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Abstract

Due to the rapidly expanding scale of the internet, the research community has seen a renewed interest
in efficient load balancing in data centers and, in particular, power-efficient load balancing. One often-
applied method to save power is to turn on or off servers based on the demand and thus dynamically
scale the capacity. The goal of such a system is to scale the capacity in an online fashion to balance the
cost of increased delays and the energy cost.

This thesis considers a model with an unlimited number of identical servers. A server is either off,
idle or busy. Traffic arrives at a central queue to the system in the form of discrete jobs. From the queue,
a job can be routed to a server if the server is idle. If all servers are busy, the system either chooses to let
a job wait in the queue at a cost ω per job per time unit or turn on an additional server at instantaneous
cost β. Additionally, the system pays θ per server per time unit as a power cost.

This thesis provides three major insights. First, we show that several rules for turning off a server
previously proposed in the literature are not constant competitive if jobs are allowed to wait. These
local rules maintain a timer on the idle time of a server and turn off the server if the idle time exceeds
a threshold. The idle time is reset each time a job is scheduled to the server. We propose an alterna-
tive, local rule which does not reset the idle time and instead maintains the idle time throughout the
lifetime of the server. This rule is constant competitive if jobs are allowed to wait and does not degrade
performance if jobs are not allowed to wait. Second, we propose an algorithm for power-efficient load
balancing. Our so-called accumulated cost algorithm follows a global rule which turns on an additional
server each time the accumulated waiting cost exceeds a threshold. We show that the algorithm is 10.8-
competitive in the general case. If jobs are small and allocating a server is irreversible, i.e. θ = 0, then
any online algorithm has a competitive ratio of at least 2.91. The accumulated cost algorithm has a
competitive ratio of 3 in this case and its performance is therefore close to the best possible online algo-
rithm. Finally, the current work goes beyond worst-case analysis and investigates how the performance
of an algorithm can be improved if the algorithm has access to a black-box predictor, which predicts
the future arrivals. We show how to adapt the accumulated cost algorithm to use the predictor without
requiring any knowledge about the accuracy of the predictor. If allocating a server is irreversible, we
establish that the adapted algorithm is 2 +O

(
1/
√
r1
)
-competitive for a parameter r1 if predictions are

accurate and max(8,1 + r1)-competitive if predictions are inaccurate. If in addition jobs are small, then
the competitive ratio is 1 +O

(
1/
√
r1
)

if predictions are accurate. The performance of the algorithm
therefore beats the lower bound of 2.91 and even approaches the performance of the offline algorithm
if predictions are accurate.
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1
Introduction

1.1 Motivation

Since the introduction of the internet, both the availability and the use of services on the internet have
grown exponentially. The ability to connect and collaborate with millions of people across the globe
has fostered countless new inventions, technologies and breakthroughs in a vast spectrum of fields. The
secret at the heart of the success of the internet is without a doubt its scale. Today there are more than
4.5 billion people connected to the internet with global internet traffic doubling every four years [1].
Every day four million blog posts are published, 500 million tweets are sent and more than five billion
Google searches are done1. An estimated 1.92 billion people purchased something online in 2019 with
online retail sales estimated at 3.45 trillion dollars. While to most of its users the services of the internet
seem to exist only virtually, substantial effort is invested to maintain the physical infrastructure of the
internet. At the core of this infrastructure lie the data centers which are responsible for handling
incoming jobs. The power used by a data center is tremendous and hence with the scale of internet
comes a downside. In 2017, the power used by data centers amounted to 416 terawatts or 3% of all
electricity generated on the planet. Moreover, the carbon footprint of these data centers was roughly
equivalent to that of the whole airline industry [2]. Finally, energy consumption amounts to more than
82% of the operating costs of a data center and as a result a data center operator, such as Google, spends
over 100 million dollars annually on electricity alone [3]. Reducing the energy consumption of the data
centers by just a few percent will therefore not only amount to a reduced carbon footprint but also to
direct financial gains.

A data center maintains the servers responsible for handling incoming jobs. For users on websites
for example, a server computes and serves the page to a user viewing the website. The number of
servers in a data center is chosen to handle the peak load and 50,000 running servers in a single data
center is not uncommon [4]. However, for the majority of the time, the load is actually far from its peak
and it would be more energy efficient to turn off part of the servers [5]. Dynamically turning on and off
servers based on the load is called dynamic provisioning. The goal of this thesis is to design a policy for
dynamic provisioning which balances the cost of increased delays and the energy cost. The terminology
in this thesis will be targeted towards data centers because this has been the focus of most of the related
literature, although the ideas are more broadly applicable. For example, dynamic provisioning has
been applied to areas such as processor scaling, wireless networks and capital investment. The wide
applicability of these ideas motivates the premise of this work to not make any assumptions on either
the behavior of the traffic, the size of the system or the cost of delays versus the power cost. Moreover,
for many of these applications the adversarial approach taken in this thesis is relevant. Think for
example of denial-of-service attacks targeted at data centers.

Strategies for dynamic provisioning are already applied at data centers in practice to reduce their
power consumption. In recent years, there has been an increasing popularity and accompanying suc-
cess of machine learning algorithms. Google’s Deep Mind machine learning algorithm for example has
been able to reduce the energy cost of Google’s data centers by 40% [6]. The machine learning algorithm
is able to predict the future traffic at the data center accurately and responds to these predictions by
either turning on additional servers or turning off existing servers. These machine learning algorithms
work well if their predictions are accurate. If the predictions are inaccurate, the performance of these

1The website https://www.internetlivestats.com/ maintains live statistics on the internet.
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algorithms plunges. On the other hand, there is the well-developed field of competitive, online algo-
rithms. A competitive, online algorithm guarantees that the performance of the algorithm is always
within a bound of the optimum independent of the future traffic. Competitive algorithms prove strong
guarantees on the worst-case performance, but do not necessarily perform better if the future traffic is
predictable. A natural question to ask is whether these two approaches can be combined. Is it possible
to achieve performance close to the optimum if the future traffic is predictable and guarantee bounded
worst-case performance if the future traffic is not predictable? The crucial assumption here is that the
algorithm does not know whether a prediction is accurate. The current work explores how to execute
these ideas and apply them to dynamic provisioning.

1.2 Main contributions

The current work contributes to the existing literature on four main points.
First, the current work explicitly models the delay of a job as an optimization objective (see equation

(1.3.3) in Section 1.3). The related literature on power policies has mostly steered away from allowing a
job to be delayed and considered mainly power-down policies. To the best of our knowledge, this work
is the first to incorporate both the delay of a job and the power consumption in the field of competitive
analysis. The community has seen extensive research on algorithms which are throughput-optimal and
minimize the mean delay of a job, but which assume that the input is random. In the competitive
analysis community, however, research in this direction is scarce. There has been research on online
scheduling to minimize the total flow or total tardiness [7]. Also, there have been works in which the
delay of a job is represented as a deadline [8] or the delay of a job is binary (either delayed for a fixed
time δ or not delayed at all) [9], but the stance of the current work which incorporates both delays and
power consumption is new.

Second, the current work is the first to recognize that several policies previously proposed in the
literature for dynamically turning off servers are not constant competitive in the worst case (see Lemma
4.1 in Chapter 4). The policy proposed by [10] or [11] only performs well if the assumed probability
distribution on the arrivals holds. In the worst case, the performance of their policy is arbitrarily worse
than the optimal policy. The policy proposed by [12] suffers from the same problem. As these policies
are widely implemented in the area of stochastic dynamic provisioning, this is a major insight. The
current work proposes an alternative policy which is competitive, even in the worst case.

Third, and most importantly, the current work proposes an algorithm for dynamic provisioning in
a data center (see Algorithm 4 in Chapter 5). The proposed algorithm balances the cost of increased
delays and the energy cost and is shown to be competitive. The algorithm is a combination of a global
rule, which decides when to turn on a server, and a local rule, which decides when to turn off a server.
The global rule does not depend on knowledge about any of the servers, i.e the rule does not require
knowledge about the workload at servers and can be implemented on the dispatcher level. The local
rule can be implemented on the server level and does not depend on knowledge about any other server.

Finally, the current work incorporates a predictor with unknown accuracy in the algorithm to go
beyond the worst-case performance (see Algorithm 5 in Chapter 6). We show that the performance of
the algorithm is close to optimal if the predictions are accurate, and the performance is guaranteed to
be bounded if the predictions are inaccurate.

1.3 Problem definition

Consider a system with a potentially unlimited number of identical servers. A server is either off, when
the server has been turned off, idle, when the server is turned on but is not serving a job, or busy,
when the server is turned on and is serving a job. The number of idle and busy servers is denoted by
m(t) at time t ≥ 0 and the system starts with m(0) ≥ 0 idle servers. Traffic arrives at the system in the
form of jobs. Each job i arrives at a central queue in the system at an arrival time ti ≥ 0 and requires a
processing time pi ≥ 0. However, neither the processing time of a job nor the future arrivals are revealed
to the algorithm. The input σ to the system is a finite collection {(ti ,pi)}

|σ |
i=1 of jobs and the number of

idle servers m(0) in the starting state. Throughout most of the current work, we will assume that the
processing time pi = 1 for all jobs i (see Section 2.3). The system must schedule jobs to idle servers in
first come, first serve order from the queue. A job i needs to be processed at a single server for time pi
without preemption. After being served, the job leaves the system and the server becomes idle again.
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We divide the dynamics of a system into two policies, the power policy, which decides when to turn
on or turn off a server and the assignment policy, which decides when to route a job to a server.

Power policy. The power policy may decide to instantaneously turn on a server at cost β or turn off
an idle server at zero cost2. We will equivalently refer to the action of turning on a server as buying a
server. The number of times a server i is turned on in the interval [t0, t1) is denoted by Bi(t0, t1). The
total number of times any server is turned on in the interval [t0, t1) is B(t0, t1) =

∑
i Bi(t0, t1). If we are

interested in the cost on the complete domain [0,∞), we may omit the interval in the notation and
simply write Bi or B respectively. The state of a server i at time t as a result of the power policy is
denoted by

mi(t) =

1 if the server is idle or busy,
0 if the server is off.

(1.3.1)

The total number of servers at time t is denoted by m(t) =
∑
imi(t). The workload xi(t) of a server

i at time t is defined as the remaining processing time of the job at the server or zero if the server is
not processing a job. Whenever a server is on, either idle or busy, the server consumes energy at rate θ.
The time a server i is on in the interval [t0, t1) is denoted by Pi(t0, t1) =

∫ t1
t0
mi(t)dt. The total time any

server is on in the interval [t0, t1) is P (t0, t1) =
∑
i Pi(t0, t1). Again, if we are interested in the cost on the

complete domain [0,∞), we may omit the interval in the notation and simply write Pi or P respectively.

Remark 1. Turning on or off a server in the system is instantaneous. As this assumption rarely holds
in practice, the costs caused by the time to turn on or off a server should be incorporated in β. More
importantly, the assumption is necessary to obtain a constant competitive ratio. If the setup time
of a server is not zero, we can formulate a counterexample in which the online algorithm has to let
all jobs in the queue wait for at least the setup time while the offline algorithm does not wait at all.

Remark 2. In our model, a server has a constant power consumption of θ in both the idle and busy
state. In practice, the power consumption of a machine usually differs between the idle and busy
state [14]. We argue that omitting this distinction from our model does not influence the minimum
of the optimization problem. Assume the additional power consumption of a server in the busy
state is Θ. The sum of the time any server is busy T =

∑
i pi is constant for a given input. The

additional power consumption Θ ·T is therefore independent of the choice of algorithm and hence
this distinction does not influence the optimization problem. In fact, the competitive ratio may
decrease if Θ > 0. From a worst-case perspective, we therefore consider Θ = 0.

Assignment policy. The assignment policy may decide to route a job from the queue to a server. For
each job which is waiting in the queue, the system accumulates cost at rate ω. The time a job i spends
waiting in the queue in the interval [t0, t1) is denoted byWi(t0, t1). The total waiting time in the interval
[t0, t1) is W (t0, t1) =

∑
iWi(t0, t1). If we are interested in the cost on the complete domain [0,∞), we may

omit the interval in the notation and simply write Wi or W respectively. We require the assignment
policy to be a first come, first serve policy.

Definition 1.1. (FCFS) The assignment policy of a system is said to be first come, first serve (FCFS) if and
only if the jobs in the queue are scheduled in order of arrival, that is,

ti +Wi ≤ tj +Wj , (1.3.2)

for all i < j.

As mentioned earlier, throughout most of this thesis we will assume that jobs have processing time
pi = 1 for all i. The jobs are thus exchangeable and the requirement of the FCFS assignment policy
is non-restrictive but aides the ease of representation. The number of jobs at a server i at time t is
denoted by ni(t) ∈ {0,1}. The total number of jobs which are being processed at time t is denoted by
n(t) =

∑
i ni(t). The number of jobs in the queue at time t is denoted by q(t). The algorithm is free to

choose a power policy and a FCFS assignment policy as long as the system is feasible.

2The cost to turn on a server is usually equivalent to running the server for several hours [13].
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Definition 1.2. (Feasible) A system is said to be feasible if and only if the following holds:

1. If a job is scheduled to a server at time t, then the server must be idle at time t.

2. If a server is turned off at time t, then the server must be idle at time t.

The definition of feasibility ensures that a server is only processing one job at a time and the server
remains turned on while processing a job. The cost accumulated by the system in the interval [t0, t1) is
denoted by

Cost(t0, t1) = B(t0, t1) · β + P (t0, t1) ·θ +W (t0, t1) ·ω. (1.3.3)

Similarly as before, if we are interested in the cost on the complete domain [0,∞), we may omit the
interval in the notation and simply write Cost. Note that the buying cost B and the power cost P are
completely determined by the power policy and the waiting cost W is completely determined by the
assignment policy. We will interchangeably refer to an algorithm for the power-aware load balancing
problem as a system. Each system specifies its own power policy and assignment policy.

1.4 Related work

The rise of data centers has caused an increasing research effort into the energy consumption of data
centers, from mathematical analyses of abstract models to data-driven investigations of real-life data
centers [13–17]. This section will summarize a broad range of previous research with two goals. First
of all, a few influential papers have directly led to the formulation of the problem in this work. We will
argue how this work extends and builds on these papers. Secondly, the previous research is imperative
to understanding the significance of the current work.

The overview is divided into four paragraphs. The paragraph on dynamic capacity scaling exten-
sively discusses a handful of related works on the worst-case analysis of algorithms which regulate the
capacity of a system to conserve power. The next paragraph covers power-down strategies which op-
timize the power-down schedule of a single machine in the absence of processing requirements. The
paragraph on algorithms with access to a predictor summarizes the idea of combining machine learn-
ing predictions with competitive algorithms. Finally, stochastic scheduling aims to give an overview of
the literature which assumes a random distribution on the input.

Dynamic capacity scaling. Lu et al. [12] consider the power-aware load balancing problem for dy-
namically turning off servers. In contrast to the current work, Lu et al. [12] do not focus on upscaling
capacity as servers are immediately turned on if the queue is non-empty. The current work is inspired
by the formulation of the model in this paper. The model of Lu et al. [12] is actually obtained by the
current formulation if the waiting cost ω tends to infinity. However, as we will see in the next chap-
ters, the apparently modest difference of a finite waiting cost ω increases the inherent difficulty of the
problem drastically. For example, the description of Lu et al. [12] lacks any sort of delay of a job and
therefore each job is processed exactly at the same time in the online system and the offline system.
The introduction of an algorithm-dependent delay of a job completely desynchronizes the time a job is
processed at a server and hence severely complicates the comparison of the costs between the systems.
The results of Lu et al. [12] establish that the most-recently-used policy for scheduling jobs on servers is
optimal. Moreover, under this policy the problem breaks down into independent ski-rental problems
for each server. Hence, the competitive ratio of their algorithm is 2, the competitive ratio of the classical
ski-rental problem [18]. Mazzucco and Dyachuk [19] analyze a related problem where the capacity is
periodically updated and jobs are lost if a server is not immediately available to serve them. The goal
of their algorithm is to balance the power cost and the cost of losing a job. Again, this formulation lacks
any sort of delay of a job.

Galloway et al. [20] perform an empirical study of a power-aware load balancing system which
involves the trade-off between the cost of increased delays and energy cost. Their results show that
significant power savings are possible, while maintaining much of the latency of the network.

A closely related area of research is the area of speed scaling. In contrast to the dynamic up- and
downscaling of the number of active servers in the system, an online algorithm should adjust the contin-
uous processing speed of a single server. The speed of the server is proportional to the power consump-
tion of the server through a power function, which in typical applications is cubic in the processing
speed. The problem is to minimize a weighted combination of the average delay and the power con-
sumption. In a seminal paper in this area, Bansal et al. [21] consider speed scaling of a single machine
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where preemption is allowed. The online algorithm always schedules the job with the least remaining
processing time and processes it at a speed such that the power consumption is equal to the number
of jobs waiting plus one. Bansal et al. [21] then employ a potential function argument to prove that
the algorithm is (3 + ε)-competitive. The model of Bansal et al. [21] is related to the model considered
in the current work. If the buying cost β is zero, then the current formulation is a discrete version of
the continuous model of Bansal et al. [21] for a linear power function. However, the introduction of a
non-zero buying cost β calls for a new approach. In fact, the buying cost β induces an instantaneous
cost at several points throughout the lifetime of the algorithm, which makes the approach of Bansal
et al. [21] and a potential function argument in general inappropriate for the current problem. Later
papers have extended the case of the single server to processor sharing systems [22] and parallel pro-
cessors with deadline constraints [23]. Speed scaling has also been analyzed in the case the arrival times
and required processing times are exponentially distributed [24].

Power-down strategies. One of the decisions an algorithm for the current problem has to make is
when to turn off a server. For a single machine, a natural abstraction of this problem is the ski-rental
problem as first introduced by Karlin et al. [18]. The ski-rental problem arises when the number of days
a slope is available for skiing is unknown. At the start of each day, the skier has to decide whether to rent
skis for the day at unit price or buy skis at price B to be able to ski for the remaining number of days. The
ski-rental problem has been applied to cases of capital investment [25,26], TCP acknowledgement [27]
or cache coherence [28]. The ski-rental problem also arises in determining when to power down a
machine at one-time cost B or leaving it idle at unit cost. Irani et al. [29] analyze the problem when
multiple power-down states are available, for example the states turned on, sleeping, hibernating and
turned off. Each state has a different power consumption and moving between the states has a one-time
cost. The problem questions when to transition between the states. Augustine et al. [30] generalize
these results when the transition costs between the different states are not additive. Although the
current work focuses on only two states, i.e. turned on and off, we expect that the algorithms and proof
can be readily extended to multiple power-down states. The main difficulty in the current work is the
strategy for turning on a server, i.e. moving to the highest power state. Khanafer et al. [31] analyze the
ski-rental problem in a stochastic setting when the first or second moment of the time to ski is known.

Algorithms with access to a predictor. The area of machine learning has developed itself as a broad
research area in recent years fostered by ample interest from both academia and industry. Machine
learning algorithms have proven to be an effective solution to a wide range of problems. In stark
contrast to the strong worst-case guarantees obtained by traditional competitive analysis, however,
there do not exist machine learning algorithms which provide worst-case guarantees. If the prediction
of a machine learning algorithm is accurate, the performance is close to that of the offline algorithm,
while, if the prediction becomes less accurate, the performance becomes increasingly worse than that of
the offline algorithm. A recent research area considers whether the best-case guarantee of the machine
learning algorithm and the worst-case guarantee of competitive analysis can be combined to obtain an
algorithm featuring the best of both worlds.

The work that initiated this research area is by Lykouris and Vassilvtiskii [32]. Their paper considers
the caching problem when the algorithm has access to a predictor. For each item the algorithm receives
and has to place in the cache, the predictor predicts the time until the item will be seen again. If the
cache is full, the algorithm has to decide which item to evict from the cache. Although the error of the
predictor is not known to the algorithm, Lykouris and Vassilvtiskii [32] show how to use the predictions
to obtain performance close to that of the offline algorithm when the predictions are accurate and a
bounded competitive ratio in the worst-case when the predictions are inaccurate. The current work
uses much of the definitions and terminology introduced in the paper. The framework has since then
been applied to bipartite matching [33], ski-rental and scheduling on a single machine [34], bloom-
filters [35] and frequency estimation [36]. Lee et al. [37] analyze an algorithm for powering a data
center which has access to a predictor. The goal of the algorithm is to reduce the peak energy usage of
the data center by employing onsite generators. The peak energy usage contributes for a large part to
the electricity bill of data centers. In an earlier work, Mahdian et al. [38] combine an optimistic and a
pessimistic algorithm for scheduling on multiple machines to obtain a better competitive ratio for the
combined algorithm.

A different line of work called online algorithms with advice questions how many bits of perfect future
information are necessary to obtain the optimal offline algorithm (see [39] for a survey). The difference
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with the current work is that the predictor in our case does not have to be perfect but has an arbitrary
error. The difficulty lies in the fact that the error is not known to the algorithm.

Stochastic scheduling. The current work discusses worst-case guarantees for the performance of al-
gorithms without making any assumptions on the input. A related area of research does not consider
worst-case guarantees but assumes the input follows a known, probability distribution. The algo-
rithm is often randomized as well and, with appropriate assumptions, the system can be described
by a stochastic process.

Gandhi et al. [10] analyze the M/M/k/setup class of Markov chains. The system is similar to the
M/M/k class of Markov chains, i.e. jobs arrive at a central queue in the system and require processing
by a server. The assumption on the input is that both the interarrival times between jobs and the
required processing time of a job are independent exponential random variables. To process the jobs,
the system has access to a maximum of k homogeneous servers. The number of active servers at any
time is controlled by an algorithm. If a job arrives and there are no idle servers, the algorithm turns
on an additional server, but the server requires an exponential random setup time before the server
is ready to process jobs. The paper provides a method to analyze this system exactly. Maccio and
Down [40] analyze a similar setup for a broader class of cost functions. Their algorithm turns on an
additional server if the number of jobs in the queue exceeds a treshold. Mukherjee et al. [11] also
consider the situation where the setup time of a server and the time a server remains idle before it
is turned off are exponential random variables. Assuming that each of the queues has a finite buffer,
Mukherjee et al. [11] analyze the fluid limit of the system as the number of servers grows large and
establish that their proposed scheme achieves asymptotic optimality for both the delay of a job and the
power consumption. In a later work, Mukherjee and Stolyar [41] generalize the assumption of finite
buffers at each of the queues to infinite buffers. Instead of optimizing for the delay of a job, previous
research has also introduced the delay as a hard constraint [8]. Each job is presented with a deadline
and the job should be served before this deadline or it is irrevocably lost. The earliest deadline first
(EDF) queueing discipline has been proven to be effective in this case [42].

Recently, the notion of a predictor has also emerged in stochastic scheduling. Mitzenmacher [43]
introduces the predictor as a probability density function g(x,y) for a job with actual service time x
and predicted service time y. Mitzenmacher [43] then analyzes the shortest predicted job first (SPJF)
and shortest predicted remaining processing time (SPRPT) queueing disciplines for a single queue and
determines the price of misprediction, the ratio of the cost of the solution if perfect information of the
input distribution is known and the cost of the solution if only predictions are available. For multiple
queues, Mitzenmacher [44] has simulated the JSQ(d) model, or supermarket model, to show that the
availability of predictions greatly improves performance.

Another line of research which involves modeling delay considers a wireless link shared by multiple
users. The wireless link is represented by a single server which receives input from N flows. The goal
of the algorithm is to choose a flow to serve a job from as to minimize the average delay. Stolyar and
Ramanan [45] prove that the largest weighted delay first (LWDF) queueing discipline is optimal. A
later paper by Andrews et al. [46] considers an extension of this problem where the service rate of jobs
at each flow varies randomly over time according to a Markov process. Their results establish that a
modified LWDF queueing discipline is throughput optimal, i.e. the flows are stable if there exists a
discipline which would make the system stable given the arrival rates.
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2
Theoretical background

This chapter will establish a common basis of concepts and terminology which are used throughout
this thesis. Section 2.1 introduces these common concepts and explains the basis of combining a black-
box predictor with an online algorithm. We will characterize the behavior of the offline algorithm and
introduce the non-idling assignment policy in section 2.2. Finally, we will clarify why the problem
requires unit sized jobs and argue this is not too restrictive in section 2.3.

2.1 Basic concepts

Algorithm. An algorithm defines a recipe for a sequence of operations to be executed by a Turing-
complete machine [47], with the aim of solving a particular problem. The definition of a problem
consists of a specification of an input space Σ and possibly an output space. The algorithm maps the
input to the output. For each input σ ∈ Σ, an algorithm A for the problem is expected to produce an
output A(σ ) in the output space in finite time. The output of an algorithm is said to be feasible if it
adheres to a set of constraints specified in the problem definition. The output for one particular input
does not have to be unique because the constraints may accept more than one output.

The performance of an algorithm is usually quantified in two ways. If the goal is to obtain a fast
algorithm, one aims to minimize the number of operations performed by the algorithm. If the goal is to
obtain a good algorithm, one aims to maximize the quality of the output of the algorithm. The current
work is primarily focused on the latter. We quantify the performance of an algorithm by the cost of the
output. The problem definition is assumed to be equipped with a cost function Cost. The higher the
cost of the output A(σ ), the lower the performance of the algorithm A on input σ . The results in this
thesis are based on worst-case competitive analysis, meaning the input is controlled by an adversary.
The goal of the algorithm is therefore to minimize the cost for any input. More formally, let σ ∈ Σ be an
input and A be the set of algorithms which produce a feasible output then cost of the optimal algorithm
Opt on input σ is

Cost(Opt(σ )) = min
A∈A

Cost(A(σ )). (2.1.1)

Although the optimal algorithm is not necessarily unique, we will generally refer to the optimal
algorithm as any algorithm Opt which satisfies equation (2.1.1).

Example 1. (Square) Consider the problem of taking the square of a number. The input space
is the set of real numbers R and the output space is the set of positive real numbers R+. This
problem does not specify any constraints on the output, but does specify a cost function. The
cost of an algorithm A for input σ ∈ R is the absolute distance to the square of the input defined
as Cost(A(σ )) =

∣∣∣σ2 −A(σ )
∣∣∣. While any algorithm is feasible, only the optimal algorithm satisfies

Opt(σ ) = σ2.

Online algorithm. The concept of an online algorithm extends the concept of an algorithm and arises
when an algorithm has to be applied sequentially on input which is revealed over time. Let the time
at which input is revealed be discrete and numbered as t = 1,2, . . . , |σ |. The input σ = (σ1,σ2, . . . ,σ|σ |)
constitutes a vector in this context. At every time t, a part of the input σt is revealed to the online
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algorithm and the algorithm has to compute an irrevocable element of the output based on this input.
An algorithm is again said to be feasible if for each input vector in the input space, the collection of
output elements satisfies a set of constraints specified by the problem definition. The problem defini-
tion is assumed to be equipped with a cost function which now is a function of the collection of output
elements. The absolute cost of an online algorithm is often not of interest, rather we are interested
in the relative cost with respect to the optimal offline algorithm. The optimal offline algorithm is the
optimal algorithm if the input would have been revealed from the start. The offline algorithm therefore
knows the complete future of the input, information which is only revealed to the online algorithm at
the times t = 1,2, . . . , |σ |. The competitiveness of an algorithm measures the ratio between the cost of an
online algorithm A and the offline algorithm. An online algorithm is said to be ρ-competitive [48] if

Cost(A(σ )) ≤ ρ ·Cost(Opt(σ )) for all σ ∈ Σ, (2.1.2)

where Opt is the offline algorithm and Σ is the input space. The competitive ratio CRA is the
smallest ρ for the above to hold. The goal of competitive analysis in online algorithms is to find an
online algorithm which solves the problem and minimizes the competitive ratio.

Example 2. (Caching) Consider the problem of memory management in a computer. The computer
has access to fast memory, called the cache, and slow memory, called disk storage. The elements
stored in the cache can be retrieved quickly but the cache has a limited storage capacity of only k
elements. The problem is to select which elements to store in fast memory and which to store in
slow memory in an online fashion.

The input σ ∈ Nn consists of a sequence of n > k elements. The cache C ⊆ N starts out empty.
When an element σt is revealed and σt < C, then the element is moved to the cache from slow
memory at unit cost. If |C| > k after this operation, then the algorithm needs to choose an element
to evict from the cache. When an element σt is revealed and σt ∈ C, then the element is directly
retrieved from the cache at zero cost. Formally, the output of the algorithm is a vector indicating
for each time t which element to evict from the cache if any. The cost of the output is the total
number of evicted elements.

The offline algorithm knows all of the elements in the input from the start and can therefore
exactly determine the strategy which minimizes the number of evicted elements. The randomized
marker algorithm [49] achieves an expected competitive ratio of Hk where Hk = 1 + 1

2 + · · ·+ 1
k is the

harmonic number of k.

Online algorithm with a predictor. We extend the concept of an online algorithm even further to
online algorithms which have access to a predictor as set forward by Lykouris and Vassilvtiskii [32]. We
assume the online algorithm has imperfect information about the future in the form of a predictor. Each
time a part of the input σt is revealed, a predictor h provides additional information h(σt) ∈ L on the
input, where L is the label space. Often, the function h is given by a machine learning algorithm which
maps the feature space of the input to a label space L. The online algorithm uses the label h(σt) along
with the part of the input σt to compute an irrevocable part of the output. What the label represents
depends on the problem at hand. For example, the predictor could predict the value of the next part
of the input σt+1. The online algorithm uses the prediction to perform a more informed computation.
However, the additional information provided by the predictor might not be accurate. If the true value
of the label is t(σt) ∈ L, the error of the predictor h on input σ is defined as

η`(h,σ ) =
∑
t

`(h(σt), t(σt)), (2.1.3)

with respect to a loss function ` : L × L → R+. We will often abbreviate the error of a predictor
as η if the loss function and input are clear from the context. The predictor h is said to be ε-accurate
whenever maxσ∈Ση`(h,σ ) ≤ ε and we denote the set of ε-accurate predictors byH`(ε). The performance
of an online algorithm A which has access to an ε-accurate predictor is measured by the competitive
ratio CRA(ε) defined as

CRA(ε) = max
h∈H`(ε)

CRA(h), (2.1.4)

where A(h) denotes the online algorithm A with access to predictor h. The error of the predictor is
only used in the analysis and is unknown to the algorithm.
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Lykouris and Vassilvtiskii [32] introduced three properties of an online algorithm with predictor.
An algorithm is said to be β-consistent if CRA(0) = β. If the predictor is perfect, the competitive ratio of
the algorithm is thus β. Ideally, if the predictor is perfect, the algorithm should perform as well as the
offline algorithm and hence be 1-consistent. Throughout this thesis, we will instead say an algorithm is
β-competitive if predictions are accurate instead of saying that it is β-consistent. We feel this terminology
is more descriptive, since the term consistent has not gained widespread usage yet. An algorithm is said
to be γ-competitive if CRA(ε) ≤ γ for all ε. Regardless of the accuracy of the predictor, the competitive
ratio of the algorithm is never worse than γ . Throughout this thesis, we will instead say an algorithm is
γ-competitive if predictions are inaccurate instead of saying that it is γ-competitive. Finally, an algorithm
is said to be α-robust for a function α(·) when CRA(ε) = O(α(ε)). The performance of the algorithm
should degrade gracefully with the error of the predictor.

Example 3. (Caching revisited) Consider again the caching problem. Assume the algorithm has
access to a predictor which predicts the time of the next reveal of the same element. Formally, if σ
is the input then the true value t(σt) of the label for σt is

t(σt) = min
i>t
{i | σi = σt}, (2.1.5)

and∞ if this minimum does not exist. Lykouris and Vassilvtiskii [32] show how to incorporate
the predictor in the marker algorithm to obtain an algorithm which is 2-competitive if predictions
are accurate and 4HK -competitive if predictions are inaccurate.

2.2 Properties of the offline algorithm

This section will apply the general concepts from the previous section to the power-aware load bal-
ancing and aims to identify key properties of the optimal offline algorithm. The offline algorithm is
assumed to posses perfect knowledge of the input. The cost of the offline algorithm for an input is
therefore always the minimum cost among any algorithm. Formally, let S denote the space of feasible
systems with a FCFS assignment policy. The cost of the offline algorithm is characterized as

Opt(σ ) = min
Π∈S

Cost(Π(σ )), (2.2.1)

for σ ∈ Σ. However, this definition does not provide much insight in the dynamics of the problem
because this definition is problem-independent. The space of systems S will therefore be reduced by
eliminating non-optimal policies in two steps to reveal more structure of the offline algorithm.

Reducing ‘which’ to ‘when’. The power policy has to decide when to turn on or off which server. The
assignment policy has to decide when to route a job to which server. The decision for both policies
involves the time of the event and the index of a server. We will argue that the index of a server is
extraneous in the specification of the policy for the offline algorithm and can be replaced by ‘any idle
server’.

First, note that the cost of the system does not change if the index of a server is changed in the power
policy or the assignment policy. The buying cost B and the power cost P do not depend on which server
is turned on and only depend on the number of servers through the aggregated function m(t). The
waiting cost W does not depend on which server the job is routed to either.

Second, the system is still feasible if the index of a server is changed in the power policy or the
assignment policy. We argue that the feasibility of a system only depends on the aggregated functions
n(t) and m(t), the number of jobs being processed in the system and the number of servers respectively.

Lemma 2.1. The assignment policy of a system is feasible if

n(t) ≤m(t), (2.2.2)

for all t ≥ 0.

Proof. We verify the two conditions for feasibility (see Definition 1.2).

1. Consider a time t0 when job i is scheduled to a server. As a result of equation (2.2.2), the number of
jobs which are being processed at a server at time t0 is n(t0) ≤m(t0). The number of jobs excluding
job i which are being processed at a server just before time t0 is therefore at mostm(t0)−1. Hence,
at time t0, there must be an idle server to route job i to.
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2. Consider a time t0 when a server is turned off. The number of servers just after time t0 is m(t0)−1
and as a result of equation (2.2.2), the number of jobs which are being processed at a server just
after time t0 is at most m(t0)− 1. Hence, at time t0, there must be an idle server to turn off.

As both conditions hold, the system is feasible.

Hence, the index of a server can be replaced by ‘any idle server’ in the power policy and the assign-
ment policy. We will therefore identify a power policy with the number of servers over time m(t).

Non-idling assignment policy. The assignment policy has to decide when to route a job to a server.
We will argue that the assignment policy of the offline algorithm always routes a job to a server as soon
as a server becomes idle and hence greedily minimizes the waiting time of each job.

Definition 2.2. (Non-idling policy) The assignment policy of a system is said to be non-idling if and only if
the assignment policy routes a job in the queue to a server as soon as a server becomes idle.

Let m(·) be an arbitrary power policy (or number of servers) and let Π1 and Π2 be two systems
implementing this policy. Moreover, system Π1 implements the non-idling, FCFS assignment policy,
while system Π2 implements an arbitrary FCFS assignment policy such that the system is feasible. We
argue that the waiting time of each job in system Π1 is at most the waiting time of that job in system

Π2. We will refer to W (j)
i as the waiting time of job i in system Πj .

Lemma 2.3. The waiting time of each job in system Π1 is at most the waiting time of the job in system Π2 as

W
(1)
i ≤W

(2)
i , (2.2.3)

for all jobs i.

Proof. For the sake of contradiction, assume there exists at least one job for which equation (2.2.3) does

not hold and let i be the job which is scheduled first among these jobs. At time t0 = ti +W (2)
i , job i is

routed to a server in system Π2 and because the system is feasible there must exist an idle server at time
t0. At time t0, there does not exist an idle server in system Π1 because otherwise job i would have been
scheduled as a result of the non-idling assignment policy. The number of servers m(1)(t0) = m(2)(t0)
and system Π1 has therefore at least one job j which is being processed at a server which is not being

processed at a server in system Π2. Job j has been scheduled before job i and therefore W (1)
j ≤W

(2)
j by

assumption. This means job j has been scheduled earlier in system Π1 than in system Π2. If job j has
been completely served in system Π2 then the job must also have been completely served in system Π1

because t0 ≥ tj +W (2)
j + pj ≥ tj +W (1)

j + pj . This means there exists an idle server at time t0 and this is a
contradiction to our assumption. Equation (2.2.3) therefore holds for all i.

Although the non-idling assignment policy minimizes the waiting time, system Π1 does not have to
be feasible. The power policy could turn off a busy server. We argue that system Π2 does not minimize
the cost if system Π1 is not feasible.

Lemma 2.4. If system Π1 is not feasible then there exists a feasible system which has a lower cost than system
Π2.

Proof. We will construct a slightly adapted power policy m′(·). The power consumption of the power
policy m′(·) will be strictly less than the power consumption of the power policy m(·). To construct
this power policy, we will interpolate between the non-idling assignment policy of system Π1 and the
assignment policy of system Π2. For any j ≥ 1, define system Π′j as the system with power policy m(·)

and assignment policy W (j)
i = W

(1)
i for i < j and W

(j)
i = W

(2)
i for i ≥ j. Note that the waiting cost of

system Π′j is less than the waiting cost of system Π2 by Lemma 2.3.
Let k > 0 be the smallest index for which system Π′k is feasible but system Π′k+1 is not. The difference

between system Π′k and system Π′k+1 is the assignment of job k. In system Π′k , job k is scheduled at

time tk +W (2)
k , while in system Π′k+1, job k is scheduled at time tk +W (1)

k . Lemma 2.3 establishes that

W
(1)
i ≤W

(2)
i for all i and hence job k is scheduled earlier in system Π′k+1 than in system Π′k . Define

m′(t) = max

n(k)(t), min
s∈

[
tk+W (1)

k ,tk+W (2)
k

)m(s)

 , (2.2.4)
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for t ∈
[
tk +W (1)

k , tk +W (2)
k

)
and let m′(t) = m(t) for all other t ≥ 0. We claim that the buying cost of

a system implementing m′(·) is at most the buying cost of m(·). As system Π′k does not schedule jobs

in
[
tk +W (1)

k , tk +W (2)
k

)
, the function n(k)(t) is non-increasing in this interval. The power policy m′(·)

therefore turns on m
(
tk +W (2)

k

)
−min

s∈
[
tk+W (1)

k ,tk+W (2)
k

)m(s) servers in
[
tk +W (1)

k , tk +W (2)
k

]
. The power

policy m(·) turns on at least the same number of servers in this interval.
We claim that the power consumption of a system implementing m′(·) is strictly less than the

power consumption of m(·). The number of servers m′(t) ≤ m(t) for all t ≥ 0 by definition. Note

that min
s∈

[
tk+W (1)

k ,tk+W (2)
k

)m(s) < m
(
tk +W (1)

k

)
, otherwise system Π′k+1 would be feasible. Also, note that

n(k)(t) ≤ n(k)
(
tk +W (1)

k

)
< m

(
tk +W (1)

k

)
for t ∈

[
tk +W (1)

k , tk +W (2)
k

)
because system Π′k has at least one

idle server at time tk +W (1)
k . Therefore, m′(t) < m(t) for t ∈

[
tk +W (1)

k , tk +W (1)
k + ε

]
for ε small enough.

The power consumption of a system implementing m′(·) is thus lower than the power consumption of
m(·).

Let system Π3 implement the power policy m′(·) and the assignment policy of system Π′k . System

Π3 is feasible as a result of Lemma 2.1 because m′(t) ≥ n(k)(t) for t ∈
[
tk +W (1)

k , tk +W (2)
k

)
by definition

and m′(t) = m(t) ≥ n(k)(t) for all other t ≥ 0 because system Π′k is feasible. System Π3 has a lower cost
than system Π2, which proves the lemma.

Lemma 2.4 implies that the offline algorithm will never implement a power policy for which the
non-idling assignment policy is not feasible. Lemma 2.3 establishes that if the non-idling assignment
policy is feasible, then this assignment policy minimizes the cost. The offline algorithm will therefore
always implement the non-idling assignment policy. Hence, the space of systems S on which the offline
algorithm minimizes its cost can be replaced by the space of the number of servers m(·). This vastly
reduces the space of the minimization problem.

2.3 Assumption on the processing time

The power-aware load balancing allows to describe a wide range of problems previously analyzed in
the literature. This generality comes with a downside. Without further assumptions on the problem,
there does not exist an online algorithm with a finite competitive ratio.

Theorem 2.5. No online algorithm for the power-aware load balancing problem can have a finite com-
petitive ratio.

Proof. Let A be an online algorithm and assume the algorithm A is ρ-competitive for ρ ∈ N. We will
construct an input for which the cost of the online algorithm is more than ρ times the cost of the offline
algorithm.

Define ω = (32ρ3)−1, β = 1 and θ = 0. The input σ1 contains 16ρ2 jobs with required processing time
(4ρ)−1 which are revealed at time t = 0 and the input σ2 contains 1024ρ6 jobs of required processing
time zero which are revealed at time t = 1. The complete input σ will be σ = σ1 or σ = σ1∪σ2 depending
on the dynamics of the online algorithm. At time t = 0, the adversary reveals the jobs in σ1 to the online
algorithm. We distinguish two cases.

(a) Assume the algorithm A turns on m > 2ρ servers before time t = 1. The adversary chooses σ = σ1.
The cost of the algorithmA is at least mβ. Consider the offline algorithm which turns on one server

and schedules the jobs in σ1 sequentially. The offline algorithm spends
∑16ρ2−1
i=1 i/(4ρ) ·ω < 32ρ3 ·ω =

1 on waiting and β = 1 on turning on a server. The competitive ratio is therefore at least m/2 > ρ.

(b) Assume the algorithm A turns on m ≤ 2ρ servers before time t = 1. The adversary chooses σ =
σ1∪σ2. At time t = 1, the algorithmA has scheduled at most 4ρm+m jobs and has 16ρ2−4ρm−m > 0
jobs still in the queue. If the algorithm turns on 16ρ2 − 4ρm −m servers or less at time t = 1, then
each of the jobs in σ2 waits for at least 1/(4ρ). The cost of the algorithm A is therefore at least
1024ρ6/(4ρ) ·ω = 8ρ2. If the algorithm turns on more than 16ρ2−4ρm−m servers at time t = 1, then
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the cost of the algorithmA is also at least (16ρ2−4ρm)·β ≥ 8ρ2. Consider the offline algorithm which
turns on 4ρ servers at time t = 0. The offline algorithm schedules all jobs of σ1 before time t = 1 and
is therefore able to schedule the jobs of σ2 without waiting or turning on additional servers. The
offline algorithm spends less than 16ρ2 ·ω < 1 on waiting and 4ρ · β = 4ρ on turning on additional
servers. The competitive ratio is therefore at least 8ρ2/(4ρ+ 1) > ρ.

The algorithm A is therefore not ρ-competitive. As this holds for all ρ ∈ N, the algorithm is not
constant competitive.

Note that the proof can be easily modified for randomized algorithms. As follows from the proof,
the lemma is true in both the general case and the case for which θ = 0. To be able to identify non-trivial
online algorithms in the next chapters, we will therefore focus on the problem when the jobs each have
a required processing time of one. Still, any competitive algorithm for the power-aware load balancing
problem with jobs of unit size can be modified to be competitive for jobs of varying, but bounded sizes.

Lemma 2.6. Let A be any algorithm for the power-aware load balancing problem. For any r ∈N, there exists
an algorithm B such that

Cost
B ({(ti ,pi)}i) ≤ r ·CostA ({(ti ,1)}i) , (2.3.1)

for all arrival times ti ≥ 0 and processing times pi ∈ [1, r].

Proof. Consider a fixed server m′ . Let τ ≥ 0 be the time the power policy of algorithm A turns on
server m′ and let ∆ ≥ 0 be the duration this server remains turned on. Let J be the subset of jobs which
are scheduled to server m′ by the assignment policy of the algorithm A during this time interval of
length ∆. The power policy of algorithm B turns on a server at time t = τ,τ + 1, . . . , τ + r − 1 indexed as
m′1,m

′
2, . . . ,m

′
r . Each of the servers remains turned on for r∆ time. The assignment policy of algorithm

B schedules the jobs from J to the servers m′1,m
′
2, . . . ,m

′
r in a round-robin fashion at the same time the

job is scheduled by the assignment policy of the algorithm A, i.e. the first job in J is scheduled to m′1,
the second job to m′2 and so forth until the (r + 1)-th job is again scheduled to m′1. We verify the two
conditions for feasibility (see Definition 1.2).

1. Consider a time epoch t0 when the i-th job from J is scheduled to server m′j . If i ≤ r then the job

is the first job at the server and j = i. The job is scheduled at t0 = ti +WAi ≥ τ + i because the
algorithm A is feasible. The server j = i is turned on at time t = τ + i and hence the condition is
satisfied. If instead i > r then the job is scheduled at t0 = ti +W

A
i ≥ ti−r +WAi−r + r. The previous job

at server j is the (i − r)-th job from J and this job leaves the server at time t = ti−r +WAi−r + r. The
server must therefore be available at time t0.

2. Consider a time epoch t0 when a server is turned off and assume the server is processing a job i at
this time. The time the server is turned off is at least

t0 ≥ τ + r ·∆ ≥ (τ +∆) + r − 1, (2.3.2)

because ∆ ≥ 1 if the server processes at least one job. The job i must have been scheduled at time
t = t0 − r or later because pi ∈ [1, r]. As the job i is scheduled at the same time in the assignment
policy of the algorithmA, the algorithmAmust have been processing this job at time t = t0−r+1 ≥
τ +∆. However, this is after the server is turned off by the power policy of algorithm A. This is a
contradiction and the server is therefore not processing a job at time t0.

The algorithm B is therefore feasible. The buying and power cost of the algorithm B are exactly r
times the buying and power cost of the algorithmA. The waiting cost of the algorithm B is equal to the
waiting cost of the algorithm A. The cost of the algorithm B is therefore at most r times the cost of the
algorithm A.

Remark 3. The construction of the algorithm B in Lemma 2.6 is explicit. Moreover, if the algo-
rithm A is an online algorithm and oblivious to future arrivals, the algorithm B is also an online
algorithm and oblivious to both future arrivals and the required processing time of a job.
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3
Irrevocable server allocation: the doubling algorithm

Summary. The irrevocable server allocation scenario arises if θ = 0 and m(0) = 0 and is relevant in situa-
tions where turning on a server is irrevocable. The doubling algorithm (Algorithm 1) doubles the number of
servers in the system if the cumulative waiting cost exceeds a threshold. Theorem 3.1 proves that the doubling
algorithm is 5-competitive if θ = 0 and m(0) = 0.

This chapter initiates the discussion on online algorithms for the power-aware load balancing prob-
lem. We will focus on one scenario of the problem.

Irrevocable server allocation. One of the scenarios covered by the power-aware load balancing prob-
lem is the scenario of irrevocable server allocation. The irrevocable server allocation scenario questions
when to turn on a server but assumes this decision is irrevocable, i.e. the server cannot be turned off
after the server has been turned on. This scenario is of independent interest. In the context of a data
center, for example, this problem would be able to answer in an online fashion how many servers the
data center should contain. Formally, the scenario arises if the power cost is zero and the number of
servers in the starting state is zero. If θ = 0, then any reasonable algorithm will never turn off a server.
This chapter discusses one algorithm for the irrevocable server allocation problem. Throughout this
chapter, we will assume that θ = 0, m(0) = 0 and jobs have a required processing time of one.

3.1 The doubling algorithm

The rule for turning on a server is a global rule. If the accumulated waiting time exceeds a threshold,
then the number of servers is doubled. The rule ensures that the waiting cost of the system is always
bounded by the buying cost.

Algorithm 1: The doubling algorithm

1 k← 1
2 Turn on two servers
3 Ck ← 0
4 for i← 1 to n do
5 Let j be such that xj (ti), the load of server j at time ti , is minimized

/* Global rule for turning on servers */

6 if
(
xj (ti) +

∑k
l=1Cl

)
·ω >m (ti−1) · β/2 then

7 k← k + 1
8 Turn on m (ti−1) additional servers such that m(ti) = 2k

9 Assign job i to an idle server
10 Ck ← 0
11 else
12 Assign job i to server j
13 Ck ← Ck + xj (ti)
14 end
15 end
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The doubling policy heuristically detects whether the current number of servers is insufficient in
terms of the current number of activated servers for the arrival intensity by monitoring whether the
accumulated waiting cost exceeds a threshold. If the threshold is exceeded, then the algorithm responds
by doubling the number of servers. Line 12 assigns a job to a server, even while the server is busy. The
complete description of this action is: let the job wait in the queue until server j becomes idle and then
schedule the job on the server. If there are multiple jobs waiting for this server, then schedule the jobs
in order of arrival. Note that the assignment policy implemented by the algorithm is not a non-idling
assignment policy. Also, the assignment policy is not necessarily FCFS. However, as we assume that
jobs each have a required processing time of one, jobs are interchangeable and any assignment policy
is easily modified to be FCFS. The variable Cl maintains the waiting time of jobs assigned in stage l.
The stage l consists of the jobs which are assigned when the variable k is equal to l. The sum

∑k
l=1Cl

therefore denotes the total waiting time.

Remark 4. Algorithm 1 requires the dispatcher to maintain queue length information on each of
the servers in the system. This constraint occurs a high overhead on the memory requirements of
the system, especially if the number of servers is large.

The next theorem provides the competitive ratio of the doubling algorithm.

Theorem 3.1. If θ = 0 and m(0) = 0, then Algorithm 1 is 5-competitive.

To facilitate the proof of Theorem 3.1, we will divide the set of jobs in stages. Let stage l consist
of the jobs which are assigned by the algorithm when the variable k is equal to l. The current stage is
ended and a new stage is started if the waiting cost exceeds the threshold and the algorithm turns on
new servers. The rest of this chapter will provide the proof of Theorem 3.1.

3.2 Competitive ratio

The next lemma clarifies the role of the accumulated waiting time variables Ck .

Lemma 3.2. The waiting time of all jobs assigned in stage k is Ck .

Proof. We prove the lemma through induction on the for-loop. Before the first iteration of the for-loop,
none of the jobs have been revealed and the invariant therefore holds trivially. Assume the invariant is
true before the next iteration of the for-loop. If a job is assigned to an available server in line 9, then the
job is the first job in the stage and the job does not have to wait. Hence, the waiting time in this stage
is zero which is reflected by line 10. If a job i is assigned to server j in line 12, then the waiting time of
the job is xj (ti). Hence, the waiting time in the current stage is increased by xj (ti) which is reflected by
line 13. The invariant therefore also holds after the execution of the for-loop.

The accumulated waiting time has a close relationship with the buying cost. In particular, the
waiting cost is bounded by r times the buying cost.

Lemma 3.3. For all t ≥ 0 in stage k, m(t) = 2k and
∑k
l=1Cl ·ω ≤m(t) · β/2.

Proof. We prove the lemma through induction on the for-loop. Before the first iteration of the for-
loop, the invariant trivially holds because the system buys two servers initially and C1 = 0. Assume
the invariant is true before the next iteration of the for-loop. If the condition in line 6 holds, then k
is increased to k + 1 and the system turns on m(ti−1) = 2k servers. The number of servers is therefore
m(ti) = 2k+1 after the execution of the for-loop. Also,

∑k
l=1Cl does not increase and therefore

∑k
l=1Cl ·ω ≤

m(ti) · β/2 holds after the execution of the for-loop. If the condition in line 6 does not hold, then k and
the number of servers remain the same and thereforem(ti) = 2k after the execution of the for-loop. Also,
because of the condition in line 6,

∑k
l=1Cl ·ω ≤ m(ti) · β/2 even after increasing Ck by xj (t). Hence, the

invariant also holds after the execution of the for-loop.

At some point, the doubling algorithm may have turned on more servers than the offline algorithm.
Not surprisingly, if two systems start from the same starting state and one system has more servers for
all t ≥ 0 then this system has a lower waiting cost. Letm(1)(t) be the number of servers of the online sys-
tem Π1 and m(2))(t) be the number of servers of the offline system Π2 and assume that m(1)(t) ≥m(2)(t)
for all t ≥ 0. Furthermore, system Π1 and system Π2 implement the non-idling, FCFS assignment
policy.
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Lemma 3.4. The waiting time of each job in system Π1 is at most the waiting time of the job in system Π2,
that is,

W
(1)
i ≤W

(2)
i , (3.2.1)

for all jobs i.

Proof. Let system Π3 implement the power policy m(3)(·) =m(1)(·) and the assignment policy of system
Π2. By Lemma 2.1, system Π3 is feasible because n(t) ≤m(2)(t) ≤m(1)(t) for all t ≥ 0. Lemma 2.3 proves
that the waiting time of each job in system Π1 is at most the waiting time of the job in system Π3 and
as a result,

W
(1)
i ≤W

(3)
i =W (2)

i (3.2.2)

for all jobs i. This establishes the lemma.

We are now in a position to prove the theorem. Recall that m(2)(t) denotes the number of servers of
the offline algorithm.

Proof of Theorem 3.1. We will prove that the cost of the doubling algorithm in stages 1 to κ is bounded
by 5 times the buying cost of the offline algorithm, and the cost of the doubling algorithm in stages κ+1
to K is bounded by 5 times the waiting cost of the algorithm, where κ is a suitable constant and K is the
number of stages.

Define D = maxt≥0m
(2)(t) to be the maximum number of servers the offline algorithm turns on, and

let κ = dlog2De. Thus 2κ−1 < D < 2κ. Assume the online algorithm reaches phase κ. The cost of waiting
in stages 1 to κ is

∑κ
l=1Cl ·ω ≤ 2κ/2 · β < D · β by Lemmas 3.2 and 3.3. The buying cost in stages 1 to

κ+ 1 is 2κ+1 ·β < 4D ·β. Hence, the sum of the waiting cost in stages 1 to κ and the buying cost in stages
1 to κ + 1 is at most 5D · β. If the online algorithm does not reach stage κ then the waiting cost and the
buying cost are still bounded by the argument above.

When the algorithm transitions from stage κ to stage κ + 1, the algorithm turns on 2κ ≥ D servers.
The algorithm therefore has at least D idle servers to assign the remainder of the input, which is the
maximum number of servers the offline algorithm has available to schedule the complete input. Hence,
the waiting cost in stages κ + 1 to K is bounded by the waiting cost of the offline algorithm by Lemma
3.4.

Consider the transition from stage K − 1 to K and let i be the index of the job being assigned at this
time. Let j be such that xj (ti), the load of server j at time ti , is minimized. The offline algorithm has a
waiting cost of at least xj (ti) +

∑K−1
l=κ+1Cl in stages κ + 1 to K − 1 by the previous argument. Hence, the

offline algorithm has a waiting cost of at least K−1∑
l=κ+1

Cl + xj

 ·ω =

K−1∑
l=1

Cl + xj

 ·ω − κ∑
l=1

Cl ·ω >
(2K−1 − 2κ) · β

2
, (3.2.3)

where the inequality follows by line 6 and Lemma 3.3. The doubling algorithm has turned on
2K − 2κ+1 servers in stages κ + 2 to K and the buying cost of the online algorithm is therefore at most
4 times the waiting cost of the offline algorithm from stage κ + 2 to stage K . Hence, the cost of the
doubling algorithm in stages κ+ 1 to K is less than 5 times the waiting cost of the offline algorithm.
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4
Power-down strategies: the threshold policy

Summary. Lemma 4.1 establishes that the power-down strategies previously proposed in the literature are
not constant competitive if jobs are allowed to wait. We propose an alternative, local rule for turning off servers
(Algorithm 2) to solve this problem. We divide the time in various phases depending on the number of servers
in the online and offline system. The division enables us to bound the buying cost of the policy in phases I.a
and I.b (see Lemmas 4.7 and 4.8) independent of the rule for turning on servers. Algorithm 3 complements
the local rule for turning off servers with a simple rule for turning on servers. Theorem 4.2 proves that this
algorithm is 2-competitive if ω→∞, which is the optimal competitive ratio.

The power policy of an online algorithm has to decide when to turn on a server and when to turn
off a server. This chapter will focus on an online strategy for turning off servers, while the next chapter
will complement the power policy with a strategy for turning on servers. The goal of this chapter is
twofold. First, this chapter introduces a local rule for turning off servers. We then prove a number of
bounds on the cost of an algorithm implementing this rule for turning off servers independent of the rule
for turning on servers, i.e, for any rule for turning on servers the algorithm may implement, the bounds
in this chapter hold. Second, we illustrate the use of these bounds and analyze a simple algorithm for
the power-aware load balancing problem. Throughout this chapter, the processing time of each job is
assumed to be 1.

4.1 The threshold policy

Consider a simplification of the problem in which the system starts with one idle server. The power
policy has to decide when to turn off the server but the time until the next job is not known to the
policy. This is a well-known problem in the literature on competitive analysis and is often referred to
as the ski-rental problem [18]. If the policy turns off the server immediately and a job arrives shortly
after, then the system has to turn the server on again at cost β, while letting the server idle until the job
arrives consumes a much smaller amount of power. If the policy instead lets the server idle for a long
time and a job never arrives, then the system consumes a lot of unnecessary power at a rate θ per server
per time unit. The optimal policy therefore balances the buying cost and the power cost and turns off
the server after letting the server idle for β/θ time. This idea of a threshold on the idle time for a server
has been extended to multiple servers [12], multiple stages of powering down [29, 30] and stochastic
scheduling [10,11,41]. These policies suffer from a major drawback as pointed out by the next remark.
The algorithm proposed in this chapter is therefore slightly different than the policies proposed in the
literature.

Remark 5. The policies found in related literature reset the idle time of a server when a job is sched-
uled to that server [10–12, 41]. The rule in this case boils down to: if the idle time of server i since
the last job finished processing is larger than a threshold then server i is turned off. Surprisingly,
the performance of this rule is arbitrarily bad in the worst-case, as stated in Lemma 4.1 below. To
the best of our knowledge, the current work is the first to recognize the problem with this kind of
policy and to propose an appropriate solution.
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Lemma 4.1. Let A be an algorithm which turns off a server i at time t ≥ 0 if∫ t

t0

(1−ni(s))ds ≥ τ, (4.1.1)

where t0 is the time server i last finished processing a job and τ is a threshold possibly depending on
the parameters β, θ and ω. Then the algorithm A is not constant competitive.

Proof. Assume the competitive ratio is at most ρ ∈N. We will construct an input for which the cost
of the algorithm A is larger than ρ times the cost of the offline algorithm. Let the processing times
pi = 1 for all i. Let β = (ρ+ 1)(ρ+ 2), θ = 1 and ω = 2ρ−1(ρ+ 1)−1. We distinguish two cases.

(a) Assume that the threshold τ < ρ. Let one job arrive at t = 0 and again one job at t = ρ+1 and let
the starting state be m(0) = 1. The online algorithm turns off the server at time t = τ + 1 before
the job arrives at time t = ρ+ 1. The online algorithm therefore needs to turn on this server at a
later time at cost β. The offline algorithm does not turn off the server and has power cost ρ+ 2.
The competitive ratio is therefore at least β/(ρ+ 2) = ρ+ 1 in this case.

(b) Assume that the threshold τ ≥ ρ. Let ρ + 1 jobs arrive at t = 0 and let the starting state be
m(0) = ρ + 1. The online algorithm serves the ρ + 1 jobs on separate servers and does not turn
off any server before time t = ρ + 1. The power cost of the online algorithm is therefore at
least (ρ + 1)2. The offline algorithm turns off all but one server at time t = 0 and schedules the
ρ + 1 jobs on one server. The power cost of the offline algorithm is ρ + 1 and the waiting cost is∑ρ
i=1 i ·ω = ρ(ρ+1) ·ω/2 = 1. The competitive ratio is therefore at least (ρ+1)2/(ρ+2) > ρ in this

case.

Definition of the policy. The rule for turning off a server is a local rule and ensures a server is turned
off after the idle time exceeds a threshold. The rule has a parameter µ > 0 to scale the threshold. Recall
that ni(t) ∈ {0,1} is the number of jobs at server i at time t. We present the local rule here for an arbitrary
server i. The server i should be turned on, i.e. be either idle or busy.

Algorithm 2: The threshold policy for server i with parameter µ > 0

1 for t ≥ 0 do
/* Local rule for turning off a server */

2 if
∫ t

0
(1−ni(s))ds ≥

∫ t
0 ni(s)ds+µ · β/θ then

3 Turn off server i
4 end
5 end

The total time a server is idle is equal to the sum of the number of jobs served at the server and
µ · β/θ due to line 2. After this time, the server is turned off. Note that the left-hand side in line 2 only
increases if the server is not processing a job. The server is therefore only turned off if the server is idle
and the policy is always feasible.

Remark 6. The rule for turning off servers in algorithm 2 is a decentralized or local rule. This is a
powerful concept and means that the algorithm can be implemented on the server level without
requiring knowledge about any other server in the system.

Remark 7. Lu et al. [12] also implement a threshold on the time a server is idle, but reset the idle
time of a server when a job is served at a server, as explained in remark 5. In addition, Lu et al.
require that the assignment policy is the most-recently-used policy. The most-recently-used policy
routes a job to the server which was processing a job most recently. Intuitively, the most-recently-
used policy maximizes the time a server is idle and hence a server is more likely to reach the idle
time threshold and turn off. The threshold policy in the current work does not suffer from this
problem and does not require any assumptions on the assignment policy.

Algorithm 2 is incomplete as an algorithm for the power-aware load balancing problem as it lacks
a rule for turning on servers. Still, the purpose of this chapter is to establish bounds on the cost of
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Algorithm 2. To this end, we assume the algorithm is complemented with a rule for turning on servers.
Then, without any assumption on the rule for turning on servers, we obtain the results in this chapter. In
other words, for any policy controlling when to turn on servers, the lemmas in this chapter hold. This
is a powerful insight and does not hold for any policy previously seen in the literature. This means
in particular that the analysis in this chapter is reusable for any algorithm implementing this rule for
turning off servers.

To aid the discussion in this chapter, we do complement the rule for turning off a server with a
concrete rule for turning on a server. However, remember that the results in this chapter hold for any
rule for turning on a server. As this chapter is focused on power-down strategies, we consider the
scenario of the power-aware load balancing problem for which turning off servers is the main problem.
For this purpose, we do not allow a job to wait in the queue and let ω → ∞. The power policy must
therefore immediately turn on a server if a job arrives and all servers are busy.

Algorithm 3: The threshold algorithm with parameter µ > 0

1 for t ≥ 0 do
/* Global rule for turning on a server */

2 if a job arrives at time t and all servers are busy then
3 Turn on a server
4 end

/* Local rule for turning off a server */

5 for server i such that mi(t) = 1 do
6 if

∫ t
0

(1−ni(s))ds ≥
∫ t

0 ni(s)ds+µ · β/θ then
7 Turn off server i
8 end
9 end

10 end

We choose the non-idling assignment policy as the assignment policy of the algorithm. The compet-
itive ratio depends on the choice of the parameter µ. The next theorem provides the competitive ratio
of Algorithm 3.

Theorem 4.2. If ω→∞, then the competitive ratio of Algorithm 3 is

CR ≤
1 +µ

min(µ,1)
. (4.1.2)

As a result, for µ = 1, the competitive ratio is 2.

Note that the competitive ratio is the optimal competitive ratio for this problem. The competitive
ratio is the same as the algorithm of Lu et al. [12] but does not suffer from the problems which surface
if the timer resets each time a job is scheduled at the server (see Lemma 4.1). The idea of the proof is
to partition time into phases. A phase starts and ends when the number of servers in the offline system
is equal to the number of servers in the online system. In each phase, the cost of the online algorithm
will be bounded by the cost of the offline algorithm.

Section 4.2 will define a phase formally and introduce the three different types of phases. Section
4.3 will prove an important lower bound on the cost of the offline system. The cost of the offline system
is related to the idle time of servers in the online system due to the rule for turning off servers. Section
4.4 will upper bound the cost of the online algorithm. Finally, section 4.5 will assume that ω→∞ and
prove Theorem 4.2.

4.2 The phases in the time domain

The goal of the power policy is to adapt the number of servers over time. At any point in time, the online
system may have fewer, the same, or more servers than the offline system. We will partition the time
domain in phases in which the online system has either at most the number of servers in the offline
system throughout the phase or has at least the number of servers in the offline system throughout.
Formally, let a phase be a time interval [τi , τi+1) ⊆R+ for i ∈N. We will denote the online system by Π1,
while the offline system will be denoted by Π2. Let τ1 = 0. The time τi for i > 1 is defined inductively
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as the maximum time such that either

m(1)(t) ≥m(2)(t) for t ∈ [τi−1, τi) and m(1)(τi+) < m(2)(τi+), (4.2.1)

or
m(1)(t) ≤m(2)(t) for t ∈ [τi−1, τi) and m(1)(τi+) > m(2)(τi+), (4.2.2)

where m(i)(t) is the number of servers in system Πi at time t. Without loss of generality, we assume
that both the online and the offline algorithm do not turn on or turn off more than one server at any time.
In other words, any two times at which a server is turned on in a system are at least an infinitesimal
distance apart. As a result, if [τi , τi+1) ⊆R+ is a phase, thenm(1)(τi) =m(2)(τi) andm(1)(τi+1) =m(2)(τi+1),
i.e. the number of servers in system Π1 and Π2 are equal at the endpoints of a phase. A phase is thus
started at time τi if the number of servers in the online and the offline system is equal at time τi and the
online system has more servers than the offline system at some point before time τi and fewer servers
right after time τi or vice versa. We distinguish three types of phases depending on the behaviour of
the online and offline system.

(I.a) Let [τi , τi+1) ⊆R+ be a phase. The phase is of type I.a if m(1)(t) ≤m(2)(t) for t ∈ [τi , τi+1).

(I.b) Let [τi , τi+1) ⊆R+ be a phase. The phase is of type I.b if m(1)(t) ≥m(2)(t) for t ∈ [τi , τi+1) and none
of the servers in the online system Π1 are contiguously idle for more than one time unit.

(II) Let [τi , τi+1) ⊆ R+ be a phase. The phase is of type II if m(1)(t) ≥ m(2)(t) for t ∈ [τi , τi+1) and there
is at least one server in the online system Π1 which is contiguously idle for more than one time
unit.

The phase types are listed in order of descending priority. If multiple phase types would apply to
an interval, then type I.a takes precedence over types I.b and II. The start and endpoint τi and τi+1 of
a phase of type φ = I.a, I.b or II will often be denoted by 0(φ) and T (φ) respectively, or by 0 and T if the
phase is clear from the context. We will refer to a phase which is either of type phase I.a or phase I.b as
phase I. By definition, a phase II will be followed by a phase I. A phase I.a will be followed by a phase
I.b or a phase II and a phase I.b. will be followed by a phase I.a. In summary, phase II will alternate
with a sequence of phases I.a and I.b.

4.3 Lower bound on the cost of the offline system

The most important and noteworthy property of the local rule for turning off servers is that the idle
time of a server in the online system is related to the cost of the offline system. The specific choice of
the idle time of a server in the online algorithm therefore allows us to prove a lower bound on the cost
of the offline system.

Consider a sequence of alternating phases I.a and I.b throughout [0,T ) for T > 0. Recall that
throughout phase I.a the number of servers in the online system is at most the number of servers
in the offline system. Throughout phase I.b, there is no server which is contiguously idle for more
than one time unit. Define the difference between the offline and the online number of servers as
D = maxt∈[0,T ]m

(2)(t)−mint∈[0,T ]m
(1)(t). We will establish that the cost of the offline system in phase I

is closely related to the difference D.
By line 2 in Algorithm 2, the idle time of any server consists of the terms

∫ t
0 ni(s)ds and µ · β/θ and

we will divide the idle time of a server according to which term the time contributes to. Let t ≥ 0 be a
time a server m′ is idle in the online system. If the duration from the time server m′ last served a job
until t is larger than one, we call t a time for which server m′ is more than one time unit contiguously
idle. The time t thus contributes to the latter term of the idle time. If m′ ≤ m(1)(0), then denote by
Zm′ the set of times for which server m′ is more than one time unit contiguously idle throughout all
phases. If m′ > m(1)(0), then define Zm′ = [0,T ). We will use the set Zm′ throughout this chapter and the
next chapters. The goal of this section is to prove the following proposition. Recall the notation B for
the number of servers turned on and P for the power consumption from Section 1.3. By B(j)(Zm′ ), we
denote the number of servers turned on by system Πj at times t ∈ Zm′ .
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Proposition 4.3. Let T > 0. The sum of the buying and power cost of a server m′ in system Π2 is at least

B
(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ ≥min(µ,1) · β, (4.3.1)

for all servers m′ with mint∈[0,T ]m
(1)(t) < m′ ≤ maxt∈[0,T ]m

(2)(t) where Zm′ = [0,T ) if m′ > m(1)(0) and
Zm′ is the set of times server m′ is contiguously idle for more than one time unit in system Π1 if m′ ≤m(1)(0).
As a result, ∑

m′

(
B

(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ
)
≥min(µ,1)D · β. (4.3.2)

The proof of Proposition 4.3 follows by analyzing the cost of the offline system throughout Zm′ . We
will divide the analysis in phase I and phase II.

Cost of the offline system in phase I. This paragraph will establish a lower bound on the power cost
of the offline system.

Lemma 4.4. Consider a sequence of alternating phases I.a and I.b throughout [0,T ). The power cost of a
server m′ in system Π2 is at least

P
(2)
m′ (Zm′ ∩ [0,T )) ·θ ≥ |Zm′ ∩ [0,T )| ·θ, (4.3.3)

for all servers m′ where Zm′ is the set of times server m′ is more than one time unit contiguously idle in
system Π1.

Proof. Letm′ be the index of a server which is contiguously idle for more than one time unit throughout
[0,T ) in system Π1. Let Z = Zm′ ∩ [0,T ) be the times in the phase at which serverm′ is contiguously idle
for more than one time unit. The set Z does not intersect with phases I.b by the definition of phase I.b.
Hence, throughout Z we are in phase I.a and so the server with index m′ was therefore also turned on
in system Π2. Therefore, the power cost due to server m′ in system Π2 is at least |Z | ·θ.

Cost of the offline system in phase II. Consider an interval
[
0(II),T (II)

)
of phase II. Recall that through-

out phase II, the number of servers in the online system is larger than the number of servers in the offline
system. Moreover, there is at least one server in the interval which is contiguously idle for more than
one time unit. This paragraph will establish a lower bound on the cost of the offline system.

Lemma 4.5. Let
[
0(II),T (II)

)
be a phase of type II. The sum of the buying and power cost of a server m′ in

system Π2 is at least

B
(2)
m′

(
Zm′ ∩

[
0(II),T (II)

))
· β + P (2)

m′

(
Zm′ ∩

[
0(II),T (II)

))
·θ ≥min

(∣∣∣∣Zm′ ∩ [
0(II),T (II)

)∣∣∣∣ ·θ,β) , (4.3.4)

for all m′ ≤m(2)
(
T (II)

)
where Zm′ is the set of times server m′ is more than one time unit contiguously idle

in system Π1.

Proof. Let m′ ≤ m(2)(T ) be the index of a server which is contiguously idle for more than one time
unit throughout [0,T ) in system Π1. Let Z ⊆ [0,T ) be the points in the phase at which server m′ is
contiguously idle for more than one time unit. We distinguish two cases.

(a) Assume the offline system Π2 has an active server with index m′ for all t ∈ Z. The power cost of the
server with index m′ in system Π2 is therefore at least |Z | ·θ.

(b) Assume the offline system Π2 does not have an active server with indexm′ for some t ∈ Z. At time t,
the system Π2 does not have a server with index m′ . Hence, between time t and time T , the offline
system must turn on a server with index m′ because m′ ≤ m(2)(T ) by assumption. The buying cost
for the server with index m′ is therefore at least β.

The lemma follows by taking the minimum of the cost in these two situations.

These two lemmas allow us to prove Proposition 4.3. Let [0,T ) again be a sequence of alternating
phases I.a and I.b.
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Proof of Proposition 4.3. Let m′ be a server such that m(2)(0) < m′ ≤maxt∈[0,T ]m
(2)(t). By definition, the

system Π2 turns on server m′ in [0,T ). Moreover, Zm′ = [0,T ) is equal to the complete phase. The
buying cost attributed to server m′ in system Π2 is therefore at least

B
(2)
m′ (Zm′ ) · β ≥ β ≥min(µ,1) · β. (4.3.5)

Let now instead mint∈[0,T ]m
(1)(t) < m′ ≤m(1)(0). Note that server m′ is turned off in [0,T ) in system

Π1 because system Π1 has mint∈[0,T ]m
(1)(t) servers at some point in [0,T ). Let Z be the points in time at

which serverm′ is contiguously idle for more than one time unit and z = |Z |. By Lemma 4.4 and Lemma
4.5, the sum of the buying and power cost of server m′ in system Π2 is at least

B
(2)
m′ (t0,T ) · β + P (2)

m′ (t0,T ) ·θ ≥min(z ·θ,β) ≥min(µ,1) · β, (4.3.6)

where the second inequality follows by the definition of the turn off rule.

4.4 Upper bound on the cost of the online system

This section bounds the buying cost of the online system by the cost of the offline system. Surprisingly,
the buying cost of the online system can be bounded in phase I.a and phase I.b without knowledge of
the rule for turning on servers. Only the cost in phase II depends on the rule for turning on servers. The
next chapters will therefore be focused on this phase. Note that bounding the buying cost also ensures
that the power cost is bounded by the rule for turning off servers.

Lemma 4.6. The power cost of system Π1 is bounded by

P (1) ·θ ≤ 2P (2) ·θ +µB(1) · β. (4.4.1)

Proof. The power consumption of system Π1 consists of the power consumption during busy time P B(1),
while a server is processing a job, and of the power consumption during idle time P I (1), while a server
is idle. The idle time of a server is controlled by the rule for turning off servers. Let m′ be a server. The
idle time of server m′ is

P I
(1)
m′ =

∫ t

0
(1−nm′ (s))ds =

∫ t

0
nm′ (s)ds+µ · β/θ = P B(1)

m′ +µB(1)
m′ · β/θ, (4.4.2)

by line 2 in Algorithm 2. Take the sum over m′ to obtain

P I (1) ·θ = P B(1) ·θ +µB(1) · β. (4.4.3)

The lemma follows by adding the busy time P B(1) and realizing that the busy time P B(1) of system
Π1 is equal to the busy time P B(2) of system Π2 because the systems receive the same jobs.

Cost of the online system in phase I.a Consider an interval
[
0(I.a),T (I.a)

)
of phase I.a. Recall that the

number of servers in the online and offline system is equal at the endpoints of the phase and the number
of servers in the online system is at most the number of servers in the offline system throughout the
phase.

Lemma 4.7. Let
(
0(I.a),T (I.a)

)
be an interval of type I.a. The buying cost of serverm′ in system Π1 is bounded

by

B
(1)
m′

(
0(I.a),T (I.a)

)
· β ≤

B
(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ
min(µ,1)

, (4.4.4)

for all servers mint∈[0(I.a),T (I.a)]m
(1)(t) ≤ m′ ≤ maxt∈[0(I.a),T (I.a)]m

(1)(t) where Zm′ =
[
0(I.a),T (I.a)

)
if m′ >

m(1)
(
0(I.a)

)
and Zm′ is the set of times server m′ is contiguously idle for more than one time unit in system Π1

if m′ ≤m(1)
(
0(I.a)

)
.
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Proof. Letm′ be the index of a server which is turned on in [0,T ) in system Π1 and let t1, t2, . . . , tk ∈ [0,T )
be the times at which server m′ is turned on in system Π1. For all i = 1,2, . . . , k, we will prove that

B
(2)
m′ (Zm′ ∩ [ti−1, ti)) · β + P (2)

m′ (Zm′ ∩ [ti−1, ti)) ·θ ≥min(µ,1) · β, (4.4.5)

where t0 = 0 if m′ > m(1)(0) and t0 is the first time server m′ is contiguously idle for more than one
time unit in system Π1 if m′ ≤m(1)(0). The lemma follows by taking the sum over i.

First, we prove that equation (4.4.5) holds in the case i = 1 and m′ > m(1)(0). The offline system Π2
must have turned on a server with index m′ > m(1)(0) in the interval [0, t1] because m(2)(0) =m(1)(0) and
m(2)(t1) ≥m(1)(t1). The buying cost of server m′ in system Π2 is therefore at least β and equation (4.4.5)
follows.

Second, we prove that equation (4.4.5) holds in the case i > 1 or m′ ≤m(1)(0). If i > 1 or m′ ≤m(1)(0),
then server m′ must have been turned off between time ti−1 and time ti . Let Z ⊆ [ti−1, ti] be the points
in time at which server m′ is contiguously idle for more than one time unit. By Lemma 4.4 and Lemma
4.5, the sum of the buying and power cost of server m′ in system Π2 is

B
(2)
m′ (Zm′ ∩ [ti−1, ti)) · β + P (2)

m′ (Zm′ ∩ [ti−1, ti)) ·θ ≥min(|Zm′ ∩ [ti−1, ti)| ·θ,β) ≥min(µ,1) · β, (4.4.6)

where the second inequality follows by the definition of the turn off rule.

Remark 8. Lemma 4.7 bounds the buying cost of the online system in phase I.a. It is important to
realize that Lemma 4.7 does not depend on the rule for turning on servers. This may seem sur-
prising because the rule for turning on servers should determine how much the system spends on
buying. The fact that Lemma 4.7 holds for any rule for turning on servers is a powerful conse-
quence of the division in phases.

Cost of the online system in phase I.b Consider an interval
[
0(I.b),T (I.b)

)
of phase I.b. Recall that the

number of servers in the online and offline system is equal at the endpoints of the phase. Moreover, no
server in the online system is more than one time unit contiguously idle and hence the online system
does not turn off a server in the phase.

Lemma 4.8. Let
(
0(I.b),T (I.b)

)
be an interval of type I.b. The buying cost of system Π1 is bounded by

B(1)
(
0(I.b),T (I.b)

)
≤ B(2)

(
0(I.b),T (I.b)

)
(4.4.7)

Proof. The online system Π1 does not turn off servers in phase I.b. The number of servers turned on in
the interval [0,T ) is therefore equal to the difference in the number of servers at the endpoints as

B(1)(0,T ) =m(1)(T )−m(1)(0). (4.4.8)

The offline system Π2 turns on at least the same number of servers as the online system Π1 because

B(2)(0,T ) ≥m(2)(T )−m(2)(0) =m(1)(T )−m(1)(0) = B(1)(0,T ), (4.4.9)

and hence the lemma follows.

4.5 Competitive ratio

This section is the only section which will use the policy to turn on servers from Algorithm 3. The
lemmas in the previous sections are independent of the policy to turn on servers. Throughout this
section, we will assume that ω→∞.

Proof of Theorem 4.2. Note that in both systems a job is scheduled as soon as it arrives because ω→∞.
A job is therefore scheduled at the same time in the online system Π1 as in the offline system Π2. This
implies in particular that n(1)(t) = n(2)(t) for all t ≥ 0. The number of jobs being processed at a server in
the online system is therefore always equal to the number of jobs being processed in the offline system.
Moreover, we match the server indices between system Π1 and system Π2 such that a job is always
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assigned to a server with the same index in system Π1 and system Π2. It follows that n(1)
i (t) = n(2)

i (t) for
all t ≥ 0 and i. In other words, if a server i is serving a job in system Π1 then server i is also serving a
job in system Π2 and vice versa.

Consider a time epoch τ1 at which the online system Π1 turns on a serverm′ as a result of an arriving
job. After the server is turned on, the number of servers of the online system is m(1)(τ1) = n(1)(τ1). The
offline system has at least m(2)(τ1) ≥ n(2)(τ1) = n(1)(τ1) ≥ m(1)(τ1) servers. Let τ0 be the time the server
m′ was turned on before time τ1 in system Π1 or zero if this time does not exist. We distinguish two
cases.

(a) Assume the offline system Π2 turns on server m′ in (τ0, τ1]. Note that, if τ0 = 0, then the offline
system must always turn on server m′ in (τ0, τ1] because m(2)(τ1) ≥m(1)(τ1) ≥m′ . The buying cost of

the offline system attributed to server m′ is therefore at least B(2)
m′ (τ0, τ1) ≥ 1.

(b) Assume the offline system Π2 does not turn on server m′ in the interval (τ0, τ1]. The system Π2
must have server m′ powered on throughout (τ0, τ1] because the server m′ is turned on at time τ1 as
a result of m(2)(τ1) ≥ m(1)(τ1) ≥ m′ . The power cost of the offline system attributed to server m′ is
therefore at least

P
(2)
m′ (τ0, τ1) = τ1 − τ0 ≥

∫ τ1

τ0

m
(1)
m′ (s)ds

= 2
∫ τ1

τ0

n
(1)
m′ (s)ds+µ · β/θ = 2

∫ τ1

τ0

n
(2)
m′ (s)ds+µ · β/θ,

(4.5.1)

where the one but last equality follows by the rule for turning off servers and the last equality

follows because n(1)
m′ (t) = n(2)

m′ (t) for all t ≥ 0. The idle time P I (2)
m′ (τ0, τ1) of server m′ in system Π2 is

therefore at least

P I
(2)
m′ (τ0, τ1) ≥

∫ τ1

τ0

n
(2)
m′ (s)ds+µ · β/θ ≥ µ · β/θ. (4.5.2)

In case (a), the cost of turning on server m′ is bounded by the buying cost of the offline system and
in case (b), by the power cost of the offline system. In either case, the cost of turning on server m′ is
bounded by

min(µ,1) · β ≤ B(2)
m′ (τ0, τ1) · β + P I (2)

m′ (τ1, τ2) ·θ. (4.5.3)

Sum equation (4.5.3) over all time epochs τ1 and servers m′ to obtain

B(1) · β ≤
B(2) · β + P I (2) ·θ

min(µ,1)
. (4.5.4)

This is essentially a strengthening of Lemma 4.7, but only holds if ω→∞. The power cost of system
Π1 is bounded by the sum of the power cost of system Π2 and the buying cost of system Π1 as

P (1) ·θ ≤ 2P B(2) ·θ +µB(1) · β, (4.5.5)

by the proof of Lemma 4.6. The cost of the online system Π1 is therefore

B(1) · β + P (1) ·θ ≤ (1 +µ) ·
B(2) · β + P I (2) ·θ

min(µ,1)
+ 2P B(2) ·θ, (4.5.6)

and the competitive ratio is

CR ≤max
(

1 +µ
min(µ,1)

,2
)
≤

1 +µ
min(µ,1)

. (4.5.7)
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5
Power-up strategies: the accumulated cost algorithm

Summary. This chapter proposes the accumulated cost algorithm (Algorithm 4) for the general case of the
power-aware load balancing problem. The accumulated cost algorithm turns on one additional server each
time the accumulated waiting cost exceeds a threshold. The rule for turning off servers is the threshold policy
from the previous chapter. Theorem 5.1 proves that the algorithm is 10.8-competitive in the general case and
5-competitive if θ = 0. The proof requires a non-trivial coupling between the online and offline system in
phase II (see Proposition 5.4).

The case for which the power cost θ is strictly larger than zero has been difficult to tackle. The diffi-
culty lies mainly in the fact that the number of servers of the offline system varies over time and is not
constant as may be assumed when the power cost is zero. This chapter will introduce the accumulated
cost algorithm, a competitive algorithm for the general case. Throughout this chapter, we will assume
jobs are of unit length.

5.1 The accumulated cost algorithm

The accumulated cost algorithm dynamically turns on and turns off servers over time according to two
separate rules. The rule for turning on servers is a global rule and ensures that a server is turned on
each time the total waiting time exceeds a threshold. The rule for turning off a server is the local rule
seen in the previous chapter. Recall that q(t) denotes the number of jobs in the queue at time t.

Algorithm 4: The accumulated cost algorithm (ACA) with parameters r > 0 and µ > 0

1 t0← 0
2 for t ≥ 0 do

/* Global rule for turning on a server */

3 if r
∫ t
t0
q(s)ds ·ω ≥ β then

4 Turn on a server
5 t0← t
6 end

/* Local rule for turning off a server */

7 for server i such that mi(t) = 1 do
8 if

∫ t
0

(1−ni(s))ds ≥
∫ t

0 ni(s)ds+µ · β/θ then
9 Turn off server i

10 end
11 end
12 end

The assignment policy of the accumulated cost algorithm is the non-idling assignment policy. The
rule for turning on servers ensures that the buying cost always exceeds r times the waiting cost. If r
times the waiting cost exceeds the buying cost, then the condition in line 3 is triggered and an additional
server is turned on. The total time a server is idle is equal to the sum of the number of jobs served at
the server and µ ·β/θ due to line 8. After this time, the server is turned off. This rule ensures the power
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cost for the idle time is the sum of the power cost while the server is active and µ times the buying cost
of one server.

The competitive ratio of the algorithm depends on the choice of the parameters. The next theorem
provides the competitive ratio of the ACA.

Theorem 5.1. The competitive ratio of Algorithm 4 is

CR ≤max
(

4(1 + 1/r +µ)
min(µ,1)

+ 2,1 + r +µr
)
. (5.1.1)

As a result, for r =
(
9 +
√

113
)
/4 and µ = 1, the competitive ratio is

(
11 +

√
113

)
/2 ≈ 10.8. If θ = 0,

then the competitive ratio is
CR ≤max(4 + 4/r,1 + r) . (5.1.2)

As a result, for r = 4, the competitive ratio is 5.

The idea of the proof is to partition time into phases as in the previous chapter. A phase starts
and ends when the number of servers in the offline system is equal to the number of servers in the
online system. In each phase, we will bound the cost of the online algorithm. The previous chapter has
provided bounds on the buying cost in phase I.a and phase I.b. This chapter will focus on bounding the
cost of the online algorithm in phase II. Recall that throughout the phase I prior to phase II, the offline
system may have more servers than the online system. The online algorithm therefore accumulates
more jobs in the queue than the offline system in this phase. Lemma 5.2 quantifies the worst-case
difference between the number of jobs in the queue of the online system and the offline system at the
start of phase II. As a result of this difference, the online system will need to turn on more servers
to schedule the additional jobs in the queue. We will argue that we can replace the online system in
phase II by two subsystems. The first subsystem mimics the behavior of the offline algorithm, while the
second subsystem starts with zero servers and follows the accumulated cost algorithm to schedule the
additional jobs from the original online system. Proposition 5.4 proves that the cost of the online system
is less than the cost of these two subsystems. Finally, Lemma 5.9 computes the cost of scheduling a fixed
number of jobs with the accumulated cost algorithm starting with zero servers. Theorem 5.1 follows by
combining the bounds from these lemmas.

Remark 9. In contrast to the doubling algorithm, the accumulated cost algorithm does not require
any information about the workload of the servers. This is a powerful concept and means that the
global rule for turning on a server can be implemented on the dispatcher level without requiring
knowledge about any of the servers. The rule is independent even of the number of idle and busy
servers in the system. Still, the competitive ratio of the accumulated cost algorithm is the same as
the competitive ratio of the doubling algorithm if θ = 0.

The rest of this chapter is outlined as follows. Section 5.2 establishes a lemma on the queue length
difference at the end of phase I. Section 5.3 couples the online system to the offline system plus some
overhead in phase II and bounds the cost of this overhead. The proof of Theorem 5.1 will follow in
section 5.4 based on these bounds.

5.2 Queue length difference at the end of phase I

Consider a sequence of alternating phases I.a and I.b throughout [0,T ) for T > 0. This section will
bound the difference in queue length and workload between the online system and the offline system
at time T independent of the input.

Online system. A system with m(1)(0) ∈N servers and q(1)(0) ∈N jobs in the queue at time t = 0. The
system follows the ACA with parameter r > 0 and the non-idling assignment policy. This system will
hereafter be referred to as Π1. The arrivals from the input σ join system Π1 over time.

Offline system. A system with m(2)(0) ∈N servers and q(2)(0) ≥ q(1)(0) jobs in the queue at time t = 0.
This system turns on additional servers over time according to a fixed integer function m(2)(·) with

25



m(2)(0) = m(1)(0) and m(2)(T ) = m(1)(T ). The system follows an arbitrary but fixed assignment policy.
The system will hereafter be referred to as system Π2. The arrivals from the input σ join system Π2
over time.

Let the servers be ordered such that the workload of a server in system Π2 is at least the workload
of the server with the same index in system Π1 at time t = 0 or equivalently,

x
(1)
i (0) ≤ x(2)

i (0), for all i ∈
{
1,2, . . . ,m(2)(0)

}
. (5.2.1)

See also Remark 11 about why this ordering is possible.
Define D = maxt∈[0,T ]m

(2)(t)−mint∈[0,T ]m
(1)(t) as the difference between the maximum and the min-

imum number of active servers in the offline system Π2 and the online system Π1 respectively. We will
first turn our attention to bounding the difference in queue length, before incorporating the workload.

Lemma 5.2. The difference in queue length between system Π1 and system Π2 is at most

min
t∈(T−1,T ]

(
q(1)(t)− q(2)(t)

)
≤

√
2β
r ·ω

·D. (5.2.2)

Define the excess queue length of system Π1 compared to system Π2 as ∆(t) = max
(
q(1)(t)− q(2)(t),0

)
and the minimum of the excess queue length in every unit-length time interval as

f (t) = min
s∈[0,1)

∆(T − btc − s), (5.2.3)

for t ∈ [0,T ]. The function f (t) jumps only at integer times t ∈N and is constant between two subse-
quent integer times. The statement in Lemma 5.2 is a statement on the maximum value of f (0), where
the value is maximized over the input σ . To determine this value, we will identify three constraints on
the function f (·) independent of the input and find the maximum value of f (0) under these constraints.

Define T ′ ∈ [0,T ] as the largest time at which the online system Π1 turns off a server. If such a T ′

exists, then the queue length at T ′ is zero because of the non-idling assignment policy of system Π1. If
such a T ′ does not exist, then let T ′ = 0 and ∆(0) is zero by assumption.

Constraint 1. The first constraint is
f (T − T ′) = 0, (5.2.4)

which follows by the definition of T ′ .

Constraint 2. The online system Π1 does not turn off servers between time T ′ and T . The number
of servers in system Π1 at time T ′ is at least mint∈[0,T ]m

(1)(t), while the number of servers at time T is
m(1)(T ) =m(2)(T ) ≤maxt∈[0,T ]m

(2)(t). The number of servers the online system turns on between T ′ and
T is therefore at most maxs∈[0,T ]m

(2)(s) −mins∈[0,T ]m
(1)(s) = D. The definition of the ACA implies the

following, second constraint on f (·),

D · β ≥ r
∫ T

T ′
q(1)(s)ds ·ω ≥ r

∫ T

T ′
∆(s)ds ·ω ≥ r

∫ T−T ′

0
f (s)ds ·ω, (5.2.5)

where the first inequality follows by line 3 and the second and third inequalities follow by defini-
tion.

Constraint 3. Consider a time interval [t, t + 1) for t ∈ [0,T − 1). Assume σt ∈ N jobs arrive in this
interval. The number of jobs system Π1 schedules in [t, t + 1) is mins∈[0,T ]m

(1)(s) as long as the queue is
non-empty. As a result, the queue length of system Π1 increases by at most

q(1)(t + 1)− q(1)(t) ≤max
(
σt − min

s∈[0,T ]
m(1)(s),−q(1)(t)

)
, (5.2.6)

in this interval. The queue length never decreases by more than −q(1)(t) (in which case q(1)(t+1) = 0),
which explains the second term in the maximum. The number of jobs system Π2 schedules in [t, t + 1)
is at most maxs∈[0,T ]m

(2)(s). As a result, the queue length of system Π2 increases by at least

q(2)(t + 1)− q(2)(t) ≥max
(
σt − max

s∈[0,T ]
m(2)(s),−q(2)(t)

)
≥ σt − max

s∈[0,T ]
m(2)(s), (5.2.7)
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and hence the excess queue length can grow by at most

∆(t + 1)−∆(t) ≤ max
s∈[0,T ]

m(2)(s)− min
s∈[0,T ]

m(1)(s) =D, (5.2.8)

for all t ≥ 0. We claim that equation (5.2.8) implies the following constraint on f (t),

f (t)− f (t + 1) ≤D, (5.2.9)

for t = 0,1, . . . ,bT c. Assume there exists a t ∈N such that equation (5.2.9) is violated and hence

f (t)− f (t + 1) = min
s∈[0,1)

∆(T − t − s)− min
s∈[0,1)

∆(T − t − 1− s) > D. (5.2.10)

Let the arguments of the minima in the equation above be

s1 = arg min
s∈[0,1)

∆(T − t − s), s2 = arg min
s∈[0,1)

∆(T − t − 1− s). (5.2.11)

Note that ∆(T − t − s2) ≥ ∆(T − t − s1) by the definition of the minimum and therefore

∆(T − t − s2)−∆(T − t − 1− s2) ≥ ∆(T − t − s1)−∆(T − t − 1− s2) > D, (5.2.12)

which violates equation (5.2.8). This proves equation (5.2.9) holds.

Proof of Lemma 5.2. To prove the lemma, we will identify the maximum value of f (0) under the three
constraints listed above. Note that it can be easily verified that f (0) is maximum if equation (5.2.5)
holds with equality and equation (5.2.9) holds with equality for at least all t = 0,1, . . . ,bT c−1 (i.e. for all
integers t except t = bT c). Assume T − T ′ > 1, otherwise f (0) = 0 and the bound holds trivially. Define
τ = bT − T ′c − 1. Equation (5.2.5) with equality then reduces to∫ T−T ′

0
f (s)ds = (τ + 1)f (τ) +

τ∑
i=1

iD =
D · β
r ·ω

. (5.2.13)

Solve this equation for τ . As a result of equation (5.2.9), f (0) = f (τ) + τD and

f (0) =

√
2D2 · β
r ·ω

+
(D

2
− f (τ)

)2
− D

2
≤

√
2β
r ·ω

·D, (5.2.14)

which proves the lemma.

We will now turn our attention to incorporating the workload. Define the integer m0 ∈ N as the
number of servers which have a larger workload in the online system Π1 than in the offline system Π2 at
time T . More specifically, let the servers be ordered such that the servers with index in {1,2, . . . ,m(1)(0)−
m0} in system Π1 have a workload which is at most the workload of the server with the same index in
system Π2 or equivalently,

x
(1)
i (T ) ≤ x(2)

i (T ), for all i ∈ {1,2, . . . ,m(1)(0)−m0}. (5.2.15)

The workload at the servers with index in {m(1)(0) −m0 + 1, . . . ,m(1)(0)} in system Π1 may be larger
than the workload of the server with the same index in system Π2.

Lemma 5.3. The difference in queue length between system Π1 and system Π2 plus the number of servers
with a higher workload in system Π1 at time T is at most

m0 +
(
q(1)(T )− q(2)(T )

)
≤

1 +

√
2β
r ·ω

 ·D. (5.2.16)

Proof. Define the difference in queue length as ∆(t) =
(
q(1)(t)− q(2)(t)

)+
and define the time the mini-

mum in the queue length difference is attained as τ = T − 1 + argmint∈[T−1,T ]∆(t). By Lemma 5.2, the
difference in queue length at time τ is at most

∆(τ) ≤
√

2β
r ·ω

·D. (5.2.17)
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The workload at the servers in system Π1 at time t = 0 is at most the workload at the servers in
system Π2. Consider the subset of servers with index m′ ≤mint∈[0,T ]m

(1)(t). As a result of the smaller
workload at time t = 0 and the non-idling assignment policy, system Π1 always schedules a job to this
subset before or at the same time the assignment policy of system Π2 schedules a job to this subset. The
workload at the servers in this subset is therefore always smaller in system Π1 than in system Π2.

The number of jobs system Π2 can schedule between T − 1 and T is at most maxt∈[0,T ]m
(2)(t).

The online system Π1 can schedule at least mint∈[0,T ]m
(1)(t) of these jobs on servers with index m′ ≤

mint∈[0,T ]m
(1)(t). Moreover, by the reasoning in the previous paragraph, the workload of one of these

servers in system Π1 is at most the workload of the server with the same index in system Π2 at time T .
We will therefore focus on the remaining m′ ≤D jobs the system Π2 schedules in the interval (T −1,T ].

Let B ⊆ {mint∈[0,T ]m
(1)(t) + 1, . . . ,maxt∈[0,T ]m

(1)(t)} be the set of indices of the servers in the online
system Π1 which schedule a job from the queue between time τ and T and let R be the complement
of B. Consider a server i ∈ R. If server i is serving a job at time T , then this job has been scheduled
before time τ in system Π1. The server with index i therefore has a workload which is smaller than the
workload of any server which serves one of the m′ jobs in the offline system Π2 at time T . The number
of servers with a smaller workload in the online system Π1 than the offline system Π2 is therefore at
least min(|R|,m′). On the other hand, for each server i ∈ B the queue decreases by one job between τ
and T .

Let ∆0 = ∆(T ) be the difference in queue length at time T and letm0 =D−min(|R|,m′) be the number
of servers which may have a higher workload in the online system Π1 than the offline system Π2 at time
T . The sum of ∆0 and m0 is then bounded by

∆0 +m0 ≤ (∆(τ) +m′ − |B|) + (D −min(|R|,m′))
= ∆(τ) +m′ + (D − |B|)−min(D − |B|,m′) ≤ ∆(τ) +D.

(5.2.18)

This proves the bound in the lemma.

5.3 Coupling the online and offline systems in phase II

Consider an interval [0,T ) for T > 0 of phase II. Throughout phase II, the number of servers in the
online system is higher than the number of servers in the offline system. This section will establish that
if the difference in queue length is bounded at time t = 0, then the number of additional servers the
online system turns on is bounded. We will compare the cost of the online system Π1 to the cost of the
offline system Π2 in this interval plus some overhead.

Online system. A system with m(1)(0) ∈N servers and q(1)(0) = q0 +∆0 ∈N jobs in the queue at time
t = 0. The system follows the ACA with parameter r > 0 and the non-idling assignment policy. This
system will hereafter be referred to as Π1. The arrivals from the input σ join system Π1 over time.

Offline system plus overhead. The system consists of two parts.

a. A subsystem with m(2)(0) ∈N servers and q(2)(0) = q0 jobs in the queue at time t = 0. This system
turns on additional servers over time according to a fixed integer function m(2)(·) with m(2)(0) =
m(1)(0), m(2)(T ) = m(1)(T ) and m(2)(t) ≤ m(1)(t) for t ∈ [0,T ]. The system follows an arbitrary but
fixed assignment policy. The system will hereafter be referred to as system Π2. We assume that
the arrivals from the input σ join only the subsystem Π2 over time.

Define the integer m0 ∈ N as the number of servers which have a larger workload in system Π1
than in system Π2 at time t = 0. More specifically, let the servers be ordered such that the servers
with index in {1,2, . . . ,m(1)(0)−m0} in system Π1 have a workload which is at most the workload
of the server with the same index in system Π2 or equivalently,

x
(1)
i (0) ≤ x(2)

i (0), for all i ∈ {1,2, . . . ,m(1)(0)−m0}. (5.3.1)

The workload at the servers with index in {m(1)(0)−m0 + 1, . . . ,m(1)(0)} in system Π1 may be larger
than the workload of the server with the same index in system Π2.

b. A subsystem with no servers and ∆0 +m0 jobs in the queue at time t = 0. The system follows the
ACA with parameter r > 0 and an arbitrary but fixed assignment policy. This system will hereafter
be referred to as system Π3.
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Define T ′ > 0 as the smallest time at which a server in system Π1 is has been idle for more than one
time unit contiguously. If there does not exist such a T ′ , then let T ′ = T . Definem∗ = maxt∈[0,T ′]m(2)(t) as
the maximum number of servers the offline system Π2 turns on over time and define τ as the smallest
time for which m(1)(τ) = m∗. Note that τ ≤ argmaxt∈[0,T ′]m(2)(t) ≤ T ′ because m(2)(t) ≤ m(1)(t) for t ∈
[0,T ].

Section 5.3.1 will construct a coupling between the online system and the offline system with over-
head to establish that waiting time of the former is at most the waiting time of the latter. Furthermore,
this section will characterize the waiting time of the overhead. Section 5.3.2 will then bound the cost of
the online system in phase II by the cost of the offline system.

5.3.1 Additional waiting time due to the queue length difference

This section will compare the waiting time of the online system with the offline system starting from
an arbitrary starting state. By constructing an appropriate coupling, we will establish that the waiting
time of the online system is at most the waiting time of the offline system plus some overhead. Our goal
in this section is to establish the following proposition.

Proposition 5.4. For any two arbitrary but fixed assignment policies implemented by system Π2 and system
Π3, the waiting time of system Π1 is bounded by the waiting time of system Π2 and system Π3 as

W (1)(τ,T ) ≤W (2)(τ,T ) +W (3), (5.3.2)

where W (j)(t1, t2) is the waiting time of system Πj from time t1 to t2.

Remark 10. Although Proposition 5.4 may seem intuitive and almost trivial, the statement is sur-
prisingly subtle and generally does not hold under relaxed assumptions on the systems Π1, Π2
and Π3. For example, in relation to stochastic scheduling, the statement may be misinterpreted
as an alternative to the Poisson splitting property; the load on system Π1 is divided in the load on
system Π2 and the load on system Π3 and each system still perceives a Poisson process. The crux
however lies in the transition from the non-idling assignment policy in system Π1 to any assign-
ment policy in system Π2 and Π3. The non-idling assignment policy is not necessarily optimal for
the accumulated cost algorithm as the next lemma shows.

Lemma 5.5. There exists an input and idling assignment policy such that the accumulated cost algorithm
with the idling assignment policy has a lower cost than the non-idling assignment policy.

Proof. Fix β = ω = 1 and θ = 0. Let the input consist of one job arriving at t = 0, one job arriving at
t = 2 and two jobs arriving at t = 3,4. The accumulated cost algorithm waits for one time unit and
turns on the first server at t = 1.

The non-idling assignment policy schedules the first job at t = 1 as soon as the first server is
available. At t = 2 the next job arrives and this job can be scheduled immediately to the first server.
At t = 3 two jobs arrive. One of these jobs can be scheduled to the first server while the other
job waits for one time unit and causes a second server to be turned on at t = 4. At t = 4, one of
the newly arriving jobs can be scheduled to a server while the other job waits for one time unit
and caused a third server to be turned on at t = 5. The cost of the non-idling policy is therefore
3β + 3ω = 6.

Consider the idling assignment policy which does not schedule the first job at t = 1, but at
t = 2. This causes a second server to be turned on at t = 2. Each of the subsequent jobs can then be
scheduled to these servers without waiting. The cost of the idling assignment policy is therefore
2β + 2ω = 4.

Lemma 5.5 uses the fact that letting a server idle causes more servers to be turned on, which is
sometimes beneficial for future arrivals. The comparison between system Π1, which implements
the non-idling assignment policy, and system Π3, which implements a possibly idling assignment
policy, therefore is non-trivial and subtle. Furthermore, the interested reader can verify that the
statement does not hold if any of the assumptions on system Π1, Π2 or Π3 are invalidated.

We will prove Proposition 5.4 with a coupling between the two systems. Consider system Π1. Let B
be the finite collection of jobs which are at a server with index in {m(1)(0)−m0 + 1, . . . ,m(1)(0)} or part of
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the first ∆0 jobs in the queue at time t = 0 and let R be the finite collection of jobs which are at a server
with index in {1,2, . . . ,m(1)(0) −m0}, are part of the last q0 jobs in the queue at time t = 0 or will arrive
over time. Note that by this definition, the total number of jobs in B is ∆0 +m0 and the total number of
jobs in R is m(1)(0)−m0 +q0 +n. We synchronize the arrival epochs from σ in both systems. Assign each
of the jobs in B and R a unique integer index. Also, set the color of each of the jobs in B to blue and the
color of each of the jobs in R to red. Each job in R can be identified with a job in system Π2, while each
job in B can be identified with a job in system Π3. We assign the jobs in these systems the same color
and index as in system Π1. Therefore, note that each job in a particular system can be identified by a
unique (color, index) pair.

We will dynamically update the color and index of certain jobs in system Π1 as the system evolves
over time according to a set of predefined events, which are described below. The color and index of
jobs in systems Π2 and Π3 are never changed. As a result of how these events are defined, we will be
able to prove the next two key lemmas, which establish an ordering between the waiting time of a red
job in system Π1 and the waiting time of a job with the same index in system Π2 and the total waiting
time due to blue jobs in system Π1 and the total waiting time in system Π3 respectively.

Lemma 5.6. Consider a red job with index i. The waiting time of this job is smaller in system Π1 than in
system Π2 as

W
(1)
i (t) ≤W (2)

i (t). (5.3.3)

Note that the waiting time of a job is accumulated as long as the job bears the index i.

Lemma 5.7. The total waiting time in the interval [τ,T ] due to blue jobs in system Π1 is at most the total

waiting time in system Π3, i.e. W (1)
blue(τ,T ) ≤W (3).

Proof of Proposition 5.4. Lemma 5.6 implies that the total waiting time due to red jobs in system Π1 is
less than the total waiting time in system Π2 at any time. As the total waiting time of system Π1 is the
sum of the total waiting time due to the blue and red jobs,

W (1)(τ,T ) =W (1)
red (τ,T ) +W (1)

blue(τ,T ) ≤W (2)(τ,T ) +W (3). (5.3.4)

This completes the proof of Proposition 5.4.

Coupling construction. We will now describe how the color and index of the jobs in system Π1 are
updated over time. Recall that at its arrival epoch a job is always red. The color and index of a job is
changed only in one of the following two events. Otherwise, a job keeps getting processed according to
the algorithm of system Π1.

E1. Consider a time epoch t0 when a red job with index i is scheduled to a server with index m′ > m∗.
In this case, at time t0, pick a blue job with index j which is currently being processed at one of
the servers with index in 1,2, . . . ,m∗ if such a job exists. Assign the job with index i to server m′

and swap the identities of jobs i and j, i.e. (red, i) becomes (blue, j) and vice versa. Note that only
the job identities are swapped and not the remaining processing times. If such a blue job does not
exist, then the job with index i is simply assigned to the server m′ without swapping identities.
Figure 5.1a depicts an illustration of the event.

E2. Consider the time epoch t0 when a red job with index i in system Π2 is scheduled, but could not
be scheduled at or before time t0 in system Π1. In this case, at time t0, pick a blue job with index
j which is currently being processed at one of the servers with index in 1,2, . . . ,m∗ if such a job
exists. As before, swap the identities of jobs i and j. Note that, again, the remaining processing
times of the jobs are not swapped. We will prove later in claim C7 that such a blue job always
exists. Figure 5.1b depicts an illustration of the event.

Furthermore, assume without loss of generality that the assignment policy of system Π1 assigns a
job to the server with the lowest index if there are multiple servers available. This implies in particular
that, at the time epoch a red job is assigned to a server with index m′ > m∗ in event E1, the servers with
index in 1,2, . . . ,m∗ are busy.

In the rest of this section we will prove Lemma 5.6 and Lemma 5.7. Let us start by listing a few
simple claims that will be useful in the proof. The next claims are true for all t ∈ [0,T ] throughout the
coloring process.
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(a) Event E1 (b) Event E2

Figure 5.1: The online system Π1 when swapping the colors of jobs due to one of the events.

C1. Once a red job starts being processed in system Π1, its identity is never changed.

C2. Consider a red job with index i which has been scheduled in system Π1. Let z(1)
i and z(2)

i be the
time epochs this job has been scheduled in system Π1 and system Π2 respectively. Then,

z
(1)
i ≤ z

(2)
i . (5.3.5)

C3. The total number of blue jobs is ∆0 +m0 and the total number of red jobs is m(1)(0)−m0 + q0 +n.

C4. If a red job is scheduled to a server with indexm′ > m∗, then there are no blue jobs left in the queue
or being processed at a server with index in 1,2, . . . ,m∗.

C5. If a server with index m′ > m∗ is contiguously idle for more than one time unit, there are no blue
jobs left in the queue or being processed at a server with index in 1,2, . . . ,m∗. If a server with index
m′ ≤ m∗ is contiguously idle for more than one time unit, then there are no blue jobs left in the
system.

C6. Once a blue job is scheduled to a server with index m′ > m∗ in system Π1, its identity is never
changed.

C7. There is always a blue job available to pick in event E2.

Remark 11. Claim C2 implies that the number of red jobs in the queue of system Π1 is always less
than the number of jobs in the queue of system Π2. Together with claims C5 and C6, it follows
that the queue length difference is zero from the time a server is idle for more than one time unit
in system Π1. Moreover, from the time a server is idle for more than one time unit, the workload
at a server with index m′ ≤ m∗ in system Π1 is less than the workload at the server with the same
index in system Π2.

We provide short proofs for these claims.

P1. The process does not contain an event which changes the index or color of a red job which is
scheduled.

P2. Consider a red job which has been scheduled in system Π1. We distinguish three cases.

(a) Assume the job was being processed at one of the servers at time t = 0. The workload of the
server is larger in system Π2 than in system Π1. The job must therefore have been scheduled
earlier in system Π1.

(b) Assume instead that the job was not being processed at one of the servers at time t = 0 and
the job was red when the job was scheduled. The index of the job has not been changed
since because of claim C1. Clearly, event E2 was not triggered for a job with this index and
therefore the job must have been scheduled earlier in system Π1.
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(c) Assume now instead that the job was made red by event E1 or event E2 after the job was
scheduled. The job was made red either before (by event E1) or at exactly the time (by event
E2) the job with the same index in system Π2 was scheduled. As the job was scheduled before
this time, the job must have been scheduled earlier.

P3. Any event which changes either the index or color of a job, swaps the identities of jobs. The total
number of red jobs and the total number of blue jobs must therefore remain constant.

P4. Consider a time epoch t0 when a red job is at the head of the queue in system Π1 and it is scheduled
to a server with index m′ > m∗. Throughout the process, the blue jobs are ordered before the red
jobs in the queue. The ordering is present at time t = 0 by the choice of the sets B and R and
scheduling a job or triggering one of the events maintains the ordering. In particular, event E2
maintains the ordering as the red job of which the identity is changed in this event must be the
first red job in the queue, because system Π2 follows a FCFS policy. The queue therefore contains
no blue jobs at time t0. Also, there are no blue jobs being processed at a server with index in
1,2, . . . ,m∗ because event E1 is not triggered for this job.

P5. Consider a time epoch t0 when a server is contiguously idle for more than one time unit. There
are no jobs in the queue at time t0 because if there were, one of these jobs would be scheduled
to server m′ as a result of the non-idling assignment policy. Assume there is a blue job being
processed at one of the servers at time t0. Note that this job was scheduled less than a unit time
before t0 and either the job was blue when it was scheduled or the job was made blue after the job
was scheduled by event E1. We distinguish these two cases.

(a) If the job was blue from the start or made blue by event E2 while the job was in the queue,
then this job must have been in the queue for a non-zero time just before it got scheduled.
However, server m′ was available at this time because it was available in the last unit-length
time interval. This job could therefore have been scheduled to server m′ instead of waiting
in the queue. This is a contradiction to the assignment policy being non-idling.

(b) If the job was made blue after the job was scheduled by event E1, then the job is being pro-
cessed at a server with index m′ > m∗. Moreover, at the time event E1 is triggered the servers
with index in 1,2, . . . ,m∗ were busy and hence the index of the idling server must be larger
than m∗.

P6. Consider a blue job with index i which is scheduled to a server with an index larger than m∗.
The process does not contain an event which changes the index or color of a blue job which is
scheduled to a server with index larger than m∗. As long as a blue job is on a server with index
larger thanm∗, its index or color therefore does not change. If another server with indexm′ > m∗ is
turned off, then the job with index i is still at a server with index larger than m∗. If another server
with index m′ ≤ m∗ is turned off then by claim C5 and the rule for turning off a server, there are
no more blue jobs in the system and the job with index i must have been completely processed.

P7. Assume that at time t0 the servers with indices 1,2, . . . ,min
(
m∗,m(1)(t0)

)
are all processing a red

job. Consider a red job on one of these servers. Due to claim C2, the job with the same index
in system Π2 is scheduled later than this job. This job must therefore have been scheduled in
the last unit-length time interval and is therefore being processed at time t0 in system Π2. This
would imply system Π2 is processing min

(
m∗,m(1)(t0)

)
+ 1 ≥m(2)(t0) + 1 jobs at time t0, which is a

contradiction because the system has only m(2)(t0) servers.

We are now in a position to prove the first key lemma.

Proof of Lemma 5.6. The waiting time of a red job with index i will be larger in system Π1 than in system
Π2 only if the job has been scheduled in system Π2 but could not be scheduled in system Π1. At the
time epoch t0 this occurs, Event E2 ensures that the identity of job i in the queue is swapped with a
job which is already scheduled. Due to claim C1, the index of this scheduled job is never changed and
therefore the waiting time attributed to index i does not increase after t0.

Due to Lemma 5.6, the waiting time due to red jobs in system Π1 is less than the total waiting time
in system Π2 in [0,T ]. The rest of this section will therefore focus on establishing Lemma 5.7.
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Let q(1)(t) be the number of blue jobs in the queue in system Π1 and let q(3)(t) be the number of jobs

in the queue in system Π3. Define t(j)i for j = 1,3 inductively as

r

∫ t
(j)
i

t
(j)
i−1

q(j)(s)ds ·ω = β, (5.3.6)

with t(1)
0 = τ and t(3)

0 = 0. If there does not exist a t(j)i such that the equation above holds, let t(j)i =∞.

The number of servers system Π3 has turned on at time t(3)
i is exactly i. As the number of jobs in the

queue is at least the number of blue jobs in the queue, the number of additional servers system Π1 has

turned on at time t(1)
i ≤ T

′ is at least i. Define the time the queue has been non-empty as

Ii(u) =
∫ t

(1)
i +u

t
(1)
i

1{q(1)(s) > 0}ds, (5.3.7)

and let I↓i (s) = infu{u ∈ R | Ii(u) ≥ s} or I↓i (s) = ∞ if the infimum does not exist. The function I↓i (s)

denotes the time epoch at which the queue has been non-empty for at least a duration of s since t(1)
i in

system Π1. Once the queue is empty in system Π3, the queue will never become non-empty again and
the process is finished. On the contrary, if the number of blue jobs in the queue becomes zero in system
Π1, the number of blue jobs in the queue can increase again in the future due to the coloring process.
The function Ii(·) accounts for this difference between system Π1 and system Π3.

We will need the following lemma to prove Lemma 5.7.

Lemma 5.8. For all k ∈N for which t(1)
k < T ′ and t(3)

k <∞,

Ii−1

(
t
(1)
i − t

(1)
i−1

)
≥ t(3)

i − t
(3)
i−1 for all i = 1,2, . . . , k, (5.3.8)

and the queue lengths are ordered as

q(1)
(
t
(1)
k + I↓k (t)

)
≤ q(3)

(
t
(3)
k + t

)
, (5.3.9)

for all t ∈
[
0, t(3)

k+1 − t
(3)
k

]
∩

[
0, Ik

(
T ′ − t(1)

k

)]
.

Equation (5.3.8) can be intuitively interpreted as: the time it takes to turn on an additional server is
larger in system Π1 than in system Π3.

Proof of Lemma 5.8. We will first prove equation (5.3.8) implies the ordering of the queue lengths in

equation (5.3.9). Assume equation (5.3.8) holds for k ∈N. Fix t ∈
[
0, t(3)

k+1 − t
(3)
k

]
∩
[
0, Ik

(
T ′ − t(1)

k

)]
. By the

choice of t, it follows that t(1)
k + I↓k (t) ≤ T ′ and therefore none of the servers is turned off until time t. Let

j ≤ k. The duration serverm∗+j has been turned on and the queue has not been empty at time t(1)
k +I↓k (t)

in system Π1 is larger than the duration the server j has been turned on at time t(3)
k + t in system Π3,

because

I↓(t) +
k−1∑
i=j

Ii

(
t
(1)
i+1 − t

(1)
i

)
≥ t +

k−1∑
i=j

(
t
(3)
i+1 − t

(3)
i

)
, (5.3.10)

by equation (5.3.8) and because the time at which server m∗ + j is turned on in system Π1 is earlier

than t
(1)
j . The number of blue jobs system Π1 has scheduled on server m∗ + j is therefore at least the

number of jobs system Π3 has scheduled on server j because of claim C4. Hence, the number of blue
jobs scheduled to a server with index m′ > m∗ by system Π1 is at least the number of jobs scheduled by
system Π3. The number of blue jobs in the queue of system Π1 is at most ∆0 +m0 minus the number
of blue jobs scheduled to a server with index m′ > m∗ because of claims C3 and C6. The number of jobs
in the queue of system Π3 is exactly ∆0 +m0 minus the number of jobs scheduled. Equation (5.3.9)
therefore holds.
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Equation (5.3.8) clearly holds for k = 0. Assume the statement holds for k ≥ 0. We will now prove
equation (5.3.8) and therefore the statement also holds for k + 1.

As a result of equation (5.3.9), the waiting time from t
(1)
k to t(1)

k + t in system Π1 due to blue jobs is

less than the waiting time from t
(3)
k to t(3)

k + Ik(t) in system Π3, because

∫ t
(1)
k +t

t
(1)
k

q(1)(s)ds =
∫ Ik(t)

0
q(1)

(
t
(1)
k + I↓k (s)

)
ds ≤

∫ Ik(t)

0
q(3)

(
t
(3)
k + s

)
ds =

∫ t
(3)
k +Ik(t)

t
(3)
k

q(3)(s)ds, (5.3.11)

where the inequality follows by equation (5.3.9). Assume that t(3)
k+1 <∞. We distinguish two cases.

(a) Assume that Ik
(
T ′ − t(1)

k

)
< t

(3)
k+1−t

(3)
k . In this case, substitute t = T ′−t(1)

k in equation (5.3.11) to obtain

r

∫ T ′

t
(1)
k

q(1)(s)ds ·ω ≤ r
∫ t

(3)
k +Ik

(
T ′−t(1)

k

)
t
(3)
k

q(3)(s)ds ·ω < r
∫ t

(3)
k+1

t
(3)
k

q(3)(s)ds ·ω = β, (5.3.12)

and therefore system Π1 does not turn on an additional server before time T ′ . Hence, t(1)
k+1 > T

′ and
the statement also holds for k + 1.

(b) Assume instead that Ik
(
T ′ − t(1)

k

)
≥ t(3)

k+1 − t
(3)
k . For the sake of contradiction, assume that the state-

ment does not hold for k + 1 and thus Ik
(
t
(1)
k+1 − t

(1)
k

)
< t

(3)
k+1 − t

(3)
k . In this case, substitute t = t(1)

k+1 − t
(1)
k

in equation (5.3.11) to obtain

r

∫ t
(3)
k +Ik

(
t
(1)
k+1−t

(1)
k

)
t
(3)
k

q(3)(s)ds ·ω ≥ r
∫ t

(1)
k+1

t
(1)
k

q(1)(s)ds ·ω = β, (5.3.13)

and therefore the time it takes for system Π3 to turn on an additional server must be less than

Ik

(
t
(1)
k+1 − t

(1)
k

)
. This is a contradiction. Hence, equation (5.3.8) also holds for k + 1.

Finally, we will prove the second key lemma.

Proof of Lemma 5.7. We distinguish two cases.

(a) Assume that the system has reached a k for which t(1)
k+1 ≥ T

′ and t(3)
k+1 <∞. By claim C5 and C6, the

waiting time in system Π1 due to blue jobs after time T ′ is zero. Hence, the waiting cost in [τ,T ]
due to the blue jobs in system Π1 is less than (k + 1) · β/r, while the total waiting cost in system Π3
is at least (k + 1) · β/r. The lemma therefore follows.

(b) Assume instead that the system has reached a k for which t(3)
k+1 =∞. The waiting time of system Π1

between τ and t(1)
k is exactly equal to the waiting time of system Π3 between τ and t(3)

k by definition.

Furthermore, because t(3)
k+1 =∞, there must exist a time epoch τ2 ≥ t

(3)
k such that

q(3)
(
t
(3)
k + s

)
= 0 for all s ≥ τ2. (5.3.14)

As a result of Lemma 5.8, this implies

q(1)
(
t
(1)
k + I↓k (s)

)
= 0 for all τ2 ≤ s ≤ Ik

(
T ′ − t(1)

k

)
. (5.3.15)
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The waiting time between t(1)
k and T ′ of the blue jobs in system Π1 is at most the waiting time after

t
(3)
k in system Π3 because, as a result of Lemma 5.8,

∫ T ′

t
(1)
k

q(1)(s)ds =
∫ min

(
τ2,Ik

(
T ′−t(1)

k

))
0

q(1)
(
t
(1)
k + I↓k (s)

)
ds

≤
∫ τ2

0
q(3)

(
t
(3)
k + s

)
ds =

∫ t
(3)
k +τ2

t
(3)
k

q(3)(s)ds,

(5.3.16)

where the inequality follows by equation (5.3.9). The waiting time after time T ′ is zero in system
Π1 due to claims C5 and C6. The waiting time due to the blue jobs in system Π1 is therefore at most
the total waiting time in system Π3 and the lemma follows.

We have seen that the waiting time of the online system Π1 is bounded by sum of the waiting time
of the offline system Π2 and the waiting time of the overhead system Π3. The next lemma characterizes
the waiting time of system Π3.

Lemma 5.9. If ∆0 +m0 ≤
(
1 +

√
2β
r·ω

)
·D for D > 0, then there exists an assignment policy for system Π3 such

that the total waiting time of system Π3 is at most

W (3) ≤
3D · β
r ·ω

(5.3.17)

Proof. Define the assignment policy for system Π3 as the assignment policy which does not schedule
a job before time t1. Let t1 be the smallest time for which m(t1) = D and assume this time exists. If t1
does not exist then the number of servers is less than D and the bound holds trivially. At time t1, D of
the ∆0 +m0 jobs are scheduled to the servers.

After time t1, the assignment policy only uses the servers turned on after time t1 to schedule the
remaining jobs in the queue. The assignment policy of system Π3 again does not schedule a job between
time t1 and t2 and follows the non-idling assignment policy after time t2. Let t2 be the smallest time
for which m(t2) = 2D and assume this time exists. If t2 does not exist then the number of servers is less
than 2D and the bound holds trivially. The total waiting time before time t2 is exactly

2D · β
r ·ω

, (5.3.18)

because the system turns on 2D servers. The time to schedule ∆0 +m0 −D ≤
√

2β
r·ω ·D jobs on D

servers is at most t3 =
⌈√

2β
r·ω

⌉
− 1. The total waiting time after time t2 is therefore at most

t3∑
i=1


√

2β
r ·ω

− i
D =


√

2β
r ·ω

− t3 + 1
2

 t3D ≤
√

2β
r·ω · t3D

2
≤
D · β
r ·ω

. (5.3.19)

The total waiting time is the sum of equation (5.3.18) and equation (5.3.19).

5.3.2 Cost of the online system in phase II

Recall that system Π1 is in phase II in the interval [0,T ), which we denote by
[
0(II),T (II)

)
in this section.

By definition, there exists a previous interval denoted by
[
0(I),T (I)

)
with T (I) = 0(II) for which system Π1

is in a sequence of alternating phases I.a and I.b. Recall the notation B for the number of servers turned
on and P for the power consumption from Section 1.3.
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Lemma 5.10. The waiting cost of system Π1 in
[
0(II),T (II)

)
is bounded by

W (1)
(
0(II),T (II)

)
·ω ≤

B(2)
(
0(II),T ′

)
· β

r
+W (2)

(
0(II),T (II)

)
·ω+

3
∑
m′

(
B

(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ
)

rmin(µ,1)
, (5.3.20)

where T ′ ∈
[
0(II),T (II)

)
is the smallest time at which a server in system Π1 has been idle for more than one

time unit contiguously, Zm′ =
[
0(I),T (I)

)
if m′ > m(1)

(
0(I)

)
and Zm′ is the set of times server m′ is contiguously

idle for more than one time unit in system Π1 if m′ ≤m(1)
(
0(I)

)
.

To prove Lemma 5.10, we will upper bound the cost of the online system using the results in this
chapter and lower bound the cost of the offline system using the results from the previous chapter.

Cost of the online system. The waiting cost of the online system in
[
0(II),T (II)

)
can be divided in the

waiting cost before time τ , the time the maximum number of servers of the offline system is reached,
and the waiting cost after time τ . The waiting cost of system Π1 before time τ is exactly

W (1)
(
0(II), τ

)
=

(
maxt∈[0(II),T ′]m

(2)(t)−m(1)
(
0(II)

))
· β

r ·ω
, (5.3.21)

because system Π1 turns on maxt∈[0(II),T ′]m
(2)(t)−m(1)

(
0(II)

)
servers. Define the difference between

the maximum and the minimum number of servers the offline system Π2 and the online system Π1 turn
on in the previous phase as D = maxt∈[0(I),T (I)]m

(2)(t)−mint∈[0(I),T (I)]m
(1)(t). The number of servers with

a higher workload in system Π1 plus the difference in queue length between system Π1 and system Π2
at time ti is at most

m0 +∆0 ≤
1 +

√
2β
r ·ω

 ·D, (5.3.22)

by Lemma 5.3. As a result, the waiting cost of system Π1 after time τ is at most

W (1)
(
τ,T (II)

)
·ω ≤W (2)

(
0(II),T (II)

)
·ω+

3D · β
r

. (5.3.23)

by Proposition 5.4 and Lemma 5.9.

Cost of the offline system. We will relate the waiting cost of the online system to the cost of the offline
system in the current and the previous phase. The cost of the offline system can similarly be divided
in the cost between time 0(II) and time T ′ in the current phase II and the the sum of the cost in the
previous phase I and the cost between time 0(II) and time T ′ in the previous phase II. The buying cost
of system Π2 in

[
0(II),T ′

]
is at least

B(2)
(
0(II),T ′

)
≥ max
t∈[0(II),T ′]

m(2)(t)−m(2)
(
0(II)

)
= max
t∈[0(II),T ′]

m(2)(t)−m(1)
(
0(II)

)
. (5.3.24)

By Proposition 4.3, the sum of the buying and power cost of system Π2 in the previous phase is at
least ∑

m′

(
B

(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ
)
≥min(µ,1)D · β. (5.3.25)

where Zm′ =
[
0(I),T (I)

)
if m′ > m(1)

(
0(I)

)
and Zm′ is the set of times server m′ is contiguously idle for

more than one time unit in system Π1 if m′ ≤m(1)
(
0(I)

)
.

Proof of Lemma 5.10. The lemma follows by substituting equation (5.3.24) and equation (5.3.25) in the
sum of equation (5.3.21) and equation (5.3.23).
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5.4 Competitive ratio

This section establishes the competitive ratio of the ACA based on the bounds obtained before.

Proof of Theorem 5.1. Let
[
0(I),T (I)

)
be a sequence of alternating phases I.a. and I.b and let

[
0(II),T (II)

)
with 0(II) = T (I) be a subsequent phase II. We will bound the cost of the online system in these two
phases. By Lemmas 4.7 and 4.8, the buying cost of the online algorithm in

[
0(I),T (I)

)
is at most

B(1)
(
0(I),T (I)

)
· β ≤

(
B(2)

(
0(I),T (I)

)
· β + P (2)

(
0(I),T (I)

)
·θ

)
min(µ,1)

(5.4.1)

By Lemma 5.10, the waiting cost of the online algorithm in
[
0(II),T (II)

)
is at most

W (1)
(
0(II),T (II)

)
·ω ≤

B(2)
(
0(II),T ′

)
· β

r
+W (2)

(
0(II),T (II)

)
·ω+

3
∑
m′

(
B

(2)
m′ (Zm′ ) · β + P (2)

m′ (Zm′ ) ·θ
)

rmin(µ,1)
, (5.4.2)

where T ′ ∈
[
0(II),T (II)

)
is the smallest time at which a server in system Π1 is has been idle for more than

one time unit contiguously, Zm′ =
[
0(I),T (I)

)
if m′ > m(1)

(
0(I)

)
and Zm′ is the set of times server m′ is

contiguously idle for more than one time unit in system Π1 if m′ ≤ m(1)
(
0(I)

)
. By the definition of the

accumulated cost algorithm, the buying cost can be derived from the waiting cost. The waiting cost and
the buying cost are related as

B(1)(0,T ) · β = rW (1)(0,T ) ·ω. (5.4.3)

We combine equations (5.4.1) and (5.4.2) to obtain the buying cost in phases I and II as

B(1) · β ≤
4
(
B(2) · β + P (2) ·θ

)
min(µ,1)

+ rW (2) ·ω, (5.4.4)

where we have omitted the time interval for clarity. The time interval is
[
0(I),T (II)

)
for all costs.

Similarly, the power cost and the buying cost are related as

P (1) ·θ ≤ 2P (2) ·θ +µB(1) · β, (5.4.5)

by Lemma 4.6. The cost in phases I and II is then at most

Cost
(1) = B(1) · β +W (1) ·ω+ P (1) ·θ = (1 + 1/r +µ)B(1) · β + 2P (2) ·θ

≤ (1 + 1/r +µ) ·
4
(
B(2) · β + P (2) ·θ

)
min(µ,1)

+ 2P (2) ·θ + (1 + r +µr) ·W (2)
(
0(II),T (II)

)
.

(5.4.6)

As this bounds holds for any subsequent phases I and II, the competitive ratio is

CR ≤max
(

4(1 + 1/r +µ)
min(µ,1)

+ 2,1 + r +µr
)
, (5.4.7)

in the general case. If θ = 0 then the cost in phase I and phase II is at most

Cost
(1) = B(1) · β +W (1) ·ω = (1 + 1/r)B(1) · β ≤ (1 + 1/r) · 4B(2) · β + (1 + r) ·W (2)

(
0(II),T (II)

)
. (5.4.8)

The competitive ratio in this case is

CR ≤max(4 + 4/r,1 + r) . (5.4.9)
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6
Predictive strategies: the accumulated cost algorithm revisited

Summary. This chapter assumes the algorithm has access to a black-box predictor, which predicts the maxi-
mum number of servers the offline algorithm turns on. The error of the predictor is defined as the ratio between
the prediction and the true value, i.e. η = 1 is perfect accuracy. Lemma 6.1 shows that an algorithm which
blindly follows the predictor is not constant competitive if the predictions are inaccurate. Instead, Algorithm
5 shows how to adapt the accumulated cost algorithm to incorporate the predictor without knowledge of the
accuracy of the predictor. Theorem 6.2 establishes that the competitive ratio of the algorithm is 2 +O(1/

√
r1)

if η = 1 and max(8,1 + r1) for any η where r1 is a parameter representing the confidence in the predictor. The
performance of the algorithm can therefore significantly be improved by incorporating the predictor, while the
competitive ratio is still bounded if predictions are inaccurate.

The accumulated cost algorithm has strong guaranteed performance in the worst-case of the prob-
lem. The question is whether this performance can be improved if the future traffic is predictable.
Ideally, the algorithm should perform close to the performance of the offline algorithm if the predic-
tions are accurate but have a bounded performance if the predictions are inaccurate. This chapter will
combine the accumulated cost algorithm with a predictor. For the purpose of this chapter, we will
consider the irrevocable server allocation scenario.

Irrevocable server allocation. Recall that in the irrevocable server allocation scenario the only ques-
tion is when to turn on a server because this decision is assumed to be irrevocable, i.e. the server cannot
be turned off after the server has been turned on. Formally, the scenario arises if the power cost is zero
and throughout this chapter we will therefore assume that θ = 0,m(0) = 0 and jobs have a required pro-
cessing time of one. The assumptionm(0) = 0 is not strictly necessary for the analysis in this chapter. In
fact, the analysis holds readily if m(t) is replaced by m(t)−m(0) at each occurrence. We simply assume
m(0) = 0 for the ease of representation.

Predictor. The algorithm in this chapter has access to a predictor. To our algorithm, the predictor
is a black box. In particular, we do not assume anything about the type of predictor or the quality of
the prediction. The only information provided by the predictor is the maximum number of servers
an offline algorithm would turn on based on the upcoming job sequence. In practice, the prediction
on a given day could by done by computing the maximum number of servers for the job sequence on
the previous day, for instance. The algorithm only depends on the predictor through the predicted
maximum numbers of servers h and we will generally refer to h as the prediction. The error η of the
prediction is defined as

η =
h

maxt≥0m(2)(t)
, (6.0.1)

where m(2)(t) is the number of servers of the offline system Π2. The maximum number of servers of
the offline system will be denoted by D = maxt≥0m

(2)(t) to emphasize the similarity with the previous
chapter. Note that the predictor only predicts once: at the start.
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Remark 12. The most straightforward way to use to prediction is to blindly follow it. Let the blind
algorithm be the algorithm which turns on m(0) = h servers at time t = 0 and does not turn on
servers after time t = 0. The blind algorithm is not constant competitive, even if the predictor is
quite accurate as shown by Lemma 6.1 below.

Lemma 6.1. The blind algorithm is not constant competitive, even if η < 1 is close to 1.

Proof. Let η = 1 − ε for 0 < ε < 1 and assume that the blind algorithm is ρ-competitive for ρ ≥ 1.
We will construct an input such that the cost of the blind algorithm is larger than ρ times the
cost of the offline algorithm. Construct the input such that d1/εe jobs arrive at t = 0,1, . . . ,n for
n =

⌈√
2(ρ+ 1) · d1/εe · β/ω

⌉
.

The offline algorithm turns on d1/εe servers at time t = 0 and does not turn on servers after this
time. The offline algorithm therefore spends d1/εe · β on turning on servers and zero on waiting.
The blind algorithm turns on h = η · d1/εe ≤ d1/εe − 1 servers at time t = 0 and does not turn on
servers after this time. The blind algorithm therefore spends at least

∑n
t=1 t ·ω ≥ (ρ+ 1) · d1/εe ·β on

waiting. The competitive ratio is therefore at least

(ρ+ 1) · d1/εe · β
d1/εe · β

≥ ρ+ 1, (6.0.2)

which establishes the lemma.

Lemma 6.1 establishes that an algorithm should not blindly trust the predictor and a new, non-
trivial way of employing the predictor is necessary.

6.1 The accumulated cost algorithm with predictor

We change the accumulated cost algorithm slightly to use the prediction. The rate at which the online
system turns on servers is now controlled by two parameters r1 ≥ r2 > 0. Before the system has reached
the predicted number of servers h, the rate is set to r1 which is relatively large. After the system has
reached the predicted number of servers h, the rate is set to r2 which is relatively small. This causes
the system to quickly turn on the number of servers predicted by the predictor and only slowly turn on
more servers. We also multiply the prediction h by λ as it may be beneficial to turn on servers at rate r1
for longer than the prediction and hence choose λ > 1.

Algorithm 5: The accumulated cost algorithm with prediction h and parameters λ > 0 and
r1 ≥ r2 > 0

1 t0← 0
2 for t ≥ 0 do

/* Global rule for turning on a server */

3 if
∫ t
t0

(r11{m(t) ≤ dλhe}+ r21{m(t) > dλhe})q(s)ds ·ω ≥ β then
4 Turn on a server
5 t0← t
6 end
7 end

The assignment policy of the accumulated cost algorithm is the non-idling assignment policy. The
definition of the accumulated cost algorithm still guarantees a direct relationship between the number
of servers and the waiting time as

m(t) = min
(
r1W (t) ·ω

β
,dλhe

)
+
r2 (r1W (t) ·ω − dλhe · β)+

r1 · β
. (6.1.1)

Throughout this chapter, we will therefore mostly work with the waiting time. The competitive
ratio of the algorithm depends on the choice of parameters and the error of the predictor. The next
theorem provides the competitive ratio of the ACA.
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Theorem 6.2. The total waiting time of the online system Π1 is at most

(
W (1) −W (2)

)
·ω

D · β
≤


λη
r1

+
2+2

√
1−

(
1− r2r1

)
min(λη,1)−λη+1/D

r2
if λη ≤ 2 +

√
r2
r1
,

λη+1/D
r1

+ 1
r1(λη−2) if 2 +

√
r2
r1
< λη ≤ 3,

4
r1

if λη > 3,

(6.1.2)

and the number of servers of the online system Π1 is at most

maxt≥0m
(1)(t)

D
≤



2 + 2
√

1−
(
1− r2r1

)
min(λη,1) + 1/D + r2W (2) · ωD·β if λη ≤ 2 +

√
r2
r1
,

λη + 1/D + r2
r1(λη−2) + r2W (2) · ωD·β if 2 +

√
r2
r1
< λη ≤ 3,

λη + 1/D + r2(4−λη)
r1

+ r2W (2) · ωD·β if 3 < λη ≤ 4,

4 + r1W (2) · ωD·β if λη > 4.

(6.1.3)

The competitive ratio of Algorithm 5 is therefore

CR(η) ≤max(U1,U2) , (6.1.4)

where

U1 =


2
(
1 + 1

r2

)(
1 +

√
1−

(
1− r2r1

)
min(λη,1)

)
− (r1−r2)λη

r1r2
if λη ≤ 2 +

√
r2
r1
,(

1 + 1
r1

)
λη + 1+r2

r1(λη−2) if 2 +
√
r2
r1
< λη ≤ 3,

4
(
1 + 1

r1

)
if λη > 3,

U2 =

1 + r2 if λη ≤ 4,
1 + r1 if λη > 4.

(6.1.5)

These formulas may be hard to visualize. The next remark provides some hints on how to choose
the parameters and highlights the most important insights. We refer to Figure 8.3 in Chapter 8 for a
graph of equation (6.1.4).

Remark 13. The competitive ratio is minimal if λη = 2 +
√

(1 + r2)/(1 + r1). A reasonable choice for
λ is therefore λ = 2 +

√
(1 + r2)/(1 + r1). Furthermore, the competitive ratio is never smaller than 2.

A reasonable choice for r2 is therefore r2 = 1. Note that if η = 1, then the competitive ratio is

CR(1) ≤ 2 +
2 +
√

8 + 8r1
r1

= 2 +O
(
1/
√
r1
)
. (6.1.6)

As r1 → ∞, the competitive ratio tends to 2. The competitive ratio of the accumulated cost
algorithm can therefore be improved from 5 to 2 if the predictor is accurate. If η = 0 or η → ∞,
then the competitive ratio is

CR(η) ≤max(8,1 + r1) . (6.1.7)

If the predictor is not accurate, the competitive ratio of the algorithm is therefore still bounded.

The idea of the proof of Theorem 6.2 is similar to the structure in the previous chapter. From a high-
level perspective, the difference between most of the bounds in the previous chapter and this chapter is
that the rate r of the accumulated cost algorithm is replaced by a rate function r(m(t)), depending on the
number of servers m(t). If m(t) ≤ dλhe, then the rate is r1 and if m(t) > dλhe, then the rate is r2. Lemma
6.3 provides the worst-case difference between the number of jobs in the queue of the online system
and the offline system, Proposition 6.5 shows that the coupling between the online system and the
two subsystems still holds for this algorithm and Lemma 6.6 computes the waiting cost of the second
subsystem. Moreover, without loss of generality we assume that the offline system turns on D servers
at time t = 0 and does not turn on or turn off servers after this time. The time domain therefore consists
of two phases. Let T > 0 be the time the online system reaches D servers. The time domain is divided
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in a phase I.a in [0,T ) and a phase I.b in [T ,∞). Note that if the time T does not exist, then the number
of servers is bounded by D and the theorem trivially holds.

6.2 Queue length difference at the end of phase I.a

Consider the phase I.a throughout [0,T ) for T > 0. This section will bound the difference in queue
length and workload between the online system and the offline system at time T independent of the
input. Without loss of generality, we assume that the offline system has D servers turned on starting at
time t = 0. Note that at time T , the online system also has D servers.

Lemma 6.3. The difference in queue length between system Π1 and system Π2 is at most

min
t∈[τ−1,τ]

(
q(1)(t)− q(2)(t)

)
≤


√

2D·β(r1D−(r1−r2)λh)
r1r2·ω if λh ≤D,√

2D2·β
r1·ω if λh > D.

(6.2.1)

The proof follows along the same lines as the proof of Lemma 5.2. However, the rate at which the
accumulated cost algorithm turns on servers now varies over time. Similarly as in the proof of Lemma
5.2, define the excess queue length as ∆(t) = max

(
q(1)(t)− q(2)(t),0

)
and the minimum of the excess

queue length in every unit-length time interval as

f (t) = min
s∈[0,1)

∆(T − btc − s), (6.2.2)

for t ∈ [0,T ]. The statement in Lemma 6.3 is a statement on the maximum value of f (0), where the
value is maximized over the input σ . To determine this value, we will identify three constraints on the
function f (·) independent of the input and find the maximum value of f (0) under these constraints.
The first and third constraint of the proof of Lemma 5.2 also apply here. The second constraint is new.

Constraint 1. The excess queue length at the start is

f (T ) = 0, (6.2.3)

which follows by definition.

Constraint 2. Define u = min(dλhe,D). Let τ be the smallest time for which m(1)(τ) = u and note that
τ ≤ T . The second constraint on f (·) follows by the definition of the ACA as

u · β = r1

∫ τ

0
q(1)(s)ds ·ω ≥ r1

∫ τ

0
∆(s)ds ·ω ≥ r1

∫ T

T−τ
f (s)ds ·ω, (6.2.4)

(D −u) · β = r2

∫ T

τ
q(1)(s)ds ·ω ≥ r2

∫ T

τ
∆(s)ds ·ω ≥ r2

∫ T−τ

0
f (s)ds ·ω. (6.2.5)

Constraint 3. The excess queue length grows by a most

f (t)− f (t + 1) ≤D, (6.2.6)

for t = 0,1, . . . ,bT c.

Proof of Lemma 6.3. To prove the lemma, we will identify the maximum value of f (0) under the three
constraints listed above. Note that it can be easily verified that f (0) is maximal if equations (6.2.4) and
(6.2.5) hold with equality and equation (6.2.6) holds with equality for at least all t = 0,1, . . . ,bT c −1 (i.e.
for all t except t = bT c). Assume T > 1, otherwise f (0) = 0 and the bound holds trivially. Also assume
that τ > 0 (i.e. h > 0), which holds for any reasonable predictor. Define t1 = dτe − 1, t2 = bT − τc and
δ = τ − t1. Equation (6.2.4) and equation (6.2.5) with equality then reduce to

(t1 + δ)f (T − 1) +
t1−1∑
i=1

iD + t1D · δ =
u · β
r1 ·ω

, (6.2.7)

(t2 + 1− δ)(f (T − 1) + t1D) +
t2∑
i=1

iD =
(D −u) · β
r2 ·ω

. (6.2.8)
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Solve these equations for t1 and t2 and plug their solution into f (0) = f (T − 1) + (t1 + t2)D to obtain

f (0) =

√
2D · β (r1D − (r1 − r2)u)

r1r2 ·ω
+
(
D − 2f (T − 1)

2

)2

− D
2

≤

√
2D · β (r1D − (r1 − r2)u)

r1r2 ·ω
+
(D

2

)2
− D

2
≤

√
2D · β (r1D − (r1 − r2)u)

r1r2 ·ω
,

(6.2.9)

which proves the lemma.

We will now turn our attention to incorporating the workload. Define the integer m0 ∈ N as the
number of servers which have a larger workload in the online system Π1 than in the offline system Π2 at
time T . More specifically, let the servers be ordered such that the servers with index in {1,2, . . . ,m(1)(0)−
m0} in system Π1 have a workload which is at most the workload of the server with the same index in
system Π2 or equivalently,

x
(1)
i (T ) ≤ x(2)

i (T ), for all i ∈ {1,2, . . . ,m(1)(0)−m0}. (6.2.10)

The workload at the servers with index in {m(1)(0) −m0 + 1, . . . ,m(1)(0)} in system Π1 may be larger
than the workload of the server with the same index in system Π2.

Lemma 6.4. The difference in queue length between system Π1 and system Π2 plus the number of servers
with a higher workload in system Π1 at time T is at most

m0 +
(
q(1)(T )− q(2)(T )

)
≤

D +
√

2D·β(r1D−(r1−r2)λh)
r1r2·ω if λh ≤D,

D +
√

2D2·β
r1·ω if λh > D.

(6.2.11)

Proof. The proof of Lemma 6.4 is equivalent to the proof of Lemma 5.3. Instead of the bound from
Lemma 5.2, the proof instead uses the bound from Lemma 6.3.

6.3 Coupling the online and offline systems in phase I.b

Consider the phase I.b throughout [T ,∞). Throughout phase I.b, the number of servers in the online
system is larger than the number of servers in the offline system. This section will again compare the
cost of the online system Π1 to the cost of the offline system Π2 in this interval plus some overhead.

Online system. A system with m(1)(0) = D servers and q(1)(0) = q0 +∆0 ∈N jobs in the queue at time
t = 0. The system follows the ACA with prediction h(1) > 0, parameters r1 ≥ r2 > 0 and the non-idling
assignment policy. This system will hereafter be referred to as Π1. The arrivals from the input σ join
system Π1 over time.

Offline system plus overhead. The system consists of two parts.

a. A subsystem with m(2)(t) = D servers for all t ≥ 0 and q(2)(0) = q0 jobs in the queue at time t = 0.
The system does not turn on servers over time and follows an arbitrary but fixed assignment
policy. The system will hereafter be referred to as system Π2. We assume that the arrivals from
the input σ join only the subsystem Π2 over time.

Define the integer m0 ∈ N as the number of servers which have a larger workload in system Π1
than in system Π2 at time t = 0. More specifically, let the servers be ordered such that the servers
with index in {1,2, . . . ,m(1)(0)−m0} in system Π1 have a workload which is at most the workload
of the server with the same index in system Π2 or equivalently,

x
(1)
i (0) ≤ x(2)

i (0), for all i ∈ {1,2, . . . ,m(1)(0)−m0}. (6.3.1)

The workload at the servers with index in {m(1)(0)−m0 + 1, . . . ,m(1)(0)} in system Π1 may be larger
than the workload of the server with the same index in system Π2.
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b. A subsystem with no servers and ∆0 +m0 jobs in the queue at time t = 0. The system follows the
ACA with prediction h(3) = h(1)−D/λ, parameters r1 ≥ r2 > 0 and an arbitrary but fixed assignment
policy. This system will hereafter be referred to as system Π3.

The waiting time of the online system Π1 is bounded by the waiting time of system Π2 and system
Π3, similarly to Proposition 5.4 before.

Proposition 6.5. For any two arbitrary but fixed assignment policies implemented by system Π2 and system
Π3, the waiting time of system Π1 is bounded by the waiting time of system Π2 and system Π3 as

W (1)(T ,∞) ≤W (2)(T ,∞) +W (3), (6.3.2)

where W (j )(t1, t2) is the waiting time of system Πj from time t1 to t2.

Proof. The proof follows by the coupling in the proof of Proposition 5.4 with one slight difference. The
rate at which system Π1 and system Π3 turn on servers now varies over time. The rate r should thus be
replaced by a rate function r(j)(m) at which the system turns on servers based on the number of servers
m already turned on by the ACA. Define r(j)(m) for j = 1,3 as

r(1)(m) = r1{m ≤ dλh(1)e}+ r2{m > dλh(1)e}, r(3)(m) = r1{m ≤ dλh(3)e}+ r2{m > dλh(3)e}. (6.3.3)

Consequently, the times t(j)i at which system Πj has at least i additional servers need to be redefined.

Instead of equation (5.3.6), define t(j)i for j = 1,3 inductively as

r(1)(D + i − 1)
∫ t

(1)
i

t
(1)
i−1

q(1)(s)ds ·ω = β, r(3)(i − 1)
∫ t

(3)
i

t
(3)
i−1

q(3)(s)ds ·ω = β, (6.3.4)

with t(1)
0 = T and t(3)

0 = 0. Note that

r(1)(D +m) = r1{D +m ≤ dλh(1)e}+ r2{D +m > dλh(1)e}

= r1{m ≤ dλh(1) −De}+ r2{m > dλh(1) −De} = r1{m ≤ dλh(3)e}+ r2{m > dλh(3)e} = r(3)(m),
(6.3.5)

and therefore the rates in front of equation (6.3.4) are equal for all i. It is easily verified that with
this definition, the remainder of the argument in the proof of Proposition 6.5 holds with the rate r
replaced by the respective rate function r(j)(·). The proposition therefore follows.

The next lemma characterizes the waiting time of the system Π3. The waiting time depends on the
prediction h(3) = h−D/λ used by the ACA in system Π3.

Lemma 6.6. If ∆0 +m0 ≤
(
1 +

√
2β
ω · c

)
·D for c > 0, then there exists an assignment policy for system Π3

such that the total waiting time of system Π3 is at most

W (3) ≤
min(U1,U2,U3) · β

ω
, (6.3.6)

where

U1 =


D+d√r2cDe

r2
+ cD√

r2
if λh ≤D,

dλhe−D
r1

+ 2D+d√r2cDe−dλhe
r2

+ cD√
r2

if D < λh ≤ (2 +
√
r2c) ·D,

D+d√r2cDe
r1

+ cD√
r2

if λh > (2 +
√
r2c) ·D,

U2 =


D+d√r1cDe

r2
+ cD√

r1
if λh ≤D,

dλhe−D
r1

+ 2D+d√r1cDe−dλhe
r2

+ cD√
r1

if D < λh ≤ (2 +
√
r1c) ·D,

D+d√r1cDe
r1

+ cD√
r1

if λh > (2 +
√
r1c) ·D,

U3 =
(dλhe −D)+

r1
+

c2D2

(λh− 2D)+

(6.3.7)
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Proof. Define the assignment policy for system Π3 as the assignment policy which does not schedule a
job before time τ1. Let τ1 be the smallest time for which m(τ1) = D and assume this time exists. If τ1
does not exists then the number of servers is less than D and the bound holds trivially. At time τ1, D of
the ∆0 +m0 jobs are scheduled to the servers.

After time τ1, the assignment policy only uses the servers turned on after time τ1 to schedule the
remaining jobs in the queue. The assignment policy of system Π3 again does not schedule a job between
time τ1 and τ2 and follows the non-idling assignment policy after time τ2. Fix x ∈ N. Let τ2 be the
smallest time for which m(τ2) = D + x and assume this time exists. The total waiting time before time
τ2 is exactly 

min
(⌈
λh(3)

⌉+
,D + x

)
r1

+

(
D + x −

⌈
λh(3)

⌉+
)+

r2

 · βω
=

(
min((dλhe −D)+,D + x)

r1
+

(D + x − (dλhe −D)+)+

r2

)
·
β

ω
,

(6.3.8)

because the system turns on D + x servers. The time to schedule ∆0 +m0 −D ≤
√

2β
ω · cD jobs on x

servers is at most τ2 =


√

2β
ω ·cD
x

− 1. The total waiting time after time τ1 is therefore at most

τ2∑
i=1


√

2β
ω
· cD − i · x

 =


√

2β
ω
· cD − τ2 + 1

2
· x

τ2 ≤

√
2β
ω · τ2cD

2
≤
c2D2 · β
x ·ω

. (6.3.9)

The total waiting time is the sum of equation (6.3.8) and equation (6.3.9) for any x. If τ2 does not
exist then the number of servers is less than D+x and the waiting time is trivially bounded by this sum.
The lemma follows by substituting x = d√r2cDe, x = d√r1cDe and x = (dλhe − 2D)+ for U1, U2 and U3
respectively.

6.4 Competitive ratio

Proof of Theorem 6.2. The cost of the online system can be divided in the cost before time T , the time
the online system reaches D servers, and the cost after time T . The waiting time of system Π1 before
time T is exactly

W (1)(0,T ) ≤
(

min(dλhe,D)
r1

+
(D − dλhe)+

r2

)
·
β

ω
. (6.4.1)

because system Π1 turns onD servers. If the system Π1 does not reachD servers, then the number of
servers is bounded by D and the theorem trivially holds. The number of servers with a higher workload
in system Π1 plus the difference in queue length between system Π1 and system Π2 at time T is at most

m0 +∆0 ≤D +

√
2D · β (r1D − (r1 − r2)min(λh,D))

r1r2 ·ω
, (6.4.2)

by Lemma 6.4. As a result, the waiting time of system Π1 after time T is at most

W (1)(T ,∞) ≤W (2)(T ,∞) +
min(U1,U2,U3) · β

ω
, (6.4.3)

by Proposition 6.5 and Lemma 6.6 where U1,U2 and U3 are as defined in Lemma 6.6 with c =√
r1D−(r1−r2)min(λh,D)

r1r2D
. The total waiting time of the online system is the sum of equation (6.4.1) and

equation (6.4.3). The number of servers follows by applying equation (6.1.1).
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7
Towards optimality

Summary. The asymptotically small jobs scenario arises if both the waiting cost ω and the required process-
ing time of jobs are small. Theorem 7.1 proves that the competitive ratio of any online algorithm for the power-
aware load balancing problem is 2.91, even if θ = 0 and jobs are asymptotically small. Theorem 7.2 shows
that the accumulated cost algorithm is 3-competitive if θ = 0 and jobs are asymptotically small. Hence, the
performance of the accumulated cost algorithm is close to the best possible online algorithm. Moreover, in this
case, Theorem 7.2 also shows that the accumulated cost algorithm with predictor is 1 +O(1/

√
r1)-competitive

if predictions are accurate and 2 + r1-competitive if predictions are inaccurate where r1 is a parameter repre-
senting the confidence in the predictor. The performance of the online algorithm is therefore close to the offline
algorithm if predictions are accurate.

This section will investigate the gap between the performance of the accumulated cost algorithm
and the performance of the best possible online algorithm. For the purpose of this chapter, we will
consider one scenario of the problem for which the competitive ratio in the previous chapter can be
strengthened.

Asymptotically small jobs. The definition of the power-aware load balancing problem does not make
any assumptions on the magnitude of the required processing time of a job in relation to the cost
parameters. The asymptotically small job scenario assumes that both the required processing time and
the waiting cost per job become small. This scenario is of particular interest. In a video streaming
application, for example, a description with discrete jobs is inconvenient because each stream typically
consists of thousands of small jobs which each transfer a few milliseconds of the video. Throughout
this chapter, we will therefore assume that pi = ε for all i and ω = ε for ε→ 0.

One benefit is that this assumption allows an appealing representation of the evolution of the queue
length. Let q(t) be the number of jobs in the queue at time t and σ (t) be the number of jobs which arrive
between time t and time t + ε. The number of jobs in the queue evolves as

q(t + ε) = (q(t) + σ (t)−m(t))+ . (7.0.1)

Define the scaled number of jobs in the queue as q̂(t) = εq(t). As long as the queue is not empty, the
scaled queue length evolves as

dq̂(t)
dt

= lim
ε→0

q̂(t + ε)− q̂(t)
ε

= lim
ε→0

q(t + ε)− q(t) = σ (t)−m(t). (7.0.2)

The waiting cost allows a similarly appealing representation in terms of the scaled queue length as

W (0,T ) ·ω =
∫ T

0
q(t)dt · ε =

∫ T

0
q̂(t)dt. (7.0.3)

We will frequently see these representations throughout this chapter.
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Remark 14. If the required processing time of a job becomes small then the workload at a server at
any time is also small. This means that the benefit of an algorithm which uses information about
the workload of servers disappears as the size of a job becomes small. This is a main reason why
the competitive ratio of the accumulated cost algorithm is close to the best possible competitive
ratio in this scenario.

Irrevocable server allocation. Recall that in the irrevocable server allocation scenario the only ques-
tion is when to turn on a server because this decision is assumed to be irrevocable, i.e. the server cannot
be turned off after the server has been turned on. Formally, the scenario arises if the power cost is zero
and throughout this chapter we will therefore assume θ = 0 and m(0) = 0. The assumption m(0) = 0
is not strictly necessary for the analysis in this chapter. In fact, the analysis holds readily if m(t) is
replaced by m(t)−m(0) at each occurrence. We simply assume m(0) = 0 for the ease of representation.

This chapter is divided in two sections. Section 7.1 will prove an important theorem stating that the
competitive ratio of any online algorithm for the power-aware load balancing problem is at least 2.91.
Section 7.2 will strengthen the lemmas from the previous chapter with the assumptions in this chapter.
As a result, Theorem 7.2 will prove that the competitive ratio of the accumulated cost algorithm is 3 in
this case, which means that the accumulated cost algorithm is almost optimal.

7.1 Lower bound on the competitive ratio

The offline algorithm has perfect information about the future arrivals. The online algorithm does not
have this information and as a result usually has a higher cost than the offline algorithm. This section
will establish that the competitive ratio of any online algorithm is at least 2.91, without making any
assumptions on the online algorithm.

Theorem 7.1. Any online algorithm for the power-aware load balancing problem has a competitive ratio
of at least 3/2 +

√
2 ≈ 2.91.

The proof is closely related to the accumulated cost algorithm. The accumulated cost algorithm
turns on servers proportional to r times the waiting cost. The proof of Theorem 7.1 will try to guess
the parameter r. If r is too high, then the algorithm turns on servers too fast and the algorithm would
have been better off by waiting. If r is too small, then the algorithm turns on servers too slow and the
algorithm would have been better off by turning on a server earlier. Theorem 7.1 even holds if θ = 0
and jobs are asymptotically small.

Proof of Theorem 7.1. Let A be any online algorithm. We will construct an input such that the cost of
the algorithm A is at least 3/2 +

√
2 times the cost of the offline algorithm. Consider the asymptotically

small job scenario and the irrevocable server allocation scenario. Choose β = 1, θ = 0 and ω = ε. Let the
required processing time of each job be ε and the number of servers at time t = 0 be m(0) =

√
2/ε. We

will let ε→ 0 later. At time t = 0, ε,2ε, . . . there arrive m(0) + 1 jobs to the system, i.e. σ (t) =m(0) + 1 for
t = 0, ε,2ε, . . . . Define the scaled queue length as q̂(t) = εq(t). The scaled number of jobs in the queue
evolves as

dq̂(t)
dt

= lim
ε→0

q̂(t + ε)− q̂(t)
ε

= lim
ε→0

q(t + ε)− q(t) =m(0) + 1−m(t). (7.1.1)

Let τ1 be the time the algorithm A turns on the first additional server and let τ2 be the time the
algorithm turns on the second additional server. The scaled queue length evolves as

q̂(t) = t for t ∈ [0, τ1),

q̂(t) = τ1 for t ∈ [τ1, τ2),
(7.1.2)

and the accumulated waiting cost is

W (t) ·ω =
∫ t

0
q̂(s)ds = t2/2 for t ∈ [0, τ1),

W (t) ·ω =
∫ t

0
q̂(s)ds = τ2

1 /2 + τ1(t − τ1) for t ∈ [τ1, τ2).

(7.1.3)
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We distinguish three cases. In case (a), the algorithm A turns on the first server too early and
the algorithm would have been better off by waiting and not turning on any servers. In case (b), the
algorithm A turns on the second server too early and the algorithm would have been better off by
waiting and not turning on any servers. In case (c), the algorithmA turns on the first and second server
too late and the algorithm would have been better off turning on one server from the start.

(a) Assume τ1 ∈ [0,1]. The adversary modifies the input such that there are no more arrivals after time
t = τ1. The online algorithm has a buying cost of 1 and a waiting cost of τ2

1 /2. The offline algorithm
does not turn on a server and has a waiting cost of τ2

1 /2. The number of jobs in the queue at time
t = τ1 is q(τ1) = τ1/ε. At time t = τ1, the offline algorithm schedules the τ1/ε ≤ 1/ε jobs in the queue
on the m(0) =

√
2/ε servers. Each job has to wait at most ε to be scheduled. Hence, the additional

waiting cost of the offline algorithm is ε2/ε which is negligible for ε small enough. The competitive
ratio is therefore 2/τ2

1 + 1 ≥ 3.

(b) Assume τ1 ∈
[
1,
√

2
]

and τ2 ∈
[
1,
√

2
]
. The adversary modifies the input such that there are no

more arrivals after time t = τ2. The online algorithm has a buying cost of 2 and a waiting cost
of τ2

1 /2 + τ1(τ2 − τ1) ≤ τ2 − 1/2. The offline algorithm does not turn on a server and has a waiting
cost of τ2

2 /2 until time t = τ1. The number of jobs in the queue at time t = τ2 is q(τ2) = τ2/ε. At
time t = τ2, the offline algorithm schedules the τ2/ε ≤

√
2/ε jobs in the queue on the m(0) =

√
2/ε

servers. Each job has to wait at most ε to be scheduled. Hence, the additional waiting cost of the
offline algorithm is

√
2ε2/εwhich is negligible for ε small enough. The competitive ratio is therefore

3/τ2
2 + 2/τ2 ≥ 3/2 +

√
2.

(c) Assume τ1 ≥ 1 and τ2 ≥
√

2. The online algorithm has a buying cost of 2 and a waiting cost of
τ2

1 /2 +τ1(τ2−τ1) ≤ τ2−1/2. The offline algorithm turns on one server at time t = 0 and has a buying
cost of 1. The offline algorithm can schedule each job as soon as it arrives and therefore has zero
waiting cost. The competitive ratio is therefore 3/2 + τ2 ≥ 3/2 +

√
2.

For all three cases, the competitive ratio of the algorithm A is at least 3/2 +
√

2.

7.2 Strengthening the competitive ratio of the ACA

This section will strengthen the competitive ratio of the accumulated cost algorithm. The definition of
the accumulated cost algorithm is found in Algorithm 5 in the previous chapter. The assumptions of
this chapter will allow us to prove a tighter competitive ratio as seen in the next theorem.

Theorem 7.2. If θ = 0 and jobs are small, then the total waiting time of the online system Π1 is at most

(W (1) −W (2)) ·ω
D · β

≤


1
r2

+
√

r1−(r1−r2)λη(2−λη)
r1r

2
2

− (r1−r2)λη
r1r2

if λη ≤ 1,

1
r1

+
√

r2+(r1−r2)(λη−1)2

r1r
2
2

− (r1−r2)(λη−1)
r1r2

if 1 < λη ≤ 2,

2
r1

if λη > 2,

(7.2.1)

and the number of servers of the online system Π1 is at most

maxt≥0m
(1)(t)

D
≤


1 +

√
r1−(r1−r2)λη(2−λη)

r1
+ r2W (2) · ωD·β if λη ≤ 1,

1 +
√
r2+(r1−r2)(λη−1)2

r1
+ r2W (2) · ωD·β if 1 < λη ≤ 2,

2 + r1W (2) · ωD·β if λη > 2.

(7.2.2)

If θ = 0 and jobs are small, the competitive ratio of Algorithm 5 is therefore

CR(η) ≤max(U1,U2) , (7.2.3)
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where

U1 =


(
1 + 1

r2

)(
1 +

√
r1−(r1−r2)λη(2−λη)

r1

)
− (r1−r2)λη

r1r2
if λη ≤ 1,

1 + 1
r1

+
(
1 + 1

r2

)√
r2+(r1−r2)(λη−1)2

r1
− (r1−r2)(λη−1)

r1r2
if 1 < λη ≤ 2,

2
(
1 + 1

r1

)
if λη > 2,

U2 =

1 + r2 if λη ≤ 2,
1 + r1 if λη > 2.

(7.2.4)

These formulas may be hard to visualize. The next two remarks provide some intuition in special
cases and highlight the most important insights. We refer to Figure 8.4 in Chapter 8 for a graph of
equation (7.2.3).

Remark 15. If the parameters are chosen such that r1 = r2 = 2 and hence the predictor does not
matter, then the competitive ratio is CR ≤ max(2(1 + 1/r1) ,1 + r1) = 3. This is an improvement
from a competitive ratio of 5 in chapter 5 to a competitive ratio of 3. Moreover, Theorem 7.1
established that the competitive ratio of any online algorithm is at least 2.91. The performance of
the accumulated cost algorithm is therefore close to the best possible online algorithm.

Remark 16. The competitive ratio is minimal if λη = 1 + 1/
√

1 + 2r1 + r1r2 and r2 = 3+
√

9+8r1
2r1

. A

reasonable choice of parameters is therefore λ = 1+1/
√

1 + 2r1 + r1r2 and r2 = 3+
√

9+8r1
2r1

. Note that if
η = 1 then the competitive ratio is

CR(1) ≤ 1 +
3 +
√

9 + 8r1
2r1

= 1 +O
(
1/
√
r1
)
. (7.2.5)

As r1 →∞, the competitive ratio tends to 1. This means that the accumulated cost algorithm
achieves perfect performance if the predictor is accurate. Not only does the algorithm achieve a
competitive ratio better than the best possible online algorithm, its performance is close to the
offline algorithm. If η = 0 or η→∞ then the competitive ratio is

CR(η) ≤max
(
2 +

4r1
3 +
√

9 + 8r1
,1 + r1

)
≤ 2 + r1. (7.2.6)

If the predictor is not accurate, the competitive ratio of the algorithm is therefore still bounded.

The assumptions in this chapter allow for expressing most of the formulas in terms of differential
equations. The definition of the accumulated cost algorithm is especially fit for this representation
and the representation allows to overcome some of the problems with a discrete representation. The
structure of this section mirrors the structure of the previous chapter and throughout this section we
will frequently refer to the original lemmas for easy reference. Define D = maxt≥0m

(2)(t). Without
loss of generality, we assume that the offline algorithm turns on D servers from time zero. Recall the
definition of phases I.a and I.b from Chapter 4. Throughout phase I.a the online system has less servers
than the offline system, while throughout phase I.b the online system has more servers than the offline
system. The online system starts in phase I.a, followed by phase I.b when the number of servers of
the online system exceeds D. Lemma 7.3 will prove an upper bound on the queue length difference
at the time the online server has reached D servers. We use the earlier Proposition 6.5 to prove that
the waiting time of the online system in phase I.b is at most the waiting time of the offline system plus
some overhead. Lemma 7.4 characterizes this overhead.

7.2.1 Queue length difference at the end of phase I.a

Consider the phase I.a throughout [0,T ) for T > 0. This section will bound the difference in queue
length between the online system and the offline system at time T independent of the input. Recall
that D = maxt∈[0,T ]m

(2)(t) is the maximum number of servers of the offline system.
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Lemma 7.3. If the required processing time of a job is pi = ε and ω = ε, then the difference in queue length at
time T between system Π1 and system Π2 is at most

ε
(
q(1)(T )− q(2)(T )

)
≤


√
β(r1D2−(r1−r2)λh(2D−λh))

r1r2
if λh ≤D,√

β·D2

r1
if λh > D,

(7.2.7)

as ε→ 0.

The equivalent lemma in the previous chapter is Lemma 6.3. Lemma 7.3 improves the bound in
Lemma 6.3 by a factor

√
2.

Proof of Lemma 7.3. Fix β and θ. Let the required processing time of a job be pi = ε and let ω = ε. We
will let ε → 0 later. Let the input be expressed by an arbitrary function σ (·) where σ (t) indicates the
number of jobs arriving in the interval [t, t + ε) for t ∈ [0,T ]. As a result, the evolution of the number of
jobs in the queue can be expressed as

q(i)(t + ε)− q(i)(t) = σ (t)−m(i)(t), (7.2.8)

for i = 1,2 as long as the queue is not empty. Define the scaled difference in queue length as ∆̂(t) =
ε
(
q(1)(t)− q(2)(t)

)
. The evolution of the difference in queue length can be expressed as

d∆̂(t)
dt

= lim
ε→0

∆̂(t + ε)− ∆̂(t)
ε

= ∆(t + ε)−∆(t) =m(2)(t)−m(1)(t) =D −m(1)(t). (7.2.9)

The scaled difference in queue length ∆̂(·) increases throughout phase I.a, while the derivative of
∆̂(·) is bounded by D. Furthermore, the number of servers of the online system Π1 increases as the
queue length increases and hence the derivative of the scaled queue length difference ∆̂(·) decreases.
The rule for turning on a server in the accumulated cost algorithm dictates that

dm(1)(t)
dt

=
r
(
m(1)(t)

)
· q(1)(t) ·ω
β

≥
r
(
m(1)(t)

)
· ∆̂(t)

β
, (7.2.10)

where r(m) = r11{m ≤ h}+ r21{m > h}. The number of servers in the online system Π1 increases from
0 to D. As soon as the number of servers in the online system m(1)(t) equals the number of servers D
in the offline system, the system has reached the next phase. The evolution of m(1)(t) and ∆̂(t) is fully
described by the system of differential equations obtained from equation (7.2.9) and equation (7.2.10),
where the queue length is maximum if equation (7.2.10) holds with equality,

d∆̂(t)
dt

=D −m(1)(t),
dm(1)(t)

dt
=

(r11{y(t) ≤ h}+ r21{y(t) > h}) ∆̂(t)
β

, (7.2.11)

where ∆̂(0) = 0, m(1)(0) = 0 and m(1)(T ) = D. Define u = min(dλhe,D) and let τ be the smallest time
for which m(1)(τ) = u. Solve the system of differential equations to obtain

∆̂(t) =


D ·

√
β
r1
· sin

(√
r1
β · t

)
if t ≤ τ,

(D −u) ·
√

β
r2
· sin

(√
r2
β · (t − τ)

)
+∆(τ) · cos

(√
r2
β · (t − τ)

)
, if τ < t ≤ T ,

(7.2.12)

m(1)(t) =


D −D · cos

(√
r1
β · t

)
if t ≤ τ,

D − (D −u) · cos
(√

r2
β · (t − τ)

)
+∆(τ) ·

√
r2
β · sin

(√
r2
β · (t − τ)

)
if τ < t ≤ T .

(7.2.13)

The boundary conditions then imply that

∆(T ) =

√
β(r1D2 − (r1 − r2)u(2D −u))

r1r2
, (7.2.14)

which proves the lemma.
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7.2.2 Coupling the online and offline systems in phase I.b

Consider the phase I.b throughout [T ,∞). Proposition 6.5 establishes that the waiting time of the online
system Π1 is at most the waiting time of the offline system Π2 plus the waiting time of system Π3. We
will again use this proposition in this section but prove a tighter bound on the waiting time of system
Π3. Recall that system Π3 follows the accumulated cost algorithm, does not receive arrivals and starts
with ∆0 +m0 jobs in the queue. The next lemma characterizes the waiting time of system Π3.

Lemma 7.4. The total waiting time of system Π3 is

W (3) ·ω =



√
β
r2
· ε(∆0 +m0) if λh ≤D,√

β·ε2(∆0+m0)2·r1r2+β2(r1−r2)(λh−D)2

r1r
2
2

− β(r1−r2)(λh−D)
r1r2

if D < λh ≤D +
√
r1
β · ε(∆0 +m0),√

β
r1
· ε(∆0 +m0) if λh > D +

√
r1
β · ε(∆0 +m0),

(7.2.15)

as ε→ 0.

The equivalent of Lemma 7.4 in the previous chapter is Lemma 6.6.

Proof of Lemma 7.4. Fix β and θ. Let the required processing time of a job be pi = ε and let ω = ε. We
will let ε→ 0 later. For ease of representation, we represent time relative to the start of the system, i.e.
time t = 0 is the start of phase I.b. The evolution of the number of jobs in the queue can be expressed as

q(3)(t + ε) = q(3)(t)−m(3)(t), (7.2.16)

as long as the queue is not empty. Let T be the smallest time for which q(3)(T ) = 0. Define the scaled
queue length as q̂(t) = εq(3)(t). The evolution of the scaled queue length can be expressed as

dq̂(t)
dt

= lim
ε→0

q̂(t + ε)− q̂(t)
ε

= lim
ε→0

q(t + ε)− q(t) = −m(3)(t), (7.2.17)

for t ∈ [0,T ]. The rule for turning on a server in the accumulated cost algorithm dictates that

dm(3)(t)
dt

=
r
(
m(3)

)
· q(3)(t) ·ω
β

=
r
(
m(3)

)
· q̂(t)

β
, (7.2.18)

where r(m) = r1{m ≥ h(3)} + r2{m < h(3)}. The evolution of m(3)(t) and q̂(t) is fully described by the
system of differential equations obtained from equations (7.2.17) and (7.2.18), where q̂(3)(0) = ε(∆0 +

m0), q̂(3)(T ) = 0 andm(3)(0) = 0. Define u = min
(⌈
λh(3)

⌉+
,
√
r1
β · ε(∆0 +m0)

)
and let τ be the smallest time

for which m(τ) = u. Solve the system of differential equations to obtain

q̂(t) =


ε(∆0 +m0) · cos

(√
r1
β · t

)
if t ≤ τ,

q̂(τ) · cos
(√

r2
β · (t − τ)

)
−u ·

√
β
r1
· sin

(√
r2
β · (t − τ)

)
if t > τ,

(7.2.19)

m(3)(t) =


ε(∆0 +m0) ·

√
r1
β · sin

(√
r1
β · t

)
if t ≤ τ,

q̂(τ) ·
√
r2
β · sin

(√
r2
β · (t − τ)

)
+u · cos

(√
r2
β · (t − τ)

)
if t > τ.

(7.2.20)

The boundary conditions then imply that

m(3)(T ) =

√
ε2(∆0 +m0)2 · r1r2 + β(r1 − r2)u2

βr1
, (7.2.21)

and the waiting time is

W (3) ·ω =
u · β
r1

+
(m(3)(T )−u) · β

r2
, (7.2.22)

which proves the lemma.
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7.2.3 Competitive ratio

Proof of Theorem 7.2. The cost of the online system can be divided in the cost before time T , the time
the online system reaches D servers, and the cost after time T . The waiting cost of system Π1 before
time T is exactly

W (1)(0,T ) ·ω ≤
min(dλhe,D) · β

r1
+

(D − dλhe)+ · β
r2

. (7.2.23)

because system Π1 turns onD servers. If the system Π1 does not reachD servers, then the number of
servers is bounded by D and the theorem trivially holds. The number of servers with a higher workload
in system Π1 plus the difference in queue length between system Π1 and system Π2 at time T is at most

ε (m0 +∆0) ≤

√
β(r1D2 − (r1 − r2)u(2D −u))

r1r2
, (7.2.24)

as ε→ 0 where u = min(λh,D) by Lemma 7.3. As a result, the waiting cost of system Π1 after time
T is at most

(W (1) −W (2)) ·ω
D · β

=



√
r1−(r1−r2)λη(2−λη)

r1r
2
2

if λη ≤ 1,√
r2+(r1−r2)(λη−1)2

r1r
2
2

− (r1−r2)(λη−1)
r1r2

if 1 < λη ≤ 2,

1
r1

if λη > 2,

(7.2.25)

by Proposition 6.5 and Lemma 7.4. The total waiting time of the online system is the sum of equa-
tion (7.2.23) and equation (7.2.25). The number of servers follows by applying equation (6.1.1).
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8
Simulation results

This chapter will verify the theoretical results obtained in the previous chapters experimentally and
identify to what extent the worst-case is relevant in practice. To this end, the power-down algorithm
and the accumulated cost algorithm have been implemented and we have performed small-scale sim-
ulations. We aim to answer three questions in this chapter, corresponding to the three paragraphs.
First, we investigate how the performance of the power-down strategy which resets the idle time and
the strategy which does not reset the idle time compare for a random input. Second, we verify the
competitive ratio of the accumulated cost algorithm which has access to a predictor for one worst-case
arrival pattern. Finally, we investigate the competitive ratio of the accumulated cost algorithm which
has access to a predictor for a random input.

Power-down strategies. Chapter 4 argued that power-down strategies which reset the idle time of a
server each time a job is routed to the server are not constant competitive if ω is finite and jobs are
allowed to wait. However, if ω → ∞ and jobs are not allowed to wait, these strategies are constant
competitive. In fact, both the power-down strategy which resets the idle time of a server each time a job
is routed to the server and the strategy presented in Algorithm 2, which does not reset the idle time,
are 2-competitive if ω→∞. We therefore concluded that the worst-case performance does not degrade
in the worst-case. The question we aim to answer is whether the performance also does not degrade in
an average sense.

The setup of this experiment is as follows. Algorithm 3 has been implemented as is, which we will
refer to as maintain idle time. The second algorithm is a modification of Algorithm 3 for which the idle

(a) β/θ = 0.1 (b) β/θ = 10

Figure 8.1: The number of servers over time for the maintain idle time and reset idle time algorithm
for ω→∞ and exponential interarrival times.
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time is reset each time a job is routed to the server, which we will refer to as reset idle time. The input
σ consists of 50 jobs with exponentially distributed interarrival times with mean 1 and unit required
processing time, i.e. ti+1 − ti ∼ Exp(1) and pi = 1 for all i. The parameter µ = 1 for both algorithms.

Figure 8.1a shows the number of servers over time for one instance of the input. As β/θ = 0.1 is
relatively small, the idle time before a server is turned off is small. The number of servers therefore
fluctuates rapidly. More importantly, the behavior of the two algorithms coincides completely for this
choice of parameters. Indeed, for 500 random instances of the input, the cost of the maintain idle time
algorithm was 1.0006 times higher than the reset idle time algorithm on average. This has a natural
explanation. If a server just finished processing a job and the idle time before a server is turned off
is small enough, then this server will most likely be turned off before a new job arrives to the system.
Most servers will therefore not receive a second job and as a result, the difference between maintaining
or resetting the idle time does not influence the behavior. Figure 8.1b shows the number of servers over
time for β/θ = 10. Note that, in general, the maintain idle time algorithm turns off a server earlier than
the reset idle time algorithm which is clearly visible in this figure. Although the power consumption
is less, the additional buying cost negatively affects performance. Indeed, for 500 random instances
of the input, the cost of the maintain idle time algorithm was 1.5 times higher than the reset idle
time algorithm on average. While the performance of the algorithms is equal in the worst-case, the
performance for random input can thus differ significantly. In practice, the performance may therefore
degrade if the idle time is maintained. Algorithm 2 should therefore only be preferred if ω is finite and
jobs are allowed to wait. If ω→∞, then resetting the idle time has a better performance.

Competitive ratio of the accumulated cost algorithm. Chapter 5 introduced the accumulated cost
algorithm as a competitive algorithm in the general case. Chapters 6 and 7 then adapted this algorithm
to include a predictor if allocating servers is irreversible and θ = 0. Chapters 6 and 7 differ in their
assumption on the waiting cost ω and the required processing time of a job. The former does not make
any assumptions on ω, while the latter assumes that both ω and the required processing time of a job
are small. We distinguish these cases as two regimes in our simulations. The question we aim to answer
is whether Theorems 6.2 and 7.2 can be confirmed by experiments.

The setup of this experiment is as follows. Algorithm 5 has been implemented. The input σ consist
of 5100 jobs with 100 jobs arriving at t = 0,1,2, . . . ,50 and required processing time pi = 1 for all i. This
input satisfies most of the bounds in the theoretical analysis with equality and we therefore consider
this instance as a worst-case input. Moreover, the offline algorithm has zero waiting cost for this input.
We choose ω/β = 1 to verify Theorem 6.2 and ω/β = 0.01 to verify Theorem 7.2. Furthermore, we will
vary the parameter r1 to tune the confidence in the prediction and choose r2 and λ to minimize the
competitive ratio according to Remarks 13 and 16.

Figure 8.2a shows the number of jobs in the queue, the buying cost and the waiting cost over time

(a) r1 = r2 = 2 (b) r1 = 8, r2 = 0.7, λ = 1.2 and η = 1

Figure 8.2: The number of jobs in the queue, the buying cost and the waiting cost over time for the
accumulated cost algorithm for β = 1 and ω = 0.01 and worst-case input.
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for the accumulated cost algorithm. The rate at which the algorithm turns on servers is r1 = r2 = 2 both
before and after the system has reached dλhe servers. The prediction therefore does not influence the
behavior of the algorithm. The figure clearly shows that the buying cost is twice the waiting cost at
all times. Figure 8.2b again shows the number of jobs in the queue, the buying cost and the waiting
cost over time for the accumulated cost algorithm. The rate at which the algorithm turns on servers is
now r1 = 8 before the system has reached dλhe servers and r2 = 0.7 after the system has reached dλhe
servers. The prediction, which is perfect in this example, therefore does influence the behavior in this
case. The buying cost is eight times the waiting cost before the system has turned on 120 servers and
the algorithm turns on servers at rate 0.7 afterwards. As a result of the prediction, both the buying and
the waiting cost are lower in Figure 8.2a than in Figure 8.2b.

First, we verify Theorem 6.2 in case ω is of the same order as β. Figure 8.3 shows the competitive
ratio of the accumulated cost algorithm depending on the error of the predictor η if ω/β = 1. Figure
8.3a shows the competitive ratio if r1 = r2 = 4 and the prediction does not influence the behavior of
the algorithm. The theoretical competitive ratio is 5 as follows from Theorem 6.2. The ratio which
follows from the simulation is much lower, which suggests that the analysis is not tight. Figures 8.3b
and 8.3c show the competitive ratio for an increasing confidence in the predictor with r1 = 16 and
r1 = 128 respectively. Also in these cases, the analysis is not tight. More importantly, the minimum in
the competitive ratio is obtained for η = 0.5 instead of η = 1, which would be a perfect prediction. This
anomaly is caused by the choice of λ. The parameter λ has been chosen to minimize the competitive

(a) r1 = r2 = 4 (b) r1 = 16, r2 = 1, λ = 2.3

(c) r1 = 128, r2 = 1, λ = 2.1

Figure 8.3: The competitive ratio of the accumulated cost algorithm depending on the error of the
predictor η for ω/β = 1 and worst-case input.
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ratio at η = 1 in the theoretical analysis, but does not minimize the competitive ratio in simulations.
In fact, if η = 0.5, then λη ≈ 1 in both cases which means the buying rate is switched when the online
system has reached the number of servers turned on by the offline system. The theoretical analysis
pessimistically suggests that the algorithm should instead keep turning on servers at a higher rate until
the online system reaches about twice the number of servers of the offline system. This turns out to be
less efficient in practice.

Second, we verify Theorem 7.2 in case ω is much smaller than β. Figure 8.4 shows the competitive
ratio of the accumulated cost algorithm depending on the error of the predictor η if ω/β = 0.01. Figure
8.4a shows the competitive ratio if r1 = r2 = 2 and the prediction does not influence the behavior of the
algorithm. The experimental competitive ratio is 2.9 which is almost equal to the theoretical competi-
tive ratio of 3 as follows from Theorem 7.2. The theoretical analysis in this case is therefore almost tight
(as also shown by the lower bound of Theorem 7.1). Figures 8.4b and 8.4c show the competitive ratio
for an increasing confidence in the predictor with r1 = 4 and r1 = 128 respectively. The theoretical com-
petitive ratio corresponds closely to the experimental competitive ratio for 0 ≤ η ≤ 1.5. For η ≥ 1.5, the
input is not worst-case which explains the gap between the theoretical and experimental competitive
ratio. The minimum in the competitive ratio is now obtained around η = 1 both for the theoretical and
the experimental competitive ratio. The choice of λ which follows from the theoretical analysis if the
waiting cost ω and the required processing time are small is therefore more optimistic and corresponds
better to the optimal value of λ in reality.

Average cost ratio of the accumulated cost algorithm. The competitive ratio of the accumulated cost
algorithm in the worst-case follows from the theoretical analysis in Chapter 6 and 7 and corresponds
quite strongly to the experimental competitive ratio in the worst-case ifω is small. In practice, the input
does not always behave as in the worst case. The question we aim to answer is how the accumulated
cost algorithm with a predictor performs for random input.

The setup of this experiment is as follows. Algorithm 5 has been implemented. The input σ con-
sists of 1000 jobs with exponentially distributed interarrival times with mean 0.1 and unit required
processing time, i.e. ti+1 − ti ∼ Exp(10) and pi = 1 for all i. The parameter r1 has been varied to tune the
confidence in the prediction and r2 and λ has been chosen to minimize the competitive ratio according
to Remarks 13 and 16. We choose ω/β = 1 to verify the performance if the waiting cost is significant
and ω/β = 0.01 to verify the performance if the waiting cost is small.

Figure 8.5a shows the average cost ratio between the accumulated cost algorithm and the offline
algorithm based on 500 simulations for each data point for ω/β = 1. If r1 = 4 (and r2 = 4) then the
predictor does not influence the behavior of the algorithm. For increasing confidence in the predictor,
the minimum in the average cost ratio becomes close to 1. Not surprisingly, the minimum in the average
cost ratio is achieved around η = 0.5 which is caused by the pessimistic choice of λ as argued in the
previous paragraph. The experimental worst-case competitive ratio in Figure 8.3 and the average cost
ratio in Figure 8.5a actually correspond closely, at least quantitatively. The cost of underestimation
is significantly higher than the cost of overestimation in both cases. This has mostly to do with the
nature of the input and we do not expect this to hold for every arrival pattern. Figure 8.5b shows the
average cost ratio between the accumulated cost algorithm and the offline algorithm for ω/β = 0.01.
Again the predictor does not influence the behavior if r1 = 2 (and r2 = 2). The average cost ratio is
minimum around η = 1 as in the worst-case instance from the previous paragraph. Figure 8.4 and
Figure 8.5b again correspond closely and the cost of underestimation is significantly higher than the
cost of overestimation.
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(a) r1 = r2 = 2 (b) r1 = 4, r2 = 1.2, λ = 1.3

(c) r1 = 128, r2 = 0.1, λ = 1.1

Figure 8.4: The competitive ratio of the accumulated cost algorithm depending on the error of the
predictor η for ω/β = 0.01 and worst-case input.

(a) ω/β = 1 (b) ω/β = 0.01

Figure 8.5: The average cost ratio between the accumulated cost algorithm and the offline algorithm
depending on the error of the predictor η for exponential interarrival times.
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9
Conclusion

Theoretical contributions. This thesis contributes to the understanding of the worst-case perfor-
mance of algorithms for dynamic provisioning. The dynamic provisioning or power-aware load bal-
ancing problem requires an algorithm which balances in an online fashion β, the cost of turning on an
additional server,ω, the cost of letting a job wait, and θ, the power cost. Without any assumption on the
required processing time of a job, there does not exist an online algorithm that achieves a finite compet-
itive ratio. We have therefore assumed jobs have unit required processing time throughout the current
work. With this assumption, we have identified competitive algorithms for the power-aware load bal-
ancing problem, in the general case and in specific scenarios of the general problem. The current work
makes several contributions to the existing literature.

First of all, the current work identifies an inherit problem with existing power-down strategies.
Power-down strategies which have been studied in previous literature let a server turn off if the time
the server has been idle exceeds a threshold. This idle time is reset each time a job is scheduled on the
server. Lemma 4.1 has shown that any strategy following this rule is not constant competitive if ω is
small. Chapter 4 proposes an alternative, local rule for powering down a server. The idea is to not reset
the idle time each time a job is scheduled on the server, but instead maintain the idle time throughout
the complete lifetime of the server. Theorem 4.2 has shown that in the classic power-down scenario, i.e.
ω→∞ and jobs do not wait, the algorithm is 2-competitive, which is optimal and corresponds to the
algorithms previously analyzed in the literature. This shows that our algorithm resolves the problem
of resetting the idle time and still maintains optimal performance in the classic power-down scenario.

Second, the current work explicitly models the cost of delaying a job as an optimization objective.
To the best of our knowledge, the current work is the first to allow and model the delay and power
consumption explicitly in a worst-case analysis. The competitive analysis is applied to the accumulated
cost algorithm, proposed in Chapter 5. The accumulated cost algorithm implements a global rule,
which turns on an additional server each time the cumulative waiting cost exceeds a threshold, and
the local power-down rule from Chapter 4. Theorem 5.1 proves that the algorithm is 10.8-competitive
in the general case. If jobs are small and allocating a server is irreversible, i.e. θ = 0, then Theorem
7.1 establishes that any online algorithm has a competitive ratio of at least 2.91. Theorem 7.2 then
shows that the accumulated cost algorithm is 3-competitive if jobs are small and allocating a server is

ω θ Competitive ratio
Doubling algorithm (Algorithm 1) [0,∞) 0 5
Threshold algorithm (Algorithm 3) ∞ [0,∞) 2
Accumulated cost algorithm (Algorithm 4) [0,∞) [0,∞) 10.8

[0,∞) 0 5
ε 0 3

ACA with predictor (Algorithm 5) [0,∞) 0 2 +O
(
1/
√
r1
)

if η = 1 and
max(8,1 + r1) for all η

ε 0 1 +O
(
1/
√
r1
)

if η = 1 and
2 + r1 for all η

Table 9.1: A comparison of the competitive ratio of the algorithms discussed in this thesis.
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irreversible. The accumulated cost algorithm is therefore close to the best possible online algorithm for
the power-aware load balancing problem in this case.

Finally, the current work goes beyond worst-case analysis and investigates how the performance
of the online algorithm can be improved if future traffic is predictable. We assume that a black-box
predictor is available to the online algorithm, which predicts the future arrival times of jobs. Lemma
6.1 shows that blindly following the advice of the predictor is not constant competitive if predictions
are inaccurate. Chapter 6 shows how to adapt the accumulated cost algorithm to use the predictions
in such a way that the performance of the accumulated cost algorithm is close to the offline algorithm
if predictions are accurate, but still guarantee bounded performance if the predictions are inaccurate.
The algorithm does not require any knowledge about the accuracy of the predictor. If allocating a server
is irreversible, i.e. θ = 0, then Theorem 6.2 shows that the accumulated cost algorithm with predictor is
(2 +O

(
1/
√
r1
)
)-competitive for a parameter r1 if predictions are accurate and max(8,1 + r1)-competitive

if predictions are inaccurate. If in addition jobs are small, then the competitive ratio is 1 +O
(
1/
√
r1
)

if
predictions are accurate. The performance of the accumulated cost algorithm with a predictor therefore
goes beyond the lowest possible competitive ratio of 2.91 and even approaches the performance of the
offline algorithm if predictions are accurate. Table 9.1 provides an overview of the results.

Practical insights. The results in this thesis have direct implications for system designers and yield
concrete advice. We summarize the most important points.

1. A system should not depend on an idle timer to turn off a server which resets each time a job is
scheduled on the server, but instead maintain the idle time throughout the lifetime of the server
and turn off the server after the idle time exceeds a threshold. Only if jobs are not allowed to wait,
then the policy which resets the idle time performs better in practice.

2. The accumulated cost algorithm is competitive in the general case. If jobs are small and allocating
a server is irreversible, then the performance of the accumulated cost algorithm is close to the best
possible online algorithm.

3. A system should not depend on an algorithm which blindly follows the advice of a predictor. In-
stead, a system should implement the accumulated cost algorithm with access to a predictor and
tune the parameters based on their confidence in the predictor. The predictions improve the per-
formance of the algorithm significantly, even if the predictions are not perfect. If the predictions
are accurate and jobs are small, then the accumulated cost algorithm achieves a performance close
to the offline algorithm.

We hope the current work contributes to more efficient dynamic provisioning in data centers and
significantly lowers the impact data centers have on the power consumption of the planet.

Further research topics. The research in the area of online algorithms and their integration with a
predictor is far from exhausted. An immediate extension of the current work would be to implement
a predictor in the general case. For a large part, the current work provides the framework for the pre-
dictor in the general case, although some novelty is still needed. One question would be, for example,
how to integrate a predictor in both the rule for turning on a server and the rule for turning off a server.
Another extension of the current work would be to investigate how far the competitive ratio of the ac-
cumulated cost algorithm is from the lowest possible competitive ratio in the general case. We suspect
the analysis is not tight in any of the cases.

Another interesting problem is to investigate how the accumulated cost algorithm would behave
if the input is stochastic. The research area of stochastic scheduling is well-established and has seen
algorithms to the current problem and a wide range of variations. Existing research on a stochastic
algorithm with access to a predictor is still lacking however. On a related note, it would be interesting
to see whether the idea of maintaining the accumulated cost applies in a more general sense and applies
to more general systems. The variations of the current problem analyzed in stochastic scheduling have
not seen an equivalent in competitive analysis until now. The current work and the fact that delay is
explicitly modeled might initiate this research.

Finally, the idea of enhancing the performance of an algorithm with a predictor is a powerful one.
The idea allows to combine the appealing features of machine learning algorithms and competitive
analysis. The research in this area is still young and the future will undoubtedly see more work based
on this idea.
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