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SUMMARY 

Hospitals in the Netherlands struggle to provide cost-efficient high quality healthcare to an 

increasingly aging population. National regulations and profit driven healthcare insurers require 

hospitals to strike a balance between providing care for everyone while keeping expenses within 

the set budget. The yearly national healthcare cycle requires hospitals to forecast healthcare 

demand one year in advance, where deviations in fault margins lead to lower treatment 

compensation to cover for hospital expenses. The more accurate a hospital is able to forecast 

next year’s healthcare demand, the more treatment compensation is received.  

Instead of looking at general historical healthcare consumption, this research approaches 

healthcare demand on an individual patient level basis by incorporating sequential electronic 

healthcare records (EHR). The machine learning subfield of deep learning offers the capabilities 

of automatically detecting sequential healthcare demand patterns unrecognisable by humans 

and leveraging these uncovered patterns in order to predict future outcomes. Therefore, this 

research aims to validate the predictive performance of the Doctor AI (Choi et al., 2016c) 

recurrent neural network (RNN) architecture to leverage sequential temporal relationships 

stored in patient centred EHRs as to more accurately forecast future healthcare demand. To 

validate the results of the Doctor AI method, it is applied to seven different models with four 

different hierarchical levels on a local Dutch hospital’s dataset with around 1.8 million EHRs 

from 240k unique patients.  

The results of this research show that only the highest hierarchical level of hospital specialism 

yields a performance that is good enough to be deployed in forecasting praxis, of 75,4% 

accuracy@3 and 72,6% recall@3. The lower and most detailed hierarchical levels of healthcare 

products, ICD10-parents, and ICD10-blocks do not yield high enough predictive performance. 

The hospital specialism model is able to predict at which of the 21 different specialisms the 

patient will be treated next, but loses out on the granular information of the lower hierarchical 

levels. Due to this loss of information, the model is not able to improve the healthcare demand 

forecasting fault margins. By incorporating the hospital specialism results into the forecasting 

of the healthcare demand, the model is able to achieve a raw estimate within the right order of 

magnitude, but deviates more than 10% from the current hospital’s praxis on all three analysed 

cycles of 2017 until 2019. 

It can be concluded that machine learning in general has huge potential in predicting healthcare 

demand and is able to handle the challenges of patient centric EHR data. However, the results 

of this research show that not every algorithm achieves the same level of performance when 

applied to a different dataset in a different setting. More research on and comparison of different 

methods and datatypes is necessary to improve performance on the lower hierarchical levels.  
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1.  INTRODUCTION 

The healthcare system in the Netherlands is based on managed competition where everybody 

is insured under the same minimum basic conditions (Van de Ven & Schut, 2009). Health 

insurers are obliged to accept all individuals, which ensures that the quality of healthcare is 

independent of age, income or any other (socio-)demographic aspect (van den Berg et al., 2011). 

Although the system has shown improvements on efficiency and overall cost over the past 

years, the Netherlands has one of the highest health expenditures per capita in Europe 

(Kroneman et al., 2016). Due to its aim of equal care for all, like other OECD (Organisation for 

Economic Co-operation and Development) countries, the Netherlands faces the challenge of 

“providing high quality health and long-term care services to an ageing population in a cost-

efficient manner” (Schut et al., 2013, p. 2). The biggest challenge Dutch hospitals face is to 

slow the growth of healthcare expenses to the nationally agreed upon target of 0% by the year 

2022 (FMS, 2018) while the cost of healthcare is expected to double over the next decade (Schut 

et al., 2013), and insurers are leaning towards efficiency and cutting operating costs (Van de 

Ven & Schut, 2009). 

The financial target of 0% growth of expenses is made more difficult as hospitals in the 

Netherlands are required to budget and therefore forecast healthcare demand one year in 

advance. Healthcare demand for a hospital is defined as the number of specific treatments (often 

categorized per specialism) that will be consumed. This means that hospitals need to know one 

year in advance how many treatments (per specialism) will be sold to the market. As the market 

is a form of managed competition, the only buyers are the numerous healthcare insurance 

companies. Based on the forecasted healthcare demand and national normed prices, the 

hospitals and insurers agree on the maximum number of treatments that will be financially 

covered for the next year. In agreeing on a set budget one year in advance, the hospital locks in 

the maximum revenue for that year as the insurance companies will not pay out more to cover 

expenses. Every patient treatment above the forecasted amount will therefore be treated on the 

full expense of the hospital. Every patient treatment below the forecasted amount will not be 

paid out in full by the insurers, again restraining retrieved treatment compensation. Because of 

this, Dutch hospitals are losing out on potential insurance compensation every time the forecast 

of healthcare demand is off, thereby directly impacting its operational margins and increasing 

the healthcare expenses it has set to decrease. 

Forecasting healthcare demand accurately requires correct predictions on both the number and 

type of patients who enter the hospital (Finarelli & Johnson, 2004; Kaplan & Porter, 2011). As 

healthcare demand is derived from patients who require treatment, forecasting healthcare 

demand could be developed on an almost patient level basis. There lies a key opportunity in 

predicting on a patient level, as hospitals are rapidly adopting Electronic Health Records (EHR) 

systems and the structuring and quantity of patient data are becoming increasingly available 

(Bates et al., 2014; Wiens & Shenoy, 2018). These EHR systems house a large and complex 

variety of data, which warrant the use of machine learning applications (Wiens & Shenoy, 

2018). The recent increased popularity and adoption of EHR systems and the huge size of daily 

generated patient data (Bates et al., 2014) can explain the increased interest in machine learning 

within the healthcare sector. The number of studies where machine learning shows good 

performance in predicting healthcare demand is growing (Chen et al., 2017; Dahlem et al., 

2015; Jensen et al., 2012; Lin et al., 2017; Milovic & Milovic, 2012). This growing interest can 
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also be recognised in the forecasting of healthcare demand and predict treatment outcomes by 

machine learning in specific fields like diabetes (Prasad & Agarwal, 2014), heart attacks 

(Srinivas et al., 2010) and oncology (Chen et al., 2020; IBM Watson for Oncology, 2020 

Microsoft Project InnerEye, 2020). But most importantly machine learning is validated in 

outperforming traditional healthcare demand forecasting methods in areas like blood 

transfusion (Khaldi et al., 2017), trauma patients (Galatzer-Levy et al., 2014), emergency 

patients (Zlotnik et al., 2015) and patient key resource demand (Jiang et al., 2017). These 

applications of machine learning on EHR data show that machine learning algorithms cannot 

only identify treatment demand, but can also help in identifying previously hidden patterns in 

the development of and relationship between different diseases. In detecting disease 

development and the sequential relation between diseases, improvements are made in the 

predictability and demand of future healthcare, thereby potentially decreasing costs (Bhardwaj 

et al., 2017; Roysden & Wright, 2015; Srinivas et al., 2010). The potential decrease in cost as 

has been acknowledged by Callahan & Shah (2017) and Bates et al. (2014) lies in the early 

identification of potential high-cost and high-risk patients, as they are responsible for the 

biggest part of the yearly healthcare consumption and cost. Leveraging the knowledge of 

disease patterns and identifying (potential) high healthcare consumers is becoming increasingly 

important as this increases the predictability of the yearly healthcare demand. Not predicting 

future healthcare demand accurately carries the risk for healthcare providers of treating patients 

at their own cost. Although profit margins are not and should not be the main healthcare 

incentives, “it is vitally important for healthcare organizations to acquire the ability to leverage 

machine learning tools effectively or else risk losing potentially millions of dollars in revenue 

and profits” (Raghupathi & Raghupathi, 2014, p. 2). 

Deploying machine learning on EHR data could help to more accurately forecast healthcare 

demand and decrease healthcare expenditures, both “advancing the field toward precise 

preventive care to lower overall health care costs and deliver care more efficiently” (Yang et 

al., 2017, p. 1; Yang et al., 2018, p. 1). Additional better forecasting can also enable hospitals 

to better balance and better fit their health services to the demand (Soyiri & Reidpath, 2013). 

Although healthcare data is a large source of future opportunities, healthcare practises are 

different from profit driven industries. They present researchers with “unique challenges that 

complicate the use of common methodologies” (Ghassemi et al., 2018, p. 1). To be more 

concrete, this involves the handling of sensitive patient data, missing data, and the impact of 

wrong conclusions. However, machine learning shows promising results in better recognising 

hidden patterns that forecast healthcare demand. In the progress of being integrated into 

healthcare practises, more research and identification of practical applications is required 

(Wiens & Shenoy, 2018), especially as modern machine learning techniques on EHR data “have 

not been widely and reliably used in clinical decision support systems or workflows” (Miotto 

et al., 2016, p. 1). Therefore, the aim of this research is to test machine learning predictive 

performance in a local hospital context, in order to contribute to the validation of real-world 

machine learning application and improve on forecasting performance. 
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1.1 BUSINESS PROBLEM IN CONTEXT 

In order to understand the introduced problem in business context, this research utilizes the data 

and processes at VieCuri Medisch Centrum in Venlo. VieCuri operates in a region which is 

predicted to have one of the highest and fastest aging populations in the Netherlands during the 

next twenty years (De Jong & Van Duin, 2010). More background information about VieCuri 

Medisch Centrum can be found in Appendix A. Some core numbers on the service area and 

number of patients over the last three years are displayed in Table 1. 

VieCuri Medisch Centrum, as any other Dutch hospital, must budget and forecast the yearly 

number of patients and their presumed treatments one year in advance to make accurate 

agreements with the different insurance companies. This means that there is a set number of 

patients which can consume a set number of treatments each year. Although within a specialism 

the budget can be reallocated under very strict conditions during the year, the budget is usually 

fixed for that specialism. If the forecast within a specialism is met exactly, the hospital is paid 

the full agreed upon yearly amount by the insurance companies. However, if there are less 

patients treated in a particular year, the hospital is only partially compensated, while on the 

other hand every treatment over budget is at the full expense of the hospital. This yearly 

continual balance between budgets that are too low or too high results in the situation where 

every deviation in fault margin on the forecasted healthcare demand cuts into the profitability 

of the hospital. 

 

Table 1: VieCuri Medisch Centrum in numbers 

- 

The first analysis of the problem at hand is the healthcare product forecasting performance over 

the last three financial years. Three years of data were used as these were available for the 

research. Besides calculating fault margins per product and specialism, this analysis included 

the translation of performed treatments towards the missed revenue as a result of that. VieCuri 

offers over 8.000 different healthcare products ranging from the treatment of a bruised ankle to 

cornea surgery. Of these 8.000 products, 3.395 have been sold at least once to one of the 

insurance companies such as VGZ, CZ, or Menzis. Of those 3.395 products, 1.027 accounted 

for 80% of the revenue.  

 

Table 2: Forecasting performance on the top ten healthcare products 

Year Service 

Population 

Patient 

Consults 

Unique 

Outpatients 

Patient 

Admissions 

2017 280.000 333.174 110.566 18.324 

2018 280.000 339.926 109.869 18.736 

2019 257.190 337.637 109.295 17.796 

Healthcare 

Product 

Hospital 

Specialism 

2017 2018 2019 

Number Budget Number Budget Number Budget 

140301007 Internal Medicine 101 2,2% -185 -4,1% -368 -8,1% 

131999052 Orthopaedics 47 10,7% 26 5,9% 15 3,4% 

131999104 Orthopaedics -8 -2,0% 44 11,1% 1 0,3% 

070401008 Ophthalmology -172 -3,5% 368 7,5% 91 1,8% 

079799020 Ophthalmology 373 2,8% 134 1,0% 993 7,4% 

979001219 Cardiology 29 10,0% 3 1,0% 41 14,1% 

099899050 Cardiology 31 13,7% 1 0,4% 11 4,8% 

099699100 Surgery 29 19,1% 25 16,5% -24 -15,8% 

109999068 Pulmonology -12 -5,6% 5 2,1% 0 0,0% 

028899033 Gastroenterology -36 -1,8% 1156 57,9% 1037 51,9% 



4 
 

Table 2 illustrates the forecasting performance over the last three years for the top ten most sold 

healthcare products. The first product (140301007) is performed at the internal medicine 

hospital specialism and is a treatment for a non-clinical chronic renal insufficiency of the lowest 

severity, also known as a low severity dialysis. Dialysis treatment for 2017 was forecasted to 

be performed a total of 4.347 times, but was actually performed a total of 4.448 times, resulting 

in 101 more treatments during that year or roughly 2 more per week, therewith costing 2,2% 

more on treatment expenses that year. On the other hand, the same product was performed 185 

(3,5 times per week) and 368 (7 times per week) times less than budgeted the two years after, 

resulting in less compensation on treatment expenses by 4,1% and 8,1% accordingly. The 

forecasting process on moving averages is executed only once a year for the following one as 

the healthcare system in the Netherlands functions on a yearly budgeting cycle for all institutes, 

healthcare providers, and insurance providers. The impact of a doctor who is on long term leave, 

or spikes of demand in a specific specialism during the year, can therefore only be corrected 

during the forecast of the next cycle. Due to the complexity of healthcare trajectories a previous 

year does not always accurately predict the next, as can be seen in the high dispersion of 

forecasting fault margins in both Table 2 and Figure 1. Figure 1 shows the distribution of fault 

margins from the aforementioned top 1.027 products (80% of revenue) over the years 2017 to 

2019. The fault margin in the individual healthcare products range between -100% until an 

extreme 41.600% off. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Forecasting performance on the top 1027 healthcare products 

 

Within a specialism there is flexibility in combining specific healthcare product budgets. This 

means that the overperformance of one healthcare product can be compensated with the 

underperformance of another, as long as the treatments are offered by the same specialism. For 

example, if arthrosis treatment of the hips or pelvis is performed more in a single year, but the 

demand for arthrosis treatment of the knee is low, the budgets can be levelled, as they are 

treatments which belong to the orthopaedic department and specialism. However, these budget 

deviations cannot compensate for the under- or overperformance of a bronchopneumonia 

treatment, which belongs to the pulmonology department and specialism. Therefore, instead of 

only looking at the error margin of individual healthcare products, it is of higher interest to look 
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at the aggregated margin of error per specialism. In Table 3 the aggregated too low and too high 

forecasted fault margins per specialism are shown. The hospital specialisms are ordered on the 

size of their revenue from highest to lowest. By not zooming in on only the average but at both 

the too low and too high aggregated forecasting fault margin, this overview gives a better insight 

into the severity of the forecasting error as it shows treatments which were not compensated (+) 

and treatments which were not covered in full (-). The average of the fault margin per specialism 

cannot be recovered and is therefore a direct loss of treatment compensation. For the last three 

years this has resulted in a loss of €5.129.930 in 2017, €8.065.545 in 2018 and €8.855.869 in 

2019.  

VieCuri has recognised a problem in the increasing loss of treatment compensation in 

combination with an aging region and the accompanying expected increase in healthcare costs; 

on the other hand, the national agreement has pledged to reduce the growth of healthcare 

expenses to 0% in the year 2022 (FMS, 2018). This combination of factors has contributed to 

the belief that predicting future healthcare demand in its current yearly moving average format 

is not sufficient anymore. Being able to predict healthcare demand more accurately is not only 

the basis for adequate budgeting, but also the foundation of capacity planning and availability 

of resources (Kaplan & Porter, 2011). As the amount of EHR data, which is stored on a daily 

basis, cannot be analysed efficiently by hand, VieCuri is interested in learning how to 

incorporate modern machine learning tools in order to interpret the large amounts of data in a 

timely and efficient manner in order to better forecast healthcare demand. 

 

Table 3: Forecasting performance per specialism 

 

  

Hospital specialism 2017 2018 2019 

Over Under Over Under Over Under 

Cardiology CAR 10,0% -10,2% 7,7%  -9,4% 11,5% -7,9% 

Surgery HLK 10,2% -9,3% 12,1% -9,3% 9,1% -12,7% 

Internal Medicine INT 9,0% -7,3% 11,7% -9,1% 8,8% -8,3% 

Orthopaedics ORT 13,4% -4,7% 12,4% -10,3% 10,2% -9,4% 

Pulmonology LON 8,4% -6,4% 6,1% -6,1% 7,9% -6,5% 

Ophthalmology OOG 3,5% -2,0% 5,5% -0,6% 8,8% -1,9% 

Gastroenterology GAS 11,0% -8,7% 22,8% -11,1% 22,6% -10,3% 

Gynaecology and Obstetrics GYN 12,4% -5,2% 7,4% -6,0% 8,2% -10,8% 

Urology URO 9,6% -4,7% 11,5% -4,2% 16,6% -4,0% 

Neurology NEU 8,2% -6,3% 14,0% -4,9% 16,8% -16,1% 

Throat, Nose and Ear KNO 7,6% -5,5% 8,2% -6,3% 11,4% -7,1% 

Paediatrics KIN 21,7% -14,2% 15,1% -23,0% 12,2% -19,9% 

Dermatology DER 4,0% -6,4% 7,8% -4,0% 5,7% -7,8% 

Plastic Surgery PCH 11,8% -4,5% 15,4% -5,1% 19,3% -3,7% 

Geriatrics GER 23,8% -1,7% 20,0% -15,8% 0,3% -14,5% 

Rheumatology REU 7,8% -5,9% 15,4% -2,6% 3,2% -4,2% 

Anaesthesiology ANA 10,3% -16,7% 29,2% -10,7% 37,2% -18,0% 

Neurosurgery NCH 13,6% 0,0% 0,0% -5,9% 0,0% -12,2% 

Rehabilitation REV 0,0% -0,4% 0,1% 0,0% 0,1% 0,0% 

Loss of treatment compensation € € 5.129.930 € 8.065.545 € 8.855.869 

Average fault margin % 3,0% 4,8% 5,2% 
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1.2  RESEARCH QUESTIONS 

This research aims to answer the question whether machine learning is able to predict healthcare 

demand more accurately than the VieCuri current practise. Hospitals can use these insights to 

better predict and manage the budgeting of specific treatments, obtain a more accurate forecast 

and keep treatment costs affordable. The main research question is therefore as follows: 

a 

How can VieCuri Medisch Centrum more accurately forecast healthcare demand applying 

machine learning on EHR data in order to decrease loss of treatment compensation? 

a 

To answer the main research question a set of sub-questions are formulated. First, a literature 

review is conducted in order to determine which present published machine learning methods 

would be theoretically most suitable for the application of healthcare product prediction in state 

progression/time series within the healthcare context. Therefore, the first sub-question is 

formulated as follows: 

     Q1: Which machine learning methods would be theoretically most suitable in forecasting  

     healthcare demand according to present published literature? 

 

Secondly, the correct variables needed as input for the selected methods need to be extracted 

from the VieCuri EHR database. In order to compile the correct dataset from the data warehouse 

the following sub-question is formulated: 

     Q2: Which EHR variables need to be extracted from the VieCuri database as input for the  

     identified machine learning methods? 

 

Thirdly, the identified machine learning method is trained and tested on the compiled dataset 

of variables in order to determine the performance on predicting healthcare demand. To gain 

knowledge in the performance of the selected method the sub-question is as follows: 

     Q3: What is the performance of the identified machine learning methods on the available  

     VieCuri EHR dataset? 

 

Finally, the financial impact of incorporating the machine learning method in the forecasting of 

healthcare demand at VieCuri is discussed. Hence, the final sub-question: 

     Q4: What would be the financial impact of incorporating the selected machine learning  

     method into the yearly process of forecasting healthcare demand at VieCuri? 
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1.3  THESIS OUTLINE 

Chapter 1 as presented above introduces the subject and business problem of this research and 

defines the questions which are answered in the following chapters. Chapter 2 focusses on 

existing literature on the topic of machine learning in healthcare, the nature of EHR data, and 

the application of deep learning within this field. It also presents the approach that is followed 

in performing the systematic literature review and thereby answers the first sub-question on 

most suitable existing machine learning algorithms. In order to generalize the results of the in 

chapter 2 identified methods in predicting future healthcare demand, this research aims to 

validate the methods on the EHR data of the local VieCuri Medisch Centrum. The gathered 

VieCuri data and methodology of the selected machine learning algorithm of this research is 

therefore discussed in more detail in chapter 3. Chapter 3 thus answers the second sub-question 

of this research and elaborates on the applied method. The performance metrics, which are 

applied to evaluate the methods performance, are also introduced in this chapter. In chapter 4 

the results of the different machine learning algorithm configurations are analysed and 

explained; furthermore, this chapter goes more in depth on the potential financial impact of 

incorporating machine learning in VieCuri forecasting praxis. Therewith, the chapter answers 

both the third and fourth sub-question of this research. Chapter 5 outlines the conclusion and 

discussion of this research, which answers the main research question and discusses the 

limitations, theoretical and practical relevance. 
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2.  THEORETICAL BACKGROUND 

In this chapter the first sub-question of the research is answered. The first paragraph of this 

chapter outlines the complex nature of EHR data as it poses some unique challenges in contrast 

to other types of data. The following subparagraph 2.1.1 is dedicated to introducing the subject 

of machine learning and its scope within the field of healthcare, as it identifies some clear 

distinctions from other fields of application. This section concludes with paragraph 2.1.2 where 

the subfield of deep learning is elaborated upon, as its advantages can be applied to the problem 

of diagnosis and healthcare demand prediction. Section 2.1 on EHR data, machine learning, 

and deep learning together contributes to understanding of the research field and its defining 

characteristics; the gained knowledge has contributed in both the focus and framing of the right 

search query for the literature review that follows. The literature review, of which first the 

methodology is explained in paragraph 2.2 and secondly the assessment of identified methods 

is explained in paragraph 2.3, contributes to the identification and understanding of existing 

machine learning methods on diagnosis prediction. By combining the acquired knowledge and 

the literature review results this chapter concludes with paragraph 2.4, in which the 

identification of three existing machine learning algorithms is presented. These three methods 

are capable of solving the problem at hand of predicting future healthcare demand. 

 

2.1  COMPLEXITY OF EHR DATA 

Electronic Health Record (EHR) data is the collection of all historical patient files most often 

stored on an individual patient level basis in large data warehouses. An EHR file is a digitalized 

representation of patient-centred, real-time records which contains medical information, 

treatment history, lab tests and other results of any hospital visit or admission. The sources from 

which EHR data can be retrieved differ largely and are typically compiled from either insurance 

claims, pharmacy details, local clinic EHR files or when aggregated, a combination of the three. 

There is no one standard type of EHR data, therefore a whole array of different datasets for 

predictive models can be recognised. Most often they include patient demographics and either 

one or a combination of the following data fields: diagnostic codes, procedure codes, clinical 

notes, stay period, insurance amount claimed, amount reimbursed, self-reported health status, 

images etc. (Zhao et al., 2005; Pietz et al., 2004). One of the challenges of working with EHR 

data is the encoding of all these different types of data into an (often vectorised) dataset for 

analysis purposes. Due to its temporal nature, an EHR patient file typically consists of multiple 

inpatient records. As previous medical events can have an impact on future visits, capturing the 

dependencies of these medical records is crucial in predicting future diagnosis (Ruan et al., 

2019). In order to create understanding of the process of capturing medical events and 

visualizing the process of healthcare predictions using EHR data, Solares et al. (2020) included 

Figure 2 in their research, which illustrates the concept of leveraging vectorized EHR data to 

predict future healthcare outcomes. 

Known issues in handling EHR data are the temporality nature, high dimensionality, large 

volume, sparseness, incompleteness, noise, random error, systematic bias, and different data 

types - categorical (procedure codes, diagnosis codes, drug codes, gender), numeric (BMI), time 

series (sensor data), dates (admission date, discharge date), natural free text (clinical notes), and 

scans (images) (Ruan et al., 2019; Sheets et al., 2017).  
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Figure 2: The concept of representation learning to healthcare prediction (Solares et al., 2020 p. 1) 

 

Problems occur when extracted data features with simple encoding schemes are used to 

represent the heterogeneous nature of EHR data. Hand-crafted schemas like categorization of 

continuous features, label encoding, frequency, or one-hot-encoding fail to capture the latent 

similarities between medical concepts. Representation learning methods in contrast create more 

dense and low-dimensional vectors while capturing the semantics in context. These advantages 

can be used in machine learning applications. Representation learning is gaining popularity in 

various fields, as it eliminates the need of time-consuming feature engineering, and it extracts 

and organizes the similarity and discriminative information from the data in vector forms (Deng 

et al., 2010; Seidi et al., 2011; Coates & Ng, 2011; Yu et al., 2011; Bengio et al., 2013). 

Although methods differ from one another (Choi et al., 2016a; Nguyen et al., 2016; Zhou et al., 

2017) representation learning can capture the underlying dependencies between visits, diseases, 

or cluster diagnosis, and thereby overcome the problems of sparse high dimensional medical 

codes and the struggle of capturing the temporal-hierarchical nature of EHR data. The 

underlying dependencies in EHR data are especially important in identifying patterns in health 

development, which are between different healthcare domains, as cause and effect are not 

always obvious when being limited to a single domain or specialism (Solares et al., 2020).  

Due to the complexity and the different policies of different countries, there is not one 

standardized approach of recording EHR data. Even between hospitals or different hospital 

specialisations the data that is captured can differ. Therefore, if the data is to be used to draw 

generic conclusions, acting on the limitations of local data is of importance. Morton et al. (2016) 

acknowledged the importance of standardized codes for medical data fields and pointed out 

how several data entries may be deemed useless for data mining applications in absence of 

these. Although the World Health Organization (WHO) has put great efforts in standardizing 

medical classification codes for both diseases and procedures (ICD-standard), the 

implementation of this framework can still vary between countries and institutes. It is therefore 
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of great importance to understand that applying similar models, even when applied to the same 

problem, can yield different results between data from different EHR systems (Lin et al., 2017; 

Morton et al., 2016). As Lin et al. (2017) explained throughout their paper: there is no guarantee 

a machine learning algorithm performs equally compared to another on any hospital dataset it 

is applied to. Acknowledged by many of the incorporated researches (Galatzer-Levy et al., 

2014; Jiang et al., 2017; Khaldi et al., 2017; Miotto et al., 2016; Prasad & Agarwal, 2014; 

Roysden & Wright, 2015; Srinivas et al., 2010; Yang et al., 2017; Zlotnik et al., 2015) more 

validation of methods should be done which only incorporate data from a single data source or 

single geographic region in order to show generalisable forecasting power on other EHR 

datasets before qualifying them as good forecasting methods. 

As discussed in this paragraph, EHR data can house a wide variety of datatypes, and researchers 

are faced with challenges in applying their methods due to the complexity of EHR data. 

Although more validation on present methods is needed to show generalisability of results, 

complexity of EHR data can be addressed within the domain of machine learning. As 

introduced in chapter 1 and more elaborated upon in the following paragraphs, machine learning 

and in particular deep learning is able to identify and leverage previously hidden patterns in 

EHR data, which contribute in forecasting future healthcare demand. 

 

2.1.1  MACHINE LEARNING IN HEALTHCARE 

Machine learning represents a wide field of multidisciplinary applications, which in the basis 

consists of mathematics, statistics, and computer sciences. The core concept of machine 

learning is the automated process of learning from data. Instead of explicitly programming rules 

and making a computer execute those rules, a model is constructed that learns to optimize a 

mathematical function based on a large amount of data that is fed to a model. Such a data driven 

approach can be recognised in many different fields of research, such as natural language 

processing (Yala et al., 2017), image recognition (Rahane et al., 2018), speech to text translation 

(Chung et al. 2019), and this paper’s topic of interest: medical diagnosis. Medical predictions 

such as diagnosis, disease, and healthcare outcome prediction are the major application 

scenarios for machine learning methods within in the healthcare domain (Jensen et al., 2012). 

In general there are two main approaches to machine learning, which can both be recognised in 

healthcare predictions. The first and most widely adopted is supervised learning, which involves 

training algorithms using known examples and labels of medical events such as prediction of 

mortality rate (Pitocco et al., 2018), readmission rate (Billings et al., 2012; Silverstein et al., 

2008; Upadhyay et al., 2019), patient resource demand (Jiang et al., 2017), days of admission 

(Hachesu et al., 2013; Morton et al., 2014; Xie et al., 2014; Xie et al., 2015), future medical 

codes (Shi et al., 2018; Shickel et al., 2017), or future costs (Jödicke et al., 2019; Zhao et al., 

2005). The second approach is unsupervised learning, where the algorithm explores the data 

and develops a structure or pattern without knowing the output. Examples of this can be found 

in discovering risk patients from doctors’ notes (Mikolov et al., 2013), lung cancer detection 

from images (Rahane et al., 2018), or partitioning Alzheimer patients (Alashwal et al., 2019). 

Although a lot of research (Ahamed & Farid, 2018; Li et al., 2020b; Yoon et al., 2016) has been 

done on how machine learning can assist doctors in determining treatment or prescriptions for 

patients by predicting future healthcare demand, potential financial implications lag behind. 

The potential financial gains of incorporating machine learning in healthcare prediction have 
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been addressed by some (Bhardwaj et al., 2017; Callahan & Shah 2017; Dahlem et al., 2015; 

Huff et al., 2018; Panch et al., 2018; Rose 2018 Zeng et al., 2020), however only one of them 

(Zeng et al., 2020) conveys by how much this impact could potentially be, leaving room for 

validation of these claims. In order for this research to validate machine learning performance 

as well as potential financial impact on the current forecasting methodology, the reliance on 

labelled data is of importance. Therefore, this research relies on the current most dominant 

machine learning approach of supervised learning.  

Leveraging machine learning to accurately predict future patients’ healthcare demand would 

not only assist in future healthcare planning, but also in predicting future expenditure, and in 

allocating the resources to efficiently optimize cost as a result (Bhardwaj et al., 2017; Yang et 

al., 2017; Yang et al., 2018). Several studies have concluded that a large percentage of hospital 

expenditures is contributed to patients suffering from certain chronic diseases, diseases having 

high procedural cost or resource cost, and patients suffering from multiple diseases, with age 

also playing a major role (Bakx et al., 2016; Dove et al., 2003; Wammes et al, 2017). Predicting 

the type of patient and the number of patients falling into these categories are significantly 

important factors for forecasting healthcare demand and expenditure (Finarelli & Johnson, 

2004; Kaplan & Porter, 2011; Xie et al., 2015). In other words, the patients with the highest 

consumption of care also tend to utilize the highest future consumption of healthcare and are 

therefore responsible for the biggest part of healthcare expenses.  

Traditional methods across the machine learning spectrum (logistic regression, naive bayes, 

decision trees, random forests, support vector machines (SVM), and multilayer perceptron 

(MLP)) have been applied within healthcare predictions and more particularly on EHR data. 

However, these methods have shown that working with EHR data and capturing its underlying 

dependencies can be challenging (Barati et al., 2011; Kam et al., 2010; Lei, 2017; Morton et 

al., 2014). As the volume of healthcare data increases on a continual basis (“150 exabytes in 

the United States alone, growing 48% annually” (Esteva et al., 2019, p. 24)) the more traditional 

machine learning techniques struggle without expert knowledge in all specific healthcare fields 

of application. Within the last ten years most of the literature on analysing EHR data has been 

focused on statistical and machine learning techniques as identified by Murphy (2012). Only in 

the last few years have deep learning methods overtaken traditional methods as the dominant 

field of research (Shickel et al., 2017). 

 

  

 

 

 

 

 

 

 

Figure 3: A traditional ML vs DL approach using NN based representation learning (Du et al., 2019 p. 70) 
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Deep learning, more than the aforementioned traditional methods, can contribute greatly in (1) 

identifying the underlying dependencies between patient visits and occurring diseases, without 

the need of expert domain knowledge. Additionally, deep learning utilizes previously hidden 

patterns (2) to predict which patients will need certain care over an extended period of time. 

Exactly these patterns over longer time sequences play an important role in predicting future 

healthcare demand (Solares et al., 2020). Another advantage that deep learning has over 

traditional machine learning methods is that it does not rely solely on experts feature 

engineering, but it is able to learn representations in an end-to-end fashion (Du et al., 2019) as 

is visualized in Figure 3. With traditional methods a doctor or other domain knowledge expert 

on, for example, cardiovascular diseases is needed to extract and process the features which 

contribute to the prediction of vein thrombosis in a particular population. Deep learning on the 

other hand is able to effectively construct the features itself, and relies more on the patterns it 

discovers in the data. This is particularly an advantage in predicting outcomes across different 

healthcare domains, as future healthcare demand prediction does. 

 

2.1.2  DEEP LEARNING AND ITS ADVANTAGES 

The concept of deep learning is a subfield within the machine learning domain and has seen 

increased interest over the last few years, driven by the increased capabilities in computational 

power and the availability of big data. More specifically, in the domain of future healthcare 

diagnoses, the recent attention can be explained by current achievements in capturing long-

range dependencies in healthcare data in an effective manner (Goodfellow et al., 2016; Solares 

et al., 2020; Xiao et al., 2018). At the core, deep learning is a form of representation learning 

that is composed of multiple so-called layers, which for the interest of this research consists of 

layers of patient (data) representations. The deep learning methodologies suitable for diagnosis 

prediction are most often able to translate EHR patient data in order to develop an often 

vectorized/binary patient representation, which is then used for pattern recognition. These 

multiple representation layers are most commonly arranged in sequential order and are 

composed of a large number of primitive, nonlinear operations, such that the representations of 

one layer (beginning with the raw patient data) feeds into the next (Esteva et al., 2019). The 

process where data flows from one layer to the next layer results in an output which is iteratively 

distorted. This distortion makes the algorithm able to learn highly complex functions as it 

summarizes how the distances between the embedded points deviate from the original distances 

between two datapoints. 

Traditional methods in healthcare have focused their efforts on analysing the past (after the 

fact) and rely heavily on expert knowledge of the involved medical variables, as well as on the 

variable collection and aggregation from data warehouses. Deep learning offers a great 

advantage in the field of machine learning as it is able to recognize hidden patterns which allow 

for personalized clinical prediction on a patient level by applying end-to-end models on raw 

patient data (Gehrmann et al., 2018). Deep learning distinguishes itself here from other methods 

as it transforms the inputs of an algorithm into outputs leveraging data driven rules which are 

automatically derived from a large set of patient data, rather than being explicitly defined or 

able of being detected by humans as is visualised in Figure 3 (Al-Aiad et al., 2018). 
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Especially within the clinical prediction of the healthcare domain, deep learning methods have 

shown to be both flexible (by incorporating multiple different types of raw patient data) and 

capable of handling large and complex datasets (longitudinal event sequences and continuous 

monitoring data) (Xiao et al., 2018). “It is widely held that 80% of the effort in an analytic 

model is pre-processing, merging, customizing, and cleaning datasets” (Rajkomar et al., 2018, 

p. 1). Deep learning requires structural represented data in order to leverage its capability in 

identifying hidden patterns. This offers an advantage over other predictive modelling 

techniques as those require the custom creation of a dataset for the specifically intended 

outcome. Therefore, the scalability of deep learning is not limited when compared to the more 

traditional methods (Rajkomar et al., 2018; Xiao et al., 2018). Doctors and other domain experts 

in a certain healthcare specialism are specialised in, and therewith limited to, a particular part 

of the human body. This creates a well-known gap of knowledge on the different dependencies 

between diseases from different specialisms, or on the recognition of visiting patterns when not 

limited to the doctor’s expertise. Deep learning is not concerned with or limited to the domain 

experts’ expertise on a single disease, specialism, or gland, and is more capable of leveraging 

the cross domain existing patterns previously hidden (Liang et al., 2019; Shickel et al., 2017; 

Choi et al. 2016c). 

The argued distinctive features deep learning brings to the forecasting of healthcare demand are 

(1) the capability of automatically detecting patterns unrecognisable by human detection and 

(2) leveraging these uncovered patterns in order to predict scalable future outcomes. The 

combination of these two features has shown to drive better performance than traditional 

machine learning methods within the healthcare domain. Simultaneously, deep learning 

requires less pre-possessing of patient data and expert domain knowledge for feature 

engineering, which both can be recognised as time-consuming endeavours considering the size 

and complexity present in EHR data (Khaldi et al., 2017; Galatzer-Levy et al., 2014; Jiang et 

al., 2017; Shickel et al., 2017; Zlotnik et al., 2015). When presented with enough computational 

power to execute the model from end-to-end, deep learning methods can accelerate the process 

of accurate healthcare demand forecasting and assist in many other medical applications of 

detecting patterns or predicting probabilities. 
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2.2  LITERATURE REVIEW METHODOLOGY 

The goal of the conducted literature review is the identification of suitable machine learning 

algorithms capable of predicting healthcare demand across multiple domains and different 

diagnoses and illnesses. The last three paragraphs on EHR data, machine learning, and deep 

learning combined provide the context for a more narrowed and focused literature review. In 

order to find previously suggested algorithms, the literature review uses present systematic 

reviews on the topic of deep learning on EHR data in order to formulate the relevant search 

queries. four recent comparative systematic reviews into healthcare demand or diagnosis 

prediction within the deep learning domain (Al-Aiad et al., 2018; Shickel et al., 2017; Solares 

et al., 2020; Xiao et al., 2018) were the starting point of the executed literature study. The results 

of the studies differ, as was anticipated, but overlap can be recognised in the array of discussed 

methods. Leveraging the information of these four studies, the final search query was 

constructed. The search query was executed in the databases of Web of Science (WoS), Scopus 

and IEEE/IES Xplore (IEEE) and included only published studies. The inclusion criteria for 

extracting the articles from the databases are shown in Table 4 and explained in more detail in 

Appendix B. In Figure 4 a visualisation of the followed approach for the literature review is 

shown, and a more detailed version is also explained in Appendix B. All the methods which 

reached the final assessment were used in one iteration of backwards snowballing (Wohlin, 

2014) in order to discover any missed methods, which were also assessed on the basis of the 

inclusion criteria as described in Table 4. 

 

Table 4: Inclusion criteria for the literature review per phase 

 

  

Phase Inclusion Criteria 

Initial Search Query * Language is (English OR German OR Dutch) 

* Timespan of online publishment is (∞ ; 11-2020] 
a 

First Assessment 

Reading of Title & Abstract 

* Article presents a method that predicts any  

   diagnoses/diseases/healthcare outcomes 

* Article is available online in full text 
a 

Second Assessment 

Scanning of Abstract, Data Descriptives, Conclusion, 

Discussion & Implications 

* Method has shown performance on predicting  

   multiple diagnoses or diseases simultaneously 

* Method is validated on a real patient dataset 
a 

Final Assessment 

Reading of Full Article 

* Method incorporates the factor time as output in  

   order to restrict diagnoses/diseases in yearly  

   prediction 
a 
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Figure 4: Step by step approach of the literature review 
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2.3  ASSESSMENT OF IDENTIFIED MACHINE LEARNING METHODS 

The results of this literature review are a combination of articles found in the three databases 

and the articles which were presented in the four aforementioned literature reviews. After the 

initial search query through the three databases the following number of articles were identified: 

Scopus 70 articles, Web of Science 33 and IEEE/IES Xplore 27. Due to a certain overlap of the 

three databases this resulted in a total of 83 unique articles. As Figure 5 illustrates with the 

distribution of publications within the domain of EHR predictions, most articles were published 

very recently. It is therefore no surprise that the publication years of these 83 articles are also 

relatively recent ranging from 2014 until 2021. 13 unique articles, which were presented by the 

four incorporated literature reviews, were added to this set retrieved from the search query in 

the next round of assessment. After this first assessment a total of 58 unique articles were 

considered relevant in predicting some form of disease, diagnosis, or clinical outcome and 

included the total set of the three databases and four literature reviews. From these 58 unique 

articles 45 were dropped, mainly for the reason that the presented method was validated on a 

specific disease or binary outcome prediction. Although some of these methods could be 

applied to more than one diagnosis cluster, they were not validated on more than one outcome 

and were therefore disregarded in this research. To give some examples: this included methods 

for coronary heart disease (Du et al., 2020), sceptic shock (Lin et al., 2018), length of stay & 

readmission time (Huang et al., 2016), or hospital cost & length of stay (Feng et al., 2017). The 

13 remaining articles were analysed in full and were considered for the problem at hand. These 

methods are summarized in Table 5 listed below. One iteration of the by Wohlin (2014) 

introduced method of backward snowballing was performed on all the references of the 13 

articles in order to identify any other machine learning method. Although both deep learning 

and traditional methods (such as random forests, SVM, and rule-based) were considered from 

this first reference iteration, none of them would satisfy the in Table 4 described inclusion 

criteria. As the backward snowballing delivered no method to be included, the 13 articles listed 

in Table 5 are considered the final set for this research. 

The first main distinction which can be drawn from the identified methods is the type of tasks 

they are performed on. The majority of articles (six) relied on supervised learning where both 

the labelled input and output were known. This concerned the methods Doctor AI (Choi et al. 

2016c), LSTM with dropout and target replication (named LSTM-DO-TR) (Lipton et al., 2016), 

Dipole (Ma et al., 2017), RNN (LSTM) with multiplicative attention mechanism (named 

RNNY) (Mu et al., 2018), RNN (GRU) with demographic information (named RNN-INFO) 

(Wang et al., 2018), and Multilevel Self-Attention Model (MSAM) (Zeng et al., 2020). The 

second most dominant type of task which was identified concerned unsupervised learning. In 

most cases the unsupervised ancestors or neighbouring diseases clustering was the distinctive 

feature to identify them as such. The following five methods are regarded as unsupervised: 

Med2Vec (Choi et al., 2016a), Graph-based Attention Model (GRAM) (Choi et al., 2017), 

Graph Neural networks based Diagnosis Prediction (GNDP) (Li et al., 2020a), Knowledge-

based Attention Model (KAME) (Ma et al., 2018), and Deep Patient (Miotto et al., 2016). To 

conclude, the two most recent published methods Fusion of CNN, BLSTM and Attention 

Mechanisms (named FCNBLA) (Wang et al., 2020), and Heterogeneous Graph Learning 

Model (HGM) (Wanyan et al., 2020) performed a semi-supervised task. 
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Table 5: Machine learning methods which predict future healthcare demand 

Author, 

Year 

Name Method Approach Dataset, 

Population 

Pre-Processing Input Output Training 

and Test 

Validation Results Source* 

Wang et 

al. 2020 

FCNBLA Semi-

Supervised; 

DL 

CNN;  

Bi-LSTM; 

Attention 

Yang Data, 18k, 

10 codes 

Word embedding of 

patient representation 

Vectorized word 

embedding of medical 

records and notes 

Predict future 

diagnosis 

Train: 70% 

Test: 20% 

Val: 10% 

Dx: Recall/macro           0.905 

Precision/macro             0.923 

F-score/macro                0.913 

Accuracy                        0.928 

Scopus 

Wanyan 

et al. 

2020 

HGM Semi-

Supervised; 

DL 

FFNN; 

Graph 

 

MIMIC-III, 4k, 

3k codes 

Vectorized graph 

embedding 

Vectorized graphical 

patient representations 

Predict future 

diagnosis 

Cross 

validation 

method 

Dx: F-score                    0.751 

       AUC                        0.834 

Scopus 

Li et al. 

2020a 

GNDP Unsupervised; 

DL 

GNN (CNN); 

Attention; 

Graph 

MIMIC-III, 7k, 

5k codes, Dataset-

II, 14k, 5k codes 

Binary vectorization 

of representation 

Spatial & time-ordered 

sequence of patient visits 

& medical code ancestors 

Predict future 

diagnosis 

Train: 75% 

Test: 10% 

Val: 15% 

Dx Accuracy@30 

MIMIC-III:                    0.863 

Dataset-II:                      0.924 

Scopus 

Zeng et 

al. 2020 

MSAM Supervised; 

DL 

FFNN; 

Attention 

 

MIMIC-III, 38k, 

5k codes; PFK, 

146k, 7k codes 

Diagnosis and 

procedure sequences 

Vectorized time-ordered 

sequence of patient visits 

& Time embedding 

Predict future 

diagnosis, diagnose 

in next year & cost 

Train: 80% 

Test: 20% 

Dx: Recall@30              0.683 

DxTx: Recall@30          0.795 

$MAE                            847.7 

Scopus 

Ma et al. 

2018 

KAME Unsupervised; 

DL 

RNN;  

GRU; 

Attention 

Medicaid, 99k, 

10k codes 

DAG; attention + 

knowledge vectors 

Vectorized time-ordered 

sequence of patient visits 

& medical code ancestors 

Predict future 

diagnosis 

Train: 75% 

Test: 10% 

Val: 15% 

Dx:  Accuracy@30        0.894 Scopus; 

WoS 

Mu et al. 

2018 

 

RNNY Supervised; 

DL 

RNN;  

LSTM 

 

Haikou People H, 

5k, 108 codes 

Binary vectorization 

of representation 

Vectorized time-ordered 

sequence of patient visits 

Predict future 

diagnosis & 

medication 

Train: 70% 

Test: 20% 

Val: 10% 

Dx:  Accuracy@10        0.648 Scopus 

Wang et 

al. 2018 

RNN-INFO Supervised; 

DL 

RNN; 

GRU 

China province, 

29k, 1k codes 

Vectorisation of 

diagnosis and 

medicine 

Vectorized time-ordered 

sequence of patient visits 

& patient demographics 

Predict future 

diagnosis in 

3/6/9/12 months 

Train: 80% 

Test: 20% 

Dx: F-score 3month       0.767 

6month  0.743 9month   0.816 

12month 0.854 

Scopus; 

WoS; 

IEE 

Ma et al. 

2017 

Dipole Supervised; 

DL 

BRNN; 

GRU; 

Attention 

Medicaid, 

148k, 1k codes 

- Vectorized time-ordered 

sequence of patient visits 

Predict future 

diagnosis 

Train: 75% 

Test: 10% 

Val: 15% 

Dx:  Accuracy@30        0.836 Scopus; 

WoS; 

LR(2) 

Choi et 

al. 2017 

GRAM Unsupervised; 

DL 

RNN;  

GRU; 

Graph; 

Attention 

Sutter, 258k, 10k 

codes 

DAG; attention 

ancestor embedding 

Vectorized time-ordered 

sequence of patient visits 

Predict future 

diagnosis 

Train: 75% 

Test: 10% 

Val: 15% 

Dx: Accuracy@5  

(0-20) least common      0.004 

(20-40) 0.299 (40-60)    0.422 

(60-80) 0.419 (80-100)  0.490 

Scopus; 

WoS; 

LR(2) 

Miotto et 

al. 2016 

Deep 

Patient 

Unsupervised;  

Ensemble 

SDA; 

RF 

Mount Sinai, 

705k, 60k 

descript 

None, raw patient 

data. 

Demographics, diagnoses, 

procedure, lab tests, notes 

Predict future 

disease 

Train: 23 

years 

Test: 1 year 

Dx:  Accuracy                0.929  

AUC-ROC:                    0.773  

F-Score:                         0.181 

Scopus; 

LR(3) 

Choi et 

al. 2016c 

Doctor AI Supervised; 

DL 

RNN; 

GRU 

Sutter, 264k, 1k 

codes; MIMIC-II 

Skip-Gram based 

vectorizing 

Vectorized time series of 

diagnoses and procedure 

codes 

Predict next 

diagnosis & visit 

time 

Train: 85% 

Test: 15% 

Dx:     Recall@30          0.796 

DxTx: Recall@30          0.725 

LR(3) 

Lipton et 

al. 2016 

LSTM-DO-

TR 

Supervised; 

DL 

RNN; 

LSTM 

LA Children H, 

???k, 128 codes 

 

Hand engineered 

features 

Multivariate time series 

of 13 variables 

Predict future 

multilabel 

diagnoses 

Train: 80% 

Test: 10% 

Val: 10% 

Dx: AUC  

     Micro 0.856   Macro 0.808 

F1 Micro 0.294   Macro 0.149 

LR(2) 

Choi et 

al. 2016a 

Med2Vec Unsupervised; 

NN 

FFNN CHOA, 550k; 10k 

codes; CMS 831k 

14k codes 

Binary vectorization 

of representation 

Vectorized time series of 

diagnoses and procedure 

codes 

Predict future 

diagnosis 

Train: 75% 

Tests: 25% 

Dx:   Recall@30            0.757 LR(2) 

 *From WoS, From Scopus, From IEEE, From the four literature reviews (LR) 
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Figure 5: Distribution of domain publications (“EHR” AND “Prediction” AND “Health*”)(PubMed, 2020) 

 

Articles incorporating some variant of Recurrent Neural Networks (RNN) were in the majority 

with the seven following methods: Doctor AI (Choi et al. 2016c), GRAM (Choi et al., 2017), 

LSTM-DO-TR (Lipton et al., 2016), Dipole (Ma et al., 2017), KAME (Ma et al., 2018), RNNY 

(Mu et al., 2018), and RNN-INFO (Wang et al., 2018). The build-up of the methods, however, 

differs, as some prefer the implementation of so-called Gated Recurrent Unit (GRU) (Choi et 

al., 2016c; Choi et al. 2017 Ma et al., 2017; Ma et al., 2018; Wang et al., 2018) where others 

use the Long Short Term Memory Unit (LSTM) variant (Lipton et al., 2016; Mu et al., 2018). 

The incorporation of attention mechanisms in representational learning has been increasing 

over the last few years, so it is therefore not unexpected that six articles used a form of attention 

mechanisms in their proposed methods: GRAM (Choi et al. 2017), GNDP (Li et al., 2020a), 

Dipole (Ma et al., 2017), KAME (Ma et al., 2018), FCNBLA (Wang et al., 2020), and MSAM 

(Zeng et al., 2020). Three articles incorporated some variant of Artificial Neural Network 

(ANN), a so-called Feedforward Neural Network (FFNN). Their implementation, however, 

differs completely, as Med2Vec (Choi et al., 2016a) used binary vectorization of patient visits 

whereas MSAM (Zeng et al., 2020) used attention mechanisms, and HGM (Wanyan et al., 

2020) relied on graphical representation learning. The only other method which relied on graph 

representation learning is GNDP (Li et al., 2020a). A very unique approach is the very recently 

published FCNBLA (Wang et al., 2020) which leveraged advantage from multiple directions 

by incorporating the following three in parallel: Convolutional Neural Networks (CNN), Bi-

directional LSTM, and attention mechanisms. The Deep Patient method of Miotto et al. (2016), 

which uses Stacked Denoising Autoencoders (SDA) followed by a Random Forrest approach, 

is the only traditional method and methodology that did not rely on neural networks. They 

showed that their representation learning technique performed better than shallow feature 

learning techniques on predicting future disease, and are for that reason used as a benchmark 

or starting point in many of the deep learning research papers that followed (Choi et al., 2016c; 

Choi et al., 2017; Ma et al., 2018; Mu et al., 2018; Wang et al., 2018; Zeng et al., 2020). 

The proposed methods utilize either publicly available databases (MIMIC-II or MIMIC-III) in 

combination with a local hospital or regional dataset, or one or the other. Great differences can 

be recognised in the volume of patient data which is incorporated and the number of codes 

which are predicted. This makes the results difficult to compare with one another, as it is clear 

that predicting 10 different codes from 18k different patients (FCNBLA (Wang et al., 2020)) 

yields different results than predicting 1.183 codes simultaneously from 264k different patients 

(Doctor AI (Choi et al., 2016c). Noteworthy to mention is that none of the articles relied on 

European retrieved datasets; in fact, all datasets are either based on Chinese or American patient 

data. 
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2.4  DISCUSSION ON SUITABLE MACHINE LEARNING METHODS 

The result of the literature review as provided in Table 5 includes, as assessed in paragraph 2.3, 

a variety of different machine learning methods, which all incorporate some form of the earlier 

explained subfield of machine learning. At the core all methodologies, although presented in 

different shapes and using different mechanisms, leverage patient data in order to predict future 

medical events. In order to gain a better understanding of the mechanisms, some of the most 

promising methods based on their capability of solving the problem of forecasting future 

healthcare demand are discussed below. As this research is concerned with solving a real-world 

problem, the practical applicability of the method is of high importance.  

In general the presented methods rely on some form of chronologically ordered medical 

information from patients’ history in order to create sequenced patient representations. RNNs 

have been widely adopted to leverage such chronologically ordered information as both forms 

of LSTM and GRU exhibit temporal dynamic behaviour such as Doctor AI (Choi et al., 2016c), 

LSTM-DO-TR (Lipton et al., 2016), RNN-INFO (Wang et al., 2018), and Dipole (Ma et al. 

2017). However, RNN models which follow such a full black box approach are more difficult 

to interpret. 

To tackle the interpretation issue, Choi et al. (2016a, 2016b, 2017) added weight to the 

interpretation of deep learning by applying the Skip-Gram embedding method as introduced by 

Milokov et al. (2013). This method makes it possible to create continuous vector representations 

of words, or in the medical field most often medical codes, which are scalable without losing 

interpretability and can be used as input for deep learning models. First, Choi et al. (2016a) 

built on this by using 2-level representation learning to capture the similarity between different 

medical codes within a visit, as well as between co-occurrence of these codes, calling it 

Med2Vec. Although Med2Vec encapsulates the aspects of EHR data which are used to predict 

future medical events, it doesn’t incorporate the dimension of time, or represent the underlying 

medical relationships. Although they don’t fit the problem at hand, Med2Vec, as well as Deep 

Patient, have proven to be robust baselines for further research (Choi et al., 2017; Ma et al., 

2017; Ma et al., 2018; Mu et al., 2018; Yang et al., 2019). Second, Choi et al., (2017) used their 

graph-based attention model (GRAM) to represent each visit of a patient, overcame the issue 

of data insufficiency, and included domain knowledge. KAME (Ma et al., 2018) built on the 

foundation of GRAM’s knowledge graph embedding by also including knowledge of ancestor 

medical codes, but both failed to capture the relationship between diagnoses and healthcare 

products, and they perform best in niche applications. Knowing what a particular patient’s 

future healthcare demand is, is valuable and relevant to a great spectrum of research done in 

healthcare and can have different approaches.  

The scope of this research is to leverage the historical relationships between visits on an 

individual patient basis to predict future healthcare demand of the whole service population for 

the next year. Therefore, in order to make the results of the research usable in practice, the scope 

of the relevance is restricted to machine learning methods which are capable of including some 

dimension of the time variable. The exact interpretability of the results, although considered, is 

therefore less important than it would be on an individual patient level basis. 
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2.4.1  SELECTION OF THE INCLUDED METHOD 

The three methods most closely resembling the problem of predicting future healthcare demand 

are Doctor AI (Choi et al. 2016c), Dipole (Ma et al., 2017), and MSAM (Zeng et al., 2020). All 

three incorporate mechanisms to capture the underlying relationships present in time sequenced 

EHR data on a patient level. A comparison of these three methods is displayed in Table 6. 

 

Table 6: Comparison of Doctor AI, Dipole, and MSAM 

 Doctor AI Dipole MSAM 

 

Method Supervised, DL Supervised, DL Supervised, DL 

Architecture RNN, GRU BRNN, LSTM, 

Attention 

FFNN, Attention 

Source of data Sutter Health, Palo Alto 

Medical Foundation, 

California, USA 

Medicaid Claim Data, 

USA 

Partner for Kids 

Paediatric, Ohio, USA 

Number of patients 263.706 147.810 146.287 

Excluded patients Less than 2 visits Less than 5 visits Less than 2 visits 

Timespan 8 years 1 year 2 years 

Number of visits 14.400.985 1.055.011 1.301.954 

Number of codes 38.594 8.522 12.334 

Predicted classes 1.183 426 280 

Train, Test, Validation 85%, 15%, 0% 75%, 10%, 15% 80%, 20%, 0% 

Doctor AI recall@30 79,58% - - 

Dipole accuracy@30 - 84,75% - 

MSAM recall@30 78,87% 78,80% 79,48% 

Advantages + High performance on 

large multiclass 

classification problems 

+ Higher capability of 

transferring past 

information than RNN. 

+ Besides code also 

capturing visit level 

relationships 

+ Better at handling 

irregular time intervals 

Disadvantages - Requires high volume 

per disease. 

- Suffers performance 

loss at patients with low 

number of visits 

- Difficulty handling 

irregular time intervals 

- Only results on 1 year 

of data, with exclusion 

of low visit patients 

(cherry picking) 

- Dependent on 

precalculated cost 

weights 

- Only results on 2 years 

of data 

 

Although suffering from interpretability issues, RNNs are still the most widely adopted 

methods for diagnosis and prognosis prediction. Doctor AI, as introduced by Choi et al. (2016c), 

is a method for predicting future medical events of patients using the GRU architecture of RNN. 

Doctor AI utilizes sequences of time and event pairs occurring in the patient’s timeline across 

multiple treatments as input. With this method Choi et al. (2016c) improved on the Skip-Gram 

based medical representation by incorporating the factor of time in order to not only predict in 

which cluster of diagnoses a next patient visit will fit, but also the time in-between. Doctor AI 

showed a comprehensive and robust method on a relatively large number of patient data (264k), 

not being restricted to only a few diseases or diagnosis clusters. Although this is an important 

feature for the problem at hand, it is also acknowledged to have lesser performance on diseases 

with low representation in the data. 
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Ma et al. (2017) proposed, not long after Doctor AI, their method Dipole, that uses an RNN 

variant of attention based bidirectional LSTM to significantly improve the prediction accuracy 

compared to the state-of-the-art diagnosis prediction approaches. Dipole has a simpler 

architecture and models the patient visits in only time-ordered or reversed time-ordered 

sequence, whereafter it employs attention mechanisms in both directions. The model was 

trained on the Diabetes and Medicaid dataset. Though the Medicaid dataset consisted of a 

significantly greater number of patients (148k), the number of diagnoses and procedure 

categories was limited and similar in both datasets, making the results more difficult to 

generalize over an entire hospital population. Nevertheless, compared to other baseline methods 

it yielded slightly better results. 

Zeng et al., (2020) very recently solved a problem similar to the one at hand with its proposed 

method called Multilevel Self-Attention Model (MSAM), which besides predicting future 

diagnoses also clustered them to predict yearly medical needs, as well as future medical cost. 

In this research Dipole, Doctor AI, and multiple other baselines were compared on the same 

dataset, showing slightly better results for MSAM. MSAM, in contrast to the other methods, is 

more capable of capturing the underlying relationships, temporal information, and 

dependencies among visits as it has less difficulties handling irregular time intervals between 

visits. However, by showing these results on a dataset with datapoints over only a two year 

timespan, the results need to be more validated in order to show whether the attention model 

they propose is an improvement on the BRNN (Dipole) or GRU (Doctor AI) architecture for 

predicting future healthcare needs. 

The three methods Doctor AI, Dipole and MSAM have overall contributed to improved 

prediction on EHR data, dealing with aspects such as temporality and high dimensionality in a 

supervised deep learning task. However, access to hospital data is often restricted to one specific 

research, making it difficult to validate the findings of these methods on different datasets. In 

order to generalize the results of the methods in predicting future healthcare demand this 

research aims to validate the methods on the EHR data of the local VieCuri Medisch Centrum. 

As the nature of this research is restricted in time and knowledge to model a method from 

scratch, it has been decided that practical validations can only be executed on one of the 

methods. In this regard, both Doctor AI and MSAM codes were made publicly available. 

However, only Doctor AI fully revealed the coding mechanisms publicly and resembles the 

dominant methodology in this research field. Therefore, Doctor AI is incorporated in the 

methodology of this research. 
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3.  METHODOLOGY 

The methodology and planning for this research followed the Cross Industry Standard Process 

for Data Mining (CRISP-DM) framework (Shearer, 2000). The CRISP-DM as displayed in 

Figure 6 serves as an overarching research umbrella of which the following phases are covered 

in this research: Business understanding (1), Data understanding (2), Data preparation (3), 

Modelling (4) and Evaluation (5), therewith leaving out Deployment (6). The phases Business 

understanding and Data understanding were extensively covered in the previous two chapters, 

defining the scope and context of the research and business problem. In this chapter the third 

and fourth phase of data preparation and modelling are covered, as well as the evaluation 

metrics, which will be used in the last phase of evaluation. Finally, in the next chapter, the 

results of the models are evaluated, thereby concluding the CRISP-DM phases relevant to this 

research.  

The first paragraph of this chapter explains the executed data preparation and cleaning, and it 

gives an overview of all relevant variables and the executed pre-processing for the final EHR 

dataset. This paragraph thus answers the second sub-question of this research on the available 

data variables. The process of data gathering was executed in parallel with the literature study 

conducted in the previous chapter. The second paragraph is dedicated to the machine learning 

algorithm Doctor AI (Choi et al., 2016c) which is used as deployment for the CRIPS-DM 

modelling phase of the research. The paragraph goes more in depth on the architecture, 

mathematical functions and distinctive features of the method. In the third and final paragraph 

an explanation is given on the relevant performance metrics which are used in the following 

chapter to evaluate the method on its performance on the VieCuri dataset. 

 

         Figure 6: The CRISP-DM Framework (Smartvision, 2019 p. 1) 
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3.1  DATA EXTRACTION AND PREPARATION 

The source data for this research was retrieved from the VieCuri Medisch Centrum data 

warehouse and consists of almost 4 million rows of so-called diagnose-behandel-combinaties 

(DBC), which were extracted on a patient level basis. A DBC in the Netherlands is a predefined 

combination of diagnosis and treatment plan by the Dutch Healthcare Authority. After 

removing all duplicates, empty registrations, or very obvious outliers (patients with an age of -

5 or 136 years old) a total dataset of 1.8 million rows off DBCs on more than 240k patients was 

compiled. The reduction of almost half of the number of DBCs is mostly due to follow-up 

DBCs being automatically generated in the system after the first one closes. All empty 

automatically generated DBCs which remain empty are therefore disregarded for this research. 

The data spans over eight years from January 2012 to December 2019. The decision to not 

incorporate data before the year 2012 was made, because this data could not be systematically 

retrieved in a complete manner. The decision to not incorporate data after 2019 was made due 

to a drop in the number of patient visits and variety of offered treatments as a result of the 

COVID-19 pandemic (which as acknowledged by the Dutch Authorities started in the 

Netherlands on 27th February 2020 (RIVM, 2020)).  

The dataset contains patients ranging from the age of 0 until the age of 106 and is, with 49,3% 

male and 50,7% female, representative of the average Dutch population during this time span 

(49,6% male and 50,4% female by CBS, 2020). The distribution of the number of DBCs per 

age and involved cost per age are displayed in Figure 7 and Figure 8. The extracted variables 

of the dataset are discussed in more detail in paragraph 3.1.1 whereafter the pre-processing of 

the data is elaborated upon in paragraph 3.1.2.  

 

 

 

 

 

 

 

 

 

Figure 7: Distribution of number of DBCs per age          
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3.1.1  SELECTED VARIABLES 

The extracted dataset includes a total of 11 variables, which through adding and expanding 

some of the features concludes in a total of 16 variables, summarized in Table 7. The five 

variables that are added concern the four hierarchical levels of ICD10-codes which are linked 

to the hospital diagnosis code and the DBC cost, which in turn are linked to the healthcare 

product and declaration codes. The gathering of data has been executed in parallel with the 

literature study in chapter 2. Therefore, the dataset also incorporates variables which in the end 

where not leveraged by the method explained in paragraph 3.2, such as age, gender, declaration 

code, and cost, but which would have been leveraged by other identified methods. In this 

paragraph the linkage between the different variables is discussed in more detail. 

 

Table 7: All included variables in the final dataset 

 

DBC_ID, EPISODE_ID, PATIENT_ID | Each row of the dataset represents a unique DBC_ID 

which represents a single patient diagnosis-treatment-combination. To differentiate DBCs for 

longer/chronic treatment plans alongside the DBC_ID, an EPISODE_ID is created to indicate 

if the patient arrives at the hospital for a new healthcare complaint or an existing one. To 

illustrate this with a practical example: if a patient visits the hospital again with the same 

complaint outside a predefined period a new DBC_ID is created, but the EPISODE_ID remains 

the same. If the same patient visits the hospital with a completely different healthcare demand, 

both a new DBC_ID and an EPISODE_ID are created. Every patient that visits the hospital is 

registered with a unique PATIENT_ID. More rows with the same PATIENT_ID indicate that a 

single patient has received multiple DBCs at the hospital. The DBC_ID, EPISODE_ID, and 

PATIENT_ID have been anonymised and labelled starting from the value 1000000, so that none 

could be translated back to a single patient. 

GENDER | In the extracted dataset GENDER was indicated by M for male and V for female 

and has been translated to a binary variable. The gender of the patient in the final dataset is 

therefore indicated by a binary variable 1 for male, 0 for female. 

STARTDATE_DBC, ENDDATE_DBC, BIRTH_DATE | STARTDATE_DBC provides the 

date when the DBC is opened, most often the date the patient arrives in the hospital for the first 

Name Data Type Unique Values Labelled Data 

 

DBC_ID INT (7) 1.797.467 100,0% 

EPISODE_ID INT (7) 1.029.343 100,0% 

PATIENT_ID INT (7) 240.841 100,0% 

GENDER BINARY (M = 1 | V = 0) 2 100,0% 

BIRTH_DATE DATE (DD-MM-YYYY) 35.806 100,0% 

STARTDATE_DBC DATE (DD-MM-YYYY) 2.922 100,0% 

ENDDATE_DBC DATE (DD-MM-YYYY) 3.041 100,0% 

SPECIALISM STRING (3) 21 100,0% 

HOSPITAL_DIAGNOSE STRING (8) 2.078 100,0% 

ICD10_DIAGNOSE STRING (3-7) 3.298 66,0% 

ICD10_PARENT STRING (3) 1.161 66,0% 

ICD10_BLOCK STRING (7) 199 66,0% 

ICD10_CHAPTER STRING (6-10) 22 66,0% 

HEALTHCARE_PRODUCT INT (9) 3.395 100,0% 

DECLARATION_CODE STRING (6) 3.112 100,0% 

DBC_COST RAT (1-8) 2.847 99,9% 
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time with a new healthcare complaint. ENDDATE_DBC provides the date when the DBC is 

closed, most often 42 days after an operation without new treatment for the same issue, 90 days 

after a regular treatment without another treatment for the same issue, or with a total maximum 

of 120 days. The BIRTH_DATE provides the date when the patient is born. 

SPECIALISM, HOSPITAL_DIAGNOSE | Every DBC is specialism specific and is therefore 

categorized with a SPECIALISM, which is an abbreviation of three letters which corresponds 

to a three-digit code. The diagnose is represented by the HOSPITAL_DIAGNOSE and is a 

combination of the specialism three-digit code, a “-“sign and four digits/letters. Table 8 below 

gives more detail about the size and distribution of the different specialisms. 

 

Table 8: Distribution of diagnoses per specialism  

Hospital specialism SPECIALISM Specialism 

code 

Unique hospital 

diagnoses 

Unique number of 

DBC 

Ophthalmology OOG 301 74 222.515 

Internal Medicine INT 313 277 198.226 

Cardiology CAR 320 39 188.821 

Surgery HLK 303 209 179.574 

Dermatology DER 310 30 173.859 

Orthopaedics ORT 305 283 146.262 

Paediatrics KIN 316 62 124.944 

Neurology NEU 330 119 94.397 

Gynaecology and Obstetrics GYN 307 72 83.466 

Urology URO 306 78 72.918 

Pulmonology LON 322 49 72.457 

Gastroenterology GAS 318 70 67.444 

Throat, Nose and Ear KNO 302 249 48.727 

Rheumatology REU 324 78 31.003 

Anaesthesia ANA 389 33 24.295 

Plastic Surgery PCH 304 170 23.147 

Geriatrics GER 335 28 18.691 

Rehabilitation REV 327 47 16.626 

Neurosurgery NCH 308 19 5.856 

Radiology RAD 362 75 2.856 

Psychiatry PSY 329 17 1.383 

Totals 21 2.078 1.797.467 

 

ICD10_DIAGNOSE, ICD10_PARENT, ICD10_BLOCK, ICD10_CHAPTER | ICD10 is a 

medical classification list for disease diagnosis introduced by the WHO. The ICD10-standard 

is structured in a hierarchical framework which contributes to the classification of diagnosis 

and treatments. The exact conversion from HOSPITAL_DIAGNOSE to ICD10-standard has 

been known by the hospital since July 2015 and is actively in use since the start of 2020. 

Therefore, it is the only variable with missing data (34%), as previous data can’t be fully 

labelled. The remaining 66% is a combination of original data and partially backpropagated 

labelling in order to convert as much HOSPITAL_DIAGNOSE into the ICD10-standard. By 

knowing the individual ICD10_DIAGNOSE the higher hierarchical levels are labelled via the 

structure of the ICD10 framework. To illustrate this structure the following practical example 

is given: an ICD10_DIAGNOSE (H25.2 Morgagnian lens type) belongs to an ICD10_PARENT 

(H25 Age-related cataract), belongs to the ICD10_BLOCK (H25-H28 Disorders of lens), which 

is part of the ICD10_CHAPTER (07 – VII Diseases of the eye). 
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HEALTHCARE_PRODUCT, DECLARATION_CODE, DBC_COST | Every patient that 

visits the hospital and receives a HOSPITAL_DIAGNOSE is also given a specific 

HEALTHCARE_PRODUCT and associated DECLARATION_CODE which are standardized 

on the national level. Multiple HEALTHCARE_PRODUCTS can have the same 

DECLARATION_CODE, which in the end is billed towards the insurance companies. Every 

DECLARATION_CODE has an accompanying average DBC_COST which is calculated yearly 

by VieCuri. The DBC_COST is not included in the original extracted dataset, but has been 

added through the linkage with DECLARATION_CODE. DBC_COST has a total of 0,1% 

missing data. 

 

3.1.2  PRE-PROCESSING 

In the previous section the selected variables which are being used as input for the method 

described in 3.2 are elaborated upon. Before being used as input for the method, the selected 

variables had to be pre-processed. The pre-processing for this research consists of two major 

parts, of which the first is the correct sequential mapping of the medical events for a single 

patient and the second is the aggregation of sequential representations of all patients in the 

dataset in order to serve as input vectors for the embedding of the machine learning algorithm. 

The sequential mapping of a single patient consists of three smaller steps as is visualised in 

Figure 9. The first step is the mapping of a PATIENT_ID with all corresponding DBC_ID, 

ordered on their STARTDATE_DBC. As can be seen in the sequential patient mapping part of 

Figure 9 for patient 1000025 this resulted in 11 DBCs ordered from 22-8-2012 till 24-8-2018. 

Doing so creates a sequential mapping of all DBCs with their corresponding visit date for an 

individual patient. The second step is the mapping of the medical codes of interest, which for 

the visualisation in Figure 9 consists of the HEALTHCARE_PRODUCT variable. This mapping 

links the DBC_ID to a corresponding HEALTHCARE_PRODUCT again ordered sequentially 

on the STARTDATE_DBC. After doing so there are two mappings, both with the DBC_ID as 

unique identifier, ordered on STARTDATE_DBC. The last step then involves the mapping of 

the medical codes into the first mapping of the patients’ visits in order to link the first and 

second step. This third steps enables the sequential ordering of the healthcare codes for a single 

patient. 

After mapping every patient it is possible to represent a patient by a single row of data, where 

all medical codes are listed sequentially for that one patient. For patient 1000025 this would 

mean a row with eleven sequentially ordered medical codes as can be seen in Figure 9. 

In order to aggregate all individual patients and store the data four datasets are generated. First 

a sequential listing of all unique PATIENT_ID starting from the integer 0 until 240.840, second 

a sequential listing of all unique STARTDATE_DBC, also stored as integers starting from 0 until 

2.921 and third a listing of all HEALTHCARE_PRODUCTS also stored as integers starting from 

0 until 3.394. These first three datasets function as the libraries of data as this has mapped all 

the linkages between integers and individual variables. The fourth and most important dataset, 

which also functions as the final input to the model, is the pickled or nested list of lists where 

the HEALTHCARE_PRODUCT variable inside the sequentially listed DBC_ID is sorted. Or in 

other words, the aggregation of all patient representations. A visualisation of this nested list of 

lists is shown in Figure 10. In Figure 10 every row represents a patient for which the 

HEALTHCARE_PRODUCT is listed in sequential order.  
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Figure 9: Mapping of single patient representation 

 

Figure 10: Aggregated sequential patient representations 
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As can be generally expected, and can be observed from Figure 10, the number of DBCs and 

thereby number of codes in the sequence differs for each patient. Not every patient visits the 

hospital with equal frequency and therefore the number of DBCs per patient varies. However, 

for any machine learning algorithm to process the data efficiently, the input shape of the data 

can’t be of variable length. In order to overcome this issue the data is padded to the length of 

the longest sequence for that particular batch. The padding that is executed is the so-called zero 

padding at the end of the sequence. This entails that if within a batch the longest original 

sequence is 20, all smaller sequences become added zeros at the end, until the length 

corresponds with 20, in order to serve the machine learning algorithm with a single shape input. 

For the purpose of predicting future medical events in a supervised setting, all patients who 

have less than two visits are removed from the dataset, as is done for the Doctor AI (Choi et al., 

2016c) and MSAM (Zeng et al., 2020) researches. Patients with less than two visits have no 

present sequence and can therefore not be predicted. For the dataset at hand this entails the 

removal of 59.542 (24,7%) patients with only one single DBC within the timespan of January 

2012 until December 2019. The total of 181.299 rows of patients with sequentially ordered 

codes that remain are than split in a 75% train, 15% test and 10% validation set. 

 

3.2  DOCTOR AI ALGORITHM 

Doctor AI, by Choi et al. (2016c), as introduced in the previous chapter, is a method for 

predicting future medical events of patients using the GRU architecture of RNN with a Skip-

Gram approach of vector embedding. Doctor AI utilizes sequences of time and event pairs 

occurring in the patient’s timeline as input to the GRU network. At every timestep the weight 

of a hidden unit is taken as the representation of the patient at that moment in time. From there 

it calculates and predicts future patient statuses accordingly. The method was originally tested 

on a real hospital dataset (260K patients over an eight year timespan) which in size is 

comparable to the one at hand (241K patients over an eight year timespan). On this dataset 

Doctor AI achieved 79,58% recall@30 after 20 training rounds on 1.183 diagnosis clusters. As 

explained by Al-Aiad et al. (2018) certain medical experts confirmed that Doctor AI was able 

to achieve human doctor level of predictive power and could provide meaningful clinical 

diagnosis prediction. In this paragraph first the embedding layer is explained in more detail, 

thereafter the RNN and GRU setup of Doctor AI are explained in 3.2.2, and the paragraph is 

closed with 3.2.3 which elaborates on the applied loss functions.  

 

3.2.1  EMBEDDING LAYERS 

First for every patient a multilevel point process is drawn for the observations in the form of (ti 

, xi) for i = 1, . . . , n. Every pair indicates a visit in which medical codes are recorded in the 

DBC. At any time ti, the multi-hot label vector xi ∈ {0, 1} p indicates the provided healthcare 

product assigned, where p is the number of assigned codes. At a fixed interval ti, higher-level 

codes can be extracted for predicting and are represented as yi. 

In order to improve the efficient representational learning of medical codes, the highest 

performing embedding variant used in Doctor AI, which incorporates Skip-Gram (Mikolov et 

al., 2013), was selected for this application. Skip-Gram has shown to be able to learn real 

practise multidimensional vectors to capture the latent representation of the medical codes 
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(Choi et al., 2016c). By incorporating this variant of embedding, it was able to lay out the 

product codes in a temporal order into the same lower dimensional space, so that similar related 

codes are embedded close to one another. This approach of initially learning the weight matrix 

(Wemb) between the input vectors and the embedding layer with the Skip-Gram algorithm allows 

the Doctor AI to only optimize the weights of the Wemb during training, instead of learning them 

from scratch. This way the weights of Wemb are improved as the whole model is trained. In short, 

this process allows the pre-training of the vectors in order to achieve better results. The formula 

which is used for this embedding approach is described below (1).  

 

  Multi-hot vector   hi
(1) = [xi 

T Wemb, di]      (1) 

 

In the last part of the embedding, multi-hot vectors, created by Skip-Gram, are converted to the 

vector representation, which is the input for the GRU/RNN setup, as explained in the following 

paragraph. 

 

3.2.2  ARCHITECTURE OF THE RNN & GRU 

After the creation of the multi-hot vectors in the embedding layer, the architecture of the RNN 

and GRU are of relevance. In Figure 11 below is demonstrated how the RNNs are implicated 

to predict the next healthcare product. In the diagram the first layer implants the higher 

dimensional input vectors in a lower-dimensional slot. The next layer has two sub layers, which 

depicts the recurrent units. This layer comprehends the status of the patient in each interval of 

data collection as a real-valued vector. By providing the status vector, two dense layers generate 

the codes observed in the next interval and the subsequent visit's schedule. In order to further 

explain the network, Figure 12 shows a visualisation of the GRU architecture for which the 

mathematical formula are given below all at timestep ti. 

 

  Update gate    zi = σ(Wzxi + Uzhi-1+ bz)     (2) 

  Reset gate     ri = σ(Wrxi + Urhi-1 + br)     (3) 

  Intermediate memory unit  ĥi = tanh(Whxi + ri ◦ Uhhi-1 + bh)    (4) 

  Hidden layer     hi = zi ◦ hi-1 + (1 − zi) ◦ ĥi      (5) 

 

In this setup of formulas the previous hidden layer (hi-1) and current ti input value xi are the 

inputs for the update gate zi (2) and reset gate ri (3) as well as the intermediate memory unit ĥi 

(4). Because of the σ in each gate functions the output value of these gates is between one and 

zero. If the reset gate represents a value close to zero, the intermediate memory unit will 

disregard the value from the previous hidden layer (hi-1) and use the input xi. If the output value 

of the update gate is close to one, the input value xi is disregarded and the value of the previous 

hidden layer remains. Using this structure, the reset gate controls which information is 

disregarded and does not contribute to the prediction, whereas the update gate is responsible for 

the amount of information that is used from the previous hidden layer towards the current 

hidden layer (5). 
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Figure 11: The RNN Doctor AI architecture    Figure 12: The GRU Doctor AI architecture   

  (Choi et al. 2016c p. 5)               (Choi et al. 2016c p. 14) 

 

 

 

   

 

 

 

 

 

 

  

 

The goal of the Doctor AI algorithm is to comprehend a pragmatic presentation for the patient 

status at a fixed time interval ti. The intention is to predict future healthcare product demand in 

the next visit yi+1. In the end, all steps merge into a final single supervised learning scheme 

where the RNN architecture allows for learning the composed patient representations, 

improving the computation in the hidden layers using the patient’s information to predict the 

next healthcare product in the sequence. The displayed architecture in Figure 11 takes input 

after a fixed interval ti. The new inputs start from the engagement of multi-hot input vector xi. 

After this, the lower-dimensional vector passes through the RNN’s GRU setup as visualized in 

Figure 12. To improve the representation power of the network, the choice has been made to 

use two hidden layers, as was proposed in the best performing variant in the original method. 

The last step is the computation of the softmax loss function, which performs the prediction of 

the healthcare code and will be explained in the following paragraph. 

 

3.2.3  LOSS FUNCTIONS 

In order to perform medical code prediction at a fixed interval ti, Doctor AI uses the softmax 

activation layer in combination with a cross-entropy loss function. In combination this variant 

is often called a softmax loss function, which in this case is a stacked layer on top of the GRU 

architecture. The softmax serves as activation function in order to normalize the output of the 

network over a probability distribution for the predicted output medical codes. In computing 

the softmax layer, Doctor AI uses the hidden layer hi as input co calculate ŷi+1; the mathematical 

equation for this is displayed below (6).  

The mathematical goal of training DoctorAI is to comprehend the weights W{z,r,h,code}, U{z,r,h} 

and b{z,r,h,code}. W’s and U’s values were initialized as ortho-normal matrices using singular value 

breakdown of matrices obtained by a normal distribution (Saxe et al., 2013), in contrast to the 

b’s whose values started at zero. The total loss function is calculated using the final cross-

entropy function. The cross-entropy function is used to sum up the negative logarithm of the 

probabilities of the softmax layer in order to quantify the difference between prediction and 

real-world values. The mathematical equation of the cross-entropy function as expressed for a 

single patient is also shown below (7). 
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  Softmax function   ŷi+1 = softmax(Wcode 
T hi + bcode)    (6) 

  Cross-entropy function          (7) 

 

3.3 EVALUATION METRICS 

Evaluating machine learning methods on their predictive performance is an essential part of 

every machine learning project. If not tested and evaluated against real-world datasets and 

metrics, the exercise is solely of academic relevance. In the case of Doctor AI (Choi et al., 

2016c) the performance metrics of interest are those that give a clear understanding of the 

predictive power in a supervised multiclass classification task. Some performance metrics are 

more intuitive than others, however in order to explain them in more detail, first a general 

understanding of the in Figure 13 displayed confusion matrix within the medical context is 

needed. 

The confusion matrix is a simplified representation of a binary classification task, which can be 

used to illustrate the underlying logic of the discussed evaluation metrics. In a confusion matrix 

as displayed below the correctly and incorrectly predicted instances are visualized compared to 

the actual value. For the problem at hand, which concerns multiclass classification, the number 

of classes (x) expands visually in size of x2. Where in some cases one would be interested in 

optimizing the number of true positives (TP) and true negatives (TN) in order to achieve the 

highest accurate classification, in healthcare practice it can also be argued that incorrect 

predictions can have greater future healthcare risks, such as wrongly identifying a possible 

diagnosis. This problem arises when the potential cost of misclassification of a small class is 

high. A common example is dealing with a rare but health threatening disease. The cost of 

failing to diagnose (FN) the disease of an ill person is much higher than the cost of having 

wrongly predicted a disease (FP) and testing a healthy person on more metrics. Therefore, it is 

of importance to use evaluation metrics in healthcare prediction in a much broader perspective 

and with more precaution than for example predicting the electric consumption of a building.  

 

 

 Predicted 
YES 

Predicted 
NO 

Actual 

YES 

True Positive 
TP 

False Negative 
FN 

Actual 

NO 

False Positive 
FP 

True Negative 
TN 

 

  Figure 13: Confusion matrix 2x2 example 
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The issue which arises using common performance metrics as accuracy, precision and recall on 

large multiclass classification tasks is the high likelihood of class ambiguity. Class ambiguity 

arises when an algorithm has difficulties separating very similar classes. By increasing the 

number of classes, this problem becomes more relevant as whole groups of classes are more 

similar to one another than totally different. Within the healthcare domain this is even more 

prominent as some of the differences between groups of diagnoses and treatments are very 

nuanced when involving illnesses for a similar part of the human body or procedures for 

multiple purposes. Evaluating machine learning algorithm on a multiclass classification task by 

only taking into account the common performance metrics, would fail to capture the algorithms 

actual potential (Lapin et al., 2015; Lapin et al., 2016). 

To tackle this issue the metrics which are most often used in evaluating machine learning 

methods within the multiclass classification and medical field are the so-called top-k metrics (k 

resembling an integer >=2). Top-k metrics differ as they do not only consider the highest 

probability in classifying an object, but consider the k highest probabilities. The simplest 

presentment of this principle is the ranking in which search engines present their results. In only 

considering the highest ranked link, one would not always find the answer to a given question, 

however when considering the top 2, 5 or 10 results, the chance of finding the right answer 

increases. Although the highest ranked link might have been on the right topic in the right 

context, it does not always resemble the correct option when comparing often 100.000 or more 

results. By looking at the highest k probabilities, the algorithm considers the class to be correct 

if it is within the top-k results.  

The behaviour of the top-k metrics resembles that of a doctor conducting differential patient 

diagnoses. In this methodology the doctor lists the most probable diagnosis and moves along 

this list of options in order to treat the patient according to the identified diagnosis. Translated 

to our problem at hand, the doctor and therewith the top-k metrics would be able to apply the 

right treatment to the diagnosis, by systematically following the most probable solution to the 

patient’s problem. The most commonly used evaluation metrics for methodologies similar to 

this research are either accuracy@top-k (Choi et al., 2017; Li et al., 2020a; Ma et al., 2017; Ma 

et al., 2018; Mu et al., 2018) or recall@top-k (Choi et al., 2016a; Choi et al., 2016c; Haq et al., 

2017; Zeng et al., 2020). Accuracy@top-k is used to generates insight into the methods ability 

to correctly classify the output within the top-k results. Recall@top-k is used to generate insight 

into the methods ability to classify all relevant objects (FN) into the correct class and therewith 

compensates for the high medical cost involved for not identifying a relevant treatment in the 

top-k results. Machine learning methods, which can achieve both high accuracy@top-k and 

recall@top-k thus are able to mimic the doctor in applying the right healthcare product. The 

formulas which are used for both metrics are displayed below (formula 8 and 9). 

 

 Accuracy@top-k   number of correct predictions in top-k 

                total number of predictions 

 

 Recall@top-k    number of true positive predictions in top-k 

          number of total true positive predictions 

  

(8) 

(9) 
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4.  EVALUATION OF RESULTS 

In this chapter the performance of the Doctor AI (Choi et al., 2016c) algorithm is evaluated 

with the previously introduced evaluation metrics. Also, the potential financial impact of 

incorporating Doctor AI in the process of healthcare demand prediction is discussed. Therewith 

this chapter answers both the third and fourth sub-question of this research regarding the 

performance of the machine learning algorithm and the potential financial impact. 

 

4.1  PERFORMANCE OF DOCTOR AI 

For the translation from the methodology discussed in the previous chapter to an executable 

algorithm this research relies on input of other institutions, customised and developed to a final 

Python based code which fitted the VieCuri dataset. The original Doctor AI (Choi et al., 2016c) 

publicly released Python code heavily relied on the now outdated library Theano. Therefore, a 

later Python code approved by the authors built on the Pytorch platform, as published by The 

City College of New York (Russel-Puleri, 2019), is used as starting code for this research. 

However, for all pre-processing and sequential hot vector encoding the original Python code is 

used. All training has been done on a single Nvidia Tesla T4 GPU with 16GB of RAM memory, 

which took between 16 and 22 hours in order to execute the computation of 30 epochs of the 

Doctor AI algorithm for one single model configuration. 

All different multiclass classification models which were executed varied in the number of 

predicted output classes (3.087 - 21) and number of nodes per hidden layer (200 or 400). The 

original Doctor AI used 200 nodes for each layer. The extra 400 node configuration is tested in 

every model to observe any differences in the yielded results. Aside from the original objective 

of predicting all healthcare products in the dataset, six other numbers of classes were tested to 

analyse the impact of different parameters and number of classes on the performance of the 

method. Beside the number of nodes per hidden layer, the hyperparameter settings were kept 

constant throughout the research. The settings for these hyperparameters are displayed in Table 

9. For all applied models only patients with at least two visits were included. More detailed 

information on the differences between the models is shown in Table 10. Here the number of 

DBCs, patients, output classes, and random chance for the different models are listed. As this 

research is performed in a supervised setting, every model is only trained, validated, and tested 

on fully labelled data. Hence the difference in size of the data that is used for the different 

models. The random chance represents the expected success rate when patients were to be 

randomly assigned to a certain class.  

 

                Table 9: Doctor AI hyperparameter settings 

 

  

Hyperparameter settings 

Embedding layer 1 

Hidden layers 2 

Nodes per hidden layer 200 or 400 

Batch size 32 

Learning rate 
Adadelta (Zeiler, 2012) 

rate 0,01; rho 0,95 

Dropout rate 0,5 

Epochs 30 
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Table 10: Deployed Doctor AI models 

Prediction Number of 

classes 

Number of 

DBCs 

Number of 

patients 

Random 

Chance 

Healthcare Product (HP) 3.087 1.737.630 181.299 0,03% 

  HP 80% most sold 1.027 1.661.538 177.998 0,10% 

  HP 80% of total cost 519 1.245.028 153.481 0,19% 

  HP patients with >5 DBCs 3.081 1.533.119 108.002 0,03% 

ICD10 Parent 1.132 1.132.913 140.961 0,09% 

ICD10 Block 199 1.132.913 140.961 0,50% 

Hospital Specialism 21 1.737.630 181.299 4,76% 

 

The output classes which concern healthcare products (HP) are most relevant to the research, 

as they offer the highest level of detail on the expected healthcare demand. Together with the 

model for hospital specialism they are performed on the largest dataset, where patients were 

represented with at least two visits. Following this reasoning the data which only included 

patients with less than five visits or an 80% representation of the healthcare product are smaller 

in size. The results on both accuracy@k and recall@k which were retrieved from the training 

of the healthcare products model of the Doctor AI algorithm are presented in Table 11. In the 

table the highest percentage for both performance metrics is marked per model. All considered 

performances are from data which were new to the model (holdout/test set 15%). All deployed 

models in this research showed a slightly bigger cross entropy value on the test set in 

comparison to the validation set, but decreased around the same slope. 

Table 11 clearly shows that the performance of predicting all 3.087 healthcare products 

simultaneously is very low on both metrics. With a maximum value of 0,76% accuracy@30 

and 1,54% recall@30 the outputs of the presented model show to be an improvement over 

random chance (0,03%), but come nowhere near a good predictive model or the 79% recall@30 

from the original Doctor AI research. From Figure 17 in Appendix C can be derived that the 

200 nodes per hidden layer configuration shows a climbing incremental convergence as epochs 

progress. However, the 400 nodes per hidden layer suffers a great decrease in performance after 

the 14th epochs. As it shows this behaviour in multiple attempts for this model, it is expected 

that either the unbalance of classes within the batches is too high, the gradient decent is stuck 

in a sharp minimum, or the model is overfitting as it converges too fast. All three arguments 

could be contributing to the decrease in performance, however due to the observed fluctuation 

in the 400 nodes curve in Figure 17 and the much sharper decline in test loss, the conclusion of 

overfitting is most prominent.  

 

Table 11: Performance metrics for healthcare product (HP) model (n=3.087) 

Prediction Nodes Epoch 
Accuracy@top-k Recall@top-k 

Acc@10 Acc@20 Acc@30 Rec@10 Rec@20 Rec@30 

         

Healthcare 

Product (HP) 

n=3.087 

200 

10 0,25% 0,51% 0,76% 0,83% 0,92% 1,12% 

20 0,25% 0,51% 0,76% 1,01% 1,13% 1,45% 

30 0,25% 0,51% 0,76% 1,10% 1,21% 1,54% 

        

400 

10 0,25% 0,51% 0,76% 0,81% 0,94% 1,27% 

20 0,25% 0,51% 0,76% 0,22% 0,30% 0,39% 

30 0,25% 0,51% 0,76% 0,25% 0,33% 0,37% 
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As the model on healthcare product prediction did not show good results, the six other models 

have been tested. In general it can be concluded that the setup of 400 or 200 nodes is not superior 

to the other in every situation, but depending on the specific application, one can outperform 

the other. However, it is clear that the model setup with 400 nodes per hidden layer shows faster 

conversion speed than that with 200 nodes. This phenomenon in itself is not strange as more 

nodes can essentially “store” more granular value than less nodes. 

The two alternative models which are tested first are both focused on the healthcare products 

output, while decreasing the number of output classes. As described in section 1.1 over the 

years 2017 to 2019 a total of 1.027 products were responsible for 80% of the total sold products. 

However, when looking at the products which are responsible for 80% of the total cost, the mix 

is decreased to 519 different products. Both model configurations are trained, validated and 

tested by only incorporating the relevant 1.027 or 519 classes and thereby leaving out all rare 

and low total impact on cost products. However, leaving out all the small groups of healthcare 

products, as derived from Table 12 does not show any big increase in performance. The 

accuracy@30 for both models increases from 0,76% to 2,29% in the best configuration for the 

most sold products model and to 4,53% for the highest contribution to cost model. Whereas the 

recall@30 shows a decrease for the most sold products and only a slight increase from 1,54% 

to 2,42% for the products responsible for 80% of cost. 

 

Table 12: Performance metrics for subsets of HP models (n=1.027 and n=519) 

 

The results of Table 12 show that by significantly decreasing the number of output classes while 

remaining the same level of detail, results only show a significant increase in the accuracy@top-

k metric. This means that a decrease in number of output classes, while keeping the most 

frequent occurring healthcare products, increases the algorithms capabilities of rightfully 

predicting the correct class. On the other hand, it also shows that in doing so, the model in 

general does not improve in the recall@top-k performance, which indicates a worse 

performance in recognising false negatives. Only the 400 nodes model of the 80% of total 

healthcare product cost shows an improved performance (recall@30, 2,42%) in better detecting 

false negatives. In all other recall@top-k metrics the models show lower performance when 

compared to the original 3.087 classes healthcare product model. Although the combined 

Prediction Nodes Epoch 
Accuracy@top-k Recall@top-k 

Acc@10 Acc@20 Acc@30 Rec@10 Rec@20 Rec@30 

         

80% Most 

Sold HP 

n=1.027 

200 

10 0,76% 1,53% 2,29% 0,04% 0,13% 0,17% 

20 0,76% 1,53% 2,29% 0,03% 0,10% 0,16% 

30 0,76% 1,53% 2,29% 0,03% 0,11% 0,18% 

        

400 

10 0,76% 1,52% 2,29% 0,02% 0,09% 0,15% 

20 0,76% 1,52% 2,29% 0,05% 0,12% 0,40% 

30 0,77% 1,53% 2,29% 0,41% 0,46% 1,04% 

         

80% Of Total 

HP Cost 

n=519 

200 

10 1,51% 3,02% 4,53% 0,00% 0,39% 0,39% 

20 1,51% 3,02% 4,53% 0,13% 0,91% 0,92% 

30 1,51% 3,02% 4,53% 0,20% 0,99% 0,99% 

        

400 

10 1,51% 3,01% 4,52% 0,04% 1,01% 1,02% 

20 1,51% 3,02% 4,52% 0,85% 2,17% 2,20% 

30 1,51% 3,02% 4,53% 0,75% 2,37% 2,42% 



36 
 

accuracy@top-k and recall@top-k is slightly better than the original healthcare product model, 

the performance is still very low, when considering that the number of classes have been 

reduced greatly in both models. The performance visualisation can be found in Appendix C 

(Figure 18 and Figure 19). 

The next model that is tested is a setup which yielded better results in the Dipole (Ma et al., 

2017) methodology by only incorporating patients with at least five recordings. This model as 

derived from Table 13 below and Figure 20 in Appendix C did not improve the performance 

metric results on the VieCuri dataset. Both the 200 nodes per hidden layer setup with 

accuracy@30 (0,70%) and recall@30 (0,78%), as well as the 400 nodes setup with 

accuracy@30 (0,70%) and recall@30 (0,40%) performed worse than the original model. In the 

configuration of the Dipole (Ma et al., 2017) method, the researchers assumed that patients with 

less than five recordings were not frequent enough visitors to include in the dataset. For their 

dataset this meant that less than 2,5 visits per patient per year were not incorporated. In this 

model, with the VieCuri dataset, the density for the visits per patient per year went up from 1,06 

to 2,03. However, the exclusion of all patients with 2-4 recordings resulted in a decrease in 

performance as can be concluded from this model. Probable cause for these worse performance 

metrics is the loss of almost 40% of patients and thereby losing too many sequential relevant 

relationships, which were not compensated for by the more dense remaining patients. 

 

 Table 13: Performance metrics for >5 DBCs model (n=3.081) 

 

The models which are widely used, and can be found in Doctor AI (Choi et al., 2016c), Dipole 

(Ma et al., 2017) and MSAM (Zeng et al., 2020) are the clustering of groups of codes into a 

higher hierarchical level. For the purpose of this research the ICD10-framework which the 

VieCuri registers is used in order to maintain (part of) the medical diversity, while still 

decreasing the number of output classes significantly. The prediction of ICD10-parents instead 

of individual codes and the blocks of medical groups the codes belong to are, in comparison to 

healthcare products, a big decrease in the number of predicted classes (1.132 parents and 199 

blocks). The model predicts in which cluster of treatments a healthcare product is situated and 

presents therewith a higher hierarchical level of the medical healthcare product codes. It is 

therefore no surprise that the results in Table 14 show improved maximum values of 2,07% 

accuracy@30 and 8,18% recall@30 for the ICD10-parent prediction and maximum values of 

11,80% accurarcy@30 and 27,62% recall@30 for the ICD10-block prediction.  

 

 

  

Prediction Nodes Epoch 
Accuracy@top-k Recall@top-k 

Acc@10 Acc@20 Acc@30 Rec@10 Rec@20 Rec@30 

         

HP Patients 

With >5 

DBCs 

n=3.081 

200 

10 0,23% 0,47% 0,70% 0,26% 0,61% 0,66% 

20 0,23% 0,47% 0,70% 0,31% 0,57% 0,78% 

30 024% 0,47% 0,70% 0,36% 0,55% 0,71% 

        

400 

10 0,23% 0,47% 0,70% 0,13% 0,23% 0,29% 

20 0,23% 0,47% 0,70% 0,17% 0,28% 0,38% 

30 024% 0,47% 0,70% 0,17% 0,30% 0,40% 
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Table 14: Performance metrics for ICD10 models (n=1.132 and n=199) 

 

The adoption of a higher hierarchical level contributes to better predictive outcomes on fewer 

classes. In Figure 21 and Figure 22 in Appendix C can be seen that the setup of 400 nodes per 

hidden layer in both models has a much faster rate of convergence than the 200 nodes setup. 

The 200 nodes setup shows a more slowly progressing increase whereas the 400 nodes model 

starts fluctuating, which is an indication of overfitting. Although an overall improvement in the 

predictive performance of the model can be observed, the ICD10-parent and -block do not 

achieve high enough levels to be incorporated in any forecasting praxis. Both models lose the 

more detailed information of the healthcare products, but still contain the information which is 

used to indicate the severity and magnitude of the expected treatment. 

 

4.1.1  HOSPITAL SPECIALISM MODEL 

The best performing and highest hierarchical level tested in this research is the model that 

classifies the hospital specialism. VieCuri hosts 21 different specialisms, which offer the 3.087 

different healthcare products. Therefore, this model represents a clustering of the healthcare 

products on a specialism level. In predicting the hospital specialism the finer information on 

product or treatment cluster are lost, however it shows where the patients will receive their next 

treatment. Although more difficult in allocating exact costs, this level offers insight into the 

number of patients per specialism and can therefore still be of value to the hospital. However, 

in reducing the output classes to 21, using the same number of top-k would not represent 

adequate evaluation metrics as @10 would represent already 47,6% of classes and @30 more 

than 100%. Therefore, with the scale down from 199 output classes in the ICD10-block 

prediction model to the 21 in the hospital specialism, the top-k metrics have been decreased in 

the same order of magnitude towards @1 (which would represent the common/none top-k 

metric), @2 and @3 for both accuracy@top-k and recall@top-k. It is no surprise that due to the 

reduction of output classes in this model and the same volume of data, this model is the best 

performing overall model with maximum achieved values for both accuracy@3 of 75,36% and 

recall@3 of 72,64% for the 400 nodes per hidden layer setup (Table 15). The 200 nodes model 

also performs well with accuracy@3 of 74,42% and recall@3 of 68,06%. 

Prediction Nodes Epoch 
Accuracy@top-k Recall@top-k 

Acc@10 Acc@20 Acc@30 Rec@10 Rec@20 Rec@30 

         

ICD10 

Parent 

n=1.132 

200 

10 0,69% 1,38% 2,07% 0,22% 2,84% 2,87% 

20 0,69% 1,38% 2,07% 0,23% 6,15% 6,18% 

30 0,69% 1,38% 2,07% 0,13% 6,69% 6,70% 

        

400 

10 0,69% 1,38% 2,07% 2,77% 7,82% 7,84% 

20 0,69% 1,38% 2,07% 2,34% 8,16% 8,18% 

30 0,69% 1,38% 2,07% 2,02% 7,92% 7,93% 

         

ICD10 

Block 

n=199 

200 

10 3,92% 7,85% 11,77% 1,44% 14,68% 17,51% 

20 3,93% 7,86% 11,80% 2,12% 20,09% 25,55% 

30 3,93% 7,85% 11,78% 1,85% 19,86% 26,02% 

        

400 

10 3,93% 7,86% 11,79% 2,64% 21,13% 27,62% 

20 3,93% 7,86% 11,78% 1,74% 20,27% 27,16% 

30 3,93% 7,86% 11,80% 1,71% 19,97% 26,44% 
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Table 15: Performance metrics for hospital specialism model (n=21) 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Loss and recall@3 for hospital specialism model (n=21) 

Similar to most of the other presented models, the hospital specialism model shows a clear 

gradient conversion towards the maximum recall@3 values at epochs 30 in Figure 14. As can 

be derived from the dotted lines in Figure 14, the 400 nodes per hidden layer model achieves a 

slightly faster decrease in total cross entropy loss compared to the 200 nodes; therefore, it is no 

surprise that the observed recall@3 has a faster conversion towards the maximum value for the 

400 nodes model. Overall, both the 400 nodes per hidden layer and 200 nodes model show the 

same behaviour in both gain in recall@3 and decrease in total loss. As the hospital specialism 

model is the best performing model under consideration, a normalized 21x21 confusion matrix 

for the 400 nodes per hidden layer model is compiled in Figure 15. 

The confusion matrix shows the difference in performance for the VieCuri specialism with a 

false positive and false negative tendency towards the classes with the highest occurrence in 

the dataset. In Figure 15 the highest probabilities are marked orange whereas the lowest 

probabilities are purple. With the exception of the Anaesthesiology and Geriatrics specialisms 

(in the matrix displayed as ANA and GER) it can be concluded that the lowest represented 

classes overall are the weakest performers, whereas an increase in the number of predicted 

classes also improves the overall performance. This behaviour confirms the reasoning of Choi 

et al. (2016c) that the rarity of medical codes highly influences the model’s performance and is 

a result of working with diverse real-world patient data (Ruan et al., 2019; Sheets et al., 2017). 

The general insight which can be derived from the confusion matrix is that the algorithm is 

capable of distinguishing the different classes.  

Prediction Nodes Epoch 
Accuracy@top-k Recall@top-k 

Accuracy Acc@2 Acc@3 Recall Rec@2 Rec@3 

         

Hospital 

Specialism 

n=21 

200 

10 25,87% 61,77% 74,41% 23,63% 44,98% 63,68% 

20 25,87% 61,72% 74,41% 25,72% 47,28% 66,67% 

30 25,88% 61,77% 74,42% 26,57% 51,69% 68,06% 

        

400 

10 25,86% 61,74% 75,30% 26,17% 50,70% 69,07% 

20 25,88% 61,77% 75,31% 27,98% 53,49% 71,86% 

30 25,88% 61,78% 75,36% 28,04% 54,27% 72,64% 
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Figure 15: Confusion matrix 21x21 for hospital specialism model (400 nodes) 

 

Altogether, the results from the Doctor AI (Choi et al., 2016c) multiclass classification 

implementation show low performance in predicting a high number of output classes 

simultaneously on the VieCuri dataset in contrast to the original research. By moving to a higher 

hierarchical level, and therewith decreasing the number of output classes, the performance of 

the models significantly increases. The other efforts in focussing on most sold, most total cost 

contributors, or patients with more than five visits did not improve performance, as a lot of visit 

relationships were removed. From the observed behaviour of the cross entropy loss and 

recall@top-k functions of the different models it can be concluded that the 400 nodes per hidden 

layer configuration of the different models show faster learning speed. However, they do not 

always yield overall better results in contrast to the 200 nodes per hidden layer from the original 

setup. Prediction of healthcare products and ICD10-parents contains the most valuable 

information to the VieCuri organisation, but did not perform anywhere close to the original 

model, or well enough to be deployed in prediction practice. Only the model with the most 

generalizable results and the least output classes remains for incorporating any of the above 

achieved results into the VieCuri healthcare forecasting praxis. The hospital specialism model 

(with 400 nodes per hidden layer) which is also visualised in the confusion matrix is used in the 

business case presented in the following paragraph. 

  

CAR HLK INT ORT LON OOG GAS GYN URO NEU KNO KIN DER PCH GER REU ANA NCH REV

CAR 0,57 0,07 0,06 0,07 0,03 0,02 0,02 0,00 0,03 0,02 0,02 0,02 0,02 0,00 0,00 0,01 0,00 0,02 0,03

HLK 0,12 0,64 0,04 0,03 0,02 0,03 0,01 0,01 0,03 0,01 0,01 0,00 0,02 0,00 0,02 0,01 0,00 0,00 0,00

INT 0,03 0,03 0,73 0,08 0,02 0,04 0,00 0,00 0,01 0,00 0,04 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00

ORT 0,05 0,01 0,09 0,58 0,02 0,04 0,03 0,02 0,01 0,03 0,05 0,03 0,03 0,00 0,00 0,00 0,00 0,00 0,00

LON 0,06 0,14 0,02 0,07 0,51 0,03 0,04 0,01 0,01 0,00 0,07 0,00 0,03 0,00 0,00 0,00 0,00 0,00 0,00

OOG 0,07 0,06 0,03 0,01 0,02 0,73 0,03 0,01 0,00 0,02 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,00 0,00

GAS 0,09 0,05 0,01 0,04 0,02 0,00 0,54 0,05 0,03 0,01 0,02 0,04 0,05 0,00 0,02 0,03 0,00 0,00 0,00

GYN 0,08 0,06 0,04 0,05 0,09 0,05 0,03 0,46 0,04 0,04 0,03 0,01 0,00 0,01 0,00 0,02 0,00 0,00 0,00

URO 0,03 0,03 0,08 0,04 0,00 0,05 0,00 0,03 0,60 0,00 0,02 0,01 0,02 0,00 0,03 0,05 0,00 0,00 0,00

NEU 0,04 0,02 0,00 0,02 0,00 0,07 0,03 0,11 0,00 0,64 0,00 0,01 0,04 0,00 0,00 0,00 0,00 0,00 0,00

KNO 0,04 0,03 0,00 0,08 0,02 0,06 0,00 0,02 0,01 0,05 0,64 0,00 0,03 0,00 0,00 0,01 0,00 0,00 0,00

KIN 0,05 0,07 0,04 0,08 0,04 0,03 0,00 0,00 0,02 0,00 0,00 0,62 0,03 0,00 0,00 0,01 0,00 0,00 0,00

DER 0,00 0,02 0,03 0,01 0,01 0,05 0,02 0,01 0,02 0,03 0,06 0,01 0,69 0,01 0,01 0,02 0,01 0,00 0,00

PCH 0,08 0,17 0,00 0,00 0,00 0,03 0,01 0,00 0,11 0,00 0,02 0,00 0,00 0,55 0,00 0,02 0,00 0,00 0,00

GER 0,19 0,00 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,79 0,00 0,00 0,00 0,00

REU 0,12 0,00 0,00 0,03 0,00 0,04 0,00 0,04 0,05 0,09 0,17 0,00 0,00 0,11 0,00 0,36 0,00 0,00 0,00

ANA 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,06 0,00 0,90 0,03 0,00

NCH 0,00 0,13 0,05 0,07 0,01 0,20 0,00 0,04 0,00 0,00 0,06 0,06 0,00 0,04 0,00 0,07 0,00 0,27 0,00

REV 0,09 0,22 0,04 0,00 0,05 0,08 0,00 0,05 0,00 0,04 0,00 0,03 0,03 0,00 0,00 0,00 0,06 0,00 0,32

2.475 2.636 2.345 2.585 1.038 3.299 1.127 1.528 1.245 1.364 2.153 901 2.753 428 277 596 305 69 72

Predicted classes
T

ru
e 

cl
a

ss
es

Total
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4.2  POTENTIAL FINANCIAL IMPACT 

The fourth and last sub-question is concerned with the potential financial impact of 

incorporating machine learning in the yearly forecasting of healthcare demand for VieCuri 

Medisch Centrum. In order to access any potential financial impact of incorporating the Doctor 

AI (Choi et al., 2016c) algorithm in the yearly forecasting, the situation for the last three years 

of data is observed. As the healthcare product and ICD10-model configurations did not yield 

high enough results, only the best performing model (the 400 nodes per hidden layer) of the 

hospital specialism model is extrapolated from the number of predicted instances to the whole 

dataset. As the structured extraction of financial data was limited to the three financial years of 

2017 to 2019, the extrapolation of financial impact is also calculated for these three years. More 

details on the ratio between the number of DBC and incorporated number of DBC in the 

predicted scenario are displayed in Table 16. 

 

Table 16: Number of total and predicted DBCs and associated cost 

 

Doctor AI (Choi et al., 2016c) focused on predicting the last code within the patient sequence, 

which means not all occurred codes for patients within 2017 to 2019 were predicted in the final 

model. As can been seen from Table 16 for the year 2017, there were a total of 234.904 DBCs 

included in the VieCuri dataset, and of those 18.917 turned out to be the last DBC in the patient 

sequences. However, the dataset was split into a 75% train, 10% validation, and 15% test set. 

Therefore, of the 18.917 last in sequence DBC, a total of 3.126 were represented in the test set 

of which the results are reported in the paragraph above. The difference between the total 

amount of DBCs sold to the insurance companies and the number of DBCs present in the last 

class of the patient sequences results in the extrapolation for a large group of patients. The 

maximum amount (88.445) of available predictions in the last class of the sequence only 

accounts for 34,8% of the total number of DBCs for the year 2019. As the average visit per 

patient per year in the VieCuri dataset is 1,06, it is not strange that most final visits occurred in 

the last three years of data for an average patient. Since in healthcare practice there is no such 

thing as an average patient, not all final patient visits are within the last three years of data. A 

patient who only visited the hospital twice and did so in 2012 and 2013 for example, is included 

in the performance of the model in section 4.1, but is disregarded as having financial impact on 

the period thereafter. As such, the number of predicted patients that is used in the extrapolation 

of the total costs and occurred in 2017 to 2019 accounts for 75,2% of all predicted 181.299 

patients’ final code in the sequence. This means that for 24,8% of the included patients the 

sequence of treatment at VieCuri ended between 2012 to 2016. 

  

 2017 

 

2018 2019 

Total DBCs 234.904 100% 248.807 100% 254.011 100% 

Last in sequence DBCs 18.917 8,1% 28.885 11,6% 88.445 34,8% 

Test set DBCs 3.216 1,3% 4.188 1,7% 13.090 5,2% 

Total DBC cost € 174.042.005 100% € 180.929.072 100% € 182.128.328 100% 

Last in sequence DBC cost € 11.311.272 6,5% € 15.832.476 8,8% € 46.148.690 25,3% 

Test set DBC cost € 1.994.944 1,1% € 2.445.210 1,4% € 7.688.087 4,2% 



41 
 

The model which predicted the hospital specialism (400 nodes per hidden layer) is used in order 

to calculate the financial impact in terms of fault margin and loss of treatment compensation 

over the years 2017 to 2019. The distribution of DBCs that is used to extrapolate the Doctor AI 

results is the same distribution as is shown in the confusion matrix of Figure 15. The healthcare 

product costs within a specialism are averaged for the particular year in order to multiply the 

number of identified patients to be treated at the specific specialism. Thus, the calculations 

displayed in Table 17 do not show under and over estimations on healthcare product level, but 

concentrate on the overall difference within a hospital specialism. The calculation for the loss 

of treatment compensation and margin of error remains the same as those of section 1.1. 

Therefore, the two specialisms Radiology and Psychology (which together contribute to 

0,002% of DBC total cost) are divided amongst the other 19 specialisms which ordered the 

execution within the domain. This way Table 17 generates a one-on-one comparison between 

the current VieCuri practice from section 1.1 and the extrapolation of results of the hospital 

specialism model. 

 

Table 17: Financial impact forecasting performance per specialism 

 

 

 

  

Hospital specialism 2017 2018 2019 

VieCuri Model VieCuri Model VieCuri Model 

Cardiology CAR -0,2% -1,6% -1,7% 5,8% 3,6% 7,6% 

Surgery HLK 0,9% 14,0% 2,7% 11,1% -3,6% 1,2% 

Internal Medicine INT 1,7% -20,0% 2,6% -1,3% 0,6% 17,3% 

Orthopaedics ORT 8,7% -1,2% 2,2% -19,0% 0,8% 10,3% 

Pulmonology LON 2,0% -4,7% -0,1% -14,7% 1,5% 12,3% 

Ophthalmology OOG 1,5% -3,3% 4,8% 9,5% 6,9% 21,4% 

Gastroenterology GAS 2,3% -0,8% 11,7% 15,4% 12,3% 10,5% 

Gynaecology and Obstetrics GYN 7,3% 63,3% 1,4% 86,2% -2,5% 80,8% 

Urology URO 4,9% -24,0% 7,3% -18,5% 12,6% 13,2% 

Neurology NEU 1,9% 9,9% 9,2% 16,5% 0,7% -7,8% 

Throat, Nose and Ear KNO 2,1% 42,9% 1,9% 13,4% 4,3% 30,6% 

Paediatrics KIN 7,4% 16,7% -8,0% 8,8% -7,7% -3,1% 

Dermatology DER -2,4% 22,6% 3,8% 30,0% -2,1% 46,0% 

Plastic Surgery PCH 7,4% 23,5% 10,3% 34,4% 15,7% 58,1% 

Geriatrics GER 22,2% 28,8% 4,1% -4,8% -14,1% 17,2% 

Rheumatology REU 1,9% -15,5% 12,8% -7,1% -0,9% 34,5% 

Anaesthesiology ANA -6,4% -1,5% 18,4% 4,1% 19,1% 2,6% 

Neurosurgery NCH 13,6% 41,7% -5,9% 53,7% -12,2% 16,2% 

Rehabilitation REV -0,4% 35,1% 0,1% 0,1% 0,1% -0,1% 

Loss of treatment compensation 

VieCuri Forecasting € 
€ 5.129.930 € 8.065.545 € 8.855.869 

Average fault margin 

VieCuri Forecasting % 
3,0% 4,8% 5,2% 

Loss of treatment compensation 

Extrapolated DoctorAI € 
€ 23.797.610 € 25.537.184 € 27.315.252 

Average fault margin 

 Extrapolated DoctorAI % 
14,0% 15,0% 16,1% 
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From Table 17 can be concluded that extrapolating on the hospital specialism prediction does 

not perform better in forecasting healthcare demand for VieCuri. Using this high-level 

information, a distinction cannot be made between surgical operation and more simple 

treatments or treatment which requires multiple admission days and one day treatments. As 

healthcare products move within a wide range of prices (€5-€65.000), this method assumes 

great generalizability between patient treatment. Although all within the correct order of 

magnitude, the extrapolated results from those predictions are therefore only a rough estimate. 

It comes as no surprise that the loss of treatment compensation and average fault margin by 

extrapolating the hospital specialism results for all three years: €23.797.610 (14,0%), 

€25.537.184 (15,0%), and 27.315.252 (16,1%) are bigger when compared to the current 

VieCuri practise. Although some individual hospital specialism extrapolations show a fault 

margin that is not far off, as for example the year 2019 for Surgery (1,2%) and 2018 for Internal 

Medicine (-1,3%). Over all three years it may be concluded that, with the exception of 

Anaesthesiology (-1,5%, 4,1% and 2,6% fault margins by extrapolating), all fault margins are 

worse than the current VieCuri practise. The biggest outlier, which becomes clear from Table 

17, is the Gynaecology specialism. The specialism recognises a great spike in patients who are 

born, which typically is the first encounter with a healthcare product and accounts for 53,6% of 

the budget and 29,1% of total treatments. Therefore, logically this specialism represented the 

biggest fault margin, as the algorithm greatly relies on historical sequenced data in order to 

predict the next visit, a mechanism which does not predict the first visit well.  
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5.  CONCLUSION AND DISCUSSION 

The final chapter of this research is focussed on answering the overall research question by 

integrating the information gained the previous chapters. Subsequently in the conclusion three 

paragraphs are dedicated to going more in depth on the practical and theoretical implications as 

well as the limitations of this research. 

 

5.1  CONCLUSION 

This research aims to answer the question whether machine learning is able to predict healthcare 

product demand more accurately than the VieCuri current practise. For practical purposes 

hospitals can use these insights to better predict and manage the budgeting of specific 

treatments, obtain a more accurate forecast and keep treatment costs affordable. For theoretical 

purposes researchers gain insights in the behaviour of machine learning methods on different 

datasets and the generalisability of performance. Therefore, the main research question that is 

asked at the beginning of this research is: 

How can VieCuri Medisch Centrum more accurately forecast healthcare demand applying 

machine learning on EHR data in order to decrease loss of treatment compensation? 

In order to answer the main research question four sub-questions were developed, as elaborated 

upon in section 1.2. Together with the CRISP-DM framework (Shearer, 2000) the four sub-

questions have functioned as the phasing throughout this research. Based on the literature 

review conducted for this research the Doctor AI (Choi et al., 2016c) machine learning 

algorithm was selected as most prominent and practical methodology for the problem of 

forecasting healthcare demand. In parallel the EHR dataset from the VieCuri Medisch Centrum 

data warehouse was extracted in order to validate and test the performance of Doctor AI (Choi 

et al., 2016c) on the local hospital dataset. Subsequently the performance was extrapolated to 

show the financial impact of this machine learning algorithm on the yearly healthcare demand 

forecasting methodology in VieCuri.  

Dutch hospitals are challenged with providing quality healthcare to an aging population in a 

cost-efficient manner. Hospitals that effectively leverage machine learning capabilities in 

forecasting healthcare demand can potentially capture more insurance compensation. Although 

more profit does not always directly contribute to better healthcare, generating yearly positive 

profit margins is generally considered necessary to support sustainable high healthcare quality 

(Beauvais & Wells, 2006). Capturing more insurance compensation by forecasting more 

accurately can enable hospitals to invest in important areas such as the training of employees, 

expanding on capacity, funding research, and keeping healthcare affordable. 

From the conducted literature study can be concluded that although different variations and 

applications of machine learning are being developed recently, the underlying dominant 

approach within the healthcare demand prediction is deep learning. Although each encountered 

deep learning methodology has its unique features, the underlying strength of detecting hidden 

patterns in data and leveraging these to predict scalable end-to-end algorithms is prominent and 

necessary to process large amounts of EHR data. Acknowledged by many of the incorporated 

researches (Galatzer-Levy et al., 2014; Jiang et al., 2017; Khaldi et al., 2017; Miotto et al., 

2016; Prasad & Agarwal, 2014; Roysden & Wright, 2015; Srinivas et al., 2010; Yang et al., 
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2017; Zlotnik et al., 2015) more validation of methods which rely on data from a single source 

or geographic region should be done in order to show generalizable forecasting power on other 

EHR datasets before qualifying them as good forecasting methods. By researching and 

deploying the Doctor AI (Choi et al., 2016c) as one of the most promising identified methods, 

this thesis attempts to contribute to the validation of machine learning practise, and addresses 

the healthcare demand forecasting of VieCuri. The RNN/GRU architecture of Doctor AI shows 

a literature backed track record of generalizable and broad predictive power. However, when 

trained and validated on the VieCuri EHR dataset, the algorithm does not perform as expected. 

The method is tested on different models with a variety of output classes and hierarchical levels 

and in general yields lower results than needed to predict on future healthcare product demand 

or treatment clusters (by ICD10-standard). The model configuration which did yield satisfying 

results was the multiclass classification on the 21 different specialisms present in the VieCuri 

hospital. This model achieves 75,4% accuracy@3 and 72,6% recall@3 and is thereby the 

candidate which is used to show the potential financial impact of incorporating machine 

learning in healthcare demand forecasting. 

In comparing the current forecasting fault margins per specialism with the extrapolated 

predicted hospital specialism from Doctor AI, it becomes clear that information on the 

differences in cost for the individual healthcare products is lost in the Doctor AI model of 

hospital specialism. Leveraging average cost per patient visit is a compromise between missing 

more detailed cost versus high enough predictive power of the algorithm to be of use. The fault 

margins by applying this method are 14,0% for the year 2017, 15,1% for the year 2018, and 

16,1% for the year 2019. Although in the same order of magnitude, this variation does not yield 

better performance in predicting yearly future healthcare demand than the current VieCuri 

praxis which yields fault margins of 3,0% (2017), 4,8% (2018), and 5,2% (2019). 

It can be concluded that machine learning in general has huge potential in predicting future 

demand as well as handling the unique and challenging nature of EHR data. On the other hand, 

this research illustrates that not every algorithm achieves the same level of performance when 

applied to a different dataset in a different setting. The results of this research show that the 

applied machine learning method in combination with the nature of the available EHR data is 

capable of predicting the high-level hospital specialism. However, it fails to achieve satisfying 

results when the hierarchical level is decreased and therewith the number of output classes 

increases. Furthermore, it shows that with the performance of Doctor AI (Choi et al., 2016c) on 

the VieCuri dataset it is not possible to decrease the prediction fault margin and loss of treatment 

compensation by applying it to healthcare demand forecasting praxis. 

 

5.2 LIMITATIONS AND FUTURE RESEARCH 

This research has several limitations which can be directions for future research. In this section 

the three most prominent limitations will be further elaborated upon. The first limitation of this 

research can be recognised in both time and capabilities of the researcher. In the best case 

scenario a research within the field of machine learning application would test and compare a 

variety of methods to come up with the best performing algorithm. Besides the implemented 

Doctor AI (Choi et al, 2016c), the two other identified methods Dipole (Ma et al., 2017) and 

MSAM (Zeng et al., 2020) offered deep learning mechanisms not captured in the Doctor AI 

methodology. The Dipole method uses bidirectional LSTM and attention mechanisms which 
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could theoretically have better captured the relationships between patient DBCs. The MSAM 

method leverages two attention encoders to capture both DBC and the lower-level medical code 

relationships, while being less influenced by irregular visits. Additionally, some of the methods 

identified in the literature study and Table 5 could have been tailored to the problem at hand 

and offer different deep learning mechanisms. However, most of the methods only present the 

important formulas in their work, without disclosing any form of code they have used. Beside 

the methods of Choi et al. (2016a; 2016c; 2017) only FCNBLA (Wang et al., 2020) and partially 

MSAM (Zeng et al., 2020) publicly present their Python codes for validation or reuse. In order 

to compare multiple methods in this research, it would have been necessary to build the 

algorithm from start to finish relying on the most prominent formulas in the identified papers 

and make assumptions on the steps taken in the pre-processing of the data. The capabilities of 

the researcher lack in this regard as the programming skills to implement conceptual deep 

learning into real-world programmable Python code are not developed enough. Together with 

the limited time available to conduct this research in the Master Thesis Project format, the ideal 

situation of comparing different methods was not feasible. The justification of this research, 

that more validation on machine learning methods needs to be done in order to generalise 

performance, has been addressed throughout this research. Future research should not only 

focus on designing new methods to cope with real-world problems, but should also develop the 

field of machine learning application further in comparing existing methods on different real-

world problems in order to find the right solution. 

The second limitation can be found in the size and type of selected data for this research. As 

the registration of DBC data is the financial backbone of any Dutch hospital, the data is stored 

in a structured and complete manner. However, all of the in the literature study identified and 

in Table 5 summarized methods relied on patient admissions or visit data. A patient admission 

or visit in most cases is a collection of more than one diagnosis and treatment and differs in that 

regard to a DBC which is a recording of the overarching single diagnosis and treatment. As the 

admission and visiting data is collected by the 21 different hospital specialisms, the way of 

storing and collecting data is different in every situation. Therefore, the national standardized 

DBCs offered the most complete, structured and reliable data which was able to represent the 

overall patient care in VieCuri. The results for this level and type of data in comparison to the 

Doctor AI (Choi et al., 2016c), Dipole (Ma et al., 2017) and MSAM (Zeng et al., 2020) yielded 

a dataset which was rich in diversity of labels, but poor in size. In Table 18 the comparison 

between the size of the four datasets is listed. What becomes clear from Table 18 is that although 

the total number of recordings in the VieCuri dataset (1.797.467) is bigger than from Dipole 

(1.055.011) and MSAM (1.301.954), they are stretched over a much longer period of time  

(7 years in contract to 2 and 1 year(s)). Especially in the number of records per patient per year 

and number of medical codes per record, the VieCuri dataset significantly lags behind in size 

when compared to the other three datasets.  

Although the one code per recording is the result of working with DBC data instead of 

admission or visit data, the number of records per patient per year are highly influenced by the 

number of patient visits. In itself it can be reasoned that the three hospitals of which the other 

datasets are collected operate for a much larger and densely populated service area than the 

region where VieCuri operates. However, this does not explain why on average a patient visits 

around once a year (1,06) in VieCuri, but does so much more frequently in the other three 

datasets: 6,83 (Doctor AI), 3,57 (Dipole) and 4,45 (MSAM). In having on average only 1,06 

records per patient per year, the occurrence of stand-alone events like for example receiving a 
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flu vaccine in 2012 and treatment for a broken arm in 2016 are much higher. As Choi et al. 

(2016 p.10) stated in their Doctor AI research: “We have also shown that the patient's visit 

count and the rarity of medical codes highly influence the performance”. This statement holds 

as the VieCuri dataset is sparse when compared to the other three researches. Future research 

could be applied to the impact of data density/sparsity on the performance of machine learning 

in healthcare research and how to overcome them, as not every hospital is capable of achieving 

the high density of visits that is used in the three mentioned researches. 

 

Table 18: Dataset comparison VieCuri, Doctor AI, MSAM and Dipole 

 VieCuri Doctor AI Dipole 

 

MSAM 

Total Patients 240.841 263.706 147.810 146.287 

Total Records 1.797.467 14.400.985 1.055.011 1.301.954 

Records per patient 7,46 54,61 7,14 8,90 

Records per patient per year 1,06 6,83 3,57 4,45 

Codes per record 1,00 3,22 4,08 5,00 

Unique Codes 3.395 38.594 8.522 7.497 

Predicted Codes 3.087 till 21 1.183 426 291 

Timespan collected data 7 years 8 years 2 years 1 year 

 

Third, it is known that both an aging patient population and patients who consume most current 

healthcare are the main contributors to healthcare demand and cost (Bates et al., 2014; Callahan 

& Shah, 2017; Schut et al., 2013). Although these statements are the foundation of this research, 

external factors which impact healthcare demand are not to be neglected in order to fully mimic 

patient healthcare demand. As the most prominent impactful example on current healthcare 

demand, the COVID-19 pandemic has had a major impact on the type and frequency of 

treatments that are provided by hospitals across the world. For the Netherlands this meant a 

scale down of regular healthcare treatment and operations to support the growing Intensive Care 

(IC) demand required by COVID-19 patients (RIVM, 2020). The COVID-19 pandemic, or 

other examples such as the severe influenza epidemic of the 2017/2018 winter season (RIVM, 

2018), or the deathly heatwave of the summer 2019 (CBS, 2019), are all illustrative of external 

factors that can impact healthcare demand for a single country, region, or hospital significantly. 

None of the three mentioned external factors could have been predicted or incorporated in the 

forecasting praxis by only relying on historical patient data.  

Following that line of reasoning, the results of the financial impact analysis in paragraph 4.2 

show the biggest forecasting fault margins in the domain of Gynaecology, where historical data 

is not able to predict future birth, as this represents the first patient visit to a hospital. The impact 

of this stands out as the babies which are born in VieCuri account for more than half of the total 

specialism cost (53,6%). Although mechanisms as patient birth can be accounted for by using 

different sources or models, the severity or impact of future external factors as the next 

pandemic, epidemic, or heatwave are almost impossible to predict. Therefore, the conclusion 

can be made that even though healthcare demand predictions on historical patient data can be 

improved onto a more detailed level, the impact of external factors which cannot be extracted 

from historical data are not to be neglected. Although machine learning could be able to predict 

the rough numbers of healthcare demand, more research into the impact of external factors is 

needed to refine these rough numbers to practical use. 
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5.3  PRACTICAL IMPLICATIONS 

For VieCuri Medisch Centrum this research marks the first specialism overarching research 

into the research field of machine learning and it is thus still in the exploration phase for the 

hospital. Although optimistic about the potential gains, other Dutch hospitals have also not 

moved beyond the exploration of machine learning opportunities (ICT&health, 2019). 

Forecasting healthcare demand is a yearly challenging issue where both hospitals and healthcare 

insurers are confronted with the struggle of providing healthcare coverage for the whole 

population while invested in different interests (Schut et al., 2013; Van de Ven & Schut, 2009). 

Insurers are profit driven while bound to national regulations to decrease the growth of 

healthcare expenses, whereas hospitals want to provide high quality patient care while keeping 

expenses within budget. Hospitals which are able to more accurately predict healthcare product 

consumption one year in advance can achieve more compensation from the healthcare insurers, 

while not having to treat patients on their own expenses. Being able to more accurately forecast 

healthcare product demand is a competitive edge in both the yearly negotiation with healthcare 

insurers as well as the foundation for capacity planning and availability of resources (Kaplan & 

Porter, 2011).  

The results of this research show that performance of machine learning algorithms can vary 

greatly when methods are applied to new and different datasets and situations. The applied 

Doctor AI (Choi et al., 2016c) model for predicting the individual healthcare products does not 

perform well enough to be applied in yearly healthcare demand forecasting praxis for VieCuri. 

Forecasting future healthcare product demand would generate most insight into the exact 

product consumption and therefore be a more precise healthcare cost predictor when used for 

budgeting purposes (Yang et al., 2017; Yang et al., 2018). However, forecasting is not only 

done within the process of negotiating yearly healthcare insurer budgets and can be executed 

on different levels throughout the hospital. Therefore, the results on the higher hierarchical level 

models are still of great value to hospital forecasting praxis. 

Dutch hospitals struggle with combining quality and affordability in their healthcare offering 

(Kroneman et al., 2016; Schut et al., 2013). Being able to forecast the number of patients a 

hospital specialism will treat for a given year creates the first level of insight in yearly patient 

flows and shows rough approximation of the involved yearly cost. In showing good 

performance on both accuracy@3 (75,4%) and recall@3 (72,6%) on the highest hierarchical 

level model of hospital specialism, this research shows that machine learning can discover 

patterns in sequential patient data. Although not applied to different use cases in this research, 

the demand for the specific hospital specialism can provide the first step in more tailored 

allocation of human and capital resources (Kaplan & Porter, 2011). As doctors, nurses, and 

treatment facilities are in high demand, being able to forecast on the number of patients can 

help hospitals better distribute these recourses across the different departments (Bates et al., 

2014). Thereby the machine learning model is able to create direct added value while being the 

starting point for further research into the detailed healthcare demand. 
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5.4 THEORETICAL IMPLICATIONS 

This research contributes to the validation of machine learning methods by applying the Doctor 

AI methodology (Choi et al., 2016c) to a different dataset in a different setting. Leveraging new 

machine learning algorithms or innovating on existing methods has contributed to improved 

performance in a variety of fields of application within machine learning and the healthcare 

specific domain. However, as acknowledged throughout this research, many of the incorporated 

research papers indicate that more validation on existing methods needs to be done in order to 

generalize their performance (Galatzer-Levy et al., 2014; Jiang et al., 2017; Khaldi et al., 2017; 

Miotto et al., 2016; Prasad & Agarwal, 2014; Roysden & Wright, 2015; Srinivas et al., 2010; 

Yang et al., 2017; Zlotnik et al., 2015). As the research of Doctor AI (Choi et al., 2016c) claims, 

their method can be applied from one hospital to the other. The MSAM (Zeng et al., 2020) 

research validates that by using the Doctor AI methodology as a baseline for their research and 

achieving similar results in applying the algorithm.  

Predicting on medical data has its unique challenges and characteristics, as is discussed in 

paragraph 2.1. These characteristics include temporality, high diversity and sparseness (Nguyen 

et al., 2016; Zhou et al., 2017). Combined they confront researchers with problems when data 

is differs between countries, regions, or hospitals as thereby knowledge cannot be transferred 

between institutions (Morton et al., 2016). In this research it is shown that although the Doctor 

AI method can be applied to the dataset of a different hospital (relying on the same ICD10-

framework), the nature of the EHR data of VieCuri and the difference in administering medical 

codes impacts the method’s performance significantly. The outcomes of this research show that 

by decreasing the number of output classes, the model is better able to learn the patient 

representations, but loses out on detailed information like healthcare product or ICD10-clusters. 

When observing these results, it should be taken into account that besides the number of nodes 

per hidden layer, none of the hyperparameter settings of the original Doctor AI algorithm (Choi 

et al., 2016c) are changed. 

This research does not succeed in leveraging the DBC data in order to predict on a healthcare 

product level. The underlying relationships between visits did not show generalisable results in 

order to forecast healthcare product demand. The recognition of these underlying relationships 

thereby remains one of the biggest challenges for deploying machine learning algorithms on 

EHR data (Barati et al., 2011; Lei, 2017). The Doctor AI setup of this research was not able to 

overcome the difference in density of patient visits and volume between the different codes in 

the VieCuri dataset. Both phenomena are a direct effect of working with EHR data, as sequential 

patient representations are very specific and diverse in nature (Esteva et al., 2019; Solares et 

al., 2020). Therefore, the customer journey and medical needs for one patient are approached 

and tailored differently than for another patient. Just as in medical practise the impact of a 

negative incorrect diagnosis is often more critical than a positive correct one, the field of 

machine learning application still has hurdles to overcome in order to be applied in mainstream 

healthcare practice (Miotto et al., 2016; Wiens & Shenoy, 2018). However, the results of this 

research show that on the highest level of hospital specialism, advancements can develop in 

small steps on which future improvements can be made. 
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APPENDIX A – VieCuri Medisch Centrum 

VieCuri Medisch Centrum location Venlo was founded in 1983 under the name Sint Maartens 

Gasthuis from a merger of two smaller local hospitals. Later in 1992 it merged again with the 

hospital in Venray and from thereon it operates under its current name. VieCuri nowadays is a 

collective of two hospitals and three regional clinics that all service the North-Limburg region, 

which inhabits roughly 257.000 people. 

The hospital is structured in ten vertical silos of which three provide the core patient care: 

cluster Medisch Ondersteunend, Snijdend, cluster Moeder en Kind and cluster Beschouwend. 

For the full organisational chart of the hospital see Figure 16 below. Within the three mentioned 

clusters twenty offered specialties are embedded. As Top Clinical Care (STZ Ziekenhuizen, 

2020) labelled hospital VieCuri provides in the three prescribed pillars patient care, education 

and research. First, the scale of core patient care can be best interpreted by the annual reviews 

of the last three years which are shown in Table 1. Second, as educational centre it hosts clinical 

internships as well as a third of the doctors’ workforce being in training. Last, as research 

institute the hospital contributed to the last three business years an average of 185 papers per 

year in more than 150 different journals. 

This Master Thesis is hosted by the Cluster Financiën, a collaboration between four 

departments which are highlighted in Appendix A. The department Planning & Control (P&C) 

is in the lead on business understanding, processes, and budgeting. Bedrijfsinformatie (BI) is in 

control of data gathering and data understanding within the hospital. Bureau Integrale 

Capaciteitsmanagement (BIC) is responsible for the tactical capacity management, advising 

other departments on business analytics and creating enough capacity for beds and nursing 

hours within the P&C budgeting. Finally, Informatiemanagement (IM) is responsible for the 

data warehousing and management of information infrastructure. The combination of different 

fields of expertise and commitment from multiple departments gives confidence in the 

integration of information from different perspectives. 

  

Figure 16: Placement of departments within the organisational chart 
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APPENDIX B – Literature Review 

The literature review which is part of this research has a very focused and narrowed search field 

as it serves to answer the question which machine learning method is most suitable for handling 

the problem at hand. The goal of this literature search is the identification of existing methods 

which have proven effective on a given dataset within the healthcare domain. 

B.1 Search Query 

The first step of the literature review consisted of the synthesis of search terms in order to 

effectively narrow and browse the different scientific databases. The search terms which were 

included can be found in Table 19 and are a result of building on the four recent literature 

reviews which were used as starting point (Al-Aiad et al., 2018; Shickel et al., 2017; Solares et 

al., 2020; Xiao et al., 2018). Note that by incorporating the “Diagnos*” search term which 

includes both keywords diagnosis and diagnose as they are used interchangeably. The same 

holds true for “Record*” for record and the plural records or for the term “Predict*” as therewith 

all three keywords prediction, predictor, predicting are incorporated. With the selected search 

terms the field of research, type of data and objected output terms are included. All articles 

which do not fit one all these three areas are excluded as they do not serve the goal of this 

review.  

Table 19: Database search terms  

 

The second step is the combination of search terms into a specific search query which is used 

to browse the databases of Web of Science (WoS) (https://apps.webofknowledge.com), Scopus 

(https://www.scopus.com) and IEEE/IES Xplore (IEEE) (https://ieeexplore.ieee.org). All three 

databases were browsed on the combination of title, abstract and keywords. The search query 

which is displayed below has been used in all three databases. Also, the by the four literature 

compared methods are included in the set of articles for further investigation. The number of 

articles which were found in total are shown in Table 20 on the following page. 

Search query =   

  (( "Electronic Health Record*"  OR  "EHR" ) AND 

  ( "Machine Learning"  OR  "Deep Learning"  OR  "Neural Networks" ) AND 

  ( "Diagnos* Predict*"  OR  "Outcome Predict*"  OR  "Disease Predict*" )) 

  

Search Terms Sources 

 

“Electronic Health Record*” OR “EHR” Al-Aiad et al., 2018; Shickel et al., 2017; 

Solares et al., 2020; Xiao et al., 2018 

“Machine Learning” Al-Aiad et al., 2018; Shickel et al., 2017; 

Solares et al., 2020; Xiao et al., 2018 

“Deep Learning” OR “Neural Networks” Al-Aiad et al., 2018; Shickel et al., 2017; 

Solares et al., 2020; Xiao et al., 2018 

“Diagnos* Predict*” OR “Disease Predict*” Shickel et al., 2017; Solares et al., 2020;  

Xiao et al., 2018 

“Outcome Predict*” Al-Aiad et al., 2018; Shickel et al., 2017 

 

https://apps.webofknowledge.com/
https://www.scopus.com/
https://ieeexplore.ieee.org/
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B.2 Selection 

The third step in the literature review is the selection of relevant articles which present a method 

that could be used to better forecast healthcare demand. Therefore, several rounds of assessment 

of the found articles. 

As the research field into the specific subject is relatively young it would have made sense to 

exclude article on the basis of age, however, none of the databases returned articles older than 

2014 (WoS 2017-2020; Scopus 2014-2021; IEEE 2017-2020). Therefore, nothing has been 

excluded on the basis of publication year. Also, because the research field is so young the 

emphasis is not only on articles which have been sited at least an x number of times, therefore 

no articles are dropped due to not enough citations. 

The first round of assessment on the results of the three databases is done on the basis of the 

title and abstract. These give an indication about the topic of the article. If the article does not 

present a method which predicts any diagnosis/diseases/healthcare outcomes the article is 

excluded in this round. Also, the article of Gupta et al. (2020) from the IEEE database was 

excluded, as beside the abstract this was the only non-accessible article. The number of articles 

which are included after the first round of assessment are shown in Table 20 below. 

The second round of assessment is on the remaining articles including the articles which were 

included from the previously mentioned four literature reviews (LR). The evaluation is done by 

scanning the articles on the abstract, data descriptive, conclusion, discussion and implications. 

In this step it is of importance to only incorporate methods which can be generalizable and have 

therefore shown performance on predicting multiple diagnoses or diseases. Presented methods 

that only have shown results in form example heart failure, diabetes, bone disease or early 

mortality are excluded. The number of articles that remain are shown in Table 20. 

All unique articles which are left after the second assessment round are displayed in more detail 

in Table 5 in the main text of Section 2.2. 

After the evaluation of the identified methods the discussion which is presented in Section 2.3 

follow up to the selection of the two most suitable methods for the problem at hand and are 

explained in more detail in Section 2.4. 

  

Table 20: Number of articles per literature study phase 

 

  

Phase WoS 

 

Scopus IEEE Four LR 

Initial Search Query 33 70 27 - 

Unique articles after Initial Search Query 83 - 

After First Assessment Round 24 43 12 17 

Unique articles after First Assessment Round 58 

After Second Assessment Round 4 10 1 6 

Unique articles after Second Assessment Round 13 

After Final Assessment 1 2 0 2 

After discussion of methods for the problem at hand 3 
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APPENDIX C – Performance Visualisation of analysed models 

Figure 17: Loss and recall@30 for healthcare product (HP) model (n=3.087) 

Figure 18: Loss and recall@30 for 80% most sold HP model (n=1.027) 

 

Figure 19: Loss and recall@30 for 80% of total HP cost model (n=519) 
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Figure 20: Loss and recall@30 for patients >5 DBCs model (n=3.081) 

Figure 21: Loss and recall@30 for ICD10-parent model (n=1.132) 

Figure 22: Loss and recall@30 for ICD10-block model (n=199) 
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