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CONTENTS

Abstract

There is a growing effort in using renewable energy as an energy source, but many
of these sources are not always available. For example, sunlight can only be
harvested during the day, and for wind energy there must be wind. There is a real
need to store energy such that energy can be harvested when it is available and
also used when it is not available. A possible solution is to use hydrogen as energy
storage. Hydrogen can be generated using electricity by the process of electrolysis,
after which the process can be inverted such that we get electricity again. The
downside of using hydrogen as energy storage is its low gas density, this requires
us to compress hydrogen such that we can store it efficiently.

A modern device for compressing hydrogen is an electrochemical compressor. This
type of compressor can efficiently compress hydrogen up to very large pressures.
A disadvantage of this type of compressor is its low flow rate. In order to use
electrochemical compression for large-scale energy storage, we need many
compression units working together.

In the presented thesis is a polynomial-time load-sharing algorithm for
electrochemical compressors presented. The algorithm will meet a certain mass-
flow rate demand with near-optimal power consumption while respecting real-
world constraints.
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INTRODUCTION

Chapter 1

Introduction

The concept of compressing hydrogen using an electrochemical compressor has
already been published in 1981, in which it was shown that a direct current through
a hydrated polymer electrolyte cell can transport hydrogen from a low- to high-
pressure side (Sedlak, Austin, & LaConti, 1981). It was not until 2012 before the first
electrochemical hydrogen compressor could compress hydrogen up to thousand
bars (HYET Hydrogen). In the meantime, the technique has matured and is now
ready to be employed in a system. This gives rise to new challenges. For one, a
single electrochemical hydrogen compressor has limited flow. Therefore, many
compressors are needed to achieve large flow rates. Since the compression
efficiencies vary over time and between compressors, it becomes increasingly
difficult to meet a certain flow rate demand with optimum power consumption. In
this thesis is a load-sharing algorithm presented that is capable of sharing the flow
rate between the compression units in a system such that a certain overall flow
rate demand is achieved with near-optimal power consumption.

1.1. Electrochemical hydrogen compressor

An electrochemical hydrogen compressor is a compressor that compresses
hydrogen without mechanical pressure. Instead, we use electricity to move protons
from one side of a proton exchange membrane (PEM), to the other (high pressure)
side with a rate that is proportional to the electrical current. A PEM is sandwiched
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INTRODUCTION

between two electrodes that are electrically isolated from each other by the PEM,
we call this assembly a membrane electrode assembly (MEA). An electrochemical
hydrogen compressor typically consists of multiple MEAs that are sandwiched
between plates who are responsible of distributing the hydrogen over the MEA.
The following figure shows a simplified electrochemical hydrogen compressor.

high-pressure
hydrogen

Cell plate — [EG_—

MEA —

cell plate — [ NEGEG_—
Cell

low-pressure
hydrogen
Compressor

Figure 1: Electrochemical hydrogen compressor.
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA))

In figure 1 is an electrochemical compressor depicted with a low-pressure
hydrogen input and a high-pressure hydrogen output. All cells are electrically
connected in series and powered by a power supply unit (PSU) that powers the
compressor with a direct current. For this thesis, we assume a parallel gas
configuration which implies that each cell is exposed to the full pressure difference,
and with each cell we increase the maximum flow rate.

1.1.1. Shunting a cell

With an electrochemical hydrogen compressor, we need to be careful that the
voltage over a cell is not too high, both to overcome damaging the cell as to keep
the power consumption low. It may very well be that there are one or more cells in
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INTRODUCTION

a compressor with a voltage that is too high, requiring the compressor current to
be tuned down in order to avoid damaging the cell. As an alternative, we can shunt
a cell and divert a fraction of the current by placing a shunt or a variable shunt
between the cell plates, patented in (United States Patent No. US9915004B2,
2014), and illustrated below.

CELL PLATE

‘1 ‘1
(/ MEA % shunt (/ MEA @ o
\ \

CELL PLATE

CELL PLATE CELL PLATE

Figure 2: Shunt (left), variable shunt (right).
(Membrane Electrode Assembly (MEA))

Note that a variable shunt resistor can also imply an integrated circuit or
transistor(s).

1.2. Compression system

A compression system is a system with one or more compression units and auxiliary
devices required to operate the compression unit(s). These auxiliary devices
include a cooling system, humidifier, hydraulics, pipe heaters, sensors and valves.
For this thesis we do not take auxiliary devices into account and we focus on the
compression units themselves. Each compression unit contains a power supply unit
(PSU) with a power input and a processor that controls the PSU, reads the cell
voltages, and communicates with external devices over a communication bus.
Moreover, each compression unit has a low- and high-pressure hydrogen port for
which it is assumed that all compressors are connected to the same low- and high-
pressure media as depicted in the following figure.
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H2 IN

LOW PRESSURE H2

PIN  COMM PIN  COMM PIN  COMM

COMPRESSOR
1

COMPRESSOR
2

COMPRESSOR

[ ER]
T30
<1130
T113D
<1130
T113D

HIGH PRESSURE H2

v
H2 OUT

Figure 3: Hydrogen (H2) gas connections in an electrochemical hydrogen compression system.
(Power input (PIN), Communication port (COMM))

During the thesis preparation phase, we have found that we should implement
sections, we call such a section a skid. Every skid includes a processor that
represents the skid node and one or more compression nodes who represent the
compression units. The skid node acts as a gateway between the nodes in a skid
and external nodes to limit the number of messages and increase the potential
system size. As for the communication bus, we found that the CAN bus is a cost-
effective and reliable option. However, this algorithm is communication bus
independent and will work with any communication bus given that the speed is
sufficient, and the following topology is implemented.

outer communication bus

SKID 1 SKID 3 SKID n

5 5 5
3 3 nlalo 8

R | R & COMPRESSOR 3 R R/ R COMPRESSOR = m| @ @ COMPRESSOR 2

ClEE 1 8 FIFIF 1 S -=|F 1 S

x[(N|R g X|N|R g x|N|m g
< < <
3 3 3

R/ 2| 3| coMPRESSOR g 22/ 3| COMPRESSOR s R 2|2 comPRESSOR 8

ElEE ) g cIEIF ) g =AE== ) S

X|N|~ 2 X|IN| R 2 X|IN| R 2
< -y -y
n 1% 1%

R/ 2| 3| coMPRESSOR 22/ 3| COMPRESSOR R 2|2 comPRESSOR

FIFIF m FFF m FIFF m

X|N| R X|IN| R X|IN| R

Figure 4: Compression system consisting of n skids, n *x m compressors, and n * m * k cells
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INTRODUCTION

We propose two communication busses in figure 4, an outer bus that connects the
skid nodes to each other, and an inner bus that connects the compressors within a
skid to the skid node. We conceptionally describe the communication in the
following three steps.

1. Each compressor communicates characteristics over the inner bus to the skid
node.

2. The skid nodes process the characteristics and broadcast a subset over the
outer network.

3. The skid nodes process the subsets and communicate a solution to the
compressors within the skid.

1.3. Structure of the report

In this report is a load-sharing algorithm presented for the electrochemical
hydrogen compression system as proposed in section 1.2. In the current chapter is
an introduction given, followed by the problem statement in the next chapter. In
the third chapter is a study done in related work, which we will use to model the
problem in the fourth chapter and develop an algorithm in the fifth chapter. We
will present the algorithm and define how this algorithm is to be implemented in
the proposed compression system. We conclude the thesis with results and a
conclusion in the sixth and seventh chapters.
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PROBLEM STATEMENT

Chapter 2

Problem statement

For the compression system as proposed in section 1.2, with n skids, where each
skid has at most m compression units, each compression unit at most k cells and
each cell an electronic shunt that can be enabled or disabled. We must decide
which cells to shunt and how much current to feed through the compressors such
that we meet hydrogen flow demand d with minimum power consumption.
Moreover, we must take real-world limitations into account which implies that we
must stay below a certain cell voltage limit such that we do not damage the
electrochemical cells, and we must stay below the maximum current rating of the
power supply unit. When it is not possible to meet flow rate demand d, we must
return the system configuration that gives the highest flow rate. Moreover, we
need to solve the problem periodically for big systems, which implies that we need
to solve the problem efficiently. More precisely, we need to solve the problem in
polynomial time for system size n * m * k.

We divide the problem in three major parts, namely.

P1. Decide for each compressor which cells to shunt and output all the relevant
shunt configurations per compressor. We define a shunt configuration as a
set of Booleans, one Boolean for every cell that indicates if the corresponding
cell is shunted.
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P2.

P3.

PROBLEM STATEMENT

Decide for every compressor which shunt configuration to use and how
much current to feed through the compressor such that we meet flow rate
demand d with minimum power consumption.

Adapt the solution such that it can be implemented in the system as
proposed in figure 4. This implies that we need to decide what each node
must do and what data there must be communicated over the busses.

2.1. Milestones

We will first conduct a research in the behavior of an electrochemical hydrogen cell
and use the results to develop a model that represents the compressor. We will
also do a research in related algorithms and use this to develop an algorithm that
solves the problem in polynomial time. The last part is to adapt the algorithm such
that it can be implemented in the proposed system and nodes. We summarize the
following milestones.

1.

w

Conduct a research in the behavior of an electrochemical hydrogen cell,
section 3.1.

. Conduct a research in related algorithms, section 3.2.

Create a model that represents the electrochemical compressor, chapter 4.
Develop an algorithm that solves problems P1 and P2 in polynomial time, P1
in section 5.1, and P2 in section 5.2.

. Solve problem P3 by adapting the algorithm such that it can be implemented

in the proposed compression system (figure 4), section 5.3.
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Chapter 3

Related work

In this chapter is a study in related work presented. We will first present results
that help us model the compressor in section 3.1. And secondly, we study
algorithms that solve similar problems in section 3.2.

3.1. Electrochemical cell

An electrochemical cell has already been modelled in 1971 by Macdonald
(Macdonald, 1971), for which the following equivalent circuit has been suggested.

sol

Rct

Figure 5: Equivalent circuit electrochemical cell (Macdonald, 1971), with Rsol as the solution
resistance, Rct as the charge transfer resistance, Cdl as the double layer capacity and W the
Warburg impedance

The equivalent circuit from figure 5 is better known as a Randles circuit (Randles,
1947) commonly used in Electrochemical impedance spectroscopy, a method to
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characterize electrochemical systems. In this circuit is the faradaic reaction, i.e. the
reaction that causes hydrogen protons to move from one side of the PEM to the
other side, represented by the Rct resistance and Warburg impedance.

3.1.1. Behavior of an electrochemical cell

It has been shown by (Grigoriev, Shtatniy, Millet, Porembsky, & Fateev),
(Suermann, Kiupel, Schmidt, & Buchi), (Scheepers, et al.), (Strobel, et al.), and many
more that the behavior of an electrochemical cell depends on many parameters.
Namely, membrane material, temperature, humidity, gas purity, pressure
difference and current density. For this thesis, we are interested in what happens
when we change the current through a cell or shunt a cell, in both cases, we are
effectively changing the current density. The following figures show us what
happens if we change the current density of an electrochemical cell for various
temperatures, gas concentrations and membrane materials.

——
e
—-—

-
s
EE-1]
'
2Xsks]
=]
~N

o
o

Cell voltage / V
=)
(-3
Cell voltage / V
o
>

0.0 0.2 0.4 06 0.8 1.0 0.0 0.1 02 03 04 05 06 07 08
Current density / A.cm™ Current density / A.cm’

Figure 6: I-V curves for different temperatures Figure 7: I-V curves for different hydrogen
(Grigoriev, Shtatniy, Millet, Porembsky, & concentrations (Grigoriev, Shtatniy, Millet,
Fateev, 2011) Porembsky, & Fateev, 2011)
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—+—Etek 105,2

= Etek 117,2
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——-2ZSW 115/0,45
-~ Gore MEA 5560

cell voltage in mV

T T
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Figure 8: I-V curves for different membranes (Strébel, et al., 2002)

We see that the electrochemical cells are first in a linear region where the cell
behaves as a resistor, after which the cell voltage increases exponentially. Working
outside the linear region is unadvised since a small change in current density can
cause a large change in cell voltage, possibly damaging the cell.

Hydrogen flow rate
Faraday has researched electrochemistry already in 1834, from which Faraday’s

laws of electrolysis originated (Faraday, 1834). Faraday showed that the amount of
material produced during an electrochemical reaction is directly proportional to
the average current multiplied by the experiment time. We can use these laws to
calculate the amount of hydrogen that is transported through the membrane as.

dn _ I Equation 1: Hydrogen molecule flow rate of an electrochemical
E - ﬁ cell (Rohland, Eberle, Strébel, Scholta, & Garche, 1998)
Where:

dn/dt is the hydrogen flow rate [mol/s].
I is the current though the cell [4].
F is the Faraday constant [4 * s/mol].
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NERNST voltage

Figure 6, figure 7 and figure 8 do not show the behavior when there is a pressure
difference over an electrochemical cell. To this end, let us use the following
expression derived from the NERNST equation to calculate the effect of
pressurization on the cell voltage.

R«T PpPHP Equation 2: Effect of pressurization on cell voltage
= n % according to the NERNST equation (Rohland, Eberle,
2F PH2 Strébel, Scholta, & Garche, 1998)

Where:

E is the cell potential [V].

R is the universal gas constant [J /K * mol].
T is the temperature [K].

F is the Faraday constant [A4 * s/mol].

P}P /PEE is the hydrogen compression factor.

The voltage calculated in equation 2 gives the theoretical cell voltage as a function
of the pressure difference. In order to pressurize hydrogen, we need to overcome
the theoretical cell voltage. For a hundredfold compression factor and a
temperature of 300 Kelvin, a cell voltage of 60 mV is required according to equation
2.

Back-diffusion
Another effect of pressurization is back-diffusion. When there is a pressure

difference over the electrochemical cell, we have hydrogen molecules migrating
from the high- to the low-pressure side. This migration can be compensated by an
electrical current such that there is found an equilibrium at which there is no
hydrogen flow. We use this equilibrium current together with Faradays laws to
calculate the back-diffusion rate as.

@ _ [*VoxT Equation 3: Hydrogen molecule back-diffusion rate
dt  2F *T, (Strébel, et al., 2002)
Where:
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dn/dt is the hydrogen back-diffusion flow rate [mol/s].
I is the equilibrium current [4].

I, is the standard molar volume [1/mol].

T is the temperature [K].

F is the Faraday constant [A4 * s/mol].

T, is the standard temperature [K].

3.2. Related algorithms

In this section are related algorithms studied to solve the second part of the
problem as described in the problem statement and repeated below.

Decide for every compressor which shunt configuration to use and how much
current to feed through the compressor such that we meet mass-flow rate
demand d with minimum power consumption.

If we ignore the part about determining how much current to feed through a
compressor and the effect this has on the compression flow and power
consumption, we realize that we essentially have a combinatorial optimization
problem. Similar to the well-known 0-1 Knapsack problem, defined as.

Let there be a set of items, where each item has a value and a weight.
Determine which items to put in the knapsack such that the weight is at most
W and the value is maximum.

Instead of selecting items, we select configurations. With power being the value
and flow being the weight. We do now have a minimization problem as the power
must be minimized, and instead of having a weight at most equal to W, we must
have a flow at least equal to d.

The Knapsack problem has been researched extensively, with early works dating
back to 1897 (Mathews, 1897). It has been shown that the 0-1 Knapsack problem
with real values and weights is NP-complete, thus there is no known algorithm that
can solve the problem both optimal and in polynomial time for any given input.
However, it has been found that if the weights or values are integers, we can solve
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it optimally in polynomial time using Dynamic-programming, explained in section
3.2.1. To solve a problem with real values, we can use a scaling and rounding step
that converts the real values to integers. Unfortunately, this introduces rounding
errors, causing the solution to be potentially non-optimal. We can create a
polynomial-time approximation scheme as explained in (de Berg, 2019), in which
we regulate the rounding error using a parameter € > 0. With &, we can set the
tradeoff between accuracy and speed, a higher ¢ gives us a faster execution at the
cost of reduced accuracy and visa-versa. There is another approach in solving the
Knapsack problem that does not require the weights or values to be integers,
namely, a greedy algorithm for the Fractional-Knapsack problem. As the name
suggests, we require that it is possible to take fractions of items. We discuss the
Fractional-Knapsack problem in section 3.2.2.

3.2.1. Dynamic programming

Dynamic programming has been developed in 1950 by Richard Bellman (Bellman,
1957). The general idea behind dynamic programming is to divide a problem in
smaller sub-problems where the results of these subproblems are stored such that
they do not have to be recomputed at a later point. This simple concept has been
implemented in dynamic programming algorithms in many different fields.

If we take the 0-1 integer Knapsack problem, for n items, we can either pack an
item or not pack an item, we find that there are 2™ possible combinations of items
to pack in the Knapsack which leads us to believe that there are 0(2")
computations to do. It turns out that many of the computations are done multiple
times. With dynamic programming we will do each computation just once. This is
best explained by imagining a table with n rows and W columns. Where cell,
contains the maximum value for the first i items and weight j. We can fill the table
in O(n *x W) time, after which we can find our maximum value for weight W in
cell, vy .
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3.2.2. Fractional knapsack problem

It has been found by George Dantzig in 1957 (Dantzig, 1957) that if we adapt the
original 0-1 Knapsack problem such that we can take fractions of items, we can
solve it optimally using a Greedy approach in O(nlog, n) time, for input size n. The
basic idea is to calculate the value/weight ratio for each item and sort all the
items on this ratio, highest value first. We will now take items one by one until we
cannot add the next item as a whole, instead we add as much of the next item as
possible such that the total weight is exactly W. This approach will always give an
optimal solution and does not require the weights or values to be integers.
However, it does require the weights and values to scale the same. In other words,
if we have an item x and we pack 1/2 x, we must have a resulting value of 1/2 x*
value(x) and a resulting weight of 1/2 * weight(x).

3.2.2.1.Non-linear fractional knapsack problem

It turns out that we do not have a flow and power that scale equally, we have an
exponential relationship in which the consumed power becomes exponentially
large as the hydrogen flow increases. Such a problem is similar to the nonlinear
knapsack problem, generally defined as.

Min: f(x)
Such that: g(x) <b
xX€ES

(Bretthauer & Shetty, p. 460) addresses the following five variations of this basic
problem definition, cited as.

1. “Convex, separable, continuous: f(x) and g(x) are convex separable
functions, S includes bounds on the continuous variables.

2. Convex, separable, integer: Same as problem type 1 except S includes
integrality conditions on the variables.

3. Nonconvex, separable (continuous and integer): f(x) and g(x) are
nonconvex separable functions, S includes bounds on the variables.
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4. Convex, separable, additional block diagonal (or GUB) constraints
(continuous and integer): Same as problem type 1 or 2 except S also includes
block diagonal or GUB constraints.

5. Convex, non-separable (continuous and integer): f (x) and g(x) are convex
non-separable functions, S includes bounds on the variables.”

Our problem is closely related to the first variation, for which there are two basic
approaches, multiple search methods, and variable pegging methods.

With multiple search methods, we use a set of equations to solve the problem. An
example is given in (Bretthauer & Shetty, The nonlinear resource allocation
problem, 1995) that solves the multiple search algorithm via a one-dimensional
search by using the derivative of the functions and the Lagrange multiplier.

Variable pegging methods initially neglect all bounds and calculate an initial output.
In the next iterations are items bounded such that we solve the problem and satisfy
the limits. The generalized problem with lower and upper bounds has been solved
in (Bretthauer & Shetty, A pegging algorithm for the nonlinear resource allocation
problem, 2002), in which always at least one item is pegged per iteration,
guaranteeing a finite amount of iterations.
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Chapter 4

Model of the electrochemical compressor

To the end of modelling the electrochemical compression unit, let us first expand
the compressor from figure 1 with the electronic shunts such that we get the
compressor as depicted below.

HP H2

Cell plate —
MEA — I SHUNT
Cell plate —

Cell

LP H2

Compressor

Figure 9: Electrochemical hydrogen compressor with electronic shunts.
(Power Supply Unit (PSU), Membrane Electrode Assembly (MEA), Low Pressure (LP), High
Pressure (HP), Hydrogen (H2))

We found in section 3.1 that an electrochemical cell behaves linearly at first if we
consider the current density versus the cell voltage, after which the cell voltage
rises exponentially. For this thesis, we assume to be in the linear region when
staying below the cell voltage limit, one of the parameters defined in the problem
statement. Moreover, since we are driving the compressor using a direct current,
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we can greatly simplify the equivalent circuit of the electrochemical cell shown in
figure 5 and model the cell as a single resistor if we ignore the effect of
pressurization. We include the effect of pressurization by realizing that the cell
behaves as a voltage source for which the voltage is directly related to the pressure
difference. We assume that the wire resistance from the PSU to the first/last cell is
neglectable and draw the electrochemical compressor as the circuit depicted
below.

p

L T
S
Reca ﬁ !
|:| Rs1
U —=

(1 =
n e

Rsz
rp
1

Figure 10: Electrochemical compressor modelled as an electrical circuit,
Current source (l), Cell plate resistance (rp), Cell resistance (Rcx), Shunt resistance (Rsx), Shunt
switch (Sx), pressurization boltage (u0)

=
(=]
1l
I

The model in figure 10 represents an electrochemical compressor for which two
cells are drawn. We represent the electrochemical cell resistance by Rc;, the plate
resistance by rp, the shunt resistance by Rs;, and the actual shunt by S;. We model
the pressurization effect as a voltage source for which the voltage u, is calculated
with the NERNST equation (equation 2). Lastly, the compressor is driven by a direct
current source with current I.

When a cell is under pressure and shunted, we might create the current path as
illustrated in the next figure. This current path is undesirable as it allows the process
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to reverse, i.e. for hydrogen to flow from the high-pressure to the low-pressure
side.

p

I
* S
Rec H
u = E— Rs
rp

1
| I

L
L
.
Figure 11: Current path due to the pressurization effect,

Cell plate resistance (rp), Cell resistance (Rc), Shunt resistance (Rs), Shunt switch (S),
pressurization voltage (u0)

To avoid the situation as depicted in figure 11, we must ensure that the voltage
over Rc is positive by either feeding a sufficiently high current through the
compressor or by un-shunting the respective cell.

4.1. Solving the model

In order to calculate the effect of increasing/decreasing the compressor current for
a certain shunt configuration, we first solve the model from figure 10 for the shunt
configuration into an intermediate form that allows us to efficiently compute the
cell voltages, flow rate and power consumption as a function to the compressor
current. The intermediate form consists of a number of in series connected
resistors and voltage sources, where each resistor/source pair represents a cell and
the respective shunt. The intermediate form for two cells is depicted in the
following figure.
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Figure 12: Intermediate form of a solved electrochemical compressor model.
(Compressor current (1), Equivalent cell resistance (R,.), equivalent pressurization voltage (U,))

From the intermediate form, we calculate the voltage over cell i for the compressor
current [ as.

E()=1*R;+U; Equation 4: Voltage over cell i

And the current through cell i with cell resistance Rc; and pressurization voltage
u0 as.
Ei(I) —u0 . .
Al =——— Equation 5: Current through cell i
Rc;

We use equation 1 to calculate the flowrate through an electrochemical cell.
However, this equation assumes that there is no pressure difference over the cell.
To include the effect of pressurization we introduce a compensation current icomp
that compensates for the back-diffusion rate (equation 3). We calculate the mass-
flow rate A for a compressor with k cells and compressor current [ as.
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Equation 6: Hydrogen mass-flow rate for a

k
H .
A(l) = ﬁz A;(I) — icomp compressor with k cells
i=1

Where:
H is the molar mass of H2 [g/mol].
F is the Faraday constant [A4 * s/mol].

The power consumption is the electric power that is dissipated in the compressor,
which we calculate as.

Equation 7: Power consumption of a compressor with k

k
Pl = IZ E.(D) o
i=1

Solving the model from figure 10 with all the shunts disabled is trivial as this would
result in solving a network for which we have that R, = Rc, and U, = u0.
However, if multiple cells are shunted consecutively, it becomes more difficult.
Solving such a shunted section is done using a combination of Ohm’s law,
Kirchhoff’s laws, superposition theorem and wye-delta transformations. To explain
the cell voltage calculation when multiple cells are shunted consecutively, we will
solve a shunted section consisting of three cells. We use the superposition theorem
which implies that we solve the circuit for every power source. We first solve the
circuit for the current source in section 4.1.1 after which we solve for the voltage
sources in section 4.1.2. The algorithm for solving the electrochemical compressor
is provided in Appendix A.2.

4.1.1. Solving for the current source

We solve for the current source by disabling all the voltage sources and apply two
iterative steps. Firstly, we simplify the circuit using delta-wye transformations and
calculate the equivalent section resistance. Secondly, we use the equivalent section
resistance to determine the section voltage as a function of the current and walk
back the previous iterations to calculate the cell voltages.
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Reca

s { {1 Tess

Start

Step 1b Step 1c

Figure 13: Calculating the equivalent section resistance for the current source

The first iterative step is depicted in figure 13. We start with the drawing all the
way to the left and find that if we combine rp; and Rs;, we create a triangle
together with Rc; and rp,. We can now do a delta-wye transformation and
calculate Rx;, Ry; and Rz;. In step 1a, we find another triangle with rp; if we
combine Ry; and Rc,, and also combine Rz; and Rs,. We do another delta-wye
transformation and end up with the circuit in 1b. In this step we calculate the
equivalent resistance that is formed by the parallel circuit consisting of the sum of
Ry, and Rc;, and the sum of Rz,, Rp; and Rp,. We end up the circuit shown in
step 1c and calculate the equivalent section resistance as the sum of Rx;, Rx, and
req.

In the second step, we assume a compressor current of one ampere and calculate
the cell voltages. We note that the cell voltages are proportional to the compressor
current and that we are effectively calculating the cell voltage per ampere of
compressor current. In other words, we calculate the equivalent cell resistances
R,.. We will first calculate the voltage over the entire section Vsection. After which
we walk back the iterations from the first step and calculate the node voltages U1,
U2, U3 and U4, illustrated in the figure below.
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. Vsection
Vsection

Rx1
Rx1

U2
Ry1
Us

*
*
»
Vsection
u
Rx1 :
Rx2
U2
U
Ry2
U1 Y
U3
req
L ]
L ]
L ]

ov

Step 2a Step 2b Step 2c - End

Figure 14: Calculating the cell voltages

We can calculate the cell voltages in the End drawing from figure 14 as the voltage
difference between the two surrounding node voltages. Remember that we
actually calculate the equivalent cell resistances R,.

4.1.2. Solving for the voltage sources

We solve for the voltage sources by disconnecting the current source and
iteratively enable a single voltage source for which the circuit is solved. We solve
the circuit in two iterative steps. Firstly, we simplify the circuit such that we end up
with all the resistors connected in series. We can now calculate the equivalent
resistance for the voltage source and use this to calculate the sourced current.
Secondly, we revert the previous iterations and calculate the cell currents and
voltages.
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rpi

Re1 Rs1 rp1

rp1
uo == rp2 Rec1 Rs1
e . Res Ret
R rpz
SIS =
rps
— Rcz Rs2
Req1
R
e
rpa Req2
e
Start Step 1a Step 1b

Figure 15: Calculating the equivalent section resistance for the voltage source

The first iterative step for a single voltage source is depicted in figure 15. We start
with the drawing all the way to the left and find that if we sum Rc3, Rs3; and rp,,
we have a single resistor rp; in parallel. We calculate the equivalent resistance
Req, and end up with the circuit in step 1a. We repeat the previous step and
calculate the equivalent resistance Req, in step 1b by solving the parallel circuit
with rp, and the sum of Rc,, Rs, and Rb,. We can now calculate the equivalent
section resistance as the sum of Rc¢;, rp; and Req;.

With the second step, we walk back the iterations from the previous step and
calculate the cell currents Ic,, Ics, and Icg, illustrated in the figure below.

Print Date: 03 Jun 2020 Page 31 of 72



MODEL OF THE ELECTROCHEMICAL COMPRESSOR

rp1
uo =
Rc1 Tlc; Rs1 —|l_2|7
. SIS
rp2
Rb1 T +—
Recs H Tlcs H Rs3
rp4
e W
Step 2a Step 2b End

Figure 16: Calculating the cell currents

We can calculate the cell voltages in the End drawing in figure 16 by multiplying the
cell current with the respective cell resistance. We repeat the previous steps for
every voltage source and sum the calculated cell voltages such that we get the set
with offset voltages U. Every U; now represents the total offset voltage for cell i.
In order to include u,y and take care of the sign, we update every offset voltage U;
as follows.

Ui=uO—Ui

4.2. Modelling real-world constraints

To include the back-diffusion compensation current icomp, the maximum cell
voltage umax, and the maximum compressor current imax into our model, we
convert them to minimum and maximum compressor currents, imin and imax
respectively. We define imin and imax such that if we have a compressor current
I and imin < I < imax, we will always have a cell current of at least icomp a
compressor current of at most imax, and a cell voltage of at most umax.
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.. icomp * Re; — U; +u0 Equation 8: Minimum compressor
imin = Max
1<i<k Ri current
. e umax — U; ; : ;
imax = Min (lmax, ) Equation 9: Maximum compressor
1<i<k R; current
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Chapter 5

Load-sharing algorithm

We will now present the load-sharing algorithm that solves the problem as
described in the problem statement, using the model we defined in chapter 4. We
first solve problem P1 and present an algorithm that returns the relevant shunt
configurations for a compressor. Secondly, for a system of N compressors, we solve
problem P2 and present an algorithm that finds which shunt configurations to use
and how much current to feed through each compressor. In the third and last
section of this chapter, we include the skids and solve problem P3, we adapt the
presented algorithm such that it can be implemented in the proposed hydrogen
compression system defined in figure 4.

5.1. Problem P1 —find the relevant shunt configurations

In this section is described how we can find the relevant shunt configurations. A
shunt configuration is a set of k Booleans, one Boolean for every cell in the
compressor that is set when the corresponding shunt is enabled. We define the
relevant shunt configurations as the configurations that are not outperformed by
others considering flow rate and power consumption, such a set is also known as
the Pareto-optimal set. The following image illustrates the Pareto-optimal set as
the orange dots versus the poorer shunt configurations drawn as blue dots.
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Power consumption
.

Flow rate

Figure 17: Best shunt configurations (orange dots), also known as the Pareto-optimal set,
considering power consumption and flow rate.

A simple solution is to solve every combination of shunts and extract the Pareto-
optimal set. However, this would lead to 0(2%) combinations per compressor that
need to be solved and examined. We can do this much smarter by realizing that if
we shunt a cell, we divert part of the current through that cell. This causes a
reduction in power and a reduction in flow rate. To counter the flow rate reduction,
we can increase the compressor current and let the other cells work harder.
Formulated like this, it becomes obvious that it is most effective to shunt the cell
that is least efficient, i.e. dissipates the most power. Naturally, this is the cell with
the highest resistance.

In order to select only the shunt configurations that belong to the Pareto-optimal
set, we need to compare shunt configurations. One of the parameters of
comparison is the maximum flow rate. The other parameter is the power
consumption. Because the power consumption does not scale linearly with the flow
rate, we must normalize the power consumption for a fair comparison. We define
the normalized power consumption as the power consumption when we have a
mass-flow rate of 1 g/s.
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2F /H + ¥, (u0 — U;) /Rc;

I =icomp + - Equation 10: Normalized current
k
P = fz E; (f) Equation 11: Normalized power
i=1
Where:

[ is the normalized current, i.e. current for 1 g/s [A].
P is the normalized power, i.e. power forl g/s [W].
k is the number of cells in the compressor.

icomp is the back-diffusion compensation current [A].
u0 is the pressurization voltage [V].

U is the modelled offset voltage [V].

R is the modelled equivalent resistance [(2].

Rc is the cell resistance [{2].

H is the molar mass of H2 [g/mol].

F is the Faraday constant [A4 * s/mol].

E;(I) is cell voltage i for current I [V].

We define the algorithm that finds the Pareto-optimal shunt configurations for a
compressor with k cells in polynomial time next.
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Algorithm 1: Find the Pareto-optimal shunt configurations

FindOptimalShuntConfigs(Rc, Rs,rp,u0,, umax, icomp, imax, k)
1: o Input: Aset Rc = {Rcy, ..., Rcy }, with cell resistances, a set
Rs = {Rs;, ..., Rsy } with shunt resistances, a cell plate resistance rp, a
offset voltage u0, a maximum cell voltage umax, a compensation current
icomp, a maximum compressor current imax, and a number of cells k.
2:  © Output: A set X2 with up to k + 1 compressor models, where every
model contains as set Rc = {Rcy, ..., Rcy } with cell resistances, a set
S ={S;, ..., Si} with bits that represent the shunts, a set
R ={Ry, ..., R} with equivalent cell resistances as specified in section
4.1.1,asetU = {Uy, ..., U, } with offset voltages as specified in section
4.1.2, a minimum compressor current imin, and a maximum
compressor current imax.
X1 « @, X2 « @, Initialize S; « Oforall1 <i < k.

3

4

5: © Getthe sorted indices for Rc and solve models

6: J < SortDescend({1,...,k},Rc)

7: X1 « SolveModel(S, Rc, Rs, rp, u0, umax, icomp, imax, k)

8: fori=1tokdo

9: ] <—]i, S] <1

10: X1 « X1 U SolveModel(S, Rc, Rs, rp, u0, umax, icomp, imax, k)
11: end for

13: © Only keep models that belong to the Pareto-optimal set
14: fori=1tok + 1do

15: & flowge,(X1;,), p < powery,prm(X1;), add < True
16: forj=1tok + 1do

17: if i = j then continue

17: ifflowmax(le) > f and powernorm(le) < p then
18: add < False, break

19: end if

20: end for

21: ifadd then X2 « X2 U X1;

22: end for

23: return X2
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Algorithm 1 starts with sorting the cell resistances in descending cell resistance
order. Next, we consider the situation where no cells are shunted and solve this
configuration in SolveModel as described in section 4.1 and implemented in
Appendix A.2. In the following iterations are cells shunted one by one until all cells
are shunted. With every newly shunted cell we solve and store the resulting model.
In the second loop are only the models that belong to the Pareto-optimal set added
to the output X2.

Let us consider the time complexity of the FindOptimalShuntConfigs algorithm.
If we apply the Heapsort algorithm from (Williams, 1964), we can do the sorting
step in O(klog, k) time. Solving a model takes O(k?) time, since we solve k
models in the first for-loop, we find a time complexity of 0 (k?3) for the first loop. If
we consider the second for-loop, we find that we can execute this loop in 0(k?)
time. We conclude that the computational complexity is determined by the first
for-loop which gives us a resulting time complexity of 0 (k3).

5.2. Problem P2 —select shunt configurations and decide how much
current to feed through each compressor

In the previous section are the shunt configurations modelled and the Pareto-
optimal configurations returned, in this section we decide which shunt
configuration to use and how much current to feed through each compressor such
that we meet the hydrogen flow demand. We will use a dynamic programming
approach as discussed in section 3.2.1. To this end, we develop an algorithm for
when all power consumptions are integers. Let us assume that we have a system
with a total of N compressors. For every compressor we define a set X that contains
modelled shunt configurations. For every model x € X, we define powery,,, (x),
powery;qn(x), and flow(x,p) as the minimum, maximum power consumption
and flow rate for model x and power p, respectively. For a subset
Y € {x; € X; ... xy € Xy}, and a set Z with the respective power consumption for

every element in Y. We define flow(Y,Z)=Z|-i|1flow(Yi,Zi) and

l

power(Z) = lezll Z;. Moreover, we define powery,; as the maximum total power
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consumption for the entire system. Forevery1 < i < Nand 1 < j < power;,; we
define.

Ali,j] = Max( flow(Y,Z):Y < {x; € X; ... x; € X;},
poweroy, (Yy) < Z, < powery;gn(Yy) for every Y, €Y
and power(Z) =)

In other words, A[i,j] denotes the maximum flow of subset Y for the first i
compressors with at most one model per compressor such that power Z,, for every
model Y, € Y stays within its lower and upper limits and power(Z) is exactly j.
When element A[i, j] does not exist, we specify that A[i, j] = 0. In order to extract
the solution, we also fill tables P and J. Table P stores the power such that P; ;

contains the power of compressor i thatis used in 4; ;, and table J stores the model

J?
index such that J; ; contains the model index for compressor i that is used in 4; ;.
We present the integer algorithm for N compressors next.
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Algorithm 2: Integer algorithm that fills tables A, P, and |

IntegerFillTables(X, N, powersy:)
1: o Input: AsetX = {X;, ..., Xy}, where every X; € X contains at most k
compressor models for compressor i, a number of compressors N,
and a total system power powery,;.
2: © Output: A table A with N rows and powery,; columns, for which every
A[i, j] contains the highest flow for the first i compressors and power j,
a table P that is similar to table A except that it contains the power of
compressor i for total power j, and a table J that is also similar to table
A except that this one contains the index of the shunt configuration of
compressor i for power j.
Initialize A; j « Oforalll1 <i < Nand1 <) < power;,
Initialize P; j < O0and J;; « Oforalll <i < Nand1 <j < power,

for j « powery,, (X1 ;) to powery;gn(X1,;) do
. ifflOW(Xl’i,j) > Al,j then Al,j «— flOW(Xl,i'j)l ]1,j «— i, Pl,j <—]
9: end for
10: end for
11: fori < 2to N do
12:  A; < A4
13:  forj « 1to Length(X;) do

3
4
5:
6: fori < 1toLength(X;)do
7.
8

14: for k < powery,, (X; ;) to powery;,n (X; ;) do
15: f < flow(X;;, k)

16: iff >A;,thenA;, < f, Jixr <J, Pix < k
17: forl < k + 1 to power;,; do

18: if A;_1 ;- = 0 then continue

19: a—Ai 1kt f

20: ifa>A;;thenA;, «a, J;; «j Py <k
21: end for

22: end for

23:  end for

24: end for

25: returnA,P,]
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The integer algorithm returns the sets A4, P and ] that make it possible to select the
maximum flow rate for a power consumption efficiently. We execute the integer
algorithm and fill the tables with a time complexity of.

N
0 2 Z (powerhigh(x) - pOWBTlow(x)) * POWertor

i=1 x€X;

Let us define powery, 4, as the maximum power consumption of a compressor.
Now, because we always have that |X;| < k + 1, powery; g, (x) — powery,,, (x) <
POWeTyax, aNd power,,, < N * power,,,, we can simplify the time complexity to.

O(N? = k * power,,q%)

In order to implement the algorithm with real power consumptions, we must first
convert them to integers. Unfortunately, this introduces rounding errors. In order
to manage the rounding errors, we implement a polynomial-time approximations
scheme as explained in section 3.2, which implies that we develop an algorithm for
which we have a total power consumption of at most (1 + €) * OPT, with OPT
being the optimal power consumption, and € > 0 being the tuning parameter that
defines the trade-off between accuracy and speed.

To the end of converting the real powers to integer powers, let us define power; 5
as a lower bound on the optimum power consumption such that we always have
that OPT = power;z. We calculate the lower bound power consumption by
assuming that we have just one cell with the minimum cell voltage umin that meets
the flow-rate demand. We first calculate the required current for demand d, which
we then multiply with the minimum cell voltage umin to get the lower bound
power consumption. The minimum cell voltage is calculated as the pressurization
voltage u0, plus the minimum voltage over the resistive element in the cell.
Because the minimum cell current is the back-diffusion compensation current
icomp, we take the product of icomp and the minimum cell resistance rmin to
calculate the minimum cell voltage in the equation below.
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d

power g = W

* umin
Equation 12: Lower bound power consumption

umin = icomp * rmin + u0

We further simplify the lower bound power consumption and convert the real
powers to integer powers, with the following equation.

. power(x)
power*(x) = |—————
A
A=gx power; g Equation 13: Converting to integer power
N
2F x d x umin
power;p =

H

We tune the scaling with parameter € > 0, where € defines the maximum rounding
error as error < &€ * powerygz / N.

We can now convert the real powers to integer powers and execute the following
algorithm.
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Algorithm 3: Fill system tables
FillTables(X,N,K,d,umin, €)

1:

12:
13:

14:

> Input: Aset X = {X;, ..., Xy}, where every X; € X contains at most k
compressor models for compressor i, a number of compressors N, a
total number of cells K, a flow demand d, a minimum cell voltage umin,
and a tuning parameter ¢.

o Output: A table A with N rows and power;,; columns, for which every
A[i, j] contains the highest flow for the first i compressors and power j,
a table P that is similar to table A except that it contains the power of
compressor i for total power j, a table J that is also similar to table A
except that this one contains the index of the shunt configuration of
compressor i for power j, and a conversion factor A.

= Convert to integers

poweriy: < 0

fori = 1to N do power;, < powerioe + powerngn(Xiast)
power; g < 2F xd x umin/H

*

A < e xpower,g/ N, power;,;* « [powery,;/A]
power,,, " (x) < [powery,, (x)/A] for every x € X; ;

powern;gn*(x) < |powern;gn(x)/A| for every x € X;

: flow™(x,p) « flow(x,p * A) for every x € X; j and

poweroy,” (X) < p < poweryigy™ (X)

Compute tables A4, P and J with algorithm IntegerFillTables for the
number of compressors N, total power power;,;”, power consumptions
power,y, " (X), powery; " (x) instead of powery,,, (x), powery;gp (x)
respectively, and, flow™(x, p) instead of flow(x, p).

return 4, P,/, A

With the conversion to integers included, we find a resulting time complexity of.

0 N3 % k * powerin .\ 0 N3 x k * power,, 5, >
€ * power; g € x d x umin
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We report the final solution with the following algorithm.

Algorithm 4: Select system configuration

SelectSystemConfig(X,N,A,P,],d,A)

1: o Input: AsetX = {X, ..., Xy}, where every X; € X contains at most k
compressor models for compressor i, a number of compressors N, a
table A with N rows containing the maximum flows, a table P
containing the compressor power for the respective elementin 4, a
table J containing the shunt configuration index for the respective
elementin 4, a flow rate demand d, and a conversion factor A.

2: © Output: A set Y that contains for every compressor the selected
model, and a set Z that contains the power for the respective
COmMpressor.

3
4: Y <@, Z <0, fmax <0

5: fori=1to|Ay]| do

6: if Ay; > fmax then fmax « Ay;,j < i

7: if Ay; = d then j « i break

8: end for

9: fori=Ntoldo

10: ifj=0orJ;; =0thenY « Y UX;,,Z « Z U 0 continue
11: ke ], YeYUXy, Z<ZUA*P,;

12: ] <—] - Pi,j

13: end for

14: returnVY, 7

Algorithm 4 uses the previously constructed tables P and | to extract the system
configuration that meets the demand and consumes the least integer power in
O(N? x power,,,, / € * d * umin) time. When a compressor is not used, we
assign a configuration that has no shunts enabled such that we avoid the reversion
of hydrogen flow as explained in chapter 4. When the demand cannot be met, we
output the configuration that gives the highest flow rate.
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With the presented algorithms, we can find a solution in polynomial time.
Unfortunately, we cannot guarantee an optimal solution anymore. Instead, we
guarantee that we find the solution that meets demand d when possible, and for
which we have that power < (1 + €) * OPT, with OPT being the optimum power
consumption.

Proof. To prove that the error is at most € * OPT. Let the set Sopt be the
optimal subset for a given input with power(Sopt) = OPT. Let S denote
the subset returned by the algorithm. Since we did not change the flow rates,
subset Y has flow at least d. The computed solution is feasible. We must now
show that power(S) < (1 + ¢) * OPT. Because S is optimal for the new
values, we have that power*(S) < power*(Sopt). Moreover, we have.

ower(x ower(x
powertr) A ( )Spower*(x) S—p A )

power(S) = Xyespower(x) < Yyes A * power” (x)

= AZxES power*(x) < Ax ZxESopt power*(x)

power(x)

A +1

<Ax ZxESopt
= erSopt power(x) + A |Sopt|
< Yxesoptpower(x) +AxN

= OPT + € * power,g < OPT + ¢ x OPT

We can conclude that power(S) < (1 + €) * OPT.

We have found which shunt configurations to pick, which compressors to use and
how much power to give to the compressors. To calculate how much current we
need per compressor, we rewrite equation 7 to the following quadratic formula
that solves for compressor current I, using the offset voltages U, equivalent
resistances R and power P.
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I_—ZU+\/(ZU)2+4P YR
B 2YR

Equation 14: Convert power to current

5.3. Problem P3 — adapt the algorithm such that it can be implemented
in the proposed compression system

It remains us to adapt the algorithm such that it can be implemented in the
proposed hydrogen compression system. This includes n skid nodes that are
connected to each other in the outer network, and at most m compressors per skid
that are connected to each other in the inner network. With the approach
proposed next, we implement the algorithm in a distributed manner both to
decrease runtime and to decrease bus utilization.

We propose to execute the algorithm in four sequential steps.

1. Each compressor first executes the FindOptimalShuntConfigs algorithm
and transmits the Pareto-optimal shunt configurations to the respective skid
node as illustrated with the red arrows below.

outer communication bus

SKID 1 <« S SKID n
3
o
S
M QR | COMPRESSOR 3 A 2| 2| cOMPRESSOR
a1 1 o915 | M )
XN Q é X|IN|= Q
R| R 2| COMPRESSOR T R 22| COMPRESSOR
[l ol & [l Wl
-~ m o, -l m @
XN | = @ X|IN|P @

Figure 18: Communicating the Pareto-optimal shunt configurations

2. When the models are received by the skid, it executes the FillTables
algorithm for the compressors within the skid but with
A « & x power; g/ Ngyg, for the total number of compressors in the system
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Ngys. When done, every skid broadcasts the maximum flow rates per power
consumption, i.e. the last row from table A, to the other skids as illustrated
by the red arrows below.

Figure 19:

outer communication bus

sKiD1
{9,

SKIDn
o]

COMPRESSOR
1

COMPRESSOR
1

213D
[ALE "]
T13D
A1
(AN ES]
T13

SNQ UO0IIVIIUNWILIOD J3UU]
SNQ UOIVIIUNWILIOD J3UU]

COMPRESSOR
m

COMPRESSOR
m

X113
[ANED)
T3
J13d
<130
T3

Broadcasting the maximum flow rates per power consumption values

3. When all values are received, every skid executes a variation of the

IntegerFillTables algorithm with the broadcasted values as input. The key
here is that every skid uses the same row ordering when filling the tables
such that all skids select the same solution. Every skid can now find for the
compressors within the skid, which shunt configurations to use and how
much power to give, similar as implemented in SelectSystemConfig. The
last step is for the skids to communicate the selected shunt configuration
and requested power to the compressors, illustrated by the red arrows

below.

outer communication bus

I I

SKID1 e 3 SKIDN e
o] ] o) 35
o} 2 o, 3
a ]
S a
(o]
M| R R compressor | | 3 [ | R |R| cOMPRESSOR 3
=44~ S cIElE e 3
1 3, 1 IS
x|N|R ) ik 3
ololo = ololo S
m |/ | M| COMPRESSOR g m | M| M| COMPRESSOR 2
X|N|P X|IN|P ©

Figure 20: Communicating the selected shunt configurations and requested power

consumptions
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4. All that is left is for the compressors to enable the selected shunt
configuration, convert the requested power to a compressor current with
equation 14, and set the newly calculated current.

Since we used the total number of compressors in the system Ngys when
converting to integers, we can still guarantee a power consumption that is at most
(14 €) * OPT. The complete algorithms for the compressor and skid are provided
in Appendix A and Appendix B respectively.
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Chapter 6

Results

In this chapter are the computational, space, and communicational complexities
presented for the adaption described in section 5.3 and implemented in Appendix
A and Appendix B. To the end of quantizing these complexities, let us define a
system with a variable skid size of 1 < n < 100 skids, with m = 10 compressors
per skid and kK = 120 cells per compressor. We define the pressurization voltage
u0 = 60 mV, and the compensation current icomp =5 A. We have the limits
umax = 600 mV and imax = 200 A. Let us also define cell resistance R, = 2 m(},
shunt resistance R; = 0.6m(), and cell plate resistance R, = 1m(). Such a system
would be able to achieve a mass-flow rate of over 21 Mg/day when n = 100. In
this system, we will use a demand d that is 80% of the maximum flow rate and
consider a maximum deviation of 1%, 2%, and 5% from the optimum power
consumption, i.e. ¢ = 0.01, e = 0.02 and € = 0.05.

6.1. Computational complexity

We will first consider the time complexity and find that after implementing the
algorithm, we have a computational complexity of 0 (k3) for the compressor node.
For the skid node we use the minimum cell voltage umin and the maximum
compressor power PpOWer,, ., to define the computational complexity as.

2

(n *m3 * k x power,, g,

n* « m* x power,, 4,2
€ * d *umin (e * d * umin)?
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To give some contrast, let us consider a simple exhaustive implementation in which
for every combination of compressors and shunt configurations the optimal
compressor currents are calculated. Let us assume that calculating the optimum
compressor currents is done in constant time, we would still need to solve every
combination. This gives us a computational complexity of O(2% * k?) for the
compressor and 0(2¥*™™) for the skid. Or in other words, around 10%°
computations for the compressor and 10%°9°° computations for the skid. If we
compare this to the presented algorithm, we have just 10® computations for the
compressor and at most 102! computations for the skid when & = 0.01.

To find out how the algorithm performs in an embedded environment, we
implement the compressor algorithm on a cortex-M3 processor running at
60 MHz, and the skid algorithm on a cortex-A9 processor running at 1 GHz. We
find an execution time of 110 ms for the compressor node and we plot the
execution time for the skid below.

Computation time skid

60 T T T T T T T
epsilon = 1%
epsilon = 2%
epsilon = 5%
50 B
=
S a0k 4
E
: e
= -
o 30 - 7
& //
=]
o
: ~
L - i
O 20 /
//'
0 — T 1 i 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of skids n

Figure 21: Skid computation time
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6.2. Space complexity

The compressor node must be able to store k + 1 models, a single model consists
of 0(k) elements, therefore we need to store 0 (k?) elements in the compressor
node. The skid node needs much more memory as it stores first the models of the
compressors. Secondly, the tables A, AP and AJ for the compressors within the
skid. Thirdly, the last row of table A for all skids in the system. And lastly, a system
table that consists of tables BA and BJ. For a minimum cell voltage umin and a
maximum compressor power power,, .., We find a space complexity of.

3 2 02
0 (m CK? 4 N * M> * POWeT g, + N * M= % powermax>

g*xd *umin

For the system in question, we find that we need just over 230 kB of memory for
the compressor. For the skid, we find that the memory usage scales linearly with
the number of skids in the system, see the plot below.

Memory usage skid
T T T
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[7} _
= /____./"'
4 — P T i
_.../""/
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Number of skids n

Figure 22: Memory usage skid
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6.3. communicational complexity

Because we implement the algorithm in a distributed manner, with multiple nodes
connected through a communication bus, we must also consider the
communicational complexity. We find that for the inner network, we communicate
at most O(m * k) models. With each model consisting of O(k) elements, we
communicate a total of O(m * k?) elements in the inner network. In the outer
network, we broadcast for each skid the last row of table A. For a minimum cell
voltage umin and a maximum compressor power poWery,,,, we find a
communicational complexity of.

0 n? x m? x power,, 4y
€ * d * umin

For the system in question, let us assume for both the inner and outer networks a
bus with a bit rate of 1 Mbit/s. In the worst-case, we require just over 15s of
communication time in the inner network. For the outer network we find a linear
relationship between communication time and the number of skids, see the plot
below.

Communication time outer network
20 T T T T T T T T T
epsilon = 1%
epsilon = 2% ~
epsilon = 5% -

Communication time [s]
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O = 1 Il 1 1 1 Il 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Number of skids n

Figure 23: Outer network communication time
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Chapter 7

Conclusion

In this thesis is a load-sharing algorithm presented for an electrochemical hydrogen
compression system. The presented algorithm is able to decide which cells to shunt
and how much current to feed through the compressors such that we meet a
certain hydrogen flow rate demand, respect the cell voltage and compressor
current limitations, and achieve near-optimal power consumption. More precisely,
we guarantee a power consumption of at most (1 + &) * OPT for some tuning
parameter € > 0, and the optimum power consumption OPT. Moreover, we
achieve this result in polynomial time and with polynomial space requirements.
Furthermore, for the proposed compression system, we have adapted the
algorithm to a distributed implementation with a polynomial communicational
complexity. We conclude that we have successfully solved the problem statement
and completed the related milestones.
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Appendix A.

Compressor algorithm

ProcessCompressor(id, Rc, Rs, rp, u0, umax, icomp, imax, k)

1:

> Input: A compressor identifier id, a set Rc = {Rcy, ..., Rcy}, with cell
resistances, a set Rs = {Rs;, ..., Rs; } with shunt resistances, a cell plate
resistance rp, an offset voltage u0, a compensation current icomp, a
maximum cell voltage umax, a maximum compressor current imax, and
a number of cells k.

> Output: Aset S = {§;, ..., S, }, with bits that indicate that the respected
shunt is enabled when the bit is set, and a compressor current /.

> Find, solve and transmit compressor models
X « TransmitModels(Rc, Rs,rp,u0,, umax, icomp, imax, k)

> Receive model index ix with power p for compressor with id
[ix, p] < ReceiveFromSkid(id)
X < Xiy

: © Calculate current and return results
o rsum <« Y. x. R, usum <« ). x.U

R (\/us:um2 + 4 *p*xrsum —usum) / 2 *xrsum

return x.S, |
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Appendix A.1. Find, solve and transmit compressor models

TransmitModels(Rc, Rs,rp, u0, umax, icomp, imax, k)

1:

o Input: A set Rc = {Rcy, ..., Rcy }, with cell resistances, a set
Rs = {Rs, ..., Rs } with shunt resistances, a cell plate resistance rp, a
offset voltage 10, a maximum cell voltage umax, a compensation current
icomp, a maximum compressor current imax, and a number of cells k.

= Output: A set X with at most k + 1 compressor models, where every
model contains a set Rc = {Rcy, ..., Rc; } with cell resistances, a set
S = {8, ..., Sx} with bits that represent the shunts, aset R = {R, ..., Ry}
with equivalent cell resistances, a set U = {Uy, ..., U} with offset
voltages, a minimum compressor current imin, and a maximum
compressor current imax.

Initialize S; < O forall1 <i < k.

X <0, fmax « @, pnorm « @

= Get the sorted indices for Rc and solve models
] « SortDescend ({0, ..., k}, Rc)
fori=1tok + 1do
ifi >1thenj « J;_4, §j <1
X; « SolveModel(S, Rc, Rs, rp, u0, umax, icomp, imax, k)
pnorm; < powernorm(X;, icomp, u0)
fmax; < flowmax(X;, icomp, u0)

: end for

: = Only transmit models that belong to the Pareto-optimal set
cfori=1tok + 1do

add < True
forj=1tok + 1do
if i = j then continue
if fmax; = fmax; and pnorm; < pnorm, then add < False, break
end for
if add then TransmitToSkid (i, x)

: end for
: return X
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Appendix A.2.  Solve model

SolveModel(S, Rc, Rs,rp, u0, umax, icomp, imax, k)

1: o Input: AsetS = {S;, ..., S, }, with bits that indicate that the respected
shunt is enabled when the bit is set, a set Rc = {Rc;, ..., Rcy}, with cell
resistances, a set Rs = {Rs, ..., Rs;} with shunt resistances, a cell plate
resistance rp, an offset voltage u0, a maximum cell voltage umax, a
compensation current icomp, a maximum compressor current imax,
and a number of cells k.

2: © Output: A compressor model X that contains as set Rc = {Rcy, ..., Rcy}
with cell resistances, a set S = {5, ..., S;.} with bits that represent the
shunts, a set R = {R;, ..., R} with equivalent cell resistances, a set
U ={U,, ..., Uy} with offset voltages a minimum compressor current
imin, and a maximum compressor current imax.

Initialize X. Rc; < Rc; forall1 <i <k

Initialize X.R; < Rc; forall1 <i <k

Initialize X. U; <« uOforalll1 <i <k

= Create sections

istart; < 1,s « S;,n« 1
9: ifk > 1then

10: fori < 2tokdo

11: if s # S; then

12: lend, «i—1,s<S,nen+1
13: istart, < i

14: end if

15: end for

16: end if

17:iend, < k

18:

19: = Solve sections

20:fori =1tondo

21: is « istart;, ie « iend;

22: if §;5 then

23: [R, U] « SolveShuntedSection(Rc;s.jc, RSis.je, TP, u0,ie —is + 1)
24 X. Ris:ie — R, X. Uis:ie «U

25: endif
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26: end for

27:

28: o Set current limits and return model

29: X.imin « }V[m’({((icomp *X.Rc; —X.U; +u0) / X.R;)
<I<

30: X.imax < Min (imax, (umax — X.U;) / X.R;)

1<i<k

31: return X

Print Date: 03 Jun 2020 Page 59 of 72



COMPRESSOR ALGORITHM

Appendix A.3. Solve shunted section

SolveShuntedSection(Rc, Rs,rp,u0, k)

1: o Input: Aset Rc = {Rcy, ..., Rcy }, with cell resistances, a set
Rs = {Rs;, ..., Rs; } with shunt resistances, a cell plate resistance rp, an
offset voltage 10, and a number of cells k.

= Output: Aset R = {R;, ..., R} with equivalent cell resistances, and a set
U ={U,, ..., Uy} with offset voltages.

N

> Solve for current source
Initialize Rx; « Oforall1 <i <k
Initialize Ry; « Oforall1 <i <k
Initialize Rz; « rpforall1 <i <k
if k > 1 then

fori =2tokdo
10: Rz « rp*(RSj—1+RZ;—1)
. l

eI BEW

Rcij—1+RzZ;j_1+RYy;_1+RSj_1+71D

rp*(RCi—1+RYy—
11: Ryl — 14 ( 1—1 Yi 1)
Rcij_1+Rz;_1+Ry;_1+RSj_1+1D

Rcij_1+Ry;_1)*(RSj_1+RZ;_
12: in(_(ll Vi-1)*(RSi—1 i-1)
Rcij—1+RZj_1+RYy;_1+RSj_1+7D
13: end for
14: end if

15: rpar « .

(1/(Ryk+Rck))+(1/(Rzg+Rsk+1p))

16: r < ), Rx + rpar

17:

18: © Calculate equivalent cell resistances

199 R< 0, Un< 0

20: Uny < rpar,ic « Uny/(Rcy + Ryy), Ry < Rcy, * ic
21: if k > 1 then

22: ifk > 2 then

23: fori=k—1to2do

24: Un; « Un;y 1 + Rx;44
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26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:

40:
41:

42:
43:
44.
45:
46:

47:

48:
49:

50:
51:
52:
53:
54.
55:
56:
57:
58:

COMPRESSOR ALGORITHM

ic « (Un; — ?:i+1 R;)/(Rc; + Ry;)
R; < Rc; * ic
end for
end if
Ry <1 =%, R;

end if

> Solve for voltage sources

Rt « ,Rb « @

Initialize U; < uO forall1 <i <k
fori =1tokdo

> Simplify
ifi > 1 then
1

Rt < G Rerrnrronr @)
ifi > 2 then

forj=2toi—1doRt; «
end if
Tttt « Rti—l + RCi + RSl'
else rtt « Rc; + Rs; +1p

end if
if kK > i then
1

Rbi = G e ronrronr /e
ifk > i+ 1then

forj=k—1toi+ 1doRb; <

1
(1/(Rcj+Rsj+Rtj_1))+(1/rp)

1
(1/(Rcj+Rsj+Rbjy1))+(1/7D)

end if

rbb < Rb;,
else rbb =rp
end if

ic <« u0/(rtt + rbb)

> Calculate offset voltages
Ui(—Ui—iC*RCi
ifi > 1 then
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59: icc « ic

60: ifi > 2 then

61: forj=i—1to2do

62: icc « (icc * Rt;)/(Rtj_, + Rc; + Rs;)
63: U; « U; — (icc * Re;)

64: end for

65: end if

66: icc « (icc * Rt;)/(Rc; + Rs; + rp)
67: U, « U; — (icc * Rcy)

68: endif

69: ifk > ithen

70: icc « ic

71: ifk > i+ 1then

72: forj=i+1tok—1do

73: icc « (icc * Rb;)/(Rbj_; + Rcj + Rs;)
74: U; « U; — (icc * Re;)

75: end for

76: end if

77: icc « (icc * Rb,)/(Rcy + Rsy + rp)
78: Uy < U, — (icc * Rcy,)

79: endif

80: end for

81: return R, U
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Appendix A.4. Functions

Appendix A.4.1.  Calculate maximum flow

icomp) *x.R + x.U —u0

l i O)_Hz(x.imax—
flowmax(x,icomp,u0) = F x.Rc

Where:

x is the compressor model.

icomp is the back-diffusion compensation current [A].
u0 is the pressurization voltage [V].

H is the molar mass of H2 [g/mol].

F is the Faraday constant [A4 * s/mol].

Appendix A.5.  Calculate normalized current

2F/H + Y (u0 —x.U)/x.Rc
Yx.R/x.Rc

currentnorm(x, icomp,u0) = icomp +

Where:

x is the compressor model.

icomp is the back-diffusion compensation current [A].
u0 is the pressurization voltage [V].

H is the molar mass of H2 [g/mol].

F is the Faraday constant [A4 * s/mol].

Appendix A.6. Calculate normalized power

powernorm(x, icomp, u0)
= currentnorm(x, icomp, u0)

* Z currentnorm(x,icomp,u0) * x.R + x.U
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Appendix B.

Skid algorithm

ProcessSkid(id,n,m,N, K,rmin, d, icomp, u0)

1: o Input: A skid identifier id that defines the system table row index, a
number of skids in the system n, a number of compressors in the skid
m, the total number of compressors N, the total number of cells K, the
minimum cell resistance rmin, a flow-rate demand d, a compensation
current icomp, and an offset voltage u0.

X0, IX @0 AA < P AN « @

> Calculate conversion factor
umin « icomp * rmin + u0
power; g < 2F xd * umin/ H
A « g xpowerg /n*xm

> Receive compressor models

fori =1tomdo

10:  [IX;, X;] < ReceiveFromCompressor(i)
11: end for

N A Al

13: o Build tables and communicate with other skids
14: [A, AP, A]] « BuildSkidTable(X,A,m,d,icomp,u0)
15: BroadcastToSkids(A)

16: fori = 1tondo

17: ifi = id then AA; < A, AN; < |A| continue
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[AA;, AN;] < ReceiveFromSkid(i)
end for

o Build the system table and select the best configuration
[BA, B]] < BuildSystemTable(id, AA,AN,n,d)
[Y,Z] « SelectSkidConfig(X,1X,BA,B],AP,A],A,m,d)

o> Transmit model index and power to compressors
fori =1tomdo
TransmitToCompressor(i,Y;, Z;)
end for
return
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Appendix B.1.  Build skid table

BuildSkidTable(X,A,m,d, icomp, u0)

1:

> Input: A set X = {X;, ..., Xy} for which every X; € X contains the
compressor model for compressor i, a conversion value A, a number of
compressors in the skid m, a flow-rate demand d, a compensation
current icomp, and an offset voltage u0.

= Output: A row from table A that contains the skid flows per power
consumption, a table P that is later used to find how much power each
compressor needs to consume, and a table J that is later used to find
which shunt configuration to use.

= Calculate total skid power
poweri,: < 0
fori = 1tomdo power,,; < powery,; + powermax(X; qst)

poweryy” < [powery,. /Al

o Fill first row
Initialize A; j « Oforall1 <i < 2and1 <j < power;,”
Initialize P;j « Oforall1 <i <mand1 < j < powery,"

: Initialize J; ; « Oforalll1 <i<mand1 <) < power,"
: fori < 1toLength(X;) do

plow < powerlow_int(Xy;,A)

phigh < powerhigh_int(X, ;, A)

for j « plow to phigh do
f < flowp(lei,j * A, icomp, uO)
iff>A;jthenA,; < f, Pj«<j, Jij <
if f > d then break

end for

: end for
: ifm = 1thenreturnA4,, P, ]

o Fill remaining rows

: fori <« 2tomdo

ipre « (i modulo 2) + 1
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27:  icur « ((i — 1) modulo 2) +1
28: Aicur < Aipre
29: forj « 1to Length(X;) do

30: plow < powerlow_int(X; j, A)

31: phigh < powerhigh_int(X;;,A)

32: for k < plow to phigh do

33: f < flowp(X, ;, k = A, icomp, u0)

34: iff > Aicur,k then Aicur,k < f» ]i,k < jr Pi,k <k
35: for [ < k + 1 to power;,;" do

36: if Aiprev, - = 0 then continue

37: a < Aiprev,l—k +f

38: ifa>Ajcyr thenAy < a, Jip < j, Piy< k
39: if a > d then break

40: end for

41: end for

42: end for

43: end for

44: return A;.,, P,/
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Appendix B.2.  Build system table

BuildSystemTable(id, AA, AN,n, d)

1: o Input: A skid identifier id that defines the system table row index, a
table AA for which every row represents the maximum flow rates for
a skid, a table AN that contains for every row in AA the data length, a
number of skids in the system n, and a flow rate demand d.

2: © Output: A row from table BA that contains the system flows per power
consumption, and a row from table BJ that is later used to find which
skid configuration to use.

> Calculate total system power
powery, < Xi=1 AN;

= Process first row

Initialize BA; ; « Oforall1 <i <2and 1 <j < power;,,
9: Initialize BJ;; < Oforalll <i<2and 1 <j < power;,;
10: forj « 1to AN; do

11:  BA;j « AAy

12: ifid = 1and BA;;thenBJ;; < j

13: end for
14: ifn = 1 thenreturn BA,, BJ;
15:

16: © Process remaining rows

17: nsum « AN,

18: fori « 2tondo

19:  ipre « (imodulo 2) +1

20:  icur « ((i — 1) modulo 2) + 1
21:  BAjcyr < BAjpre

22: forj < 1to AN; do

23: f — AAi,j

24: if f = 0 then continue

25: lff > BAicuT',j then

26: BAicur,j « f

27: if i = id then BJ;cyj < J
28: end
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for k « 1tonsumdo
if BA;prevx = 0 then continue
a < BAiprev,k + f
if a > BAcyr x+j then
BAicur,k+j «<a
ifi = id then BJ;cyy k+j < J
else B]icur,k+j < B]iprev,k
end
if a > d then break
end for
end for
nsum < nsum + AN;
end for
return BA;cyr, Blicur
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Appendix B.3.  Select skid config

SelectSkidConfig(1X,BA,BJ,AP,AJ,A,m,d)

1: o Input: AsetlX = {IX;, ..., [X,,} for which every IX; € IX contains the
respective compressor model indices, a row BA that contains the
system flows per power consumption, a row BJ that contains indices
that match row BA to rows AP and AJ, a table AP that contains the
powers for the compressors in the skid, a table A/ that contains the
shunt configuration for the compressors in the skid, a conversion factor
A, a number of compressors in the skid m, and a flow rate demand d.

2: © Output: AsetY = {Y}, ..., Y}, } for which every Y; € Y contains the
compressor model index for compressor i,and asetZ = {Zy, ..., Z,;,} for
which every Z; € Z contains the power for compressor i.

je<0,Y<0,Z<0 fmax < 0

fori = 1to |BA| do
if BA; > fmax then fmax « BA;,j « BJ;
if BA; = d then j < BJ; break

end for

fori =mto1do

0: ifj=0o0rAJ;; =0thenY; < X;,, Z; «< 0 continue

11: ke« AJ, Y, « Xy, Z; < Ax AP,

12: ] <—] - APi,j

13: end for

14: returnV, Z

i S A A A
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Appendix B.4.  Functions

Appendix B.4.1.  Calculate maximum power

powermax(x) = x.imax (x imax * z x.R+ z X. U)

Appendix B.4.2.  Calculate minimum integer power

x.imin (x.imin * Y, x.R + Y. x. U)
A

powerlow_int(x,A) =

Appendix B.4.3.  Calculate maximum integer power

x.imax (x.imax * Y. x.R + Y, x.U)
A

powerhigh_int(x,A) = {

Appendix B.4.4.  Calculate mass-flow rate for current

icomp) *x.R +x.U —u0

. . HoU-
flowi(x,I,icomp,u0) = ﬁz

Where:

x is compressor model.

I is the compressor current [A].

icomp is the compensation current [4].
u0 is the pressurization voltage [V].

H is the molar mass of H2 [g/mol].

F is the Faraday constant [4 * s/mol].

x.Rc
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Appendix B.4.5.  Calculate mass-flow rate for power

flowp(x,p,icomp,u0)

_ { JCx.U)2+4xpxYx.R—Yx.U
= flowi (x 2SR

,lcomp, u0>

Print Date: 03 Jun 2020 Page 72 of 72



