
 Eindhoven University of Technology

MASTER

Distributed load-sharing algorithm for an electrochemical hydrogen compression system

van Baalen, Allard R.

Award date:
2020

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/167e95c2-2a5a-4101-8072-ee563d8342f4

Distributed load-sharing algorithm for an
electrochemical hydrogen compression system

Master thesis report

A.R. van Baalen
(1020733)

Arnhem, June 2020

 Supervisors
D. Goswami (TU/e)
A. Bos (HyET Hydrogen)

CONTENTS

Print Date: 03 Jun 2020 Page 3 of 72

Abstract

There is a growing effort in using renewable energy as an energy source, but many

of these sources are not always available. For example, sunlight can only be

harvested during the day, and for wind energy there must be wind. There is a real

need to store energy such that energy can be harvested when it is available and

also used when it is not available. A possible solution is to use hydrogen as energy

storage. Hydrogen can be generated using electricity by the process of electrolysis,

after which the process can be inverted such that we get electricity again. The

downside of using hydrogen as energy storage is its low gas density, this requires

us to compress hydrogen such that we can store it efficiently.

A modern device for compressing hydrogen is an electrochemical compressor. This

type of compressor can efficiently compress hydrogen up to very large pressures.

A disadvantage of this type of compressor is its low flow rate. In order to use

electrochemical compression for large-scale energy storage, we need many

compression units working together.

In the presented thesis is a polynomial-time load-sharing algorithm for

electrochemical compressors presented. The algorithm will meet a certain mass-

flow rate demand with near-optimal power consumption while respecting real-

world constraints.

CONTENTS

Print Date: 03 Jun 2020 Page 4 of 72

Contents

 Contents .. 4

Chapter 1 Introduction .. 9

1.1. Electrochemical hydrogen compressor .. 9

1.1.1. Shunting a cell.. 10

1.2. Compression system .. 11

1.3. Structure of the report ... 13

Chapter 2 Problem statement ... 14

2.1. Milestones ... 15

Chapter 3 Related work .. 16

3.1. Electrochemical cell ... 16

3.1.1. Behavior of an electrochemical cell ... 17

3.2. Related algorithms ... 20

3.2.1. Dynamic programming .. 21

3.2.2. Fractional knapsack problem ... 22

Chapter 4 Model of the electrochemical compressor 24

4.1. Solving the model .. 26

4.1.1. Solving for the current source .. 28

4.1.2. Solving for the voltage sources .. 30

4.2. Modelling real-world constraints ... 32

Chapter 5 Load-sharing algorithm ... 34

5.1. Problem P1 – find the relevant shunt configurations 34

CONTENTS

Print Date: 03 Jun 2020 Page 5 of 72

5.2. Problem P2 – select shunt configurations and decide how much current to

feed through each compressor ... 38

5.3. Problem P3 – adapt the algorithm such that it can be implemented in the

proposed compression system .. 46

Chapter 6 Results .. 49

6.1. Computational complexity ... 49

6.2. Space complexity ... 51

6.3. communicational complexity ... 52

Chapter 7 Conclusion .. 53

 Bibliography .. 54

Appendix A. Compressor algorithm ... 56

Appendix A.1. Find, solve and transmit compressor models 57

Appendix A.2. Solve model ... 58

Appendix A.3. Solve shunted section .. 60

Appendix A.4. Functions ... 63

Appendix A.4.1. Calculate maximum flow .. 63

Appendix A.5. Calculate normalized current ... 63

Appendix A.6. Calculate normalized power ... 63

Appendix B. Skid algorithm .. 64

Appendix B.1. Build skid table ... 66

Appendix B.2. Build system table .. 68

Appendix B.3. Select skid config .. 70

Appendix B.4. Functions.. 71

Appendix B.4.1. Calculate maximum power ... 71

Appendix B.4.2. Calculate minimum integer power 71

Appendix B.4.3. Calculate maximum integer power 71

CONTENTS

Print Date: 03 Jun 2020 Page 6 of 72

Appendix B.4.4. Calculate mass-flow rate for current 71

Appendix B.4.5. Calculate mass-flow rate for power 72

List of Figures

Figure 1: Electrochemical hydrogen compressor. (Power Supply Unit (PSU),

Membrane Electrode Assembly (MEA)) ... 10

Figure 2: Shunt (left), variable shunt (right). (Membrane Electrode Assembly

(MEA)) .. 11

Figure 3: Hydrogen (H2) gas connections in an electrochemical hydrogen

compression system. (Power input (PIN), Communication port (COMM)) 12

Figure 4: Compression system consisting of 𝑛 skids, 𝑛 ∗ 𝑚 compressors, and 𝑛 ∗

𝑚 ∗ 𝑘 cells .. 12

Figure 5: Equivalent circuit electrochemical cell (Macdonald, 1971), with Rsol as the

solution resistance, Rct as the charge transfer resistance, Cdl as the double layer

capacity and W the Warburg impedance ... 16

Figure 6: I-V curves for different temperatures (Grigoriev, Shtatniy, Millet,

Porembsky, & Fateev, 2011) .. 17

Figure 7: I-V curves for different hydrogen concentrations (Grigoriev, Shtatniy,

Millet, Porembsky, & Fateev, 2011) ... 17

Figure 8: I-V curves for different membranes (Ströbel, et al., 2002) 18

Figure 9: Electrochemical hydrogen compressor with electronic shunts. (Power

Supply Unit (PSU), Membrane Electrode Assembly (MEA), Low Pressure (LP), High

Pressure (HP), Hydrogen (H2)) ... 24

Figure 10: Electrochemical compressor modelled as an electrical circuit, Current

source (I), Cell plate resistance (rp), Cell resistance (Rcx), Shunt resistance (Rsx),

Shunt switch (Sx), pressurization boltage (u0) .. 25

CONTENTS

Print Date: 03 Jun 2020 Page 7 of 72

Figure 11: Current path due to the pressurization effect, Cell plate resistance (rp),

Cell resistance (Rc), Shunt resistance (Rs), Shunt switch (S), pressurization voltage

(u0) .. 26

Figure 12: Intermediate form of a solved electrochemical compressor model.

(Compressor current (I), Equivalent cell resistance (𝑅𝑥), equivalent pressurization

voltage (𝑈𝑥)) .. 27

Figure 13: Calculating the equivalent section resistance for the current source .. 29

Figure 14: Calculating the cell voltages .. 30

Figure 15: Calculating the equivalent section resistance for the voltage source .. 31

Figure 16: Calculating the cell currents .. 32

Figure 17: Best shunt configurations (orange dots), also known as the Pareto-

optimal set, considering power consumption and flow rate. 35

Figure 18: Communicating the Pareto-optimal shunt configurations 46

Figure 19: Broadcasting the maximum flow rates per power consumption values

 ... 47

Figure 20: Communicating the selected shunt configurations and requested power

consumptions ... 47

Figure 21: Skid computation time .. 50

Figure 22: Memory usage skid.. 51

Figure 23: Outer network communication time ... 52

CONTENTS

Print Date: 03 Jun 2020 Page 8 of 72

List of Equations

Equation 1: Hydrogen molecule flow rate of an electrochemical cell (Rohland,

Eberle, Ströbel, Scholta, & Garche, 1998)... 18

Equation 2: Effect of pressurization on cell voltage according to the NERNST

equation (Rohland, Eberle, Ströbel, Scholta, & Garche, 1998) 19

Equation 3: Hydrogen molecule back-diffusion rate (Ströbel, et al., 2002) 19

Equation 4: Voltage over cell 𝑖 ... 27

Equation 5: Current through cell 𝑖 .. 27

Equation 6: Hydrogen mass-flow rate for a compressor with 𝑘 cells 28

Equation 7: Power consumption of a compressor with 𝑘 cells 28

Equation 8: Minimum compressor current .. 33

Equation 9: Maximum compressor current .. 33

Equation 10: Normalized current ... 36

Equation 11: Normalized power ... 36

Equation 12: Lower bound power consumption .. 42

Equation 13: Converting to integer power ... 42

Equation 14: Convert power to current .. 46

List of Algorithms

Algorithm 1: Find the Pareto-optimal shunt configurations 37

Algorithm 2: Integer algorithm that fills tables 𝐴, 𝑃, and 𝐽 40

Algorithm 3: Fill system tables ... 43

Algorithm 4: Select system configuration ... 44

INTRODUCTION

Print Date: 03 Jun 2020 Page 9 of 72

Chapter 1

Introduction

The concept of compressing hydrogen using an electrochemical compressor has

already been published in 1981, in which it was shown that a direct current through

a hydrated polymer electrolyte cell can transport hydrogen from a low- to high-

pressure side (Sedlak, Austin, & LaConti, 1981). It was not until 2012 before the first

electrochemical hydrogen compressor could compress hydrogen up to thousand

bars (HyET Hydrogen). In the meantime, the technique has matured and is now

ready to be employed in a system. This gives rise to new challenges. For one, a

single electrochemical hydrogen compressor has limited flow. Therefore, many

compressors are needed to achieve large flow rates. Since the compression

efficiencies vary over time and between compressors, it becomes increasingly

difficult to meet a certain flow rate demand with optimum power consumption. In

this thesis is a load-sharing algorithm presented that is capable of sharing the flow

rate between the compression units in a system such that a certain overall flow

rate demand is achieved with near-optimal power consumption.

1.1. Electrochemical hydrogen compressor

An electrochemical hydrogen compressor is a compressor that compresses

hydrogen without mechanical pressure. Instead, we use electricity to move protons

from one side of a proton exchange membrane (PEM), to the other (high pressure)

side with a rate that is proportional to the electrical current. A PEM is sandwiched

INTRODUCTION

Print Date: 03 Jun 2020 Page 10 of 72

between two electrodes that are electrically isolated from each other by the PEM,

we call this assembly a membrane electrode assembly (MEA). An electrochemical

hydrogen compressor typically consists of multiple MEAs that are sandwiched

between plates who are responsible of distributing the hydrogen over the MEA.

The following figure shows a simplified electrochemical hydrogen compressor.

Figure 1: Electrochemical hydrogen compressor.
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA))

In figure 1 is an electrochemical compressor depicted with a low-pressure

hydrogen input and a high-pressure hydrogen output. All cells are electrically

connected in series and powered by a power supply unit (PSU) that powers the

compressor with a direct current. For this thesis, we assume a parallel gas

configuration which implies that each cell is exposed to the full pressure difference,

and with each cell we increase the maximum flow rate.

1.1.1. Shunting a cell

With an electrochemical hydrogen compressor, we need to be careful that the

voltage over a cell is not too high, both to overcome damaging the cell as to keep

the power consumption low. It may very well be that there are one or more cells in

INTRODUCTION

Print Date: 03 Jun 2020 Page 11 of 72

a compressor with a voltage that is too high, requiring the compressor current to

be tuned down in order to avoid damaging the cell. As an alternative, we can shunt

a cell and divert a fraction of the current by placing a shunt or a variable shunt

between the cell plates, patented in (United States Patent No. US9915004B2,

2014), and illustrated below.

Figure 2: Shunt (left), variable shunt (right).
(Membrane Electrode Assembly (MEA))

Note that a variable shunt resistor can also imply an integrated circuit or

transistor(s).

1.2. Compression system

A compression system is a system with one or more compression units and auxiliary

devices required to operate the compression unit(s). These auxiliary devices

include a cooling system, humidifier, hydraulics, pipe heaters, sensors and valves.

For this thesis we do not take auxiliary devices into account and we focus on the

compression units themselves. Each compression unit contains a power supply unit

(PSU) with a power input and a processor that controls the PSU, reads the cell

voltages, and communicates with external devices over a communication bus.

Moreover, each compression unit has a low- and high-pressure hydrogen port for

which it is assumed that all compressors are connected to the same low- and high-

pressure media as depicted in the following figure.

INTRODUCTION

Print Date: 03 Jun 2020 Page 12 of 72

Figure 3: Hydrogen (H2) gas connections in an electrochemical hydrogen compression system.
(Power input (PIN), Communication port (COMM))

During the thesis preparation phase, we have found that we should implement

sections, we call such a section a skid. Every skid includes a processor that

represents the skid node and one or more compression nodes who represent the

compression units. The skid node acts as a gateway between the nodes in a skid

and external nodes to limit the number of messages and increase the potential

system size. As for the communication bus, we found that the CAN bus is a cost-

effective and reliable option. However, this algorithm is communication bus

independent and will work with any communication bus given that the speed is

sufficient, and the following topology is implemented.

Figure 4: Compression system consisting of 𝑛 skids, 𝑛 ∗ 𝑚 compressors, and 𝑛 ∗ 𝑚 ∗ 𝑘 cells

outer communication bus

in
n

er co
m

m
u

n
ica

tio
n

 b
u

s

COMPRESSOR
2

COMPRESSOR
m

COMPRESSOR
1

COMPRESSOR
2

COMPRESSOR
m

COMPRESSOR
1

COMPRESSOR
2

COMPRESSOR
m

COMPRESSOR
1

SKID 1 SKID 3 SKID n

in
n

er co
m

m
u

n
ica

tio
n

 b
u

s

in
n

er co
m

m
u

n
ica

tio
n

 b
u

s

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

INTRODUCTION

Print Date: 03 Jun 2020 Page 13 of 72

We propose two communication busses in figure 4, an outer bus that connects the

skid nodes to each other, and an inner bus that connects the compressors within a

skid to the skid node. We conceptionally describe the communication in the

following three steps.

1. Each compressor communicates characteristics over the inner bus to the skid

node.

2. The skid nodes process the characteristics and broadcast a subset over the

outer network.

3. The skid nodes process the subsets and communicate a solution to the

compressors within the skid.

1.3. Structure of the report

In this report is a load-sharing algorithm presented for the electrochemical

hydrogen compression system as proposed in section 1.2. In the current chapter is

an introduction given, followed by the problem statement in the next chapter. In

the third chapter is a study done in related work, which we will use to model the

problem in the fourth chapter and develop an algorithm in the fifth chapter. We

will present the algorithm and define how this algorithm is to be implemented in

the proposed compression system. We conclude the thesis with results and a

conclusion in the sixth and seventh chapters.

PROBLEM STATEMENT

Print Date: 03 Jun 2020 Page 14 of 72

Chapter 2

Problem statement

For the compression system as proposed in section 1.2, with 𝑛 skids, where each

skid has at most 𝑚 compression units, each compression unit at most 𝑘 cells and

each cell an electronic shunt that can be enabled or disabled. We must decide

which cells to shunt and how much current to feed through the compressors such

that we meet hydrogen flow demand 𝑑 with minimum power consumption.

Moreover, we must take real-world limitations into account which implies that we

must stay below a certain cell voltage limit such that we do not damage the

electrochemical cells, and we must stay below the maximum current rating of the

power supply unit. When it is not possible to meet flow rate demand 𝑑, we must

return the system configuration that gives the highest flow rate. Moreover, we

need to solve the problem periodically for big systems, which implies that we need

to solve the problem efficiently. More precisely, we need to solve the problem in

polynomial time for system size 𝑛 ∗ 𝑚 ∗ 𝑘.

We divide the problem in three major parts, namely.

P1. Decide for each compressor which cells to shunt and output all the relevant

shunt configurations per compressor. We define a shunt configuration as a

set of Booleans, one Boolean for every cell that indicates if the corresponding

cell is shunted.

PROBLEM STATEMENT

Print Date: 03 Jun 2020 Page 15 of 72

P2. Decide for every compressor which shunt configuration to use and how

much current to feed through the compressor such that we meet flow rate

demand 𝑑 with minimum power consumption.

P3. Adapt the solution such that it can be implemented in the system as

proposed in figure 4. This implies that we need to decide what each node

must do and what data there must be communicated over the busses.

2.1. Milestones

We will first conduct a research in the behavior of an electrochemical hydrogen cell

and use the results to develop a model that represents the compressor. We will

also do a research in related algorithms and use this to develop an algorithm that

solves the problem in polynomial time. The last part is to adapt the algorithm such

that it can be implemented in the proposed system and nodes. We summarize the

following milestones.

1. Conduct a research in the behavior of an electrochemical hydrogen cell,

section 3.1.

2. Conduct a research in related algorithms, section 3.2.

3. Create a model that represents the electrochemical compressor, chapter 4.

4. Develop an algorithm that solves problems P1 and P2 in polynomial time, P1

in section 5.1, and P2 in section 5.2.

5. Solve problem P3 by adapting the algorithm such that it can be implemented

in the proposed compression system (figure 4), section 5.3.

RELATED WORK

Print Date: 03 Jun 2020 Page 16 of 72

Chapter 3

Related work

In this chapter is a study in related work presented. We will first present results

that help us model the compressor in section 3.1. And secondly, we study

algorithms that solve similar problems in section 3.2.

3.1. Electrochemical cell

An electrochemical cell has already been modelled in 1971 by Macdonald

(Macdonald, 1971), for which the following equivalent circuit has been suggested.

Figure 5: Equivalent circuit electrochemical cell (Macdonald, 1971), with Rsol as the solution
resistance, Rct as the charge transfer resistance, Cdl as the double layer capacity and W the

Warburg impedance

The equivalent circuit from figure 5 is better known as a Randles circuit (Randles,

1947) commonly used in Electrochemical impedance spectroscopy, a method to

RELATED WORK

Print Date: 03 Jun 2020 Page 17 of 72

characterize electrochemical systems. In this circuit is the faradaic reaction, i.e. the

reaction that causes hydrogen protons to move from one side of the PEM to the

other side, represented by the 𝑅𝑐𝑡 resistance and 𝑊𝑎𝑟𝑏𝑢𝑟𝑔 impedance.

3.1.1. Behavior of an electrochemical cell

It has been shown by (Grigoriev, Shtatniy, Millet, Porembsky, & Fateev),

(Suermann, Kiupel, Schmidt, & Buchi), (Scheepers, et al.), (Ströbel, et al.), and many

more that the behavior of an electrochemical cell depends on many parameters.

Namely, membrane material, temperature, humidity, gas purity, pressure

difference and current density. For this thesis, we are interested in what happens

when we change the current through a cell or shunt a cell, in both cases, we are

effectively changing the current density. The following figures show us what

happens if we change the current density of an electrochemical cell for various

temperatures, gas concentrations and membrane materials.

Figure 6: I-V curves for different temperatures

(Grigoriev, Shtatniy, Millet, Porembsky, &
Fateev, 2011)

Figure 7: I-V curves for different hydrogen
concentrations (Grigoriev, Shtatniy, Millet,

Porembsky, & Fateev, 2011)

RELATED WORK

Print Date: 03 Jun 2020 Page 18 of 72

Figure 8: I-V curves for different membranes (Ströbel, et al., 2002)

We see that the electrochemical cells are first in a linear region where the cell

behaves as a resistor, after which the cell voltage increases exponentially. Working

outside the linear region is unadvised since a small change in current density can

cause a large change in cell voltage, possibly damaging the cell.

Hydrogen flow rate
Faraday has researched electrochemistry already in 1834, from which Faraday’s

laws of electrolysis originated (Faraday, 1834). Faraday showed that the amount of

material produced during an electrochemical reaction is directly proportional to

the average current multiplied by the experiment time. We can use these laws to

calculate the amount of hydrogen that is transported through the membrane as.

𝑑𝑛

𝑑𝑡
=

𝐼

2𝐹

Equation 1: Hydrogen molecule flow rate of an electrochemical
cell (Rohland, Eberle, Ströbel, Scholta, & Garche, 1998)

Where:
𝑑𝑛 𝑑𝑡⁄ is the hydrogen flow rate [𝑚𝑜𝑙 𝑠⁄].
𝐼 is the current though the cell [𝐴].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].

RELATED WORK

Print Date: 03 Jun 2020 Page 19 of 72

NERNST voltage
Figure 6, figure 7 and figure 8 do not show the behavior when there is a pressure

difference over an electrochemical cell. To this end, let us use the following

expression derived from the NERNST equation to calculate the effect of

pressurization on the cell voltage.

𝐸 =
𝑅 ∗ 𝑇

2𝐹
ln

𝑃𝐻2
𝐻𝑃

𝑃𝐻2
𝐿𝑃

Equation 2: Effect of pressurization on cell voltage
according to the NERNST equation (Rohland, Eberle,
Ströbel, Scholta, & Garche, 1998)

Where:
𝐸 is the cell potential [𝑉].
𝑅 is the universal gas constant [𝐽 𝐾 ∗ 𝑚𝑜𝑙⁄].
𝑇 is the temperature [K].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].
𝑃𝐻2

𝐻𝑃 𝑃𝐻2
𝐿𝑃⁄ is the hydrogen compression factor.

The voltage calculated in equation 2 gives the theoretical cell voltage as a function

of the pressure difference. In order to pressurize hydrogen, we need to overcome

the theoretical cell voltage. For a hundredfold compression factor and a

temperature of 300 Kelvin, a cell voltage of 60 mV is required according to equation

2.

Back-diffusion
Another effect of pressurization is back-diffusion. When there is a pressure

difference over the electrochemical cell, we have hydrogen molecules migrating

from the high- to the low-pressure side. This migration can be compensated by an

electrical current such that there is found an equilibrium at which there is no

hydrogen flow. We use this equilibrium current together with Faradays laws to

calculate the back-diffusion rate as.

𝑑𝑛

𝑑𝑡
=

𝐼 ∗ 𝑉0 ∗ 𝑇

2𝐹 ∗ 𝑇0

Equation 3: Hydrogen molecule back-diffusion rate
(Ströbel, et al., 2002)

Where:

RELATED WORK

Print Date: 03 Jun 2020 Page 20 of 72

𝑑𝑛 𝑑𝑡⁄ is the hydrogen back-diffusion flow rate [𝑚𝑜𝑙 𝑠⁄].
𝐼 is the equilibrium current [𝐴].
𝑉0 is the standard molar volume [1 𝑚𝑜𝑙⁄].
𝑇 is the temperature [𝐾].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].
𝑇0 is the standard temperature [𝐾].

3.2. Related algorithms

In this section are related algorithms studied to solve the second part of the

problem as described in the problem statement and repeated below.

Decide for every compressor which shunt configuration to use and how much

current to feed through the compressor such that we meet mass-flow rate

demand 𝑑 with minimum power consumption.

If we ignore the part about determining how much current to feed through a

compressor and the effect this has on the compression flow and power

consumption, we realize that we essentially have a combinatorial optimization

problem. Similar to the well-known 0-1 Knapsack problem, defined as.

Let there be a set of items, where each item has a value and a weight.

Determine which items to put in the knapsack such that the weight is at most

𝑊 and the value is maximum.

Instead of selecting items, we select configurations. With power being the value

and flow being the weight. We do now have a minimization problem as the power

must be minimized, and instead of having a weight at most equal to 𝑊, we must

have a flow at least equal to 𝑑.

The Knapsack problem has been researched extensively, with early works dating

back to 1897 (Mathews, 1897). It has been shown that the 0-1 Knapsack problem

with real values and weights is NP-complete, thus there is no known algorithm that

can solve the problem both optimal and in polynomial time for any given input.

However, it has been found that if the weights or values are integers, we can solve

RELATED WORK

Print Date: 03 Jun 2020 Page 21 of 72

it optimally in polynomial time using Dynamic-programming, explained in section

3.2.1. To solve a problem with real values, we can use a scaling and rounding step

that converts the real values to integers. Unfortunately, this introduces rounding

errors, causing the solution to be potentially non-optimal. We can create a

polynomial-time approximation scheme as explained in (de Berg, 2019), in which

we regulate the rounding error using a parameter 𝜀 > 0. With 𝜀, we can set the

tradeoff between accuracy and speed, a higher 𝜀 gives us a faster execution at the

cost of reduced accuracy and visa-versa. There is another approach in solving the

Knapsack problem that does not require the weights or values to be integers,

namely, a greedy algorithm for the Fractional-Knapsack problem. As the name

suggests, we require that it is possible to take fractions of items. We discuss the

Fractional-Knapsack problem in section 3.2.2.

3.2.1. Dynamic programming

Dynamic programming has been developed in 1950 by Richard Bellman (Bellman,

1957). The general idea behind dynamic programming is to divide a problem in

smaller sub-problems where the results of these subproblems are stored such that

they do not have to be recomputed at a later point. This simple concept has been

implemented in dynamic programming algorithms in many different fields.

If we take the 0-1 integer Knapsack problem, for 𝑛 items, we can either pack an

item or not pack an item, we find that there are 2𝑛 possible combinations of items

to pack in the Knapsack which leads us to believe that there are 𝑂(2𝑛)

computations to do. It turns out that many of the computations are done multiple

times. With dynamic programming we will do each computation just once. This is

best explained by imagining a table with 𝑛 rows and 𝑊 columns. Where 𝑐𝑒𝑙𝑙𝑖,𝑗

contains the maximum value for the first 𝑖 items and weight 𝑗. We can fill the table

in 𝑂(𝑛 ∗ 𝑊) time, after which we can find our maximum value for weight 𝑊 in

𝑐𝑒𝑙𝑙𝑛,𝑊.

RELATED WORK

Print Date: 03 Jun 2020 Page 22 of 72

3.2.2. Fractional knapsack problem

It has been found by George Dantzig in 1957 (Dantzig, 1957) that if we adapt the

original 0-1 Knapsack problem such that we can take fractions of items, we can

solve it optimally using a Greedy approach in 𝑂(𝑛 log2 𝑛) time, for input size 𝑛. The

basic idea is to calculate the 𝑣𝑎𝑙𝑢𝑒 𝑤𝑒𝑖𝑔ℎ𝑡⁄ ratio for each item and sort all the

items on this ratio, highest value first. We will now take items one by one until we

cannot add the next item as a whole, instead we add as much of the next item as

possible such that the total weight is exactly 𝑊. This approach will always give an

optimal solution and does not require the weights or values to be integers.

However, it does require the weights and values to scale the same. In other words,

if we have an item 𝑥 and we pack 1 2⁄ 𝑥, we must have a resulting value of 1 2⁄ ∗

𝑣𝑎𝑙𝑢𝑒(𝑥) and a resulting weight of 1 2⁄ ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑥).

3.2.2.1. Non-linear fractional knapsack problem

It turns out that we do not have a flow and power that scale equally, we have an

exponential relationship in which the consumed power becomes exponentially

large as the hydrogen flow increases. Such a problem is similar to the nonlinear

knapsack problem, generally defined as.

𝑀𝑖𝑛: 𝑓(𝑥)
𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡: 𝑔(𝑥) ≤ 𝑏
 𝑥 ∈ 𝑆

(Bretthauer & Shetty, p. 460) addresses the following five variations of this basic

problem definition, cited as.

1. “Convex, separable, continuous: 𝑓(𝑥) and 𝑔(𝑥) are convex separable

functions, S includes bounds on the continuous variables.

2. Convex, separable, integer: Same as problem type 1 except S includes

integrality conditions on the variables.

3. Nonconvex, separable (continuous and integer): 𝑓(𝑥) and 𝑔(𝑥) are

nonconvex separable functions, S includes bounds on the variables.

RELATED WORK

Print Date: 03 Jun 2020 Page 23 of 72

4. Convex, separable, additional block diagonal (or GUB) constraints

(continuous and integer): Same as problem type 1 or 2 except S also includes

block diagonal or GUB constraints.

5. Convex, non-separable (continuous and integer): 𝑓(𝑥) and 𝑔(𝑥) are convex

non-separable functions, S includes bounds on the variables.”

Our problem is closely related to the first variation, for which there are two basic

approaches, multiple search methods, and variable pegging methods.

With multiple search methods, we use a set of equations to solve the problem. An

example is given in (Bretthauer & Shetty, The nonlinear resource allocation

problem, 1995) that solves the multiple search algorithm via a one-dimensional

search by using the derivative of the functions and the Lagrange multiplier.

Variable pegging methods initially neglect all bounds and calculate an initial output.

In the next iterations are items bounded such that we solve the problem and satisfy

the limits. The generalized problem with lower and upper bounds has been solved

in (Bretthauer & Shetty, A pegging algorithm for the nonlinear resource allocation

problem, 2002), in which always at least one item is pegged per iteration,

guaranteeing a finite amount of iterations.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 24 of 72

Chapter 4

Model of the electrochemical compressor

To the end of modelling the electrochemical compression unit, let us first expand

the compressor from figure 1 with the electronic shunts such that we get the

compressor as depicted below.

Figure 9: Electrochemical hydrogen compressor with electronic shunts.
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA), Low Pressure (LP), High

Pressure (HP), Hydrogen (H2))

We found in section 3.1 that an electrochemical cell behaves linearly at first if we

consider the current density versus the cell voltage, after which the cell voltage

rises exponentially. For this thesis, we assume to be in the linear region when

staying below the cell voltage limit, one of the parameters defined in the problem

statement. Moreover, since we are driving the compressor using a direct current,

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 25 of 72

we can greatly simplify the equivalent circuit of the electrochemical cell shown in

figure 5 and model the cell as a single resistor if we ignore the effect of

pressurization. We include the effect of pressurization by realizing that the cell

behaves as a voltage source for which the voltage is directly related to the pressure

difference. We assume that the wire resistance from the PSU to the first/last cell is

neglectable and draw the electrochemical compressor as the circuit depicted

below.

Figure 10: Electrochemical compressor modelled as an electrical circuit,
Current source (I), Cell plate resistance (rp), Cell resistance (Rcx), Shunt resistance (Rsx), Shunt

switch (Sx), pressurization boltage (u0)

The model in figure 10 represents an electrochemical compressor for which two

cells are drawn. We represent the electrochemical cell resistance by 𝑅𝑐𝑖, the plate

resistance by 𝑟𝑝, the shunt resistance by 𝑅𝑠𝑖, and the actual shunt by 𝑆𝑖. We model

the pressurization effect as a voltage source for which the voltage 𝑢0 is calculated

with the NERNST equation (equation 2). Lastly, the compressor is driven by a direct

current source with current 𝐼.

When a cell is under pressure and shunted, we might create the current path as

illustrated in the next figure. This current path is undesirable as it allows the process

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 26 of 72

to reverse, i.e. for hydrogen to flow from the high-pressure to the low-pressure

side.

Figure 11: Current path due to the pressurization effect,
Cell plate resistance (rp), Cell resistance (Rc), Shunt resistance (Rs), Shunt switch (S),

pressurization voltage (u0)

To avoid the situation as depicted in figure 11, we must ensure that the voltage

over 𝑅𝑐 is positive by either feeding a sufficiently high current through the

compressor or by un-shunting the respective cell.

4.1. Solving the model

In order to calculate the effect of increasing/decreasing the compressor current for

a certain shunt configuration, we first solve the model from figure 10 for the shunt

configuration into an intermediate form that allows us to efficiently compute the

cell voltages, flow rate and power consumption as a function to the compressor

current. The intermediate form consists of a number of in series connected

resistors and voltage sources, where each resistor/source pair represents a cell and

the respective shunt. The intermediate form for two cells is depicted in the

following figure.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 27 of 72

Figure 12: Intermediate form of a solved electrochemical compressor model.
(Compressor current (I), Equivalent cell resistance (𝑅𝑥), equivalent pressurization voltage (𝑈𝑥))

From the intermediate form, we calculate the voltage over cell 𝑖 for the compressor
current 𝐼 as.

𝐸𝑖(𝐼) = 𝐼 ∗ 𝑅𝑖 + 𝑈𝑖 Equation 4: Voltage over cell 𝑖

And the current through cell 𝑖 with cell resistance 𝑅𝑐𝑖 and pressurization voltage
𝑢0 as.

𝐴𝑖(𝐼) =
𝐸𝑖(𝐼) − 𝑢0

𝑅𝑐𝑖
 Equation 5: Current through cell 𝑖

We use equation 1 to calculate the flowrate through an electrochemical cell.

However, this equation assumes that there is no pressure difference over the cell.

To include the effect of pressurization we introduce a compensation current 𝑖𝑐𝑜𝑚𝑝

that compensates for the back-diffusion rate (equation 3). We calculate the mass-

flow rate 𝜆 for a compressor with 𝑘 cells and compressor current 𝐼 as.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 28 of 72

𝜆(𝐼) =
𝐻

2𝐹
∑ 𝐴𝑖(𝐼) − 𝑖𝑐𝑜𝑚𝑝

𝑘

𝑖=1

Equation 6: Hydrogen mass-flow rate for a
compressor with 𝑘 cells

Where:
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].

The power consumption is the electric power that is dissipated in the compressor,

which we calculate as.

𝑃(𝐼) = 𝐼 ∑ 𝐸𝑖(𝐼)

𝑘

𝑖=1

Equation 7: Power consumption of a compressor with 𝑘
cells

Solving the model from figure 10 with all the shunts disabled is trivial as this would

result in solving a network for which we have that 𝑅𝑥 = 𝑅𝑐𝑥 and 𝑈𝑥 = 𝑢0.

However, if multiple cells are shunted consecutively, it becomes more difficult.

Solving such a shunted section is done using a combination of Ohm’s law,

Kirchhoff’s laws, superposition theorem and wye-delta transformations. To explain

the cell voltage calculation when multiple cells are shunted consecutively, we will

solve a shunted section consisting of three cells. We use the superposition theorem

which implies that we solve the circuit for every power source. We first solve the

circuit for the current source in section 4.1.1 after which we solve for the voltage

sources in section 4.1.2. The algorithm for solving the electrochemical compressor

is provided in Appendix A.2.

4.1.1. Solving for the current source

We solve for the current source by disabling all the voltage sources and apply two

iterative steps. Firstly, we simplify the circuit using delta-wye transformations and

calculate the equivalent section resistance. Secondly, we use the equivalent section

resistance to determine the section voltage as a function of the current and walk

back the previous iterations to calculate the cell voltages.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 29 of 72

Figure 13: Calculating the equivalent section resistance for the current source

The first iterative step is depicted in figure 13. We start with the drawing all the

way to the left and find that if we combine 𝑟𝑝1 and 𝑅𝑠1, we create a triangle

together with 𝑅𝑐1 and 𝑟𝑝2. We can now do a delta-wye transformation and

calculate 𝑅𝑥1, 𝑅𝑦1 and 𝑅𝑧1. In step 1a, we find another triangle with 𝑟𝑝3 if we

combine 𝑅𝑦1 and 𝑅𝑐2, and also combine 𝑅𝑧1 and 𝑅𝑠2. We do another delta-wye

transformation and end up with the circuit in 1b. In this step we calculate the

equivalent resistance that is formed by the parallel circuit consisting of the sum of

𝑅𝑦2 and 𝑅𝑐3, and the sum of 𝑅𝑧2, 𝑅𝑝3 and 𝑅𝑝4. We end up the circuit shown in

step 1c and calculate the equivalent section resistance as the sum of 𝑅𝑥1, 𝑅𝑥2 and

𝑟𝑒𝑞.

In the second step, we assume a compressor current of one ampere and calculate

the cell voltages. We note that the cell voltages are proportional to the compressor

current and that we are effectively calculating the cell voltage per ampere of

compressor current. In other words, we calculate the equivalent cell resistances

𝑅𝑥. We will first calculate the voltage over the entire section 𝑉𝑠𝑒𝑐𝑡𝑖𝑜𝑛. After which

we walk back the iterations from the first step and calculate the node voltages 𝑈1,

𝑈2, 𝑈3 and 𝑈4, illustrated in the figure below.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 30 of 72

Figure 14: Calculating the cell voltages

We can calculate the cell voltages in the End drawing from figure 14 as the voltage

difference between the two surrounding node voltages. Remember that we

actually calculate the equivalent cell resistances 𝑅𝑥.

4.1.2. Solving for the voltage sources

We solve for the voltage sources by disconnecting the current source and

iteratively enable a single voltage source for which the circuit is solved. We solve

the circuit in two iterative steps. Firstly, we simplify the circuit such that we end up

with all the resistors connected in series. We can now calculate the equivalent

resistance for the voltage source and use this to calculate the sourced current.

Secondly, we revert the previous iterations and calculate the cell currents and

voltages.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 31 of 72

Figure 15: Calculating the equivalent section resistance for the voltage source

The first iterative step for a single voltage source is depicted in figure 15. We start

with the drawing all the way to the left and find that if we sum 𝑅𝑐3, 𝑅𝑠3 and 𝑟𝑝4,

we have a single resistor 𝑟𝑝3 in parallel. We calculate the equivalent resistance

𝑅𝑒𝑞2 and end up with the circuit in step 1a. We repeat the previous step and

calculate the equivalent resistance 𝑅𝑒𝑞1 in step 1b by solving the parallel circuit

with 𝑟𝑝2 and the sum of 𝑅𝑐2, 𝑅𝑠2 and 𝑅𝑏2. We can now calculate the equivalent

section resistance as the sum of 𝑅𝑐1, 𝑟𝑝1 and 𝑅𝑒𝑞1.

With the second step, we walk back the iterations from the previous step and

calculate the cell currents 𝐼𝑐4, 𝐼𝑐5, and 𝐼𝑐6, illustrated in the figure below.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 32 of 72

Figure 16: Calculating the cell currents

We can calculate the cell voltages in the End drawing in figure 16 by multiplying the

cell current with the respective cell resistance. We repeat the previous steps for

every voltage source and sum the calculated cell voltages such that we get the set

with offset voltages 𝑈. Every 𝑈𝑖 now represents the total offset voltage for cell 𝑖.

In order to include 𝑢0 and take care of the sign, we update every offset voltage 𝑈𝑖

as follows.

𝑈𝑖 = 𝑢0 − 𝑈𝑖

4.2. Modelling real-world constraints

To include the back-diffusion compensation current 𝑖𝑐𝑜𝑚𝑝, the maximum cell

voltage 𝑢𝑚𝑎𝑥, and the maximum compressor current 𝑖𝑚𝑎𝑥 into our model, we

convert them to minimum and maximum compressor currents, 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥

respectively. We define 𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 such that if we have a compressor current

𝐼 and 𝑖𝑚𝑖𝑛 ≤ 𝐼 ≤ 𝑖𝑚𝑎𝑥, we will always have a cell current of at least 𝑖𝑐𝑜𝑚𝑝 a

compressor current of at most 𝑖𝑚𝑎𝑥, and a cell voltage of at most 𝑢𝑚𝑎𝑥.

MODEL OF THE ELECTROCHEMICAL COMPRESSOR

Print Date: 03 Jun 2020 Page 33 of 72

𝑖𝑚𝑖𝑛 = Max
1≤𝑖≤𝑘

(
𝑖𝑐𝑜𝑚𝑝 ∗ 𝑅𝑐𝑖 − 𝑈𝑖 + 𝑢0

𝑅𝑖
)

Equation 8: Minimum compressor
current

𝑖𝑚𝑎𝑥 = Min
1≤𝑖≤𝑘

(𝑖𝑚𝑎𝑥,
𝑢𝑚𝑎𝑥 − 𝑈𝑖

𝑅𝑖
) Equation 9: Maximum compressor

current

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 34 of 72

Chapter 5

Load-sharing algorithm

We will now present the load-sharing algorithm that solves the problem as

described in the problem statement, using the model we defined in chapter 4. We

first solve problem P1 and present an algorithm that returns the relevant shunt

configurations for a compressor. Secondly, for a system of 𝑁 compressors, we solve

problem P2 and present an algorithm that finds which shunt configurations to use

and how much current to feed through each compressor. In the third and last

section of this chapter, we include the skids and solve problem P3, we adapt the

presented algorithm such that it can be implemented in the proposed hydrogen

compression system defined in figure 4.

5.1. Problem P1 – find the relevant shunt configurations

In this section is described how we can find the relevant shunt configurations. A

shunt configuration is a set of 𝑘 Booleans, one Boolean for every cell in the

compressor that is set when the corresponding shunt is enabled. We define the

relevant shunt configurations as the configurations that are not outperformed by

others considering flow rate and power consumption, such a set is also known as

the Pareto-optimal set. The following image illustrates the Pareto-optimal set as

the orange dots versus the poorer shunt configurations drawn as blue dots.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 35 of 72

Figure 17: Best shunt configurations (orange dots), also known as the Pareto-optimal set,
considering power consumption and flow rate.

A simple solution is to solve every combination of shunts and extract the Pareto-

optimal set. However, this would lead to 𝑂(2𝑘) combinations per compressor that

need to be solved and examined. We can do this much smarter by realizing that if

we shunt a cell, we divert part of the current through that cell. This causes a

reduction in power and a reduction in flow rate. To counter the flow rate reduction,

we can increase the compressor current and let the other cells work harder.

Formulated like this, it becomes obvious that it is most effective to shunt the cell

that is least efficient, i.e. dissipates the most power. Naturally, this is the cell with

the highest resistance.

In order to select only the shunt configurations that belong to the Pareto-optimal

set, we need to compare shunt configurations. One of the parameters of

comparison is the maximum flow rate. The other parameter is the power

consumption. Because the power consumption does not scale linearly with the flow

rate, we must normalize the power consumption for a fair comparison. We define

the normalized power consumption as the power consumption when we have a

mass-flow rate of 1 𝑔/𝑠.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 36 of 72

𝐼 = 𝑖𝑐𝑜𝑚𝑝 +
2𝐹 𝐻⁄ + ∑ (𝑢0 − 𝑈𝑖) 𝑅𝑐𝑖⁄𝑘

𝑖=1

∑ 𝑅𝑖 𝑅𝑐𝑖⁄𝑘
𝑖=1

 Equation 10: Normalized current

�̂� = 𝐼 ∑ 𝐸𝑖(𝐼)

𝑘

𝑖=1

 Equation 11: Normalized power

Where:

𝐼 is the normalized current, i.e. current for 1 𝑔/𝑠 [𝐴].

�̂� is the normalized power, i.e. power for1 𝑔/𝑠 [𝑊].
𝑘 is the number of cells in the compressor.
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [𝐴].
𝑢0 is the pressurization voltage [𝑉].
𝑈 is the modelled offset voltage [𝑉].
𝑅 is the modelled equivalent resistance [𝛺].
𝑅𝑐 is the cell resistance [𝛺].
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].
𝐸𝑖(𝐼) is cell voltage 𝑖 for current 𝐼 [V].

We define the algorithm that finds the Pareto-optimal shunt configurations for a

compressor with 𝑘 cells in polynomial time next.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 37 of 72

Algorithm 1: Find the Pareto-optimal shunt configurations

𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, , 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
1: ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set
 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, a
 offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a compensation current
 𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥, and a number of cells 𝑘.
2: ⊳ Output: A set 𝑋2 with up to 𝑘 + 1 compressor models, where every
 model contains as set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘} with cell resistances, a set
 𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the shunts, a set
 𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances as specified in section
 4.1.1, a set 𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages as specified in section
 4.1.2, a minimum compressor current 𝑖𝑚𝑖𝑛, and a maximum
 compressor current 𝑖𝑚𝑎𝑥.
3: 𝑋1 ← ∅, 𝑋2 ← ∅, Initialize 𝑆𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘.
4:
5: ⊳ Get the sorted indices for 𝑅𝑐 and solve models
6: 𝐽 ← 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑({1, … , 𝑘}, 𝑅𝑐)
7: 𝑋1 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
8: for 𝑖 = 1 to 𝑘 do
9: 𝑗 ← 𝐽𝑖, 𝑆𝑗 ← 1

10: 𝑋1 ← 𝑋1 ∪ 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
11: end for
12:
13: ⊳ Only keep models that belong to the Pareto-optimal set
14: for 𝑖 = 1 to 𝑘 + 1 do
15: 𝑓 ← 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋1𝑖), 𝑝 ← 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋1𝑖), 𝑎𝑑𝑑 ← 𝑇𝑟𝑢𝑒
16: for 𝑗 = 1 to 𝑘 + 1 do
17: if 𝑖 = 𝑗 then continue

17: if 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋1𝑗) ≥ 𝑓 and 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋1𝑗) ≤ 𝑝 then

18: 𝑎𝑑𝑑 ← 𝐹𝑎𝑙𝑠𝑒, break
19: end if
20: end for
21: if 𝑎𝑑𝑑 then 𝑋2 ← 𝑋2 ∪ 𝑋1𝑖
22: end for
23: return 𝑋2

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 38 of 72

Algorithm 1 starts with sorting the cell resistances in descending cell resistance

order. Next, we consider the situation where no cells are shunted and solve this

configuration in 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙 as described in section 4.1 and implemented in

Appendix A.2. In the following iterations are cells shunted one by one until all cells

are shunted. With every newly shunted cell we solve and store the resulting model.

In the second loop are only the models that belong to the Pareto-optimal set added

to the output 𝑋2.

Let us consider the time complexity of the 𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠 algorithm.

If we apply the Heapsort algorithm from (Williams, 1964), we can do the sorting

step in 𝑂(𝑘 log2 𝑘) time. Solving a model takes 𝑂(𝑘2) time, since we solve 𝑘

models in the first for-loop, we find a time complexity of 𝑂(𝑘3) for the first loop. If

we consider the second for-loop, we find that we can execute this loop in 𝑂(𝑘2)

time. We conclude that the computational complexity is determined by the first

for-loop which gives us a resulting time complexity of 𝑂(𝑘3).

5.2. Problem P2 – select shunt configurations and decide how much

current to feed through each compressor

In the previous section are the shunt configurations modelled and the Pareto-

optimal configurations returned, in this section we decide which shunt

configuration to use and how much current to feed through each compressor such

that we meet the hydrogen flow demand. We will use a dynamic programming

approach as discussed in section 3.2.1. To this end, we develop an algorithm for

when all power consumptions are integers. Let us assume that we have a system

with a total of 𝑁 compressors. For every compressor we define a set 𝑋 that contains

modelled shunt configurations. For every model 𝑥 ∈ 𝑋, we define 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥),

𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥), and 𝑓𝑙𝑜𝑤(𝑥, 𝑝) as the minimum, maximum power consumption

and flow rate for model 𝑥 and power 𝑝, respectively. For a subset

𝑌 ⊆ {𝑥1 ∈ 𝑋1 … 𝑥𝑁 ∈ 𝑋𝑁}, and a set 𝑍 with the respective power consumption for

every element in 𝑌. We define 𝑓𝑙𝑜𝑤(𝑌, 𝑍) = ∑ 𝑓𝑙𝑜𝑤(𝑌𝑖 , 𝑍𝑖)
|𝑌|
𝑖=1 and

𝑝𝑜𝑤𝑒𝑟(𝑍) = ∑ 𝑍𝑖
|𝑧|
𝑖=1 . Moreover, we define 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 as the maximum total power

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 39 of 72

consumption for the entire system. For every 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 we

define.

𝐴[𝑖, 𝑗] = 𝑀𝑎𝑥(𝑓𝑙𝑜𝑤(𝑌, 𝑍): 𝑌 ⊆ {𝑥1 ∈ 𝑋1 … 𝑥𝑖 ∈ 𝑋𝑖},

 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑌𝑥) ≤ 𝑍𝑥 ≤ 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑌𝑥) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑌𝑥 ∈ 𝑌

 𝑎𝑛𝑑 𝑝𝑜𝑤𝑒𝑟(𝑍) = 𝑗)

In other words, 𝐴[𝑖, 𝑗] denotes the maximum flow of subset 𝑌 for the first 𝑖

compressors with at most one model per compressor such that power 𝑍𝑥 for every

model 𝑌𝑥 ∈ 𝑌 stays within its lower and upper limits and 𝑝𝑜𝑤𝑒𝑟(𝑍) is exactly 𝑗.

When element 𝐴[𝑖, 𝑗] does not exist, we specify that 𝐴[𝑖, 𝑗] = 0. In order to extract

the solution, we also fill tables 𝑃 and 𝐽. Table 𝑃 stores the power such that 𝑃𝑖,𝑗

contains the power of compressor 𝑖 that is used in 𝐴𝑖,𝑗, and table 𝐽 stores the model

index such that 𝐽𝑖,𝑗 contains the model index for compressor 𝑖 that is used in 𝐴𝑖,𝑗.

We present the integer algorithm for 𝑁 compressors next.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 40 of 72

Algorithm 2: Integer algorithm that fills tables 𝐴, 𝑃, and 𝐽

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠(𝑋, 𝑁, 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡)
1: ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘
 compressor models for compressor 𝑖, a number of compressors 𝑁,
 and a total system power 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡.
2: ⊳ Output: A table 𝐴 with 𝑁 rows and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 columns, for which every
 𝐴[𝑖, 𝑗] contains the highest flow for the first 𝑖 compressors and power 𝑗,
 a table 𝑃 that is similar to table 𝐴 except that it contains the power of
 compressor 𝑖 for total power 𝑗, and a table 𝐽 that is also similar to table
 𝐴 except that this one contains the index of the shunt configuration of
 compressor 𝑖 for power 𝑗.
3: Initialize 𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

4: Initialize 𝑃𝑖,𝑗 ← 0 and 𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

5:
6: for 𝑖 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋1) do
7: for 𝑗 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑋1,𝑖) to 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋1,𝑖) do

8: if 𝑓𝑙𝑜𝑤(𝑋1,𝑖 , 𝑗) > 𝐴1,𝑗 then 𝐴1,𝑗 ← 𝑓𝑙𝑜𝑤(𝑋1,𝑖 , 𝑗), 𝐽1,𝑗 ← 𝑖, 𝑃1,𝑗 ← 𝑗

9: end for
10: end for
11: for 𝑖 ← 2 to 𝑁 do
12: 𝐴𝑖 ← 𝐴𝑖−1
13: for 𝑗 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋𝑖) do
14: for 𝑘 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑋𝑖,𝑗) to 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋𝑖,𝑗) do

15: 𝑓 ← 𝑓𝑙𝑜𝑤(𝑋𝑖,𝑗 , 𝑘)

16: if 𝑓 > 𝐴𝑖,𝑘 then 𝐴𝑖,𝑘 ← 𝑓, 𝐽𝑖,𝑘 ← 𝑗, 𝑃𝑖,𝑘 ← 𝑘
17: for 𝑙 ← 𝑘 + 1 to 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 do
18: if 𝐴𝑖−1,𝑙−𝑘 = 0 then continue
19: 𝑎 ← 𝐴𝑖−1,𝑙−𝑘 + 𝑓
20: if 𝑎 > 𝐴𝑖,𝑙 then 𝐴𝑖,𝑙 ← 𝑎, 𝐽𝑖,𝑙 ← 𝑗, 𝑃𝑖,𝑙 ← 𝑘
21: end for
22: end for
23: end for
24: end for
25: return 𝐴, 𝑃, 𝐽

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 41 of 72

The integer algorithm returns the sets 𝐴, 𝑃 and 𝐽 that make it possible to select the

maximum flow rate for a power consumption efficiently. We execute the integer

algorithm and fill the tables with a time complexity of.

𝑂 (∑ ∑ (𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) − 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥))

𝑥∈𝑋𝑖

∗ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

𝑁

𝑖=1

)

Let us define 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 as the maximum power consumption of a compressor.

Now, because we always have that |𝑋𝑖| ≤ 𝑘 + 1, 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) − 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥) ≤

𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ≤ 𝑁 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 we can simplify the time complexity to.

𝑂(𝑁2 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2)

In order to implement the algorithm with real power consumptions, we must first

convert them to integers. Unfortunately, this introduces rounding errors. In order

to manage the rounding errors, we implement a polynomial-time approximations

scheme as explained in section 3.2, which implies that we develop an algorithm for

which we have a total power consumption of at most (1 + 𝜀) ∗ 𝑂𝑃𝑇, with 𝑂𝑃𝑇

being the optimal power consumption, and 𝜀 > 0 being the tuning parameter that

defines the trade-off between accuracy and speed.

To the end of converting the real powers to integer powers, let us define 𝑝𝑜𝑤𝑒𝑟𝐿𝐵

as a lower bound on the optimum power consumption such that we always have

that 𝑂𝑃𝑇 ≥ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 . We calculate the lower bound power consumption by

assuming that we have just one cell with the minimum cell voltage 𝑢𝑚𝑖𝑛 that meets

the flow-rate demand. We first calculate the required current for demand 𝑑, which

we then multiply with the minimum cell voltage 𝑢𝑚𝑖𝑛 to get the lower bound

power consumption. The minimum cell voltage is calculated as the pressurization

voltage 𝑢0, plus the minimum voltage over the resistive element in the cell.

Because the minimum cell current is the back-diffusion compensation current

𝑖𝑐𝑜𝑚𝑝, we take the product of 𝑖𝑐𝑜𝑚𝑝 and the minimum cell resistance 𝑟𝑚𝑖𝑛 to

calculate the minimum cell voltage in the equation below.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 42 of 72

𝑝𝑜𝑤𝑒𝑟𝐿𝐵 =
𝑑

𝐻 2𝐹⁄
∗ 𝑢𝑚𝑖𝑛

𝑢𝑚𝑖𝑛 = 𝑖𝑐𝑜𝑚𝑝 ∗ 𝑟𝑚𝑖𝑛 + 𝑢0

Equation 12: Lower bound power consumption

We further simplify the lower bound power consumption and convert the real

powers to integer powers, with the following equation.

𝑝𝑜𝑤𝑒𝑟∗(𝑥) = ⌈
𝑝𝑜𝑤𝑒𝑟(𝑥)

Δ
⌉

Equation 13: Converting to integer power
 Δ = 𝜀 ∗

𝑝𝑜𝑤𝑒𝑟𝐿𝐵

𝑁

 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 =
2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛

𝐻

We tune the scaling with parameter 𝜀 > 0, where 𝜀 defines the maximum rounding

error as 𝑒𝑟𝑟𝑜𝑟 ≤ 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 𝑁⁄ .

We can now convert the real powers to integer powers and execute the following

algorithm.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 43 of 72

Algorithm 3: Fill system tables

𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠(𝑋, 𝑁, 𝐾, 𝑑, 𝑢𝑚𝑖𝑛, 𝜀)
1: ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘
 compressor models for compressor 𝑖, a number of compressors 𝑁, a
 total number of cells 𝐾, a flow demand 𝑑, a minimum cell voltage 𝑢𝑚𝑖𝑛,
 and a tuning parameter 𝜀.
2: ⊳ Output: A table 𝐴 with 𝑁 rows and 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 columns, for which every
 𝐴[𝑖, 𝑗] contains the highest flow for the first 𝑖 compressors and power 𝑗,
 a table 𝑃 that is similar to table 𝐴 except that it contains the power of
 compressor 𝑖 for total power 𝑗, a table 𝐽 that is also similar to table 𝐴
 except that this one contains the index of the shunt configuration of
 compressor 𝑖 for power 𝑗, and a conversion factor Δ.
3:
4: ⊳ Convert to integers
5: 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 0
6: for 𝑖 = 1 to 𝑁 do 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 + 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑋𝑖,𝑙𝑎𝑠𝑡)

7: 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ← 2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛 𝐻⁄

8: Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 𝑁⁄ , 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ ← ⌈𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 Δ⁄ ⌉

9: 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤
∗(𝑥) ← ⌈𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥) Δ⁄ ⌉ for every 𝑥 ∈ 𝑋𝑖,𝑗

10: 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ
∗(𝑥) ← ⌊𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥) Δ⁄ ⌋ for every 𝑥 ∈ 𝑋𝑖,𝑗

11: 𝑓𝑙𝑜𝑤∗(𝑥, 𝑝) ← 𝑓𝑙𝑜𝑤(𝑥, 𝑝 ∗ Δ) for every 𝑥 ∈ 𝑋𝑖,𝑗 and

 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤
∗(𝑥) ≤ 𝑝 ≤ 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ

∗(𝑥)

12:

13: Compute tables 𝐴, 𝑃 and 𝐽 with algorithm 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠 for the
 number of compressors 𝑁, total power 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗, power consumptions
 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤

∗(𝑥), 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ
∗(𝑥) instead of 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤(𝑥), 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ(𝑥)

 respectively, and, 𝑓𝑙𝑜𝑤∗(𝑥, 𝑝) instead of 𝑓𝑙𝑜𝑤(𝑥, 𝑝).
14: return 𝐴, 𝑃, 𝐽, Δ

With the conversion to integers included, we find a resulting time complexity of.

𝑂 (
𝑁3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

2

𝜖 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵
) = 𝑂 (

𝑁3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2

𝜖 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
)

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 44 of 72

We report the final solution with the following algorithm.

Algorithm 4: Select system configuration

𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑛𝑓𝑖𝑔(𝑋, 𝑁, 𝐴, 𝑃, 𝐽, 𝑑, Δ)
1: ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁}, where every 𝑋𝑖 ∈ 𝑋 contains at most 𝑘
 compressor models for compressor 𝑖, a number of compressors 𝑁, a
 table 𝐴 with 𝑁 rows containing the maximum flows, a table 𝑃
 containing the compressor power for the respective element in 𝐴, a
 table 𝐽 containing the shunt configuration index for the respective
 element in 𝐴, a flow rate demand 𝑑, and a conversion factor Δ.
2: ⊳ Output: A set 𝑌 that contains for every compressor the selected
 model, and a set 𝑍 that contains the power for the respective
 compressor.
3:
4: 𝑌 ← ∅, 𝑍 ← ∅, 𝑓𝑚𝑎𝑥 ← 0
5: for 𝑖 = 1 to |𝐴𝑁| do
6: if 𝐴𝑁,𝑖 > 𝑓𝑚𝑎𝑥 then 𝑓𝑚𝑎𝑥 ← 𝐴𝑁,𝑖 , 𝑗 ← 𝑖
7: if 𝐴𝑁,𝑖 ≥ 𝑑 then 𝑗 ← 𝑖 break
8: end for
9: for 𝑖 = 𝑁 to 1 do
10: if 𝑗 = 0 or 𝐽𝑖,𝑗 = 0 then 𝑌 ← 𝑌 ∪ 𝑋𝑖,1, 𝑍 ← 𝑍 ∪ 0 continue

11: 𝑘 ← 𝐽𝑖,𝑗 , Y← 𝑌 ∪ 𝑋𝑖,𝑘 , 𝑍 ← 𝑍 ∪ Δ ∗ 𝑃𝑖,𝑗

12: 𝑗 ← 𝑗 − 𝑃𝑖,𝑗

13: end for
14: return 𝑌, 𝑍

Algorithm 4 uses the previously constructed tables 𝑃 and 𝐽 to extract the system

configuration that meets the demand and consumes the least integer power in

𝑂(𝑁2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛⁄) time. When a compressor is not used, we

assign a configuration that has no shunts enabled such that we avoid the reversion

of hydrogen flow as explained in chapter 4. When the demand cannot be met, we

output the configuration that gives the highest flow rate.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 45 of 72

With the presented algorithms, we can find a solution in polynomial time.

Unfortunately, we cannot guarantee an optimal solution anymore. Instead, we

guarantee that we find the solution that meets demand 𝑑 when possible, and for

which we have that 𝑝𝑜𝑤𝑒𝑟 ≤ (1 + 𝜖) ∗ 𝑂𝑃𝑇, with 𝑂𝑃𝑇 being the optimum power

consumption.

Proof. To prove that the error is at most 𝜀 ∗ 𝑂𝑃𝑇. Let the set 𝑆𝑜𝑝𝑡 be the

optimal subset for a given input with 𝑝𝑜𝑤𝑒𝑟(𝑆𝑜𝑝𝑡) = 𝑂𝑃𝑇. Let 𝑆 denote

the subset returned by the algorithm. Since we did not change the flow rates,

subset 𝑌 has flow at least 𝑑. The computed solution is feasible. We must now

show that 𝑝𝑜𝑤𝑒𝑟(𝑆) ≤ (1 + 𝜀) ∗ 𝑂𝑃𝑇. Because 𝑆 is optimal for the new

values, we have that 𝑝𝑜𝑤𝑒𝑟∗(𝑆) ≤ 𝑝𝑜𝑤𝑒𝑟∗(𝑆𝑜𝑝𝑡). Moreover, we have.

𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
≤ 𝑝𝑜𝑤𝑒𝑟∗(𝑥) ≤

𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
+ 1

𝑝𝑜𝑤𝑒𝑟(𝑆) = ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥)𝑥∈𝑆 ≤ ∑ ∆ ∗ 𝑝𝑜𝑤𝑒𝑟∗(𝑥) 𝑥∈𝑆

 = ∆ ∑ 𝑝𝑜𝑤𝑒𝑟∗(𝑥)𝑥∈𝑆 ≤ ∆ ∗ ∑ 𝑝𝑜𝑤𝑒𝑟∗(𝑥)𝑥∈𝑆𝑜𝑝𝑡

 ≤ ∆ ∗ ∑
𝑝𝑜𝑤𝑒𝑟(𝑥)

∆
+ 1𝑥∈𝑆𝑜𝑝𝑡

 = ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥) + ∆𝑥∈𝑆𝑜𝑝𝑡 ∗ |𝑆𝑜𝑝𝑡|

 ≤ ∑ 𝑝𝑜𝑤𝑒𝑟(𝑥) + ∆𝑥∈𝑆𝑜𝑝𝑡 ∗ 𝑁

 = 𝑂𝑃𝑇 + 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ≤ 𝑂𝑃𝑇 + 𝜀 ∗ 𝑂𝑃𝑇

We can conclude that 𝑝𝑜𝑤𝑒𝑟(𝑆) ≤ (1 + 𝜀) ∗ 𝑂𝑃𝑇.

We have found which shunt configurations to pick, which compressors to use and

how much power to give to the compressors. To calculate how much current we

need per compressor, we rewrite equation 7 to the following quadratic formula

that solves for compressor current 𝐼, using the offset voltages 𝑈, equivalent

resistances 𝑅 and power 𝑃.

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 46 of 72

𝐼 =
− ∑ 𝑈 + √(∑ 𝑈)2 + 4 𝑃 ∑ 𝑅

2 ∑ 𝑅
 Equation 14: Convert power to current

5.3. Problem P3 – adapt the algorithm such that it can be implemented

in the proposed compression system

It remains us to adapt the algorithm such that it can be implemented in the

proposed hydrogen compression system. This includes 𝑛 skid nodes that are

connected to each other in the outer network, and at most 𝑚 compressors per skid

that are connected to each other in the inner network. With the approach

proposed next, we implement the algorithm in a distributed manner both to

decrease runtime and to decrease bus utilization.

We propose to execute the algorithm in four sequential steps.

1. Each compressor first executes the 𝐹𝑖𝑛𝑑𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑆ℎ𝑢𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠 algorithm

and transmits the Pareto-optimal shunt configurations to the respective skid

node as illustrated with the red arrows below.

Figure 18: Communicating the Pareto-optimal shunt configurations

2. When the models are received by the skid, it executes the 𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠

algorithm for the compressors within the skid but with

Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 𝑁𝑆𝑌𝑆⁄ , for the total number of compressors in the system

outer communication bus

in
n

er co
m

m
u

n
ica

tio
n

 b
u

sCOMPRESSOR
m

COMPRESSOR
1

COMPRESSOR
m

COMPRESSOR
1

SKID 1 SKID n

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 47 of 72

𝑁𝑆𝑌𝑆. When done, every skid broadcasts the maximum flow rates per power

consumption, i.e. the last row from table 𝐴, to the other skids as illustrated

by the red arrows below.

Figure 19: Broadcasting the maximum flow rates per power consumption values

3. When all values are received, every skid executes a variation of the

𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝐹𝑖𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠 algorithm with the broadcasted values as input. The key

here is that every skid uses the same row ordering when filling the tables

such that all skids select the same solution. Every skid can now find for the

compressors within the skid, which shunt configurations to use and how

much power to give, similar as implemented in 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑦𝑠𝑡𝑒𝑚𝐶𝑜𝑛𝑓𝑖𝑔. The

last step is for the skids to communicate the selected shunt configuration

and requested power to the compressors, illustrated by the red arrows

below.

Figure 20: Communicating the selected shunt configurations and requested power
consumptions

outer communication bus

in
n

er co
m

m
u

n
ica

tio
n

 b
u

sCOMPRESSOR
m

COMPRESSOR
1

COMPRESSOR
m

COMPRESSOR
1

SKID 1 SKID n

in
n

er co
m

m
u

n
ica

tio
n

 b
u

s

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

outer communication bus

in
n

er co
m

m
u

n
ica

tio
n

 b
u

sCOMPRESSOR
m

COMPRESSOR
1

COMPRESSOR
m

COMPRESSOR
1

SKID 1 SKID n in
n

er co
m

m
u

n
ica

tio
n

 b
u

s

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

C
E

LL 1

C
E

LL 2

C
E

LL K

LOAD-SHARING ALGORITHM

Print Date: 03 Jun 2020 Page 48 of 72

4. All that is left is for the compressors to enable the selected shunt

configuration, convert the requested power to a compressor current with

equation 14, and set the newly calculated current.

Since we used the total number of compressors in the system 𝑁𝑆𝑌𝑆 when

converting to integers, we can still guarantee a power consumption that is at most

(1 + 𝜀) ∗ 𝑂𝑃𝑇. The complete algorithms for the compressor and skid are provided

in Appendix A and Appendix B respectively.

RESULTS

Print Date: 03 Jun 2020 Page 49 of 72

Chapter 6

Results

In this chapter are the computational, space, and communicational complexities

presented for the adaption described in section 5.3 and implemented in Appendix

A and Appendix B. To the end of quantizing these complexities, let us define a

system with a variable skid size of 1 ≤ 𝑛 ≤ 100 skids, with 𝑚 = 10 compressors

per skid and 𝑘 = 120 cells per compressor. We define the pressurization voltage

𝑢0 = 60 𝑚𝑉, and the compensation current 𝑖𝑐𝑜𝑚𝑝 = 5 𝐴. We have the limits

𝑢𝑚𝑎𝑥 = 600 𝑚𝑉 and 𝑖𝑚𝑎𝑥 = 200 𝐴. Let us also define cell resistance 𝑅𝑐 = 2 𝑚Ω,

shunt resistance 𝑅𝑠 = 0.6𝑚Ω, and cell plate resistance 𝑅𝑝 = 1𝑚Ω. Such a system

would be able to achieve a mass-flow rate of over 21 𝑀𝑔 𝑑𝑎𝑦⁄ when 𝑛 = 100. In

this system, we will use a demand 𝑑 that is 80% of the maximum flow rate and

consider a maximum deviation of 1%, 2%, and 5% from the optimum power

consumption, i.e. 𝜀 = 0.01, 𝜀 = 0.02 and 𝜀 = 0.05.

6.1. Computational complexity

We will first consider the time complexity and find that after implementing the

algorithm, we have a computational complexity of 𝑂(𝑘3) for the compressor node.

For the skid node we use the minimum cell voltage 𝑢𝑚𝑖𝑛 and the maximum

compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 to define the computational complexity as.

𝑂 (
𝑛 ∗ 𝑚3 ∗ 𝑘 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

2

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
+

𝑛4 ∗ 𝑚4 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥
2

(𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛)2
)

RESULTS

Print Date: 03 Jun 2020 Page 50 of 72

To give some contrast, let us consider a simple exhaustive implementation in which

for every combination of compressors and shunt configurations the optimal

compressor currents are calculated. Let us assume that calculating the optimum

compressor currents is done in constant time, we would still need to solve every

combination. This gives us a computational complexity of 𝑂(2𝑘 ∗ 𝑘2) for the

compressor and 𝑂(2𝑘∗𝑛∗𝑚) for the skid. Or in other words, around 1040

computations for the compressor and 1040000 computations for the skid. If we

compare this to the presented algorithm, we have just 106 computations for the

compressor and at most 1021 computations for the skid when 𝜀 = 0.01.

To find out how the algorithm performs in an embedded environment, we

implement the compressor algorithm on a cortex-M3 processor running at

60 𝑀𝐻𝑧, and the skid algorithm on a cortex-A9 processor running at 1 𝐺𝐻𝑧. We

find an execution time of 110 𝑚𝑠 for the compressor node and we plot the

execution time for the skid below.

Figure 21: Skid computation time

RESULTS

Print Date: 03 Jun 2020 Page 51 of 72

6.2. Space complexity

The compressor node must be able to store 𝑘 + 1 models, a single model consists

of 𝑂(𝑘) elements, therefore we need to store 𝑂(𝑘2) elements in the compressor

node. The skid node needs much more memory as it stores first the models of the

compressors. Secondly, the tables 𝐴, 𝐴𝑃 and 𝐴𝐽 for the compressors within the

skid. Thirdly, the last row of table 𝐴 for all skids in the system. And lastly, a system

table that consists of tables 𝐵𝐴 and 𝐵𝐽. For a minimum cell voltage 𝑢𝑚𝑖𝑛 and a

maximum compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, we find a space complexity of.

𝑂 (𝑚 ∗ 𝑘2 +
𝑛 ∗ 𝑚3 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥 + 𝑛2 ∗ 𝑚2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
)

For the system in question, we find that we need just over 230 𝑘𝐵 of memory for

the compressor. For the skid, we find that the memory usage scales linearly with

the number of skids in the system, see the plot below.

Figure 22: Memory usage skid

RESULTS

Print Date: 03 Jun 2020 Page 52 of 72

6.3. communicational complexity

Because we implement the algorithm in a distributed manner, with multiple nodes

connected through a communication bus, we must also consider the

communicational complexity. We find that for the inner network, we communicate

at most 𝑂(𝑚 ∗ 𝑘) models. With each model consisting of 𝑂(𝑘) elements, we

communicate a total of 𝑂(𝑚 ∗ 𝑘2) elements in the inner network. In the outer

network, we broadcast for each skid the last row of table 𝐴. For a minimum cell

voltage 𝑢𝑚𝑖𝑛 and a maximum compressor power 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥, we find a

communicational complexity of.

𝑂 (
𝑛2 ∗ 𝑚2 ∗ 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥

𝜀 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛
)

For the system in question, let us assume for both the inner and outer networks a

bus with a bit rate of 1 𝑀𝑏𝑖𝑡 𝑠⁄ . In the worst-case, we require just over 15𝑠 of

communication time in the inner network. For the outer network we find a linear

relationship between communication time and the number of skids, see the plot

below.

Figure 23: Outer network communication time

CONCLUSION

Print Date: 03 Jun 2020 Page 53 of 72

Chapter 7

Conclusion

In this thesis is a load-sharing algorithm presented for an electrochemical hydrogen

compression system. The presented algorithm is able to decide which cells to shunt

and how much current to feed through the compressors such that we meet a

certain hydrogen flow rate demand, respect the cell voltage and compressor

current limitations, and achieve near-optimal power consumption. More precisely,

we guarantee a power consumption of at most (1 + 𝜀) ∗ 𝑂𝑃𝑇 for some tuning

parameter 𝜀 > 0, and the optimum power consumption 𝑂𝑃𝑇. Moreover, we

achieve this result in polynomial time and with polynomial space requirements.

Furthermore, for the proposed compression system, we have adapted the

algorithm to a distributed implementation with a polynomial communicational

complexity. We conclude that we have successfully solved the problem statement

and completed the related milestones.

BIBLIOGRAPHY

Print Date: 03 Jun 2020 Page 54 of 72

Bibliography

Bellman, R. (1957). Dynamic programming. Princeton: Princeton university press.

Blanchet, S., Yoon, W., & Quet, P.-F. (2014). United States Patent No. US9915004B2.

Bretthauer, K., & Shetty, B. (1995). The nonlinear resource allocation problem.

Operations Research, 670-683.

Bretthauer, K., & Shetty, B. (2002). A pegging algorithm for the nonlinear resource

allocation problem. Computers and Operations Research, 505–527.

Bretthauer, K., & Shetty, B. (2002). The nonlinear knapsack problem – algorithms

and applications. European Journal of Operational Research, 459-472.

Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations Research,

266-277.

de Berg, M. (2019). Advanced Algorithms (2IMA10). Eindhoven.

Faraday, M. (1834). On Electrical Decomposition. Philosophical Transactions of the

Royal Society, 77-122.

Grigoriev, S., Shtatniy, I., Millet, P., Porembsky, V., & Fateev, V. (2011). Description

and characterization of an electrochemical hydrogen

compressor/concentrator based on solid polymer electrolyte technology.

Hydrogen energy, 4148-4155.

Macdonald, J. (1971). Electrical response of materials containing space charge with

discharge at the electrodes. The Journal of Chemical Physics, 2026.

Mathews, G. (1897). On the partitioning of numbers. Proceedings of the London

Mathematical, 486–490.

BIBLIOGRAPHY

Print Date: 03 Jun 2020 Page 55 of 72

McAllister, W. (2020, April 3). Delta-Wye resistor networks. Retrieved from Khan

Academy: https://www.khanacademy.org/science/electrical-

engineering/ee-circuit-analysis-topic/ee-resistor-circuits/a/ee-delta-wye-

resistor-networks

Randles, J. (1947). Kinetics of rapid electrode reactions. Discussions of the Faraday

Society, 11-19.

Rohland, B., Eberle, K., Ströbel, R., Scholta, J., & Garche, J. (1998). Electrochemical

hydrogen compressor. Electrochimica Acta, Volume 43, Issue 24, 3842.

Scheepers, F., Stähler, M., Stähler, A., Rauls, E., Müller, M., Carmo, M., & Lehnert,

W. (2019). Improving the Efficiency of PEM Electrolyzers through

Membrane-Specific Pressure Optimization. Energies, 612.

Sedlak, J., Austin, J., & LaConti, A. (1981). Hydrogen recovery and purification using

the solid polymer electrolyte electrolysis cell, Volume 6, Issue 1.

International Journal of Hydrogen Energy, 45-51.

Ströbel, R., Oszcipok, M., Fasil, M., Rohland, B., Jorissen, L., & Garche, G. (2002).

The compression of hydrogen in an electrochemical cell based on a PE fuel

cell design. Power Sources, 208-215.

Suermann, M., Kiupel, T., Schmidt, T., & Buchi, F. (2017). Electrochemical Hydrogen

Compression: Efficient Pressurization Concept Derived from an Energetic

Evaluation. Journal of The Electrochemical Society, 1187-1195.

Williams, J. W. (1964). Algorithm 232 - Heapsort. Communications of the ACM, 347-

348.

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 56 of 72

Appendix A.

Compressor algorithm

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖𝑑, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
1: ⊳ Input: A compressor identifier 𝑖𝑑, a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell
 resistances, a set 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate
 resistance 𝑟𝑝, an offset voltage 𝑢0, a compensation current 𝑖𝑐𝑜𝑚𝑝, a
 maximum cell voltage 𝑢𝑚𝑎𝑥, a maximum compressor current 𝑖𝑚𝑎𝑥, and
 a number of cells 𝑘.
2: ⊳ Output: A set 𝑆 = {𝑆1, … , 𝑆𝑘}, with bits that indicate that the respected
 shunt is enabled when the bit is set, and a compressor current 𝐼.
3:
4: ⊳ Find, solve and transmit compressor models
5: 𝑋 ← 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, , 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
6:
7: ⊳ Receive model index 𝑖𝑥 with power 𝑝 for compressor with 𝑖𝑑
8: [𝑖𝑥, 𝑝] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑘𝑖𝑑(𝑖𝑑)
9: 𝑥 ← 𝑋𝑖𝑥
10:
11: ⊳ Calculate current and return results
12: 𝑟𝑠𝑢𝑚 ← ∑ 𝑥. 𝑅, 𝑢𝑠𝑢𝑚 ← ∑ 𝑥. 𝑈

13: 𝐼 ← (√𝑢𝑠𝑢𝑚2 + 4 ∗ 𝑝 ∗ 𝑟𝑠𝑢𝑚 − 𝑢𝑠𝑢𝑚) 2 ∗ 𝑟𝑠𝑢𝑚⁄

14: return 𝑥. 𝑆, 𝐼

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 57 of 72

Appendix A.1. Find, solve and transmit compressor models

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙𝑠(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
1: ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set
 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, a
 offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a compensation current
 𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥, and a number of cells 𝑘.
2: ⊳ Output: A set 𝑋 with at most 𝑘 + 1 compressor models, where every
 model contains a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘} with cell resistances, a set
 𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the shunts, a set 𝑅 = {𝑅1, … , 𝑅𝑘}
 with equivalent cell resistances, a set 𝑈 = {𝑈1, … , 𝑈𝑘} with offset
 voltages, a minimum compressor current 𝑖𝑚𝑖𝑛, and a maximum
 compressor current 𝑖𝑚𝑎𝑥.
3: Initialize 𝑆𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘.
4: 𝑋 ← ∅, 𝑓𝑚𝑎𝑥 ← ∅, 𝑝𝑛𝑜𝑟𝑚 ← ∅
5:
6: ⊳ Get the sorted indices for 𝑅𝑐 and solve models
7: 𝐽 ← 𝑆𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑({0, … , 𝑘}, 𝑅𝑐)
8: for 𝑖 = 1 to 𝑘 + 1 do
9: if 𝑖 > 1 then 𝑗 ← 𝐽𝑖−1, 𝑆𝑗 ← 1

10: 𝑋𝑖 ← 𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
11: 𝑝𝑛𝑜𝑟𝑚𝑖 ← 𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑋𝑖 , 𝑖𝑐𝑜𝑚𝑝, 𝑢0)
12: 𝑓𝑚𝑎𝑥𝑖 ← 𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑋𝑖 , 𝑖𝑐𝑜𝑚𝑝, 𝑢0)
13: end for
14:
15: ⊳ Only transmit models that belong to the Pareto-optimal set
16: for 𝑖 = 1 to 𝑘 + 1 do
17: 𝑎𝑑𝑑 ← 𝑇𝑟𝑢𝑒
18: for 𝑗 = 1 to 𝑘 + 1 do
19: if 𝑖 = 𝑗 then continue
20: if 𝑓𝑚𝑎𝑥𝑗 ≥ 𝑓𝑚𝑎𝑥𝑖 and 𝑝𝑛𝑜𝑟𝑚𝑗 ≤ 𝑝𝑛𝑜𝑟𝑚𝑖 then 𝑎𝑑𝑑 ← 𝐹𝑎𝑙𝑠𝑒, break

21: end for
22: if 𝑎𝑑𝑑 then 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑇𝑜𝑆𝑘𝑖𝑑(𝑖, 𝑥)
23: end for
24: return 𝑋

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 58 of 72

Appendix A.2. Solve model

𝑆𝑜𝑙𝑣𝑒𝑀𝑜𝑑𝑒𝑙(𝑆, 𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑢𝑚𝑎𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑖𝑚𝑎𝑥, 𝑘)
1: ⊳ Input: A set 𝑆 = {𝑆1, … , 𝑆𝑘}, with bits that indicate that the respected
 shunt is enabled when the bit is set, a set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell
 resistances, a set 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate
 resistance 𝑟𝑝, an offset voltage 𝑢0, a maximum cell voltage 𝑢𝑚𝑎𝑥, a
 compensation current 𝑖𝑐𝑜𝑚𝑝, a maximum compressor current 𝑖𝑚𝑎𝑥,
 and a number of cells 𝑘.
2: ⊳ Output: A compressor model 𝑋 that contains as set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}
 with cell resistances, a set 𝑆 = {𝑆1, … , 𝑆𝑘} with bits that represent the
 shunts, a set 𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances, a set
 𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages a minimum compressor current
 𝑖𝑚𝑖𝑛, and a maximum compressor current 𝑖𝑚𝑎𝑥.
3: Initialize 𝑋. 𝑅𝑐𝑖 ← 𝑅𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑘
4: Initialize 𝑋. 𝑅𝑖 ← 𝑅𝑐𝑖 for all 1 ≤ 𝑖 ≤ 𝑘
5: Initialize 𝑋. 𝑈𝑖 ← 𝑢0 for all 1 ≤ 𝑖 ≤ 𝑘
6:
7: ⊳ Create sections
8: 𝑖𝑠𝑡𝑎𝑟𝑡1 ← 1, 𝑠 ← 𝑆1, 𝑛 ← 1
9: if 𝑘 > 1 then
10: for 𝑖 ← 2 to 𝑘 do
11: if 𝑠 ≠ 𝑆𝑖 then
12: 𝑖𝑒𝑛𝑑𝑛 ← 𝑖 − 1, 𝑠 ← 𝑆𝑖, 𝑛 ← 𝑛 + 1
13: 𝑖𝑠𝑡𝑎𝑟𝑡𝑛 ← 𝑖
14: end if
15: end for
16: end if
17: 𝑖𝑒𝑛𝑑𝑛 ← 𝑘
18:
19: ⊳ Solve sections
20: for 𝑖 = 1 to 𝑛 do
21: 𝑖𝑠 ← 𝑖𝑠𝑡𝑎𝑟𝑡𝑖, 𝑖𝑒 ← 𝑖𝑒𝑛𝑑𝑖
22: if 𝑆𝑖𝑠 then
23: [𝑅, 𝑈] ← 𝑆𝑜𝑙𝑣𝑒𝑆ℎ𝑢𝑛𝑡𝑒𝑑𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑐𝑖𝑠:𝑖𝑒 , 𝑅𝑠𝑖𝑠:𝑖𝑒 , 𝑟𝑝, 𝑢0, 𝑖𝑒 − 𝑖𝑠 + 1)
24: 𝑋. 𝑅𝑖𝑠:𝑖𝑒 ← 𝑅, 𝑋. 𝑈𝑖𝑠:𝑖𝑒 ← 𝑈
25: end if

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 59 of 72

26: end for
27:
28: ⊳ Set current limits and return model
29: 𝑋. 𝑖𝑚𝑖𝑛 ← Max

1≤𝑖≤𝑘
((𝑖𝑐𝑜𝑚𝑝 ∗ 𝑋. 𝑅𝑐𝑖 − 𝑋. 𝑈𝑖 + 𝑢0) 𝑋. 𝑅𝑖⁄)

30: 𝑋. 𝑖𝑚𝑎𝑥 ← Min
1≤𝑖≤𝑘

(𝑖𝑚𝑎𝑥, (𝑢𝑚𝑎𝑥 − 𝑋. 𝑈𝑖) 𝑋. 𝑅𝑖⁄)

31: return 𝑋

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 60 of 72

Appendix A.3. Solve shunted section

𝑆𝑜𝑙𝑣𝑒𝑆ℎ𝑢𝑛𝑡𝑒𝑑𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑅𝑐, 𝑅𝑠, 𝑟𝑝, 𝑢0, 𝑘)
1: ⊳ Input: A set 𝑅𝑐 = {𝑅𝑐1, … , 𝑅𝑐𝑘}, with cell resistances, a set
 𝑅𝑠 = {𝑅𝑠1, … , 𝑅𝑠𝑘} with shunt resistances, a cell plate resistance 𝑟𝑝, an
 offset voltage 𝑢0, and a number of cells 𝑘.
2: ⊳ Output: A set 𝑅 = {𝑅1, … , 𝑅𝑘} with equivalent cell resistances, and a set
 𝑈 = {𝑈1, … , 𝑈𝑘} with offset voltages.
3:
4: ⊳ Solve for current source
5: Initialize 𝑅𝑥𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘
6: Initialize 𝑅𝑦𝑖 ← 0 for all 1 ≤ 𝑖 ≤ 𝑘
7: Initialize 𝑅𝑧𝑖 ← 𝑟𝑝 for all 1 ≤ 𝑖 ≤ 𝑘
8: if 𝑘 > 1 then
9: for 𝑖 = 2 to 𝑘 do

10: 𝑅𝑧𝑖 ←
𝑟𝑝∗(𝑅𝑠𝑖−1+𝑅𝑧𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝

11: 𝑅𝑦𝑖 ←
𝑟𝑝∗(𝑅𝑐𝑖−1+𝑅𝑦𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝

12: 𝑅𝑥𝑖 ←
(𝑅𝑐𝑖−1+𝑅𝑦𝑖−1)∗(𝑅𝑠𝑖−1+𝑅𝑧𝑖−1)

𝑅𝑐𝑖−1+𝑅𝑧𝑖−1+𝑅𝑦𝑖−1+𝑅𝑠𝑖−1+𝑟𝑝

13: end for
14: end if

15: 𝑟𝑝𝑎𝑟 ←
1

(1 (𝑅𝑦𝑘+𝑅𝑐𝑘)⁄)+(1 (𝑅𝑧𝑘+𝑅𝑠𝑘+𝑟𝑝)⁄)

16: 𝑟 ← ∑ 𝑅𝑥 + 𝑟𝑝𝑎𝑟
17:
18: ⊳ Calculate equivalent cell resistances
19: 𝑅 ← ∅, 𝑈𝑛 ← ∅
20: 𝑈𝑛𝑘 ← 𝑟𝑝𝑎𝑟, 𝑖𝑐 ← 𝑈𝑛𝑘 (𝑅𝑐𝑘 + 𝑅𝑦𝑘)⁄ , 𝑅𝑘 ← 𝑅𝑐𝑘 ∗ 𝑖𝑐
21: if 𝑘 > 1 then
22: if 𝑘 > 2 then
23: for 𝑖 = 𝑘 − 1 to 2 do
24: 𝑈𝑛𝑖 ← 𝑈𝑛𝑖+1 + 𝑅𝑥𝑖+1

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 61 of 72

25: 𝑖𝑐 ← (𝑈𝑛𝑖 − ∑ 𝑅𝑖
𝑘
𝑗=𝑖+1) (𝑅𝑐𝑖 + 𝑅𝑦𝑖)⁄

26: 𝑅𝑖 ← 𝑅𝑐𝑖 ∗ 𝑖𝑐
27: end for
28: end if
29: 𝑅1 ← 𝑟 − ∑ 𝑅𝑖

𝑘
𝑖=2

30: end if
31:
32: ⊳ Solve for voltage sources
33: 𝑅𝑡 ← ∅, 𝑅𝑏 ← ∅
34: Initialize 𝑈𝑖 ← 𝑢0 for all 1 ≤ 𝑖 ≤ 𝑘
35: for 𝑖 = 1 to 𝑘 do
36:
37: ⊳ Simplify
38: if 𝑖 > 1 then

39: 𝑅𝑡1 ←
1

(1 (𝑅𝑐1+𝑅𝑠1+𝑟𝑝)⁄)+(1 𝑟𝑝⁄)

40: if 𝑖 > 2 then

41: for 𝑗 = 2 to 𝑖 − 1 do 𝑅𝑡𝑗 ←
1

(1 (𝑅𝑐𝑗+𝑅𝑠𝑗+𝑅𝑡𝑗−1)⁄)+(1 𝑟𝑝⁄)

42: end if
43: 𝑟𝑡𝑡 ← 𝑅𝑡𝑖−1 + 𝑅𝑐𝑖 + 𝑅𝑠𝑖
44: else 𝑟𝑡𝑡 ← 𝑅𝑐1 + 𝑅𝑠1 + 𝑟𝑝
45: end if
46: if 𝑘 > 𝑖 then

47: 𝑅𝑏𝑘 ←
1

(1 (𝑅𝑐𝑘+𝑅𝑠𝑘+𝑟𝑝)⁄)+(1 𝑟𝑝⁄)

48: if 𝑘 > 𝑖 + 1 then

49: for 𝑗 = 𝑘 − 1 to 𝑖 + 1 do 𝑅𝑏𝑗 ←
1

(1 (𝑅𝑐𝑗+𝑅𝑠𝑗+𝑅𝑏𝑗+1)⁄)+(1 𝑟𝑝⁄)

50: end if
51: 𝑟𝑏𝑏 ← 𝑅𝑏𝑖+1
52: else 𝑟𝑏𝑏 = 𝑟𝑝
53: end if
54: 𝑖𝑐 ← 𝑢0 (𝑟𝑡𝑡 + 𝑟𝑏𝑏)⁄
55:
56: ⊳ Calculate offset voltages
57: 𝑈𝑖 ← 𝑈𝑖 − 𝑖𝑐 ∗ 𝑅𝑐𝑖
58: if 𝑖 > 1 then

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 62 of 72

59: 𝑖𝑐𝑐 ← 𝑖𝑐
60: if 𝑖 > 2 then
61: for 𝑗 = 𝑖 − 1 to 2 do

62: 𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑡𝑗) (𝑅𝑡𝑗−1 + 𝑅𝑐𝑗 + 𝑅𝑠𝑗)⁄

63: 𝑈𝑗 ← 𝑈𝑗 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑗)

64: end for
65: end if
66: 𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑡1) (𝑅𝑐1 + 𝑅𝑠1 + 𝑟𝑝)⁄
67: 𝑈1 ← 𝑈1 − (𝑖𝑐𝑐 ∗ 𝑅𝑐1)
68: end if
69: if 𝑘 > 𝑖 then
70: 𝑖𝑐𝑐 ← 𝑖𝑐
71: if 𝑘 > 𝑖 + 1 then
72: for 𝑗 = 𝑖 + 1 to 𝑘 − 1 do

73: 𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑏𝑗) (𝑅𝑏𝑗−1 + 𝑅𝑐𝑗 + 𝑅𝑠𝑗)⁄

74: 𝑈𝑗 ← 𝑈𝑗 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑗)

75: end for
76: end if
77: 𝑖𝑐𝑐 ← (𝑖𝑐𝑐 ∗ 𝑅𝑏𝑘) (𝑅𝑐𝑘 + 𝑅𝑠𝑘 + 𝑟𝑝)⁄
78: 𝑈𝑘 ← 𝑈𝑘 − (𝑖𝑐𝑐 ∗ 𝑅𝑐𝑘)
79: end if
80: end for
81: return 𝑅, 𝑈

COMPRESSOR ALGORITHM

Print Date: 03 Jun 2020 Page 63 of 72

Appendix A.4. Functions

Appendix A.4.1. Calculate maximum flow

𝑓𝑙𝑜𝑤𝑚𝑎𝑥(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) =
𝐻

2𝐹
∑

(𝑥. 𝑖𝑚𝑎𝑥 − 𝑖𝑐𝑜𝑚𝑝) ∗ 𝑥. 𝑅 + 𝑥. 𝑈 − 𝑢0

𝑥. 𝑅𝑐

Where:
𝑥 is the compressor model.
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [𝐴].
𝑢0 is the pressurization voltage [𝑉].
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].

Appendix A.5. Calculate normalized current

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) = 𝑖𝑐𝑜𝑚𝑝 +
2𝐹 𝐻⁄ + ∑ (𝑢0 − 𝑥. 𝑈) 𝑥. 𝑅𝑐⁄

∑ 𝑥. 𝑅 𝑥. 𝑅𝑐⁄

Where:
𝑥 is the compressor model.
𝑖𝑐𝑜𝑚𝑝 is the back-diffusion compensation current [A].
𝑢0 is the pressurization voltage [V].
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].

Appendix A.6. Calculate normalized power

𝑝𝑜𝑤𝑒𝑟𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

= 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

∗ ∑ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑛𝑜𝑟𝑚(𝑥, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) ∗ 𝑥. 𝑅 + 𝑥. 𝑈

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 64 of 72

Appendix B.

Skid algorithm

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑆𝑘𝑖𝑑(𝑖𝑑, 𝑛, 𝑚, 𝑁, 𝐾, 𝑟𝑚𝑖𝑛, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)
1: ⊳ Input: A skid identifier 𝑖𝑑 that defines the system table row index, a
 number of skids in the system 𝑛, a number of compressors in the skid
 𝑚, the total number of compressors 𝑁, the total number of cells 𝐾, the
 minimum cell resistance 𝑟𝑚𝑖𝑛, a flow-rate demand 𝑑, a compensation
 current 𝑖𝑐𝑜𝑚𝑝, and an offset voltage 𝑢0.
2: 𝑋 ← ∅, 𝐼𝑋 ← ∅, 𝐴𝐴 ← ∅, 𝐴𝑁 ← ∅
3:
4: ⊳ Calculate conversion factor
5: 𝑢𝑚𝑖𝑛 ← 𝑖𝑐𝑜𝑚𝑝 ∗ 𝑟𝑚𝑖𝑛 + 𝑢0

5: 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 ← 2𝐹 ∗ 𝑑 ∗ 𝑢𝑚𝑖𝑛 𝐻⁄

6: Δ ← 𝜀 ∗ 𝑝𝑜𝑤𝑒𝑟𝐿𝐵 𝑛 ∗ 𝑚⁄

7:
8: ⊳ Receive compressor models
9: for 𝑖 = 1 to 𝑚 do
10: [𝐼𝑋𝑖 , 𝑋𝑖] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖)
11: end for
12:
13: ⊳ Build tables and communicate with other skids
14: [𝐴, 𝐴𝑃, 𝐴𝐽] ← 𝐵𝑢𝑖𝑙𝑑𝑆𝑘𝑖𝑑𝑇𝑎𝑏𝑙𝑒(𝑋, Δ, 𝑚, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)
15: 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑇𝑜𝑆𝑘𝑖𝑑𝑠(𝐴)
16: for 𝑖 = 1 to 𝑛 do
17: if 𝑖 = 𝑖𝑑 then 𝐴𝐴𝑖 ← 𝐴, 𝐴𝑁𝑖 ← |𝐴| continue

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 65 of 72

17: [𝐴𝐴𝑖 , 𝐴𝑁𝑖] ← 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝐹𝑟𝑜𝑚𝑆𝑘𝑖𝑑(𝑖)
18: end for
19:
20: ⊳ Build the system table and select the best configuration
21: [𝐵𝐴, 𝐵𝐽] ← 𝐵𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑎𝑏𝑙𝑒(𝑖𝑑, 𝐴𝐴, 𝐴𝑁, 𝑛, 𝑑)
22: [𝑌, 𝑍] ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑘𝑖𝑑𝐶𝑜𝑛𝑓𝑖𝑔(𝑋, 𝐼𝑋, 𝐵𝐴, 𝐵𝐽, 𝐴𝑃, 𝐴𝐽, Δ, 𝑚, 𝑑)
23:
24: ⊳ Transmit model index and power to compressors
25: for 𝑖 = 1 to 𝑚 do
26: 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑇𝑜𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟(𝑖, 𝑌𝑖 , 𝑍𝑖)
27: end for
28: return

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 66 of 72

Appendix B.1. Build skid table

𝐵𝑢𝑖𝑙𝑑𝑆𝑘𝑖𝑑𝑇𝑎𝑏𝑙𝑒(𝑋, Δ, 𝑚, 𝑑, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)
1: ⊳ Input: A set 𝑋 = {𝑋1, … , 𝑋𝑁} for which every 𝑋𝑖 ∈ 𝑋 contains the
 compressor model for compressor 𝑖, a conversion value Δ, a number of
 compressors in the skid 𝑚, a flow-rate demand 𝑑, a compensation
 current 𝑖𝑐𝑜𝑚𝑝, and an offset voltage 𝑢0.
2: ⊳ Output: A row from table 𝐴 that contains the skid flows per power
 consumption, a table 𝑃 that is later used to find how much power each
 compressor needs to consume, and a table 𝐽 that is later used to find
 which shunt configuration to use.
3:
4: ⊳ Calculate total skid power
5: 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 0
6: for 𝑖 = 1 to 𝑚 do 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 + 𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥(𝑋𝑖,𝑙𝑎𝑠𝑡)

7: 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗ ← ⌈𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 Δ⁄ ⌉

8:
9: ⊳ Fill first row
10: Initialize 𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗

11: Initialize 𝑃𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗

12: Initialize 𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡
∗

13: for 𝑖 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋1) do
14: 𝑝𝑙𝑜𝑤 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑋1,𝑖 , Δ)
15: 𝑝ℎ𝑖𝑔ℎ ← 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑋1,𝑖 , Δ)
16: for 𝑗 ← 𝑝𝑙𝑜𝑤 to 𝑝ℎ𝑖𝑔ℎ do

17: 𝑓 ← 𝑓𝑙𝑜𝑤𝑝(𝑋1,𝑖 , 𝑗 ∗ Δ, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

18: if 𝑓 > 𝐴1,𝑗 then 𝐴1,𝑗 ← 𝑓, 𝑃1,𝑗 ← 𝑗, 𝐽1,𝑗 ← 𝑖

19: if 𝑓 > 𝑑 then break
20: end for
21: end for
22: if 𝑚 = 1 then return 𝐴1, 𝑃, 𝐽
23:
24: ⊳ Fill remaining rows
25: for 𝑖 ← 2 to 𝑚 do
26: 𝑖𝑝𝑟𝑒 ← (𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 67 of 72

27: 𝑖𝑐𝑢𝑟 ← ((𝑖 − 1) 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1

28: 𝐴𝑖𝑐𝑢𝑟 ← 𝐴𝑖𝑝𝑟𝑒

29: for 𝑗 ← 1 to 𝐿𝑒𝑛𝑔𝑡ℎ(𝑋𝑖) do
30: 𝑝𝑙𝑜𝑤 ← 𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑋𝑖,𝑗 , Δ)

31: 𝑝ℎ𝑖𝑔ℎ ← 𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑋𝑖,𝑗 , Δ)

32: for 𝑘 ← 𝑝𝑙𝑜𝑤 to 𝑝ℎ𝑖𝑔ℎ do
33: 𝑓 ← 𝑓𝑙𝑜𝑤𝑝(𝑋𝑖,𝑗 , 𝑘 ∗ Δ, icomp, 𝑢0)
34: if 𝑓 > 𝐴𝑖𝑐𝑢𝑟,𝑘 then 𝐴𝑖𝑐𝑢𝑟,𝑘 ← 𝑓, 𝐽𝑖,𝑘 ← 𝑗, 𝑃𝑖,𝑘 ← 𝑘
35: for 𝑙 ← 𝑘 + 1 to 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

∗ do
36: if 𝐴𝑖𝑝𝑟𝑒𝑣,𝑙−𝑘 = 0 then continue

37: 𝑎 ← 𝐴𝑖𝑝𝑟𝑒𝑣,𝑙−𝑘 + 𝑓

38: if 𝑎 > 𝐴𝑖𝑐𝑢𝑟,𝑙 then 𝐴𝑖𝑐𝑢𝑟,𝑙 ← 𝑎, 𝐽𝑖,𝑙 ← 𝑗, 𝑃𝑖,𝑙 ← 𝑘
39: if 𝑎 > 𝑑 then break
40: end for
41: end for
42: end for
43: end for
44: return 𝐴𝑖𝑐𝑢𝑟 , 𝑃, 𝐽

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 68 of 72

Appendix B.2. Build system table

𝐵𝑢𝑖𝑙𝑑𝑆𝑦𝑠𝑡𝑒𝑚𝑇𝑎𝑏𝑙𝑒(𝑖𝑑, 𝐴𝐴, 𝐴𝑁, 𝑛, 𝑑)
1: ⊳ Input: A skid identifier 𝑖𝑑 that defines the system table row index, a
 table 𝐴𝐴 for which every row represents the maximum flow rates for
 a skid, a table 𝐴𝑁 that contains for every row in 𝐴𝐴 the data length, a
 number of skids in the system 𝑛, and a flow rate demand 𝑑.
2: ⊳ Output: A row from table 𝐵𝐴 that contains the system flows per power
 consumption, and a row from table 𝐵𝐽 that is later used to find which
 skid configuration to use.
3:
4: ⊳ Calculate total system power
5: 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡 ← ∑ 𝐴𝑁𝑖

𝑛
𝑖=1

6:
7: ⊳ Process first row
8: Initialize 𝐵𝐴𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

9: Initialize 𝐵𝐽𝑖,𝑗 ← 0 for all 1 ≤ 𝑖 ≤ 2 and 1 ≤ 𝑗 ≤ 𝑝𝑜𝑤𝑒𝑟𝑡𝑜𝑡

10: for 𝑗 ← 1 to 𝐴𝑁1 do
11: 𝐵𝐴1,𝑗 ← 𝐴𝐴1,𝑗

12: if 𝑖𝑑 = 1 and 𝐵𝐴1,𝑗 then 𝐵𝐽1,𝑗 ← 𝑗

13: end for
14: if 𝑛 = 1 then return 𝐵𝐴1, 𝐵𝐽1
15:
16: ⊳ Process remaining rows
17: 𝑛𝑠𝑢𝑚 ← 𝐴𝑁1
18: for 𝑖 ← 2 to 𝑛 do
19: 𝑖𝑝𝑟𝑒 ← (𝑖 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1

20: 𝑖𝑐𝑢𝑟 ← ((𝑖 − 1) 𝑚𝑜𝑑𝑢𝑙𝑜 2) + 1

21: 𝐵𝐴𝑖𝑐𝑢𝑟 ← 𝐵𝐴𝑖𝑝𝑟𝑒

22: for 𝑗 ← 1 to 𝐴𝑁𝑖 do
23: 𝑓 ← 𝐴𝐴𝑖,𝑗

24: if 𝑓 = 0 then continue
25: if 𝑓 > 𝐵𝐴𝑖𝑐𝑢𝑟,𝑗 then

26: 𝐵𝐴𝑖𝑐𝑢𝑟,𝑗 ← 𝑓

27: if 𝑖 = 𝑖𝑑 then 𝐵𝐽𝑖𝑐𝑢𝑟,𝑗 ← 𝑗

28: end

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 69 of 72

29: for 𝑘 ← 1 to 𝑛𝑠𝑢𝑚 do
30: if 𝐵𝐴𝑖𝑝𝑟𝑒𝑣,𝑘 = 0 then continue

31: 𝑎 ← 𝐵𝐴𝑖𝑝𝑟𝑒𝑣,𝑘 + 𝑓

32: if 𝑎 > 𝐵𝐴𝑖𝑐𝑢𝑟,𝑘+𝑗 then

33: 𝐵𝐴𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝑎

34: if 𝑖 = 𝑖𝑑 then 𝐵𝐽𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝑗

35: else 𝐵𝐽𝑖𝑐𝑢𝑟,𝑘+𝑗 ← 𝐵𝐽𝑖𝑝𝑟𝑒𝑣,𝑘

36: end
37: if 𝑎 > 𝑑 then break
38: end for
39: end for
40: 𝑛𝑠𝑢𝑚 ← 𝑛𝑠𝑢𝑚 + 𝐴𝑁𝑖
41: end for
42: return 𝐵𝐴𝑖𝑐𝑢𝑟, 𝐵𝐽𝑖𝑐𝑢𝑟

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 70 of 72

Appendix B.3. Select skid config

𝑆𝑒𝑙𝑒𝑐𝑡𝑆𝑘𝑖𝑑𝐶𝑜𝑛𝑓𝑖𝑔(𝐼𝑋, 𝐵𝐴, 𝐵𝐽, 𝐴𝑃, 𝐴𝐽, Δ, 𝑚, 𝑑)
1: ⊳ Input: A set 𝐼𝑋 = {𝐼𝑋1, … , 𝐼𝑋𝑚} for which every 𝐼𝑋𝑖 ∈ 𝐼𝑋 contains the
 respective compressor model indices, a row 𝐵𝐴 that contains the
 system flows per power consumption, a row 𝐵𝐽 that contains indices
 that match row 𝐵𝐴 to rows 𝐴𝑃 and 𝐴𝐽, a table 𝐴𝑃 that contains the
 powers for the compressors in the skid, a table 𝐴𝐽 that contains the
 shunt configuration for the compressors in the skid, a conversion factor
 Δ, a number of compressors in the skid 𝑚, and a flow rate demand 𝑑.
2: ⊳ Output: A set 𝑌 = {𝑌1, … , 𝑌𝑚} for which every 𝑌𝑖 ∈ 𝑌 contains the
 compressor model index for compressor 𝑖, and a set 𝑍 = {𝑍1, … , 𝑍𝑚} for
 which every 𝑍𝑖 ∈ 𝑍 contains the power for compressor 𝑖.
3:
4: 𝑗 ← 0, 𝑌 ← ∅, 𝑍 ← ∅, 𝑓𝑚𝑎𝑥 ← 0
5: for 𝑖 = 1 to |𝐵𝐴| do
6: if 𝐵𝐴𝑖 > 𝑓𝑚𝑎𝑥 then 𝑓𝑚𝑎𝑥 ← 𝐵𝐴𝑖, 𝑗 ← 𝐵𝐽𝑖
7: if 𝐵𝐴𝑖 ≥ 𝑑 then 𝑗 ← 𝐵𝐽𝑖 break
8: end for
9: for 𝑖 = 𝑚 to 1 do
10: if 𝑗 = 0 or 𝐴𝐽𝑖,𝑗 = 0 then 𝑌𝑖 ← 𝑋𝑖,1, 𝑍𝑖 ← 0 continue

11: 𝑘 ← 𝐴𝐽𝑖,𝑗 , 𝑌𝑖 ← 𝐼𝑋𝑖,𝑘, 𝑍𝑖 ← Δ ∗ 𝐴𝑃𝑖,𝑗

12: 𝑗 ← 𝑗 − 𝐴𝑃𝑖,𝑗

13: end for
14: return 𝑌, 𝑍

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 71 of 72

Appendix B.4. Functions

Appendix B.4.1. Calculate maximum power

𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥(𝑥) = 𝑥. 𝑖𝑚𝑎𝑥 (𝑥. 𝑖𝑚𝑎𝑥 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈)

Appendix B.4.2. Calculate minimum integer power

𝑝𝑜𝑤𝑒𝑟𝑙𝑜𝑤_𝑖𝑛𝑡(𝑥, Δ) = ⌈
𝑥. 𝑖𝑚𝑖𝑛 (𝑥. 𝑖𝑚𝑖𝑛 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈)

Δ
⌉

Appendix B.4.3. Calculate maximum integer power

𝑝𝑜𝑤𝑒𝑟ℎ𝑖𝑔ℎ_𝑖𝑛𝑡(𝑥, Δ) = ⌊
𝑥. 𝑖𝑚𝑎𝑥 (𝑥. 𝑖𝑚𝑎𝑥 ∗ ∑ 𝑥. 𝑅 + ∑ 𝑥. 𝑈)

Δ
⌋

Appendix B.4.4. Calculate mass-flow rate for current

𝑓𝑙𝑜𝑤𝑖(𝑥, 𝐼, 𝑖𝑐𝑜𝑚𝑝, 𝑢0) =
𝐻

2𝐹
∑

(𝐼 − 𝑖𝑐𝑜𝑚𝑝) ∗ 𝑥. 𝑅 + 𝑥. 𝑈 − 𝑢0

𝑥. 𝑅𝑐

Where:
𝑥 is compressor model.
𝐼 is the compressor current [𝐴].
𝑖𝑐𝑜𝑚𝑝 is the compensation current [𝐴].
𝑢0 is the pressurization voltage [𝑉].
𝐻 is the molar mass of H2 [𝑔 𝑚𝑜𝑙⁄].
𝐹 is the Faraday constant [𝐴 ∗ 𝑠 𝑚𝑜𝑙⁄].

SKID ALGORITHM

Print Date: 03 Jun 2020 Page 72 of 72

Appendix B.4.5. Calculate mass-flow rate for power

𝑓𝑙𝑜𝑤𝑝(𝑥, 𝑝, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

= 𝑓𝑙𝑜𝑤𝑖 (𝑥,
√(∑ 𝑥. 𝑈)2 + 4 ∗ 𝑝 ∗ ∑ 𝑥. 𝑅 − ∑ 𝑥. 𝑈

2 ∗ ∑ 𝑥. 𝑅
, 𝑖𝑐𝑜𝑚𝑝, 𝑢0)

