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Abstract

Quantitative Rapid Microbiological Methods (RMM’s) are methods to determine the number
of micro organisms. RMM are faster than the classical methods, but to be allowed to use them,
they need to be validated. Of the several validation parameters for quantitative RMM’s, one
such parameter is linearity which means that the observed values are counted in a linear
manner compared to the average number of CFU’s (Colony Forming Units) in the measured
solution. There are two formulations of linearity that can be tested in our specific model: the
linearity and log-linearity with respect to the concentration of microbes, together known as
proportionality. The model uses the Mitscherlich equation as the parameter for the Poisson
distribution of the observed values. Here, the parameters of the null-hypothesis representing
the number of false positives, lies on the boundary of the parameter space. This implies that
the distribution of the likelihood ratio test is unknown. In this thesis the distribution of
the likelihood ratio test (LRT) for one specific case with one parameter on the boundary is
determined. The model will also be simulated to see if there is a difference between joint or
sequential hypothesis testing. The simulation will also be used to see the difference between
differently chosen spike concentrations. We found that, depending on the inclusion or exclusion
of a blank spike concentration, the distribution the LRT differs. If a blank spike is included, the
LRT of the joint hypothesis case is chi-squared distributed with one degree of freedom. Here
the LRT of the sequential hypothesis cases is deterministic. The LRT of the joint hypothesis,
excluding the blank spike, is a mixture of two chi-sqaured random variables, with one and two
degrees of freedom, each with ratio 1/2. For the sequential hypothesis, excluding the blank
spike, the distribution is a mixture of chi-squared distribution with one degree of freedom and
zero, again each with ratio 1/2. We found that there was no clear difference in using either
joint or sequential hypothesis cases.
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Chapter 1

Introduction

In the pharmaceutical industry, it is important to determine the presence or number of micro
organisms in, for example, the productioin environments and the water systems. For more
than a century, the industry relied on classical growth based methods, where colony form-
ing units (CFU’s) are being counted or detected. Since the classical methods are slow, new
methods have been developed to replace the classical methods, so called Rapid Microbiologi-
cal Methods (RMM). The European Pharmacopoeia (EP) Chapter 5.1.6 (Council of Europe,
2017) divides the methods in three categories: growth-based methods, direct measurement,
and cell-component analysis. The first category, growth-based methods, relies on the growth
of the microbes through use of a culture medium. After a period of time, the number of
microbes or CFU’s will can then be counted. Direct measurement mostly uses fluorescence to
directly detect and count microbes. This fluorescence can for example be created by staining
the microbes with fluorescent dye or the fluoresence can be induced in the microbes with use
of lasers. Lastly, cell-component analysis results in an indirect measure of the presence of
microbes. Methods that belong in this category use the expression of specific cell-components
to determine the presence of microbes or to identify certain microbes.
Since the RMM’s differ from the classical method, the method needs to be tested to see if
its performance is adequate compared to the classical method. The EP (Council of Europe,
2017) and USP (USP-NF, 2015) determined several parameters that need to be validated: ac-
curacy, precision, detection limit (or quantitation limit), linearity, specificity, and robustness.
The accuracy of a method is the closeness of the method’s test results to test results from
the pharmacopoeial method. The precision relates to the variability between different test
samples of homogeneous suspensions. It looks at the closeness between the different samples.
The limit of detection in the USP (or quantitation limit in EP) is the lowest number of CFU’s
that the system can quantify with high enough precision and accuracy. Both the USP and
EP define the robustness of a method as follows “its capacity to remain unaffected by small
but deliberate variations in method parameters” (Council of Europe, 2017; USP-NF, 2015).
The linearity of the method is described as the proportionality between the results produced
by the method and the concentration of micro-organisms present in the sample. Here, two
quantities, x and y, are proportional if x/y = k for some constant k.
Janssen Pharmaceuticals is planning to test a new system for microbial detection, the IMB-
W™, a quantitative RMM application. This method attempts to count the number of microbes
in flowing water. A laser is used to stir the naturally occurring fluorescence of the microbes.
This is called Light Induced Fluorescence (LIF). As the laser passes through the particles a
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particle signal is created. This signal should allow the method to count the number of biolog-
ical particles passing through the pipe without having to grow colonies. Inert particles would
not be counted since they have no fluorescence, and should have a different signal. As this
system is a quantitative method, from which the counting unit is different than CFU, one of
the validation parameters that is important is the linearity of the system.
As mentioned above, in the USP and EP, linearity is referred to as the proportionality between
the test results and the spiked concentration. This means both linearity and log-linearity in
the number of organisms in the solution need to be satisfied. If you just want to test linearity,
one method is determining the slope between adjacent points and testing if the slope is equal
between any set of two adjecent points (Niermann, 2007). This only tests linearity and not log-
linearity, meaning that both have to be tested separately. In Xie et al. (2017) data is tested for
proportionality, the function they use is the same as the Mitscherlich equation, is what we will
use to test for proportionality. The Mitscherlich equation, f(ξ|ϑ1, ϑ2, ϑ3) = ϑ1 + ϑ2 exp (ϑ3ξ)
(Box & Lucas, 1959), with ϑi ∈ R for i = 1, 2, 3, is considered proportional in concentration
x = exp(ξ) if ϑ1 = 0 and ϑ3 = 1. Here x represents the number of organisms present in the
sample. Note that here ϑ1 will represent the false positives, the number of inert particles that
the system counted. To test for proportionality using the Mitscherlich equation, you need to
test if ϑ1 = 0 and ϑ3 = 1.
One of the methods to do this is the Likelihood Ratio Test (LRT). Under certain generality
conditions the LRT test statistic follows a chi-squared distribution, where the degrees of free-
dom is equal to the difference in number of constrained parameters of the null and alternative
hypotheses (Wilks, 1938). However, one of these conditions for the LRT to follow this distri-
bution is that the value of the parameter(s) to be tested cannot be on the boundary of the
parameter space. This is not the case for the Mitscherlich equation mentioned above, where
ϑ1 represents the non-negative false positive count. In this thesis, we try to determine the
distribution of the LRT in our specific case, where one of the parameters is on the boundary.
For this, a Theorem by Self & Liang (1987) is used. The regularity conditions that need to
hold to be able to use this theorem can still hold when the value of the parameters under
null-hypothesis can lie on the boundary of the parameter space.
The LRT distribution is determined for different set-ups of the null-hypothesis: the joint
hypothesis, where ϑ1 = 0 and ϑ3 = 1 are tested simultaneously, and the two sequential hy-
potheses, in which ϑ1 = 0 and ϑ3 = 1 are tested in two different tests, using two different
sequences. We do not know if the different hypotheses set-ups have different consequences for
the power of the tests used. That is why we simulate the different test set-ups for our model
to compare the different tests. Here we also look at the influence of choosing different spike
concentrations for the experiment.
In Chapter 2, the statistical model and the hypotheses of interest will be explained, and the
notation and definitions used in the thesis will be given. In Chapter 3, the distribution of the
likelihood ratio tests (LRT) for the hypotheses given in Chapter 2 will be determined. This
chapter is divided in three parts: the theorem of Self & Liang (1987), the distribution of the
LRT when all spike solutions are non-zero, and the distribution of the LRT when one of the
spike solutions is blank. In Chapter 4, our simulation study will be described. Here we will
look at the differences in power and type-I error rate for the different type of hypotheses and
different spike concentrations sets. Lastly, Chapter 5 will give the conclusion.
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Chapter 2

Model Description

To be able to determine if the counts of the system are linearly correlated to the number
of CFU’s in the water, data has to be collected. To do this, several spike solutions will be
made. These solutions will each have a different concentration of microbes. In-house isolates
or BioBalls™Morgan et al. (2005) will be used to create the solutions. BioBalls are a refer-
ence material that is regularly used for testing RMM’s. The expected number of CFU’s in
a BioBall as well as an approximation of the standard deviation is known. This means we
know the expected number of CFU’s in the spike solutions. These solutions will be divided
over several samples, each with equal size. Based on these samples for each spike solution,
we will determine how much the system counts. The data retrieved from this can be used to
determine if the system satisfies the linearity criterion, given by the USP and EP.

2.1 Statistical Model

This experiment is translated in the following model. There are m different the spiked solu-
tions, where λi denotes the spike concentration per sample of solution i = 1, . . . ,m. From
each of these spiked solutions, n different samples are taken. Testing the samples with the
system results in the observed values Xij where i denotes the solution and j the sample, where
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. We assume the observed values to be independent and
Poisson distributed with mean pληi + c. Here p is the expected number of target particles
counted if the spike concentration is 1, η is the parameter used to test for linearity of the
observed value in λi and c is the parameter denoting the number of non-target particles that
are counted by the system. The probability mass function of Xij is as follows:

P(Xij = k) = e−(pληi +c) (pληi + c)k

k!
.

The mean of the observed variables pληi +c is related to the Mitscherlich function, f(ϑ1, ϑ2, ϑ3) =
ϑ1 +ϑ2 exp (ϑ3ξ), where exp(ξ) = λi and (ϑ1, ϑ2, ϑ3) = (c, p, η). Next we define θ := (p, η, c)T .
The parameter θ lies in the parameter space Ω. The subspace Ω0 contains all parameters for
which the null-hypothesis is true. This includes the parameter θ0, the ‘true’ parameter if the
null-hypothesis is true.
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2.2 Maximum Likelihood Estimation

After the data is collected, the parameters can be estimated. This is can be done by finding the
supremum of the log-likelihood function, i.e. maximum likelihood estimation. The maximum
likelihood estimator θ̂ is the parameter such that l(θ̂) = supθ∈Ω l(θ), with l(θ) the log-likelihood
and Ω the parameter space. The general parameter space in this model is as follows:

Ω =

θ =

pη
c

 :
0 ≤ p
0 < η
0 ≤ c

 = [0,∞)× (0, inf]× [0,∞),

The log-likelihood, lmn(θ), for our model, with parameter θ = (p, η, c)T , can be seen in the
following equations:

lmn(θ) =
m∑
i=1

n∑
j=1

[−pληi − c+Xij · log(pληi + c)− log(Xij !)] (2.1)

The first derivatives of the log-likelihood equal zero at the maximum likelihood estimator, θ̂,
the MLE. The equations for the first derivatives can be seen below:

∂

∂p
l(p, η, c) =

m∑
i=1

ληi

(
Xi.

pληi + c
− n

)
(2.2)

∂

∂η
l(p, η, c) =

m∑
i=1

p log(λi)λ
η
i

(
Xi.

pληi + c
− n

)
(2.3)

∂

∂c
l(p, η, c) =

m∑
i=1

(
Xi.

pληi + c
− n

)
(2.4)

where Xi. =
∑n

j=1Xij . To find the MLE θ̂ = (p̂, η̂, ĉ)T , the following three equations have
to be solved: ∂

∂p l(p̂, η̂, ĉ) = 0, ∂
∂η l(p̂, η̂, ĉ) = 0 and ∂

∂c l(p̂, η̂, ĉ) = 0. Only if the MLE is at
the boundary of the parameter space, then the derivatives might not equal zero. At the left
boundary the corresponding derivative should be smaller than or equal to zero and at the right
boundary the corresponding derivative should be bigger than or equal to zero. This means,
for example, if ĉ = 0, then Equation 2.4 must be smaller than zero, instead of equal to zero.
Below, the Fisher information matrix, If (θ), can be found. This matrix gives information on
the variability of the gradient of the log-likelihood.

If (θ) = E[
∂2

∂θ2
lmn(θ)] =

m∑
i=1

n∑
j=1

1

pληi + c

 λ2η
i p log(λi)λ

2η
i ληi

p log(λi)λ
2η
i (p log(λi)λ

η
i )

2 p log(λi)λ
η
i

ληi p log(λi)λ
η
i 1


2.3 Hypothesis Testing

The model discussed in this chapter is linear in λi if η equals 1 and it is log-linear in λi if
c equals 0. When both the linearity and log-linearity in λi hold, the model is proportional.
This gives several options for the null-hypotheses that can be tested:
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Case 1, Joint Hypothesis: Both linearities are tested at the same time, which results
in the following joint null-hypothesis: H0 : η = 1 ∧ c = 0 and H1 : η 6= 1 ∨ c > 0. This
null-hypothesis can be tested with the following likelihood ratio test statistic (LRT):

LRT = −2

(
sup
p
lmn(p, 1, 0)− sup

p,η,c
lmn(p, η, c)

)
Once the distribution of the LRT is determined, the p-value can be calculated. The p-value
is the probability that the value of the found distribution is greater than the LRT value. This
can then be compared to the significance level α = 0.05.

Case 2, Sequential Hypotheses(η, c): First test the linearity in λi then the log-linearity
in λi, which results in two sequential tests: H01 : η = 1 versus H11 : η 6= 1 and H02 : c = 0
versus H12 : c > 0. The second null-hypothesis, H02, only needs to be tested if the first
hypothesis, H01, is not rejected. These hypotheses result in two different LRT test statistics,
where the distribution of the likelihood ratio test under null-hypothesis for the first hypothesis
H01 is known to be chi-squared with 1 degree of freedom (Wilks, 1938). LRT1 is the likelihood
ratio test value for the first hypothesis and LRT2 is the LRT for the second hypothesis.

LRT1 = −2

(
sup
p,c

lmn(p, 1, c)− sup
p,η,c

lmn(p, η, c)

)
d
= χ2

1

LRT2 = −2

(
sup
p
lmn(p, 1, 0)− sup

p,c
lmn(p, 1, c)

)
Note d

= means equal in distribution. Here, unlike Case 1, there are two separate tests. Gen-
erally, when using multiple test, the total significance level, α = 0, 05, will be equally divided
over all tests. This would mean that each of the two LRT’s p-value will be compared to
α/2 = 0.025. However, this might not be optimal division of the significance. In the simu-
lation, we first used this equal division. In the second simulation, we adjusted this division
using the results from the first simulation. It is possible that other methods of dividing the
significance level improve the model further, but we did not look into this.
Note that for LRT1, c is a nuisance parameter that might be located on the boundary of the
parameter space, which might create a change in the distribution of LRT1.

Case 3, Sequential Hypotheses(c, η): First the log-linearity in λi is tested then the
linearity in λi is tested. Which results in the following two sequential null-hypotheses: H01 :
c = 0 versus H11 : c > 0 and H02 : η = 1 versus H12 : η 6= 1. These hypotheses can be tested
with the following LRT’s:

LRT1 = −2

(
sup
p,η

lmn(p, η, 0)− sup
p,η,c

lmn(p, η, c)

)
LRT2 = −2

(
sup
p
lmn(p, 1, 0)− sup

p,η
lmn(p, η, 0)

)
d
= χ2

1

Note that the distribution of the second LRT is under the null-hypothesis.The p-values of the
two LRT’s will be compared to α/2, the same as in Case 2. As mentioned in case 2, there
might be other ways to divide the significance level, that could yield better results. Here the
second test is executed if the first hypothesis H01 : c = 0 is not rejected. To be able to know
when to reject H01, the distribution of LRT1 is needed.
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Figure 2.1: Cone Approximation of a Sphere

2.4 Notations and Definitions

Here we will discuss notation and definitions not yet mentioned earlier in the model descrip-
tion. The sum over the samples Xi. is defined as follows: Xi. =

∑n
j=1Xij . As mentioned

above, the log-likelihood is denoted by lmn(θ). The first and second derivatives of the log-
likelihood are respectively given by Umn(θ) and −Imn(θ).
Next we define the approximation of a set Ω by a cone CΩ, corresponding to Self & Liang
(1987):

Definition. The set Ω ⊂ Rd is approximated at θ0 ∈ Ω by a cone CΩ with vertex at θ0 if

inf
x∈CΩ

||x− y|| = o(||y − θ0||) for all y ∈ Ω (2.5)

and

inf
y∈Ω
||x− y|| = o(||x− θ0||) for all x ∈ CΩ. (2.6)

Note that infx∈CΩ
||x− y|| = o(||y − θ0||) if infx∈CΩ

||x−y||
||y−θ0|| → 0 for y → θ0, i.e. infx∈CΩ

||x− y||
converges to zero faster than ||y− θ0|| for y → θ0. Here a cone, C, with vertex at θ0 is a set of
points such that a(x− θ0) + θ0 ∈ C for all a ≥ 0 and x ∈ C. An example of a set that can be
approximated by a cone is a sphere, which can be approximated by the tangent line through
θ0. This example can be seen in Figure 2.1. Here Ω is the sphere and CΩ is the cone used
to approximate Ω. As you look at point y1, we have that x1 = arg infx∈CΩ

||x− y1||, and you
can see that infx∈CΩ

||x − y1|| = ||x1 − y1|| < ||y1 − θ0||, since ||y1 − θ0|| is the long edge of
a right triangle with the 90 degree angle at x1. Similarly, the closest point on Ω to x2 is y2.
Here ||x2 − θ0|| is longer than the long edge of the right triangle with the 90 degree angle at
y2. This implies that infy∈Ω ||x2 − y|| = ||x2 − y2|| < ||x2 − θ0||.
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Chapter 3

Distribution of the Likelihood Ratio
Test (LRT)

One of the tests commonly used to compare two models is the likelihood ratio test (LRT).
The LRT test statistic follows a chi-square distribution under certain regularity conditions,
with the number of degrees of freedom being equal to the difference in the number of model
parameters under the null-hypothesis and the alternative hypothesis (Wilks, 1938). One of
the conditions is that the parameters of the null-hypothesis do not lie on the boundary of the
parameter space. However in our model the value of parameter c under the null-hypothesis
lies on the boundary. This means that the distribution of the likelihood ratio test has to be
determined for our model.
This chapter is divided in three sections. The first section gives a theorem from Self & Liang
(1987) that can be used for determining the distribution of the LRT, when some parameters
may be on the boundary of the parameter space. In Section 2, the conditions of this theo-
rem will be verified when the spike concentrations are all non-zero. In the last section, the
distribution for the LRT will be determined when one of the spike concentrations is zero will
be determined. This has to be done separately since some of the conditions of Self & Liang
(1987) do not hold in this case.

3.1 LRT with True Parameters on Boundary

In the model, described in Chapter 2, the value of the parameter c under the null-hypothesis
is on the boundary of the parameter space. Self & Liang (1987) looked at the likelihood
ratio test where the values of the parameters under the null-hypothesis are allowed to be
on the boundary of the parameter space. They found a method to write the LRT so that
determining the distribution becomes easier. This is done using the true parameter, which
equals θ0 under the null-hypothesis. When describing the following theorem and conditions
we will use θ0, since we want to determine the distribution of the likelihood ratio test under
the null-hypothesis. Self & Liang (1987) assume that the following regularity conditions are
satisfied:

1. The almost sure existence of the first three derivatives of the log-likelihood function with
respect to θ was assumed on the intersection of neighborhoods of the true parameter θ0

and Ω. Here Ω is the parameter space and the true parameter θ0 is the parameter value

9



under the null-hypothesis. If the true parameter θ0 is located at the boundary of Ω then
the derivatives are taken from the appropriate side.

2. On the same intersection of neighborhoods of θ0 and Ω, there exists a function fk1k2k3(X11, . . . , Xmn),
for which E[fk1k2k3(X11, . . . , Xmn)] <∞, such that for all k1, k2, k3 ∈ {1, 2, . . . , dim(θ)}
the following holds for the log-likelihood function lmn(θ):

1

mn

∣∣∣∣ ∂3

∂θk1∂θk2∂θk3

lmn(θ)

∣∣∣∣ ≤ fk1k2k3(X11, . . . , Xmn) (3.1)

3. The first and second derivatives of lmn(θ) with respect to θ are denoted by Umn(θ) and
−Imn(θ). On neighborhoods of θ0 the following holds for Imn(θ):

I(θ) := E
[

1

mn
Imn(θ)

]
> 0, (3.2)

which imlpies the positive-definiteness of I(θ). Also at θ0, the following needs to hold:

I(θ0) =
1

mn
cov (Umn(θ0), Umn(θ0)) , (3.3)

where cov(V,W ), for some vectors V and W , is as follows:

cov(V,W ) = E[VW T ]− E[V ]E[W ]T (3.4)

4. Lastly Ω0 and Ω are assumed to be regular enough to be approximated by cones with
vertices at θ0. Here Ω0 is the subset of Ω for testing the null-hypothesis that θ0 lies in
the subset Ω0 of Ω.

To test the null hypothesis H0 : θ ∈ Ω0 versus the alternative H1 : θ ∈ Ω, the likelihood ratio
statistic can be defined as follows:

−2 ln Λ = −2

(
sup
θ∈Ω0

lmn(θ)− sup
θ∈Ω

lmn(θ)

)
. (3.5)

We now study the asymptotic properties of the likelihood ratio statistic. If these regularity
conditions discussed above hold, Theorem 3 from Self & Liang (1987) states the following:
"Let Z be a random variable with a multivariate Gaussian distribution with mean θ and co-
variance matrix I−1(θ0), and let CΩ0 and CΩ1 be non-empty cones approximating Ω0 and Ω1

at θ0 respectively, where Ω1 = Ω\Ω0. Then under the regularity conditions given above, the
asymptotic distribution of the likelihood ratio test statistic is the same as the distribution of
the likelihood ratio test of θ ∈ CΩ0 versus the alternative θ ∈ CΩ1 based on a single realization
of Z when θ = θ0."

Based on this Theorem, the asymptotic representation of the likelihood ratio statistic −2 ln Λ
may be written as:

−2 ln Λ = sup
θ∈CΩ0

−θ0
{−(Ž − θ)T I(θ0)(Ž − θ)} − sup

θ∈CΩ−θ0
{−(Ž − θ)T I(θ0)(Ž − θ)}

= inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2, (3.6)
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where CΩ0 and CΩ are the cones approximating Ω0 and Ω at θ0 respectively. The set C − θ0

denotes the cone with vertex at the origin that is a result from translating a cone C with θ0.
The random variable Ž = Z − θ0 has a multivariate Gaussian distribution with mean 0 and
covariance matrix I(θ0)−1. Similarly Z̃ has a multivariate Gaussian distribution with mean
0, but with identity covariance matrix. Let the spectral decomposition of I(θ0) be PΛP T ,
where P is the eigenvector matrix and Λ the diagonal matrix with the eigenvalues of I(θ0) as
its entries. Lastly C̃0 and C̃ are defined as follows:

C̃0 = {θ̃ : θ̃ = Λ
1
2P T θ for all θ ∈ CΩ0 − θ0}

C̃ = {θ̃ : θ̃ = Λ
1
2P T θ for all θ ∈ CΩ − θ0}

In Appendix C C̃ is calculated for a two-dimensional C, as an example.

3.2 Distribution LRT for non-zero spike concentrations

To be able to use the theorem of Self & Liang (1987), the four conditions, mentioned in Section
3.1 have to be verified. In this section these four regularity conditions will be verified, where
the spike concentrations are all non-zero, i.e. λi > 0 for all i.

3.2.1 Verification Regularity Conditions: Case 1, Joint Hypothesis

Next we will show the regularity conditions from Self & Liang (1987) hold for our model
in Case 1, the joint hypothesis, if λi > 0 for all i, when the following assumptions on
the parameter space hold. First, we assume that p is greater than a value εp > 0 and
smaller than some value Mp < ∞. This means we have θ = (θ1, θ2, θ3)T = (p, η, c)T and
Ω = (εp,Mp) × (0,∞) × [0,∞). The null-hypothesis is H0 : η = 1 ∧ c = 0, which gives
θ0 = (p, 1, 0)T and Ω0 = (εp,Mp) × {1} × {0}. Since we can choose εp as small as we want
and Mp as large as we want, these assumptions are practically not an issue.

Regularity Condition 1

The first condition was the existence of the first three derivatives of lmn(θ) on the intersection
of neighborhoods of θ0 and Ω, where lmn(θ) = log(Lmn(θ)). The log-likelihood can be seen in
Equation 2.1.
For neighborhoods of θ0, N(θ0), there are δp > 0, δη > 0 and δc > 0 such that:

N(θ0) ⊂ (εp − δp,Mp + δp)× (1− δη, 1 + δη)× (−δc, δc)

This means that the intersection ofN(θ0) with Ω is a subset of (εp,Mp)×(1−δη, 1+δη)×[0, δc).
The derivatives of lmn(θ) exist if the derivatives of log(pληi + c) exist. The function log(x) is
infinitly differentiable with respect to x, when x > 0. This means, as long as pληi + c > 0,
then log(pληi + c) also infinitely differentiable. Since p > εp > 0, λi > 0 for all i and c ≥ 0,
pληi + c > 0. This also holds on the intersection of N(θ0) and Ω. Therefore the derivatives
of log(pληi + c) exist and thus the first three derivatives of lmn(θ) exist. The proof of the
existence of the derivatives of log(pληi + c) can be seen in Appendix A. As mentioned before,
the first two derivatives are denoted by Umn(θ) and −Imn(θ) respectively. Umn(θ) is a vector
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of order 3 and Imn(θ) is a 3 × 3 matrix. If we define ui := (ληi , p log(λi)λ
η
i , 1)T , Umn(θ) and

Imn(θ) can be written as:

Umn(θ) =

 ∂
∂p lmn(θ)
∂
∂η lmn(θ)
∂
∂c lmn(θ)

 =
m∑
i=1

n∑
j=1

(
Xij

pληi + c
− 1

) ληi
p log(λi)λ

η
i

1

 =
m∑
i=1

n∑
j=1

(
Xij

pληi + c
− 1

)
ui

(3.7)

Imn(θ) =

m∑
i=1

n∑
j=1

Xij

(pληi + c)2

 λ2η
i p log(λi)λ

2η
i ληi

p log(λi)λ
2η
i (p log(λi)λ

η
i )

2 p log(λi)λ
η
i

ληi p log(λi)λ
η
i 1


−

m∑
i=1

n∑
j=1

log(λi)λ
η
i

(
Xij

pληi + c
− 1

)0 1 0
1 p log(λi) 0
0 0 0


=

m∑
i=1

n∑
j=1

Xij

(pληi + c)2
uiu

T
i − log(λi)λ

η
i

(
Xij

pληi + c
− 1

)0 1 0
1 p log(λi) 0
0 0 0

 (3.8)

Regularity Condition 2

For the second regularity condition we need to show that all third derivatives are bounded
by a function with finite expectation on the intersection of neighborhoods of θ0 and Ω. This
intersection is the same as seen in the verification of the first regularity condition. Without
loss of generality take 0 < λ1 < λ2 < . . . < λm, λ

−ηs
1 := max{λ−1−δη

1 , λ
−1+δη
1 } and ληMm :=

max{λ1+δη
m , λ

1−δη
m }, then ληs1 ≤ λη1 < λη2 < λη3 < . . . < ληm ≤ ληMm . Define M| log λ| :=

maxi=1,...,m | log(λi)|. Next define X̄ := 1
mn

∑m
i=1

∑n
j=1Xij , for which, on the intersection of

N(θ0) and Ω, E[X̄] ≤Mp max{λ1−δη
m , λ

1+δη
m }+ δc = Mpλ

ηM
m + δc holds. This means that if the

function f(X11, . . . , Xmn) = a · X̄, then f has finite expectation. Here a ∈ R is a scalar that
may be dependent on λi, i = 1, . . . ,m.
The inequalities

∣∣∣ ληi
pληi +c

∣∣∣ ≤ ∣∣∣ ληipληi ∣∣∣ = 1
p ≤

1
εp

and |
∑

i ai| ≤
∑

i |ai| (triangle-inequality) will be
used in the following to show the third derivatives are bounded. Next we will determine the
absolute values of the third derivatives of lmn(θ) and an upper bound for each.

1

mn

∣∣∣∣ ∂3

∂p3
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2λ3η
i

(pληi + c)3
Xij

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣∣ 2λ3η
i

(pληi + c)3
Xij

∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ ληi
pληi + c

∣∣∣∣3 2Xij ≤
2

ε3
p

X̄ (3.9)
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1

mn

∣∣∣∣ ∂3

∂p2∂η
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2 log(λi)λ
2η
i

(pληi + c)2

(
pληi

pληi + c
− 1

)
Xij

∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣∣2 log(λi)λ
2η
i

(pληi + c)2

∣∣∣∣∣
(∣∣∣∣ pληi
pληi + c

∣∣∣∣+ 1

)
Xij

≤ 1

mn

m∑
i=1

n∑
j=1

4

ε2
p

| log(λi)|Xij ≤
4

ε2
p

X̄ ·M| log λ| (3.10)

1

mn

∣∣∣∣ ∂3

∂p2∂c
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2λ2η
i Xij

(pληi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣∣ 2λ2η
i Xij

(pληi + c)3

∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣2Xij

p3ληi

∣∣∣∣ ≤ 2X̄

ε3
p λ

ηs
1

(3.11)

1

mn

∣∣∣∣ ∂3

∂η3
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

(log(λi))
3

(
2(pληi )

3Xij

(pληi + c)3
−

3(pληi )
2Xij

(pληi + c)2
+
pληiXij

pληi + c
− pληi

)∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

|log(λi)|3
(∣∣∣∣2(pληi )

3Xij

(pληi + c)3

∣∣∣∣+

∣∣∣∣3(pληi )
2Xij

(pληi + c)2

∣∣∣∣+

∣∣∣∣ pληiXij

pληi + c

∣∣∣∣+ |pληi |
)

≤ 1

mn

m∑
i=1

n∑
j=1

| log(λi)|3(6Xij + pληi ) ≤ M3
| log λ|(6X̄ +Mpλ

ηM
m ) (3.12)

1

mn

∣∣∣∣ ∂3

∂p∂η2
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

(log(λi))
2

(
2p2λ3η

i Xij

(pληi + c)3
−

3pλ2η
i Xij

(pληi + c)2
+

ληiXij

pληi + c
− ληi

)∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

| log(λi)|2
(∣∣∣∣∣2p2λ3η

i Xij

(pληi + c)3

∣∣∣∣∣+

∣∣∣∣∣ 3pλ2η
i Xij

(pληi + c)2

∣∣∣∣∣+

∣∣∣∣ ληiXij

pληi + c

∣∣∣∣+ |ληi |

)

≤ 1

mn

m∑
i=1

n∑
j=1

| log(λi)|2(
6Xij

p
+ ληi ) ≤ M2

| log λ|

(
6X̄

εp
+ ληMm

)
(3.13)

1

mn

∣∣∣∣ ∂3

∂η2∂c
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

p(log(λi))
2ληiXij

(pληi + c)2

(
2pληi
pληi + c

− 1

)∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣p(log(λi))
2ληiXij

(pληi + c)2

∣∣∣∣ (∣∣∣∣ 2pληi
pληi + c

∣∣∣∣+ 1

)

≤ 1

mn

m∑
i=1

n∑
j=1

3(log(λi))
2Xij

pληi
≤ 3X̄

εp λ
ηs
1

M2
| log λ| (3.14)
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1

mn

∣∣∣∣ ∂3

∂c3
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2Xij

(pληi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2Xij

(pληi + c)3

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

2Xij

p3λ3η
i

≤ 2X̄

ε3
p λ

3ηs
1

(3.15)

1

mn

∣∣∣∣ ∂3

∂p∂c2
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2ληiXij

(pληi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2ληiXij

(pληi + c)3

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

2Xij

p3λ2η
i

≤ 2X̄

ε3
p λ

2ηs
1

(3.16)

1

mn

∣∣∣∣ ∂3

∂η∂c2
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2p log(λi)λ
η
iXij

(pληi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣2p log(λi)λ
η
iXij

(pληi + c)3

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

2 log(λi)Xij

p2λ2η
i

≤ 2X̄

ε2
p λ

2ηs
1

M| log λ| (3.17)

1

mn

∣∣∣∣ ∂3

∂p∂η∂c
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

log(λi)λ
η
iXij

(pληi + c)2

(
2pληi
pληi + c

− 1

)∣∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ log(λi)λ
η
iXij

(pληi + c)2

∣∣∣∣ (∣∣∣∣ 2pληi
pληi + c

∣∣∣∣+ 1

)

≤ 1

mn

m∑
i=1

n∑
j=1

| log(λi)|Xij

p2ληi
(2 + 1)

≤ 3X̄

ε2
p λ

ηs
1

M| log λ| (3.18)

As mentioned we have E[X̄] < ∞ on the intersection of neighborhoods of θ0 and Ω, i.e. on
(εp,Mp) × (1 − δη, 1 + δη) × [0, δc). The bounds described in Equations 3.9 to 3.18 define
the functions f , such that E[f(X11, . . . , Xmn)] < ∞, and the third derivatives are therefore
bounded, as all these functions are of the form a · X̄, a ∈ R. Note if p is not bounded from
above by Mp, then E[X] not bounded. Also if p is not bounded from below by εp > 0, but by
0, then p−1 will have no upper bound. This also holds for λi, if λi → 0 then λ−1

i →∞.

Regularity Condition 3

Next we need to show that I(θ) is positive definite. A matrix A is positive definite if for
all vectors v holds that vTAv > 0. From Equation 3.2 and Equation 3.8, we derive I(θ) as
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follows:

I(θ) =
1

mn

m∑
i=1

n∑
j=1

 E[Xij ]

(pληi + c)2
uiu

T
i − log(λi)λ

η
i

(
E[Xij ]

pληi + c
− 1

)0 1 0
1 p log(λi) 0
0 0 0


=

1

mn

m∑
i=1

n∑
j=1

1

(pληi + c)
uiu

T
i =

1

m

m∑
i=1

1

(pληi + c)
uiu

T
i (3.19)

Since we have three or more spike concentrations, if you pick three different values for i:
i1, i2, i3 ∈ {1, 2, . . . ,m}, the vectors {ui1 , ui2 , ui3} are linearly independent, i.e. there are no
constants a1, a2 ∈ R such that ui1 = a1 · ui2 + a2 · ui3 . This means that the matrix I(θ) has
full rank 3 and thus has three non-zero eigenvalues. We also know that for all v ∈ R3 there is
a k ∈ {1, 2, . . . ,m} such that vTuk 6= 0 if v 6= 0, which gives:

vT I(θ)v =
1

m

m∑
i=1

1

(pληi + c)
vTuiu

T
i v =

1

m

m∑
i=1

1

(pληi + c)
(uTi v)2

≥ 1

(pληk + c)
(uTk v)2 > 0 (3.20)

This shows that I(θ) is positive definite.
Next we need to show that I(θ0) is the variance-covariance matrix of (mn)−1/2Umn(θ0). We
will first determine E[Umn(θ0)] and E[Umn(θ0)Umn(θ0)T ]. For this, note that substituting θ0

in ui gives: ũi := ui|θ0 = (λi, p log(λi)λi, 1)T .

E[Umn(θ0)] = E

 m∑
i=1

n∑
j=1

(
Xij

pλi
− 1

)
ũi


=

m∑
i=1

n∑
j=1

(
E[Xij ]

pλi
− 1

)
ũi = 0 (3.21)

E[Umn(θ0)Umn(θ0)T ] = E

 m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

(
Xij

pλi
− 1

)(
Xkl

pλk
− 1

)
ũiũ

T
k


=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

E
[
Xij − E[Xij ]

pλi

Xkl − E[Xkl])]

pλk

]
ũiũ

T
k

=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

cov(Xij , Xkl)

p2λiλk
ũiũ

T
k

=

m∑
i=1

n∑
j=1

var(Xij)

p2λ2
i

ũiũ
T
i =

m∑
i=1

n∑
j=1

1

pλi
ũiũ

T
i

= n

m∑
i=1

1

pλi
ũiũ

T
i (3.22)

Note that Xij is independent and Poisson distributed with parameter pληi + c as explained in
Chapter 2, and thus cov(Xij , Xkl) = var(Xij) if i, j = k, l and cov(Xij , Xkl) = 0 otherwise.

15



Figure 3.1: Visualisation B(θ0, r), with p on the x-axis and c on the y-axis

Also E[Xij |θ0] = var(Xij |θ0) = pλi. Next we substitute Equation 3.21 and 3.22 into the
variance-covariance matrix definition:

1

mn
cov (Umn(θ0), Umn(θ0)) =

1

mn

(
E[Umn(θ0)Umn(θ0)T ]− E[Umn(θ0)]E[Umn(θ0)]T

)
=

1

m

m∑
i=1

1

pλi
ũiũ

T
i (3.23)

This is equal to I(θ0), since substituting θ0 in Equation 3.19 gives:

I(θ0) =
1

m

m∑
i=1

1

pλi
ũiũ

T
i

Regularity Condition 4

As mentioned in Chapter 2, Ω = (εp,Mp)× (0,∞]× [0,∞). Also let CΩ = R2 × [0,∞). The
definition of a cone approximation given in Section 2.4 will be used to show that CΩ approxi-
mates Ω. We have that Ω ⊂ CΩ, which means that infx∈CΩ

||x− y|| = 0 = o(||y − θ0||) for all
y ∈ Ω. This holds since for all y ∈ Ω we can choose x ∈ CΩ equal to y such that ||x− y|| = 0.
Hence Equation 2.5 is satisfied. For a particular true parameter θ0 = (p0, 1, 0)T , there will be
a half-sphere B(θ0, r) := {(p, η, c) : c ≥ 0, ||(p, η, c) − (p0, 1, 0)|| < r} around θ0 with radius
r > 0 such that B(θ0, r) ⊂ Ω. This means for x ∈ B(θ0, r): infy∈Ω ||x− y|| = 0, while, as long
as x 6= θ0, ||x − θ0|| > 0. A visualization of the half-sphere is presented in Figure 3.1. No
matter how x converges to θ0, x will pass through the sphere where infy∈Ω ||x− y|| = 0 while
||x − θ0|| is not yet 0. This means that infy∈Ω ||x−y||

||x−θ0|| → 0 if x → θ0, which implies Equation
2.6: infy∈Ω ||x− y|| = o(||x− θ0||).

Next, the definition of Section 2.4 will be used with Ω0 = (εp,Mp) × {1} × {0} being ap-
proximated by the cone CΩ0 = R × {1} × {0}. We again have that Ω0 ⊂ CΩ0 and thus
infx∈CΩ0

||x− y|| = 0 = o(||y− θ0||) for all y ∈ Ω0, implying Equation 2.5. Also we again have
a half-sphere: B̃(θ0, r) := {(p, 1, 0) : ||p − p0|| < r} such that B̃(θ0, r) ⊂ Ω0. Then again, for
all x ∈ B̃(θ0, r) we have that infy∈Ω0 ||x − y|| = 0 for all x ∈ B̃(θ0, r). This means that here
infy∈Ω0 ||x− y|| reaches 0 before ||x− θ0||, if x→ θ0, and thus infy∈Ω0 ||x− y|| = o(||x− θ0||).
This means that both Ω and Ω0 are regular enough to be approximated by cones.
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Distribution LRT: Case 1, Joint Hypothesis

Since we now know that Theorem 3 of Self & Liang (1987) can be applied to our setting, we
know that the likelihood ratio test can be written as shown in Equation 3.6. Now we can apply
an orthonormal transformation onto C̃ and C̃0 such that C̃ = [0,∞)×R2and C̃0 = {0}2 ×R.
Note C̃0 is calculated from CΩ0 − θ0, and thus the vertex of the cone C̃0 is at the origin. This
gives the following:

inf
θ∈C̃0

||Z̃ − θ||2 = inf
θ∈{0}2×R

∣∣∣∣∣∣
∣∣∣∣∣∣
Z1

Z2

Z3

−
θ1

θ2

θ3

∣∣∣∣∣∣
∣∣∣∣∣∣ = Z2

1 + Z2
2 (3.24)

inf
θ∈C̃
||Z̃ − θ||2 = inf

θ∈[0,∞)×R2

∣∣∣∣∣∣
∣∣∣∣∣∣
Z1

Z2

Z3

−
θ1

θ2

θ3

∣∣∣∣∣∣
∣∣∣∣∣∣ = Z2

1 · 1{Z1 < 0} (3.25)

Here θ = (θ1, θ2, θ3)T and Zi, i = 1, 2, 3, is a standard normal random variable. Combining
these two gives:

LRT = inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2 = Z2

1 + Z2
2 − Z2

1 · 1{Z1 < 0}

= Z2
1 · 1{Z1 ≥ 0}+ Z2

2 (3.26)

Note that a chi-squared distribution with d degrees of freedom, χ2
d is the sum of d squared

standard normal distributions. This means that if Z1 ≥ 0 then the LRT is χ2
2, but if Z1 < 0,

the LRT is χ2
1. The probability that Z1 < 0 is exactly 1

2 , from which we can conclude that
the likelihood ratio test statistic is a mixture of χ2

1 and χ2
2, both with ratio 1

2 , i.e.
1
2χ

2
1 + 1

2χ
2
2.

The p-value for this LRT is as follows:

p-val =
1

2
P(χ2

1 > LRT ) +
1

2
P(χ2

2 > LRT )

3.2.2 Verification Regularity Conditions: Case 2, Sequential Hypotheses(η, c)

Instead of testing both η = 1 and c = 0 at the same time, here the testing will be done
sequentially. First H01 : η = 1 will be tested against the alternative hypothesis H11 : η 6= 1.
If H01 is not rejected, then H02 : c = 0 will be tested against the alternative: H12 : c > 0,
under the assumption that η is known and equal to 1. For the first test we know that the
distribution of the LRT is χ2

1, because here none of the tested parameters are on the boundary
of the parameter space. To find the distribution of the LRT of the second test, we will use the
same theorem as in Case 1. To use this theorem we will have to show that the four assumptions
hold in the case when testing c = 0 after accepting the null-hypothesis H01 : η = 1, if the
assumption mentioned below hold.
In this section, θ = (θ1, θ2)T = (p, c)T . Similarly to Case 1, we have again assume that there
is a εp and Mp such that 0 < εp < p < Mp, which means the parameter space is as follows:
Ω = (εp,Mp)× [0,∞). From the null-hypothesis we get θ0 = (p, 0)T and Ω0 = (εp,Mp)×{0}.
Again choosing the boundary values for parameterp should not create a problem, as they can
be chosen as small or as large as you want.
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Regularity Condition 1

For the first assumption, we need to show the first three derivatives of the log-likelihood exist
on the intersection of neighborhoods of θ0 and Ω. In this case the the log-likelihood, lmn(θ),
is as follows:

lmn(θ) =
m∑
i=1

n∑
j=1

[−pλi − c+Xij · log(pλi + c)− log(Xij !)] (3.27)

Next, similarly to Case 1, there are δp > 0 and δc > 0 such that for neighborhoods N(θ0) of
θ0:

N(θ0) ⊂ (εp − δp,Mp + δp)× (−δc, δc)

And the intersection of N(θ0) and Ω is a subset of (εp,Mp)× [0, δc).
From Case 1 we already know that the derivatives of log(pλi + c) exist if pλi + c > 0, which
holds, since p > 0, c ≥ 0, and λi > 0 for all i. This means that the first condition is satisfied.
The first two derivatives are denoted by Umn(θ) and −Imn(θ) respectively. Here Umn(θ) is a
vector of order 2 and Imn(θ) is a 2× 2 matrix. Umn(θ) and Imn(θ) can be written as follows,
where ui = (λi, 1)T :

Umn(θ) =

[ ∂
∂p lmn(θ)
∂
∂c lmn(θ)

]
=

m∑
i=1

n∑
j=1

(
Xij

pλi + c
− 1

)[
λi
1

]
=

m∑
i=1

n∑
j=1

(
Xij

pλi + c
− 1

)
ui (3.28)

Imn(θ) =

m∑
i=1

n∑
j=1

Xij

(pλi + c)2

[
λ2
i λi
λi 1

]
=

m∑
i=1

n∑
j=1

Xij

(pλi + c)2
uiu

T
i (3.29)

Note that here ui is know independent of the parameters and thus ui|θ0 = ui.

Regularity Condition 2

For the second condition we need to show that on the intersection of neighborhoods of θ0 and Ω
the third derivatives of the log-likelihood are bounded by a function ofX11, . . . , Xmn with finite
expectation. Note that, again, 0 < λ1 ≤ λ2 ≤ . . . ≤ λm, and thus

∣∣∣ λi
pλi+c

∣∣∣ ≤ ∣∣∣ λipλi ∣∣∣ ≤ 1
p <

1
εp
.

Also
∣∣∣ 1
pλi+c

∣∣∣ ≤ ∣∣∣ 1
pλi

∣∣∣ ≤ 1
εpλ1

. As for the expectation of X̄ = 1
mn

∑m
i=1

∑n
j=1Xij :E[X̄] ≤

Mpλm + δc. Then the third derivatives and their respective bounds are as follows:

1

mn

∣∣∣∣ ∂3

∂p3
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2λ3
iXij

(pλi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2λ3
iXij

(pλi + c)3

∣∣∣∣
=

1

mn

m∑
i=1

n∑
j=1

2

∣∣∣∣ λi
pλi + c

∣∣∣∣3Xij ≤
1

mn

m∑
i=1

n∑
j=1

2

ε3
p ij

=
2

ε3
p

X̄ (3.30)
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1

mn

∣∣∣∣ ∂3

∂p2∂c
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2λ2
iXij

(pλi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2λ2
iXij

(pλi + c)3

∣∣∣∣
=

1

mn

m∑
i=1

n∑
j=1

2

∣∣∣∣ λi
pλi + c

∣∣∣∣2 ∣∣∣∣ 1

pλi + c

∣∣∣∣Xij ≤
1

mn

m∑
i=1

n∑
j=1

2

ε3
pλ1

Xij =
2

ε3
pλ1

X̄

(3.31)

1

mn

∣∣∣∣ ∂3

∂p∂c2
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2λiXij

(pλi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2λiXij

(pλi + c)3

∣∣∣∣
=

1

mn

m∑
i=1

n∑
j=1

2

∣∣∣∣ λi
pλi + c

∣∣∣∣ ∣∣∣∣ 1

pλi + c

∣∣∣∣2Xij ≤
1

mn

m∑
i=1

n∑
j=1

2

ε3
pλ

2
1

Xij =
2

ε3
pλ

2
1

X̄

(3.32)

1

mn

∣∣∣∣ ∂3

∂c3
lmn(θ)

∣∣∣∣ =
1

mn

∣∣∣∣∣∣
m∑
i=1

n∑
j=1

2Xij

(pλi + c)3

∣∣∣∣∣∣ ≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ 2Xij

(pλi + c)3

∣∣∣∣
=

1

mn

m∑
i=1

n∑
j=1

2

∣∣∣∣ 1

pλi + c

∣∣∣∣3Xij ≤
1

mn

m∑
i=1

n∑
j=1

2

ε3
pλ

3
1

Xij =
2

ε3
pλ

3
1

X̄ (3.33)

Since E[X̄] <∞, we showed that, on the intersection of neighborhoods of θ0 and Ω, there are
functions f , defined by the bounds found above, for each of the third derivatives of the form
a · X̄, a ∈ R, with finite expectation.

Regularity Condition 3

For the third regularity condition two things need to be shown. First we need that I(θ), from
Equation 3.19, is positive definite.

I(θ) =
1

mn

m∑
i=1

n∑
j=1

E[Xij ]

(pλi + c)2
uiu

T
i =

1

mn

m∑
i=1

n∑
j=1

1

pλi + c
uiu

T
i =

1

m

m∑
i=1

1

pλi + c
uiu

T
i

(3.34)

Similarly as with Case 1, if you take i1, i2 ∈ {1, . . . ,m}, ui1 and ui2 linearly independent, and
I(θ) is a rank 2 matrix with 2 non-zero eigenvalues. Now if we have a v ∈ R2, k ∈ {1, . . . ,m}
such that ukvt 6= 0 if v 6= 0, which gives:

vT I(θ)v =
1

m

m∑
i=1

1

pλi + c
vTuiu

T
i v =

1

m

m∑
i=1

1

(pλi + c)
(uTi v)2

≥ 1

(pλk + c)
(uTk v)2 > 0 (3.35)

Since we now know that I(θ) is positive definite, next we need to show that I(θ0) is the
variance-covariance matrix of 1√

mn
Umn(θ0). Next E[Umn(θ0)] and E[Umn(θ0)Umn(θ0)T ] are

determined:
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E[Umn(θ0)] = E

 m∑
i=1

n∑
j=1

(
Xij

pλi
− 1

)
ui

 =
m∑
i=1

n∑
j=1

(
E[Xij ]

pλi
− 1

)
ui = 0

(3.36)

E[Umn(θ0)Umn(θ0)T ] =

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

(
Xij

pλi
− 1

)(
Xkl

pλk
− 1

)
uiu

T
k

=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

E[(Xij − E[Xij ])(Xkl − E[Xkl])]

p2λiλk
uiu

T
k

=
m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

cov(Xij , Xkl)

p2λiλk
uiu

T
k =

m∑
i=1

n∑
j=1

var(Xij)

p2λ2
i

uiu
T
i

=
m∑
i=1

n∑
j=1

1

pλi
uiu

T
i = n

m∑
i=1

1

pλi
uiu

T
i (3.37)

Note ui|θ0 = (λi, 1)T = ui, and that Xij is independent and Poisson distributed with pa-
rameter pλi + c as explained in Chapter 2, and thus, cov(Xij , Xkl) = var(Xij) if i, j = k, l
and cov(Xij , Xkl) = 0 otherwise. Also E[Xij |θ0] = var(Xij |θ0) = pλi. Next we substitute
Equations 3.363.37, using Equation 3.4, to determine the variance-covariance matrix:

1

mn
cov (Umn(θ0), Umn(θ0)) =

1

mn

(
E[Umn(θ0)Umn(θ0)T ]− E[Umn(θ0)]E[Umn(θ0)]T

)
=

1

m

m∑
i=1

1

pλi
uiu

T
i (3.38)

It is easy to see this equals I(θ0) after substituting c = 0 in Equation 3.34. This shows that
the variance-covariance matrix of (mn)−1/2Umn(θ0) is I(θ0). Now we know that the third
condition is satisfied for Case 2.

Regularity Condition 4

In Case 2, Ω = (εp,Mp)× [0,∞) and Ω0 = (εp,Mp)×{0}. We want to show these two sets can
be approximated by the cones CΩ = R × [0,∞) and CΩ0 = R × {0}, respectively. Similarly
as in Case 1, Ω ⊂ CΩ, which means that infx∈CΩ

||x − y|| = 0 = o(||y − θ0||) for all y ∈ Ω.
If you define B(θ0, r) := {(p, c) : c ≥ 0, ||(p, c) − (p0, 0)|| < r} such that B(θ0, r) ⊂ Ω, the
same way as you did with Case 1, you again have that infy∈Ω ||x − y|| = 0 for x ∈ B(θ0, r).
This means that if x → θ0 then infy∈Ω ||x − y|| will equal 0 before ||x − θ0|| = 0 and thus
infy∈Ω ||x − y|| = o(||x − θ0||). This means that CΩ approximates Ω, following the definition
of a cone approximation in Section 2.4.
We use the same method to show that CΩ0 = R × {0} is a cone-approximation of Ω0. Now
Ω0 ⊂ CΩ0 , and thus infx∈CΩ0

||x − y|| = 0 = o(||y − θ0||) for all y ∈ Ω0, and Equation 2.5
is satisfied. Next define B̃(θ0, ) = {(p, 0) : ||p − p0|| < r} with r such that B̃(θ0, ) ⊂ Ω0.
Here we again have that if x ∈ B̃(θ0, r) then infy∈Ω0 ||x − y|| = 0. Now if x → θ0, where
x ∈ CΩ0 we again have that infy∈Ω0 ||x − y|| will equal 0 before ||x − θ0|| = 0 and thus
infy∈Ω0 ||x − y|| = o(||x − θ0||). Since this means that both Equations Equation 2.5 and
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Equation 2.6 are satisfied for both Ω and Ω0, we know both sets are regular enough to be
approximated by cones.

Distribution LRT2: Case 2, Sequential Hypotheses(η, c)

Now we can apply Theorem 3 of Self & Liang (1987), and the likelihood ratio test can be
written as in Equation 3.6. After applying an orthonormal transformation on C̃ and C̃0 such
that C̃ = [0,∞)× R and C̃0 = {0} × R, we get the following:

inf
θ∈C̃0

||Z̃ − θ||2 = inf
θ∈{0}×R

∣∣∣∣∣∣∣∣[Z1

Z2

]
−
[
θ1

θ2

]∣∣∣∣∣∣∣∣ = Z2
1 (3.39)

inf
θ∈C̃
||Z̃ − θ||2 = inf

θ∈[0,∞)×R

∣∣∣∣∣∣∣∣[Z1

Z2

]
−
[
θ1

θ2

]∣∣∣∣∣∣∣∣ = Z2
1 · 1{Z1 < 0} (3.40)

Where θ = (θ1, θ2)T and Z1 and Z2 are standard normal random variables. Substituting the
above equations in the Equation 3.6 gives the following:

LRT 2 = inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2 = Z2

1 − Z2
1 · 1{Z1 < 0}

= Z2
1 · 1{Z1 ≥ 0} (3.41)

Here, LRT2 is the LRT of the second hypothesis of Case 2: H02 : c = 0This means that with
a probability 1

2 the LRT will be equal to 0 and with probability 1
2 the LRT will be χ2

1. This,
since Z2

i is χ2
1 and Zi > 0 with probability 1

2 . Here, the p-value is as follows:

p-val =
1

2
P(0 > LRT2) +

1

2
P(χ2

1 > LRT2) =
1

2
P(χ2

1 > LRT2)

Note P(0 > LRT2) = 0 since the likelihood ratio test is always non-negative.

3.2.3 Verification Regularity Conditions: Case 3, Sequential Hypotheses(c, η)

In Case 3, sequential hypotheses(c, η), first H01 : c = 0 is tested and then H02 : η = 1
is tested if H01 is not rejected. When testing the second hypothesis, we assume c to be
equal to 0. Here we assume the parameter space for the first null-hypothesis is as follows:
Ω = (εp,Mp) × (0,Mη] × [0,∞), where εp < p < Mp and 0 ≤ η ≤ Mη. Here, Mη can be
chosen as large as needed, similarly to Mp, and thus will not create a problem in practical
settings. Note θ = (θ1, θ2, θ3)T = (p, η, c)T . Next, for the first null-hypothesis, we have
θ0 = (p, η, 0)T and Ω0 = (εp,Mp)× (0,Mη]× {0}. Note that Ω is the same as in Case 1, joint
hypothesis (Section 3.2.1), which results in the log-likelihood function and derivatives. For
the second null-hypothesis, H02 : η = 1, none of the tested parameters are on the boundary
of the parameter space and the distribution of the LRT is thus χ2

1.

Regularity Condition 1

As mentioned before the parameter space Ω is the same for this case, Case 3, as Case 1, joint
hypothesis. This means that the log-likelihood functions, lmn(θ) is the same as in Equations
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?? and 2.1. For the neighborhoods of θ0, N(θ0), there are δp > 0, δη > 0 and δc > 0 such
that:

N(θ0) ⊂ (εp − δp,Mp + δp)× (0− δη,Mη + δη)× (−δc, δc)

The intersection of N(θ0) with Ω gives the following set:

N(θ0) ∩ Ω = (εp,Mp)× (0,Mη]× [0, δc)

For (p, η, c)T ∈ N(θ0) ∩ Ω, we have that pληi + c > 0. This means that, as in Case 1 (Section
3.2.1), the derivatives of the log-likelihood function lmn(θ0) exist on the intersection of neigh-
borhoods of θ0 and Ω and the first condition holds.
Since the log-likelihood is the same as in Case 1, the second and third derivatives, Umn(θ) and
−Imn(θ), are the same as Case 1 as well. Umn(θ) and Imn(θ) can be seen in Equations 3.7
and 3.8 respectively.

Regularity Condition 2

For this regularity condition, we need to show that the third derivatives of lmn(θ) are bounded
by a function with finite expectation on the intersection of neighborhoods of θ0 and Ω. Here
the third derivatives are equal to the third derivatives of the log-likelihood in Case 1 (see
Equation 3.9 till3.18).
Take 0 < λ1 < λ2 < . . . < λm without loss of generality. also define M| log λ| := maxi=1,...,m | log(λi)|
and X̄ := 1

mn

∑m
i=1

∑n
j=1Xij , where E[X̄] ≤Mp max{λ0

m, λ
Mp
m }+δc similar to in Case 1. Note

here we need the upper-bound on η, otherwise the expectation could become infinitely large
if λm > 1.
The only difference between the intersection of neighborhoods of θ0 and Ω for Case 1, joint hy-
pothesis, and Case 3, sequential hypotheses(c, η), lies in the interval of η. In Case 1 the interval
for η is (1−δη, 1+δη), while, here in Case 3, this interval is [0,Mη]. We know that the bounds
in Case 1 include the constants λ−ηs1 := max{λ−1−δη

1 , λ
−1+δη
1 } and ληMm := max{λ1+δη

m , λ
1−δη
m },

such that ληs1 ≤ λη2 ≤ . . . ≤ ληm−1 ≤ ληMm , where η is in the intersection of neighbor-
hoods of θ0 and Ω of Case 1. For Case 3, define similarly, λ−η̃s1 := max{λ0

1, λ
Mη

1 } and
λη̃Mm := max{λ0

m, λ
Mη
m }, such that λη̃s1 ≤ λη̃2 ≤ . . . ≤ λη̃m−1 ≤ λη̃Mm , for η̃ in the intersec-

tion of neighborhoods of θ0 and Ω for Case 3. If ληs1 and ληMm are replaced by λη̃s1 and λη̃Mm
in Equations 3.9 till 3.18, you get bounds for the third derivatives with finite expectation for
Case 3.

Regularity Condition 3

As mentioned, Imn(θ) in Case 3 is the same as in Case 1. Since I(θ) is not dependent on
the null-hypothesis, I(θ) is also the same, and can be seen in Equation 3.19. From this we
can directly conclude that, as in Case 1, I(θ) is positive definite. Next we need to show
that the variance-covariance matrix of 1√

mn
Umn(θ0) is I(θ0), we determine E[Umn(θ0)] and

E[Umn(θ0)Umn(θ0)T ], where ui = (ληi , p log(λi)λ
η
i , 1)T . Note that in this Case, as mentioned
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before, ui|θ0 = ui.

E[Umn(θ0)] = E

 m∑
i=1

n∑
j=1

(
Xij

pληi
− 1

)
ui


=

m∑
i=1

n∑
j=1

(
E[Xij ]

pληi
− 1

)
ui = 0 (3.42)

E[Umn(θ0)Umn(θ0)T ] =
m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

(
Xij

pληi
− 1

)(
Xkl

pληk
− 1

)
uiu

T
k

=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

E[(Xij − E[Xij ])(Xkl − E[Xkl])]

p2ληi λ
η
k

uiu
T
k

=

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

cov(Xij , Xkl)

p2ληi λ
η
k

uiu
T
k

=
m∑
i=1

n∑
j=1

var(Xij)

p2λ2η
i

uiu
T
i =

m∑
i=1

n∑
j=1

1

pληi
uiu

T
i

= n
m∑
i=1

1

pληi
uiu

T
i (3.43)

As mentioned in Chapter 2, Xij is independent and Poisson distributed with parameter pληi +c.
This means that the covariance between Xij and Xkl equals the variance of Xij if (i, j) = (k, l)
and is 0 otherwise. Note that E[Xij |θ0] = var(Xij |θ0) = pληi . Substituting the Equations 3.42
and 3.43, using Equation 3.4 into the variance-covariance matrix, gives the following:

1

mn
cov (Umn(θ0), Umn(θ0)) =

1

mn

(
E[Umn(θ0)Umn(θ0)T ]− E[Umn(θ0)]E[Umn(θ0)]T

)
=

1

m

m∑
i=1

1

pληi
uiu

T
i (3.44)

Which equals I(θ0), as can be seen if you substitute θ = θ0, i.e. c = 0, in Equation 3.19. This
means that for Case 3, the third regularity condition is satisfied.

Regularity Condition 4

Since Ω is the same as the Ω in Case 1, it can be approximated by the cone CΩ = R2×[0,∞) as
shown for Case 1. Next we need to show that Ω0 = (εp,Mp)×(0,Mη]×{0} can be approximated
by the cone CΩ0 = R2 × {0}. Again, since Ω0 ⊂ CΩ0 and thus infx∈CΩ0

||x − y|| = 0 =
o(||y− θ0||) for all y ∈ Ω0, and Equation 2.5 is satisfied. Now define the following half-sphere:
B(θ0, r) := {x = (p, η, 0) : ||x− θ0|| < r} such that B(θ0, r) ⊂ Ω0. Then infy∈Ω0 ||x− y|| = 0
for all x ∈ B(θ0, r). If x→ θ0, we now know that infy∈Ω0 ||x− y|| reaches 0 before ||x− θ0||,
and thus infy∈Ω0 ||x− y|| = o(||x− θ0||), implying Equation 2.6 is also satisfied. From this we
can conclude that both Ω and Ω0 are regular enough to be approximated by cones.
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Distribution LRT1: Case 3, Sequential Hypotheses(c, η)

Now we can use Theorem 3 of Self & Liang (1987), which shows that the likelihood ratio test
can be written as in Equation 3.6. After an orthonormal transformation on C̃ and C̃0, we
have that C̃ = [0,∞)× R2and C̃0 = {0} × R2. This gives the following:

inf
θ∈C̃0

||Z̃ − θ||2 = inf
θ∈{0}×R2

∣∣∣∣∣∣
∣∣∣∣∣∣
Z1

Z2

Z3

−
θ1

θ2

θ3

∣∣∣∣∣∣
∣∣∣∣∣∣ = Z2

1 (3.45)

inf
θ∈C̃
||Z̃ − θ||2 = inf

θ∈[0,∞)×R2

∣∣∣∣∣∣
∣∣∣∣∣∣
Z1

Z2

Z3

−
θ1

θ2

θ3

∣∣∣∣∣∣
∣∣∣∣∣∣ = Z2

1 · 1{Z1 < 0} (3.46)

Here θ = (θ1, θ2, θ3)T and Zi, i = 1, 2, 3, is a standard normal random variable. After
substituting this in Equation 3.6, we have:

LRT1 = inf
θ∈C̃0

||Z̃ − θ||2 − inf
θ∈C̃
||Z̃ − θ||2 = Z2

1 − Z2
1 · 1{Z1 < 0}

= Z2
1 · 1{Z1 ≥ 0}, (3.47)

where LRT1 is the LRT of the first hypothesis in Case 3. This is the same distribution of
LRT2 in Case 2, where the LRT test statistic is 0 with probability 1

2 and χ2
1 with probability

1
2 . This gives the p-value p-val = 1

2P(χ2
1 > LRT1).

3.3 Distribution LRT with one blank spike concentration

If one of the spike concentrations is blank (λi = 0), then the theorem of Self & Liang (1987)
cannot be used, for the derivatives around c = 0 do not exist. Also, in for example Equation
3.11, the function for which the third derivative is bounded depends on λ−ηs1 , which will
converge to infinity if λ1 → 0. This means there will be no function such that the third
derivatives will be bounded in expectation.
In this section we will first try to determine the distribution of the LRT test statistic when there
are exactly three spike concentrations for Case 1, joint Hypothesis. This will not be done for
the other two cases, since explicit values only depending on Xij or λi cannot be found for p1, η1

or p2, c2 such that lmn(p1, η1, 0) = supp,η lmn(p, η, 0) and lmn(p2, 1, c2) = supp,c lmn(p, 1, c).
After this, the distribution of the LRT under null-hypothesis will be determined for more
than three spike concentrations.

3.3.1 Three Spike Concentrations: Case 1, Joint Hypothesis

To find the distribution of the likelihood ratio test we will first try to determine the parameter
estimators for which the log-likelihood is maximal in a general setting. The log-likelihood,
lmn(θ) can be seen in Equation 2.1, the first derivatives to p, η and c can be found respectively
in Equations 2.2, 2.3 and 2.4. Once the maximal likelihood estimators are found, we will use
these in the found expression of the likelihood ratio test is Section 2.3 to determine the
distribution of the likelihood ratio test statistic for the joint hypothesis case. In this section
we take m = 3.
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Supremum Log-Likelihood over p, η and c

First the supremum of the log-likelihood over p, η and c is determined. If the supremum of
the log-likelihood is achieved at θ̂ then the derivatives are equal to 0 at this point. Without
loss of generality assume that 0 = λ1 < λ2 < λ3, and we define wi = pληi + c, then:

∂

∂p
l3n(θ̂) = λη̂2(X2.ŵ

−1
2 − n) + λη̂3(X3.ŵ

−1
3 − n) = 0 (3.48)

∂

∂η
l3n(θ̂) = p̂ log(λ2)λη̂2(X2.ŵ

−1
2 − n) + p̂ log(λ3)λη̂3(X3.ŵ

−1
3 − n) = 0 (3.49)

∂

∂c
l3n(θ̂) = (X1.ŵ

−1
1 − n) + (X2.ŵ

−1
2 − n) + (X3.ŵ

−1
3 − n) = 0 (3.50)

Since λ2 6= λ3, this system of equations can only be solved when, Xi./ŵi−n = 0. Rearranging
this gives X̄i. = p̂λη̂i + ĉ for i = 1, 2, 3, where X̄i. = Xi./n. Since λ1 = 0, we get ĉ = X̄1.

Substituting this gives X̄i. − X̄1. = p̂λη̂i for i = 2, 3. Using this, we have:

η̂ = log

(
X̄2. − X̄1.

X̄3. − X̄1.

)
/ log

(
λ2

λ3

)
(3.51)

Note η̂ will be infinite if either X1. = X2. or X1. = X3.. However, once we look at the
asymptotic distribution of the LRT, this is no longer a problem, as the probability that either
X1. = X2. or X1. = X3. will converge to zero as n converges to infinity.
Next, can be substituted in X̄2. − X̄1. = p̂λη̂2 to obtain the expression for the maximum
likelihood estimator of p:

p̂ =
X̄2. − X̄1.

λη̂2
= (X̄2. − X̄1.)λ

− log
(
X̄2.−X̄1.
X̄3.−X̄1.

)
/ log

(
λ2
λ3

)
2 (3.52)

Next we substitute X̄i. = p̂λη̂i + ĉ in the log-likelihood to get the supremum:

l3n(θ̂) =

3∑
i=1

n∑
j=1

[
−X̄i. + X̄ij · log(X̄i.)− log(Xij !)

]
= −X.. +

3∑
i=1

nX̄i. log(X̄i.)−
3∑
i=1

n∑
j=1

log(Xij !) (3.53)

with X.. =
∑3

i=1

∑n
j=1Xij the total count over all three concentrations.

Supremum Log-Likelihood over p

Next we will determine the value of p such that the log-likelihood under the joint null-
hypothesisH0 : η = 1∧c = 0, l3n(p, 1, 0), is maximal. Here we have the following log-likelihood
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and its derivative:

l3n(p, 1, 0) =

3∑
i=1

n∑
j=1

−pλi +Xij log(pλi)− log(Xij !)

= −npλ. +X.. log(p) +
3∑
i=1

Xi. log(λi)−
3∑
i=1

n∑
j=1

log(Xij !) (3.54)

∂

∂p
l3n(p, 1, 0) = −nλ. +

X..

p
(3.55)

where λ. =
∑3

i=1 λi. We know that for p̂0 such that l3n(p̂0, 1, 0) is the maximal value for the
log-likelihood, that −nλ.+X../p̂0 = 0. Rearranging this gives p̂0 = X../nλ.. Substitution this
in l3n(p̂0, 1, 0) gives the following:

l3n(p̂0, 1, 0) = −nλ.
X..

nλ.
+X.. log(

X..

nλ.
) +

3∑
i=1

Xi. log(λi)−
3∑
i=1

n∑
j=1

log(Xij !)

= −X.. +X.. log(
X..

n
) +

3∑
i=1

Xi. log(
λi
λ.

)−
3∑
i=1

n∑
j=1

log(Xij !) (3.56)

Next we substitute l3n(θ̂) and l3n(p̂0, 1, 0) in the likelihood ratio test:

LRT = −2

(
sup
θ∈Ω0

l3n(θ)− sup
θ∈Ω

l3n(θ)

)
= −2

(
sup

(p,1,0)T∈Ω0

l3n(p, 1, 0)− sup
(p,η,1)T∈Ω

l3n(p, η, c)

)
= −2(l3n(p̂0, 1, 0)− l3n(p̂, η̂, ĉ))

= −2

(
−X.. +X.. log(

X..

n
) +

3∑
i=1

Xi. log(
λi
λ.

) +X.. −
3∑
i=1

Xi. log(
Xi.

n
)

)

= −2

(
3∑
i=1

Xi. log(
λiX..

λ.Xi.
)

)
(3.57)

LRT under Null-Hypothesis: Case 1, Joint Hypothesis

Next, using the found suprema above, we will look at the distribution of the LRT under the
null-hypothesis. In this case we know that Xij ∼ Poisson(pλi). Since λ1 = 0, all counts for
the first solution are zero, i.e. X1j = 0. Note that Ω and Ω0 are (εp,Mp) × [0,Mη] × [0,∞)
and (εp,Mp)× {1} × {0}, respectively. Since we found that ĉ of the supremum of l3n(p, η, c)
equals X̄1., under the null-hypothesis, we get ĉ = 0. Next we substitute this in the LRT:

LRT = −2

(
sup
θ∈Ω0

l3n(θ)− sup
θ∈Ω

l3n(θ)

)
= −2(l3n(p̂0, 1, 0)− l3n(p̂, η̂, ĉ))

= −2(l3n(p̂0, 1, 0)− l3n(p̂, η̂, 0))

= −2

(
sup

(p,1,0)T∈Ω0

l3n(p, 1, 0)− sup
(p,η,0)∈Ω

l3n(p, η, 0)

)
(3.58)
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UnderH0, this is the same likelihood ratio test as the likelihood ratio test of the null-hypothesis
η = 1 after determining c = 0, which is χ2

1 distributed. This means that also the likelihood
ratio test of the joint null-hypothesis H0 : η = 1 ∧ c = 0 is χ2

1 distributed under H0 if λ1 = 0
and m = 3.

3.3.2 Suprema Log-Likelihood, More Than Three Spike Concentrations

Each likelihood ratio test is composed of the difference of two different suprema. As we want
to determine the asymptotic distribution of the likelihood ratio test statistic, in this section,
we will try to determine where several suprema converge to as the sample size n converges to
infinity. These suprema can then be used to determine the where the log-likelihood converges
as n → ∞, which in turn can be used to determine the asymptotic distribution of the like-
lihood ratio test. In this section, we have λ1 = 0 and m ≥ 3. The found suprema can then
be used to find the asymptotic distribution of the likelihood ratio test for the joint hypothesis
case as well as the distribution of the LRT of the test for c = 0 for the sequential hypotheses
cases. The determination of the distributions is done in Section 3.3.3.
The suprema needed are: supp lmn(p, 1, 0), supp,η,c lmn(p, η, c) and supp,η lmn(p, η, 0). Note
that in this section all (p, η, c) ∈ Ω, and thus supp lmn(p, 1, 0) = supp>0 lmn(p, 1, 0). Next, un-
der null-hypothesis, η = 1 and c = 0, we know that Xij is Poisson distributed with parameter
pλi and thus X1j = 0 for all j = 1, . . . , n. For this, note that the log-likelihood function and
its first derivatives are as follows:

lmn(θ) =
m∑
i=1

n∑
j=1

[−pληi − c+Xij log(pληi + c)− log(Xij !)]

= −nc+
m∑
i=2

[−n · (pληi + c) +Xi. log(pληi + c)]−
m∑
i=2

n∑
j=1

log(Xij !) (3.59)

Note, log(X1j !) = log(0!) = 0.

∂

∂p
lmn(θ) =

m∑
i=2

ληi

(
Xi.

pληi + c
− n

)
= n

m∑
i=2

ληi

(
X̄i.

pληi + c
− 1

)
(3.60)

∂

∂η
lmn(θ) =

m∑
i=2

pληi log(λi)

(
Xi.

pληi + c
− n

)
= n

m∑
i=2

pληi log(λi)

(
X̄i.

pληi + c
− 1

)
(3.61)

∂

∂c
lmn(θ) = −n+

m∑
i=2

(
Xi.

pληi + c
− n

)
= n

(
−1 +

m∑
i=2

(
X̄i.

pληi + c
− 1

))
(3.62)

In contrast to Section 3.3.1, where we first determine the maximum likelihood estimator and
then fill in X1j = 0, here we first fill in X1j = 0 and then determine the maximum likelihood
estimator. This does not cause a problem, since filling in X1j = 0 in the derivatives of log-
likelihood, gives the same derivatives as first filling in X1j = 0. Since the maximum likelihood
estimators are determined from these derivatives, they will also be equal independent of the
order of determining the estimator or filling in X1j .

Supremum Log-Likelihood over p, η and c

Usually the supremum of the log-likelihood is attained at the point where the derivatives are
equal to zero. This means, for sample size n, to find p̂n, η̂n and ĉn such that lmn(p̂n, η̂n, ĉn) =
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supp,η,c lmn(p, η, c), the following equation have to be solved:

m∑
i=2

λη̂ni

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
= 0

m∑
i=2

p̂nλ
η̂n
i log(λi)

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
= 0

−1 +
m∑
i=2

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
= 0

At the limit n → ∞, solving the equations above also determine p̂, η̂ and ĉ, such that
(p̂n, η̂n, ĉn) → (p̂, η̂, ĉ). Note that at the supremum, as mentioned before, the derivatives
might be unequal to zero if the optimum value of the corresponding parameter is at the
boundary of the parameter space. If the optimum parameter value is on the left boundary of
the parameter space, then the derivative could be smaller than or equal to zero, and if the
parameter value is on the right boundary, then it could be greater than or equal to zero.
The weak law of large numbers (Billingsley, 1995) states that X̄i. converges to its mean in
probability. Under the null-hypothesis, this mean is equal to pλi, i.e. (X̄i.

p→ pλi), and thus
limn→∞ X̄i.

p
= pλi. Substituting this into the equations above we get:

0 = lim
n→∞

m∑
i=2

λη̂ni

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
p
=

m∑
i=2

λη̂i

(
pλi

p̂λη̂i + ĉ
− 1

)

0 = lim
n→∞

m∑
i=2

p̂nλ
η̂n
i log(λi)

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
p
=

m∑
i=2

p̂λη̂i log(λi)

(
pλi

p̂λη̂i + ĉ
− 1

)

0 = lim
n→∞

−1 +
m∑
i=2

(
X̄i.

p̂nλ
η̂n
i + ĉn

− 1

)
p
= −1 +

m∑
i=2

(
pλi

p̂λη̂i + ĉ
− 1

)
The right-hand sides of the first two equations equal zero if (p̂, η̂, ĉ) = (p, 1, 0), and for this
value of (p̂, η̂, ĉ), the right-hand side of the third equation equals −1, which is smaller than
zero. Also note that for any c ≥ 0, p̂λη̂i + c > p̂λη̂i . This implies that the right-hand side of the
third equation is smaller than 0 for all c ≥ 0. Since ĉ = 0 is on the boundary of the parameter
space, this means that, for n → ∞, (p̂n, η̂n, ĉn)

p→ (p, 1, 0). Similarly, if p̃n and η̃n, such that
lmn(p̃n, η̃n, 0) = supp,η lmn(p, η, 0), then you also have that (p̃n, η̃n, 0)→ (p, 1, 0) for n→∞.
Since we know that the log-likelihood function under the null-hypothesis is differentiable on
the parameter space Ω, we know that it is continuous on Ω. From this we know, if we take
θ̃ ∈ Ω then limθ→θ̃ lmn(θ) = lmn(θ̃). Since we also know that (p̂n, η̂n, ĉn) and (p̃n, η̃n, 0) both
go to (p, 1, 0) if n→∞, we have:

lim
n→∞

lmn(p̂n, η̂n, ĉn)
p
= lim

n→∞
lim

(p̂n,η̂n,ĉn)→(p,1,0)
lmn(p̂n, η̂n, ĉn) = lim

n→∞
lmn(p, 1, 0)

= lim
n→∞

lim
(p̃n,η̃n)→(p,1)

lmn(p̃n, η̃n, 0)
p
= lim

n→∞
lmn(p̃n, η̃n, 0) (3.63)

Supremum Log-Likelihood over p and c for η = 1

Next we want to determine the location of the supremum of the log-likelihood function where
η = 1. To determine the LRT under the second null-hypothesis of Case 2: Sequential
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Hypothesis(η, c), the value of supp,c lmn(p, 1, c) is needed. Here the log-likelihood and its
derivatives to p and c are as follows, using that X1j = 0:

lmn(θ) =
m∑
i=1

n∑
j=1

[−pλi − c+Xij log(pλi + c)− log(Xij !)]

= −nc+

m∑
i=2

[−n · (pλi + c) +Xi. log(pλi + c)]−
m∑
i=2

n∑
j=1

log(Xij !) (3.64)

Since X1j ! = 1 and log(1) = 0.

∂

∂p
lmn(θ) =

m∑
i=2

λi

(
Xi.

pλi + c
− n

)
= n

m∑
i=2

λi

(
X̄i.

pλi + c
− 1

)
(3.65)

∂

∂c
lmn(θ) = −n+

m∑
i=2

(
Xi.

pλi + c
− n

)
= n

(
−1 +

m∑
i=2

(
X̄i.

pλi + c
− 1

))
(3.66)

Considering that X̄i. converges to pλi in probability under the null-hypothesis, the following
equations have to be solved to determine the supremum:

0 = lim
n→∞

m∑
i=2

λi

(
X̄i.

p̂nλi + ĉn
− 1

)
p
=

m∑
i=2

λi

(
pλi

p̂λi + ĉ
− 1

)

0 = lim
n→∞

(
−1 +

m∑
i=2

(
X̄i.

p̂nλi + ĉn
− 1

))
p
=

(
−1 +

m∑
i=2

(
pλi

p̂λi + ĉ
− 1

))

The solution to this is, similar as before, (p̂, ĉ) = (p, 0). For this value of (p̂, ĉ), the first
equation equals zero, while the second is smaller than zero. Again ĉ = 0 is on the boundary
of the parameter space, and thus we find that (p̂n, ĉn)

p→ (p, 0). Now take p̃n such that
lmn(p̃n, 1, 0) = supp lmn(p, 1, 0), note that p̃n

p→ p. Since both (p̃n, 1, 0) and (p̂n, 1, ĉn) converge
in probability to the same point (p, 1, 0), and, similarly as before, lmn(θ) is continuous, we
have:

lim
n→∞

lmn(p̂n, 1, ĉn)
p
= lim

n→∞
lim

(p̂n,ĉn)→(p,0)
lmn(p̂n, 1, ĉn) = lim

n→∞
lmn(p, 1, 0)

= lim
n→∞

lim
p̃n→p

lmn(p̃n, 1, 0)
p
= lim

n→∞
lmn(p̃n, 1, 0) (3.67)

3.3.3 Distribution LRT, More Than Three Spike Concentrations

In this section, the suprema found in Section 3.3.2 will be used to determine the asymptotic
distribution of LRT for the three different hypothesis cases.

Distribution LRT for Case 1: Joint Hypothesis

Now, we have that the likelihood ratio test is as follows:

LRT = −2

(
sup
p
lmn(p, 1, 0)− sup

p,η,c
lmn(p, η, c)

)
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Next define LRT≈, an approximation of LRT , as follows:

LRT≈ := −2

(
sup
p
lmn(p, 1, 0)− sup

p,η
lmn(p, η, 0)

)
For LRT≈ we know that the distribution is χ2

1 under the null-hypothesis. Since the LRT≈ is
equal to the likelihood ratio test of hypothesis H02 : η = 1 of Case 3, where H01 : c = 0 is
approved. Next we look at the difference of LRT and LRT≈ if n→∞:

lim
n→∞

(LRT − LRT≈) = lim
n→∞

−2

(
sup
p
lmn(p, 1, 0)− sup

p,η,c
lmn(p, η, c)

)
+ lim
n→∞

2

(
sup
p
lmn(p, 1, 0)− sup

p,η
lmn(p, η, 0)

)
= 2

(
lim
n→∞

sup
p,η,c

lmn(p, η, c)− lim
n→∞

sup
p,η

lmn(p, η, 0)

)
= 2

(
lim
n→∞

lmn(p̂n, η̂n, ĉn)− lim
n→∞

lmn(p̃n, η̃n, 0)
)

p
= 0

This means that LRT and LRT≈ converge to the same limit. Since LRT≈ is χ2
1 distributed,

we can conclude that the asymptotic distribution of LRT is also χ2
1.

Distribution LRT for Case 2: Sequential Hypotheses(η, c)

For this case, the distribution of the LRT for the second hypothesis: H02 : c = 0 has to be
determined. The LRT is as follows:

LRT2 = −2

(
sup
p
lmn(p, 1, 0)− sup

p,c
lmn(p, 1, c)

)
Using the result from Equation 3.67, the following is found:

lim
n→∞

LRT2 = lim
n→∞

−2

(
sup
p
lmn(p, 1, 0)− sup

p,c
lmn(p, 1, c)

)
= −2

(
lim
n→∞

sup
p
lmn(p, 1, 0)− lim

n→∞
sup
p,c

lmn(p, 1, c)

)
p
= −2

(
lim
n→∞

sup
p
lmn(p, 1, 0)− lim

n→∞
sup
p
lmn(p, 1, 0)

)
= 0

From this we can see that the likelihood ratio test of the second hypothesis H02 converges in
probability to 0. This means that LRT2 is deterministic, and if the value of LRT2 is unequal
to 0 then the null-hypothesis H02 : c = 0 is rejected.

Distribution LRT for Case 3: Sequential Hypotheses(c, η)

Similarly to Case 1: joint hypothesis H0 : η = 1 ∧ c = 0, the distribution of the LRT under
null-hypothesis for the first hypothesis of Case 3, H01 : c = 0, can be determined. We know
that the LRT for this hypothesis is as follows:

LRT1 = −2

(
sup
p,η

lmn(p, η, 0)− sup
p,η,c

lmn(p, η, c)

)
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For this, we know, the same as for Case 1, that limn→∞ supp,η,c lmn(p, η, c)
p
= limn→∞ supp,η lmn(p, η, 0)

from Equation 3.63. From this it follows that:

lim
n→∞

LRT1 = lim
n→∞

−2

(
sup
p,η

lmn(p, η, 0)− sup
p,η,c

lmn(p, η, c)

)
= −2

(
lim
n→∞

sup
p,η

lmn(p, η, 0)− lim
n→∞

sup
p,η,c

lmn(p, η, c)

)
p
= −2

(
lim
n→∞

sup
p,η

lmn(p, η, 0)− lim
n→∞

sup
p,η

lmn(p, η, 0)

)
= 0

This means that the distribution of LRT1 under null-hypothesis H01 converges to the value 0
in probability, i.e. LRT1 is deterministic. If the value of the LRT1 is unequal to 0, then the
null-hypothesis can be rejected.
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Chapter 4

Simulation

In this chapter, we will describe the simulation and the found results. The model was simulated
in R and the code can be found in Appendix B.

4.1 Simulation Description

In this section, the simulation is described. There are two different reasons as to why a simu-
lation is made. First, the simulation can be used to investigate the performance of the found
asymptotic distribution of the LRT to generated data with low number of samples per spike
concentration. Secondly, we want to determine there is an advantage to using a certain hy-
pothesis case, or to use a certain chosen set of spike concentrations. The power and type-I
error of models with different hypotheses cases and spike concentration sets will be determined
for a different number of samples per spike concentration. Once determined, the power can be
used to determine the hypothesis and spike concentrations that perform the best. The type-I
error rate can be used to check the performance of the found distribution.
In the simulation, several scenarios will be looked at, to determine an overlook on the perfor-
mance of the model. For each scenario, the type-I error rate and the power will be determined
for a specific set of parameters, which can be seen in Table 4.2. Each scenario that is sim-
ulated will consist of two parts: one of the hypothesis cases of Section 2.3 and one set of
spike concentrations. In Table 4.1 the values for the different spike concentration sets can be
seen. They are chosen, such that there are sets with blank concentration and with non-zero
concentrations. Set 1 (S1) is chosen following the values that were found in Heidari (2020).
They determined the values for the spike concentrations that minimize the variances of the
parameter estimates. The values found where λ1 = 0, λ3 = λmax and λ2 ∈ {λ3e

−2/η, λ3e
−1/η}.

If you take λmax = 100 and η = 1 then λ2 ∈ {13.5, 36.8}. To be able to compare including a
blank solution to no blank solution, Set 3 is only different in λ1 as compared to Set 1. For Set
2, an equal distribution of the spike concentrations is chosen. Set 4 and 5 have more than 3
spike concentrations. Set 4 is an extension of Set 1 and Set 5 follows a logarithmic scale. To
simulate the data, first the observations xij are created using the Poisson distribution with the
parameter pληi + c, where p, η, c and n are values from the Table 4.2 and m is the size of the
spike concentration set used. Using this simulated data, the values of the likelihood ratio test
statistic is determined for the given hypothesis cases, which in turn can be compared to the
found distribution to determine if the null-hypothesis is rejected or not. This will be repeated
N = 10.000 times, to determine the probability that the null-hypothesis will be rejected, given
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Set Spike Concentrations
λ1 λ2 λ3 λ4

S1 0 13.5 100 -
S2 0 50 100 -
S3 1 13.5 100 -
S4 0 13.5 25 100
S5 0.1 1 10 100

Table 4.1: Spike concentration sets used in the simulation

p 0.7 0.9
η 0.9 1 1.1
c 0 0.5
n 3 5 8 10 15 20 25 50

Table 4.2: Parameters used in Simulation

p, η, c and n. If η = 1 and c = 0, the probability of rejection is the type-I error rate, otherwise
it is the power.
To determine the value of the LRT given the simulated data for all three hypothesis cases, the
supremum of the log-likelihood needs to be determined for four different situations. First with
p, η and c free in the parameter space, then with either η = 1 or c = 0, and lastly when both
η = 1 and c = 0. Once the suprema are found the different LRT’s needed for each hypothesis
case can be calculated using the found suprema, using the equations given in Section 2.3. Next
we need to determine if the null-hypothesis will be rejected or not. The criteria for rejection
of each of the hypothesis cases, with or without blank spike, can be seen in Table 4.3. For the
sequential hypothesis, proportionality is rejected if either of the two hypotheses is rejected.
The code for the simulation can be seen in Appendix B.

Case Found Distribution Rejected If

non-
zero
spike

1: joint LRT 1
2χ

2
1 + 1

2χ
2
2

1
2P(χ2

1 > LRT ) + 1
2P(χ2

2 > LRT ) < α

2: (η, c) LRT1 χ2
1 P(χ2

1 > LRT1) < 1
2α

LRT2
1
2χ

2
1

1
2P(χ2

1 > LRT2) < 1
2α

3: (c, η) LRT1
1
2χ

2
1

1
2P(χ2

1 > LRT1) < 1
2α

LRT2 χ2
1 P(χ2

1 > LRT2) < 1
2α

blank
spike

1: joint LRT χ2
1 P(χ2

1 > LRT ) < α

2: (η, c) LRT1 χ2
1 P(χ2

1 > LRT1) < 1
2α

LRT2 0 LRT2 6= 0

3: (c, η) LRT1 0 LRT1 6= 0
LRT2 χ2

1 P(χ2
1 > LRT2) < 1

2α

Table 4.3: Distribution of LRT for each hypothesis case and rejection criteria
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4.2 Results

First we will look at the fit of the found distributions. In the first subsection we will investigate
the performance of the found distributions, through use of the histograms of the LRT for each
of the hypothesis case, with or without blank spike, as well as the type-I error rate. Then
we will look at the statistical power for each scenario explained in the last section, using the
rejection criteria as discussed above. In the first sub-section we find that the rejection criteria
might need to be adjusted, the results of the adjusted simulation on the power can be seen in
the last subsection.

4.2.1 Fit Found Distributions

First the histograms of N simulated LRT values of the three different hypothesis cases will be
shown, along with the density line of the corresponding determined asymptotic distribution.
For the spike concentrations, S4 and S5 are used for the scenario with blank spike and non-zero
spike respectively. The simulation here uses ten samples per spike concentration (n = 10).
In Figure 4.1 the distribution of the LRT, with a blank spike included, can be seen. In

(a) Case 1, Joint hypothesis (b) Case 2 and 3, Sequential hypotheses

(c) Case 2, Sequential hypotheses(η, c), H01 (d) Case 2, Sequential hypotheses(c, η), H02

Figure 4.1: Distribution of the LRT with spike concentrations S4, icl. blank spike

the first graph (Figure 4.1a), the density is shown when using joint hypothesis, which is very
similar to the found distribution χ2

1. Figure 4.1b shows the box-plots of the LRT for Case
2 and 3, the sequential hypotheses cases. Here you can see that the LRT sometimes, very
rarely, deviates from 0. The size of this deviation is smaller than ≈e-08. This difference is
most likely because of the small error in calculating the LRT in R, for pληi + c < 1E − 08.
The function sc optim in R used to find the suprema needed for the LRT, cannot be used

34



if the function it optimizes over has infinite function values in the defined parameter space.
If pληi + c comes close to zero, log(pληi + c) will move to infinity, which causes problems in
optim. These problems is why for small pληi + c, this value is bounded in the code. This does
not cause problems in the values of the estimates, which is why the estimation of ĉ can be
used in the simulation to determine whether the null-hypothesis of c = 0 is accepted for the
sequential hypotheses cases. Figures 4.1c and 4.1d show the distribution of the LRT of the
sequential hypothesis test for η = 1, for both cases.
The density of the LRT with non-zero spike concentrations can be seen in Figure 4.2. Similar
as with the LRT of blank spikes, the density of the LRT for Case 1 fits the found distribution
the mixture of χ2

1 and χ2
2 both with ratio 1

2 . Similarly for the sequential hypotheses cases, the
distribution found in Section 3.2 seems to fit the simulated data well.
Next we will look at the type-I error rate for the parameters shown in Table 4.2. In Figure

(a) Case 1, Joint hypothesis (b) Case 2, Sequential hypotheses(η, c), H01

(c) Case 2, Sequential hypotheses(η, c), H02 (d) Case 3, Sequential hypotheses(c, η), H01

(e) Case 3, Sequential hypotheses(c, η), H02

Figure 4.2: Distribution of the LRT with spike concentrations S5, non-zero spike
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4.3, the type-I error rate is shown for the first simulation. For the type-I error rate, you can
see that most of the lines are around the alpha-value, 0.05. Only the lines when testing using
the sequential hypotheses, Case 2 and 3, and the spike concentrations set with the blank spike
the type-I error rate is around 0.025. In these two cases the significance level for the two tests
is set at α/2 = 0.025, while one of the sequential test, the test for c = 0, is independent of
the α value. In this test, in the simulation, we test if ĉ = 0, which equals the test LRT = 0,
as can be seen in Section 3.3.3. Testing if LRT = 0 is a degenerative test, since it is equal to
testing LRT = D, with D a distribution where P(D = 0) = 1. As we know that LRT p

= 0
if η = 1 and c = 0, as shown in Section 3.3.3, the overall type-I error rate is only α/2. This
creates a conservative test, and it might be interesting to look at the simulation where the
significance level is adjusted. Instead of using α/2 as the significance level for testing η = 1,
α will be used for this test, when testing sequentially with a blank spike.
Lastly, one more thing to notice, in the type-I error rate graphs for the first simulation, is that
in all four graphs the blue lines, for the spike concentration sets excluding the blank spike (S3

and S5), are slightly below the α line. The lines for the spike concentration set S1 are the
closest to the significance line, if you look at all three lines.

(a) p = 0.7, S1, S2 and S3 (b) p = 0.9, S1, S2 and S3

(c) p = 0.7, S1, S4 and S5 (d) p = 0.9, S1, S4 and S5

Figure 4.3: Type-I error rate, for p ∈ {0.7, 0.9}, for all spike-concentration sets

In Figure 4.4, the type-I error rate for the adjusted simulation can be seen. As there does
not seem to be much difference between p = 0.7 and p = 0.9, only p = 0.7 is used here.
As the adjustment only influence the scenarios with a blank spike and sequential hypotheses,
we look at spike concentration sets with a blank spike. The joint hypothesis test is included
for comparison to the first simulation. The type-I error rate for the adjusted simulation
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is all around α = 0.05, this means that the adjustment of the significance level solved the
conservative nature seen before the adjustment of the sequential tests with a blank spike.

Figure 4.4: Type-I error rate, for p = 0.7, spike concentrations S1, S2 and S4

4.2.2 First Simulation

Here we will discuss the statistical power found for the first simulation. In Figures 4.5 to 4.8,
the power of the different test situations can be seen. In Figures 4.5 and 4.6 are the power for
when c is taken equal to 0. Here the first figure has spike concentration sets S1, S2 and S3,
and the second figure shows the results for sets S1, S4 and S5. In the last two figures, Figures
4.7 and 4.8, the power found for simulating with c = 0.5 is shown.
First we will take a look at the figures where c = 0 (Figures 4.5 and 4.6). Here you can see
that if you look per spike concentration set, Case 1, joint hypothesis, has the most power
compare to Case 2 and 3, while the sequential hypothesis cases, Case 2 and 3, do not show
much difference. Note that this holds only for the spike concentration sets with a blank spike,
for the spike concentration sets with non-negative spikes there does not seem to be much
difference between the hypothesis cases. If you look at the different spike concentration sets,
among the first three, S1, S2 and S3, S2 performs the worst. Meanwhile S1 and S3 are very
similar with S3 performing slightly better three out of four times. For the last three S4 has
to most power, while S1 has the least.
Now if we look at the results of the simulations where c = 0.5, the first thing to notice is that
the spike concentration sets with non-zero spikes (S3 and S5) have less power compared to the
other spike concentration sets (in their respective graphs). In both graphs there is not much
difference between the two other spike concentration sets. In these graphs these graphs there
is not one of the three cases with clearly more power than another. In most of the graphs
either Case 2 or Case 3 hold the most power, but the three lines never seem to differ much
from one another.
From the results found in this section, the best spike concentration set, with 3 different
concentrations, is S1 = (0, 13.5, 100). Adding one more spike concentration with value 25 to
this gives S4, which has overall the most power. Considering Case 1, joint hypothesis, has
the most power if c = 0, while there is not much difference between the cases if c = 0.5, we
determine Case 1, joint hypothesis, is the best option.
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(a) p = 0.7, η = 0.9, c = 0 (b) p = 0.9, η = 0.9, c = 0

(c) p = 0.7, η = 1.1, c = 0 (d) p = 0.9, η = 1.1, c = 0

Figure 4.5: Power, for different values of p, η, and c = 0, spike concentrations S1, S2 and S3

4.2.3 Simulation with Adjusted Significance Levels

In this section the values for the significance level for the sequential tests, with one blank
spike will be adjusted. For the adjustment, instead of dividing the significance level over both
test, when testing sequentially, all of the significance level will be used for the test of η = 1,
since the test for c = 0 is degenerative. As this difference only applies when one of the spike
concentrations is zero, and we test sequentially, only spike concentrations S1, S2, and S3 will
be tested in this section. We will test all three Hypothesis cases, such that we are able to
compare to the first simulation. We also noticed that there is not much difference between
the two different values of p that were used in the first simulation, and we decided to only use
p = 0.7 in this simulation.
In Figures 4.9 the result from the simulation can be seen. The difference in the power, as
compared to the first simulation, seems to be that there is no longer a difference between the
hypothesis cases. When comparing the difference spike concentration sets, the results are the
same as in Section4.2.2. The spike concentration set with the most power is S4, followed by
S1. The only difference between these two sets is that set S4 also has spike concentration 25.
From the results in this section, we found that, when including a blank spike in the spike
concentrations used, the significance level needs to be adjusted for the sequential cases to
make them perform the same as the joint hypothesis case. Once adjusted, it does not matter
which hypothesis case is used. Depending on the goal and the preference to either log-linearity
or linearity, the different cases can be used. For the spike concentration, we found that the
result is the same as found in the previous section, S4 has the most power, but if you need or
want to limit yourself to 3 spike concentrations, S1 should be chosen.
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(a) p = 0.7, η = 0.9, c = 0 (b) p = 0.9, η = 0.9, c = 0

(c) p = 0.7, η = 1.1, c = 0 (d) p = 0.9, η = 1.1, c = 0

Figure 4.6: Power, for different values of p, η, and c = 0, spike concentrations S1, S4 and S5
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(a) p = 0.7, η = 0.9, c = 0.5 (b) p = 0.9, η = 0.9, c = 0.5

(c) p = 0.7, η = 1, c = 0.5 (d) p = 0.9, η = 1, c = 0.5

(e) p = 0.7, η = 1.1, c = 0.5 (f) p = 0.9, η = 1.1, c = 0.5

Figure 4.7: Power, for different values of p, η, and c = 0.5, spike concentrations S1, S2 and S3
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(a) p = 0.7, η = 0.9, c = 0.5 (b) p = 0.9, η = 0.9, c = 0.5

(c) p = 0.7, η = 1, c = 0.5 (d) p = 0.9, η = 1, c = 0.5

(e) p = 0.7, η = 1.1, c = 0.5 (f) p = 0.9, η = 1.1, c = 0.5

Figure 4.8: Power, for different values of p, η, and c = 0.5, spike concentrations S1, S4 and S5
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(a) η = 0.9, c = 0 (b) η = 0.9, c = 0.5

(c) η = 1, c = 0.5 (d) η = 1.1, c = 0

(e) η = 1.1, c = 0.5

Figure 4.9: Power, for different values of η, and c, for p = 0.7, spike concentrations S1, S2 and S4
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Chapter 5

Conclusion

In this thesis, we determined the distribution of the LRT, when a blank spike is either included
or excluded. This was needed for the model used in this thesis, since on of the parameters was
on the boundary of the parameter space. We assumed that the data is poisson distributed with
Mitscherlich mean (pληi + c). The Mitscherlich function is linear and log-linear under specific
conditions, namely η = 1 and c = 0. The distribution of the LRT has been determined for
when both linearity and log-linearity are tested at once, and for when one is tested before the
other. For the joint hypothesis testing, the distribution of the LRT with a blank is χ2

1, while
the distribution for the LRT with non-zero spikes is 1

2χ
2
1 + 1

2χ
2
2. For sequential hypotheses

testing, when testing if η = 1, the distribution of the LRT is χ2
1. The LRT of the test for

c = 0 is 1
2χ

2
1 if the spike concentrations are non-zero. When a blank spike is included the test

becomes deterministic, and the null-hypothesis will be rejected if LRT 6= 0. The distribution of
the LRT when no blank was used, was determined using a theorem from Self & Liang (1987).
For this several regularity conditions were proven.
After the distribution of the LRT was determined, the model was simulated to find the best
option for null-hypotheses and spike concentrations. From this was found that the joint
hypothesis test was better than either of the sequential tests, but only if, for the sequential test
with blank spike, the significance level was equally divided over the two test. If the significance
level would be adjusted for the sequential test, if a blank spike is included, by only using it
for the η test, there is no difference between the different hypothesis cases. For the spike
concentrations was found that taking the spike concentrations as (λ1, λ2, λ3) = (0, 13.5, 100)
was the best option if you only wanted the minimum number of spike concentrations. If one
more concentration can be added, adding the spike concentration 25 to the above mentioned
spike concentrations would be the best option. This set of spike concentrations was the best
set among the tested sets for both the first and adjusted simulation.
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Appendix A

Existence of derivatives of log(pληi + c)

Here we will show that the derivatives of f(p, η, c) = log(pληi +c) exist if pληi +c > 0. For this,
note that the derivative of a function f(x1, x2, x3) exists if the partial derivatives ∂f

∂xi
exist for

all i. These partial derivatives exist if the following limit exists:

lim
h→0

f(x+ h · ei)− f(x)

h

Here x = (x1, x2, x3)T and ei is the i-th standard basis vector, thus e1 = (1, 0, 0)T . Note that
limh→0(1 + hx)1/h = ex, also note that λhi − 1 = h log(λi) +O(h2) is the Taylor expansion of
λhi − 1 around h = 0. Then we have the following:

lim
h→0

f(p+ h, η, c)− f(p, η, c)

h
= lim

h→0

log((p+ h)ληi + c)− log(pληi + c)

h

= lim
h→0

1

h
log

(
(p+ h)ληi + c

pληi + c

)
= lim

h→0

1

h
log

(
1 +

hληi
pληi + c

)
= lim

h→0
log

((
1 +

hληi
pληi + c

)1/h
)

= log
(
eλ

η
i /(pλ

η
i +c)

)
=

ληi
pληi + c

lim
h→0

f(p, η + h, c)− f(p, η, c)

h
= lim

h→0

log(pλη+h
i + c)− log(pληi + c)

h
= lim

h→0

1

h
log

(
pλη+h

i + c

pληi + c

)

= lim
h→0

1

h
log

(
1 +

pληi (λ
h
i − 1)

pληi + c

)
= lim

h→0
log

((
1 +

pληi (h log(λi) +O(h2))

pληi + c

)1/h
)

= log
(
epλ

η
i log(λi)/(pλ

η
i +c)

)
=
pληi log(λi)

pληi + c
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lim
h→0

f(p, η, c+ h)− f(p, η, c)

h
= lim

h→0

log(pληi + c+ h)− log(pληi + c)

h

= lim
h→0

1

h
log

(
pληi + c+ h

pληi + c

)
= lim

h→0

1

h
log

(
1 +

h

pληi + c

)
= lim

h→0
log

((
1 +

h

pληi + c

)1/h
)

= log
(
e1/(pληi +c)

)
=

1

pληi + c

This shows that the partial derivatives ∂
∂p log(pληi + c), ∂

∂η log(pληi + c) and ∂
∂c log(pληi + c)

exists if pληi + c > 0, which means the derivatives of log(pληi + c) exists if pληi + c > 0.
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Appendix B

Simulation Code

1 l l<−f unc t i on (x , l , p , eta , c ) { #l o g l i k e l h o od f o r 1 lambda
2 #x obse rva t i on s f o r sp i k e conc en t r a t i on l , p , eta , c parameters
3 par<− i f e l s e (p∗ l ^eta+c<=1E−08 ,(1e−08) ,p∗ l ^eta+c )
4 par_log<−l og ( par )
5 re turn(− l ength (x ) ∗par+sum(x∗par_log− l f a c t o r i a l ( x ) ) )
6 }
7

8 l o g l i k e_pnc<−f unc t i on ( theta , x , lambda ) {
9 #get l ( theta ) f o r ob s e rva t i on s x , s p i k e s lambda , where theta=(p , eta , c )

10 p<−theta [ 1 ]
11 eta<−theta [ 2 ]
12 c<−theta [ 3 ]
13 y<−rep (NA, l ength ( lambda ) )
14

15 f o r ( i in 1 : l ength ( lambda ) ) {
16 y [ i ]<− l l ( x [ , i ] , lambda [ i ] , p , eta , c )
17 }
18 re turn (sum(y ) )
19 }
20

21 l o g l i k e_pn<−f unc t i on ( theta , x , lambda ) {
22 #get l (p , eta , 0 ) f o r ob s e rva t i on s x , s p i k e s lambda , where theta=(p , eta ) , c=0
23 p<−theta [ 1 ]
24 eta<−theta [ 2 ]
25 y<−rep (NA, l ength ( lambda ) )
26

27 f o r ( i in 1 : l ength ( lambda ) ) {
28 y [ i ]<− l l ( x [ , i ] , lambda [ i ] , p , eta , 0 )
29 }
30 re turn (sum(y ) )
31 }
32

33 l o g l i k e_pc<−f unc t i on ( theta , x , lambda ) {
34 #get l (p , 1 , c ) f o r ob s e rva t i on s x , s p i k e s lambda , where theta=(p , c ) , eta=1
35 p<−theta [ 1 ]
36 c<−theta [ 2 ]
37

38 y<−rep (NA, l ength ( lambda ) )
39 f o r ( i in 1 : l ength ( lambda ) ) {
40 y [ i ]<− l l ( x [ , i ] , lambda [ i ] , p , 1 , c )
41 }
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42 re turn (sum(y ) )
43 }
44

45 l o g l i k e_p<−f unc t i on (p , x , lambda ) {
46 # l (p , 1 , 0 ) f o r ob s e rva t i on s x , s p i k e s lambda
47 y<−rep (NA, l ength ( lambda ) )
48

49 f o r ( i in 1 : l ength ( lambda ) ) {
50 y [ i ]<− l l ( x [ , i ] , lambda [ i ] , p , 1 , 0 )
51 }
52 re turn (sum(y ) )
53 }

Listing B.1: Likelihood and Loglikelihood function

1 run<−f unc t i on (p , eta , c , lambda , m, n , h0_type="both" ) {#s i n g l e run model
2 alpha<−0 .05
3

4 # crea t e ob s e rva t i on s
5 x<−c ( )
6 f o r ( l in lambda ) {
7 x<−cbind (x , r p o i s (n , p∗ l ^eta+c ) )
8 }
9

10

11 #f ind optimum over p eta c
12 opt_pnc<−optim ( par=c (p , eta , c ) , fn=l o g l i k e_pnc , x=x , lambda=lambda ,
13 lower=c (0 , 0 , 0 ) , upper=c ( Inf , In f , I n f ) ,
14 method="L−BFGS−B" , c on t r o l = l i s t ( maxit=200000 , f n s c a l e=−1) ,
15 he s s i an=TRUE)
16 # f ind optimum over p i f eta=1,c=0
17 opt_p<−optim ( par=c (p) , fn=l o g l i k e_p , x=x , lambda=lambda ,
18 lower=0,upper=Inf , method="L−BFGS−B" ,
19 c on t r o l = l i s t ( maxit=200000 , f n s c a l e=−1) , he s s i an=TRUE)
20

21

22 #sequ en t i a l or j o i n t hypothes i s
23 i f ( h0_type==" ceta " ) {
24 # h01 : c=0, h02 : eta=1
25

26 # f ind optimum over p , eta i f c=0
27 opt_pn<−optim ( par=c (p , eta ) , fn=l o g l i k e_pn , x=x , lambda=lambda ,
28 lower=c (0 , 0 ) , upper=c ( Inf , I n f ) ,
29 method="L−BFGS−B" , c on t r o l = l i s t ( maxit=200000 , f n s c a l e=−1) ,
30 he s s i an=TRUE)
31

32 #l r t f o r h01 : c=0
33 l r t_1<− −2∗ ( opt_pn$ value −opt_pnc$ value )
34

35 #l r t f o r h02 : eta=1
36 l r t_2<− −2∗ ( opt_p$ value −opt_pn$ value )
37

38

39 #i f min ( lambda )=0, l r t 1= 0 , here h0 ge t s r e j e c t e d i f l r t_1 !=0
40 #i f min ( lambda ) !=0 , l r t 1 = 1/2∗0+1/2∗ ch i_1^2 , l r t=ch i_1^2
41
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42 i f (min ( lambda )==0){
43 r e j e c t_h01<−opt_pnc$par [ 3 ] !=0
44

45 # non−co r r e c t ed ve r s i on
46 # r e j e c t_h02<−pchi sq ( l r t_2 ,1 , lower . t a i l = FALSE)<alpha /2
47

48 #cor r e c t ed ve r s i on
49 r e j e c t_h02<−pchi sq ( l r t_2 ,1 , lower . t a i l = FALSE)<alpha
50 } e l s e {
51 r e j e c t_h01<−0 .5 ∗ pchi sq ( l r t_1 ,1 , lower . t a i l = FALSE)<alpha /2
52

53 r e j e c t_h02<−pchi sq ( l r t_2 ,1 , lower . t a i l=FALSE)<alpha /2
54 }
55

56 #does h01 or h02 get r e j e c t e d ?
57 r e j e c t<−r e j e c t_h01 | | r e j e c t_h02
58

59

60 } e l s e i f ( h0_type==" etac " ) {
61 #h01 : eta=1, h01 : c=0
62

63 # f ind optimum over p , c i f e ta=1
64 opt_pc<−optim ( par=c (p , c ) , fn=l o g l i k e_pc , x=x , lambda=lambda ,
65 lower=c (0 , 0 ) , upper=c ( Inf , I n f ) ,
66 method="L−BFGS−B" , c on t r o l = l i s t ( maxit=200000 , f n s c a l e=−1) ,
67 he s s i an=TRUE)
68

69 #l r t f o r h01 : eta=1
70 l r t_1<− −2∗ ( opt_pc$ value −opt_pnc$ value )
71

72 #l r t f o r h02 : c=0
73 l r t_2<− −2∗ ( opt_p$ value −opt_pc$ value )
74

75

76 #i f min ( lambda )=0, l r t 1= ch i_1^2 , l r t 2=0
77 #i f min ( lambda ) !=0 , l r t 1 = ch i_1^2 , l r t=1/2∗0+1/2∗ ch i_1^2
78

79 i f (min ( lambda )==0){
80 # non−co r r e c t ed ve r s i on
81 # r e j e c t_h01<−pchi sq ( l r t_1 ,1 , lower . t a i l = FALSE)<alpha /2
82

83 #cor r e c t ed ve r s i on
84 r e j e c t_h01<−pchi sq ( l r t_1 ,1 , lower . t a i l = FALSE)<alpha
85

86 r e j e c t_h02<−opt_pc$par [ 2 ] !=0
87 } e l s e {
88 r e j e c t_h01<−pchi sq ( l r t_1 ,1 , lower . t a i l = FALSE)<alpha /2
89

90 r e j e c t_h02<−0 .5 ∗ pchi sq ( l r t_2 ,1 , lower . t a i l=FALSE)<alpha /2
91 }
92

93 #does h01 or h02 get r e j e c t e d ?
94 r e j e c t<−r e j e c t_h01 | | r e j e c t_h02
95

96 } e l s e {#h0_type="both"
97

98 #l r t f o r h0 : ( eta=1 and c=0)
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99 l r t_1<− −2∗ ( opt_p$ value −opt_pnc$ value )
100 l r t_2<− −2 #r e s t v a l u e
101

102

103 #i f min ( lambda )=0, l r t 1= ch i_1^2
104 #i f min ( lambda ) !=0 , l r t 1=1/2∗ ch i_2^2+1/2∗ ch i_1^2
105 pval<−( 0 . 5 ∗ pchi sq ( l r t_1 ,1 , lower . t a i l=FALSE)
106 +0.5∗ pchi sq ( l r t_1 ,2 , lower . t a i l=FALSE) )
107 r e j e c t<− i f e l s e (min ( lambda )==0, pch i sq ( l r t_1 ,1 , lower . t a i l = FALSE)<alpha ,
108 pval<alpha )
109

110 }
111 re turn ( c ( l r t_1 , l r t_2 , r e j e c t ) )
112 }
113

114 runsim<−f unc t i on (p , eta , c , lambda , N, m, n , h0_type="both" ) {
115 # repea t s run N times , to get N LRT va lues
116 l r t 1<−c ( )
117 l r t 2<−c ( )
118 r e j e c t<−c ( )
119 f o r ( i in 1 :N) {
120 r e s<−c ( )
121 r e s<−run (p , eta , c , lambda ,m, n , h0_type )
122

123 l r t 1<−append ( l r t 1 , r e s [ 1 ] )
124 l r t 2<−append ( l r t 2 , r e s [ 2 ] )
125 r e j e c t<−append ( r e j e c t , r e s [ 3 ] )
126 }
127 re turn ( cbind ( l r t 1 , l r t 2 , r e j e c t ) )
128 }

Listing B.2: Experiment simulation

1

2 det_p_r e j e c t<−f unc t i on (p , eta , c , lambda , N, m, h0_type="both" ) {
3 prob<−c ( )
4 n_va lues<−c (3 , 5 , 8 , 10 , 15 , 20 , 25 , 50 )
5 f o r (n in n_va lues ) {
6 r e s<−c ( )
7 r e s<−runsim (p , eta , c , lambda ,N,m, n , h0_type )
8 prob<−append ( prob , mean( r e s [ , 3 ] ) )
9 }

10 re turn ( prob )
11 }

Listing B.3: Determination reject probability
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Appendix C

Example Cone Transformation

In this chapter, we will give an example of how C̃ from Section 3.1 is calculated from a two-
dimensional C = [0,∞)×R = {a ·e1 + b ·e2 : a ≥ 0∧ b ∈ R} for the standard base e1 = (1, 0)T

and e2 = (0, 1)T . We take θ0 = (0, 0)T and I(θ0) is as follows:

I(θ0) =

(
1 −1

2
−1

2 1

)
The spectral decomposition of I(θ0), PΛP T , is as follows:

I(θ0) = PΛP T =

(
−1 1
1 1

)(
3
2 0
0 1

2

)(
−1 1
1 1

)
Note:

Λ1/2P T =

(√
3/2 0

0
√

1/2

)(
−1 1
1 1

)
=

(
−
√

3/2
√

3/2√
1/2

√
1/2

)
Using this to calculate C̃ gives:

C̃ =
{
θ̃ : θ̃ = Λ1/2P T θ for all θ ∈ C

}
=

{(
θ̃1

θ̃2

)
:

(
θ̃1

θ̃2

)
=

(√
3/2(−θ1 + θ2)√
1/2(θ1 + θ2)

)
for all θ1 ≥ 0

θ2 ∈ R

}
=

{(
θ̃1

θ̃2

)
:

(
θ̃1

θ̃2

)
=

√
3

2
(−a+ b) · e1 +

√
1

2
(a+ b) · e2 for all a ≥ 0

b ∈ R

}

In Figure C.1 both C and C̃ are shown. Now we want to find an orthonormal transformation
so that C̃ = [0,∞)×R in terms of the transformed base. For this new base, {ẽ1, ẽ2}, we have
that ẽ2 = (

√
3/2e1 +

√
1/2e2)/

√
2 =

√
3/4e1 +

√
1/4e2. For ẽ1, we know ẽ1 ⊥ ẽ2, and thus

ẽ1 = −
√

1/4e1 +
√

3/4e2. Note that both ẽ1 and ẽ2 have to be the same length as e1 and e2.
Now C̃ = {a · ẽ1 + b · ẽ2 : a ≥ 0 ∧ b ∈ R}.
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Figure C.1: C and C̃, and the standard and transformed bases
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