
 Eindhoven University of Technology

MASTER

Solving the storage location assignment problem and the order batching problem at an e-
fulfillment center

Martens, W.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/ef1ba298-5511-45c3-97c5-ce76ff6f4346

Solving the storage location assignment problem and the order

batching problem at an e-fulfillment center

By
W. Martens

In partial fulfillment of the master’s degree in
Operations Management and Logistics

First supervisor: Dr. R.A.C.M. Broekmeulen

Second supervisor: Dr. A. Marandi

Third supervisor: Dr. M. Mirzaei

Student identification number: 0905348

Department of Industrial Engineering & Innovation Sciences

Eindhoven University of Technology

05-04-2021

1

Abstract
Warehouses that act as e-fulfillment centers face many challenges. These warehouses have to handle
many customer orders that have to be retrieved from a large product assortment in a short time
period. For such a warehouse, it is important to optimize the picking process to minimize the order
picking times and, with that, picking costs. The Storage Location Assignment Problem (SLAP) and the
Order Batching Problem (OBP) are two problems that need to be solved to improve the picking
process. SLAP optimizes the location assignments of the Stock Keeping Units (SKUs) in the warehouse
whereas OBP optimizes the picking batches that are made out of customer orders. In this study,
these two problems are investigated at an e-commerce warehouse that handles customer orders
with relatively large order sizes. To solve the SLAP, SKUs are allocated to warehouse sections using
two different methods: the frequency and the volume-based turnover policy. A greedy construction
and hill-climbing local search algorithm are then used to seek an improved allocation in terms of
distance traveled per order. The OBP is solved by using an algorithm that first selects all orders in the
same warehouse section and then uses a similarity coefficient to batch orders from that selection
that visit the same locations. In a case study at Kuehne + Nagel, it is shown that allocation can be
improved significantly using local search. However, since the demand for SKUs, in this case, is
unpredictable and orders can contain many different SKUs, the allocation decisions based on one
period do not significantly decrease the traveling distances for the next period. The batching method,
however, does decrease picker travel distance significantly.

2

Executive summary
This study addresses the Storage Location Assignment Problem (SLAP) and the Order Batching

Problem (OBP) that is solved in one of the warehousing systems at Kuehne + Nagel in Veghel. In this

research, SLAP assigns items to zones in the warehouse such that the most picked items are in the

front section of the warehouse. Different methods of solving SLAP are tested in a case study at the

company and compared with the method that is currently used to assign products to locations in the

warehouse. The OBP groups customer orders into pick batches, such that the total distance required

to pick the items of one pick batch is minimized. To minimize the travel distance per order, an

algorithm is developed that groups customer orders into pools and uses the current batching method

within those order pools. The knowledge obtained from this research gives insights on how to

minimize travel distance per order.

Problem Formulation

Given the many and large customer orders that are received, large assortments, unstable demand,

large storage areas, and tight delivery schedules, e-fulfillment centers such as Kuehne + Nagel Veghel

ask for efficient order picking systems. Reducing the distance that pickers have to travel to pick

customer orders helps the company to cope with the above whilst not making any large investments.

The performance issues, indicated through data analysis, of the current way of allocating SKUs to

storage locations and order batching ask for a new logic such that the current order picking travel

distance will be reduced. The goal of the research is to “Improve order picking efficiency by optimizing

the storage allocation and batching method”. To achieve the goal the research question of this study

is defined as follows: How to decrease order picking travel distance by solving the storage location

assignment problem and order batching problem?

Model and solution approach

The model in this study solves the storage location assignment problem and order batching by

minimizing the total distance that is traveled per order. Within the model, several assumptions and

constraints are described. Allocation is done after each period of 28 days using the data of that period.

This allocation will be used to pick orders in the following period. Customer orders that are received

by the warehouse on one day are picked the next day. Therefore, batches are made after receiving all

orders for that day. The warehouse layout consists of two aisles with three cross-aisles, of which two

are located at the ends of the aisles. Pickers can traverse the aisles using two different routes. One of

the routes passes all items in the warehouse and one of them only travels through the front section.

Customer orders that are received consist of a maximum of 16 units and batches are made of a

maximum of six customer orders. One batch is picked in a single picking route.

Several methods to solve the assignment problem are analyzed in this report. Two assignment policies

are used that use demand volume and frequency to allocate products to zones in the warehouse. Next

to these policies, a greedy method is developed to attempt to solve the quadratic assignment problem

that is defined when considering the chances of SKUs being ordered together. A local search algorithm

is also created and employed to solve the SLAP. The order batching problem is solved using a batching

method that batches the incoming customer orders based on the zones in which the items in the orders

are located. Within those order pools, a similarity coefficient is used to batch orders that are similar to

one another. This research is not only focused on finding the optimal method of solving the problems.

It also analyses the performance of the output that results from solving the problem by the means of

a case study.

3

Results

The SLAP at Kuehne + Nagel is complex since the demand is very unstable in this case. The policy that

allocates items based on the demand frequency does not outperform the currently used policy that

allocates items based on the demand volume. The greedy algorithm that uses the chance of item pairs

being ordered together did show positive results in several periods but did not significantly outperform

both policies. The local search algorithm did significantly improve product allocation for one period

based on data of the same period. In practice, however, the allocation is used to find an allocation for

the following period. Because of the unstable demand, the local search algorithm showed small

improvements that were insignificant.

The algorithm used to create batches does bring significant improvement to the system. This batching

method increased the number of batches that only contained items that are picked in the front zone

of the warehouse relative to the total number of batches picked by 27%. The total travel distance was

decreased by 9.1% because of this. In the analyzed time period in 2020, pickers would have traveled

166,860 meters less in the case that this batching method was used.

Recommendations

Based on the insignificance of the positive effect brought by the allocation methods, it is not

recommended to the company to solve the SLAP using either the greedy algorithm or the local search

method that is tested in this thesis report. To create a better allocation method, the company could

make improvements in communication about SKU availability and the promotions that could cause

customers to order certain item pairs together. Because of the results described in this thesis, it is

suggested that the company should reconsider its batching method. Using the batching algorithm

described in this report decreases the picker travel distance.

4

Preface
This report is not only the result of my master thesis project, but it also concludes my master’s program

Operations Management and Logistics. This marks the end of seven unforgettable years as a student

at the Eindhoven University of Technology. During these seven years full of new experiences I have

met many interesting and inspiring people and made friendships that will last forever. At the end of

my study, the Covid virus impacted many student lives due to the restrictions that are currently still

imposed. I am grateful that I could live almost my entire student life without these restrictions to enjoy

it to the fullest. I would like to use this preface to thank everyone who has supported me in the

completion of this master thesis project. The order in which individuals are mentioned is irrelevant

since everyone has contributed to support me in his or her own way.

First of all, I would like to thank my supervisor from the TU/e Rob Broekmeulen, for his time, effort,

and guidance throughout this process. The knowledge you have in your field of expertise has inspired

and helped me throughout this project. I appreciate your insights during our meetings and valuable

and critical feedback. You were always kind and correct in your way of communicating with me and a

very pleasant person to work with during the last couple of months of my study. Secondly, I would like

to thank Ahmadreza Marandi for being my second supervisor. Your enthusiasm, knowledge, and tips

inspired and helped me. Thank you for your feedback during my thesis project.

Next to my supervisors at the TU/e, I would like to thank Kuehne + Nagel as a company and more

specifically the Planning and Control and Business Support teams in Loods 9 in Veghel. I want to thank

Bas van de Burgt, my company supervisor at Kuehne + Nagel. Your knowledge in the field of

warehousing and operation management has been of great help during this project. Moreover, your

enthusiasm and the inspiring meetings that we had led me to decide on pursuing a career in this sector.

Finally, I would like to express gratitude to my family, friends, and my girlfriend. You all supported me

by taking the time to listen to me, keeping me focused, and motivating me during my study and my

master thesis project.

To conclude this preface I would like to wish you a lot of fun reading this report.

Willem Martens

5

Contents
Abstract ... 1

Executive summary ... 2

Preface ... 4

1. Introduction ... 10

1.1 E-fulfillment ... 10

1.2 Research topic ... 10

1.3 Report structure .. 11

2. Project environment.. 12

2.1 Kuehne + Nagel: Veghel .. 12

2.2 Current situation ... 12

2.2.1 Order picking process .. 12

2.2.2 Allocation decisions ... 13

2.2.3 Order batch generation ... 13

2.3 Data analysis .. 14

2.4 Performance issue with the current system ... 18

3. Problem formulation ... 19

3.1 Problem statement .. 19

3.2 Research objective .. 19

3.3 Research questions.. 19

4. Literature review ... 20

4.1 Characteristics of e-commerce warehousing .. 20

4.2 Order batching literature .. 20

4.3 Picker routing problem literature .. 21

4.4 Storage Location Assignment Problem (SLAP) literature .. 22

4.5 Gaps in literature ... 24

5. Conceptual design ... 25

5.1 Objective and performance indicators .. 25

5.2 Decision hierarchy ... 25

5.3 Model assumptions and constraints ... 26

5.4 Layout and Routing.. 27

5.5 OBP .. 27

5.6 SLAP ... 28

6. Detailed design .. 30

6.1 Parameters and decision variables .. 30

6.2 Performance measurement .. 31

6

6.3 OBP .. 32

6.4 SLAP ... 34

7. Integrated design .. 38

7.1 Data analysis preparations .. 38

7.2 Batching method ... 39

7.3 SLAP ... 40

7.4 Discussion of results .. 42

8. Conclusion ... 45

9. Limitations and future work .. 46

References ... 47

Appendices .. 52

7

List of Figures

Figure 1: Carriers used for order picking with the top-down view ... 12

Figure 2: Layout of pick aisles .. 13

Figure 3: Picking route ... 13

Figure 4: Venn-diagram of order collection and union of orders 𝑋 and 𝑌 ... 14

Figure 5: Number of orders per period ... 15

Figure 6: Demand frequency per period of 5 random SKUs ... 15

Figure 7: Demand frequency per SKU sorted from most frequently ordered to least frequently

ordered SKU .. 15

Figure 8: Number of SKUs in orders .. 16

Figure 9: Correlation between sales frequency and volume .. 16

Figure 10: Mean number of order lines per number of units ... 16

Figure 11: Mean number of units per number of order lines ... 16

Figure 12: Common routing policies (Petersen & Schmenner, 1999) ... 22

Figure 13: Decision hierarchy and data needed per layer .. 26

Figure 14: Warehouse layout and picking routes ... 27

Figure 15: Warehouse layout with parameters .. 31

Figure 16: Fixed parameter values .. 38

Figure 17: Data flow using CRISP-DM phases (Shearer et al., 2000) ... 38

Figure 18: Travel distance per order per period using local search using TOS policy and 1,000,000

iterations ... 42

Figure 19: Mean distance per order using different numbers of iterations ... 43

8

List of Tables

Table 1: Order frequency of SKU pairs and their placement in the warehouse indicated by color 17

Table 2: Parameters and decision variables used in this research .. 30

Table 3: Comparison of current batching method and the new method in terms of number of AB-

batches and number of stops .. 39

Table 4: Travel distance per order for the previous and current period using the allocation of the

previous period ... 40

Table 5: Travel distance per order using the greedy construction algorithm with different values of

alpha .. 41

Table 6: Travel distance per order per period using local search using TOS policy and 1,000,000

iterations ... 41

Table 7: SKUs per order ... 52

Table 8: Jaccard coefficient of order pairs .. 52

Table 9: Jaccard coefficient calculations per step ... 53

Table 10: Correlation matrix ... 54

Table 11: 𝐹𝑖 for each SKU .. 55

Table 12: correlated SKUs with confidence values ... 56

Table 13: SKUs sorted on Ai value ... 56

Table 14: T-test statistics showing the significantly lower values of travel time per order for TOS

policy ... 57

Table 15: T-test statistics showing the insignificant difference of the values of travel time per order

for both allocation policies .. 57

Table 16: T-test statistics showing the significantly lower values of travel time per order when using

local search allocation compared to the TOS policy ... 57

9

List of abbreviations

FoO – Frequency of Ordering
K+N – Kuehne + Nagel
OBP – Order Batching Problem
QAP – Quadratic Assignment Problem
SKU – Stock Keeping Unit
SLAP – Storage Location Assignment Problem
TOS – Turnover Based Storage

10

1. Introduction
In this section of the report, the topic of the research will be introduced and explained. First, a short

introduction to e-fulfillment is given. Second, some key concepts that are used throughout this thesis

are elaborated. These concepts include the storage location assignment problem and the order

batching problem. Last, the structure of this report is specified.

1.1 E-fulfillment
The e-commerce industry has been growing for the last few years. Worldwide, sales in the industry

have grown from 1.3 trillion in 2014 to 3.5 trillion in 2019. Those sales are projected to grow to 6.54

trillion US dollars in 2023 (Clement, 2019). This growth makes for added pressure in the industry. The

increase in sales volume gave rise to e-fulfillment warehouses. These warehouses are tailored to the

needs of e-commerce retailers. Most e-fulfillment warehouses directly serve the demand of the end-

customer in the business-to-customer segment.

E-fulfillment is essentially the storage, picking, packing, and shipping of online orders. The assortment

that is offered by online retailers can be much larger than the assortments in traditional brick-and-

mortar retailers. The assortment of online retailers is handled by e-fulfillment centers. These centers

do not only cope with the added pressure of the size of the assortment, but also with time pressure.

Nowadays, customers expect their orders to be delivered to their homes the next day, or sometimes

even the same day. This results in tight delivery schedules and adds pressure to the warehousing

activities in these tailored warehouses.

To compete in this growing and complex market, e-fulfillment centers must efficiently handle their

warehousing activities. One of the most important warehousing activities is the order picking process.

This process accounts for 55% of the total operating costs in these warehouses (Bartholdi & Hackman,

2011). Order picking must be continuously improved in order to compete. This also applies to the

warehouses of Kuehne + Nagel. Within the scope of this research, the order picking process in one of

the warehouses at Kuehne + Nagel in the Netherlands is analyzed. Methods for improvement of the

storage location assignment process and order batching process at this company will be suggested and

tested to analyze whether these methods decrease picker travel time and therefore effectively

improve the order picking process.

1.2 Research topic
As mentioned above, this research firstly focuses on the storage location assignment. The Storage

Location Assignment Problem (SLAP) is thoroughly discussed in literature. SLAP concerns the allocation

of Stock Keeping Units (SKUs) into storage space in a warehouse system and optimizing the material

handling costs or space utilization (Reyes et al., 2019). Many parameters such as the warehouse layout,

the available storage space and capacity, item characteristics, and demand behavior affect the SLAP.

Due to all these parameters, many variations of the SLAP exist. The SLAP can be solved in many

different ways. Methods used to solve the SLAP are: exact methods, heuristics, meta-heuristics,

simulations, policies and rules, multi-criteria methods, and other trends and support tools. This

research investigates the SLAP at an e-commerce warehouse.

The second topic which this research focuses on is the Order Batching Problem (OBP). The OBP usually

consists of two subproblems: the batching of the orders, and the subsequent routing of the resulting

batches. The first subproblem deals with deciding on combining sets of customer orders into batches.

The second subproblem deals with defining the route to collect the orders in that batch. The OBP is

dependent on parameters such as batch capacity and warehouse layout. Object functions usually look

for the configuration of batches that minimize either the time, distance, or cost to collect all orders. In

11

this research, a simple variant of the OBP will be solved since the considered warehouse system deals

with routing constraints, making the second subproblem trivial.

1.3 Report structure
In this thesis, it is investigated how the picking process can be improved through improvements in the

SLAP and the OBP. A local search algorithm and a greedy algorithm are developed and tested. These

can be applied to the situation at Kuehne + Nagel and might be applicable in other situations. In Section

2 of the report, the project environment is given. Section 3 states the problem, research objective, and

research questions. Literature research is conducted in Section 4 to gain knowledge and formulate the

conceptual design in Section 5. In Section 6, a detailed description of the methods used to solve the

problem is stated. Section 7 describes the results in the setting of the case study. Conclusions,

limitations, and suggestions for further research are given in Sections 8 and 9 of the report.

12

2. Project environment

2.1 Kuehne + Nagel: Veghel
Kuehne + Nagel is one of the world’s leading logistics providers. The company’s main activities are

service logistics for organizations which will be referred to in this report as “customers” of K+N. One

of the locations at which K+N is active in the Netherlands is Veghel. Contract logistics, overland,

warehousing, co-packing, customs, pallet management, and international transport management are

services delivered by Kuehne + Nagel Veghel. The establishment specializes in factory operations,

business to business (B2B) domestic, B2B International travel retail (ITR), and business to consumer

(B2C); referred to as e-commerce in this report.1 Warehouse 9 handles contract logistics for several

large customers. The two different classes of warehousing that are found in this warehouse are B2B

ITR and B2C e-commerce. Every type of customer has specific demands, which makes the combination

of the two different classes of warehousing difficult. The research conducted in this project focuses on

the processes at the above-mentioned warehouse 9 of Kuehne + Nagel Logistics B.V. in Veghel. This

warehouse can be divided into different sections that handle different products. This project focuses

on the storage and order picking systems and strategies of the section of the warehouse that handles

the storage, picking, and packing of packs of beers that are customized and ordered by customers.

2.2 Current situation

2.2.1 Order picking process
In the current system, order pickers travel through aisles to collect and retrieve items that are

requested from storage locations within these aisles to fulfill customer orders. The system is defined

by a high number of different SKUs (Stock Keeping units) (>1000). Empty locations are refilled with

case packs. Pickers are able to pick all items from the storage racks within the pick aisles without the

use of cranes or other tools. The current situation is therefore described as a low-level picker-to-parts

warehouse in which a batch of six customer orders is collected in a single picking route (Dallari et al.,

2009).

A customer order is a set of items that is requested by a single customer. In the situation at Kuehne +

Nagel, one customer order consists of a maximum of 16 units. Units are defined as the quantity of

items that are picked (i.e. two units of one single SKU can be picked). In this thesis, six is the

maximum number of customer orders that can be carried on a product carrier by order pickers. Six

boxes are put on the carrier for the picker to sort and start packing the orders while picking. Figure 1

illustrates the carrier that is used while picking. The carriers get too heavy if more orders are picked

according to health and safety regulations. It is assumed that these carts are also used for this

research. Therefore, order batches are made with batches of a maximum of six orders.

Figure 1: Carriers used for order picking with the top-down view

1 https://nl.kuehne-nagel.com/nl_nl/top-links/onze-locaties-in-nederland/

https://nl.kuehne-nagel.com/nl_nl/top-links/onze-locaties-in-nederland/

13

Layout

The warehouse section that is in the scope of this thesis contains two pick aisles. The aisles are

currently divided into seven zones: P10, P20, P30 … P70. Zone P60 and P70 have larger locations for

the fast-moving SKUs and zones P10 and P20 are for returned SKUs without barcodes. The rest of the

zones have the same location size. Two case packs of an SKU can be placed in the locations. The SKUs

are assigned to these zones based on their sales volume. The layout is visible in Figure 2. A cross-aisle

is put just past the middle of each aisle to prevent pickers from walking through the entire aisles when

this is not needed. At the beginning and the end of the aisles, there are also cross-aisles, as indicated

in the figure. In this research, the part of the aisles between the depot and the middle ross aisle is

referred to as zone A (or the front section). The part of the aisles starting from the middle cross-aisle

to the end of the aisles is referred to as zone B (or the back section). Pickers always start their route at

the depot, which is located at the start of both picking aisles and indicated by I/O in Figure 2.

Figure 2: Layout of pick aisles

Routing

At the depot, pickers take an empty product carrier and travel through the pick aisles to collect the

orders on the carriers and return to the depot. They use scanners that show the next location to which

the picker has to travel. At each of the locations, the scanner shows the quantity of the SKU that has

to be picked at that location for each order in the batch. Figure 3 shows the picking route that is

traveled. The blue arrows indicate the shortest route that is currently traveled. The red arrows show

the extra route that has to be traveled when an SKU behind the middle cross-aisle has to be picked.

Due to small aisles and routing constraints, one of these two routes has to be traveled.

Figure 3: Picking route

2.2.2 Allocation decisions
SKUs are now allocated to zones using a turnover-based policy. This policy assigns SKUs to zones

according to the sales volume of that SKU in a certain time period. Currently, the allocation analysis is

done manually on a monthly basis. SKUs are assigned to new zones at the beginning of a new month

based on the sales volume of the previous month. Only when a location of an SKU is empty, it will be

refilled in its newly assigned zone. This is known as passive reallocation. In practice, around 400

locations are available in the front section of the warehouse for the fastest-moving SKUs. In this

research, the number 400 is therefore used as the number of available locations in the front section

of the warehouse. The literature section in this thesis will further explain the turnover-based storage

policy along with other storage assignment policies.

2.2.3 Order batch generation
When all orders for a specific day are received, order batches are created for pickers to collect. Orders

are batched using an algorithm that tries to minimize the number of visits to unique locations for

14

pickers. This is done by calculating a coefficient that indicates the similarity of customer orders. The

content of an order can be seen as a collection in which the elements are the SKUs in the order. The

content of 2 orders 𝑋 and 𝑌 can be shown in a Venn-diagram:

Figure 4: Venn-diagram of order collection and union of orders 𝑋 and 𝑌

The complete grey area represents all elements from collection 𝑋 and 𝑌 together. This is the union of

the two sets and is noted as 𝑋 ∪ 𝑌. The overlap of the circles forms the subset of elements that the

two sets have in common. This section is the cross-section and is noted as 𝑋 ∩ 𝑌. The more SKUs the

orders have in common, the more the circles overlap. To create the order batches it is therefore

desirable that the cross-section, relative to the union, is as large as possible. For orders X and Y the

Jaccard coefficient is calculated using (1):

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
|𝑋∩𝑌|

|𝑋∪𝑌|
 (1)

Orders with a high similarity coefficient are batched. This will lead to orders with high overlap in picking

locations at the beginning of the batching procedure but will result in batches that are totally different

from each other towards the end of the procedure.

The current batching algorithm uses the following three steps to create the picking batches from a

given set of customer orders:

Step 1: Create a starting pair

Calculate the Jaccard coefficient for each pair of orders left in the given set of customer orders and

use the combination of orders with the highest coefficient as the starting pair or seed for the current

pick batch.

Step 2: Add orders to starting pair

Calculate the coefficients of each order left in the order set with this starting pair and add the order

with the highest coefficient to the current pick batch. If there are multiple orders with the same

coefficient, the order with the lowest order ID will be added to the current pick batch.

Step 3: Check if the batch is completed

If less than six orders are in the current pick batch and we still have unassigned orders in the set, go

to step 2. If a total of six orders are in the current pick batch, close and release the current pick

batch, remove the assigned orders from the order set and return to step one if there are still orders

in the set. If not, stop the algorithm.

2.3 Data analysis
Data analysis has been conducted using data from January 2020 until November 2020. In this section,

the results of this analysis are shown. The data analysis gives a general idea of the descriptive statistics

of SKUs and orders. The analysis indicates some issues with the current system that are discussed in

the next section of the report.

𝑋 𝑌

15

Demand statistics

The number of SKUs in the assortment decreased from 1149 to 524 in 2020 and no information about

when SKUs are removed from the assortment is given, which could be problematic for the allocation

process. The number of orders however did not decrease over the year. Figure 5 shows the number of

orders per period (of 28 days) in 2020. The figure illustrates that the number of orders fluctuated

substantially over the year. Not only the orders but the demand per SKU also substantially fluctuates.

In Figure 6, examples of the demand frequency per period of 5 randomly selected SKUs are shown.

Marketing and promotions could cause fluctuations in demand for some SKUs. In this case, however,

most SKUs have a demand pattern that is equal to the examples. This implicates unpredictability of

demand.

Figure 5: Number of orders per period

Figure 6: Demand frequency per period of 5 random SKUs

The so-called “long tail” is analyzed to see what small set of SKUs are responsible for a large portion of

the demand frequency. Figure 7 shows the division of demand frequency for all SKUs in the assortment

over the year 2020. The figure shows that the decrease in frequency flattens around the top 200.

Further analysis shows that the top 200 SKUs are responsible for 40.5% of the total sales. The top 200

SKUs, therefore, have a large chance to be allocated in the front section of the warehouse in which the

top 400 SKUs are allocated monthly. According to the data, 183 SKUs were allocated in the front

section of the warehouse at least eight of the twelve periods that were analyzed.

Figure 7: Demand frequency per SKU sorted from most frequently ordered to least frequently ordered SKU

Order statistics

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

N
u

m
b

er
 o

f
o

rd
er

s

Period

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9 10 11

D
em

an
d

 f
re

q
u

en
cy

Period

0

500

1000

1500

2000

2500

1

4
3

8
5

1
2

7

1
6

9

2
1

1

2
5

3

2
9

5

3
3

7

3
7

9

4
2

1

4
6

3

5
0

5

5
4

7

5
8

9

6
3

1

6
7

3

7
1

5

7
5

7

7
9

9

8
4

1

8
8

3

9
2

5

9
6

7

1
0

0
9

1
0

5
1

1
0

9
3

1
1

3
5

1
1

7
7

1
2

1
9

1
2

6
1

1
3

0
3

1
3

4
5

1
3

8
7

D
em

an
d

 f
re

q
u

en
cy

SKU

16

The mean order size in this warehouse is high, but it decreased from 15.4 units in the first month of

2020 to 9.4 in November. The order size is significantly higher than in typical e-commerce warehouses

(1-3 units per order). Currently, the allocation method uses the sales volume of each SKU to allocate

the SKUs in the warehouse. This method has proven to be efficient in practice in comparable

warehouses with low order sizes. In this warehouse, multiple units of a single SKU are often ordered.

Figure 8 shows the number of different SKUs that orders contain. The mean number of SKUs per order

is much higher than in comparable warehouses, namely 6.5. Because the mean order size and the

number of SKUs per order are this high, it could be argued that allocation based on sales frequency

might be an improvement over allocation based on sales volume. The frequency that an SKU is ordered

is defined as the number of orders that contain this SKU. When analyzing the data, a strong relationship

between the sales volume and the frequency is found. Figure 9 shows the positive correlation between

order frequency and volume.

Figure 8: Number of SKUs in orders Figure 9: Correlation between sales frequency and volume

A strong relationship between the number of units and the number of order lines can be found when

analyzing the order statistics. One order line is equivalent to one SKU in the order. It states the SKU

ID and the volume the ordered volume of that SKU. Figure 10 shows the positive relation. It indicates

that when the number of units in an order increases, the number of different SKUs also increases.

The number of order units however is not dependent on the number of order lines, as visible in

Figure 11. The majority of orders consist of 16 units. When 16 units are ordered, the mean number of

order lines is still large, namely 6.11.

Figure 10: Mean number of order lines per number of units

Figure 11: Mean number of units per number of order lines

Product correlation

The characteristics of the SKUs in the assortment are such that it is likely that certain SKUs have a

significant probability of being ordered together. To check if strong correlations between SKUs exist,

y = 1,941x

0

2000

4000

6000

8000

0 1000 2000 3000

D
em

an
d

 v
o

lu
m

e
p

er
 S

K
U

Demand frequency per SKU

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ea

n
 n

u
m

b
er

 o
f

o
rd

er
lin

es

Number of units

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ea

n
 n

u
m

b
er

 o
f

u
n

it
s

Number of order lines

17

correlation analysis has been performed that shows the SKUs that are likely to be ordered together.

Around 200 relations have been found in which an SKU has a probability larger than 0.2 of being

ordered when its correlated SKU is ordered. Three examples are shown in Table 1. The table shows

one pair of SKUs for each example. The frequencies in which the SKUs are ordered per period are

stated. The minimal frequency that an SKU must be picked per period to be allocated to the front

section is given in the second column (frequency threshold). If the SKU is allocated to the front

section of the warehouse in a period, this cell is colored grey. The first example shows the most

frequently ordered pair of SKUs. The second example shows the most frequently ordered SKU with

the SKU that has the strongest correlation with this SKU. The third example shows the pair of SKUs

with the strongest correlation. For most pairs with strong correlation, like example 1 and 3, we see

that both SKUs are placed in the same zone of the warehouse. Employing methods that use

correlations to change allocation decisions, therefore, does not affect these SKUs. The table indicates

that for example 2, using correlations to reallocate SKU δ to the front section of the warehouse could

be beneficial.

 Example 1 Example 2 Example 3

Period
Frequency
threshold

SKU α SKU β SKU γ SKU δ SKU ε SKU ζ

0 18 46 21 42 6 66 44
1 24 65 29 39 13 75 68
2 36 119 42 84 7 92 73
3 67 295 183 220 91 308 119
4 55 563 351 470 323 2 0
5 37 338 259 133 22 0 0
6 29 307 224 104 13 0 0
7 18 89 41 119 11 0 0
8 13 67 23 150 16 0 0
9 16 70 25 135 37 0 0

10 21 104 44 235 52 0 0
11 17 137 113 623 277 0 0

Table 1: Order frequency of SKU pairs and their placement in the warehouse indicated by color

Order batching

The current order batching method that is explained in Section 2.2.3 is suboptimal. Only 46 out of 1017

batches made in the period between 3-2-2020 and 13-3-2020 contain only orders with locations that

are all in the front section while 35.88% of all orders contained only SKUs that are located in the front

section. It is therefore assumed that batching can be done more efficiently to minimize the travel

distance and time of the pickers.

Currently, the batches are made to minimize the number of different locations that a picker has to

visit. The start-up time that a picker has each time he/she visits a new location is only a couple of

seconds. The trade-off between walking through the back section of the warehouse and visiting more

locations is investigated. The stop and search time of pickers in this warehouse is negligible since a

scanner shows the picker the location of the next SKU. The picker does however need to scan the

location and the article to check if both are correct. This takes approximately 6 seconds. With a cart,

the velocity of a picker is measured to be 0.79 m/s. The distance from the I/O point to the end of the

aisle is approximately 80 meters long and the cross-aisle is located after 50 meters. The extra distance

that pickers walk to visit the back section of the warehouse is therefore 60 meters. This will take pickers

76 seconds extra. 12.7 extra location visits can be made at the same time that pickers would need to

walk through the back section of the warehouse. Using the current batching method 33.98 different

18

SKUs are in one batch on average. When two order pools are made based on zones in which SKUs of

orders are located, and batching is done within those pools using the same procedure, 34.46 different

SKUs are in one batch on average. This is a minimal difference in stopping time per batch. Therefore,

minimizing the picking tours through the back section of the warehouse should be prioritized over

minimizing the number of stops in a picking tour.

2.4 Performance issue with the current system
The performance issue with the current system is that many picking routes go through the back section

of the warehouse (the area between the middle cross aisle and the end of the aisles) since SKUs must

be picked here. In 2020, 95% of the picking routes traveled through the back section of the warehouse.

This can be improved by creating a new and better batching procedure. To improve the batching, the

allocation of SKUs in the warehouse must be such that the batching procedure can use this allocation

efficiently. The data analysis in the previous section of the report shows us that storage allocation and

batching can be improved.

Storage allocation

The first issue with the current allocation system is that demand volume is being used to allocate SKUs

to warehouse sections. As stated earlier, the mean number of different SKUs, in this case, is much

higher as in typical warehouses. Since the number of units that are picked per SKU does not influence

the picker travel distance, using the sales volume for allocation seems undesirable. Therefore, this

thesis will investigate and employ methods that use the demand frequency to allocate the SKUs.

The second issue is that a forecast is made monthly in the current system to allocate SKUs. The data

analysis in the previous sections shows that the data is unpredictable and that forecasting data to

allocate SKUs is not optimal. Using the data used to visualize the long tail to identify the most popular

SKUs (top 200) and using a method that allocates these SKUs to the front section and seek the best

allocation for the other SKUs might improve allocation.

The third and final issue with the allocation method is that the methods that are currently used do not

consider any possible correlation between SKUs. SKUs exist that are allocated to the back section of

the warehouse with strong correlations to SKUs in the front section of the warehouse. Creating a model

that allocates some of these SKUs to the front section of the warehouse at the expense of other SKUs

might improve allocation since more orders could consist of only SKUs that are located in the front

zone only.

Order batching

The method that is currently used to batch orders does not minimize the travel distance of pickers. It

minimizes the number of unique locations that have to be visited by pickers. Improvements can be

made by batching all orders that only contain SKUs located in the front section of the warehouse before

batching the other orders. By creating batches that only contain SKUs located in the front section,

pickers will not have to travel through the back section of the warehouse. This will improve the total

picking distance. Therefore, minimizing the number of batches that have to visit the back section

should be prioritized over minimizing location visits in a batch in this case.

The company wants to improve the process without making large investments. Therefore, this thesis

will investigate methods to improve the allocation and batching methods by solving the SLAP and OBP

with the restrictions and assumptions specific to this setting. This research tries to find a method to

improve order picking efficiency by decreasing picker travel distance.

19

3. Problem formulation
Productivity at e-commerce warehouses constantly needs to be improved in order to be able to handle
the complex picking process without large investments. The current way of storage location
assignment and order batching indicates opportunities for improvements.

3.1 Problem statement
In this thesis, we consider a picker-to-parts e-commerce warehouse. In this system, order pickers travel

through aisles to collect and retrieve items that are requested from storage locations within these

aisles to fulfill customer orders (Dallari et al., 2009).

The performance issues, indicated through the data analysis in the previous section of this report, of
the current way of allocating SKUs to storage locations and order batching ask for a new logic such that
the current order picking travel distance will be reduced.

3.2 Research objective
The goal is to fulfill the customer orders with minimized travel distance. Even though this research

aims to reach this goal primarily through optimization of the storage location assignment, a significant

part of the thesis deals with the batching of orders. The objective of this research will be defined as:

“Improving order picking efficiency by optimizing storage allocation and batching methods”.

3.3 Research questions
The main research question that will be researched in this thesis is:

How to decrease order picking travel distance by solving the storage location assignment problem and

order batching problem?

Sub-questions are formed to support answering the main question. These sub-questions are stated

below:

- What types of storage policies are available?

- What order batching method should be used given restrictions and assumptions in this case?

o How does the batching policy perform compared to the current method?

- What is the best (combination of) storage allocation method(s) to use given the batching

method in this situation?

o What are the optimal parameters for the chosen storage policy?

- What is the order picking travel distance in the new situation?

Extensive literature research is performed to find the answer to the first sub-question. The second

question will be answered based on testing of the chosen batching policy. Given the chosen batching

policy, different allocation methods are tested and analyzed to find the best performing method in this

situation. The final question will be answered analytically by calculating travel distances using the case

study.

20

4. Literature review
The study presented in this report is related to warehousing literature. More specifically, the study is

related to e-commerce order fulfillment and investigates literature that answers the question: “How

does one improve order picking efficiency by solving the storage location assignment problem and

using an efficient batching method?”. Literature is investigated on the topics of e-commerce

warehousing, storage location assignment, and order batching. To support answering the research

questions in Section 3.3.

4.1 Characteristics of e-commerce warehousing
The scope of this project is mostly that of e-commerce distribution centers. E-commerce DCs typically

have the following characteristics (Boysen, de Koster, et al., 2019):

- (1) Small orders are received. Bartholdi & Hankman (2011) state that orders usually consist of

1-3 items. Amazon warehouses in Germany, for example, receive orders that average around

1.6 items per order (Boysen, Stephan, et al., 2019).

- (2) Large assortments. E-commerce retailers can offer large assortments to their customers

because they are not restricted by the storage space by which traditional retailers (brick and

mortar stores) are restricted. Therefore, websites can offer significantly more products, which

might have a small demand.

- (3) Tight delivery schedules. Most online retailers promise their customers next-day or even

same-day delivery to compete within the market. Promises such as these increased stress on

the operations performed within the warehouse. Warehousing activities essential for order

fulfillment in e-commerce, therefore, have to be performed under more time pressure than

traditional warehouses (Yaman et al., 2012).

- (4) High variation in workload. Many online retailers face highly volatile demand. Depending

on the product which is offered this has several reasons, e.g. seasonality or promotions. In

combination with the unpredictable demand which is often faced in e-commerce, this asks for

scalable warehouse capacities that can flexibly be adjusted to varying demands and workloads.

(Laudon & Traver, 2016)

Boysen et al. (2019) investigate warehouse systems and their suitability for e-commerce. In this

research, the authors judge the suitability of the systems based on the four characteristics that are

mentioned above. Yang et al. (2020) mention another characteristic of e-commerce warehousing: (5)

the limited space of warehouses. This characteristic can be coupled with the fact that e-commerce

assortments are large (2). Therefore, the availability of space in e-commerce might be more of a

limitation than for other types of warehouses.

4.2 Order batching literature
Many different order-picking policies exist in literature. One of the picking policies that fit the best for

e-commerce warehouses and that is investigated in this report, is batch picking. Warehouses that use

the batch picking policy, combine (batch) multiple orders together. A picker then picks all the items in

one of the created batches. Orders cannot be split between pickers and a picker can sort the items

while picking (Yoon & Sharp, 1996). By operating the batch picking policy, pickers can pick multiple

orders at a time. This minimizes travel time for the picker. In this policy, the process for order pickers

is the same as for strict order picking. A picker travels to all pick locations on a list and picks every item

until all SKUs are picked. The picker then travels back to the I/O point and obtains a new picklist. This

is done until all orders are picked (Petersen, 2009). The disadvantages of this policy are; the loss of

integrity, an increase in the potential for errors, and space for consolidation if the items are sorted

downstream. When pickers sort the items while picking, this can be avoided together with the loss of

21

integrity. Therefore, effective batch picking is realized when a balance is found between travel savings

and the cost of sorting and errors (Frazelle & Apple, 1994).

The Order Batching Problem (OBP) is not to be confused with the concept of batch picking, which is

described above. The OBP aims to optimize the method in which orders are combined into batches

such that picking route distances are minimized. OBP is generally categorized as either static or

dynamic (Aboelfotoh et al., 2019). In a static OBP, the orders are received before batching starts. In a

dynamic OBP, the orders arrive dynamically over time. One batch construction that is the simplest, is

the FCFS (first come first serve) method. Using this method, orders are assigned to batches based on

the order in which they arrive. This method, however, usually results in longer picking tours compared

to other methods. Recent studies address the joint optimization of order batching and routing.

Few studies have been conducted on the application of mathematical models to batch orders because

these models can only be applied to situations in which the OBP has to be solved with a small number

of orders. Researches by Bozer & Kile (2008) and Gademann & van de Velde (2005) using mixed-integer

programming and a branch-and-price algorithm respectively to solve the OBP for up to 32 customer

orders and found that increases in the number of orders, the batch size, and the number of aisles made

the problem harder to solve.

Numerous studies have been conducted on developing and applying metaheuristics. These can be used

with larger-scale problems to solve the OBP. Hsu et al (2005) proposed a batching method using a

genetic algorithm that was outperformed by the Artificial Bee Colony algorithm by Li & Zhou (2013).

Many studies such as Henn & Wäscher (2012) and Žulj et al. (2018) apply tabu search-based

methodologies to solve the OBP. Menéndez et al. (2017) and Pinto & Nagano (2019) proposed

heuristics based on variable neighborhood search strategies.

4.3 Picker routing problem literature
Order-picking is the most labor-intensive activity in most warehouses. Bartholdi & Hackman (2011)

show that order picking accounts for most of the warehouse operating costs. 55% of the total operating

cost is accounted for by order-picking and more than half of the order picking time is consumed by the

travel time of the pickers. Therefore, the reduction of travel time can greatly reduce operating costs

within warehouses. Storage costs can be reduced with small reductions of distances traveled by

pickers. This can be achieved through efficient picker routing planning. The efficient planning of these

routes seeks to minimize the total distance traveled given the locations that have to be visited to pick

the orders (Scholz et al., 2016). Routing policies, therefore, determine the sequence in which SKUs are

to be picked by a picker. Different approaches are used to tackle the routing problem; routing

strategies or policies, heuristics, metaheuristics, and optimal procedures (Cano et al., 2017). In this

section, those approaches will shortly be summarized.

The most common routing policies that are used in literature are the transversal (or s-shape), return,

midpoint, largest gap, and composite policies. Figure 12 illustrates these policies.

22

Figure 12: Common routing policies (Petersen & Schmenner, 1999)

Different heuristic methods to solve the routing problem are proposed in literature. Won & Olafsson

(2005) propose a heuristic called the 2-opt heuristic. Other heuristics that are proposed in literature

are; the Largest Gap with Simulated Annealing (Ho et al., 2008), Nearest Neighbor and savings

heuristics (e.g. Kulak et al., 2012), traveling salesman, and weight heuristics (Choy et al., 2014; Theys

et al., 2010). Metaheuristics that are developed to find the most efficient traveling path are; genetic

algorithms (Azadnia et al., 2013), ant colony optimization (J. Li et al., 2017), particle swarm

optimization (Gómez-Montoya et al., 2016), and tabu search (Cortés et al., 2017). Optimal procedures

include algorithms to find the optimal picking route using the graph theory combined with dynamic

programming (Ratliff & Rosenthal, 1983), as well as a solution through the graph system (Scholz et al.,

2016) and a branch-and-cut algorithm (Valle et al., 2016).

Heuristic strategies are more straightforward and easier to follow than the other solutions to routing

problems (Petersen & Schmenner, 1999). Petersen (1999) states that optimal solutions can create

confusion for the picking operators. Hall (1993) describes that optimal methods are usually a

combination of s-shape and largest gap heuristic strategies and that the heuristic methods can,

therefore, develop near-optimal routes with less confusion. For these reasons, warehouses often

choose to use heuristics rather than optimal procedures.

4.4 Storage Location Assignment Problem (SLAP) literature
Storage is an important factor with which is dealt with by the operating policy in warehouses. As

explained above, 55% of the order picking time is consumed by the travel time of the order-pickers.

Travel can be reduced by effective storage allocation. SLAP is a well-known concept in warehousing.

SLAP focuses on the allocation of SKUs to specific locations in the warehouse and also considers

combining the most similar orders in a batch given the assignment of SKUs. Characteristics such as

frequency, size, weight, and supplier are often used when assigning items to locations or zones in the

warehouse. In order to propose the solution method that is mentioned later in this report, the basics

23

of storage location assignment are introduced in this section. Deciding on the storage location

assignment policy is an important factor in deciding the allocation of SKUs to exact locations.

Different types of storage assignment policies have been identified in literature. Basic policies include

random storage, closest open location, dedicated storage, and class-based storage. Using the random

storage policy, items are stored in random locations and do not follow any logic as to where the most

efficient location is to store the SKU. Random storage causes high storage utilization in the warehouse

and low order-picking efficiency (de Koster et al., 2007). With the closest open storage policy, items

are stored in the closest open location from the I/O (input/output) point of the warehouse (Park & Lee,

2007). The advantage of this policy in comparison to random storage is the low warehouse utilization.

When operating under a dedicated storage policy, specific storage locations are assigned to each SKU

to be stored (M. K. Lee & Elsayed, 2005). Family grouping, volume-based storage, affinity-based

storage (Bartholdi & Hackman, 2011) and full turnover-based storage are examples of different types

of dedicated storage that exist. The turnover-based policy is often used in practice. This policy is

expected to minimize the time required to store and retrieve products. Full turnover-based storage,

unlike the other types of dedicated storage, assigns locations to items based on historical data. It

examines the turnover of each SKU and aims to store the SKU with the highest activity ratio closest to

the I/O point within the warehouse. Due to the minimization of storage and retrieval time, this storage

policy might be well suited to cope with the time pressure of e-commerce. Class-based storage is a

storage policy in which items are divided into a number of storage classes. Within those classes, the

storage locations are randomly assigned to each item (Petersen et al., 2004). It outperforms random

storage and approaches volume-based storage in order-picker travel time. It also outperforms

dedicated storage in the total cost of order picking. A form of class-based storage is ABC storage. Le

Duc & de Koster (2005) explain that in this storage policy, items are subdivided into three categories,

generally based on the nature and size of the item. Fast-moving items that are small in size are

categorized as an A-item and large items that are slow-movers are categorized as C-items. A-items are

placed closer to the depot than C-items. Category B items are in between the other two categories,

both in characteristics and placement. With smaller assortments, one can create clear and static

categories that do not change much over time. This storage policy decreases traveling distance of order

pickers, supporting the tight delivery schedules in e-commerce warehouses.

A more complex storage policy is dynamic storage. This storage policy aims to enhance the order

picking process performance by dynamically storing only those SKUs needed for the current order

batch in the pick area, thereby reducing travel time for this process. The other SKUs are stored in the

reserve area (Yu & De Koster, 2010). Yu & De Koster (2010) show that using this system, higher

throughput can be realized than by using a conventional order picking system since only a small portion

of the total SKUs are stored in the forward pick area. This storage policy is a system that has proven to

work in several e-commerce warehouses (e.g. Amazon Germany).

Classic storage strategies perform well when only one SKU is picked in a picking tour. In e-commerce,

as explained, the number of picks per order is low. Thus, these policies might be suitable for an e-

commerce warehouse. However, warehouses that receive more orders with multiple SKUs that have

to be picked ask for a more complex storage assignment method. Identifying correlated SKUs in the

assortment and placing these items closer to each other can improve efficiency (Zhang et al., 2019).

Frazelle & Sharp, (1989) calculate the pairwise correlation between item pairs using historical order

data and define the SLAP as an integer programming problem, which is solved using a two-stage

heuristic. Liu (2004) proposes the order-item-quantity rule to measure similarity between item pairs.

These items are then located considering the used routing strategy. This method is commonly

employed in practice. Many studies exist that use a clustering method to create groups of items that

24

are stored together. Lee (1992) and Hua & Zhou (2008) propose new clustering strategies that locate

items following (space-)filling curves. Chuang et al. (2012) improve the family grouping policy by

measure pairwise item association and clustering items. They use mixed integer programming for both

the item clustering and assigning the clusters to locations in the warehouse. Jane & Laih (2005) propose

a clustering strategy for zone picking systems and develop a heuristic that assigns correlated items to

different zones using clustering. In recent years, different approaches that employ correlation have

been proposed in literature. These approaches do not use clustering but assign products otherwise.

Pang & Chan (2017) analyze association relationships between different items in customer orders.

They consider put-away cost and use a data mining-based algorithm to solve the SLAP. Both item

demand and correlation are considered by (Glock & Grosse, 2012).

Some recent studies also use some kind of local search algorithm to solve SLAP. Neighborhood search

algorithms have been used by Hansen et al. (2020) to solve the SLAP and by Yang et al. (2015) to solve

optimize the joint problem of storage location assignment and storage/retrieval schedule. The

research in this thesis also uses a local search algorithm to solve the SLAP.

4.5 Gaps in literature
In the research by Boysen et al. (2019) suitability of warehouse systems in e-commerce is judged based

on the four characteristics that e-commerce DCs usually have. The authors do not focus on warehouses

that do not have (all of) those characteristics. Some e-commerce warehouses, such as online grocery

retailers, for example, do not have the characteristic that most small orders of 1-3 items are received.

Other warehouses, such as the e-commerce warehouses that execute operations for one-product or

one-page webshops, do not have the characteristics of a large assortment. No further research has

been conducted in warehouse systems that fit for warehouses that do not have those four

characteristics or that have other constraints. The research presented in this thesis will add value to

literature by researching allocation and batching methods for a warehouse that has a larger mean

order size than typical e-commerce warehouses. This research solves the SLAP in a warehouse with

two picking aisles and three cross aisles, creating two zones in which a variant of the turnover-based

storage policy is applied. Both demand and correlation between orders are used to solve the allocation

problem. Literature also often uses data of a period to solve SLAP for the same period in which

customer orders arrive. In practice, SLAP has to be solved with historical data before new customer

orders arrive. These new customer orders are then picked using the proposed location assignment

found by solving SLAP. This research uses this practical approach to solve SLAP instead of the approach

that is often used in literature. The OBP in this type of warehouse is not investigated in literature.

Simple methods are used in this thesis to solve the OBP using the layout of the warehouse.

25

5. Conceptual design
In this section of the report, the conceptual model that will be used to design a new batching and

allocation system is introduced. In order to create such a model, the objective, the performance

indicators, functional requirements, assumptions, and constraints need to be specified. After defining

these, the conceptual model will be explained.

5.1 Objective and performance indicators
Before designing a model and solution methods, the objective of the model must be clear. The

objective of this research is to minimize picker travel distance. The model needs to allocate SKUs in a

warehouse such that picking tour distances to collect customer orders are minimized. Batches of

maximum of six orders must be created that support the allocation decisions by efficiently combining

customer orders such that order pickers can pick all batches created with minimized travel distance.

To determine the effect of the proposed methods, one ultimate performance indicator is used: the

travel distance per order. After both allocation and batching decisions, the total distance that is

traveled to pick the orders will be calculated to determine the performance of the methods. The

routing distance calculations will be executed based on the expected distances that order pickers travel

in the aisles. The two routes that are traveled are deterministic. The total distance, however, is

dependent on the mix between A-batches and AB-Batches. A-batches are batches for which the picker

only travels through the front zone of the warehouse. The orders in those batches only contain SKUs

that are located in this front zone. These orders are referred to as A-orders in this research. AB-batches

are batches of which the orders contain SKUs located in the front and back section of the warehouse.

Those orders are referred to as AB-orders. To pick an AB-batch, the picker walks a longer route through

the back section of the warehouse. In the detailed design section of the report, more explanation on

the calculations is given and the equations to calculate the distances are defined.

Another KPI used in this report is the number of stops per batch. Pickers travel through aisles to pick a

batch of orders. Depending on the number of different SKUs that are in this batch, the pickers must

make a number of stops at a picking location. Minimizing the number of stops will decrease picker

travel time and therefore reduce picking costs.

In this research, reallocation costs are not quantitively considered. Because of the continuously

changing assortment, it is unavoidable to reallocate SKUs at least once per month. In this research, it

is assumed that allocation decisions are made every 28 days and are effective during this period.

Actively reallocating SKUs more than once in this time period will lead to high reallocation costs which

are not desirable. If SKUs would be reallocated weekly, for example, the allocation costs would be

extremely high since a large number of case packs would have to be reallocated because of the large

difference in weekly demand.

5.2 Decision hierarchy
To get to the objective described above, the model in this research uses two steps. First batching

decisions are made, and second allocation decisions are made. According to Bertrand et al. (2016), the

time period over which a higher-level decision is effective is not smaller than the time period over

which a lower-level decision is effective. Figure 13 illustrates the connections between decision layers

and the system behavior in this research.

The period of time over which allocation decisions are effective is larger than the period of time over

which batching decisions are made. The allocation policy does not change every period of 28 days.

Changing allocation policies might cause major reallocations which are costly. Changing the batching

26

policy, however, can be done daily. Therefore, the batching policy that is used is seen as a lower-level

decision.

Figure 13: Decision hierarchy and data needed per layer

Using the performance indicators described earlier, the performance of the allocation methods can

only be measured after batching decisions are applied and a dataset is analyzed using these decisions.

In this research, multiple allocation methods are analyzed. Each time that different methods of

allocation are analyzed, the OBP has to be rerun to find the performance of the allocation method. The

allocation model outputs where SKUs will be located in the warehouse. Therefore, after the allocation

decisions, it is known which orders in a dataset are categorized as an A-order and which as AB-orders.

This data is needed to solve the OBP. For the distance calculations, the OBP has to be solved in order

to find the mix between A-batches and AB-batches.

5.3 Model assumptions and constraints
Several assumptions and constraints exist in this research to define the scope of the model. The

assumptions and constraints that must be accounted for when creating the model are listed below:

Assumptions

- Orders are received one day and picked the next day

- Every day one pickup moment exists at the end of the day at which all batches are picked up

- All SKUs can be stored in any storage location in the warehouse

- It is assumed that there are enough forward locations in the warehouse for all SKUs

- All orders for one day are received before batches are made

- New SKUs in the assortment will always be allocated in the back section of the warehouse

- SKUs are reallocated after periods of 28 days

- Allocations are done at the end of a period using data of that period

- The reallocation of SKUs is done actively. SKUs do not stay in the same location until the

location is picked empty but are actively moved to their new location

- An order can be batched with all remaining orders

Constraints

27

- Layout constraint: the layout consists of 2 aisles with 3 cross aisles as indicated in Figure 14

- Routing constraint: the two aisles allow just two different picking routes. These are indicated

in Figure 14

- Batching constraint: Batches consist of maximum 6 customer orders

- Order constraint: each order consist of maximum 16 units

5.4 Layout and Routing
Figure 14 illustrates the warehouse layout. The warehouse has two pick-aisles and three cross aisles

which provides access from the first pick aisle to the second. Two cross aisles are located at the top

and bottom of the aisles. The middle cross-aisle is indicated in Figure 14. The aisle width of the

warehouse could be a factor that has to be taken into account. For this research, the aisle width is

assumed to be negligible, i.e. it is assumed that the aisles are narrow enough for the order pickers to

be able to pick items from both sides of an aisle without moving sideways. Hall (1993) states that for

aisle width below 2.71 × 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑝𝑒𝑟 𝑝𝑖𝑐𝑘 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑖𝑠𝑙𝑒 𝑙𝑒𝑛𝑔ℎ𝑡 the width of an aisle

can be considered negligible, i.e. the picker can collect from both sides of the aisle. Therefore, order

pickers travel through the middle of the aisle and backtracking is not considered. Two different routes

that can be travelled by the order pickers. The travel routes of the pickers are directed and essentially

determined by the S-shape routing procedure as described by Dijkstra & Roodbergen (2017). The cross-

aisle can be used to travel from the first to the second pick-aisle when no SKUs have to be picked in

zone B. The two different routes that can be traveled by pickers are illustrated in Figure 14. Regardless

of which route is traveled, the pickers always travel through all products located in the front section

of the warehouse.

Figure 14: Warehouse layout and picking routes

5.5 OBP
In the considered situation, orders are batched for order pickers to pick during a picking tour. The

batching of the orders has an impact on the total travel distance of the order pickers. Optimal batching

of orders is, therefore, necessary to fulfill the orders with minimized travel distance. Since only two

different routes can be traveled in the problem instance that is focused on, route optimization can be

simply achieved. Given all assumptions mentioned earlier, together with the routing and layout of the

warehouse, a new batching method can be created that minimizes the number of picking routes

through the back section of the warehouse, thus reducing the total picking travel distance.

28

The new batching method groups all orders into so-called A-orders and AB-orders. A-orders are orders

containing only items that are allocated in the front section of the warehouse. AB-orders contain items

that are in both the front and back sections of the warehouse. A decision has to be made on what

happens when there are not enough orders left in the A-orders pool to create a full batch (< 6 orders).

One can either create an incomplete A-batch or add the remaining orders to the AB-pool. The first

method could, worst case, cause a picker to walk the picking route for only one order while that

remaining A-orders could have been added to the last AB-batch that consists of less than six orders.

The second method, however, could cause a picker to walk an extra route for an AB-batch when the

number of remaining A-orders added to the remainder of AB-orders after creating AB-batches is more

than six. The second method is used in this thesis since this method minimizes the total number of

batches.

After grouping the orders in order pools, the batching method first batches all A-orders. These batches

are referred to as A-batches. After creating the A-batches, the method creates AB-batches out of the

remaining orders. Batches within those order pools are created using the batching logic that is

currently used by the company. This method is used to minimize the number of stops made per batch

that must be picked. The method uses the Jaccard coefficient to calculate the similarity between order

pairs. The order-pair with the highest coefficient is combined and new Jaccard coefficients are

calculated for each order with this order pair. Again, the order with the highest coefficient is added to

the pair. This process continues until six orders are in one batch. A new starting pair will then be

created and the entire process is repeated. Using the new method, many order picking routes will only

travel the shortest of the two routes explained in the previous section of this report.

5.6 SLAP
The batching policy asks for an allocation model such that pickers can pick orders with minimized travel

distance. Different allocation methods will be analyzed to choose the most suitable method in the

situation that is described in this thesis. An optimization problem will be formulated for a certain time

period for which the allocation problem must be solved.

Policies

This research considers a class-based system with two different classes to tackle the SLAP. In literature,

the most common method for class-based storage in e-commerce warehousing is the class-based

turnover policy. As explained earlier, the mean order size, in this case, is larger than in typical

warehouses. Because of this, the turnover-based (TOS) policy might not be most efficient and another

method that allocates SKUs based on the frequency of ordering (instead of the total order volume) has

been investigated to solve the SLAP. The method is referred to as Frequency of Ordering (FoO) in this

thesis. Company data will be used to check whether picking travel distance will be reduced using the

FoO method. In the case that only one SKU is picked per picking tour, allocating SKUs strictly by

frequency should outperform allocation on-demand volume when minimizing picking travel distance.

In this specific case, however, many SKUs are ordered together in one order. Because of this, the

probabilities that SKUs are ordered together are of importance. The allocation of SKUs is not only

dependent on the frequency that the product is picked, but also on the probabilities that it is ordered

with other SKUs. To attempt to solve this problem, a greedy construction algorithm is created.

Greedy construction algorithm

In the situation at K+N, the SKUs do not correlate one-to-one and all items have a conditional

probability of occurring in an order given that other SKUs are in this order. The SLAP that is considered

when using the chances that SKUs are ordered together is a quadratic assignment problem. This

29

problem is NP-hard and cannot be solved exactly in polynomial time. A greedy construction algorithm

is used to attempt to solve this problem. This algorithm uses a correlation analysis to allocate some

SKUs that are initially located in the back section of the warehouse, to the front section if these SKUs

are ordered frequently and have a high correlation with (multiple) SKUs located in the front section.

This SKU is allocated to the front section at the expense of another SKU. Section 2.3 shows that demand

cannot be forecasted accurately in this situation. Next to the inaccurate demand forecast, the section

also shows that correlations seem to be unpredictable. Reallocating SKUs based on the historical

probability of being ordered with other SKUs does not guarantee that this SKU also has this probability

in the next time period. Therefore, it is possible that using this greedy construction algorithm, might

not lead to better performance than the allocation policies described above.

Hill-climbing local search algorithm

When sequencing SKUs on frequency, the frequencies of the SKUs in the area around the capacity limit

of the front zone do not differ much. A local search algorithm is therefore used to find the swaps

between SKUs in the front and back section that actually improve the allocation. The local search

algorithm in this thesis uses an initial allocation that is made using the best performing policy of the

policies described above (FoO or TOS). It then swaps one SKU in the front section of the warehouse

with another SKU in the back section. It checks whether this swap results in a better allocation in terms

of picker distance after batching. If the swap does not improve the performance of picking, including

batching, the swap will be reversed. If the swap does improve the performance, it will be saved. This

algorithm is therefore seen as a hill-climbing local search algorithm that is only accepting

improvements. The allocation made using this algorithm will then be used to pick the orders that are

received in the next time period. Many iterations of this algorithm can be run to keep improving

allocation. Running local search algorithms, however, can be very time-consuming. Therefore, an

adequate number of iterations should be chosen. Alongside the number of iterations, the area in which

the swaps will be made has to be determined. Since the data analysis in Section 2.3 showed that the

top 200 SKUs do not alternate much. A window of 400 SKUs around the capacity of the front section

of the warehouse (which is 400 SKUs). Thus, with SKUs indexed on the frequency of ordering, SKUs

201-400 will be swapped with SKUs 401-600. In Section 6 of this report, the hill-climbing local search

algorithm will be explained in detail.

30

6. Detailed design
In this section of the report the conceptual model will be explained in detail and the solution

approaches are elaborated. Formulas and algorithms are given that are used to solve the model.

6.1 Parameters and decision variables
Below, the parameters and main variables for this problem are described. These will be used in the

remainder of this research.

Parameters:
𝒊 ∈ 𝑁. An index to indicate a specific SKU
𝑵 The set of all SKUs in the assortment
𝒐 ∈ 𝑂. An index to indicate a specific order
𝑶 The set of all orders
𝒃 ∈ 𝐵. An index to indicate a specific batch
𝑩 The powerset of all batches. This is the largest number of potential

batches
𝑭𝒊 Frequency of ordering SKU 𝑖
𝑽𝒊 Order volume of SKU 𝑖
𝑪 The capacity in number of SKUs in the front section of the warehouse
 𝛼 The weighting factor of the correlation
𝑷𝒊𝒋 The chance that SKU 𝑖 and 𝑗 are ordered together

𝒂𝒊 Value to index SKUs based on both demand and correlation
 𝑴 The neighborhood of SKUs from the border capacity
𝒐𝒊𝒋 An order containing both SKUs 𝑖 and 𝑗

|𝑽𝒐| Number of orders

|𝑽𝒐𝒊𝒋
| Number of orders that contain SKUs 𝑖 and 𝑗

|𝑽𝒐𝒊
| Number of orders that contain SKU 𝑖

𝑪𝒃𝒂𝒄𝒌 Cost of visiting the back section of the warehouse
𝑪𝒔𝒕𝒐𝒑 Cost of visiting an extra location

𝒋𝑿𝒀 Jaccard coefficient of order pair 𝑋𝑌
|𝒐𝒂| Number of orders in A-order pool

|𝒐𝒂𝒃| Number of orders in AB-order pool
𝒓𝒂 Distance traveled for one A-batch
𝒓𝒃 Distance traveled for one AB-batch

|𝒒𝒂| Number of A-batches
|𝒒𝒃| Number of AB-batches

𝑫 Total distance traveled
𝑴𝑫 Mean distance traveled per order
𝑨𝒊𝒐 ∈ {0,1}. SKU 𝑖 is part of order 𝑜 (1) or not (0);

Decision variables:
𝒙𝒊 ∈ {𝟎, 𝟏} SKU 𝑖 is located in the front section (1) or the back (0);

𝒚𝒐𝒃 ∈ {𝟎, 𝟏} Order 𝑜 is assigned to batch 𝑏 (1) or not (0);
𝒛𝒃 ∈ {𝟎, 𝟏} Batch 𝑏 needs to visit the back section (1) or not (0) ;
𝒖𝒊𝒃 ∈ {𝟎, 𝟏} the location of SKU 𝑖 needs to be visited by batch 𝑏 (1) or not (0);

Table 2: Parameters and decision variables used in this research

31

6.2 Performance measurement
As explained in the conceptual model, the performance of the decisions made on batching and

allocation levels is measured using a performance indicator. In this report, the key performance

indicator is the travel distance per order. A detailed description of how the distance per order is

calculated is given in this section of the report.

We consider an order picking area as described earlier with 2 aisles each. The layout is shown in Figure

15. The depot is indicated as the I/O point in this figure. The length of the aisles are indicated by 𝑑𝑎.

The middle cross aisle is located at distance 𝑑𝑚 from the depot. The distance from the middle cross-

aisle to the end of the picking aisles is indicated as 𝑑𝑒 and the distance that is travelled from one aisle

to the other using a cross-aisle is indicated as 𝑑𝑐. All distances in this report are measured in meters.

Figure 15: Warehouse layout with parameters

The routing considered is shown in Figure 14 and explained earlier as being some form of an S-shape

routing strategy. The distance traveled to pick all batches in one day will be defined as 𝐷. The distance

travelled from the first aisle to the second is always 𝑑𝑐. The distance travelled in one picking route (for

one batch) is defined as either 𝑟𝑎 or 𝑟𝑏 which are the route lengths of a picking route through only the

front section of the warehouse and a picking route through both the front and back section

respectively. For every route, the distance traveled in aisle 1 is the same as the distance traveled in

aisle 2, because of the routing constraints. Therefore, 𝑟𝑎 and 𝑟𝑏 are defined as follows:

𝑟𝑎 = 2 × 𝑑𝑚 + 𝑑𝑐

𝑟𝑏 = 2 × 𝑑𝑒 + 𝑑𝑐

𝐷 is now calculated by multiplying the number of batches for each zone with their respective route

distance. Let |𝑞𝑎| be the number of A batches and |𝑞𝑏| the number of AB batches.

𝐷 = |𝑞𝑎| × 𝑟𝑎 + |𝑞𝑏| × 𝑟𝑏

To compare the performance of the methods described in the previous section, the mean distance

traveled per order 𝑀𝐷 is calculated. Let |𝑉𝑂| be the number of orders. 𝑀𝐷 is calculated as follows:

𝑀𝐷 =
𝐷

|𝑉𝑂|

32

6.3 OBP
The warehouse is split into two sections. We want to batch a set of orders in such a way that we

minimize the number of batches that need to visit the back section of the warehouse. The batching

procedure seeks an assignment such that the number of location visits and the number of routes

through the back section of the warehouse are minimized:

𝑀𝑖𝑛{𝐶𝑏𝑎𝑐𝑘 ∑ 𝑧𝑏𝑏∈𝐵 + 𝐶𝑠𝑡𝑜𝑝 ∑ ∑ 𝑢𝑖𝑏𝑏∈𝐵𝑖∈𝑁 }

Subject to:

∀𝑜 ∈ 𝑂: ∑ 𝑦𝑜𝑏 = 1𝑏∈𝐵 (1)

∀𝑏 ∈ 𝐵: ∑ 𝑦𝑜𝑏 ≤ 6𝑜∈𝑂 (2)

∀𝑖 ∈ 𝑁, 𝑏 ∈ 𝐵: ∑ 𝐴𝑖𝑜𝑦𝑜𝑏 ≤ 𝐵𝑖𝑔𝑀 ∙ 𝑢𝑖𝑏𝑜∈𝑂 (3)

∀𝑏 ∈ 𝐵: ∑ ∑ 𝐴𝑖𝑜(1 − 𝑥𝑖)𝑦𝑜𝑏 ≤ 𝐵𝑖𝑔𝑀 ∙ 𝑧𝑏𝑜∈𝑂𝑖∈𝑁 (4)

Constraint (1) ensures that all orders are in exactly one batch. As explained earlier, the maximum

number of orders in one batch is six. This limitation is captured in constraint (2). Constraint (3)

ensures that the number of SKUs in a batch is not larger than the number of locations that have to be

visited when picking this batch. Finally, if one item in a batch is located in the back section of the

warehouse, the picker has to visit the back section when picking this batch. This is controlled by

constraint (4).

As explained in the data analysis in Section 2.3, minimizing the number of picking routes that travel

through the back section of the warehouse is prioritized over minimizing the number of stops in a

picking route. The costs of visiting the back section (𝐶𝑏𝑎𝑐𝑘) is much more than the cost of visiting an

extra location (𝐶𝑠𝑡𝑜𝑝). To minimize the number of picking routes through the back section, indicated

as ∑ 𝑧𝑏𝑏∈𝐵 in the minimization problem above, two order pools have to be created. One with only A-

orders and one with AB-orders. Within those order pools, batches are made to minimize the number

of unique location visits, which is indicated as ∑ ∑ 𝑢𝑖𝑏𝑏∈𝐵𝑖∈𝑁 . This is done using the Jaccard coefficient.

The Jaccard coefficient batches orders that contain similar SKUs. The following algorithm will be used

to create batches from all orders in the order pool that has been received during the previous day:

33

Algorithm 3: Batching procedure

 Input data: Order data for one day, 𝑥𝑖 for all 𝑖 ∈ 𝑁
Result: Batches of orders ready to be picked

1: Add all orders 𝑜 ∈ 𝑂 to A-orders pool
2: for 𝑜 ∈ 𝑂 do
3: for all SKU 𝑖 ∈ 𝑜 do
4: if 𝑥𝑖 = 0 then
5: Place order 𝑜 to AB-orders and remove from A-orders
6: else
7: Leave order 𝑜 in A-order pool
8: end if
9: end for
10: end for
11: if |𝑜𝑎| ≥ 6 then
12: Define Jaccard coefficient 𝑗 for each order pair 𝑋𝑌 in A-orders pool using: 𝑗𝑋𝑌 =

|𝑋∩𝑌|

|𝑋∪𝑌|

13: Create a starting pair with the combination of orders that has the highest Jaccard
 coefficient and remove those orders from the A-order pool

14: while Number of orders in current combination < 6 do
15: Calculate the coefficients for all remaining orders with the combination
16: Add order with highest coefficient to combination and remove from pool
17: end while
18: Save combination and remove orders in combination from A-orders pool
19: else
20: Add remaining A-orders to AB-orders pool
21: end if
22: if |𝑜𝑎𝑏| > 6 then
23: Define Jaccard coefficient 𝑗 for each order pair 𝑋𝑌 in AB-orders pool using:

𝑗𝑋𝑌 =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|

24: Create a starting pair with the combination of orders that has the highest Jaccard
 coefficient and remove those orders from the AB-order pool

25: while Number of orders in current combination < 6 do
26: Calculate the coefficients for all remaining orders in pool with the

 combination
27: Add order with highest coefficient to combination and remove from pool
28: end while
29: Save combination
30: else
31: Batch remaining AB-orders
32: end if

A python script is created to use this algorithm with company order data to analyze the effect of this

batching method. The Jaccard coefficient is used in this algorithm to create batches that minimize the

unique locations that have to be visited by the order pickers, therefore reducing the number of times

that order pickers have to stop, search, locate and start walking again. In the integrative design section,

a case study is done using company order data. In that section, the performance of this batching

algorithm is compared to the performance of the currently used batching method. A simple example

of the algorithm is shown in Appendix A.

34

6.4 SLAP
The performance of the allocation and batching problem defined in the conceptual model is defined

by calculating the picking travel distance. The batching procedure allows for a separate allocation

problem that seeks an assignment of SKU locations such that the number of picking routes that travel

through the back section of the warehouse is minimized. This, in its turn, minimizes the total picking

distance traveled. In this section, the models and methods that are used to solve the SLAP are

explained in detail.

Policies

Both the FoO policy and the TOS policy which are tested in this thesis can be defined as optimization

problems with the assumptions and restrictions of this research. When strictly using frequency to

assign SKUs to locations, the following knapsack problem should be solved:

𝑀𝑎𝑥 ∑ 𝐹𝑖𝑥𝑖

𝑁

𝑖=1

Subject to:

∑ 𝑥𝑖 ≤ 𝐶

𝑖∈𝑁

𝑥𝑖 ∈ {0,1}

The first constraint given in this problem makes sure that the capacity of the front section is respected.

The second constraint states that a product can either be allocated to the front section (𝑥𝑖 = 1) or to

the back section (𝑥𝑖 = 0) of the warehouse. When the assignment of SKUs to zones is done using the

TOS policy, the frequency of which an SKU is picked (𝐹𝑖) will be replaced by the ordered volume (𝑉𝑖) in

this optimization problem.

To solve the knapsack problems, a greedy algorithm is used. A binary knapsack problem with unit-sized

items can be solved exactly using a greedy algorithm. Since all items have the same weight/size, it

becomes a ranking issue that is solvable exactly using a greedy method (Garey & Johnson, 1979). The

greedy method simply ranks the SKUs in terms of frequency (or demand volume when using TOS

policy). For the first 𝐶 SKUs in this ranking, 𝑥𝑖 will be set to 1. These items will be allocated to the front

section of the warehouse.

Quadratic assignment problem

To account for the probabilities that SKUs are ordered together, another model will be is defined. In

this model, the probability that two SKUs 𝑖 and 𝑗 are ordered together is defined as 𝑃𝑖𝑗. This

probability is conditioned between 0 and 1. Since the dimension of the probability and frequency

differ, a weighting factor 𝛼 is added to the problem. These additions make the problem a quadratic

assignment problem (QAP), which is NP-hard. The following optimization problem is defined:

35

𝑀𝑎𝑥 {∑ 𝐹𝑖𝑥𝑖

𝑁

𝑖=1

+ 𝛼 ∑ ∑ 𝑃𝑖𝑗𝑥𝑖𝑥𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

}

Subject to:

∑ 𝑥𝑖 ≤ 𝐶

𝑖∈𝑁

0 ≤ 𝑃𝑖𝑗 ≤ 1

𝑥𝑖 ∈ {0,1}

This model is a special case of the QAP. This is a linear QAP that can be reformulated as a Mixed-

Integer Linear Programming (MILP) problem and solved as a traveling salesman problem (Queyranne,

1986). However, since the problem that is solved has a large number of SKUs (𝑁 > 1400), the

problem cannot be solved exactly in polynomial time. Therefore, a greedy construction algorithm is

used to attempt to solve this problem by using probabilities of SKU pairs with a high correlation of

being ordered together. Next to this greedy algorithm, a hill-climbing local search algorithm is also

used to attempt to find better solutions for allocation (including batching decisions). Both methods

are explained below:

Greedy construction algorithm

The greedy construction algorithm utilizes the correlations of SKU pairs with a high probability of being

ordered together to reallocate products. It uses a correlation coefficient to place certain SKUs in the

front section of the warehouse. These were the SKUs that were placed in the back section of the

warehouse and which had a strong correlation with SKUs in the front section of the warehouse. For

SKUs with a support value larger than 0.004, a correlation coefficient is calculated. A support value of

higher than 0.004 means that the SKU pair is present in more than 0.4% of all orders. This threshold is

chosen because all item pairs that seem to truly correlate have a higher support value. Most pairs with

a lower support value do not have one SKU that is ordered (frequent) enough to be allocated to the

front section of the warehouse or do not have a high correlation coefficient. This coefficient is defined

as the confidence; the probability that SKU 𝑗 is ordered if SKU 𝑖 is ordered. This coefficient is calculated

as follows:
|𝑉𝑂𝑖𝑗

|

|𝑉𝑂𝑖
|
. The confidence is used to approximate 𝑃𝑖𝑗 in the objective function above. The greedy

construction algorithm utilizes these probabilities to create a correlation coefficient for a single SKU

and create a new ranking problem by adding this correlation coefficient to the frequency or volume

(depending on if FoO or TOS is used as the initial policy) that an SKU is ordered. A correlation matrix is

created that contains all correlation coefficients of SKU pairs 𝑖 and 𝑗. For the item pairs with a support

value smaller than 0.004, the correlation matrix will have a value of 0. The greedy algorithm below

utilizes this matrix to determine a new allocation. This greedy algorithm can be used with both the TOS

and FoO policies, the greedy algorithm below uses the FoO policy. If the TOS policy is used, 𝐹𝑖 has to

be replaced by 𝑉𝑖 in the algorithm. All correlations found in the correlation matrix can be found in

Appendix B. A simple example of the greedy algorithm can be found in Appendix C.

36

Algorithm 1: Greedy construction algorithm

 Input data: Historical order data for one period, Correlation matrix, capacity 𝐶
Result: The allocation 𝑥𝑖 for all SKUs 𝑖 ∈ 𝑁

1: For each SKU 𝑖 ∈ 𝑁 that is ordered in this period, count the number of orders that contain
this SKU. This number will be denoted as 𝐹𝑖

2: Sort the SKUs by the highest value of 𝐹𝑖 and reset the index such that the SKU with the
highest value for 𝐹𝑖 is indexed as 𝐹1.

3: Set 𝑐𝑖 = 1 for all SKUs 𝑖 ∈ 𝑁
4: for 𝑖 = 1 To 𝐶 do
5: for 𝑗 = 1 To 𝑁 do
6: if (𝑗, 𝑖) ≠ 0 in correlation matrix then
7:

 𝑐𝑗 = 𝑐𝑗 +
|𝑉𝑂𝑖𝑗

|

|𝑉𝑂𝑖
|

8: else
9: 𝑐𝑗 remains unchanged

10: end if
11: end for
12: end for
13: Calculate 𝑎𝑖 = 𝐹𝑖+∝∗ 𝑐𝑖 for all 𝑖 ∈ 𝑁
14: Sort values from highest to lowest value of 𝑎𝑖 and reset index such that the SKU with the

highest value for 𝑎𝑖 is indexed as 𝑎1
15: Set 𝑥𝑖 = 1 for all 𝑖 ≤ 𝐶 and

Hill-climbing local search algorithm

Next to the greedy algorithm, a hill-climbing local search algorithm is used to improve allocation. This

algorithm will be run for a number of iterations (𝐼). The results section of this thesis will explain how

many iterations of this algorithm will be run. The local search algorithm is shown below:

Algorithm 2: Hill climbing local search algorithm

 Input data: Historical order data for one period, capacity 𝐶, Number of iterations 𝐼, batching
policy, neighborhood 𝑀
Result: The allocation for all SKUs 𝑖 ∈ 𝑁

1: Set InitAlloc = Allocate SKUs based on data of a period using FoO or TOS policy
2: Set BestAlloc = InitAlloc
3: Calculate InitDistance = Travel distance per order of the period using InitAlloc, given the

batching policy
4: Set BestDistance = InitDistance
5: for Iteration = 1 To 𝐼 do
6: Select two SKUs based on random location, one within 𝑀 in front of the capacity

border 𝐶, and one within 𝑀 behind the capacity border
7: Swap the SKUs to create CurrentAlloc
8: Calculate CurrentDistance = Travel distance per order of the period using

 CurrentAlloc, given the batching policy
9: if CurrentDistance <= BestDistance then
10: BestAlloc = CurrentAlloc
11: else
12: Reverse the swap
13: end if
14: end for

37

The algorithm above looks for the best possible allocation in terms of travel distance per order. With

a given batching policy, these travel distances can be calculated with different allocations. Allocations

will be made by swapping two SKUs. One SKU that is located in the front section is swapped with one

SKU in the back section of the warehouse. Those SKUs must be located within 𝑀 positions from the

capacity border 𝐶. So with 𝐶 = 400 and 𝑀 = 200, SKUs 201-400 can be swapped with SKUs 401-600.

The hill-climbing method only allows for better solutions to be saved and reverses swaps if the

allocation does not perform better given the batching method. When a new allocation has been found

for one period, the travel distance per order is calculated for the orders that are received in that same

period to determine the performance of the allocations on order data for the same period. This is also

done for the orders in the following period since in practice allocations are used for the period after

which the allocation is done.

To test the performance of all the above allocation methods, an experiment will be conducted using

company data from January 2020 till November 2020. This experiment allocates the SKUs to zones in

the warehouse using data of one period and checks the performance of the policies for orders received

in the following period.

38

7. Integrated design
To test the effect of the solution methods that are proposed and explained in the previous sections of

the report, several experiments have been set up using a case study. In this section of the report, these

experiments will be explained and the results of the experiments will be presented and interpreted.

The assumptions and constraints mentioned in the conceptual model section of this report are used in

the experiments in this section of the report. The different methods and algorithms discussed in

Section 6 are tested using company data from January 2020 till November 2020. To be able to test this,

the following values for the parameters are used:

Parameter Value

𝑪 400
𝑴 200
𝑪𝒃𝒂𝒄𝒌 76
𝑪𝒔𝒕𝒐𝒑 6

𝒓𝒂 2 ∗ 50 + 5 = 165
𝒓𝒃 2 ∗ 80 + 5 = 165

Figure 16: Fixed parameter values

7.1 Data analysis preparations
This section describes what data is used, how the data is cleaned, and how it is organized for modeling

and deployment to find the desired results. To support this description, Figure 17 displays a flowchart

that illustrates what data is used and what steps are followed to prepare and employ the data.

Figure 17: Data flow using CRISP-DM phases (Shearer et al., 2000)

First, raw company order data is collected. Data was available for orders that are received from January

2020 up to and including November 2020. This data is extracted out of the warehousing software used

by the company. An excel worksheet with more than 400,000 rows is extracted out of the warehousing

database. Each row is described as an order line; it states the article number, the article name, the

order number in which this article is ordered, the ordered quantity, the date and time of ordering, and

39

the customer name. In Section 2.3 of this report, part of this data is queried, visualized, and used to

identify relationships. The data is also verified to see how clean the data is. Two issues were found

when verifying the data. Two days were identified in which no orders are received. Those days are

simply skipped when analyzing the data. This will not cause any further issues. Furthermore, a few

orders were found that contained more than 16 units. Since this is impossible, these orders were

removed from the dataset. The remaining data is used to analyze the performance of the batching and

allocation methods described in this report. Since not all information of each order line is used, the

data was cleaned by removing some attributes. The attributes that are used in this research are: article

number, order number, date, and quantity. To make the data easier to analyze, the order date

attribute has been reformatted to day number. After reformatting, days are numbered from 1 to 335.

Earlier it is explained that SKUs will be allocated after periods consisting of 28 days. The data can

therefore be divided into 12 periods (11 periods of 28 days and one period of 27 days).

The remaining dataset, which is split into periods, will be used to analyze the allocation and batching

methods. Data of one period is used to make SKU allocations. Data of the following period is then used

to test the performance of the allocation method. The orders received in this data are batched using

the given batching method. After batching, distance calculations can be executed to find the

performance of both the allocation and batching method used. When using the local search method,

new allocations are made for each iteration. Therefore, the batching and distance calculations also

have to be executed for each iteration.

7.2 Batching method
To see the performance of the new batching method, it will be compared to the current method of

batching. The allocation that is used in the current method is the TOS policy. Therefore, this

comparison also uses TOS allocation. Table 3 shows the number of stops made using both batching

methods for comparison and the number of AB-batches to be able to compare the two methods.

Generating the batches for all periods using Python with a six-core CPU @3.2GHz takes around 15

minutes.

Current method New method

Period Nr of AB
batches

Nr of
stops

Nr of AB
batches

Nr of stops

1 629 21771 457 21866
2 928 34407 689 34442
3 1671 51191 1319 51837
4 1377 44845 1096 45240
5 1095 31266 833 31542
6 795 24918 558 25175
7 561 16884 352 17065
8 501 13600 320 13854
9 579 14635 323 15017

10 706 17635 442 18093
11 933 22523 605 22899

Total 9775 293675 6994 297030
Table 3: Comparison of current batching method and the new method in terms of number of AB-batches and number of
stops

To fill in the objective function given in Section 6.3, the total batches through the back section ∑ 𝑧𝑏𝑏∈𝐵

have to be found for both the current and new methods. In Table 3 we can find the number of stops

per period. These numbers are summed up to find ∑ ∑ 𝑢𝑖𝑏𝑏∈𝐵𝑖∈𝑁 . With the given parameters 𝐶𝑏𝑎𝑐𝑘

and 𝐶𝑠𝑡𝑜𝑝, we can now fill in the objective function for both methods.

40

Objective function value for current method: 76 ∗ 9775 + 6 ∗ 293675 = 2504950 seconds

Objective function value for new method: 76 ∗ 6994 + 6 ∗ 297030 = 2313724 seconds

We can see that the new batching method is indeed an improvement over the current method since

the outcome of the objective function is lower for the new method. The objective function shows that

191,226 seconds are saved over periods 1 to 11. This is a decrease of 7,6% in terms of picking time.

Since the new batching method outperforms the current method, the new method will be used to

calculate the main KPI: travel distance per order, for the remainder of this research.

7.3 SLAP
Allocation policies

To compare the two previously mentioned allocation policies (TOS and FoO), allocations will be made

using those policies. When SKUs are allocated to their zones according to the allocation policies,

incoming orders can be batched to see which of the policies performs best in terms of travel distance

per order given the batching policy. Using the FoO policy, the frequency of picks in the front section of

the warehouse is maximized. Therefore, the frequency of picks in the back section is minimized.

However, since most orders contain multiple SKUs and orders are batched with multiple other orders,

the minimization of picks in the back section does not imply that after batching, the back section is

visited less using this policy. Table 4 shows the travel distance per order (𝑀𝐷) for both policies. The

new batching method is used to find these results.

 TOS FoO

Period 𝑴𝑫 previous
period

𝑴𝑫 current
period

𝑴𝑫 previous
period

𝑴𝑫 current
period

1 23.088 24.521 23.375 24.498
2 23.314 24.785 23.824 25.095
3 23.835 25.027 24.140 25.303
4 24.303 25.256 24.563 25.484
5 23.793 24.842 24.032 25.069
6 23.263 24.056 23.384 24.341
7 22.775 23.343 22.976 23.793
8 22.516 23.567 22.354 23.525
9 21.715 22.954 21.761 22.861

10 21.057 23.651 20.845 23.321
11 21.231 23.581 21.079 23.425

Table 4: Travel distance per order for the previous and current period using the allocation of the previous period

As explained earlier, allocations are made using data of one period and used to calculate the travel

distance of the following period. This table also shows the travel distance for the same period of which

the data is used to allocate products. The columns that show these results are indicated by “𝑀𝐷

previous period” in the table above. The table indicates that after batching decisions, the TOS policy

outperforms the FoO policy. Both in the same period in which the allocation is made as in the following

period, the travel distance per order is smaller in the majority of the periods. A t-test confirms that the

mean value for the travel distance per order for the TOS policy is indeed significantly lower than the

FoO policy for the previous period column. However, in practice, the allocation is made for the

following period. In that case, the values of travel distance per order are not significantly better for

any of the two allocation policies according to another t-test. Both t-tests can be found in Appendix D.

41

Greedy construction algorithm

Table 5 shows the mean travel distance per order when the greedy algorithm is used. Running the

algorithm using Python with a six-core CPU @3.2GHz takes around 15 minutes of which most time is

spent generating the batches. Only seconds are used to allocate products. Since the difference in using

TOS or FoO policy is insignificant, the TOS policy has been used to calculate the travel distance per

order using this algorithm.

Period ∝= 𝟎 ∝= 𝟏 ∝= 𝟏𝟎 ∝= 𝟑𝟎 ∝= 𝟏𝟎𝟎

1 24.521 24.521 24.521 24.551 24.551
2 24.785 24.785 24.621 24.601 24.601
3 25.027 25.050 24.999 24.993 24.993
4 25.256 25.249 25.249 25.249 25.256
5 24.842 24.842 24.669 24.513 24.522
6 24.056 24.033 23.987 23.964 23.975
7 23.343 23.343 23.343 23.343 23.343
8 23.567 23.567 23.585 23.435 23.435
9 22.954 22.954 22.969 22.969 22.969

10 23.651 23.651 23.651 23.690 23.690
11 23.581 23.562 23.581 23.581 23.581

Table 5: Travel distance per order using the greedy construction algorithm with different values of alpha

The greedy construction algorithm is used to approximate the QAP given in Section 6.4. When a higher

value for alpha is used, the outcome of the objective function increases. Below, the objective function

is approximated for all 11 periods that are analyzed with a ∝ value of 0 and 30:

∑ 𝐹𝑖𝑥𝑖
𝑁
𝑖=1 + 0 ∗ ∑ ∑ 𝑃𝑖𝑗𝑥𝑖𝑥𝑗

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 = ∑ 𝐹𝑖𝑥𝑖

𝑁
𝑖=1 = 316837

∑ 𝐹𝑖𝑥𝑖
𝑁
𝑖=1 + 30 ∗ ∑ ∑ 𝑃𝑖𝑗𝑥𝑖𝑥𝑗

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 ≅ 317446.49

However, for the actual problem, which includes batching, increasing this objective function is not the

goal. A limited sensitivity analysis has been performed by using different values for alpha and see the

effect of this on the travel distance per order. Table 5 shows that the travel distance per order for

different values. The algorithm seems to be performing the best with ∝= 30. When comparing the

values using the greedy algorithm with the values of only using the TOS policy (indicated in Table 5

with ∝= 0) only slightly improves the allocation in terms of travel distance in some periods.

Hill climbing local search algorithms

Period TOSDistance InitDistance BestDistance ActualDistance Total orders

1 24.521 23.088 22.770 24.444 3942
2 24.785 23.314 22.938 24.690 5859
3 25.027 23.835 23.443 24.916 10542
4 25.256 24.303 23.946 24.909 8762
5 24.842 23.793 23.426 24.650 6933
6 24.056 23.263 22.856 24.050 5211
7 23.343 22.775 22.369 23.667 3702
8 23.567 22.516 21.908 23.314 3199
9 22.954 21.715 21.611 22.243 3883

10 23.651 21.057 20.466 23.575 4550
11 23.581 21.231 20.805 23.502 6214

Table 6: Travel distance per order per period using local search using TOS policy and 1,000,000 iterations

42

Figure 18: Travel distance per order per period using local search using TOS policy and 1,000,000 iterations

Table 6 and Figure 18 show the results of the usage of the hill-climbing local search algorithm. It shows

the travel distance per order and how this distance evolves during the local search algorithm. The

lower part of the data flow shown in Figure 17: Data flow using CRISP-DM phases (Shearer et al., 2000)

is followed to find the results using this algorithm. The number of iterations that is used in the local

search algorithm to get the results above is 1.000.000 per period. Running the algorithm using VBA

with a six-core CPU @3.2GHz takes around 5 hours. TOSDistance shows the distance traveled in the

current period based on turnover-based allocation using data of the previous period. InitDistance uses

the allocation of the previous period and shows the traveled distance for orders in that same period.

This Initial distance is improved using local search to get BestDistance. Lastly, ActualDistance shows

the distance traveled per order in the current period using the allocation made by the local search

algorithm in the previous period. The maximum traveled distance per order would be 27.5. This is

reached when all batches in a period would have at least one SKU that is placed in the back section of

the warehouse. The minimum distance would be 17.5. This is the travel distance per order if the back

section of the warehouse is not visited in that period.

The table and figure confirm that the local search algorithm does find a better allocation than the TOS

policy and the greedy construction algorithm do. The local search algorithm improves the greedy

construction allocation by only 0.3% in terms of travel distance per order. Moreover, when looking at

the ActualDistance, we see that the distance traveled in the next period based on the allocation using

the local search algorithm does significantly outperform the current situation (TOSDistance). The t-test

statistics in Table 16 in Appendix D show evidence of this significance. In terms of total distance

traveled in all periods, ActualDistance is only an 0.6% improvement over TOSDistance. This is equal to

9,641 meters over the 11 time periods (302 days). In this research, the best performance is reached

using the local search algorithm for allocation and the new batching method.

7.4 Discussion of results
In the case of Kuehne + Nagel, we see that the TOS policy slightly outperforms the FoO policy. It was

expected that the FoO policy would perform better since the number of items in one order was larger

than in comparable e-commerce warehouses. Typical e-commerce warehouses have 1-3 items per

order. In this case, an average of 6.5 different SKUs is ordered in one order. If all items would be picked

in separate picking routes, the FoO policy would outperform the TOS method. When entire orders are

20

21

22

23

24

25

26

1 2 3 4 5 6 7 8 9 10 11

D
is

ta
n

ce
 p

er
 o

rd
er

Period

TOSDistance InitDistance BestDistance ActualDistance

43

picked, however, and these orders are picked in batches that contain multiple orders, the TOS policy

seems to perform better.

The greedy algorithm uses the probability that SKUs are ordered together. In a situation in which the

average number of different SKUs in an order is low, using this probability would be more effective.

This case at K+N is special since the items do not correlate one to one. Many different combinations

of SKUs in orders exist since a maximum of 16 SKUs can be ordered. Therefore using the probability of

SKUs being ordered together to reallocate SKUs does not necessarily mean that there are orders

consist of only those SKUs. The correlation matrix used is created using the same data that is used to

find the results of the allocation methods in this report. We see that the greedy algorithm does perform

slightly better than the TOS policy in the periods in which the most orders are received. This could be

the case since the results of the correlation analysis are the most applicable to these periods. It is

concluded that using the greedy algorithm is not optimal since using correlations, in this case, is too

complex.

However, based on the few correlations that do exist in each period, local search can find allocations

that actually places less frequently ordered SKUs in the front section of the warehouse. These SKUs

will be placed in the front section using local search since these SKUs are, in that period, often ordered

with SKUs that are ordered frequently. Local search is therefore the best performing allocation method

of the methods analyzed in this research. Because of the unpredictable demand, however, the

improvement that this type of allocation brings is limited. When the local search algorithm finds better

allocation for one period, this does not mean that this allocation performs better in terms of travel

distance in the next period. When demand is more stable, local search algorithms that operate in a

similar method would become more effective.

In practice, local search algorithms can be run for a long time. In this report, 1,000,000 has been used

as the number of iterations per period. Figure 19 shows that after 200,000 iterations, the results found

by the algorithm do not improve in large steps any longer. Therefore, using a larger number of

iterations seem to be unnecessary.

Figure 19: Mean distance per order using different numbers of iterations

Next to the number of iterations, other, more complex methods of local search can be used to find

better results for the allocation. This research shows that even with simple local search methods, the

22,7

22,75

22,8

22,85

22,9

22,95

23

0 200000 400000 600000 800000 1000000 1200000

M
ea

n
 d

is
ta

n
ce

 p
er

 o
rd

er

Nr. of iterations

44

allocation for one period can be improved. However, because of the instability of the demand, the

effect of the allocation improvement found by local search is limited.

The new allocation method saves 9,641 meters over the 11 time periods (302 days), which is a small

saving. With a travel speed of 0.79 m/s, the time that would have been saved in this time period is 203

minutes. The new batching method however does provide significant savings. Using the new method,

2781 routes that would have traveled through the back section using the old batching method, only

travel through the front section using the new method in these 11 periods. With this, 166,860 meters

are saved. This is equal to 3520 minutes with the travel speed of order pickers. The number of stops

did however increase using the new batching method. The extra time that is needed for those stops is

only 336 minutes. In 2020, the batching method would have saved the warehouse around 65 hours of

picking time.

45

8. Conclusion
In this research, it is investigated if the implementation of a new allocation and batching method would

be beneficial for the considered company. When deciding on what allocation method should be used,

it is important to see what characteristics compared to other e-commerce warehouses the company

has. The newly defined Frequency of Ordering allocation policy does not seem to perform better for

this company but might perform better for warehouses that receive orders that consist of a higher

number of different SKUs. In the case of this company, a turnover-based policy works better than the

FoO policy. Using a greedy construction algorithm that uses the probability of two SKUs being ordered

together, or a hill-climbing local search algorithm does allow for a significant, but limited improvement

of allocation in this situation because of the unstable demand pattern.

The local search algorithm used in this report can improve allocation for companies for which demand

is stable and predictable. For this warehousing system at Kuehne + Nagel, the demand is unpredictable.

Allocations made using the local search algorithm based on data of one period are therefore often not

optimal for the demand that is received in the next period.

The batching method used in this research utilized the layout of this warehousing system. The current

batching method only minimizes the number of stops made by pickers. The company should consider

using the batching method developed in this report. The new batching method significantly improves

the traveling distance. For this company, the implementation of a system that uses new allocation and

batching methods would result in a decrease in traveling distance by 9.1%. In terms of hours saved,

this company could save 56 hours in picking time over 302 days.

46

9. Limitations and future work
In this section, limitations of the current study and aspects that could be included in future research

are elaborated.

- The research that is done in this report is restricted to the system explained in the conceptual

design section of the report. The system consists of only two picking aisles with one cross-aisle

and fixed routing. The research could be extended when a system with more picking aisles,

more cross-aisles, or different routing methods can be analyzed. Also, the performance of the

algorithm can be tested when the capacity of the front section of the warehouse relative to

the assortment size differs. The results indicate that the FoO allocation policy could work

better when a larger portion of the total assortment can be allocated in the front section. The

research can also be extended to see how such a system would operate when a single location

consists of multiple SKUs.

- In the research, the reallocation of SKUs is done actively. This means that when SKUs are

assigned to another zone in the warehouse, they will be directly reallocated. In practice, SKUs

often get allocated to a new position once the old location has been picked empty. Designing

an allocation system in which the reallocation of products is done passively is more complex

and would add value to literature.

- Changing the length of the period after which reallocation takes place can also add value to

literature. Reallocating more or less often could be beneficial for the company. This research

does not include the trade-off between reallocation costs and the travel distance savings that

are made using the allocation methods.

- A limitation to the local search algorithm is that it uses one period to decide on which items

are placed in which zone in the warehouse. Enlarging this optimization period could make for

better performance. Since in this case, the assortment size is reduced over the year 2020 and

no information about when items were no longer in the assortment is available, it could also

be beneficial to make the optimization phase of the local search algorithm smaller since this

will prevent products that are no longer available to be allocated to the front section of the

warehouse. Also, value could be added to this research if other methods of allocation that

could perform better are used as a starting solution to the local search algorithm.

- The final limitation discussed in this report is that the demand in this case study is extremely

unstable and unpredictable. Conducting other case studies in which the demand of SKUs is

more stable and with better information about when SKUs are available might lead to

significant improvements in the performance of this system.

47

References
Aboelfotoh, A., Singh, M., & Suer, G. (2019). Order batching optimization for warehouses with

cluster-picking. Procedia Manufacturing, 39(2019), 1464–1473.
https://doi.org/10.1016/j.promfg.2020.01.302

Azadnia, A. H., Taheri, S., Ghadimi, P., Mat Saman, M. Z., & Wong, K. Y. (2013). Order batching in
warehouses by minimizing total tardiness: A hybrid approach of weighted association rule
mining and genetic algorithms. The Scientific World Journal, 2013.
https://doi.org/10.1155/2013/246578

Bartholdi, J., & Hackman, S. (2011). Warehouse & distribution science 2007. Available on Line
at:/Http://Www. Tli. Gatech. Edu/ …, January, 299. https://doi.org/http://www.warehouse-
science.com/

Bertrand, J. W. M., Wortmann, J. C., Wijngaard, J., Suh, N. P., Jansen, M. M., Fransoo, J. C., de Kok, A.
G., & de Jonge, T. M. (2016). Design of Operations Planning and Control Systems (DOPCS). 192.

Boysen, N., de Koster, R., & Weidinger, F. (2019). Warehousing in the e-commerce era: A survey. In
European Journal of Operational Research (Vol. 277, Issue 2, pp. 396–411).
https://doi.org/10.1016/j.ejor.2018.08.023

Boysen, N., Stephan, K., & Weidinger, F. (2019). Manual order consolidation with put walls: the
batched order bin sequencing problem. EURO Journal on Transportation and Logistics, 8(2),
169–193. https://doi.org/10.1007/s13676-018-0116-0

Bozer, Y. A., & Kile, J. W. (2008). Order batching in walk-and-pick order picking systems. International
Journal of Production Research. https://doi.org/10.1080/00207540600920850

Cano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A. (2017). An evaluation of picking routing
policies to improve warehouse efficiency. International Journal of Industrial Engineering and
Management, 8(4), 229–238. www.iim.ftn.uns.ac.rs/ijiem_journal.php

Choy, K. L., Sheng, N., Lam, H. Y., Lai, I. K. W., Chow, K. H., & Ho, G. T. S. (2014). Assess the effects of
different operations policies on warehousing reliability. International Journal of Production
Research, 52(3), 662–678. https://doi.org/10.1080/00207543.2013.827807

Chuang, Y. F., Lee, H. T., & Lai, Y. C. (2012). Item-associated cluster assignment model on storage
allocation problems. Computers and Industrial Engineering, 63(4), 1171–1177.
https://doi.org/10.1016/j.cie.2012.06.021

Clement, J. (2019). • Global retail e-commerce market size 2014-2023 | Statista. Statista.
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/

Cortés, P., Gómez-Montoya, R. A., Muñuzuri, J., & Correa-Espinal, A. (2017). A tabu search approach
to solving the picking routing problem for large- and medium-size distribution centres
considering the availability of inventory and K heterogeneous material handling equipment.
Applied Soft Computing Journal, 53, 61–73. https://doi.org/10.1016/j.asoc.2016.12.026

Dallari, F., Marchet, G., & Melacini, M. (2009). Design of order picking system. International Journal
of Advanced Manufacturing Technology, 42(1–2), 1–12. https://doi.org/10.1007/s00170-008-
1571-9

de Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking:
A literature review. In European Journal of Operational Research (Vol. 182, Issue 2).
https://doi.org/10.1016/j.ejor.2006.07.009

Dijkstra, A. S., & Roodbergen, K. J. (2017). Exact route-length formulas and a storage location

48

assignment heuristic for picker-to-parts warehouses. Transportation Research Part E: Logistics
and Transportation Review, 102, 38–59. https://doi.org/10.1016/j.tre.2017.04.003

Frazelle, E. H., & Apple, J. M. (1994). Warehouse operations. In J. A. Tompkins & D. A. Harmelink
(Eds.), The Distribution Management Handbook (pp. 22.1-22.36). McGraw-Hill.

Frazelle, E. H., & Sharp, G. P. (1989). Correlated assignment strategy can improve any order-picking
operation. Industrial Engineering, 21(4), 33–37.
http://portal.acm.org/citation.cfm?id=72479.72482

Gademann, N., & van de Velde, S. (2005). Order batching to minimize total travel time in a parallel-
aisle warehouse. IIE Transactions (Institute of Industrial Engineers).
https://doi.org/10.1080/07408170590516917

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-
Completeness (Series of Books in the Mathematical Sciences). Computers and Intractability.

Glock, C. H., & Grosse, E. H. (2012). Storage policies and order picking strategies in U-shaped order-
picking sytems with a movable base. International Journal of Production Research, 50(16),
4344–4357. https://doi.org/10.1080/00207543.2011.588621

Gómez-Montoya, R. A., Correa-Espinal, A. A., & Hernández-Vahos, J. D. (2016). Picking Routing
Problem with K homogenous material handling equipment for a refrigerated warehouse.
Revista Facultad de Ingenieria, 2016(80), 9–20. https://doi.org/10.17533/udea.redin.n80a02

Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE
Transactions (Institute of Industrial Engineers), 25(4), 76–87.
https://doi.org/10.1080/07408179308964306

Hansen, J. R., Fagerholt, K., Stålhane, M., & Rakke, J. G. (2020). An adaptive large neighborhood
search heuristic for the planar storage location assignment problem: application to stowage
planning for Roll-on Roll-off ships. Journal of Heuristics, 26(6), 885–912.
https://doi.org/10.1007/s10732-020-09451-z

Henn, S., & Wäscher, G. (2012). Tabu search heuristics for the order batching problem in manual
order picking systems. European Journal of Operational Research.
https://doi.org/10.1016/j.ejor.2012.05.049

Ho, Y. C., Su, T. S., & Shi, Z. Bin. (2008). Order-batching methods for an order-picking warehouse with
two cross aisles. Computers and Industrial Engineering, 55(2), 321–347.
https://doi.org/10.1016/j.cie.2007.12.018

Hsu, C. M., Chen, K. Y., & Chen, M. C. (2005). Batching orders in warehouses by minimizing travel
distance with genetic algorithms. Computers in Industry, 56(2), 169–178.
https://doi.org/10.1016/j.compind.2004.06.001

Hua, W., & Zhou, C. (2008). Clusters and filling-curve-based storage assignment in a circuit board
assembly kitting area. IIE Transactions (Institute of Industrial Engineers), 40(6), 569–585.
https://doi.org/10.1080/07408170701503462

Jane, C. C., & Laih, Y. W. (2005). A clustering algorithm for item assignment in a synchronized zone
order picking system. European Journal of Operational Research, 166(2), 489–496.
https://doi.org/10.1016/j.ejor.2004.01.042

Kulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and
multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services
and Manufacturing Journal, 24(1), 52–80. https://doi.org/10.1007/s10696-011-9101-8

49

Laudon, K. C., & Traver, C. G. (2016). E-commerce 2016: business. technology. society. In Global
Edition.

Le Duc, T., & de Koster, R. (2005). Travel Distance Estimation in Single-block ABC- Storage Strategy
Warehouses (pp. 185–200). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-
17020-1_10

Lee, M. K., & Elsayed, E. A. (2005). Optimization of warehouse storage capacity under a dedicated
storage policy. International Journal of Production Research, 43(9), 1785–1805.
https://doi.org/10.1080/13528160412331326496

Lee, Moon Kyu. (1992). A storage assignment policy in a man-on-board automated storage/retrieval
system. International Journal of Production Research, 30(10), 2281–2292.
https://doi.org/10.1080/00207549208948155

Li, J., Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the
online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447–
461. https://doi.org/10.1080/00207543.2016.1187313

Li, Z., & Zhou, Z. (2013). An effective batching method based on the artificial bee colony algorithm for
order picking. Proceedings - International Conference on Natural Computation.
https://doi.org/10.1109/ICNC.2013.6818006

Liu, C. (2004). Optimal Storage Layout And Order Picking For Warehousing. Operations Research,
1(1), 37–46.

Menéndez, B., Pardo, E. G., Alonso-Ayuso, A., Molina, E., & Duarte, A. (2017). Variable Neighborhood
Search strategies for the Order Batching Problem. Computers and Operations Research.
https://doi.org/10.1016/j.cor.2016.01.020

Pang, K. W., & Chan, H. L. (2017). Data mining-based algorithm for storage location assignment in a
randomised warehouse. International Journal of Production Research, 55(14), 4035–4052.
https://doi.org/10.1080/00207543.2016.1244615

Park, B. C., & Lee, M. K. (2007). Closest open location rule under stochastic demand. International
Journal of Production Research, 45(7), 1695–1705.
https://doi.org/10.1080/00207540600855007

Petersen, C. G. (1999). The impact of routing and storage policies on warehouse efficiency.
International Journal of Operations and Production Management, 19(10), 1053–1064.
https://doi.org/10.1108/01443579910287073

Petersen, C. G. (2009). AN EVALUATION OF ORDER PICKING POLICIES FOR MAIL ORDER COMPANIES.
Production and Operations Management, 9(4), 319–335. https://doi.org/10.1111/j.1937-
5956.2000.tb00461.x

Petersen, C. G., Aase, G. R., & Heiser, D. R. (2004). Improving order-picking performance through the
implementation of class-based storage. International Journal of Physical Distribution & Logistics
Management, 34(7), 534–544. https://doi.org/10.1108/09600030410552230

Petersen, C. G., & Schmenner, R. W. (1999). An evaluation of routing and volume-based storage
policies in an order picking operation. In Decision Sciences (Vol. 30, Issue 2, pp. 481–501).
Decision Sciences Institute. https://doi.org/10.1111/j.1540-5915.1999.tb01619.x

Pinto, A. R. F., & Nagano, M. S. (2019). An approach for the solution to order batching and
sequencing in picking systems. Production Engineering. https://doi.org/10.1007/s11740-019-
00904-4

50

Queyranne, M. (1986). Performance ratio of polynomial heuristics for triangle inequality quadratic
assignment problems. Operations Research Letters. https://doi.org/10.1016/0167-
6377(86)90007-6

Ratliff, H. D., & Rosenthal, A. S. (1983). ORDER-PICKING IN A RECTANGULAR WAREHOUSE: A
SOLVABLE CASE OF THE TRAVELING SALESMAN PROBLEM. Operations Research.
https://doi.org/10.1287/opre.31.3.507

Reyes, J. J. R., Solano-Charris, E. L., & Montoya-Torres, J. R. (2019). The storage location assignment
problem: A literature review. International Journal of Industrial Engineering Computations,
10(2), 199–224. https://doi.org/10.5267/j.ijiec.2018.8.001

Scholz, A., Henn, S., Stuhlmann, M., & Wäscher, G. (2016). A new mathematical programming
formulation for the Single-Picker Routing Problem. European Journal of Operational Research,
253(1), 68–84. https://doi.org/10.1016/j.ejor.2016.02.018

Shearer, C., Watson, H. J., Grecich, D. G., Moss, L., Adelman, S., Hammer, K., & Herdlein, S. a. (2000).
The CRISP-DM model: The New Blueprint for Data Mining. Journal of Data Warehousing.

Theys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in
warehouses. European Journal of Operational Research, 200(3), 755–763.
https://doi.org/10.1016/j.ejor.2009.01.036

Valle, C. A., Beasley, J. E., & da Cunha, A. S. (2016). Modelling and solving the joint order batching and
picker routing problem in inventories. Lecture Notes in Computer Science (Including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9849 LNCS, 81–97.
https://doi.org/10.1007/978-3-319-45587-7_8

Won, J., & Olafsson, S. (2005). Joint order batching and order picking in warehouse operations.
International Journal of Production Research, 43(7), 1427–1442.
https://doi.org/10.1080/00207540410001733896

Yaman, H., Karasan, O. E., & Kara, B. Y. (2012). Release time scheduling and hub location for next-day
delivery. Operations Research, 60(4), 906–917. https://doi.org/10.1287/opre.1120.1065

Yang, P., Miao, L., Xue, Z., & Ye, B. (2015). Variable neighborhood search heuristic for storage
location assignment and storage/retrieval scheduling under shared storage in multi-shuttle
automated storage/retrieval systems. Transportation Research Part E: Logistics and
Transportation Review, 79, 164–177. https://doi.org/10.1016/j.tre.2015.04.009

Yang, P., Zhao, Z., & Guo, H. (2020). Order batch picking optimization under different storage
scenarios for e-commerce warehouses. Transportation Research Part E: Logistics and
Transportation Review, 136. https://doi.org/10.1016/j.tre.2020.101897

Yoon, C. S., & Sharp, G. P. (1996). A structured procedure for analysis and design of order pick
systems. IIE Transactions (Institute of Industrial Engineers).
https://doi.org/10.1080/07408179608966285

Yu, M., & De Koster, R. (2010). Enhancing performance in order picking processes by dynamic storage
systems. International Journal of Production Research, 48(16), 4785–4806.
https://doi.org/10.1080/00207540903055693

Zhang, R. Q., Wang, M., & Pan, X. (2019). New model of the storage location assignment problem
considering demand correlation pattern. Computers and Industrial Engineering, 129(December
2018), 210–219. https://doi.org/10.1016/j.cie.2019.01.027

Žulj, I., Kramer, S., & Schneider, M. (2018). A hybrid of adaptive large neighborhood search and tabu

51

search for the order-batching problem. European Journal of Operational Research.
https://doi.org/10.1016/j.ejor.2017.06.056

52

Appendices
Appendix A: Batching algorithm example

The following is an example of the batching algorithm given in Section 6.3. Assume that 12 orders

have arrived in a day. To simplify this problem, all orders consist of 4 different SKUs of which 4 units

are ordered (i.e. each order consists of 16 units). In this example, 20 different SKUs consist.

The allocation decisions in this example state that SKU 1-15 are located in the front section (𝑥𝑖 = 1)

and SKU 16-20 in the back section (𝑥𝑖 = 0) of the warehouse. The following table shows the SKUs of

all orders 𝑜 without the quantity of the SKUs:

 𝑜 SKU SKU SKU SKU Pool

1 2 4 12 20 AB

2 1 5 8 13 A

3 5 7 8 14 A

4 7 10 11 15 A

5 1 2 3 4 A

6 4 6 16 19 AB

7 1 2 3 4 A

8 6 8 9 11 A

9 2 3 5 6 A

10 2 3 4 6 A

11 8 11 12 15 A

12 2 6 10 18 AB
Table 7: SKUs per order

According to the batching algorithm we start with 𝑜 = 1 and check if all SKUs are in the front section,

this is not the case. Thus, order 1 will be added to AB-orders. This step is repeated for all orders. The

table above shows which order pool each order is added to according to steps 1-10 of the batching

algorithm.

Step 11 of the algorithm checks if there are more than six orders left in A-order pool. At the start, this

is more than six so we start batching for orders {2,3,4,5,7,8,9,10,11}. Between all pairs of those

orders, the Jaccard coefficients are calculated in step 12. These coefficients are shown in Table 8.

 2 3 4 5 7 8 9 10 11

2
3 0,33
4 0,00 0,14
5 0,14 0,00 0,00
7 0,14 0,00 0,00 1,00
8 0,14 0,14 0,14 0,00 0,00
9 0,14 0,14 0,00 0,33 0,40 0,14

10 0,00 0,00 0,00 0,60 0,60 0,14 0,60
11 0,14 0,14 0,33 0,00 0,00 0,14 0,00 0,00

Table 8: Jaccard coefficient of order pairs

In step 13, the order pair with the highest Jaccard coefficient is combined. According to the above

table, orders 5 and 7 are combined. The Jaccard coefficients of all orders with this batch are first

calculated in step 15 and shown in Table 9. In step 16 the order with the highest coefficient with the

combination is added to the batch. Order 10 will now be added to the batch. Steps 15 and 16 are

repeated until 6 orders are in the batch. Table 9 shows all steps that create the first batch.

53

 {5,7} {5,7,10} {5,7,9,10} {2,5,7,9,10}

2 0,14 2 0,13 2 0,25 3 0,20

3 0,00 3 0,00 3 0,11 4 0,00

4 0,00 4 0,00 4 0,00 8 0,20

8 0,00 8 0,13 8 0,11 11 0,09

9 0,33 9 0,50 11 0,00

10 0,60 11 0,00

11 0,00
Table 9: Jaccard coefficient calculations per step

When 6 orders are in the batch. The batch (combination) will be saved and the orders will be
removed from the order pool. The combination that is removed from the order pool is {2,3,5,7,9,10}.
Since only 3 orders remain in the A-orders pool, step 11 of the algorithm states that we will go to
step 19. All remaining A-orders are added to the AB-order pool. Since the number of remaining
orders in the AB-orders pool is not more than six, step 31 will be executed. The remaining orders in
this pool will therefore be batched. In this example, the two batches that are created are
{2,3,5,7,9,10} and {1,4,6,8,11,12}.

54

Appendix B: Correlation matrix

The following table shows the correlation coefficients of the SKUs that have a coefficient. All other

combinations of SKUs will have a coefficient of 0.

SKU 𝒊 SKU 𝒋 Coefficient

723830000100 723830000216 0,263596276

723830000216 723830000100 0,428343949

87232172 87232363 0,516506922

87232363 87232172 0,311696658

723830000100 0723830778139 0,237138658

0723830778139 723830000100 0,48839556

5411098730314 87232363 0,283118406

87232363 5411098730314 0,310411311

5411718912236 5411718912250 0,475987193

5411718912250 5411718912236 0,469473684

723830000216 0723830778139 0,347929936

0723830778139 723830000216 0,440968718

5411718912274 5411718912236 0,380514706

5411718912236 5411718912274 0,441835646

5411718912274 5411718912250 0,375919118

5411718912250 5411718912274 0,430526316

4260473460060 7446022822894 0,327022375

7446022822894 4260473460060 0,351526364

723830000100 0723830770010 0,185693288

0723830770010 723830000100 0,330715532

87232172 5411098730314 0,389776358

5411098730314 87232172 0,214536928

5411718912311 5411718912250 0,43765586

5411718912250 5411718912311 0,369473684

5411718912298 5411718912311 0,431673052

5411718912311 5411718912298 0,421446384

723830000100 87232363 0,164135228

87232363 723830000100 0,21529563

8714799404728 8718868044006 0,147335423

8718868044006 8714799404728 0,405172414

0723830778139 0723830770010 0,326942482

0723830770010 0723830778139 0,282722513

5411718912298 5411718912236 0,412515964

5411718912236 5411718912298 0,344717182
Table 10: Correlation matrix

55

Appendix C: Greedy algorithm example

The following is an example of the greedy algorithm given in Section 6.2 that allocated SKUs to zones

in the warehouse:

Order data is received for one period. To simplify this example problem, we assume that 20 different

SKUs have been ordered in the considered period. In this example the capacity in zone A, denoted as

𝐶, is set to 12. Step 1 and 2 of the greedy algorithm makes an initial allocation based on the

Frequency of Ordering or the SKUs. Table 11 shows the 𝐹𝑖 values for each SKU.

𝒊 SKU 𝐹𝑖

 1 1 200

2 2 192

3 5 183

4 4 175

5 15 164

6 6 158

7 7 151

8 16 132

9 9 129

10 17 113

11 19 112

12 8 100

13 13 87

14 14 74

15 3 50

16 11 44

17 18 38

18 20 28

19 12 26

20 10 5
Table 11: 𝐹𝑖 for each SKU

For the SKUs with 𝑖 = 1 to 12 in Table 11, the correlations are checked. 𝑐𝑗 is first set to 1. If any of

the SKUs correlate, the value 𝑐𝑗 for the correlating SKU 𝑗 will be set to 𝑐𝑗 + 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑐𝑗 +
|𝑉𝑂𝑖𝑗

|

|𝑉𝑂𝑖
|
.

Table 12 shows the correlations between SKUs and the corresponding confidence value.

56

SKU 𝒊 SKU 𝒋 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆

1 4 0.58

2 6 0.51

2 9 0.42

2 14 0.58

4 1 0.48

6 2 0.21

7 13 0.65

9 2 0.42

13 7 0.24

14 2 0.29
Table 12: correlated SKUs with confidence values

When values for 𝑐𝑖 are all calculated, 𝑎𝑖 = 𝐹𝑖+∝ 𝑐𝑖 will be calculated in step 13. Step 14 sorts the
values for 𝑎𝑖 from highest to lowest and resets the index for 𝑖. These values are shown in Table 13
Finally, in step 15 we set 𝑥𝑖 = 1 for all 𝑖 ≤ 𝐶. All SKUs with value 𝑥𝑖 = 1 are now allocated to the
front section of the warehouse. All other SKUs are allocated to zone B. In this example, SKU 1, 2, 4, 5,
6, 7, 9, 13, 14, 15, 16, and 17 are allocated to zone A, and SKU 3, 8, 10, 11, 12, 18, 19, and 20 are
allocated to zone B.

 𝒊 SKU 𝑎𝑖

1 1 244,4

2 2 240,9

3 4 222,4

4 6 203,3

5 9 183,2

6 5 183

7 13 171,6

8 15 164

9 7 151

10 16 132

11 14 121,4

12 17 113

13 19 112

14 8 100

15 3 50

16 11 44

17 18 38

18 20 28

19 12 26

20 10 5
Table 13: SKUs sorted on Ai value

57

Appendix D: Comparison of allocation policies using t-tests

This appendix shows the t-tests that compare the values of the travel distance per order of the two

different allocation policies that are discussed in this thesis (TOS and FoO). Table 14 shows that the

values for travel distance per order are significantly lower when using the TOS policy. The values that

are tested are travel time per order for the same period of which the data is used to make the

allocation. Table 15 is created using values for the travel time per order for the following period (i.e.

the allocation is made using data of one period and is used to batch orders and calculate the travel

distance for the next period). Table 15 shows the insignificant difference of values of the 11 periods

analyzed in this report.

 FoO TOS

Mean 22,93936364 22,80818182

Variance 1,602148455 1,163537164

Observations 11 11

Pearson Correlation 0,993688137

Hypothesized Mean Difference 0

df 10

t Stat 1,903623362

P(T<=t) one-tail 0,043053149

t Critical one-tail 1,812461123

Table 14: T-test statistics showing the significantly lower values of travel time per order for TOS policy

 FoO TOS

Mean 24,24681818 24,14390909

Variance 0,829348564 0,601483891

Observations 11 11

Pearson Correlation 0,971357721

Hypothesized Mean Difference 0

df 10

t Stat 1,408501988

P(T<=t) one-tail 0,094653281

t Critical one-tail 1,812461123

Table 15: T-test statistics showing the insignificant difference of the values of travel time per order for both allocation
policies

 LS TOS

Mean 23,99636364 24,14390909
Variance 0,686059055 0,601483891
Observations 11 11
Pearson Correlation 0,953000396

Hypothesized Mean Difference 0

df 10

t Stat -1,94709488

P(T<=t) one-tail 0,040066667

t Critical one-tail 1,812461123

Table 16: T-test statistics showing the significantly lower values of travel time per order when using local search allocation
compared to the TOS policy

