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Nose Breathing or Mouth Breathing?
A Thermography-Based New Measurement for

Sleep Monitoring
Zhengjie Huang, Wenjin Wang, and Gerard de Haan

Abstract

Nose breathing is preferred during sleep, although health issues may cause a subject to breathe through the mouth, and
long-term mouth breathing may raise other health issues like sleep apnea. This paper proposes a first-ever classification of nose
breathing and mouth breathing using the thermography of the subject. The measurement uses the relative temperature variations of
different facial regions to classify mouth or nose breathing. This measurement is particularly health-/well-being relevant as it can
be used as an early sign for sleep disorders or an indicator of sleep quality. An end-to-end processing flowchart has been provided
for proof-of-concept validation on real-life recordings of thermal videos. Furthermore, we transfer knowledge from visible domain
to thermal domain and augment existing data to address the lack of thermal training data to improve facial landmark accuracy.
Two volunteers participated in our experiments and our proposed method achieved an overall classification accuracy of 96% in
controlled lab conditions.

Index Terms

Thermography, Respiration.
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Nose Breathing or Mouth Breathing?
A Thermography-Based New Measurement for

Sleep Monitoring

I. INTRODUCTION

HEALTHY people breathe with both nose and mouth.
The nose can warm up and moisturize air from the

environment. Also, the chemicals produced by the nose im-
prove oxygen absorption in the lung. Breathing with mouth
becomes necessary because of a blocked nose or high-intensity
sports. Some people breathe with mouth occasionally while
some breathe with mouth almost exclusively which in the long
term can lead to a number of health issues like bad breath,
periodontal disease, throat and ear infections [1], palatine,
and pharyngeal tonsils hypertrophy [2]. It is even worse for
children. A study consisting of 661 children participants aged
from 6 to 12 years old shows that 26.8% of them are breathing
with their mouth [3] and their facial growth can be affected
that leads to unattractive facial features [4] if not treated
in time. Furthermore, up to 42% of mouth breathers also
have apnea according to a study [5]. Therefore, the mouth-
or-nose breathing classification is important for the following
reasons: early signs of mouth breathing can be captured by
overnight monitoring for prevention purposes; the ratio of
mouth breathing can be observed for evaluation of recovery
from mouth breathing.

Due to the discomfort and inconvenience caused by the
contact monitoring equipment, contact-less monitoring has
been a popular topic over the past few years and has achieved
great success. Most vital signs like respiratory rate, heart rate
can be monitored remotely with cameras [6]–[10]. However,
to the best of our knowledge, there is not even a contact-based
method that monitors the subject’s air passageway of breathing
(e.g., nose, mouth, or both). Also, most of the respiratory
rate monitoring methods based on RGB cameras count on the
chest or abdominal motion [11], thorax motion [12] which
can be inaccurate when apnea occurs since apnea sometimes
is also accompanied with chest or abdominal motion. These
drawbacks can be overcome with thermal cameras that capture
the temperature information as airflow directly indicates a
breath. Moreover, the price of thermal cameras has gone down
dramatically thanks to the development of sensor technology
that makes its application more affordable. Researchers [6],
[13] have validated the use of the thermal camera for respira-
tory monitoring. Those thermal-based methods mostly assume
nasal breathing which does not always hold. Therefore, it
is also important to know whether the subject is breathing
through nose or mouth while monitoring.

To allow more convenient and affordable monitoring of
breathing air passageways, we present an end-to-end process-
ing flowchart that can monitor the subject’s breathing air pas-

sageways based on thermography in this paper. It is achieved
simply with a thermal camera so that the monitoring is possible
even at home and much of the inconvenience of in-hospital
monitoring can be avoided. Our flowchart consists of two
major components. First, face detection and facial landmark
localization are done in the first frame to extract the nose
and mouth; Then, we process signals (i.e., respiratory signal,
motion signal) and compare the respiratory spectra from both
regions to arrive at the nose/mouth breathing classification for
every frame.

II. METHODOLOGY

In this section, we will give a detailed description of our
processing flowchart as shown in Figure 1.

A. ROI extraction

To enable the measurement of the nose and mouth area,
we first need to locate the nose and mouth, i.e., extract the
ROI. Our ROI extraction is composed of three steps which are
face detection, facial landmark localization, nose and mouth
extraction.

1) Face detection: Face detection on RGB images has been
advanced, by deep learning techniques and large annotated
datasets, to an almost mature status. Nevertheless, due to
the substantial differences between thermal images and RGB
images, methods that work for RGB images do not necessarily
work well on thermal images. Therefore, researchers are still
working on robust face detection methods on thermal images.
Pereira et al. [13] proposed to use the Otsu’s multi-level
threshold [14] to segment the image into multiple classes.
It takes advantage of the fact that the face is usually the
warmest object in the image. However, its performance de-
grades severely in scenes cluttered with objects of different
temperatures and it includes some unwanted areas like neck
area which is as warm as the face. The number of levels to
segment is also dependent on the actual scene. Furthermore,
their method relies on high-resolution thermal cameras that
are many times more costly than those low-resolution ones.
To obtain a Rectangular region of the face, Filipe et al. [15]
project the image horizontally and vertically and calculate the
maxima and minima of the projections to determine the start
and end index of the face area. Marzec et al. [16] explored
the characteristics of thermal facial images and assumed a few
rules based on general temperature distribution on faces and
facial anatomy. For example, the eyebrow area is usually less
bright than the upper part of orbits area in thermography; the
nose area is usually colder than the orbits area; the height of
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Fig. 1. The flowchart for the proposed nose-or-mouth breathing classification consists of two main parts: (i) detect the face and facial landmarks to extract
the nose and mouth region of interest; (ii) extract respiratory signals (temperature variations) from nose and mouth areas respectively and compare their
respiratory spectra of both regions to arrive at the nose/mouth breathing classification.

a nose is similar to the length of the eyebrow, etc. Those rules
may be applicable when detecting faces and selected points of
the frontal view of a face but not for profile views. Histograms
of Oriented Gradient (HOG) descriptors began to gain its
popularity from 2005 after its success in human detection
[17]. For classification purposes, the Support Vector Machine
(SVM) [18] classifier is often used in combination with HOG
descriptors. SVM is widely used as a binary or multi-class
classifier due to its capability in separating data of high
dimension into clusters. Kopaczka et al.conducted experiments
on face detection and proved that machine learning-based
methods are superior to specialized knowledge-based methods
[19]. However, due to limited training data, it failed to detect
faces of large poses.

Many heuristic face detection methods for thermal images
assume a clear scene, their performance degrades severely with
the presence of clutter and often include some unwanted area
like the neck. Those limitations can be overcome with the
utilization of facial features along with large training data. The
face detector we used in this paper is a cascaded face detector.
Firstly, we use a HOG-SVM detector trained on nearly 3000
thermal images [20]. Since the HOG descriptors are sensitive
to the size of the image, we scale the image if no face can be
detected in its original size. Secondly, if no face is detected in
the previous stage, we use the heuristic method proposed by
Filipe et al.since our input video always has a face in it.

2) Facial landmark localization: Facial landmarks can be
helpful for tasks involving facial features like face recognition,
emotion analysis, etc. In our case, instead of training two
detectors for detecting nose and mouth separately, we use
the landmarks to locate the ROI at once. Moreover, the facial
anatomy can also increase confidence in ROI extraction such
that things like the nose is under the mouth will not happen.

Existing facial landmark models can be roughly divided into

three categories that are Constrained Local Model (CLM),
holistic models, and machine learning-based models [21].
The development of facial landmark localization on RGB
images has also been significant after deep learning came
into play. Among all the machine learning-based models, deep
architectures like ResNet [22] and Hourglass [23] are widely
used due to the emerging of large annotated dataset and
their proven success. Different from traditional Convolutional
Neural Networks (CNN), the Hourglass architecture not only
has a top-down, bottom up design but also intermediate
supervision. Its distribution of capacity is more symmetric
thanks to its residual module [22]. It is, therefore, able to
capture features of different scales and retain them for later
stages. Face Alignment Network (FAN) proposed by Bulat
et al.is an Hourglass-based network. They trained the FAN
on a 2D dataset and claimed to have achieved saturating
performance on the dataset. Deep Alignment Network (DAN),
proposed by Kowalski et al., is a VGG-based network [24]. Its
main contribution is that it makes use of landmark heatmaps
to transfer the information of landmark estimates and refine
the estimates iteratively across stages.

The research of facial landmark localization on thermal
images is still at an early stage though. Due to substantial
appearance of thermal images and RGB images, existing facial
landmark models trained on RGB images do not work on
thermal images. Moreover, thermal facial images are low in
contrast and lack texture information compared to visible
images due to the relatively uniform temperature distribution
on the face. Kopaczka et al. [20] published a database of
fully annotated thermal images, such that it is possible to
train machine learning models for different purposes. They
also trained an Active Appearance Model (AAM) on thermal
images for facial landmark localization and then used the
facial features extracted from facial landmarks for emotion
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classification. Furthermore, they evaluated the performance of
an AAM (a holistic model) and a DAN [25] based model
respectively. Their results showed that DAN outperforms
AAM in many aspects including accuracy and speed. DAN
also shows promise by outperforming the other two machine
learning-based models - Multi-Task CNN and Patch-based
fully convolutional neural network classifier (PBC) in experi-
ments conducted by Poster et al. [26].

The advance of facial landmark model was not attributed
to the prosperity of deep learning methods, but also large
annotated dataset. However, when training data is not sufficient
like in thermal domain, transfer learning can be of help.
Transfer learning has been applied in many areas where
machine learning is actively used like natural language pro-
cessing (NLP) and Computer Vision. One notable example
is sentiment classification where the task is to classify the
reviews of a product into different categories. Training such
a classifier is not hard nowadays. However, considering the
amount of products, it is clearly not ideal to train a classifier
for every product from scratch. Although the distribution of
review data for different products can be different, they still
have patterns in common which can be adapted to a new
domain. This holds the same for our case where features like
the face anatomy are shared for the thermal domain and visible
domain.

To the best of our knowledge, the research of facial
landmark localization on thermal images is quite limited.
Considering that DAN has been proven feasible [20] and
has its advantage over some traditional methods on thermal
domain [26], we choose DAN as our facial landmark model.
For comparison, we also trained FAN on thermal images since
they performed similar on RGB images.

3) ROI validation: Given our ROI extraction methods as
described before, there will always be a detected nose and
mouth. However, there are cases that the detection results are
not valid. For example, the landmarks may be incorrect; the
landmarks are correct but the mouth or nose is covered by
something leading to no temperature variations; large motion
induced noises interfere heavily with respiratory signals. To
exclude those cases, we propose a signal validation module
that consists of two components: motion analyzer and signal
validator. These two components are cascaded meaning that
only if it passes one component will it go to the next
component

Because we track the subject’s face in the video on a
frame by frame basis, the motion of the face will cause
landmark variations in the temporal dimension. Since motion
detection relies on temporal variations of landmarks, we define
a window of 15 seconds to evaluation all motions within
the window. The window size is determined as a result of
a trade-off between response time (how long it takes for a
window to perceive motion) and noise-tolerance (how much
do noises affect our results). If the window is too large, a
drastic motion may persist in many windows thus invalidate
them. If the window is too short, noises are more likely to
dominate our target signals either motion signals or respiratory
signals. Such a window will also be consistently used in later
stages for signal analysis and classification. By calculating

the temporal variance of all landmarks as in Equation 1,
we can know the amplitude of the motion. By rejecting
all windows with amplitude higher than an empirical value,
we can exclude windows that contain large motions from
classification. Because the breathing air passageway is not
likely to change frequently, we hold the last valid classification
result until a new window is valid.

m =

∑n
i=1 ‖pi − σ(pi)‖

n
(1)

where pi is the position of the i-th landmark and σ(pi) refers
to the variance of i-th landmark’s location in a window.

Another assumption imposed by our method is that either
nose or mouth will be used for breathing. Therefore, at least
one of the two areas will have dominating respiratory signals
given no motions involved. We use the energy percentage of
signals within the respiratory band to represent the dominance
of respiratory signal as in Equation 2. When the dominance
value is larger than an empirical value which is 0.5 considering
noises caused by sensor drift and slight motions, we say the
signal is dominated by respiratory signals.

d =

∑
fmin≤f≤fmax

Yi(f)∑
f Yi(f)

(2)

where fmin and fmax represents the lower bound and upper
bound of the respiratory band respectively.

B. Mouth-or-nose breathing classification

The area used for air exchange has a higher temperature
variation because the air inhaled from the environment is
usually colder than the air exhaled through mouth or nose
given the condition that the room temperature is stable and
lower than the body temperature, which is usually the case.
Therefore, the temperature variations caused by air exchange
can be used for classification.

1) Respiratory signal extraction: Since the classification
relies on temporal variations, it involves a video sequence. As
aforementioned, we use a window of 15 seconds for signal
analysis.

First, we take the average value of the nose and mouth area
from each frame to compose the time-series signal:{ µn,k = 1

S(Vn)

∑
(p,q)∈Vn

i(p, q, k)

µm,k = 1
S(Vm)

∑
(p,q)∈Vm

i(p, q, k)
(3)

where i(p, q, k) represents the intensity of pixel at position
(p, q) of video frame k; Vn and Vm represents of pixel
collection of the nose area and mouth area respectively. S(V )
represents the number of pixels in V.

In addition, inspired by [27], we also take the standard
deviation of the nose and mouth area from each frame for
complementary use:

{ σn,k =
√

1
S(Vn)−1

∑
(p,q)∈Vn

|i(p, q, k)− µn,k|2

σm,k =
√

1
S(Vm)−1

∑
(p,q)∈Vm

|i(p, q, k)− µm,k|2
(4)
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Then, we construct windows by concatenating signals from
15 seconds of frames for further processing.

Ri = si|si+1|...|si+N−1
Ri+1 = si+1|si+2|...|si+N

(5)

where si refers to µn,k, µm,k, σn,k, or σm,k and Ri is the
i-th respiratory window; N refers to the number of frames
in a window (450 in our case); Symbol | means signal
concatenation.

Furthermore, each window is normalized such that they have
a mean value of 0 and a standard deviation of 1.

ŝi =
si − µs
σs

(6)

where µs and σs are the average and standard deviation of all
signals in a window, respectively.

Due to sensor drift and turbulence from the environment,
there are inevitably noises that are outside the respiratory rate
(RR) range which is 12 to 18 cycles per minute (cpm) [28] in
original signals. To exclude these effects, we filter all signals
outside the frequency range of possible RR. We also widen the
range to 12 to 40 to include some abnormal cases. A second-
order Butterworth filter is used such that signals of frequency
lower than 0.167 Hz and higher than 0.667 Hz (corresponds
to 12 cpm and 40 cpm) are filtered from windowed respiratory
signal Ri.

2) Respiratory energy comparison: After filtering out the
noises, the remaining signals consist of mainly breathing
signals. By comparing the time-domain signals, specifically,
respiratory signals of the nose area and mouth area, we can
know which one contributes to air exchange or if both of them
do.

As aforementioned, we use a window of 15 seconds (450
frames) and slide it through the whole video with a stride of 1
frame. Therefore, we get a classification result for each frame
in the video except for the last 15 seconds. For each window
Ri, we get its spectrum Yi by 1D Fourier Transform.

Yi = F(Ri) (7)

and choose the highest magnitude E within the respiration
band as an energy level indicator..

Ei = max
fmin≤f≤fmax

(|Yi(f)|) (8)

where |Yi(f)| refers to the magnitude spectrum at frequency
f ; fmin and fmax refers to the minimum and maximum
frequency of respiration band which are 0.167Hz and 0.667Hz
respectively.

During nose breathing, the respiratory signal of the nose
area will be stronger than that of the mouth area i.e., Enose >
Emouth. However, this is not necessarily the case during
mouth breathing. Because if the subject’s nose is clear, there
might still exist some involuntary air exchange through the
nose even when the subjects try to breathe through the mouth.
Since nose breathing and mouth breathing are not mutually
exclusive, it might be better to give a ratio indicating how
much mouth breathing contributes to the whole air exchange
instead of having a binary classifier.

p =
Emouth

Enose + Emouth
(9)
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Fig. 2. Motion indicator and mouth breathing ratio of the first experiment.
Motion occurs at the end of every minute accompanies with change of air
passageways.
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Fig. 3. Motion indicator and mouth breathing ratio of the second exper-
iment.Motion occurs randomly. Subject was breathing through nose in the
first two minute and mouth in the last two minute.

III. EXPERIMENTS

This section contains three parts. The first part is about a
motion detector. We will show an example of two videos with
motions and how we exclude the invalid signals. The second
part is about the facial localization methods. We will show how
transfer learning and data augmentation techniques improve
the training process and the final localization accuracy. The
last part is about the classifier in which we describe the
experimental setup and protocol for evaluating our proposed
classification method as well as the results of our method.

A. Motion detector

In the experiments, we test our motion detector on different
motions. In the first video, the subject was instructed to
change air passageways with large motion every minute. In
the second video, the subject was asked to have random and
frequent motions while breathing through nose in the first
two minutes and breathing through mouth in the last two
minutes. The motion indicator and mouth breathing ratio for
these two videos are shown in Figure 2 and 3. We can see that
the appearance of the motion does increase the value of the
motion indicator and after we exclude all the windows with
unacceptable motions (motion indicator > 1), the remaining
windows can be easily and correctly classified.

B. Domain Transfer and Data augmentation

We compare the performance of facial landmark models be-
fore and after applying domain transfer and data augmentation
techniques in this section. As aforementioned, two state-of-art
models will be used.
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1) Model Training: We trained both networks as per their
creator’s setting to maximize their performance. FAN was
implemented in Torch7 [29]. The initial learning rate was set
to 10−4 which was dropped to 10−5 after 15 epochs and to
10−6 after another 15 epochs. We trained a total of 40 epochs
and the accuracy indeed stopped increasing before it ended.
DAN was trained end-to-end. The initial learning rate was
set to 10−3. An Adam optimizer [30] was used to adaptively
adjust the learning rate and add momentum.

Initially, we trained both models only on the thermal dataset
[20] as a baseline for both model. Then we trained both models
on the augmented thermal dataset as an augmented version.
The domain transfer was achieved by fine-tuning a model that
had been trained on RGB dataset with the thermal dataset.
Lastly, we combine the domain transfer and data augmentation
by fine-tuning a RGB pre-trained model on augmented thermal
dataset. The pre-trained version of DAN was trained on the
300W dataset [31] with a total of 3148 images and the Menpo
dataset [32] with 6679 training image. FAN was pre-trained on
300-W-LP [33] which was augmented from 300-W dataset. To
address the issue that there is a lack of annotated data and it
is almost impossible to annotate the hidden landmarks of the
face, Zhu et al.employed 3D models to augment annotated
frontal faces to semi-frontal faces and even side-view faces.

2) Model evaluation: We first evaluate the performance of
the training process. The training error of two networks with
respect to the training epochs can be found in Figure 4. For
both networks, we can see that the training error of those with
domain transfer after the first epoch is a lot lower than those
without. Only in a few epochs (2 to 3), the models reached an
almost saturate status when domain transfer is applied. Also,
the data augmentation, which increases the diversity of the
dataset, improves accuracy. The standard way of evaluating
the performance of a facial landmark model is to calculate the
Normalized Mean Error (NME) between its predictions and
the ground truth as in Equation 10. The mean error for an
image is simply the average error of all landmarks.

d(ŝ, sgt) =
‖ŝ− sgt‖
lnorm

(10)

where ŝ and sgt are the prediction and the ground truth
respectively and ‖.‖ denotes calculating the L2 norm of two
landmarks. lnorm is a normalization value so that image size
does not scale the error. In line with prior art [25] [31] [34],
we take the inter-ocular distance as the normalized distance.

The mean error can indicate how well the prediction fits
the face for one image. However, when it comes to a large
dataset, only taking the mean is not very informative since it
can be biased by a small portion of data. Therefore, we use
the average error in combination with the Cumulative Error
Distribution (CED) of the whole dataset. We also used the
Area-Under-the-Curve (AUC) which is calculated as the area
under the CED curve up to a error threshold and then divided
by that threshold as in Equation 11.

AUCα =

∫ α
0

CED(x)dx

α
(11)

3) Performance Comparison: In this section, the perfor-
mance of the final models will be presented to show the
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Fig. 4. Training error of DAN and FAN during the whole training process.
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Fig. 5. CED of the final model of DAN and FAN. The corresponding
AUC0.07 (in %) follows the model name in the legend.

difference of models before and after applying techniques. The
training error of the whole training process will be presented
to showcase how domain transfer boost the training.

The training error of the training process for both models
can be found in Figure 4. It is obvious for both models that
only after one epoch of training, the models that applied
domain transfer had an error that was a lot lower than those
without and reached an almost saturate state in just a few
epochs.

The CED curve of the best version (performs the best on
validation set) of both models are in Figure 5. It also shows the
benefits provided by domain transfer and data augmentation.
Overall, either domain transfer or data augmentation have im-
proved the model performance on the test set. The quantitative
results - AUC0.07 (in %) of all models, can be found in
the legends of Figure 5. With both techniques combined, a
performance gain of 25% and 9.5% was achieved by FAN
and DAN respectively.

Considering the superior performance of DAN, we chose
DAN for facial landmark localization in later experiments.

C. Experimental setup and protocol

Two volunteers (2 males) participated in our experiments.
Thermography videos were recorded using a FLIR E50 cam-
era1. It is a Long Wave Infrared (LWIR) camera featured
with thermal sensitivity of better than 0.05K and a spatial
resolution of 240 × 180 pixels. The videos were recorded at
30 frames per second (fps). Furthermore, this camera does
calibration/non-uniformity compensation (NUC) every three
to four minutes by default in real-time to adapt the sensing
range to the full span of the temperature range of the scene.

1www.flir.com
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Fig. 6. Temporal temperature variations of the nose area and mouth area
during nose breathing, joint breathing, and mouth breathing. Only the nose
area has large temporal variations (airflow) during nose breathing and only
mouth area has large temporal variations during mouth breathing while both
areas have large temporal variation in joint breathing.

The calibration/NUC normally takes around 0.5s, after which
the whole image is adjusted by an offset.

All videos were recorded with the subjects lying in the bed
in order to simulate a sleeping condition, faces facing right
towards the camera. The camera was placed at around 50 cm
from the subject’s face to cover the view of the whole pillow
area such that the face was in the camera view, even with slight
body motions. Each video is four-minute-long. Subjects were
asked to breathe with their nose in the first minute and the third
minute, mouth in the second and fourth minute while keep
stationary and they strictly followed the time protocol. This
protocol was used to generate the reference for the benchmark.

During the experiments, we found that some subjects had
involuntary air exchange through the nose during mouth
breathing which is neither purely nose breathing nor mouth
breathing. Therefore, we define a third class of breathing
called joint breathing in addition to nose breathing and mouth
breathing in which both nose and mouth are used for air
exchange. Temporal temperature variations of the nose and
mouth area of the three breathing classes are shown in Figure
6. Theoretically, p (as defined in Equation 9) should be 0
during nose breathing and 1 during mouth breathing but
considering the environment turbulence and sensor noises
within the respiratory band, it is impractical to expect p to
be exactly 0 or 1. Therefore, we empirically specify a value
range for different classes: (1) p < 0.2: nose breathing; (2)
p > 0.8: mouth breathing; (3) 0.2 ≤ p ≤ 0.8: joint breathing.

We also manually annotate the windows with three breath-
ing classes based on the temporal variation of the nose area
and mouth area in the thermography sequence. And the major
difference between the specified protocol and the annotated
labels is that some subjects were actually breathing through
both nose and mouth when asked to breathe through their
mouth.

The accuracy of our method is measured by:

acc =
nsuccess

nsuccess + nfailure
(12)

where nsuccess and nfailure refer to the number of successful
classifications and wrong classifications.

D. Results and discussion

This section describes the experimental results of two test
subjects. It also discusses the performance difference between
mean traces and std traces. The evaluation was implemented
and performed using MATLAB2 (MATLAB R2019b, The
MathWorks Inc., Natick, MA, USA).

1) Spectrogram analysis: Figure 7 compares the results
obtained by using mean traces and standard deviation traces.
Compared to the mean traces of the nose or mouth area which
represents the average intensity of the area and captures tempo-
ral variations, the standard deviation traces are invariant to the
area of ROI due to its characteristics. Moreover, the standard
deviation is also immune to the self-calibration of thermal
camera which introduces a global shift of the temperature
value, as the local standard deviation does not change.

These two experiments show clear nose or mouth breathing
which is quite distinguishable as shown in Figure 7.

2) Classification accuracy: The mouth breathing ratio
traces of two test subjects can be found in Figure 8. As
specified by the experimental protocol, the ratio should be low
in the first and third minutes and high in the second and fourth
minutes. There is also a transition period (in grey shadings) in
which windows have both nose breathing and mouth breathing.

s1 s2 avg
nose 1.00 0.73 0.87
joint N/A N/A N/A

mouth 0.05 0.11 0.08
avg 0.53 0.42 0.48

TABLE I
CLASSIFICATION ACCURACY FOR TWO TEST SUBJECTS (MEAN-METHOD).

s1 s2 avg
nose 1.00 1.00 1.00
joint N/A N/A N/A

mouth 0.92 1.00 0.96
avg 0.98 1.00 0.98

TABLE II
CLASSIFICATION ACCURACY FOR TWO TEST SUBJECTS (STD-METHOD).

These two video recordings are four minutes long (240
seconds. 7200 frames), some of which are not available for
classification because they contain both nose breathing and
mouth breathing frames. Therefore, we have classification
results for around 180 seconds (5400 windows).

The classification accuracy is shown in Table I and II.
Overall, our proposed method worked descent on these video
recordings and obtained an average accuracy of 98% with std
and 48% with mean.

IV. CONCLUSION

In this paper, a conceptually new measurement, nose-or-
mouth breathing classification, has been proposed using ther-
mography, which has clinical/well-being relevance, and can be
used as a new feature for sleep monitoring (e.g. early sign for
sleep disorder). We also demonstrated this new measurement
with an end-to-end image/signal processing flowchart. The

2www.mathworks.com
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(a) Clear mouth/nose breathing (mean).
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(b) Clear mouth/nose breathing (std).

Fig. 7. Spectrogram of respiratory signals from nose and mouth areas. Spectrograms on the left side are obtained by taking the mean value of the nose or
mouth area while spectrograms on the right side are obtained by taking the standard deviation (std).

(a) Mouth breathing ratio of subject 1. (b) Mouth breathing ratio of subject 2.

Fig. 8. Mouth breathing ratio traces of two subjects. It is pure nose breathing frames for windows whose start frame is less than 1350, between 3600 and
4950, pure mouth breathing frames for windows whose start frame is between 1800 and 3150, between 5400 and 6850. Others (shaded area) are mixed
windows which consist of both nose breathing frames and mouth breathing frames.

results showed that our proposed method achieved a classifi-
cation accuracy of 98% in controlled lab conditions. And the
performance gain provided by domain transfer and data aug-
mentation potentially unleash the possibilities of applications
in thermal domain.

However, it is also worth noting that his study is only a lab-
based feasibility study that assumes no motion, a frontal face,
and limited environment turbulence. In real-life scenarios,
some assumptions no longer hold. For instance, subjects are
not likely to keep the same sleep position all night. They may
sleep on the back or on the side alternately. Also, when the
air circulation is fast (e.g., strong wind from natural or from
electrical fans), the temperature variation of the nose and the
mouth area can be disrupted. Furthermore, when it comes to
side view, our proposed method may no longer work since the
nostrils and mouth are not visible in the image.

In order to increase relevance in realistic sleeping conditions
and improve classification accuracy, efforts will be necessary

to improve nose/mouth localization in non-frontal sleeping
poses, detect and exclude abnormal cases (e.g., motion, false
localization). More real-life recordings should be made to
identify issues that may arise in real-life scenarios for further
revising our method.
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