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Abstract 

There is a growing effort in using renewable energy as an energy source, but many 

of these sources are not always available. For example, sunlight can only be 

harvested during the day, and for wind energy there must be wind. There is a real 

need to store energy such that energy can be harvested when it is available and 

also used when it is not available. A possible solution is to use hydrogen as energy 

storage. Hydrogen can be generated using electricity by the process of electrolysis, 

after which the process can be inverted such that we get electricity again. The 

downside of using hydrogen as energy storage is its low gas density, this requires 

us to compress hydrogen such that we can store it efficiently. 

A modern device for compressing hydrogen is an electrochemical compressor. This 

type of compressor can efficiently compress hydrogen up to very large pressures. 

A disadvantage of this type of compressor is its low flow rate. In order to use 

electrochemical compression for large-scale energy storage, we need many 

compression units working together.  

In the presented thesis is a polynomial-time load-sharing algorithm for 

electrochemical compressors presented. The algorithm will meet a certain mass-

flow rate demand with near-optimal power consumption while respecting real-

world constraints. 
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Chapter 1  

Introduction 

The concept of compressing hydrogen using an electrochemical compressor has 

already been published in 1981, in which it was shown that a direct current through 

a hydrated polymer electrolyte cell can transport hydrogen from a low- to high-

pressure side (Sedlak, Austin, & LaConti, 1981). It was not until 2012 before the first 

electrochemical hydrogen compressor could compress hydrogen up to thousand 

bars (HyET Hydrogen). In the meantime, the technique has matured and is now 

ready to be employed in a system. This gives rise to new challenges. For one, a 

single electrochemical hydrogen compressor has limited flow. Therefore, many 

compressors are needed to achieve large flow rates. Since the compression 

efficiencies vary over time and between compressors, it becomes increasingly 

difficult to meet a certain flow rate demand with optimum power consumption. In 

this thesis is a load-sharing algorithm presented that is capable of sharing the flow 

rate between the compression units in a system such that a certain overall flow 

rate demand is achieved with near-optimal power consumption.  

1.1. Electrochemical hydrogen compressor 

An electrochemical hydrogen compressor is a compressor that compresses 

hydrogen without mechanical pressure. Instead, we use electricity to move protons 

from one side of a proton exchange membrane (PEM), to the other (high pressure) 

side with a rate that is proportional to the electrical current. A PEM is sandwiched 
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between two electrodes that are electrically isolated from each other by the PEM, 

we call this assembly a membrane electrode assembly (MEA). An electrochemical 

hydrogen compressor typically consists of multiple MEAs that are sandwiched 

between plates who are responsible of distributing the hydrogen over the MEA. 

The following figure shows a simplified electrochemical hydrogen compressor.  

 
 

Figure 1: Electrochemical hydrogen compressor. 
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA)) 

In figure 1 is an electrochemical compressor depicted with a low-pressure 

hydrogen input and a high-pressure hydrogen output. All cells are electrically 

connected in series and powered by a power supply unit (PSU) that powers the 

compressor with a direct current. For this thesis, we assume a parallel gas 

configuration which implies that each cell is exposed to the full pressure difference, 

and with each cell we increase the maximum flow rate.  

1.1.1. Shunting a cell 

With an electrochemical hydrogen compressor, we need to be careful that the 

voltage over a cell is not too high, both to overcome damaging the cell as to keep 

the power consumption low. It may very well be that there are one or more cells in 
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a compressor with a voltage that is too high, requiring the compressor current to 

be tuned down in order to avoid damaging the cell. As an alternative, we can shunt 

a cell and divert a fraction of the current by placing a shunt or a variable shunt 

between the cell plates, patented in (United States Patent No. US9915004B2, 

2014), and illustrated below.  

 

Figure 2: Shunt (left), variable shunt (right).  
(Membrane Electrode Assembly (MEA)) 

Note that a variable shunt resistor can also imply an integrated circuit or 

transistor(s). 

1.2. Compression system 

A compression system is a system with one or more compression units and auxiliary 

devices required to operate the compression unit(s). These auxiliary devices 

include a cooling system, humidifier, hydraulics, pipe heaters, sensors and valves. 

For this thesis we do not take auxiliary devices into account and we focus on the 

compression units themselves. Each compression unit contains a power supply unit 

(PSU) with a power input and a processor that controls the PSU, reads the cell 

voltages, and communicates with external devices over a communication bus. 

Moreover, each compression unit has a low- and high-pressure hydrogen port for 

which it is assumed that all compressors are connected to the same low- and high-

pressure media as depicted in the following figure.  
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Figure 3: Hydrogen (H2) gas connections in an electrochemical hydrogen compression system. 
(Power input (PIN), Communication port (COMM)) 

During the thesis preparation phase, we have found that we should implement 

sections, we call such a section a skid. Every skid includes a processor that 

represents the skid node and one or more compression nodes who represent the 

compression units. The skid node acts as a gateway between the nodes in a skid 

and external nodes to limit the number of messages and increase the potential 

system size. As for the communication bus, we found that the CAN bus is a cost-

effective and reliable option. However, this algorithm is communication bus 

independent and will work with any communication bus given that the speed is 

sufficient, and the following topology is implemented.  

 

Figure 4: Compression system consisting of 𝑛 skids, 𝑛 ∗ 𝑚 compressors, and 𝑛 ∗ 𝑚 ∗ 𝑘 cells 
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We propose two communication busses in figure 4, an outer bus that connects the 

skid nodes to each other, and an inner bus that connects the compressors within a 

skid to the skid node. We conceptionally describe the communication in the 

following three steps.  

1. Each compressor communicates characteristics over the inner bus to the skid 

node.  

2. The skid nodes process the characteristics and broadcast a subset over the 

outer network.  

3. The skid nodes process the subsets and communicate a solution to the 

compressors within the skid. 

1.3. Structure of the report 

In this report is a load-sharing algorithm presented for the electrochemical 

hydrogen compression system as proposed in section 1.2. In the current chapter is 

an introduction given, followed by the problem statement in the next chapter. In 

the third chapter is a study done in related work, which we will use to model the 

problem in the fourth chapter and develop an algorithm in the fifth chapter. We 

will present the algorithm and define how this algorithm is to be implemented in 

the proposed compression system. We conclude the thesis with results and a 

conclusion in the sixth and seventh chapters. 
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Chapter 2  

Problem statement 

For the compression system as proposed in section 1.2, with 𝑛 skids, where each 

skid has at most 𝑚 compression units, each compression unit at most 𝑘 cells and 

each cell an electronic shunt that can be enabled or disabled. We must decide 

which cells to shunt and how much current to feed through the compressors such 

that we meet hydrogen flow demand 𝑑 with minimum power consumption. 

Moreover, we must take real-world limitations into account which implies that we 

must stay below a certain cell voltage limit such that we do not damage the 

electrochemical cells, and we must stay below the maximum current rating of the 

power supply unit. When it is not possible to meet flow rate demand 𝑑, we must 

return the system configuration that gives the highest flow rate. Moreover, we 

need to solve the problem periodically for big systems, which implies that we need 

to solve the problem efficiently. More precisely, we need to solve the problem in 

polynomial time for system size 𝑛 ∗ 𝑚 ∗ 𝑘. 

We divide the problem in three major parts, namely. 

P1. Decide for each compressor which cells to shunt and output all the relevant 

shunt configurations per compressor. We define a shunt configuration as a 

set of Booleans, one Boolean for every cell that indicates if the corresponding 

cell is shunted. 
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P2. Decide for every compressor which shunt configuration to use and how 

much current to feed through the compressor such that we meet flow rate 

demand 𝑑 with minimum power consumption.  

 

P3. Adapt the solution such that it can be implemented in the system as 

proposed in figure 4. This implies that we need to decide what each node 

must do and what data there must be communicated over the busses.  

2.1. Milestones 

We will first conduct a research in the behavior of an electrochemical hydrogen cell 

and use the results to develop a model that represents the compressor. We will 

also do a research in related algorithms and use this to develop an algorithm that 

solves the problem in polynomial time. The last part is to adapt the algorithm such 

that it can be implemented in the proposed system and nodes. We summarize the 

following milestones. 

1. Conduct a research in the behavior of an electrochemical hydrogen cell, 

section 3.1. 

2. Conduct a research in related algorithms, section 3.2. 

3. Create a model that represents the electrochemical compressor, chapter 4. 

4. Develop an algorithm that solves problems P1 and P2 in polynomial time, P1 

in section 5.1, and P2 in section 5.2. 

5. Solve problem P3 by adapting the algorithm such that it can be implemented 

in the proposed compression system (figure 4), section 5.3. 
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Chapter 3  

Related work 

In this chapter is a study in related work presented. We will first present results 

that help us model the compressor in section 3.1. And secondly, we study 

algorithms that solve similar problems in section 3.2. 

3.1. Electrochemical cell 

An electrochemical cell has already been modelled in 1971 by Macdonald 

(Macdonald, 1971), for which the following equivalent circuit has been suggested. 

 

Figure 5: Equivalent circuit electrochemical cell (Macdonald, 1971), with Rsol as the solution 
resistance, Rct as the charge transfer resistance, Cdl as the double layer capacity and W the 

Warburg impedance 

The equivalent circuit from figure 5 is better known as a Randles circuit (Randles, 

1947) commonly used in Electrochemical impedance spectroscopy, a method to 
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characterize electrochemical systems. In this circuit is the faradaic reaction, i.e. the 

reaction that causes hydrogen protons to move from one side of the PEM to the 

other side, represented by the 𝑅𝑐𝑡 resistance and 𝑊𝑎𝑟𝑏𝑢𝑟𝑔 impedance. 

3.1.1. Behavior of an electrochemical cell 

It has been shown by (Grigoriev, Shtatniy, Millet, Porembsky, & Fateev), 

(Suermann, Kiupel, Schmidt, & Buchi), (Scheepers, et al.), (Ströbel, et al.), and many 

more that the behavior of an electrochemical cell depends on many parameters. 

Namely, membrane material, temperature, humidity, gas purity, pressure 

difference and current density. For this thesis, we are interested in what happens 

when we change the current through a cell or shunt a cell, in both cases, we are 

effectively changing the current density. The following figures show us what 

happens if we change the current density of an electrochemical cell for various 

temperatures, gas concentrations and membrane materials. 

 
Figure 6: I-V curves for different temperatures 

(Grigoriev, Shtatniy, Millet, Porembsky, & 
Fateev, 2011) 

 
Figure 7: I-V curves for different hydrogen 
concentrations (Grigoriev, Shtatniy, Millet, 

Porembsky, & Fateev, 2011) 
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Figure 8: I-V curves for different membranes (Ströbel, et al., 2002) 

We see that the electrochemical cells are first in a linear region where the cell 

behaves as a resistor, after which the cell voltage increases exponentially. Working 

outside the linear region is unadvised since a small change in current density can 

cause a large change in cell voltage, possibly damaging the cell.  

 
Hydrogen flow rate 
Faraday has researched electrochemistry already in 1834, from which Faraday’s 

laws of electrolysis originated (Faraday, 1834). Faraday showed that the amount of 

material produced during an electrochemical reaction is directly proportional to 

the average current multiplied by the experiment time. We can use these laws to 

calculate the amount of hydrogen that is transported through the membrane as. 

𝑑𝑛

𝑑𝑡
=

𝐼

2𝐹
 

Equation 1: Hydrogen molecule flow rate of an electrochemical 
cell (Rohland, Eberle, Ströbel, Scholta, & Garche, 1998) 

 

Where: 
𝑑𝑛 𝑑𝑡⁄  is the hydrogen flow rate [𝑚𝑜𝑙 𝑠⁄ ]. 
𝐼 is the current though the cell [𝐴]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 
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NERNST voltage 
Figure 6, figure 7 and figure 8 do not show the behavior when there is a pressure 

difference over an electrochemical cell. To this end, let us use the following 

expression derived from the NERNST equation to calculate the effect of 

pressurization on the cell voltage. 

𝐸 =
𝑅 ∗ 𝑇

2𝐹
ln

𝑃𝐻2
𝐻𝑃

𝑃𝐻2
𝐿𝑃  

Equation 2: Effect of pressurization on cell voltage 
according to the NERNST equation (Rohland, Eberle, 
Ströbel, Scholta, & Garche, 1998) 

Where: 
𝐸 is the cell potential [𝑉]. 
𝑅 is the universal gas constant [𝐽 𝐾 ∗ 𝑚𝑜𝑙⁄ ]. 
𝑇 is the temperature [K]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 
𝑃𝐻2

𝐻𝑃 𝑃𝐻2
𝐿𝑃⁄  is the hydrogen compression factor. 

The voltage calculated in equation 2 gives the theoretical cell voltage as a function 

of the pressure difference. In order to pressurize hydrogen, we need to overcome 

the theoretical cell voltage. For a hundredfold compression factor and a 

temperature of 300 Kelvin, a cell voltage of 60 mV is required according to equation 

2. 

 
Back-diffusion 
Another effect of pressurization is back-diffusion. When there is a pressure 

difference over the electrochemical cell, we have hydrogen molecules migrating 

from the high- to the low-pressure side. This migration can be compensated by an 

electrical current such that there is found an equilibrium at which there is no 

hydrogen flow. We use this equilibrium current together with Faradays laws to 

calculate the back-diffusion rate as. 

𝑑𝑛

𝑑𝑡
=

𝐼 ∗ 𝑉0 ∗ 𝑇

2𝐹 ∗ 𝑇0
 

Equation 3: Hydrogen molecule back-diffusion rate 
(Ströbel, et al., 2002) 

Where: 
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𝑑𝑛 𝑑𝑡⁄  is the hydrogen back-diffusion flow rate [𝑚𝑜𝑙 𝑠⁄ ]. 
𝐼 is the equilibrium current [𝐴]. 
𝑉0 is the standard molar volume [1 𝑚𝑜𝑙⁄ ]. 
𝑇 is the temperature [𝐾]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 
𝑇0 is the standard temperature [𝐾]. 

3.2. Related algorithms 

In this section are related algorithms studied to solve the second part of the 

problem as described in the problem statement and repeated below. 

Decide for every compressor which shunt configuration to use and how much 

current to feed through the compressor such that we meet mass-flow rate 

demand 𝑑 with minimum power consumption.  

If we ignore the part about determining how much current to feed through a 

compressor and the effect this has on the compression flow and power 

consumption, we realize that we essentially have a combinatorial optimization 

problem. Similar to the well-known 0-1 Knapsack problem, defined as.  

Let there be a set of items, where each item has a value and a weight. 

Determine which items to put in the knapsack such that the weight is at most 

𝑊 and the value is maximum.  

Instead of selecting items, we select configurations. With power being the value 

and flow being the weight. We do now have a minimization problem as the power 

must be minimized, and instead of having a weight at most equal to 𝑊, we must 

have a flow at least equal to 𝑑. 

The Knapsack problem has been researched extensively, with early works dating 

back to 1897 (Mathews, 1897). It has been shown that the 0-1 Knapsack problem 

with real values and weights is NP-complete, thus there is no known algorithm that 

can solve the problem both optimal and in polynomial time for any given input. 

However, it has been found that if the weights or values are integers, we can solve 
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it optimally in polynomial time using Dynamic-programming, explained in section 

3.2.1. To solve a problem with real values, we can use a scaling and rounding step 

that converts the real values to integers. Unfortunately, this introduces rounding 

errors, causing the solution to be potentially non-optimal. We can create a 

polynomial-time approximation scheme as explained in (de Berg, 2019), in which 

we regulate the rounding error using a parameter 𝜀 > 0. With 𝜀, we can set the 

tradeoff between accuracy and speed, a higher 𝜀 gives us a faster execution at the 

cost of reduced accuracy and visa-versa. There is another approach in solving the 

Knapsack problem that does not require the weights or values to be integers, 

namely, a greedy algorithm for the Fractional-Knapsack problem. As the name 

suggests, we require that it is possible to take fractions of items. We discuss the 

Fractional-Knapsack problem in section 3.2.2.  

3.2.1. Dynamic programming 

Dynamic programming has been developed in 1950 by Richard Bellman (Bellman, 

1957). The general idea behind dynamic programming is to divide a problem in 

smaller sub-problems where the results of these subproblems are stored such that 

they do not have to be recomputed at a later point. This simple concept has been 

implemented in dynamic programming algorithms in many different fields.  

If we take the 0-1 integer Knapsack problem, for 𝑛 items, we can either pack an 

item or not pack an item, we find that there are 2𝑛 possible combinations of items 

to pack in the Knapsack which leads us to believe that there are 𝑂(2𝑛) 

computations to do. It turns out that many of the computations are done multiple 

times. With dynamic programming we will do each computation just once. This is 

best explained by imagining a table with 𝑛 rows and 𝑊 columns. Where 𝑐𝑒𝑙𝑙𝑖,𝑗  

contains the maximum value for the first 𝑖 items and weight 𝑗. We can fill the table 

in 𝑂(𝑛 ∗ 𝑊) time, after which we can find our maximum value for weight 𝑊 in 

𝑐𝑒𝑙𝑙𝑛,𝑊.  
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3.2.2. Fractional knapsack problem 

It has been found by George Dantzig in 1957 (Dantzig, 1957) that if we adapt the 

original 0-1 Knapsack problem such that we can take fractions of items, we can 

solve it optimally using a Greedy approach in 𝑂(𝑛 log2 𝑛) time, for input size 𝑛. The 

basic idea is to calculate the 𝑣𝑎𝑙𝑢𝑒 𝑤𝑒𝑖𝑔ℎ𝑡⁄  ratio for each item and sort all the 

items on this ratio, highest value first. We will now take items one by one until we 

cannot add the next item as a whole, instead we add as much of the next item as 

possible such that the total weight is exactly 𝑊. This approach will always give an 

optimal solution and does not require the weights or values to be integers. 

However, it does require the weights and values to scale the same. In other words, 

if we have an item 𝑥 and we pack 1 2⁄  𝑥, we must have a resulting value of 1 2⁄ ∗

𝑣𝑎𝑙𝑢𝑒(𝑥) and a resulting weight of 1 2⁄ ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑥).  

3.2.2.1. Non-linear fractional knapsack problem 

It turns out that we do not have a flow and power that scale equally, we have an 

exponential relationship in which the consumed power becomes exponentially 

large as the hydrogen flow increases. Such a problem is similar to the nonlinear 

knapsack problem, generally defined as. 

𝑀𝑖𝑛:              𝑓(𝑥) 
𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡:   𝑔(𝑥) ≤ 𝑏 
                       𝑥 ∈ 𝑆 

 

(Bretthauer & Shetty, p. 460) addresses the following five variations of this basic 

problem definition, cited as. 

1. “Convex, separable, continuous: 𝑓(𝑥) and 𝑔(𝑥) are convex separable 

functions, S includes bounds on the continuous variables. 

2. Convex, separable, integer: Same as problem type 1 except S includes 

integrality conditions on the variables. 

3. Nonconvex, separable (continuous and integer): 𝑓(𝑥) and 𝑔(𝑥) are 

nonconvex separable functions, S includes bounds on the variables. 
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4. Convex, separable, additional block diagonal (or GUB) constraints 

(continuous and integer): Same as problem type 1 or 2 except S also includes 

block diagonal or GUB constraints. 

5. Convex, non-separable (continuous and integer): 𝑓(𝑥) and 𝑔(𝑥) are convex 

non-separable functions, S includes bounds on the variables.”  

Our problem is closely related to the first variation, for which there are two basic 

approaches, multiple search methods, and variable pegging methods.  

With multiple search methods, we use a set of equations to solve the problem. An 

example is given in (Bretthauer & Shetty, The nonlinear resource allocation 

problem, 1995) that solves the multiple search algorithm via a one-dimensional 

search by using the derivative of the functions and the Lagrange multiplier.  

Variable pegging methods initially neglect all bounds and calculate an initial output. 

In the next iterations are items bounded such that we solve the problem and satisfy 

the limits. The generalized problem with lower and upper bounds has been solved 

in (Bretthauer & Shetty, A pegging algorithm for the nonlinear resource allocation 

problem, 2002), in which always at least one item is pegged per iteration, 

guaranteeing a finite amount of iterations. 

  



 
MODEL OF THE ELECTROCHEMICAL COMPRESSOR 

Print Date: 03 Jun 2020  Page 24 of 72 

 

Chapter 4  

Model of the electrochemical compressor 

To the end of modelling the electrochemical compression unit, let us first expand 

the compressor from figure 1 with the electronic shunts such that we get the 

compressor as depicted below. 

 

Figure 9: Electrochemical hydrogen compressor with electronic shunts. 
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA), Low Pressure (LP), High 

Pressure (HP), Hydrogen (H2)) 

We found in section 3.1 that an electrochemical cell behaves linearly at first if we 

consider the current density versus the cell voltage, after which the cell voltage 

rises exponentially. For this thesis, we assume to be in the linear region when 

staying below the cell voltage limit, one of the parameters defined in the problem 

statement. Moreover, since we are driving the compressor using a direct current, 
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we can greatly simplify the equivalent circuit of the electrochemical cell shown in 

figure 5 and model the cell as a single resistor if we ignore the effect of 

pressurization. We include the effect of pressurization by realizing that the cell 

behaves as a voltage source for which the voltage is directly related to the pressure 

difference. We assume that the wire resistance from the PSU to the first/last cell is 

neglectable and draw the electrochemical compressor as the circuit depicted 

below. 

 

Figure 10: Electrochemical compressor modelled as an electrical circuit, 
Current source (I), Cell plate resistance (rp), Cell resistance (Rcx), Shunt resistance (Rsx), Shunt 

switch (Sx), pressurization boltage (u0) 

The model in figure 10 represents an electrochemical compressor for which two 

cells are drawn. We represent the electrochemical cell resistance by 𝑅𝑐𝑖, the plate 

resistance by 𝑟𝑝, the shunt resistance by 𝑅𝑠𝑖, and the actual shunt by 𝑆𝑖. We model 

the pressurization effect as a voltage source for which the voltage 𝑢0 is calculated 

with the NERNST equation (equation 2). Lastly, the compressor is driven by a direct 

current source with current 𝐼. 

When a cell is under pressure and shunted, we might create the current path as 

illustrated in the next figure. This current path is undesirable as it allows the process 
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to reverse, i.e. for hydrogen to flow from the high-pressure to the low-pressure 

side. 

 

Figure 11: Current path due to the pressurization effect, 
Cell plate resistance (rp), Cell resistance (Rc), Shunt resistance (Rs), Shunt switch (S), 

pressurization voltage (u0) 

To avoid the situation as depicted in figure 11, we must ensure that the voltage 

over 𝑅𝑐 is positive by either feeding a sufficiently high current through the 

compressor or by un-shunting the respective cell. 

4.1. Solving the model 

In order to calculate the effect of increasing/decreasing the compressor current for 

a certain shunt configuration, we first solve the model from figure 10 for the shunt 

configuration into an intermediate form that allows us to efficiently compute the 

cell voltages, flow rate and power consumption as a function to the compressor 

current. The intermediate form consists of a number of in series connected 

resistors and voltage sources, where each resistor/source pair represents a cell and 

the respective shunt. The intermediate form for two cells is depicted in the 

following figure. 
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Figure 12: Intermediate form of a solved electrochemical compressor model. 
(Compressor current (I), Equivalent cell resistance (𝑅𝑥), equivalent pressurization voltage (𝑈𝑥)) 

From the intermediate form, we calculate the voltage over cell 𝑖 for the compressor 
current 𝐼 as. 

𝐸𝑖(𝐼) = 𝐼 ∗ 𝑅𝑖 + 𝑈𝑖 Equation 4: Voltage over cell 𝑖  

And the current through cell 𝑖 with cell resistance 𝑅𝑐𝑖 and pressurization voltage 
𝑢0 as. 

𝐴𝑖(𝐼) =
𝐸𝑖(𝐼) − 𝑢0

𝑅𝑐𝑖
 Equation 5: Current through cell 𝑖 

We use equation 1 to calculate the flowrate through an electrochemical cell. 

However, this equation assumes that there is no pressure difference over the cell. 

To include the effect of pressurization we introduce a compensation current 𝑖𝑐𝑜𝑚𝑝 

that compensates for the back-diffusion rate (equation 3). We calculate the mass-

flow rate 𝜆 for a compressor with 𝑘 cells and compressor current 𝐼 as. 
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𝜆(𝐼) =
𝐻

2𝐹
∑ 𝐴𝑖(𝐼) − 𝑖𝑐𝑜𝑚𝑝

𝑘

𝑖=1

 
Equation 6: Hydrogen mass-flow rate for a 
compressor with 𝑘 cells 

Where: 
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄ ]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 

The power consumption is the electric power that is dissipated in the compressor, 

which we calculate as. 

𝑃(𝐼) = 𝐼 ∑ 𝐸𝑖(𝐼)

𝑘

𝑖=1

 
Equation 7: Power consumption of a compressor with 𝑘 
cells 

Solving the model from figure 10 with all the shunts disabled is trivial as this would 

result in solving a network for which we have that 𝑅𝑥 = 𝑅𝑐𝑥 and 𝑈𝑥 = 𝑢0. 

However, if multiple cells are shunted consecutively, it becomes more difficult. 

Solving such a shunted section is done using a combination of Ohm’s law, 

Kirchhoff’s laws, superposition theorem and wye-delta transformations. To explain 

the cell voltage calculation when multiple cells are shunted consecutively, we will 

solve a shunted section consisting of three cells. We use the superposition theorem 

which implies that we solve the circuit for every power source. We first solve the 

circuit for the current source in section 4.1.1 after which we solve for the voltage 

sources in section 4.1.2. The algorithm for solving the electrochemical compressor 

is provided in Appendix A.2. 

4.1.1. Solving for the current source 

We solve for the current source by disabling all the voltage sources and apply two 

iterative steps. Firstly, we simplify the circuit using delta-wye transformations and 

calculate the equivalent section resistance. Secondly, we use the equivalent section 

resistance to determine the section voltage as a function of the current and walk 

back the previous iterations to calculate the cell voltages. 
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Figure 13: Calculating the equivalent section resistance for the current source 

The first iterative step is depicted in figure 13. We start with the drawing all the 

way to the left and find that if we combine 𝑟𝑝1 and 𝑅𝑠1, we create a triangle 

together with 𝑅𝑐1 and 𝑟𝑝2. We can now do a delta-wye transformation and 

calculate 𝑅𝑥1, 𝑅𝑦1 and 𝑅𝑧1. In step 1a, we find another triangle with 𝑟𝑝3 if we 

combine 𝑅𝑦1 and 𝑅𝑐2, and also combine 𝑅𝑧1 and 𝑅𝑠2. We do another delta-wye 

transformation and end up with the circuit in 1b. In this step we calculate the 

equivalent resistance that is formed by the parallel circuit consisting of the sum of 

𝑅𝑦2 and 𝑅𝑐3, and the sum of 𝑅𝑧2, 𝑅𝑝3 and 𝑅𝑝4. We end up the circuit shown in 

step 1c and calculate the equivalent section resistance as the sum of 𝑅𝑥1, 𝑅𝑥2 and 

𝑟𝑒𝑞.  

In the second step, we assume a compressor current of one ampere and calculate 

the cell voltages. We note that the cell voltages are proportional to the compressor 

current and that we are effectively calculating the cell voltage per ampere of 

compressor current. In other words, we calculate the equivalent cell resistances 

𝑅𝑥. We will first calculate the voltage over the entire section 𝑉𝑠𝑒𝑐𝑡𝑖𝑜𝑛. After which 

we walk back the iterations from the first step and calculate the node voltages 𝑈1, 

𝑈2, 𝑈3 and 𝑈4, illustrated in the figure below. 
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Figure 14: Calculating the cell voltages 

We can calculate the cell voltages in the End drawing from figure 14 as the voltage 

difference between the two surrounding node voltages. Remember that we 

actually calculate the equivalent cell resistances 𝑅𝑥. 

4.1.2. Solving for the voltage sources 

We solve for the voltage sources by disconnecting the current source and 

iteratively enable a single voltage source for which the circuit is solved. We solve 

the circuit in two iterative steps. Firstly, we simplify the circuit such that we end up 

with all the resistors connected in series. We can now calculate the equivalent 

resistance for the voltage source and use this to calculate the sourced current. 

Secondly, we revert the previous iterations and calculate the cell currents and 

voltages.  
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Figure 15: Calculating the equivalent section resistance for the voltage source 

The first iterative step for a single voltage source is depicted in figure 15. We start 

with the drawing all the way to the left and find that if we sum 𝑅𝑐3, 𝑅𝑠3 and 𝑟𝑝4, 

we have a single resistor 𝑟𝑝3 in parallel. We calculate the equivalent resistance 

𝑅𝑒𝑞2 and end up with the circuit in step 1a. We repeat the previous step and 

calculate the equivalent resistance 𝑅𝑒𝑞1 in step 1b by solving the parallel circuit 

with 𝑟𝑝2 and the sum of 𝑅𝑐2, 𝑅𝑠2 and 𝑅𝑏2. We can now calculate the equivalent 

section resistance as the sum of 𝑅𝑐1, 𝑟𝑝1 and 𝑅𝑒𝑞1. 

With the second step, we walk back the iterations from the previous step and 

calculate the cell currents 𝐼𝑐4, 𝐼𝑐5, and 𝐼𝑐6, illustrated in the figure below.  
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Figure 16: Calculating the cell currents 

We can calculate the cell voltages in the End drawing in figure 16 by multiplying the 

cell current with the respective cell resistance. We repeat the previous steps for 

every voltage source and sum the calculated cell voltages such that we get the set 

with offset voltages 𝑈. Every 𝑈𝑖 now represents the total offset voltage for cell 𝑖. 

In order to include 𝑢0 and take care of the sign, we update every offset voltage 𝑈𝑖 

as follows. 

𝑈𝑖 = 𝑢0 − 𝑈𝑖  

4.2. Modelling real-world constraints 

To include the back-diffusion compensation current 𝑖𝑐𝑜𝑚𝑝, the maximum cell 

voltage 𝑢𝑚𝑎𝑥, and the maximum compressor current 𝑖𝑚𝑎𝑥 into our model, we 

convert them to minimum and maximum compressor currents, 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 

respectively. We define 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 such that if we have a compressor current 

𝐼 and 𝑖𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝑖𝑚𝑎𝑥, we will always have a cell current of at least 𝑖𝑐𝑜𝑚𝑝 a 

compressor current of at most 𝑖𝑚𝑎𝑥, and a cell voltage of at most 𝑢𝑚𝑎𝑥. 
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𝑖𝑚𝑖𝑛 = Max
1≤𝑖≤𝑘

(
𝑖𝑐𝑜𝑚𝑝 ∗ 𝑅𝑐𝑖 − 𝑈𝑖 + 𝑢0

𝑅𝑖
) 

Equation 8: Minimum compressor 
current 

𝑖𝑚𝑎𝑥 = Min
1≤𝑖≤𝑘

(𝑖𝑚𝑎𝑥,
𝑢𝑚𝑎𝑥 − 𝑈𝑖

𝑅𝑖
) Equation 9: Maximum compressor 

current 
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Chapter 5  

Load-sharing algorithm 

We will now present the load-sharing algorithm that solves the problem as 

described in the problem statement, using the model we defined in chapter 4. We 

first solve problem P1 and present an algorithm that returns the relevant shunt 

configurations for a compressor. Secondly, for a system of 𝑁 compressors, we solve 

problem P2 and present an algorithm that finds which shunt configurations to use 

and how much current to feed through each compressor. In the third and last 

section of this chapter, we include the skids and solve problem P3, we adapt the 

presented algorithm such that it can be implemented in the proposed hydrogen 

compression system defined in figure 4.  

5.1. Problem P1 – find the relevant shunt configurations 

In this section is described how we can find the relevant shunt configurations. A 

shunt configuration is a set of 𝑘 Booleans, one Boolean for every cell in the 

compressor that is set when the corresponding shunt is enabled. We define the 

relevant shunt configurations as the configurations that are not outperformed by 

others considering flow rate and power consumption, such a set is also known as 

the Pareto-optimal set. The following image illustrates the Pareto-optimal set as 

the orange dots versus the poorer shunt configurations drawn as blue dots.  
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Figure 17: Best shunt configurations (orange dots), also known as the Pareto-optimal set, 
considering power consumption and flow rate.  

A simple solution is to solve every combination of shunts and extract the Pareto-

optimal set. However, this would lead to 𝑂(2𝑘) combinations per compressor that 

need to be solved and examined. We can do this much smarter by realizing that if 

we shunt a cell, we divert part of the current through that cell. This causes a 

reduction in power and a reduction in flow rate. To counter the flow rate reduction, 

we can increase the compressor current and let the other cells work harder. 

Formulated like this, it becomes obvious that it is most effective to shunt the cell 

that is least efficient, i.e. dissipates the most power. Naturally, this is the cell with 

the highest resistance.  

In order to select only the shunt configurations that belong to the Pareto-optimal 

set, we need to compare shunt configurations. One of the parameters of 

comparison is the maximum flow rate. The other parameter is the power 

consumption. Because the power consumption does not scale linearly with the flow 

rate, we must normalize the power consumption for a fair comparison. We define 

the normalized power consumption as the power consumption when we have a 

mass-flow rate of 1 𝑔/𝑠. 
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𝐼 = 𝑖𝑐𝑜𝑚𝑝 +
2𝐹 𝐻⁄ + ∑ (𝑢0 − 𝑈𝑖) 𝑅𝑐𝑖⁄𝑘

𝑖=1

∑ 𝑅𝑖 𝑅𝑐𝑖⁄𝑘
𝑖=1

 Equation 10: Normalized current 

�̂� = 𝐼 ∑ 𝐸𝑖(𝐼)

𝑘

𝑖=1

 Equation 11: Normalized power  

Where: 

𝐼 is the normalized current, i.e. current for 1 𝑔/𝑠 [𝐴]. 

�̂� is the normalized power, i.e. power for1 𝑔/𝑠  [𝑊]. 
𝑘 is the number of cells in the compressor. 
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [𝐴]. 
𝑢0 is the pressurization voltage [𝑉]. 
𝑈 is the modelled offset voltage [𝑉].  
𝑅 is the modelled equivalent resistance [𝛺]. 
𝑅𝑐 is the cell resistance [𝛺]. 
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄ ]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 
𝐸𝑖(𝐼) is cell voltage 𝑖 for current 𝐼 [V]. 

We define the algorithm that finds the Pareto-optimal shunt configurations for a 

compressor with 𝑘 cells in polynomial time next. 
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Algorithm 1: Find the Pareto-optimal shunt configurations 

𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, , 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)  
1:      ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set  
              𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, a  
              offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a compensation current  
              𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥, and a number of cells 𝑘. 
2:      ⊳ Output: A set 𝑋2 with up to 𝑘 + 1 compressor models, where every  
              model contains as set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘} with cell resistances, a set  
              𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the shunts, a set  
              𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances as specified in section  
              4.1.1, a set 𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages as specified in section  
              4.1.2, a minimum compressor current 𝑖𝑚𝑖𝑛, and a maximum  
              compressor current 𝑖𝑚𝑎𝑥. 
3:      𝑋1 ← ∅, 𝑋2 ← ∅, Initialize 𝑆𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘. 
4: 
5:      ⊳ Get the sorted indices for 𝑅𝑐 and solve models 
6:      𝐽 ← 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑({1, … , 𝑘}, 𝑅𝑐)   
7:      𝑋1 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘) 
8:      for 𝑖 = 1 to 𝑘 do 
9:          𝑗 ← 𝐽𝑖,  𝑆𝑗 ← 1 

10:       𝑋1 ← 𝑋1 ∪  𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘) 
11:   end for 
12:    
13:   ⊳ Only keep models that belong to the Pareto-optimal set 
14:   for 𝑖 = 1 to 𝑘 + 1 do 
15:        𝑓 ← 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋1𝑖), 𝑝 ← 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋1𝑖), 𝑎𝑑𝑑 ← 𝑇𝑟𝑢𝑒 
16:        for 𝑗 = 1 to 𝑘 + 1 do 
17:            if 𝑖 = 𝑗 then continue 

17:            if 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋1𝑗) ≥ 𝑓 and 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋1𝑗) ≤ 𝑝 then  

18:                𝑎𝑑𝑑 ← 𝐹𝑎𝑙𝑠𝑒, break 
19:            end if 
20:        end for 
21:        if 𝑎𝑑𝑑 then 𝑋2 ← 𝑋2 ∪ 𝑋1𝑖  
22:   end for 
23:   return 𝑋2 
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Algorithm 1 starts with sorting the cell resistances in descending cell resistance 

order. Next, we consider the situation where no cells are shunted and solve this 

configuration in 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙 as described in section 4.1 and implemented in 

Appendix A.2. In the following iterations are cells shunted one by one until all cells 

are shunted. With every newly shunted cell we solve and store the resulting model. 

In the second loop are only the models that belong to the Pareto-optimal set added 

to the output 𝑋2. 

Let us consider the time complexity of the 𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠 algorithm. 

If we apply the Heapsort algorithm from (Williams, 1964), we can do the sorting 

step in 𝑂(𝑘 log2 𝑘) time. Solving a model takes 𝑂(𝑘2) time, since we solve 𝑘 

models in the first for-loop, we find a time complexity of 𝑂(𝑘3) for the first loop. If 

we consider the second for-loop, we find that we can execute this loop in 𝑂(𝑘2) 

time. We conclude that the computational complexity is determined by the first 

for-loop which gives us a resulting time complexity of 𝑂(𝑘3). 

5.2. Problem P2 – select shunt configurations and decide how much 

current to feed through each compressor 

In the previous section are the shunt configurations modelled and the Pareto-

optimal configurations returned, in this section we decide which shunt 

configuration to use and how much current to feed through each compressor such 

that we meet the hydrogen flow demand. We will use a dynamic programming 

approach as discussed in section 3.2.1. To this end, we develop an algorithm for 

when all power consumptions are integers. Let us assume that we have a system 

with a total of 𝑁 compressors. For every compressor we define a set 𝑋 that contains 

modelled shunt configurations. For every model 𝑥 ∈ 𝑋, we define 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥), 

𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥), and 𝑓𝑙𝑜𝑤(𝑥, 𝑝) as the minimum, maximum power consumption 

and flow rate for model 𝑥 and power 𝑝, respectively. For a subset  

𝑌 ⊆ {𝑥1 ∈ 𝑋1 … 𝑥𝑁 ∈ 𝑋𝑁}, and a set 𝑍 with the respective power consumption for 

every element in 𝑌. We define 𝑓𝑙𝑜𝑤(𝑌, 𝑍) = ∑ 𝑓𝑙𝑜𝑤(𝑌𝑖 , 𝑍𝑖)
|𝑌|
𝑖=1  and  

𝑝𝑜𝑤𝑒𝑟(𝑍) = ∑ 𝑍𝑖
|𝑧|
𝑖=1 . Moreover, we define 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 as the maximum total power 
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consumption for the entire system. For every 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 we 

define. 

𝐴[𝑖, 𝑗] = 𝑀𝑎𝑥( 𝑓𝑙𝑜𝑤(𝑌, 𝑍): 𝑌 ⊆ {𝑥1 ∈ 𝑋1 … 𝑥𝑖 ∈ 𝑋𝑖},   

     𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑌𝑥) ≤ 𝑍𝑥 ≤ 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑌𝑥) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑌𝑥 ∈ 𝑌  

     𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟(𝑍) = 𝑗 )  

In other words, 𝐴[𝑖, 𝑗] denotes the maximum flow of subset 𝑌 for the first 𝑖 

compressors with at most one model per compressor such that power 𝑍𝑥 for every 

model 𝑌𝑥 ∈ 𝑌 stays within its lower and upper limits and 𝑝𝑜𝑤𝑒𝑟(𝑍) is exactly 𝑗. 

When element 𝐴[𝑖, 𝑗] does not exist, we specify that 𝐴[𝑖, 𝑗] = 0. In order to extract 

the solution, we also fill tables 𝑃 and 𝐽. Table 𝑃 stores the power such that 𝑃𝑖,𝑗  

contains the power of compressor 𝑖 that is used in 𝐴𝑖,𝑗, and table 𝐽 stores the model 

index such that 𝐽𝑖,𝑗  contains the model index for compressor 𝑖 that is used in 𝐴𝑖,𝑗. 

We present the integer algorithm for 𝑁 compressors next. 
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Algorithm 2: Integer algorithm that fills tables 𝐴, 𝑃, and 𝐽 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠(𝑋, 𝑁, 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡)  
1:      ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘  
              compressor models for compressor 𝑖, a number of compressors 𝑁,  
              and a total system power 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡. 
2:      ⊳ Output: A table 𝐴 with 𝑁 rows and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 columns, for which every  
              𝐴[𝑖, 𝑗] contains the highest flow for the first 𝑖 compressors and power 𝑗,  
              a table 𝑃 that is similar to table 𝐴 except that it contains the power of  
              compressor 𝑖 for total power 𝑗, and a table 𝐽 that is also similar to table  
              𝐴 except that this one contains the index of the shunt configuration of  
              compressor 𝑖 for power 𝑗. 
3:      Initialize 𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 

4:      Initialize 𝑃𝑖,𝑗 ← 0 and 𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 

5: 
6:      for 𝑖 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋1) do 
7:          for 𝑗 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑋1,𝑖) to 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋1,𝑖) do 

8:              if 𝑓𝑙𝑜𝑤(𝑋1,𝑖 , 𝑗) > 𝐴1,𝑗  then 𝐴1,𝑗 ← 𝑓𝑙𝑜𝑤(𝑋1,𝑖 , 𝑗),  𝐽1,𝑗 ← 𝑖,  𝑃1,𝑗 ← 𝑗 

9:      end for 
10:   end for 
11:   for 𝑖 ← 2 to 𝑁 do 
12:       𝐴𝑖 ← 𝐴𝑖−1 
13:       for 𝑗 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋𝑖) do  
14:           for 𝑘 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑋𝑖,𝑗) to 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋𝑖,𝑗) do 

15:               𝑓 ← 𝑓𝑙𝑜𝑤(𝑋𝑖,𝑗 , 𝑘) 

16:               if 𝑓 > 𝐴𝑖,𝑘  then 𝐴𝑖,𝑘 ← 𝑓,  𝐽𝑖,𝑘 ← 𝑗,  𝑃𝑖,𝑘 ← 𝑘 
17:               for 𝑙 ← 𝑘 + 1 to 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 do 
18:                   if 𝐴𝑖−1,𝑙−𝑘 = 0 then continue 
19:                   𝑎 ← 𝐴𝑖−1,𝑙−𝑘 + 𝑓 
20:                   if 𝑎 > 𝐴𝑖,𝑙 then 𝐴𝑖,𝑙 ← 𝑎,  𝐽𝑖,𝑙 ← 𝑗,  𝑃𝑖,𝑙 ← 𝑘 
21:               end for 
22:           end for 
23:       end for 
24:   end for 
25:   return 𝐴, 𝑃, 𝐽 
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The integer algorithm returns the sets 𝐴, 𝑃 and 𝐽 that make it possible to select the 

maximum flow rate for a power consumption efficiently. We execute the integer 

algorithm and fill the tables with a time complexity of. 

𝑂 (∑ ∑ (𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) − 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥))

𝑥∈𝑋𝑖

∗ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

𝑁

𝑖=1

) 

Let us define 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 as the maximum power consumption of a compressor. 

Now, because we always have that |𝑋𝑖| ≤ 𝑘 + 1, 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) − 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥) ≤

𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ≤ 𝑁 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 we can simplify the time complexity to.  

𝑂(𝑁2 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2) 

In order to implement the algorithm with real power consumptions, we must first 

convert them to integers. Unfortunately, this introduces rounding errors. In order 

to manage the rounding errors, we implement a polynomial-time approximations 

scheme as explained in section 3.2, which implies that we develop an algorithm for 

which we have a total power consumption of at most (1 + 𝜀) ∗ 𝑂𝑃𝑇, with 𝑂𝑃𝑇 

being the optimal power consumption, and 𝜀 > 0 being the tuning parameter that 

defines the trade-off between accuracy and speed.  

To the end of converting the real powers to integer powers, let us  define 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 

as a lower bound on the optimum power consumption such that we always have 

that 𝑂𝑃𝑇 ≥ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 . We calculate the lower bound power consumption by 

assuming that we have just one cell with the minimum cell voltage 𝑢𝑚𝑖𝑛 that meets 

the flow-rate demand. We first calculate the required current for demand 𝑑, which 

we then multiply with the minimum cell voltage 𝑢𝑚𝑖𝑛 to get the lower bound 

power consumption. The minimum cell voltage is calculated as the pressurization 

voltage 𝑢0, plus the minimum voltage over the resistive element in the cell. 

Because the minimum cell current is the back-diffusion compensation current 

𝑖𝑐𝑜𝑚𝑝, we take the product of 𝑖𝑐𝑜𝑚𝑝 and the minimum cell resistance 𝑟𝑚𝑖𝑛 to 

calculate the minimum cell voltage in the equation below.  
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𝑝𝑜𝑤𝑒𝑟𝐿𝐵 =
𝑑

𝐻 2𝐹⁄
∗ 𝑢𝑚𝑖𝑛 

 

𝑢𝑚𝑖𝑛 = 𝑖𝑐𝑜𝑚𝑝 ∗ 𝑟𝑚𝑖𝑛 + 𝑢0 

Equation 12: Lower bound power consumption 

 
We further simplify the lower bound power consumption and convert the real 

powers to integer powers, with the following equation. 

𝑝𝑜𝑤𝑒𝑟∗(𝑥) = ⌈
𝑝𝑜𝑤𝑒𝑟(𝑥)

Δ
⌉ 

Equation 13: Converting to integer power 
                   Δ = 𝜀 ∗

𝑝𝑜𝑤𝑒𝑟𝐿𝐵

𝑁
 

     𝑝𝑜𝑤𝑒𝑟𝐿𝐵 =
2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛

𝐻
 

 
We tune the scaling with parameter 𝜀 > 0, where 𝜀 defines the maximum rounding 

error as 𝑒𝑟𝑟𝑜𝑟 ≤  𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵   𝑁⁄ .  

We can now convert the real powers to integer powers and execute the following 

algorithm. 

 



 
LOAD-SHARING ALGORITHM 

Print Date: 03 Jun 2020  Page 43 of 72 

Algorithm 3: Fill system tables 

𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠(𝑋, 𝑁, 𝐾, 𝑑, 𝑢𝑚𝑖𝑛, 𝜀)  
1:      ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘  
              compressor models for compressor 𝑖, a number of compressors 𝑁, a  
              total number of cells 𝐾, a flow demand 𝑑, a minimum cell voltage 𝑢𝑚𝑖𝑛,  
              and a tuning parameter 𝜀. 
2:      ⊳ Output: A table 𝐴 with 𝑁 rows and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 columns, for which every  
              𝐴[𝑖, 𝑗] contains the highest flow for the first 𝑖 compressors and power 𝑗,  
              a table 𝑃 that is similar to table 𝐴 except that it contains the power of  
              compressor 𝑖 for total power 𝑗, a table 𝐽 that is also similar to table 𝐴 
              except that this one contains the index of the shunt configuration of  
              compressor 𝑖 for power 𝑗, and a conversion factor Δ. 
3:      
4:      ⊳ Convert to integers  
5:      𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 0 
6:      for 𝑖 = 1 to 𝑁 do  𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 + 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋𝑖,𝑙𝑎𝑠𝑡) 

7:     𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ← 2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛 𝐻⁄  

8:     Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵  𝑁⁄ ,     𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ ← ⌈𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 Δ⁄ ⌉ 

9:     𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤
∗(𝑥) ← ⌈𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥) Δ⁄ ⌉ for every 𝑥 ∈ 𝑋𝑖,𝑗  

10:   𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ
∗(𝑥) ← ⌊𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) Δ⁄ ⌋ for every 𝑥 ∈ 𝑋𝑖,𝑗 

11:   𝑓𝑙𝑜𝑤∗(𝑥, 𝑝) ← 𝑓𝑙𝑜𝑤(𝑥, 𝑝 ∗ Δ) for every 𝑥 ∈ 𝑋𝑖,𝑗 and 

                                      𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤
∗(𝑥) ≤ 𝑝 ≤ 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ

∗(𝑥) 

12:  

13:   Compute tables 𝐴, 𝑃 and 𝐽 with algorithm 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠 for the          
         number of compressors 𝑁, total power 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗, power consumptions  
         𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤

∗(𝑥), 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ
∗(𝑥) instead of 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥), 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥)  

         respectively, and, 𝑓𝑙𝑜𝑤∗(𝑥, 𝑝) instead of 𝑓𝑙𝑜𝑤(𝑥, 𝑝). 
14:   return 𝐴, 𝑃, 𝐽, Δ 
 

With the conversion to integers included, we find a resulting time complexity of. 

𝑂 (
𝑁3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

2

𝜖 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵
) = 𝑂 (

𝑁3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2

𝜖 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
) 
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We report the final solution with the following algorithm. 

 
Algorithm 4: Select system configuration 

𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑛𝑓𝑖𝑔(𝑋, 𝑁, 𝐴, 𝑃, 𝐽, 𝑑, Δ)   
1:     ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘  
             compressor models for compressor 𝑖, a number of compressors 𝑁, a  
             table 𝐴 with 𝑁 rows containing the maximum flows, a table 𝑃  
             containing the compressor power for the respective element in 𝐴, a  
             table 𝐽 containing the shunt configuration index for the respective  
             element in 𝐴, a flow rate demand 𝑑, and a conversion factor Δ. 
2:     ⊳ Output: A set 𝑌 that contains for every compressor the selected  
             model, and a set 𝑍 that contains the power for the respective  
             compressor. 
3: 
4:     𝑌 ← ∅, 𝑍 ← ∅, 𝑓𝑚𝑎𝑥 ← 0 
5:     for 𝑖 = 1 to |𝐴𝑁| do 
6:          if 𝐴𝑁,𝑖 > 𝑓𝑚𝑎𝑥 then 𝑓𝑚𝑎𝑥 ← 𝐴𝑁,𝑖 , 𝑗 ← 𝑖 
7:          if 𝐴𝑁,𝑖 ≥ 𝑑 then 𝑗 ← 𝑖 break 
8:     end for 
9:     for 𝑖 = 𝑁 to 1 do   
10:       if 𝑗 = 0 or 𝐽𝑖,𝑗 = 0 then 𝑌 ← 𝑌 ∪ 𝑋𝑖,1, 𝑍 ← 𝑍 ∪ 0 continue 

11:       𝑘 ← 𝐽𝑖,𝑗 ,  Y← 𝑌 ∪ 𝑋𝑖,𝑘 ,  𝑍 ← 𝑍 ∪ Δ ∗ 𝑃𝑖,𝑗  

12:       𝑗 ← 𝑗 − 𝑃𝑖,𝑗  

13:   end for 
14:   return 𝑌, 𝑍 
 

Algorithm 4 uses the previously constructed tables 𝑃 and 𝐽 to extract the system 

configuration that meets the demand and consumes the least integer power in 

𝑂(𝑁2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥  𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛⁄ ) time. When a compressor is not used, we 

assign a configuration that has no shunts enabled such that we avoid the reversion 

of hydrogen flow as explained in chapter 4. When the demand cannot be met, we 

output the configuration that gives the highest flow rate.  
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With the presented algorithms, we can find a solution in polynomial time. 

Unfortunately, we cannot guarantee an optimal solution anymore. Instead, we 

guarantee that we find the solution that meets demand 𝑑 when possible, and for 

which we have that 𝑝𝑜𝑤𝑒𝑟 ≤ (1 + 𝜖) ∗ 𝑂𝑃𝑇, with 𝑂𝑃𝑇 being the optimum power 

consumption. 

Proof. To prove that the error is at most 𝜀 ∗ 𝑂𝑃𝑇. Let the set 𝑆𝑜𝑝𝑡 be the 

optimal subset for a given input with 𝑝𝑜𝑤𝑒𝑟(𝑆𝑜𝑝𝑡)  =  𝑂𝑃𝑇. Let 𝑆 denote 

the subset returned by the algorithm. Since we did not change the flow rates, 

subset 𝑌 has flow at least 𝑑. The computed solution is feasible. We must now 

show that 𝑝𝑜𝑤𝑒𝑟(𝑆) ≤ (1 + 𝜀) ∗ 𝑂𝑃𝑇. Because 𝑆 is optimal for the new 

values, we have that 𝑝𝑜𝑤𝑒𝑟∗(𝑆) ≤ 𝑝𝑜𝑤𝑒𝑟∗(𝑆𝑜𝑝𝑡). Moreover, we have. 

𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
≤ 𝑝𝑜𝑤𝑒𝑟∗(𝑥) ≤

𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
+ 1 

𝑝𝑜𝑤𝑒𝑟(𝑆) = ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥)𝑥∈𝑆 ≤ ∑ ∆ ∗ 𝑝𝑜𝑤𝑒𝑟∗(𝑥) 𝑥∈𝑆    

       =  ∆ ∑ 𝑝𝑜𝑤𝑒𝑟∗(𝑥)𝑥∈𝑆  ≤  ∆ ∗ ∑ 𝑝𝑜𝑤𝑒𝑟∗(𝑥)𝑥∈𝑆𝑜𝑝𝑡   

                     ≤ ∆ ∗ ∑
𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
+ 1𝑥∈𝑆𝑜𝑝𝑡   

       = ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥)  + ∆𝑥∈𝑆𝑜𝑝𝑡 ∗ |𝑆𝑜𝑝𝑡|   

       ≤ ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥)  + ∆𝑥∈𝑆𝑜𝑝𝑡 ∗ 𝑁  

                     = 𝑂𝑃𝑇 + 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ≤ 𝑂𝑃𝑇 + 𝜀 ∗ 𝑂𝑃𝑇  

We can conclude that 𝑝𝑜𝑤𝑒𝑟(𝑆) ≤ (1 + 𝜀) ∗ 𝑂𝑃𝑇. 

We have found which shunt configurations to pick, which compressors to use and 

how much power to give to the compressors. To calculate how much current we 

need per compressor, we rewrite equation 7 to the following quadratic formula 

that solves for compressor current 𝐼, using the offset voltages 𝑈, equivalent 

resistances 𝑅 and power 𝑃. 
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𝐼 =
− ∑ 𝑈 + √(∑ 𝑈)2 + 4 𝑃 ∑ 𝑅

2 ∑ 𝑅
 Equation 14: Convert power to current 

5.3. Problem P3 – adapt the algorithm such that it can be implemented 

in the proposed compression system 

It remains us to adapt the algorithm such that it can be implemented in the 

proposed hydrogen compression system. This includes 𝑛 skid nodes that are 

connected to each other in the outer network, and at most 𝑚 compressors per skid 

that are connected to each other in the inner network. With the approach 

proposed next, we implement the algorithm in a distributed manner both to 

decrease runtime and to decrease bus utilization.  

We propose to execute the algorithm in four sequential steps.  

1. Each compressor first executes the 𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠 algorithm 

and transmits the Pareto-optimal shunt configurations to the respective skid 

node as illustrated with the red arrows below. 

 

Figure 18: Communicating the Pareto-optimal shunt configurations 

2. When the models are received by the skid, it executes the 𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠 

algorithm for the compressors within the skid but with  

Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵  𝑁𝑆𝑌𝑆⁄ , for the total number of compressors in the system 
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𝑁𝑆𝑌𝑆. When done, every skid broadcasts the maximum flow rates per power 

consumption, i.e. the last row from table 𝐴, to the other skids as illustrated 

by the red arrows below. 

 

Figure 19: Broadcasting the maximum flow rates per power consumption values 

3. When all values are received, every skid executes a variation of the 

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠 algorithm with the broadcasted values as input. The key 

here is that every skid uses the same row ordering when filling the tables 

such that all skids select the same solution. Every skid can now find for the 

compressors within the skid, which shunt configurations to use and how 

much power to give, similar as implemented in 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑛𝑓𝑖𝑔. The 

last step is for the skids to communicate the selected shunt configuration 

and requested power to the compressors, illustrated by the red arrows 

below. 

 

Figure 20: Communicating the selected shunt configurations and requested power 
consumptions 
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4. All that is left is for the compressors to enable the selected shunt 

configuration, convert the requested power to a compressor current with 

equation 14, and set the newly calculated current. 

Since we used the total number of compressors in the system 𝑁𝑆𝑌𝑆 when 

converting to integers, we can still guarantee a power consumption that is at most 

(1 + 𝜀) ∗ 𝑂𝑃𝑇. The complete algorithms for the compressor and skid are provided 

in Appendix A and Appendix B respectively.   



 
RESULTS 

Print Date: 03 Jun 2020  Page 49 of 72 

 

Chapter 6  

Results 

In this chapter are the computational, space, and communicational complexities 

presented for the adaption described in section 5.3 and implemented in Appendix 

A and Appendix B. To the end of quantizing these complexities, let us define a 

system with a variable skid size of 1 ≤ 𝑛 ≤ 100 skids, with 𝑚 = 10 compressors 

per skid and 𝑘 = 120 cells per compressor. We define the pressurization voltage 

𝑢0 = 60 𝑚𝑉, and the compensation current 𝑖𝑐𝑜𝑚𝑝 = 5 𝐴. We have the limits 

𝑢𝑚𝑎𝑥 = 600 𝑚𝑉 and 𝑖𝑚𝑎𝑥 = 200 𝐴. Let us also define cell resistance 𝑅𝑐 = 2 𝑚Ω, 

shunt resistance 𝑅𝑠 = 0.6𝑚Ω, and cell plate resistance 𝑅𝑝 = 1𝑚Ω. Such a system 

would be able to achieve a mass-flow rate of over 21 𝑀𝑔 𝑑𝑎𝑦⁄  when 𝑛 = 100. In 

this system, we will use a demand 𝑑 that is 80% of the maximum flow rate and 

consider a maximum deviation of 1%, 2%, and 5% from the optimum power 

consumption, i.e. 𝜀 = 0.01, 𝜀 = 0.02 and 𝜀 = 0.05. 

6.1. Computational complexity 

We will first consider the time complexity and find that after implementing the 

algorithm, we have a computational complexity of 𝑂(𝑘3) for the compressor node. 

For the skid node we use the minimum cell voltage 𝑢𝑚𝑖𝑛 and the maximum 

compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 to define the computational complexity as. 

𝑂 (
𝑛 ∗ 𝑚3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

2

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
+

𝑛4 ∗ 𝑚4 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2

(𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛)2
) 
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To give some contrast, let us consider a simple exhaustive implementation in which 

for every combination of compressors and shunt configurations the optimal 

compressor currents are calculated. Let us assume that calculating the optimum 

compressor currents is done in constant time, we would still need to solve every 

combination. This gives us a computational complexity of 𝑂(2𝑘 ∗ 𝑘2) for the 

compressor and 𝑂(2𝑘∗𝑛∗𝑚) for the skid. Or in other words, around 1040 

computations for the compressor and 1040000 computations for the skid. If we 

compare this to the presented algorithm, we have just 106 computations for the 

compressor and at most 1021 computations for the skid when 𝜀 = 0.01. 

To find out how the algorithm performs in an embedded environment, we 

implement the compressor algorithm on a cortex-M3 processor running at 

60 𝑀𝐻𝑧, and the skid algorithm on a cortex-A9 processor running at 1 𝐺𝐻𝑧. We 

find an execution time of 110 𝑚𝑠 for the compressor node and we plot the 

execution time for the skid below. 

 

Figure 21: Skid computation time 
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6.2. Space complexity 

The compressor node must be able to store 𝑘 + 1 models, a single model consists 

of 𝑂(𝑘) elements, therefore we need to store 𝑂(𝑘2) elements in the compressor 

node. The skid node needs much more memory as it stores first the models of the 

compressors. Secondly, the tables 𝐴, 𝐴𝑃 and 𝐴𝐽 for the compressors within the 

skid. Thirdly, the last row of table 𝐴 for all skids in the system. And lastly, a system 

table that consists of tables 𝐵𝐴 and 𝐵𝐽. For a minimum cell voltage 𝑢𝑚𝑖𝑛 and a 

maximum compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, we find a space complexity of. 

𝑂 (𝑚 ∗ 𝑘2 +
𝑛 ∗ 𝑚3 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 + 𝑛2 ∗ 𝑚2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
) 

For the system in question, we find that we need just over 230 𝑘𝐵 of memory for 

the compressor. For the skid, we find that the memory usage scales linearly with 

the number of skids in the system, see the plot below. 

 

Figure 22: Memory usage skid 
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6.3. communicational complexity 

Because we implement the algorithm in a distributed manner, with multiple nodes 

connected through a communication bus, we must also consider the 

communicational complexity. We find that for the inner network, we communicate 

at most 𝑂(𝑚 ∗ 𝑘) models. With each model consisting of 𝑂(𝑘) elements, we 

communicate a total of 𝑂(𝑚 ∗ 𝑘2) elements in the inner network. In the outer 

network, we broadcast for each skid the last row of table 𝐴. For a minimum cell 

voltage 𝑢𝑚𝑖𝑛 and a maximum compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, we find a 

communicational complexity of. 

𝑂 (
𝑛2 ∗ 𝑚2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
) 

For the system in question, let us assume for both the inner and outer networks a 

bus with a bit rate of 1 𝑀𝑏𝑖𝑡 𝑠⁄ . In the worst-case, we require just over 15𝑠 of 

communication time in the inner network. For the outer network we find a linear 

relationship between communication time and the number of skids, see the plot 

below. 

 

Figure 23: Outer network communication time 
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Chapter 7  

Conclusion 

In this thesis is a load-sharing algorithm presented for an electrochemical hydrogen 

compression system. The presented algorithm is able to decide which cells to shunt 

and how much current to feed through the compressors such that we meet a 

certain hydrogen flow rate demand, respect the cell voltage and compressor 

current limitations, and achieve near-optimal power consumption. More precisely, 

we guarantee a power consumption of at most (1 + 𝜀) ∗ 𝑂𝑃𝑇 for some tuning 

parameter 𝜀 > 0, and the optimum power consumption 𝑂𝑃𝑇. Moreover, we 

achieve this result in polynomial time and with polynomial space requirements. 

Furthermore, for the proposed compression system, we have adapted the 

algorithm to a distributed implementation with a polynomial communicational 

complexity. We conclude that we have successfully solved the problem statement 

and completed the related milestones. 
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Appendix A.  

Compressor algorithm 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖𝑑, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)   
1:     ⊳ Input: A compressor identifier 𝑖𝑑, a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell  
             resistances, a set 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate  
             resistance 𝑟𝑝, an offset voltage 𝑢0, a compensation current 𝑖𝑐𝑜𝑚𝑝, a  
             maximum cell voltage 𝑢𝑚𝑎𝑥, a maximum compressor current 𝑖𝑚𝑎𝑥, and  
             a number of cells 𝑘. 
2:     ⊳ Output: A set 𝑆 = {𝑆1, … , 𝑆𝑘}, with bits that indicate that the respected  
             shunt is enabled when the bit is set, and a compressor current 𝐼. 
3: 
4:     ⊳ Find, solve and transmit compressor models 
5:     𝑋 ← 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, , 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)  
6: 
7:     ⊳ Receive model index 𝑖𝑥 with power 𝑝 for compressor with 𝑖𝑑 
8:     [𝑖𝑥, 𝑝] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑘𝑖𝑑(𝑖𝑑) 
9:     𝑥 ← 𝑋𝑖𝑥  
10:      
11:   ⊳ Calculate current and return results 
12:   𝑟𝑠𝑢𝑚 ← ∑ 𝑥. 𝑅,   𝑢𝑠𝑢𝑚 ← ∑ 𝑥. 𝑈  

13:   𝐼 ← (√𝑢𝑠𝑢𝑚2 + 4 ∗ 𝑝 ∗ 𝑟𝑠𝑢𝑚 − 𝑢𝑠𝑢𝑚)  2 ∗ 𝑟𝑠𝑢𝑚⁄   

14:   return 𝑥. 𝑆,  𝐼 
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Appendix A.1. Find, solve and transmit compressor models 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)  
1:     ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set  
             𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, a  
             offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a compensation current  
             𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥, and a number of cells 𝑘. 
2:     ⊳ Output: A set 𝑋 with at most 𝑘 + 1 compressor models, where every  
             model contains a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘} with cell resistances, a set  
             𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the shunts, a set 𝑅 = {𝑅1, … , 𝑅𝑘}  
             with equivalent cell resistances, a set 𝑈 = {𝑈1, … , 𝑈𝑘} with offset  
             voltages, a minimum compressor current 𝑖𝑚𝑖𝑛, and a maximum  
             compressor current 𝑖𝑚𝑎𝑥. 
3:     Initialize 𝑆𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘. 
4:     𝑋 ← ∅, 𝑓𝑚𝑎𝑥 ← ∅, 𝑝𝑛𝑜𝑟𝑚 ← ∅ 
5: 
6:      ⊳ Get the sorted indices for 𝑅𝑐 and solve models 
7:      𝐽 ← 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑({0, … , 𝑘}, 𝑅𝑐)   
8:     for 𝑖 = 1 to 𝑘 + 1 do 
9:        if 𝑖 > 1 then 𝑗 ← 𝐽𝑖−1,  𝑆𝑗 ← 1 

10:      𝑋𝑖 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘) 
11:      𝑝𝑛𝑜𝑟𝑚𝑖 ← 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋𝑖 , 𝑖𝑐𝑜𝑚𝑝, 𝑢0) 
12:      𝑓𝑚𝑎𝑥𝑖 ← 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋𝑖 , 𝑖𝑐𝑜𝑚𝑝, 𝑢0) 
13:  end for 
14:     
15:  ⊳ Only transmit models that belong to the Pareto-optimal set 
16:  for 𝑖 = 1 to 𝑘 + 1 do 
17:      𝑎𝑑𝑑 ← 𝑇𝑟𝑢𝑒  
18:      for 𝑗 = 1 to 𝑘 + 1 do 
19:          if 𝑖 = 𝑗 then continue 
20:          if 𝑓𝑚𝑎𝑥𝑗 ≥ 𝑓𝑚𝑎𝑥𝑖  and 𝑝𝑛𝑜𝑟𝑚𝑗 ≤ 𝑝𝑛𝑜𝑟𝑚𝑖 then 𝑎𝑑𝑑 ← 𝐹𝑎𝑙𝑠𝑒, break 

21:      end for 
22:      if 𝑎𝑑𝑑 then 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑇𝑜𝑆𝑘𝑖𝑑(𝑖, 𝑥) 
23:  end for 
24:  return 𝑋 
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Appendix A.2. Solve model 

𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)  
1:     ⊳ Input: A set 𝑆 = {𝑆1, … , 𝑆𝑘}, with bits that indicate that the respected  
             shunt is enabled when the bit is set, a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell  
             resistances, a set 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate  
             resistance 𝑟𝑝, an offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a  
             compensation current 𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥,  
             and a number of cells 𝑘. 
2:     ⊳ Output: A compressor model 𝑋 that contains as set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}  
             with cell resistances, a set 𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the  
             shunts, a set 𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances, a set  
             𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages a minimum compressor current  
             𝑖𝑚𝑖𝑛, and a maximum compressor current 𝑖𝑚𝑎𝑥. 
3:     Initialize 𝑋. 𝑅𝑐𝑖 ← 𝑅𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 
4:     Initialize 𝑋. 𝑅𝑖 ← 𝑅𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 
5:     Initialize 𝑋. 𝑈𝑖 ← 𝑢0 for all 1 ≤ 𝑖 ≤ 𝑘 
6: 
7:    ⊳ Create sections 
8:    𝑖𝑠𝑡𝑎𝑟𝑡1 ← 1, 𝑠 ← 𝑆1, 𝑛 ← 1 
9:    if 𝑘 > 1 then 
10:     for 𝑖 ← 2 to 𝑘 do 
11:         if 𝑠 ≠ 𝑆𝑖  then 
12:             𝑖𝑒𝑛𝑑𝑛 ← 𝑖 − 1, 𝑠 ← 𝑆𝑖, 𝑛 ← 𝑛 + 1 
13:             𝑖𝑠𝑡𝑎𝑟𝑡𝑛 ← 𝑖 
14:         end if 
15:     end for 
16: end if 
17: 𝑖𝑒𝑛𝑑𝑛 ← 𝑘 
18:  
19: ⊳ Solve sections 
20: for 𝑖 = 1 to 𝑛 do 
21:     𝑖𝑠 ← 𝑖𝑠𝑡𝑎𝑟𝑡𝑖, 𝑖𝑒 ← 𝑖𝑒𝑛𝑑𝑖 
22:     if 𝑆𝑖𝑠 then 
23:         [𝑅, 𝑈] ← 𝑆𝑜𝑙𝑣𝑒𝑆ℎ𝑢𝑛𝑡𝑒𝑑𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑐𝑖𝑠:𝑖𝑒 , 𝑅𝑠𝑖𝑠:𝑖𝑒 , 𝑟𝑝, 𝑢0, 𝑖𝑒 − 𝑖𝑠 + 1) 
24:         𝑋. 𝑅𝑖𝑠:𝑖𝑒 ← 𝑅,  𝑋. 𝑈𝑖𝑠:𝑖𝑒 ← 𝑈 
25:     end if 
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26: end for 
27:  
28: ⊳ Set current limits and return model 
29: 𝑋. 𝑖𝑚𝑖𝑛 ← Max

1≤𝑖≤𝑘
((𝑖𝑐𝑜𝑚𝑝 ∗ 𝑋. 𝑅𝑐𝑖 − 𝑋. 𝑈𝑖 + 𝑢0)  𝑋. 𝑅𝑖⁄ ) 

30: 𝑋. 𝑖𝑚𝑎𝑥 ← Min
1≤𝑖≤𝑘

(𝑖𝑚𝑎𝑥, (𝑢𝑚𝑎𝑥 − 𝑋. 𝑈𝑖)  𝑋. 𝑅𝑖⁄ ) 

31: return 𝑋 
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Appendix A.3. Solve shunted section 

𝑆𝑜𝑙𝑣𝑒𝑆ℎ𝑢𝑛𝑡𝑒𝑑𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑘)  
1:     ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set  
             𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, an  
             offset voltage 𝑢0, and a number of cells 𝑘. 
2:     ⊳ Output: A set 𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances, and a set  
             𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages. 
3:      
4:     ⊳ Solve for current source 
5:     Initialize 𝑅𝑥𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘 
6:     Initialize 𝑅𝑦𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘 
7:     Initialize 𝑅𝑧𝑖 ← 𝑟𝑝 for all 1 ≤ 𝑖 ≤ 𝑘 
8:     if 𝑘 > 1 then 
9:         for 𝑖 = 2 to 𝑘 do 

10:          𝑅𝑧𝑖 ←
𝑟𝑝∗(𝑅𝑠𝑖−1+𝑅𝑧𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝
 

11:          𝑅𝑦𝑖 ←
𝑟𝑝∗(𝑅𝑐𝑖−1+𝑅𝑦𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝
 

12:          𝑅𝑥𝑖 ←
(𝑅𝑐𝑖−1+𝑅𝑦𝑖−1)∗(𝑅𝑠𝑖−1+𝑅𝑧𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝
 

13:      end for 
14:  end if 

15:  𝑟𝑝𝑎𝑟 ←
1

(1 (𝑅𝑦𝑘+𝑅𝑐𝑘)⁄ )+(1 (𝑅𝑧𝑘+𝑅𝑠𝑘+𝑟𝑝)⁄ )
 

16:  𝑟 ← ∑ 𝑅𝑥 + 𝑟𝑝𝑎𝑟 
17:   
18:  ⊳ Calculate equivalent cell resistances 
19:  𝑅 ← ∅, 𝑈𝑛 ← ∅ 
20:  𝑈𝑛𝑘 ← 𝑟𝑝𝑎𝑟, 𝑖𝑐 ← 𝑈𝑛𝑘 (𝑅𝑐𝑘 + 𝑅𝑦𝑘)⁄ ,  𝑅𝑘 ← 𝑅𝑐𝑘 ∗ 𝑖𝑐 
21:  if 𝑘 > 1 then 
22:      if 𝑘 > 2 then 
23:          for 𝑖 = 𝑘 − 1 to 2 do 
24:              𝑈𝑛𝑖 ← 𝑈𝑛𝑖+1 + 𝑅𝑥𝑖+1 
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25:              𝑖𝑐 ← (𝑈𝑛𝑖 − ∑ 𝑅𝑖
𝑘
𝑗=𝑖+1 ) (𝑅𝑐𝑖 + 𝑅𝑦𝑖)⁄  

26:              𝑅𝑖 ← 𝑅𝑐𝑖 ∗ 𝑖𝑐 
27:          end for 
28:      end if 
29:      𝑅1 ← 𝑟 − ∑ 𝑅𝑖

𝑘
𝑖=2  

30:  end if 
31:   
32:  ⊳ Solve for voltage sources 
33:  𝑅𝑡 ← ∅, 𝑅𝑏 ← ∅ 
34:  Initialize 𝑈𝑖 ← 𝑢0 for all 1 ≤ 𝑖 ≤ 𝑘 
35:  for 𝑖 = 1 to 𝑘 do 
36:       
37:      ⊳ Simplify 
38:      if 𝑖 > 1 then  

39:          𝑅𝑡1 ←
1

(1 (𝑅𝑐1+𝑅𝑠1+𝑟𝑝)⁄ )+(1 𝑟𝑝⁄ )
 

40:          if 𝑖 > 2 then 

41:              for 𝑗 = 2 to 𝑖 − 1 do 𝑅𝑡𝑗 ←
1

(1 (𝑅𝑐𝑗+𝑅𝑠𝑗+𝑅𝑡𝑗−1)⁄ )+(1 𝑟𝑝⁄ )
 

42:          end if 
43:          𝑟𝑡𝑡 ← 𝑅𝑡𝑖−1 + 𝑅𝑐𝑖 + 𝑅𝑠𝑖  
44:      else 𝑟𝑡𝑡 ← 𝑅𝑐1 + 𝑅𝑠1 + 𝑟𝑝 
45:      end if 
46:      if 𝑘 > 𝑖 then 

47:          𝑅𝑏𝑘 ←
1

(1 (𝑅𝑐𝑘+𝑅𝑠𝑘+𝑟𝑝)⁄ )+(1 𝑟𝑝⁄ )
 

48:          if 𝑘 > 𝑖 + 1 then 

49:              for 𝑗 = 𝑘 − 1 to 𝑖 + 1 do 𝑅𝑏𝑗 ←
1

(1 (𝑅𝑐𝑗+𝑅𝑠𝑗+𝑅𝑏𝑗+1)⁄ )+(1 𝑟𝑝⁄ )
 

50:          end if 
51:          𝑟𝑏𝑏 ← 𝑅𝑏𝑖+1 
52:      else 𝑟𝑏𝑏 = 𝑟𝑝 
53:      end if 
54:      𝑖𝑐 ← 𝑢0 (𝑟𝑡𝑡 + 𝑟𝑏𝑏)⁄  
55:       
56:      ⊳ Calculate offset voltages 
57:      𝑈𝑖 ← 𝑈𝑖 − 𝑖𝑐 ∗ 𝑅𝑐𝑖 
58:      if 𝑖 > 1 then  
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59:          𝑖𝑐𝑐 ← 𝑖𝑐 
60:          if 𝑖 > 2 then 
61:              for 𝑗 = 𝑖 − 1 to 2 do  

62:                  𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑡𝑗) (𝑅𝑡𝑗−1 + 𝑅𝑐𝑗 + 𝑅𝑠𝑗)⁄  

63:                  𝑈𝑗 ← 𝑈𝑗 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑗) 

64:              end for 
65:          end if 
66:          𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑡1) (𝑅𝑐1 + 𝑅𝑠1 + 𝑟𝑝)⁄  
67:          𝑈1 ← 𝑈1 − (𝑖𝑐𝑐 ∗ 𝑅𝑐1) 
68:      end if 
69:      if 𝑘 > 𝑖 then 
70:          𝑖𝑐𝑐 ← 𝑖𝑐 
71:          if 𝑘 > 𝑖 + 1 then 
72:              for 𝑗 = 𝑖 + 1 to 𝑘 − 1 do  

73:                  𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑏𝑗) (𝑅𝑏𝑗−1 + 𝑅𝑐𝑗 + 𝑅𝑠𝑗)⁄  

74:                  𝑈𝑗 ← 𝑈𝑗 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑗) 

75:              end for 
76:          end if 
77:          𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑏𝑘) (𝑅𝑐𝑘 + 𝑅𝑠𝑘 + 𝑟𝑝)⁄  
78:          𝑈𝑘 ← 𝑈𝑘 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑘) 
79:      end if 
80:  end for 
81:  return 𝑅, 𝑈 
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Appendix A.4. Functions 

Appendix A.4.1. Calculate maximum flow 

𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) =
𝐻

2𝐹
∑

(𝑥. 𝑖𝑚𝑎𝑥 − 𝑖𝑐𝑜𝑚𝑝) ∗ 𝑥. 𝑅 + 𝑥. 𝑈 − 𝑢0

𝑥. 𝑅𝑐
 

Where: 
𝑥 is the compressor model. 
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [𝐴]. 
𝑢0 is the pressurization voltage [𝑉]. 
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄ ]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 

Appendix A.5. Calculate normalized current 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) = 𝑖𝑐𝑜𝑚𝑝 +
2𝐹 𝐻⁄ + ∑ (𝑢0 − 𝑥. 𝑈) 𝑥. 𝑅𝑐⁄

∑ 𝑥. 𝑅 𝑥. 𝑅𝑐⁄
 

Where: 
𝑥 is the compressor model. 
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [A]. 
𝑢0 is the pressurization voltage [V]. 
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄ ]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 

Appendix A.6. Calculate normalized power 

𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

∗ ∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) ∗ 𝑥. 𝑅 + 𝑥. 𝑈 
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Appendix B.  

Skid algorithm 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑘𝑖𝑑(𝑖𝑑, 𝑛, 𝑚, 𝑁, 𝐾, 𝑟𝑚𝑖𝑛, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)   
1:     ⊳ Input: A skid identifier 𝑖𝑑 that defines the system table row index, a  
             number of skids in the system 𝑛, a number of compressors in the skid  
             𝑚, the total number of compressors 𝑁, the total number of cells 𝐾, the 
             minimum cell resistance 𝑟𝑚𝑖𝑛, a flow-rate demand 𝑑, a compensation  
             current 𝑖𝑐𝑜𝑚𝑝, and an offset voltage  𝑢0. 
2:     𝑋 ← ∅, 𝐼𝑋 ← ∅, 𝐴𝐴 ← ∅, 𝐴𝑁 ← ∅ 
3:      
4:     ⊳ Calculate conversion factor 
5:     𝑢𝑚𝑖𝑛 ← 𝑖𝑐𝑜𝑚𝑝 ∗ 𝑟𝑚𝑖𝑛 + 𝑢0 

5:     𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ← 2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛  𝐻⁄  

6:     Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵  𝑛 ∗ 𝑚⁄  

7:      
8:     ⊳ Receive compressor models 
9:     for 𝑖 = 1 to 𝑚 do 
10:       [𝐼𝑋𝑖 , 𝑋𝑖] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖) 
11:   end for 
12:      
13:   ⊳ Build tables and communicate with other skids 
14:   [𝐴, 𝐴𝑃, 𝐴𝐽] ← 𝐵𝑢𝑖𝑙𝑑𝑆𝑘𝑖𝑑𝑇𝑎𝑏𝑙𝑒(𝑋, Δ, 𝑚, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) 
15:   𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑜𝑆𝑘𝑖𝑑𝑠(𝐴) 
16:   for 𝑖 = 1 to 𝑛 do 
17:       if 𝑖 = 𝑖𝑑 then 𝐴𝐴𝑖 ← 𝐴, 𝐴𝑁𝑖 ← |𝐴| continue 
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17:       [𝐴𝐴𝑖 , 𝐴𝑁𝑖] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑘𝑖𝑑(𝑖) 
18:   end for 
19:      
20:   ⊳ Build the system table and select the best configuration 
21:   [𝐵𝐴, 𝐵𝐽] ← 𝐵𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑎𝑏𝑙𝑒(𝑖𝑑, 𝐴𝐴, 𝐴𝑁, 𝑛, 𝑑) 
22:   [𝑌, 𝑍] ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑘𝑖𝑑𝐶𝑜𝑛𝑓𝑖𝑔(𝑋, 𝐼𝑋, 𝐵𝐴, 𝐵𝐽, 𝐴𝑃, 𝐴𝐽, Δ, 𝑚, 𝑑) 
23:     
24:   ⊳ Transmit model index and power to compressors 
25:   for 𝑖 = 1 to 𝑚 do 
26:       𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑇𝑜𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖, 𝑌𝑖 , 𝑍𝑖) 
27:   end for 
28:   return 
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Appendix B.1. Build skid table 

𝐵𝑢𝑖𝑙𝑑𝑆𝑘𝑖𝑑𝑇𝑎𝑏𝑙𝑒(𝑋, Δ, 𝑚, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)   
1:     ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁} for which every 𝑋𝑖 ∈ 𝑋 contains the  
             compressor model for compressor 𝑖, a conversion value Δ, a number of  
             compressors in the skid 𝑚, a flow-rate demand 𝑑, a compensation  
             current 𝑖𝑐𝑜𝑚𝑝, and an offset voltage  𝑢0. 
2:     ⊳ Output: A row from table 𝐴 that contains the skid flows per power  
             consumption, a table 𝑃 that is later used to find how much power each  
             compressor needs to consume, and a table 𝐽 that is later used to find  
             which shunt configuration to use. 
3:      
4:     ⊳ Calculate total skid power  
5:     𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 0 
6:     for 𝑖 = 1 to 𝑚 do  𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 + 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥(𝑋𝑖,𝑙𝑎𝑠𝑡) 

7:     𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ ← ⌈𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 Δ⁄ ⌉ 

8:    
9:     ⊳ Fill first row 
10:   Initialize 𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗ 

11:   Initialize 𝑃𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ 

12:   Initialize 𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ 

13:   for 𝑖 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋1) do 
14:       𝑝𝑙𝑜𝑤 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑋1,𝑖 , Δ) 
15:       𝑝ℎ𝑖𝑔ℎ ← 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑋1,𝑖 , Δ) 
16:       for 𝑗 ← 𝑝𝑙𝑜𝑤 to 𝑝ℎ𝑖𝑔ℎ do 

17:           𝑓 ← 𝑓𝑙𝑜𝑤𝑝(𝑋1,𝑖 , 𝑗 ∗ Δ, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) 

18:           if 𝑓 > 𝐴1,𝑗  then 𝐴1,𝑗 ← 𝑓,  𝑃1,𝑗 ← 𝑗,  𝐽1,𝑗 ← 𝑖 

19:           if 𝑓 > 𝑑 then break 
20:       end for 
21:   end for 
22:   if 𝑚 = 1 then return 𝐴1, 𝑃, 𝐽 
23:    
24:   ⊳ Fill remaining rows 
25:   for 𝑖 ← 2 to 𝑚 do 
26:       𝑖𝑝𝑟𝑒 ← (𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1 
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27:       𝑖𝑐𝑢𝑟 ← ((𝑖 − 1) 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1 

28:       𝐴𝑖𝑐𝑢𝑟 ← 𝐴𝑖𝑝𝑟𝑒  

29:       for 𝑗 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋𝑖) do  
30:           𝑝𝑙𝑜𝑤 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑋𝑖,𝑗 , Δ)  

31:           𝑝ℎ𝑖𝑔ℎ ← 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑋𝑖,𝑗 , Δ) 

32:           for 𝑘 ← 𝑝𝑙𝑜𝑤 to 𝑝ℎ𝑖𝑔ℎ do 
33:               𝑓 ← 𝑓𝑙𝑜𝑤𝑝(𝑋𝑖,𝑗 , 𝑘 ∗ Δ, icomp, 𝑢0) 
34:               if 𝑓 > 𝐴𝑖𝑐𝑢𝑟,𝑘  then 𝐴𝑖𝑐𝑢𝑟,𝑘 ← 𝑓,  𝐽𝑖,𝑘 ← 𝑗,  𝑃𝑖,𝑘 ← 𝑘 
35:               for 𝑙 ← 𝑘 + 1 to 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗ do 
36:                   if 𝐴𝑖𝑝𝑟𝑒𝑣,𝑙−𝑘 = 0 then continue 

37:                   𝑎 ← 𝐴𝑖𝑝𝑟𝑒𝑣,𝑙−𝑘 + 𝑓 

38:                   if 𝑎 > 𝐴𝑖𝑐𝑢𝑟,𝑙 then 𝐴𝑖𝑐𝑢𝑟,𝑙 ← 𝑎,  𝐽𝑖,𝑙 ← 𝑗,  𝑃𝑖,𝑙 ← 𝑘 
39:                   if 𝑎 > 𝑑 then break 
40:               end for 
41:           end for 
42:       end for 
43:   end for 
44:   return 𝐴𝑖𝑐𝑢𝑟 , 𝑃, 𝐽 
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Appendix B.2. Build system table 

𝐵𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑎𝑏𝑙𝑒(𝑖𝑑, 𝐴𝐴, 𝐴𝑁, 𝑛, 𝑑)   
1:     ⊳ Input: A skid identifier 𝑖𝑑 that defines the system table row index, a  
             table 𝐴𝐴 for which every row represents the maximum flow rates for  
             a skid, a table 𝐴𝑁 that contains for every row in 𝐴𝐴 the data length, a  
             number of skids in the system 𝑛, and a flow rate demand 𝑑. 
2:     ⊳ Output: A row from table 𝐵𝐴 that contains the system flows per power  
             consumption, and a row from table 𝐵𝐽 that is later used to find which  
             skid configuration to use. 
3:      
4:     ⊳ Calculate total system power  
5:     𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← ∑ 𝐴𝑁𝑖

𝑛
𝑖=1  

6:    
7:      ⊳ Process first row 
8:      Initialize 𝐵𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 

9:      Initialize 𝐵𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 

10:   for 𝑗 ← 1 to 𝐴𝑁1 do 
11:       𝐵𝐴1,𝑗 ← 𝐴𝐴1,𝑗  

12:       if 𝑖𝑑 = 1 and 𝐵𝐴1,𝑗  then 𝐵𝐽1,𝑗 ← 𝑗 

13:   end for 
14:   if 𝑛 = 1 then return 𝐵𝐴1, 𝐵𝐽1 
15: 
16:   ⊳ Process remaining rows 
17:   𝑛𝑠𝑢𝑚 ← 𝐴𝑁1 
18:   for 𝑖 ← 2 to 𝑛 do 
19:       𝑖𝑝𝑟𝑒 ← (𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1 

20:       𝑖𝑐𝑢𝑟 ← ((𝑖 − 1) 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1 

21:       𝐵𝐴𝑖𝑐𝑢𝑟 ← 𝐵𝐴𝑖𝑝𝑟𝑒  

22:       for 𝑗 ← 1 to 𝐴𝑁𝑖  do 
23:           𝑓 ← 𝐴𝐴𝑖,𝑗  

24:           if 𝑓 = 0 then continue 
25:           if 𝑓 > 𝐵𝐴𝑖𝑐𝑢𝑟,𝑗 then  

26:               𝐵𝐴𝑖𝑐𝑢𝑟,𝑗 ← 𝑓 

27:               if 𝑖 = 𝑖𝑑 then 𝐵𝐽𝑖𝑐𝑢𝑟,𝑗 ← 𝑗 

28:           end 
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29:           for 𝑘 ← 1 to 𝑛𝑠𝑢𝑚 do 
30:               if 𝐵𝐴𝑖𝑝𝑟𝑒𝑣,𝑘 = 0 then continue 

31:               𝑎 ← 𝐵𝐴𝑖𝑝𝑟𝑒𝑣,𝑘 + 𝑓 

32:               if 𝑎 > 𝐵𝐴𝑖𝑐𝑢𝑟,𝑘+𝑗  then  

33:                   𝐵𝐴𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝑎 

34:                   if 𝑖 = 𝑖𝑑 then 𝐵𝐽𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝑗 

35:                   else 𝐵𝐽𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝐵𝐽𝑖𝑝𝑟𝑒𝑣,𝑘  

36:               end 
37:               if 𝑎 > 𝑑 then break 
38:           end for 
39:       end for 
40:       𝑛𝑠𝑢𝑚 ← 𝑛𝑠𝑢𝑚 + 𝐴𝑁𝑖 
41:   end for 
42:   return 𝐵𝐴𝑖𝑐𝑢𝑟, 𝐵𝐽𝑖𝑐𝑢𝑟 
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Appendix B.3. Select skid config 

𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑘𝑖𝑑𝐶𝑜𝑛𝑓𝑖𝑔(𝐼𝑋, 𝐵𝐴, 𝐵𝐽, 𝐴𝑃, 𝐴𝐽, Δ, 𝑚, 𝑑)   
1:     ⊳ Input: A set 𝐼𝑋 = {𝐼𝑋1, … , 𝐼𝑋𝑚} for which every 𝐼𝑋𝑖 ∈ 𝐼𝑋 contains the  
             respective compressor model indices, a row 𝐵𝐴 that contains the  
             system flows per power consumption, a row 𝐵𝐽 that contains indices  
             that match row 𝐵𝐴 to rows 𝐴𝑃 and 𝐴𝐽, a table 𝐴𝑃 that contains the  
             powers for the compressors in the skid, a table 𝐴𝐽 that contains the  
             shunt configuration for the compressors in the skid, a conversion factor  
             Δ, a number of compressors in the skid 𝑚, and a flow rate demand 𝑑. 
2:     ⊳ Output: A set 𝑌 = {𝑌1, … , 𝑌𝑚} for which every 𝑌𝑖 ∈ 𝑌 contains the  
             compressor model index for compressor 𝑖, and a set 𝑍 = {𝑍1, … , 𝑍𝑚} for  
             which every 𝑍𝑖 ∈ 𝑍 contains the power for compressor 𝑖. 
3:      
4:     𝑗 ← 0, 𝑌 ← ∅, 𝑍 ← ∅, 𝑓𝑚𝑎𝑥 ← 0 
5:     for 𝑖 = 1 to |𝐵𝐴| do 
6:          if 𝐵𝐴𝑖 > 𝑓𝑚𝑎𝑥 then 𝑓𝑚𝑎𝑥 ← 𝐵𝐴𝑖, 𝑗 ← 𝐵𝐽𝑖  
7:          if 𝐵𝐴𝑖 ≥ 𝑑 then 𝑗 ← 𝐵𝐽𝑖 break 
8:     end for 
9:     for 𝑖 = 𝑚 to 1 do   
10:       if 𝑗 = 0 or 𝐴𝐽𝑖,𝑗 = 0 then 𝑌𝑖 ← 𝑋𝑖,1,  𝑍𝑖 ← 0 continue 

11:       𝑘 ← 𝐴𝐽𝑖,𝑗 , 𝑌𝑖 ← 𝐼𝑋𝑖,𝑘,  𝑍𝑖 ← Δ ∗ 𝐴𝑃𝑖,𝑗  

12:       𝑗 ← 𝑗 − 𝐴𝑃𝑖,𝑗  

13:   end for 
14:   return 𝑌, 𝑍 
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Appendix B.4. Functions 

Appendix B.4.1. Calculate maximum power 

𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥(𝑥) = 𝑥. 𝑖𝑚𝑎𝑥 (𝑥. 𝑖𝑚𝑎𝑥 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈) 

Appendix B.4.2. Calculate minimum integer power 

𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑥, Δ) = ⌈
𝑥. 𝑖𝑚𝑖𝑛 (𝑥. 𝑖𝑚𝑖𝑛 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈)

Δ
⌉ 

Appendix B.4.3. Calculate maximum integer power 

𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑥, Δ) = ⌊
𝑥. 𝑖𝑚𝑎𝑥 (𝑥. 𝑖𝑚𝑎𝑥 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈)

Δ
⌋ 

Appendix B.4.4. Calculate mass-flow rate for current 

𝑓𝑙𝑜𝑤𝑖(𝑥, 𝐼, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) =
𝐻

2𝐹
∑

(𝐼 − 𝑖𝑐𝑜𝑚𝑝) ∗ 𝑥. 𝑅 + 𝑥. 𝑈 − 𝑢0

𝑥. 𝑅𝑐
 

Where: 
𝑥 is compressor model. 
𝐼 is the compressor current [𝐴]. 
𝑖𝑐𝑜𝑚𝑝 is the compensation current [𝐴]. 
𝑢0 is the pressurization voltage [𝑉]. 
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄ ]. 
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄ ]. 
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Appendix B.4.5. Calculate mass-flow rate for power 

𝑓𝑙𝑜𝑤𝑝(𝑥, 𝑝, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

= 𝑓𝑙𝑜𝑤𝑖 (𝑥,
√(∑ 𝑥. 𝑈)2 + 4 ∗ 𝑝 ∗ ∑ 𝑥. 𝑅 − ∑ 𝑥. 𝑈

2 ∗ ∑ 𝑥. 𝑅
, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) 


