in
multiwalled carbon nanotube (mwnt)/polycarbonate nanocomposites. Composites Science
and Technology, 67:867-879, 2007.

S. Abbasi, P.J. Carreau, A. Derdouri, and M. Moan. Rheological properties and percolation
in suspensions of multiwalled carbon nanotubes in polycarbonate. Rheologica Acta, 48:943,
2009.

E. Kymakis and G.A.J. Amaratunga. Single-wall carbon nanotube/conjugated polymer
photovoltaic devices. Applied Physics Letters, 80:112-114, 2002.

E. Kymakis, I. Alexandrou, and G.A.J Amaratunga. High open-circuit voltage photovoltaic
devices from carbon-nanotube-polymer composites. Journal of Applied Physics, 93:1764—
1768, 2003.

P. Avouris, M. Freitag, and V. Perebeinos. Carbon-nanotube photonics and optoelectronics.
Nature Photonics, 2:341-350, 2008.

B. Philip, J.K. Abraham, A. Chandrasekhar, and V.K. Varadan. Carbon nanotube/pmma
composite thin films for gas-sensing applications. Smart Materials and Structures, 12:935,
2003.

Geometric percolation of colloidal particles 71



BIBLIOGRAPHY

[13]

[14]

[25]
[26]
[27]

28]

W. Fu, L. Liu, K. Jiang, Q. Li, and S. Fan. Super-aligned carbon nanotube films as aligning
layers and transparent electrodes for liquid crystal displays. Carbon, 48:1876-1879, 2010.

C. Baughman, R.H.and Cui, A.A. Zakhidov, Z. Igbal, J.N. Barisci, G.M. Spinks, G.G.
Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, et al. Carbon nanotube actuators. Science,
284:1340-1344, 1999.

B.J. Landi, R.P. Raffaelle, M.J. Heben, J.L. Alleman, W. VanDerveer, and T. Gennett.
Single wall carbon nanotube- nafion composite actuators. Nano Letters, 2:1329-1332, 2002.

I. Kang, Y.Y. Heung, J.H. Kim, J.W Lee, R. Gollapudi, S. Subramaniam, S. Narasim-
hadevara, D. Hurd, G.R. Kirikera, V. Shanov, et al. Introduction to carbon nanotube and
nanofiber smart materials. Composites Part B: Engineering, 37:382—-394, 2006.

J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, R. Li, and Q. Li. Carbon-nanotube fibers for
wearable devices and smart textiles. Advanced Materials, 28:10529-10538, 2016.

Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang, and Z. Zhang.
Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with
high-performance electromagnetic interference shielding. Carbon, 96:768-777, 2016.

Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds,
D.B. Tanner, A.F. Hebard, et al. Transparent, conductive carbon nanotube films. Science,
305:1273-1276, 2004.

C.A. Martin, J. K.W. Sandler, M.S.P. Shaffer, M.K. Schwarz, W. Bauhofer, K. Schulte,
and A.H. Windle. Formation of percolating networks in multi-wall carbon-nanotube—-epoxy
composites. Composites Science and Technology, 64:2309-2316, 2004.

J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, and A.H. Windle. Ultra-low
electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44:5893—
5899, 2003.

A.V. Kyrylyuk and P. van der Schoot. Continuum percolation of carbon nanotubes in
polymeric and colloidal media. Proceedings of the National Academy of Sciences, 105:
8221-8226, 2008.

G. Hu, C. Zhao, S. Zhang, M. Yang, and Z. Wang. Low percolation thresholds of electrical
conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-
walled carbon nanotubes. Polymer, 47:480-488, 2006.

T. Ackermann, R. Neuhaus, and S. Roth. The effect of rod orientation on electrical
anisotropy in silver nanowire networks for ultra-transparent electrodes. Scientific Reports,
6:34289, 2016.

Q. Xue. The influence of particle shape and size on electric conductivity of metal-polymer
composites. Furopean Polymer Journal, 40:323-327, 2004.

E.J. Garboczi, K.A. Snyder, J.F. Douglas, and M.F. Thorpe. Geometrical percolation
threshold of overlapping ellipsoids. Physical Review E, 52:819, 1995.

A.L.R. Bug, S.A. Safran, and I. Webman. Continuum percolation of rods. Physical Review
Letters, 54:1412, 1985.

O. Breuer and U. Sundararaj. Big returns from small fibers: a review of polymer/carbon
nanotube composites. Polymer Composites, 25:630—-645, 2004.

72

Geometric percolation of colloidal particles



BIBLIOGRAPHY

[29] R.M. Mutiso, M.C. Sherrott, J. Li, and K.I. Winey. Simulations and generalized model of
the effect of filler size dispersity on electrical percolation in rod networks. Physical Review
B, 86:214306, 2012.

[30] K. Shehzad, T. Hussain, A.T. Shah, A. Mujahid, M.N. Ahmad, T. Anwar, S. Nasir, A. Ali,
et al. Effect of the carbon nanotube size dispersity on the electrical properties and pressure
sensing of the polymer composites. Journal of Materials Science, 51:11014-11020, 2016.

[31] R.H.J. Otten and P. van der Schoot. Continuum percolation of polydisperse nanofillers.
Physical Review Letters, 103:225704, 2009.

[32] M.C. Hermant. Manipulating the Percolation Threshold of Carbon Nanotubes in Polymeric
Composites. PhD-Thesis, Eindhoven University of Technology, Eindhoven, 2009.

[33] B. Vigolo, C. Coulon, M. Maugey, C. Zakri, and P. Poulin. An experimental approach to
the percolation of sticky nanotubes. Science, 309:920-923, 2005.

[34] J. Li, P.C. Ma, W.S. Chow, C.K. To, B.Z. Tang, and J.-K. Kim. Correlations between
percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Advanced
Functional Materials, 17:3207-3215, 2007.

[35] F. Du, J.E. Fischer, and K.I. Winey. Effect of nanotube alignment on percolation conduct-
ivity in carbon nanotube/polymer composites. Physical Review B, 72:121404, 2005.

[36] W. Bauhofer and J.Z. Kovacs. A review and analysis of electrical percolation in carbon
nanotube polymer composites. Composites Science and Technology, 69:1486—-1498, 2009.

[37] S. Kwon, HW. Cho, G. Gwon, H. Kim, and B.J. Sung. Effects of shape and flexibility
of conductive fillers in nanocomposites on percolating network formation and electrical
conductivity. Physical Review E, 93:032501, 2016.

[38] T. Hu and B.I. Shklovskii. Hopping conductivity of a suspension of flexible wires in an
insulator. Physical Review B, 74:174201, 2006.

[39] J.-P. Hansen and I.R. McDonald. Theory of simple liquids. Elsevier, Amsterdam, 1990.

[40] A. Coniglio, U. De Angelis, and A. Forlani. Pair connectedness and cluster size. Journal of
Physics A: Mathematical and General, 10:1123, 1977.

[41] L.S. Ornstein and F. Zernike. Accidental deviations of density and opalescence at the
critical point of a single substance. In Proceedings of the Royal Netherlands Academy of
Arts and Sciences, volume 17, pages 793-806, 1914.

[42] J.K. Percus and G.J. Yevick. Analysis of classical statistical mechanics by means of collective
coordinates. Physical Review, 110:1, 1958.

[43] E.G. Noya, C. Vega, and E. de Miguel. Determination of the melting point of hard spheres
from direct coexistence simulation methods. The Journal of Chemical Physics, 128:154507,
2008.

[44] T. DeSimone, S. Demoulini, and R.M. Stratt. A theory of percolation in liquids. The
Journal of Chemical Physics, 85:391-400, 1986.

[45] D.C. Rapaport. The art of molecular dynamics simulation. Cambridge university press,
Cambridge, 2004.

Geometric percolation of colloidal particles 73



BIBLIOGRAPHY

[46]

[47]

C. Zhang, S. Liu, H. Zhou, and Y. Zhou. An accurate, residue-level, pair potential of mean
force for folding and binding based on the distance-scaled, ideal-gas reference state. Protein
Science, 13:400-411, 2004.

E. Paquet and H.L. Viktor. Molecular dynamics, monte carlo simulations, and langevin
dynamics: a computational review. BioMed Research International, 2015, 2015.

R.W. Pastor. Techniques and applications of langevin dynamics simulations. In The
Molecular Dynamics of Liquid Crystals, pages 85—138. Springer, 1994.

A. Scala. Event-driven langevin simulations of hard spheres. Physical Review E, 86:026709,
2012.

J.E. Jones. On the determination of molecular fields.—i. from the variation of the viscosity
of a gas with temperature. Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character, 106:441-462, 1924.

S.-J. Park and M.-K. S. Intermolecular force. Interface Science and Technology, 18:1-57,
2011.

J.D. Weeks, D. Chandler, and H.C. Andersen. Role of repulsive forces in determining the
equilibrium structure of simple liquids. The Journal of Chemical Physics, 54:5237-5247,
1971.

N.A. Seaton and E.D. Glandt. Aggregation and percolation in a system of adhesive spheres.
The Journal of Chemical Physics, 86:4668—-4677, 1987.

H.J.C. Berendsen and W.F. Van Gunsteren. Practical algorithms for dynamic simulations.
In Molecular-dynamics simulation of statistical-mechanical systems, pages 43-65. Elsevier,

Amsterdam, 1986.
T. Pang. An introduction to computational physics, 2012.

J. Jung, W. Nishima, M. Daniels, G. Bascom, C. Kobayashi, A. Adedoyin, M. Wall,
A. Lappala, D. Phillips, W. Fischer, et al. Scaling molecular dynamics beyond 100,000
processor cores for large-scale biophysical simulations. Journal of Computational Chemistry,
40:1919-1930, 2019.

P.P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der
Physik, 369:253-287, 1921.

S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics, 117:1-19, 1995.

A.W. Lees and S.F. Edwards. The computer study of transport processes under extreme
conditions. Journal of Physics C: Solid State Physics, 5:1921, 1972.

J.F. Morris. A review of microstructure in concentrated suspensions and its implications

for rheology and bulk flow. Rheologica Acta, 48:909-923, 2009.

D. Miillner et al. fastcluster: Fast hierarchical, agglomerative clustering routines for R and
Python. Journal of Statistical Software, 53:1-18, 2013.

C.D. Lorenz and R.M. Ziff. Precise determination of the critical percolation threshold for
the three-dimensional “swiss cheese” model using a growth algorithm. The Journal of
Chemical Physics, 114:3659-3661, 2001.

74

Geometric percolation of colloidal particles



BIBLIOGRAPHY

[63] J. Skvor, I. Nezbeda, I. Brovchenko, and A. Oleinikova. Percolation transition in fluids:
Scaling behavior of the spanning probability functions. Physical Review Letters, 99:127801,
2007.

[64] A. Geiger and H.E. Stanley. Tests of universality of percolation exponents for a three-
dimensional continuum system of interacting waterlike particles. Physical Review Letters,
49:1895, 1982.

[65] S.A. Safran, I. Webman, and G.S. Grest. Percolation in interacting colloids. Physical Review
A, 32:506, 1985.

[66] N. Johner, C. Grimaldi, I. Balberg, and P. Ryser. Transport exponent in a three-dimensional
continuum tunneling-percolation model. Physical Review B, 77:174204, 2008.

[67] J.-F. Thovert, V.V. Mourzenko, and P.M. Adler. Percolation in three-dimensional fracture
networks for arbitrary size and shape distributions. Physical Review E, 95:042112, 2017.

[68] M.D. Rintoul and S. Torquato. Precise determination of the critical threshold and exponents
in a three-dimensional continuum percolation model. Journal of Physics A: Mathematical
and General, 30:1L.585, 1997.

[69] M.E.J. Newman and R.M. Ziff. Efficient monte carlo algorithm and high-precision results
for percolation. Physical Review Letters, 85:4104, 2000.

[70] B. Nigro, D. Ambrosetti, C. Grimaldi, T. Maeder, and P. Ryser. Transport properties of
nonhomogeneous segregated composites. Physical Review B, 83:064203, 2011.

[71] D.C. Kozen. Depth-first and breadth-first search. In The Design and Analysis of Algorithms,
pages 19-24. Springer, New York, 1992.

[72] M.A. Miller. On structural correlations in the percolation of hard-core particles. The
Journal of Chemical Physics, 131:066101, 2009.

[73] F. Coupette, A. Hértel, and T. Schilling. Continuum percolation expressed in terms of
density distributions. Physical Review E, 101:062126, 2020.

[74] U. Alon, I. Balberg, and A. Drory. New, heuristic, percolation criterion for continuum
systems. Physical Review Letters, 66:2879, 1991.

[75] J. Blawzdziewicz and G. Szamel. Structure and rheology of semidilute suspension under
shear. Physical Review E, 48:4632, 1993.

[76] V. Choudhary and A. Gupta. Polymer/carbon nanotube nanocomposites. Carbon nanotubes-
polymer nanocomposites, 2011:65-90, 2011.

[77] Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis. Carbon nanotube—polymer composites:
chemistry, processing, mechanical and electrical properties. Progress in Polymer Science,
35:357-401, 2010.

[78] M.K. Lyon, D.W. Mead, R.E. Elliott, and L.G. Leal. Structure formation in moderately
concentrated viscoelastic suspensions in simple shear flow. Journal of Rheology, 45:881-890,
2001.

[79] D. Won and C. Kim. Alignment and aggregation of spherical particles in viscoelastic fluid
under shear flow. Journal of Non-Newtonian Fluid Mechanics, 117:141-146, 2004.

Geometric percolation of colloidal particles 75



BIBLIOGRAPHY

[80]
[81]
[82]
[83]
[84]

[85]
[36]

J.M. Brader and M. Kriiger. Density profiles of a colloidal liquid at a wall under shear flow.
Molecular Physics, 109:1029-1041, 2011.

J.J. Gray and R.T. Bonnecaze. Rheology and dynamics of sheared arrays of colloidal
particles. Journal of Rheology, 42(5):1121-1151, 1998.

P.G. de Gennes. Conjectures on the transition from poiseuille to plug flow in suspensions.
Journal de Physique, 40:783-787, 1979.

S. Gallier, E. Lemaire, F. Peters, and L. Lobry. Percolation in suspensions and de gennes
conjectures. Physical Review E, 92:020301, 2015.

K. Thggersen, M. Dabrowski, and A. Malthe-Sgrenssen. Transient cluster formation in
sheared non-brownian suspensions. Physical Review E, 93:022611, 2016.

J.K.G. Dhont. An introduction to dynamics of colloids. Elsevier, Amsterdam, 1996.

N.J. Wagner. The smoluchowski equation for colloidal suspensions developed and analyzed
through the generic formalism. Journal of Non-Newtonian Fluid Mechanics, 96:177-201,
2001.

R. Abe. On the kirkwood superposition approximation. Progress of Theoretical Physics, 21:
421-430, 1959.

J.K.G Dhont and H. Verduin. The effect of shear-flow on critical correlations in colloidal
systems: Microstructure, turbidity, and dichroism. The Journal of Chemical Physics, 101:
6193-6205, 1994.

T. Ohtsuki. Dynamical properties of strongly interacting brownian particles: 1. dynamic
shear viscosity. Physica A: Statistical Mechanics and its Applications, (2-3):441-458, 1981.

S.A. Rice and J. Lekner. On the equation of state of the rigid-sphere fluid. The Journal of
Chemical Physics, 42:3559-3565, 1965.

E. Nazockdast and J.F. Morris. Microstructural theory and the rheology of concentrated
colloidal suspensions. Journal of Fluid Mechanics, 713:420, 2012.

J.F. Schwarzl and S. Hess. Shear-flow-induced distortion of the structure of a fluid:
Application of a simple kinetic equation. Physical Review A, 33:4277, 1986.

G. Szamel. Nonequilibrium structure and rheology of concentrated colloidal suspensions:
Linear response. The Journal of Chemical Physics, 114:8708-8717, 2001.

L. Banetta and A. Zaccone. Radial distribution function of lennard-jones fluids in shear
flows from intermediate asymptotics. Physical Review E, 99:052606, 2019.

J.K.G. Dhont. On the distortion of the static structure factor of colloidal fluids in shear
flow. Journal of Fluid Mechanics, 204:421-431, 1989.

W.B. Russel and A.P. Gast. Nonequilibrium statistical mechanics of concentrated colloidal
dispersions: Hard spheres in weak flows. The Journal of Chemical Physics, 84:1815-1826,
1986.

N.J. Wagner and W.B. Russel. Nonequilibrium statistical mechanics of concentrated colloidal
dispersions: hard spheres in weak flows with many-body thermodynamic interactions.
Physica A: Statistical Mechanics and its Applications, 155:475-518, 1989.

76

Geometric percolation of colloidal particles



BIBLIOGRAPHY

(98]
[99]
[100]

[101]
[102]

[103]
[104]
[105]
[106]
[107]
[108]

[109]

[110]

[111]

[112]
[113]
[114]

[115]

[116]

N. Wax. Selected papers on noise and stochastic processes. Courier Dover Publications,
Mineola, 1954.

L.E. Reichl. A modern course in statistical physics. American Association of Physics
Teachers, Maryland, 1999.

R.P. Brent. Algorithms for minimization without derivatives. Courier Corporation, Mineola,
2013.

M. Doi. Soft matter physics. Oxford University Press, Oxford, 2013.

DE Elrick. Source functions for diffusion in uniform shear flow. Australian Journal of
Physics, 15:283-288, 1962.

J.F. Brady. Computer simulation of viscous suspensions. Chemical Engineering Science, 56:
2921-2926, 2001.

J. Vermant and M.J. Solomon. Flow-induced structure in colloidal suspensions. Journal of
Physics: Condensed Matter, 17:187, 2005.

V.I. Lebedev. Quadratures on a sphere. USSR Computational Mathematics and Mathemat-
ical Physics, 16:10-24, 1976.

D. Ronis. Theory of fluctuations in colloidal suspensions undergoing steady shear flow.
Physical Review A, 29:1453, 1984.

H.C. Andersen, J.D. Weeks, and D. Chandler. Relationship between the hard-sphere fluid
and fluids with realistic repulsive forces. Physical Review A, 4:1597, 1971.

H. Arkin and W. Janke. Gyration tensor based analysis of the shapes of polymer chains in
an attractive spherical cage. The Journal of Chemical Physics, 138:054904, 2013.

R. Schueler, J. Petermann, K. Schulte, and H.-P. Wentzel. Agglomeration and electrical
percolation behavior of carbon black dispersed in epoxy resin. Journal of Applied Polymer
Science, 63:1741-1746, 1997.

J. Yuan, A. Luna, W. Neri, C. Zakri, T. Schilling, A. Colin, and P. Poulin. Graphene liquid
crystal retarded percolation for new high-k materials. Nature Commaunications, 6:1-8, 2015.

S.P. Finner, I. Pihlajamaa, and P. van der Schoot. Geometric percolation of hard nanorods:
The interplay of spontaneous and externally induced uniaxial particle alignment. The
Journal of Chemical Physics, 152:064902, 2020.

A.R. Khokhlov and A.N. Semenov. Influence of external field on the liquid-crystalline
ordering in the solutions of stiff-chain macromolecules. Macromolecules, 15:1272-1277, 1982.

R.H.J. Otten and P. van der Schoot. Connectedness percolation of elongated hard particles
in an external field. Physical Review Letters, 108:088301, 2012.

A.P. Chatterjee. Percolation in polydisperse systems of aligned rods: A lattice-based
analysis. The Journal of Chemical Physics, 140:204911, 2014.

S.P. Finner, M.I. Kotsev, M.A. Miller, and P. van der Schoot. Continuum percolation of
polydisperse rods in quadrupole fields: Theory and simulations. The Journal of Chemical
Physics, 148:034903, 2018.

L. Onsager. The effects of shape on the interaction of colloidal particles. Annals of the New
York Academy of Sciences, 51:627-659, 1949.

Geometric percolation of colloidal particles 7



BIBLIOGRAPHY

[117]

[118]

[119]

[120]

[121]
[122]
[123]
[124]

[125]

[126]

[127]
[128]

[129]
[130]
[131]

[132]

[133]

[134]

D. Frenkel. Onsager’s spherocylinders revisited. Journal of Physical Chemistry, 91:4912—
4916, 1987.

S. Varga, G. Kronome, and I. Szalai. External field induced tricritical phenomenon in the
isotropicnematic phase transition of hard non-spherical particle systems. Molecular Physics,
98:911-915, 2000.

S. Szalai, G. Varga, and I. Jackson. External field induced paranematic—nematic phase
transitions in rod-like systems. Molecular Physics, 93:377-387, 1998.

J. Herzfeld, A.E. Berger, and J.W. Wingate. A highly convergent algorithm for computing
the orientation distribution functions of rodlike particles. Macromolecules, 17:1718-1723,
1984.

G.J. Vroege and H.N.W. Lekkerkerker. Phase transitions in lyotropic colloidal and polymer
liquid crystals. Reports on Progress in Physics, 55:1241, 1992.

T. Drwenski, S. Dussi, M. Dijkstra, R. van Roij, and P. van der Schoot. Connectedness
percolation of hard deformed rods. The Journal of Chemical Physics, 147:224904, 2017.

T. Schilling, M.A. Miller, and P. van der Schoot. Percolation in suspensions of hard
nanoparticles: From spheres to needles. Europhysics Letters, 111:56004, 2015.

R.F. Kayser Jr. and H.J. Raveché. Bifurcation in onsager’s model of the isotropic-nematic
transition. Physical Review A, 17:2067, 1978.

S.P. Finner, T. Schilling, and P. van der Schoot. Connectivity, not density, dictates
percolation in nematic liquid crystals of slender nanoparticles. Physical Review Letters, 122:
097801, 2019.

J.P. Straley. Frank elastic constants of the hard-rod liquid crystal. Physical Review A, 8:
2181, 1973.

J.D. Parsons. Nematic ordering in a system of rods. Physical Review A, 19:1225, 1979.

S.-D. Lee. The onsager-type theory for nematic ordering of finite-length hard ellipsoids.
The Journal of Chemical Physics, 89:7036-7037, 1988.

D.C. Williamson. The isotropic-nematic phase transition: the onsager theory revisited.
Physica A: Statistical Mechanics and its Applications, 220:139-164, 1995.

M.A. Cotter. Hard-rod fluid: scaled particle theory revisited. Physical Review A, 10:625,
1974.

H.N.W. Lekkerkerker and R. Tuinier. Depletion interaction. In Colloids and the Depletion
Interaction, pages 197-205. Springer, Dordrecht, 2011.

S.P. Finner, A. Atashpendar, T. Schilling, and P. van der Schoot. Unusual geometric
percolation of hard nanorods in the uniaxial nematic liquid crystalline phase. Physical
Review FE, 100:062129, 2019.

R. Tuinier, T. Taniguchi, and H.H. Wensink. Phase behavior of a suspension of hard
spherocylinders plus ideal polymer chains. The Furopean Physical Journal E, 23:355-365,
2007.

G. Kwon, Y. Heo, K. Shin, and B. J. Sung. Electrical percolation networks of carbon
nanotubes in a shear flow. Physical Review F, 85:011143, 2012.

78

Geometric percolation of colloidal particles



BIBLIOGRAPHY

[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]

[147]

C. Koning, M.-C. Hermant, and N. Grossiord. Polymer carbon nanotube composites: the
polymer latex concept. CRC Press, Boca Raton, 2012.

I.T. Kim, A. Tannenbaum, and R. Tannenbaum. Anisotropic conductivity of magnetic
carbon nanotubes embedded in epoxy matrices. Carbon, 49:54-61, 2011.

J.M. Brader and M. Schmidt. Nonequilibrium ornstein-zernike relation for brownian
many-body dynamics. The Journal of Chemical Physics, 139:104108, 2013.

C.M. Fortuin and P.W. Kasteleyn. On the random-cluster model: I. introduction and
relation to other models. Physica, 57(4):536-564, 1972.

A. Drory. Theory of continuum percolation. i. general formalism. Physical Review E, 54:
5992, 1996.

T. Tomé and M.J. de Oliveira. Dynamic phase transition in the kinetic ising model under a
time-dependent oscillating field. Physical Review A, 41:4251, 1990.

W. Klein. Potts-model formulation of continuum percolation. Physical Review B, 26:2677,
1982.

Kevin Cole, James Beck, A Haji-Sheikh, and Bahman Litkouhi. Heat conduction using
Greens functions. Taylor & Francis, New York, 2010.

D.G. Duffy. Green’s functions with applications. CRC Press, Boca Raton, 2015.

A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, and J.F. Maréché. Critical
concentration in percolating systems containing a high-aspect-ratio filler. Physical Review
B, 53:6209, 1996.

I. Balberg, N. Binenbaum, and N. Wagner. Percolation thresholds in the three-dimensional
sticks system. Physical Review Letters, 52:1465, 1984.

V.I. Lebedev and D.N. Laikov. A quadrature formula for the sphere of the 131st algebraic
order of accuracy. In Doklady Mathematics, volume 59, pages 477-481, 1999.

H.H.H. Homeier, S. Rast, and H. Krienke. Iterative solution of the ornstein-zernike equation
with various closures using vector extrapolation. Computer Physics Communications, 92:
188-202, 1995.

Geometric percolation of colloidal particles 79






Appendix A

Derivation of equation 4.10

To derive Eq. (4.10), and the boundary condition (4.11), we start with the many body Smoluchow-
ski equation. Asin the main text, we define Py (r1,...,ry,t) to be the probability density function
of N particles at time t. Ignoring all hydrodynamic interactions between the particles, we can
write down the many-body Smoluchowski equation [85]

N

OP,

9IN _ Z V- (DoViPyn + DoBPNV;¥ —T -1;Py), (A.1)
ot P

where Do = kpT /3w Dn is the self-diffusion constant of the particles, 3 = (kpT) ™! is the inverse

thermal energy, V; is the gradient operator with respect to r;, and ¥ is the potential energy,
which we assume to be pair-wise additive

N N

Ulry,...,rn) =YY Ulri,1y), (A.2)

i=1 j>i

where U(r;,r;) is the pair potential between particles ¢ and j. As mentioned in the main text, the
Smoluchowski equation (A.1) describes the time-dependent N-body probability density function
Pn(ry,...,rN,t) of interacting particles on Brownian time scales. In the context of percolation
criterion described in the previous section, we are interested in finding the pair correlation function,
which relates the 1-body with the 2-body probability density functions.

_ Py(ry,ro,t)
P1 (1‘1, t)Pl (1‘2, t)

It essentially measures to what extend pairs of particle positions are correlated, hence its
name. The 1- and 2-body functions can be reduced from their N-body counterpart as

g(rl,rz,t) (A3)

Pl(l‘l,t) :/drg...dI‘NPN(I‘h...,I‘N,t), (A4)
Pg(rl,l‘g,t) :/dl‘g...dI‘NPN(I‘17...,I'N,t)7 (A5)

where we integrate over all of three-dimensional space for each particle position. Now, to obtain
an equation for the two particle probability function, we integrate the full Smoluchowski equation
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APPENDIX A. DERIVATION OF EQUATION 4.10

(A.1) over the positions of particles 3,..., N, of which we present the result term by term.
Firstly, the time derivative part simplifies to
0Py 0P,
drg...dry—— = —. A6
/ eI T T o (4.6)

Secondly, we have
N
/dr3 —.dry Y Vi (DoViPy) = DoViPy + DoV3 Py, (A7)
i=1

for the diffusion term, since we assumed that Dy is a positionally independent scalar. Thirdly, we
have

N

/ drs...dry Y V- (DoSPyV,¥) (A.8)
=1

= BDgVy - (PoV1U(r1,r2)) + BDgVy - (PoVaU(ry,r2)) (A.9)

+ ,BDQ(N — 2) <V1 . /dr3P3V1U(r1,r3) + VQ . /dl‘ngVgU(I‘Q,I‘g)) s (AlO)

for the interaction term, and lastly,
N
/dr3 . dry Y Vi (D1 Py) =V (D 11Py) + Vo - (- 12 P2), (A.11)
i=1

for the flow term.

We can proceed by assuming that we have a homogeneous system such that a global
translation leaves all functions invariant. It is now easy to show that Pi(ry,t) = 1/V, since
[ driPi(r1,t) = 1. We perform a global translation such that r lies at the origin. In order to
simplify the equations, we also define two relative coordinates r = r; — ry and r’ = r3 — ro, such
that V1 = V and V5 = —V — V’. Additionally, we assume that all three-body interactions and
correlations are negligible by letting the density p — 0. We now find the more simple equation
for the pair correlation function g(ri,re,t) = g(r,0,¢) = g(r, t)

0
fTi = 2DoV2g + 2DoBY - (gVU) — V- (T -1 g). (A.12)

We are primarily interested in the shear-induced distortion of the equilibrium pair cor-
relations function, since we have a successful theory of the latter. To that end, we divide the
pair correlation function in an equilibrium part and a distortion g(r,t) = go(r,t) + dg(r,t). The
equilibrium pair correlation function is the solution to Eq. (A.12) in the absence of a flow
field

990

- = 2DoV2go + 2DoBV - (goVU). (A.13)

By substitution, we find an equation for dg

% =2DgV?5g +2DofV - (6gVU) =V - (T -rgo) — V- (I' -t 8g). (A.14)
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To simplify this further, we note that go = exp(—S8U) is a the steady state solution of Eq. (A.13),
which we can use to close Eq. (A.14). This sets the equilibrium pair distribution function to
equal a step function in the case of hard-core interactions. The fact that this is a solution of the
equation for the equilibrium distribution function stems from the fact that we threw away all 3+
body interactions. In a real system, this is an approximation that becomes exact in the dilute
limit, as p — 0. However, at higher densities, it introduces an error in our predictions. A higher
order approximation could in principle be used to close the equations, but we do not pursue this
in the present work.

Since we are considering hard core particles, we can now write Eq. (A.14) as a boundary
value problem, with a no-flux boundary condition given by

ddg ddg

2 = 92DyV%iq — Ay—= D Al
5t 0VEog =Ty r> D, (A.15)
0dg .y
2Dy =2 = 4=Z 1 =D
0(91" ’yr((sg—’— ) r )

where we used V- (I' - rg) = ﬁy%. The equation we are left with is a diffusion equation
with an extra convective term that captures the effect of the flow field. The boundary condition
arises from requirement that there be no mass flux at contact of two particles

- [2DgVdg +2DoBV - (5gVU) — Fyk(go +69)] =0 7 =D, (A.16)

where the second term vanishes due to the fact that VU = 0 for all r, except at r = D, in the case
of hard spheres. We find Eq. (4.10) by taking the stationary variant of Eq. (A.15), by setting
a/0t = 0.
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Solution of equation 4.12

We dedicate this appendix to finding the solution of the dimensionless equation (4.12), and the
accompanying boundary condition (4.13). However, instead of starting with the steady-state
equation, it turns out to be easier to start with the time dependent equation, and taking the
steady state limit later. Therefore, we start with

909" ,00g'

Bt - V7?59 +y 5 =0 r’ >v/2Pe, (B.1)
00g’ !
65 ‘x,y (09’ +1) =0 r' =v2Pe,

where we have defined the Peclet number Pe = ¥D?/4D,. We can make the convective term in
the equation simpler to deal with using another change of variables

u=2x -yt wv=y w=7 s=t (B.2)
G(U, v, w, 5) = 5g/(xl - y/tla y/a Zl? tl)v
such that
02 H? H? H? 0 0 0
v’? 1- — 28—+ —= + —= d —_— = — —u=. B.3
=(-s )8 2 * Dudw + Ov? + ow?’ an ot~ ds  ou (B.3)
Eq. (B.1) now simplifies to

00 8 0 829 026 %0

We deal with the boundary conditions when we transform the solution back to our original
dimensionless coordinates. This new equation is most easily solved in the Fourier domain.
Therefore, we define the spatial Fourier transform and its inverse

0(&,1,¢,5) /// dudvdw 0(u, v, w, §)e! Eutm+w) (B.5)
0(u, v, w, 5) /// dedndg (¢, n, ¢, s)e"Ermrew), (B.6)
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where all integrals range from —oo to oo, such that equation (B.4) reads in the Fourier do-
main

% = — (2 + 1> +¢?) 0+ 26nsh — 2%, (B.7)
which can be readily solved:
R A 1
0(&,m.¢,s) = 0(€1,¢,0) exp [— (& +n*+ (%) s+ &ns® — 36283} : (B.8)

Here, é(fﬂ],( ,0) is given by the Fourier Transform of the initial configuration. To simplify
notation, we introduce the function

G(&m,(,5) = exp {— (€% +n* + %) s+ E&ns® — 16283} ; (B.9)

3

such that real space solution of (B.4) is given by the convolution product of 6(u,v,w,0) and
0(u,v,w, )

0(u,v,w,s) =0(u,v,w,0) * G(u,v,w,s) (B.10)
// Glu—u',v—0v w—w,s)0 v, w, 0)dudv'dw'ds’, (B.11)

where * denotes the convolution operation and G (u,v,w, s) is determined with the inverse Fourier
transform of GG to be

3/2 2 2 2u + vs)?

1/1 3 vt w 3(2u + vs)
. 3 AR T U ) B.12
(u, 0,0, 5) 4 (Sw) 52 +12 ( 4s  4s  4s(s? 12)> | !

The function G(u,w,v, s) satisfies Eq. (B.4) without boundary conditions and subject to the
initial condition @(u, v, w,0) = é(u)d(v)d(w), which is equivalent to saying that it satisfies Eq.
(B.4) with delta peak centred at u =v = w = s = 0 as source term

oG 9?°G  9°G PG 0?°G

f— > . .
) (‘92 6’1)2 aw2 + 28 avau 5(07 Oa 07 O) t = O (B 13)

Therefore, we identify G(u — v',v — v',w — w’, s) as a free-space Green’s function of Eq. (B.4)
[142]. Using the method of images, we can in principle satisfy the boundary condition belonging
to Eq. (B.4) by extending the domain of the function 6 to all of space and placing source terms
inside the region that was not part of its original domain. If we place these source terms such
that the linear combination of the solutions that correspond to those sources also satisfies the
boundary condition, we have found the solution of the original Eq. (B.4) in its original domain.
We note that due to the linearity of the differential operator, any linear combination of solutions
must still be a solution to Eq. (B.4).

To solve this equation, we use a variant of the method of images that we call the method of
multipole sources [143], which relies on the fact that we can create multipoles by placing several
source terms in very close proximity to each other. Using this technique, we place multipole
sources in that region to satisfy the boundary conditions. To simplify, we choose to place them
all at the origin, which is part of this excluded region. Since a multipole is made of delta sources
placed infinitesimally close together with different signs, the solution corresponding to that
multipole is equal to the superposition of the Green’s functions at the corresponding locations.
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This superposition is proportional to a high-order partial derivative of the Green’s function in
the limit that the sources approach each other. Take a dipole for example, if we place two point
sources of strength +1/h at (u,v,w,s) = (—h,0,0,0) and (0,0,0,0), and let h — 0, the solution
corresponding to this dipole source becomes

O(u,v,w,s) = lim(G(u + h,v,w, s) — G(u,v,w,s)/h = 9G(u, v, w, ) . (B.14)
h—0 ou
Because of the fact that higher order multipoles are created in the same way by superimposing
lower order multipole sources, the solutions corresponding to them are all higher order derivatives
of the Green’s function.
We can thus write the solution of Eq. (B.4) as a linear combination of the functions

o= f[f s (L) (L) 1y

Glu—u',v—v,w—w,s—s)dudv'dw

(2 (2) 1)

where we leave out the multipoles in the w-direction for symmetry reasons (the boundary
conditions of (A.15) are independent of z). We can now perform the inverse transformation of
Eq. (B.2), and we find that the solution of Eq. (B.1) is given by a linear combination of the
functions

/ ! ! / / a “ a a B / /1.1 / / /
ogns(a’,y, 2 t) = 37 oy +t e G’ =ty 2 t). (B.17)

We have now in principle found the solution to the transient boundary value problem
(except that we still have to find the values of the coefficients of the linear combination). However,
we are interested mainly in the pair correlation function of the fully developed flow, i.e. the
steady state solution. Using the limit method, we can transform these Green’s functions of the
transient equations to those of the steady state equations [142]. The result is given by

7oy =t [ (2N (L BG(x’—t” 2t (B.18)
af Y, Yoo 0 ax, ay 8:1; y,y, ) . .

Summarising, the solution of our dimensionless steady state equation

0dg’
y 5 V269 =0, (B.19)
is given by
= > CPT/4(r") 1’ >V/2Pe, (B.20)
a,3=0

where the coefficients C*? are determined by the boundary equation

5 / 1,0 1.,/
aa S - Shog = VP = VP, (B.21)

where Pe = 4D? /4Dy is a dimensionless number quantifying the strength of the shear flow with
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respect to the diffusivity of the particles.
To determine the coefficients C*?, we insert Eq. (B.20) into Eq. (B.21), and find

o0 T 1
oo (ZZeb _TY = VaPe = y ' = v/2Pe. B.22
af

or! r/
a,f=0

We can now expand the term within the brackets in real (valued) spherical harmonics Y;,,, ()
with coefficients ]Z’/}

T :cy m
8,’1/ Z Z Jaﬂ}/lm 7 (B23)

=0 m=—1

where the real spherical harmonics are defined in terms of the regular spherical harmonics ;™ (&)
as

2 (V= (ymym) = vaEDms (M) me<o
Yim =Y m =0 (B.24)
L (W ComYm) = VAR (B m>o.
The coefficients ]Zg can be determined by multiplying both sides of Eq. (B.23) with the corres-

ponding real spherical harmonic and integrating over all orientations. Due to the orthogonality of
the real spherical harmonics, this yields the expansion coefficients

2m ™ o1’ 10
jlm : m af  TY
I :/0 qu/O dfsin(9)Y" (9,¢)< i T(;5>. (B.25)

r

Using the fact that 2'y’/r'? = \/47/15Y5 ('), we now find the coefficients C*?, by
writing
S S S V@) = VAP BYa o) ¢ = vEPe,  (B20)
a,B=0 1=0 m=—1

or, more compactly,

8mPe
Z CoPjls = R 01,20m,-2, (B.27)
o, 3=0

for all integers 0 < I < oo and —I < m < [. Eq. (B.27) is a system of infinitely many linear
equations in the coefficients C*#.

Geometric percolation of colloidal particles 87



Appendix C

The excluded-volume
approximation

In the present work, we use accurate numerical methods to integrate the connectedness Ornstein-
Zernike equation. However, in more analytical treatments one has to rely on various approxima-
tions to estimate the cluster size. A widely used example is the excluded-volume approximation,
where the percolation threshold is given by the inverse of the mean excluded volume [122, 144, 145].
This approximation assumes that the angular averaging of the pair connectedness function g* and
the direct connectedness function C" can be factorised. It reads that the percolation threshold is
given by:

p= ! . (C.1)

((eomm)y

The aim of this section is to evaluate the validity of this approximation by numerically
solving Eq. (C.1), and comparing to the full solutions of the Ornstein-Zernike equations. Due to
the implicit density dependence of the mean excluded volume, we solve this equation by finding
the root numerically. To do this, we use Brent’s method [100], which essentially attempts to
repeatedly find a better approximation of the root of the equation using quadratic interpolation.
We show the results in Fig. C.1. Comparing with the exact results which are presented in
Fig. 5.6 and reprinted here, we see that the excluded-volume approximation yields qualitatively
very accurate results. It shows the same role of particle alignment on the percolation threshold.
Quantitatively however, the approximation underestimates the percolation threshold significantly
in the ordered phases. In the isotropic phase, of course the percolation threshold matches the
exact values.
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Figure C.1: The occurrence of percolation for varying concentration c, external field strength K
and connectedness shell thickness A\/D as calculated from (a) the excluded-volume approxzimation
and (b) the full connectedness Ornstein-Zernike equation. Also indicated are the binodals and
second order phase transition computed from Onsager theory, see Fig. 5.4.
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Isotropic correlation lengths

In this Appendix, we show that the correlation lengths in the isotropic phase in the limit that
N/V — 0 are equal to L/6. We start at Eq. (5.21), which in the dilute limit reads

99" (q,u,u')

1
dqdq - *E(A’D)Lﬂux u'[(uu+ u'a') (D.1)

q=0
where the correlation lengths are now given by

!
) 12 <<|uxu/|(uauﬁ+u;u’6)>>
o 24 ({Ju x wl) ’

(D.2)

where we predicted in the main text that the cross-correlations vanish. As we know that
€xa = Eyy = &2, in the isotropic case, we can focus ourselves on the z-component. Therefore, we

have
o L? [[[ dpdfd’ sin 6 cos? O] sin |

- = D.3
= 12 [[[ d¢dfde’ sin 6] sin | (D-3)

where the #-integrations run from 0 to 7= and the ¢ integration runs from 0 to 27 and
|siny| = \/1 — (cos O cos b + sin fsin 0’ cos ¢)>. (D.4)

The two remaining integrals can be evaluated explicitly. We expand the function |sin~| in terms
of Legendre functions P(cos~y) and apply the addition theorem to find,

|siny| = Z n P (cosy) (D.5)
dy ( (cos0)P,(cos®") (D.6)
n=1
"\ (n—
2 P'IYL Pﬂ’)
+ mZZI (m = (cos )P (cos ' )cos(m(b)) (D.7)
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if we integrate our expression of |sin~| over the domain 0 < ¢ < 27, we see that the last term
vanishes due to the presence of the cos(mg), and we find

1 2 St
%/0 d¢|siny| = ;dnpn(COSO)Pn(COSH’), (D.8)

where the first few values of the coefficients d,, were determined by Kayser et.al. [124]. In this
Appendix, we only need their first value dy = 7/4. Using this first term in the expansion of the
function | sin~|, we can now write

™ T 2m
/ de / de’ / d¢sin 0 sin @’ | sin | (D.9)
0 0 0

=27y d, /O de /0 6’ sin 0 sin 6 P,, (cos 0) Py, (cos 8).

n=1
Since

s 2 —
/ dfsin 0P, (cos ) = n=0 (D.10)
0 0 n=1,23...,

which follows from the orthogonality relations of Legendre polynomials with Py(z) = 1, we
find*

™ ™ 27
/ d9/ d9'/ d¢sin @sin 0| siny| = 272 (D.11)
0 0 0

Similarly, we have
T ™ 2m
/ d9/ dG’/ d¢sin @sin 6’ cos? 0| sin | (D.12)
0 0 0

=27 Z dy, / de / d@’ sin O sin 6’ cos?® O P, (cos 0) P, (cosd’).
n=1 0 0

Since - 5
/ df sin 6 cos® O Py(cos ) = 3 (D.13)
0
we find ) )
/ da/ de’/ desinOsin @' cos® O|siny| = 27 -2 =~ = (D.14)
Therefore,
L2 2n® L2
2 === == D.1
= 12272 367 (D-15)
and thus
fxx = gyy = €zz = L/6 (D.lﬁ)

in the absence of an external field, in the limit that p — 0 for any finite connectivity length
A/ D.

LOf course, this integral is much easier when evaluated directly over the angle ...
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Particle correlations

At this moment in time, a quantitative method of predicting the percolation threshold of (hard)
spheres remains elusive, and the pursuit of a good percolation theory is a matter of active research.
In contrast to the case of rodlike particles, as described in Chapter 5, closures for connectedness
Ornstein-Zernike equation generally do not give accurate agreement with simulations, despite
being very accurate for in the structural case. In this appendix, we provide the pair correlation-,
connectedness- and blocking functions slightly above and below the percolation threshold for
various values of the hard sphere volume fraction for comparison with theory. Additionally, since
a fully dynamical percolation theory is also still lacking, we provide the Van Hove function, and
its connectedness and blocking part close to the percolation threshold.

In Fig. E.1, we show the pair correlation function g(r), the pair connectedness function g*
and pair blocking function g*. We provide these functions slightly below and above the percolation
threshold for simulations of N = 1000 particles. The particles interact with a standard Weeks-
Chandler-Andersen potential (4.22) with ¢g = 1. The rows in Fig. E.1 respectively correspond to
number densities po3 = (0.0, 0.5,0.9). We see in the case for ideal particles (po3 = 0), that the
radial distribution function is always equal to unity. At » < A, the connectedness and blocking
parts are equal to one and zero respectively. When the radial coordinate is increased to r = A,
they discontinuously jump to a finite value. When r is increased further, they seem to respectively
converge to either zero and one below the percolation threshold or to some finite values above
it.

In the second and third rows of Fig. E.1, we show the effect that structural correlations
have on this behaviour. At po® = 0.5, we see that the correlations visible in the radial distribution
function are also visible in the connectedness and blocking functions. Pair that have a mutual
distance r < o receive a large energy penalty. In this region, we see that ¢ = g* = ¢g* ~ 0. If
o < 1 < ), the pairs of particle are always connected, and thus we see that g™ = g and ¢g* = 0. For
r > A, the functions all depend nontrivially on the radial coordinate and on the density. Similar
to the dilute case, it again seems that the connectedness and blocking functions tend to zero and
one below the percolation threshold and some finite values above it, when r/oc — oo.

If we are interested not only in instantaneous structural information but also in how
structural information is correlated in time, a good quantity to look at is the so-called Van Hove
function G(r, At). It quantifies the probability one particle found with at position r at time
t = At, given that another particle was located at the origin at time ¢ = 0. In the case that the
time difference At = 0, the definition of the Van Hove function G(r,0) is equivalent to that of
the pair correlation function.

Similar to how the pair correlation function can be divided in a connectivity and a blocking
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Figure E.1: The pair correlation function g(r), the pair connectedness function g% and pair
blocking function g*, from a simulation with N = 1000 particles interacting with the Weeks-
Chandler-Andersen potential at number density (a, b) po® =0, (c,d) pa® = 0.5, (e,f) po® = 0.9.
The columns correspond to connectivity lengths chosen such that the connectivity volume fraction
is slightly below (first column) or above (second column) the percolation threshold. In Figs. (a) and
(b), we set o =0, and the horizontal azis is instead given in terms of r/\, with X the connectivity
length.
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part, we divide the Van Hove function in a connectedness Van Hove function G*(r, At) and a
blocking Van Hove function G*(r, At). They correspond to the probability that two particles are
found to be connected or disconnected at ¢ = At and that one of the particles is located at r
at t = At and the other at the origin at time ¢ = 0. With this definition, G (r,0) = g™ (r) and
G*(r,0) = g*(r). In the case of spherical particles in a homogeneous dispersion, all functions
above depend only on the radial distance r.

In Fig. E.2, we show the Van hove functions for the same parameters as chosen in Fig.
E.1. In the first row, we show them for ideal particles. We see that the low-r information in the
connectedness and blocking functions decays as the time difference is increased. This happens on
a timescale of tens or hundredths of simulation time units. As At — oo, the functions become
constant, and seem to become equal to the » — oo-limit of g7 and ¢*. In the non-dilute case, we
see that the structural correlations disappear on much shorter time scales (a few 7).
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Figure E.2: The Van Hove function G(r) (black), the connectedness Van Hove function G
(blue) and blocking Van Hove function G* (red), from a simulation with N = 1000 particles
interacting with the Weeks-Chandler-Andersen potential at number density (a, b, ¢) po® =0, (d,
e, f) po® = 0.5, (g, h, i) po® = 0.9. The columns correspond to connectivity lengths chosen such
that the connectivity volume fraction is slightly below (first column), at (second column) or above
(third column) the percolation threshold. The solid lines correspond to a time difference At =0,
and therefore are equal to the data in Fig. E.1. The broken lines correspond to time differences
indicated in the legend, where T is defined as the simulation time unit.
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Numerical procedure

In this appendix, we describe a few of the numerical procedures used in the text. We start by
giving a brief overview of the Lebedev quadrature, which is used to accurately integrate over the
surface of a sphere. Subsequently, we describe the numerical procedure that we invoke to solve
Eq. (4.12). Lastly, we describe a numerical integration method to solve the Ornstein-Zernike
equation with the Percus-Yevick closure.

F.1 Lebedev quadrature

The Lebedev quadrature is a numerical scheme for approximating the integral of some function f
over the unit sphere [105]

™ 2m N
I = /9\:0 A:O f(ey(b) Sll’led@dgb ~ Zf(&wqbz)wl (Fl)

=0

Lebedev proposed that the points u; = {6;, ¢;} and weights {w;} can be found by imposing
octahedral symmetry, and requiring that the approximation (F.1) is exact for all spherical
harmonics Y;"(6, ¢) up to order [, where —! < m < [ This is equivalent to requiring that the
integration is exact for all three-dimensional polynomials up to degree [. The latter condition
results in a system of nonlinear algebraic equations that must be solved for the weights w;. The
points and weights have been tabulated up to order 131 [146]. An example of the distribution of
points is shown in Fig. F.1. The scheme of order 131 has a discretisation with 5810 gridpoints.
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(a) (b)

Figure F.1: Distribution of grid points of the Lebedev quadrature of order 23 (a) and 131 (b),
which is used for integration on a spherical surface.

F.2 Numerical solution procudure for Eq. (4.12)

In this appendix, we outline the numerical method we use to determine the radial distribution
function in simple shear.

We solve equation (4.12) writing its solution as a linear combination of derivatives of the
free space Green’s functions given by equation (B.12). For reference, these multipole sources
functions are reprinted here.

6/ / / Y AN a “ a /a ﬁ / /1.0 / [
gaﬁ(x7y7zvt)_ % @_t% G(l‘ +ty7yvzat)a (F2)

3/2 2 2 2
171 3 v* w® 3 (2u+wvs)
_1 3 e vt 3QRudtus) ) F.
G (w0, w, ) 4(877) 52+126Xp< s ds 45(82+12)> "

As doing the high order derivatives numerically introduces many discretisation errors, we choose
to tabulate the analytical closed form of these functions up to the necessary cut-off. For our
choice to neglect all terms with o + 8 > 10, a total of 66 functions remain. The first few are
presented below. The steady state solution is expressed in time integrals of the above functions.

where

0900 (T, 4, 2,t) = 1\/atmen (4 -5 - 42:) / (v2)

0901 (T, 4, 2,t) = (2 (i2yramsey) g e (5 - 2 - 22)) /(vhid (2 4 12))

0ghs (T, 9y, 2,t) = (3 (=265 #1y2 — 6ty — 30 + 02® — 126%92 + 36ty — 72t + 360°) \ [riz exp (<% — % - S5/ (vHE (2 +12)%)
0010 (%, y,2,t) = (“iCwrom[alpen (4 -5 - 24)) /(<45 (2 +12)

dg1q (z,y, 2,t) = (3 (—t4 + 392 = 52y — 1202 + 1% — 6ty? + 120y) [ty exo (4 — 5 - $224))/ (w242 (2 +12)%)

dgho (2,9, 2,t) = (8 (28 w3y — 120wy — 21+ 120%) g e (<5 - 5 - 3 5H)) / (=2 (P +12)°)

To perform this time integration, we use Simpson’s rule on a logarithmically spaced grid with
a cutoff at t = 10° using 200 grid points. To fulfil the boundary conditions we sum the result
according to Eq. (B.20), where the coefficients C\5 are determined by the boundary conditions.
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This determination is done by an expansion of the boundary conditions in terms of real spherical
harmonics, see Eq. (B.23)

an;ﬁ xlyl / - : -Im NG
G~ Tas =2 D JapYim(®): (F-4)

=0 m=—1

Due to the orthonormality of the real spherical harmonics, the coefficients jé’g are easily calculated

to be ) o7
s T 1y
i — d/da‘ )Y (0 of IV
.]Q,B /0 d) 0 SIH( ) ( 5¢) or! r aB |

at ' = v/2Pe, where we used the standard convention of the spherical coordinates (polar angle 6,
azimuthal angle ¢). We perform the 7’-derivative analytically (we evaluate it before the numerical
time integration) and we apply the Lebedev quadrature for the angular integrals. We use the
Lebedev scheme of degree 47, meaning that it exactly integrates any polynomial function up to
that degree. A discretisation error is introduced for functions with higher oscillatory behaviour.
If more precision is needed, a higher degree of accuracy can be chosen. We have found the degree
to be sufficient as long as it is significantly higher than l,.c. This scheme approximates the
integral by a sum of the function evaluated at 770 different grid points on the surface of a sphere,
each with unique weights.

The last step is to solve the square linear system of Eq. (B.27). This is relatively common
problem which can be performed by any suitable standard algorithm.

(F.5)

F.3 Integration of the Ornstein-Zernike relation

Here, we present a numerical procedure for solving the Ornstein-Zernike equation for spherical
particles using the Percus-Yevick closure. Egs. (2.2) and (2.7) are not analytically solvable in
general. Therefore, we resort to numerics to find the pair correlation function and structure
factor. For spherical particles, we define the discrete spatial grid r; = iA,., i € {1,...,M — 1}
and corresponding reciprocal grid k; = jAy, j € {1,..., M — 1}, where M is the number of grid
points. We set A, = M~Y2 and A, = #M~1/2, such that A, A, = w/M. Now we discretise
the functions ¥; = r;3(r;) and ¥, = kjiﬁ(kj), U € {I',C}. In terms of these discrete functions,
Egs. (2.2) and (2.7) become [147]

R c?
I = niﬂ, and  C; = fi(l; + 1) (F.6)
k‘j — TLCj

respectively, with f; = exp[—BU(r;)] — 1 the discrete Mayer function and U(r;) the interac-
tion potential between the particles. We use the following procedure to find the solutions to
Egs. (F.6).

(i) Make an initial estimate for the function r{®

, - The guess FEO) = 0 is satisfactory in
our case. (ii) Find Ci(o) using (F.6), and (#4) transform to find C'](O) using the discrete sine

transform
M-1

by =drA, Y Uisin (?\2’) for  je{l,...,M—1}. (F.7)
i=1
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(@) Find F§-1) using Eq. (F.6) and (v) transform back to real space using

M-1 .
Ag . [mi .
\pi:W;ijIn(Aj) for i€ {l,...,M—1} (F.8)
to find a new estimate Fgl). For high densities, it is necessary to mix this new estimate with the
old estimate for better convergence. (vi) Check if the solution of Fgl) has converged or diverged.
2
If so, stop. In this work, we used the convergence criterion (¢(")? = Do (th) — th_l)) < 10719,
and we label solutions as divergent if they did not converge within 10® recursive iterations. (vii)
Repeat steps (7)—(vi) [147].

Geometric percolation of colloidal particles 99



	Abstract
	Contents
	Introduction
	Geometric percolation in the liquid state
	Introduction
	Cluster size
	The pair distribution function
	The pair connectedness function
	Conclusion

	Molecular dynamics and numerical cluster analysis
	Introduction
	Molecular dynamics
	Langevin dynamics
	Interactions
	Time integration
	Boundary conditions
	Shear simulations

	Cluster analysis
	Mean cluster size
	Percolation threshold

	Discussion and conclusion

	Percolation of spherical colloids in shear flow
	Introduction
	A heuristic percolation criterion
	Pair correlation function
	Comparison with simulation data
	Percolation threshold
	Discussion and conclusion

	Percolation of hard nanorods in an external field
	Introduction
	Onsager theory
	The orientational distribution function
	Order parameters and the phase diagram

	Geometric percolation
	The pair connectedness function
	Percolation islands
	Correlation lengths

	Finite aspect ratios
	Scaled Particle Theory
	Percolation of spherocylinders

	Discussion and conclusion

	Conclusions and outlook
	Acknowledgements
	Bibliography
	Appendix
	Derivation of equation 4.10
	Solution of equation 4.12
	The excluded-volume approximation
	Isotropic correlation lengths
	Particle correlations
	Numerical procedure
	Lebedev quadrature
	Numerical solution procudure for Eq. (4.12)
	Integration of the Ornstein-Zernike relation


